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Synopsis
A multi-layer, feed-forward, back-propagation learn-
ing algorithm was used as an artificial neural network
(ANN) tool to predict the extraction of germanium
from zinc plant residues by sulphuric acid leaching. A
genetic algorithm (GA) was used for the selection of
training and testing data and a GA–ANN model of the
germanium leaching system was created on the basis of
the training data. Testing of the model yielded good
error levels (r2 = 0.95). The model was employed to pre-
dict the response of the system to different values of the
factors that affect the recovery of germanium and the
results facilitate selection of the experimental condi-
tions in which the optimum recovery will be achieved.

World production of germanium, which is widely used in the
chemical, electronic and optical materials industries, is about
100 t/year. It is obtained mainly as a by-product of the extrac-
tion of other metals, and zinc smelter flue systems are the
principal source. Çinkur has been stockpiling solution purifi-
cation residues at its zinc plant in Turkey and has built up a
stock of more than 300 t with a germanium concentration in
excess of 1000 ppm. In a previous study1 this residue, also
known as ‘copper cake’, was treated with 0–250 g/l H2SO4 to
bring the germanium into a solution that could later be
processed by tannin precipitation2 or solvent extraction;3 the
solution remaining after germanium extraction could then be
processed to recover its Cu, Ni, Co, etc. The effects of such
factors as time, temperature, solids content and acid concen-
tration on the leach recovery of germanium were reported.
Data obtained in that work have now been employed to cre-
ate a model that describes germanium recovery from zinc
plant residues by feeding them via a genetic algorithm (GA)
into an artificial neural network (ANN).

ANN are used to model complex systems in a wide range
of fields.4–6 In many mining and extractive metallurgical
projects the effects of processing parameters (e.g. time,
temperature, mixing speed, the solids content in a leaching
reactor, rotation speed of a tumbling ball-mill, media/charge
ratio in the mill, etc.) on the response of the system (e.g. per
cent leach recovery of zinc or energy consumption in a ball-
mill) are subjects of study. ANN can be used to model such
processes by using plant data as feed in the setting up of the
model. The model can then be used to predict the response
of the system to different combinations of parameters. In
other words, plant engineers can utilize such models for opti-
mization purposes.

Model development

The common, three-layer, feed-forward type of ANN, as
shown in Fig. 1, was adopted in the present study. In a feed-
forward network the input quantities are fed into input layer

neurons, which pass them on to the hidden-layer neurons
after application of a weight. A hidden-layer neuron adds up
the weighted input received from each input neuron, associ-
ates it with a bias and then passes the result through a
nonlinear transfer function (Fig. 2). The output neurons per-
form the same operation as a hidden neuron. In this study the
sigmoid function was employed as an activation function.7

Learning is accomplished in ANN by a back-propagation
(BP) algorithm. The objective of a BP network is, by mini-
mizing a predetermined error function, to find the optimal
weights that would generate an output vector, Y (= y1, y2, ...,
yp), as close as possible to the target values of the output
vector, T (= t1, t2, ..., tp), with a selected accuracy. A pre-
determined error function has the form4,7
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Fig. 1 Typical architecture of back-propagation ANN model
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Fig. 2 Weighted output from each node passes through nonlinear
transfer function

f(net) y

ni1

ni2

ni3

sum (xini)
net

x1

x2

xn

.
.

D
ow

nl
oa

de
d 

by
 [

Iz
m

ir
 Y

uk
se

k 
T

ek
no

lo
gi

 E
ns

tit
us

u]
 a

t 0
4:

36
 1

2 
M

ay
 2

01
6 



(1)

where yi is a component of an ANN output vector, Y; ti is a
component of a target output vector, T; m is number of out-
put neurons; and P is number of training patterns.

The least-square error method, along with a generalized
delta rule, was used to optimize the network weights. The
gradient-descent method, along with the chain rule of deriva-
tives, was employed to modify network weights:

(2)

where d is learning rate used to increase the chance of avoid-
ing the training process being trapped in a local minimum
instead of a global minimum.

Quantitative input data of various types and magnitudes
are normalized at the beginning to a common scale of
0.1–0.9. Equation 3 compresses all the data in this range:

(3)

where xmax and xmin are the maximum and minimum values
of the ith node in the input layer for all the feeding data vec-
tors (1 £ i £ n). At the beginning, also, the weights vij and wij
were assigned a random value between –1 and 1. Details of
the ANN can be found elsewhere.4,7,10

Development of an ANN model involves the use of train-
ing and testing data-sets. When the training and testing
data-sets are not separated to equal averages and similar
ranges the resulting model could be biased. To overcome
these shortcomings of ANN a GA was used in this study. A
GA can be described as a guided random search method. It is
made up of four important steps: initialization, selection,
reproduction and mutation.8,9 Detailed information on the
GA used can also be found elsewhere.4,8,9

Data collection

The data used in the GA–ANN modelling had been collected
previously from the leaching of germanium-containing zinc
plant residues denoted ‘old copper cake’ (OCC) and ‘new
copper cake’ (NCC),1 which had been stockpiled at different
periods during operation of the plant. Both cake samples

were dried at 110°C, ground to pass 100 mesh and subjected
to leaching in sulphuric acid solution under the conditions
reported in Table 1. Leaching was carried out in a glass
reactor that was heated externally from beneath by a hot-
plate. Mixing was performed with an immersed,
Teflon-coated magnet at a fixed rotation speed of about 150
rev/min. The temperature was measured by an immersed
mercury thermometer.

Model application

The three-layer, feed-forward ANN was constructed with six
neurons in the input layer for six input variables. In the hid-
den layer six neurons were chosen by trial and error. Finally,
in the output layer one neuron was used for the output vari-
able per cent germanium recovery from the leaching solution.
The input variables were x1, per cent solids in the leach; x2,
leaching temperature, °C; x3, acid concentration, g H2SO4/l;
x4, duration of leaching, h; x5, MnO2 added, g/25 g copper
cake; and x6, type of copper cake (0 for OCC and 1 for
NCC).

These six input variables and one output variable form a
special case of the more general model illustrated in Fig. 1, in
which the number of output-layer neurons is more than one.
Neurons in each layer are fully connected to every node in the
neighbouring layers. No bias term was used during model-
ling, but a momentum term was used to help to obtain better
convergence during iterations. A total of 20 data-sets were
employed, of which 16 were used for training of the ANN
and the remainder for testing of the model. Each data-set had
seven components, comprising the six input variables and the
output variable. The program operated for 40 000 iterations
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Table 1 Conditions for copper cake leaching experiments1

Test Type of Solids, Temperature, Concentration Time, MnO2 addition Recovery of
run copper cake % °C of H2SO4, g/l h g/25g CC Ge in leach, %

1 OCC 25 85 0 2.5 0 0.4
2 OCC 25 25 150 2.5 0 81.0
3 OCC 25 55 150 2.5 0 84.7
4 OCC 25 85 150 2.5 0 89.3
5 OCC 25 85 50 2.5 0 38.1
6 OCC 25 85 200 2.5 0 72.5
7 OCC 25 85 250 2.5 0 74.4
8 OCC 50 85 150 2.5 0 32.4
9 OCC 12.5 85 150 2.5 0 88.2
10 OCC 6.25 85 150 2.5 0 92.8
11 OCC 25 85 150 0.5 0 88.0
12 OCC 25 85 150 3.5 0 85.3
13 NCC 25 85 150 0.5 0.43 98.9
14 NCC 25 85 150 2.5 0.43 99.3
15 NCC 25 85 150 2.5 0 88.8
16 NCC 25 85 150 3.5 0.43 98.9
17 OCC 25 96 150 2.5 0 91.6
18 OCC 25 85 100 2.5 0 80.6
19 OCC 25 85 150 1.5 0 89.0
20 NCC 25 85 150 1.5 0.43 99.3

OCC, old copper cake; NCC, new copper cake.
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and the optimal weights were calculated with an average
learning error of 7.69% for the output variable.

The results of the training runs are plotted in Fig. 3, in
which the high r2 value (0.910) indicates that the training was
successfully performed. Ideally, such graphs should have an
intercept value of 0 and a slope of 1, i.e. if the data were on
the diagonal, the learning error would be zero.

Because of the limited number of experimental data only
four testing outputs were compared with real, measured data
and the results are given in Table 2. As can be seen in Table
2, the performance of the model is quite satisfactory.

Results

The experimental data for the effects of single factors are pre-
sented below and the results of the ANN sensitivity analysis
are then discussed.

Single factor effects
Figs. 4–7 display the effects of individual factors on the ger-

manium recovery. The data points were obtained from Table
1. The polynomial equations for the best-fit curves are shown
in each figure along with the r2 values. Increasing the percent-
age of solids led to a sharp decrease in the leach recovery
(Fig. 4). In contrast, increase in the acid concentration
brought a substantial boost in germanium leach recovery
(Fig. 5), but at very high acid concentration the germanium
recovery decreased by about 15%. This may have been the
result of precipitation from the solution in extremely acidic
concentrations.

Germanium dissolution from the cake reached its peak
within about half an hour and further mixing of the system
did not help to increase recovery (Fig. 6). Increases in tem-
perature had only a slight beneficial effect in achieving higher
leach recoveries (Fig. 7).

C131

Table 2 Results of testing runs

No. Targeted Output by Absolute Relative
output, % NN model, % error, % error,
Ge recovery Ge recovery Ge recovery %

1 38.1 39.9 –1.7 –4.6
2 89.0 82.3 6.7 7.5
3 98.9 100.5 –1.6 –1.6
4 91.6 81.7 9.8 10.8

Fig. 3 Results of learning run
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Fig. 4 Effect of per cent solids content on germanium recovery

Solids, %

G
er

m
an

iu
m

 r
ec

ov
er

y,
 %

Fig. 7 Effect of leaching temperature on germanium recovery
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Fig. 5 Effect of acid concentration on germanium recovery
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Fig. 6 Effect of leaching time on germanium recovery

Leaching time, h
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The combined effects of more than one factor at varying
levels can be seen on surface plots produced by use of the
ANN model developed here.

Sensitivity analysis
The GA–ANN model was used to predict outputs (per cent
germanium recovery) at various levels of the input factors, i.e.
time, temperature, acid concentration and per cent solids.
For the purposes of sensitivity analysis the complete range of
each input factor was discretized into 10–15 subdivisions. For
example, the temperature range  25–90°C was divided into
ten subdivisions and the acid concentration (0–250 g/l) was
divided into 11 subdivisions, such that a total of 110 pre-
dicted per cent germanium recovery values was obtained.
The utility of this sensitivity analysis is that it enables the
researcher or plant operator to identify the experimental con-
ditions that give higher germanium recovery.

Figs. 8–13, based on the results of prediction runs with the
model, show the effects on germanium recovery of two fac-
tors at a time, in the form of surface plots. The effect of time
and temperature on germanium recovery is displayed in
Fig. 8. It can be seen that increasing temperature led to a
gradual linear increase of germanium recovery at all lengths
of time. The duration of leaching was not important because
germanium was taken into solution within half an hour and
further leaching did not increase germanium recoveries.
Insignificant interaction is observed between the time and
temperature factors.

Fig. 9 is a surface plot of the effects of time and per cent
solids on germanium recovery. Leaching time was not a
strong factor in increased germanium recovery, but solids
loading of the leaching system, on the other hand, had a
major effect. Fifty per cent solids loading entailed the loss of
more than half of the germanium recovery. However, more
than 80% recovery was achieved at 25% solids at almost
every length of leaching time.

Fig. 10 shows the effect of acid concentration and time on
germanium recovery. The germanium recovery reached a
plateau at around 80–90% once a 150 g/l acid concentration

was exceeded. This behaviour altered little with different
lengths of time.

Fig. 11 illustrates the effects of temperature and acid con-
centration; increasing acid concentration led to an increase in
germanium recovery at all levels of temperature.

Fig. 12 shows the effects of per cent solids and acid con-
centration. Increase in acid concentration and decrease in per
cent solids brought about increased recoveries. The germa-
nium recovery was highest at low per cent solids (6.25–25%)
and high acid concentrations—between about 100 and
200 g/l. A high solids loading with a low acid concentration
was clearly the least productive combination.

Fig. 13 shows the effects of temperature and per cent
solids. Increase in per cent solids decreased the recovery
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Fig. 8 Combined effects of leaching time and temperature on ger-
manium leach recovery at constant values of x1, per cent solids in
leaching process (25%), and x3, acid concentration (150 g H2SO4/l)
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Fig. 9 Combined effects of leaching time and per cent solids on
germanium leach recovery at constant values of x2, leaching temper-
ature (85°C), and x3, acid concentration (150 g H2SO4/l)
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Fig. 10 Combined effects of leaching time and acid concentration
on germanium leach recovery at constant values of x1, per cent solids
in leaching process (25%), and x2, leaching temperature (85°C)
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sharply at all temperatures. Increases in temperature at high
per cent solids led to a gradual increase in germanium recov-
ery, but this effect was not observed at low solids loadings.

The relationships observed between factor effects and the
germanium recovery conform to the general understanding of
leaching systems. The plots are especially useful when a
researcher seeks interactions between factor effects and a
visual means of inspecting system behaviour.

Conclusions

A three-layer GA–ANN model was developed for the pre-
diction of per cent germanium recovery from the solution
purification residues of a Turkish zinc plant. The satisfactory
predictions of the observed recovery by the model indicate

that ANN could be a useful tool for the modelling of leaching
systems.

Genetic algorithms provided a balanced means of separat-
ing training and testing data at the beginning of the modelling
task. The learning rate was adjusted on the basis of a practical
formula developed in-house, which gave good results.

Factors affecting the leaching recovery of germanium were
investigated quantitatively. Data obtained through a classical
‘one-factor at a time’ approach could be presented on single-
factor plots, but such plots are unable to show the effects of
combinations of factors. However, GA–ANN modelling is
able to produce surface plots that facilitate understanding of
the system by providing a visual representation of interactions
within it. Thus, the model lends itself to use by plant opera-
tors as a guide to the conditions that give maximum recovery.
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