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Abstract

Low-energy, high-flux N ion implantation into austenitic stainless steel held at approximately 4008C results in dramatic
improvements in the tribological properties due to sufficiently large N layer thicknesses and high-N-content solid solution phase,
g . In this paper, post-ion beam processing via isothermal annealing of a low-energy(0.7 keV), high-flux (2.5 mAycm ) N2
N

implanted fcc 304 stainless steel held at 4008C has been investigated by Mossbauer spectroscopy and X-ray diffraction(XRD).¨
Post-implantation annealing at 4008C demonstrated the metastability and showed that the magneticg produced at lower ionN

energies and higher fluxes transformed systematically to a paramagneticg phase with less N content and less lattice expansion,N

thereby destabilizing the magnetic state ofg . The isothermal annealing results in much thickerg layers but with less N inN N

solid solution due to the N diffusion into the substrate. Based on the XRD data, the N diffusivity under isothermal annealing
conditions is found to beDs2=10 cm ys at 4008C, consistent with a model which explains that the trapping by Cr atomsy13 2

in the stainless steel becomes more effective when N contents are low relative to the Cr concentration(;19 at.% in 304 stainless
steel).
� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Low-energy(F2 keV), high-flux (a few mAycm )2

nitrogen ion implantation into 304 stainless steel(SS)
at 400 8C is known to generate a metastable, fcc,
interstitial, high-N content phase(g ) in the implantedN

layer with both magnetic and paramagnetic characteris-
tics w1–5x. Under such conditions, theg layers areN

found to have N layer depths several microns thick and
N contents approaching 30 at.%. Such layers have
technological importance due to their high strength
(microhardness as high as 20 GPa) and good corrosion
resistancew3x.
One important characteristic of theg phase is itsN

metastability, which has been investigated under high-
and low-energy N beam conditions, low-temperature
plasma nitriding conditions, as well as under thermal
annealing studies(post-ion and post-plasma nitriding
processing). The metastability has been established
based on annealing experiments, which show thegN
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phase gradually decomposes upon annealing at 4008C
w6x. It has also been investigated in the presence of low-
energy N ion beam processing conditions at higher
substrate temperatures(above approx. 4508C) which
leads to a phase separated mixture of bcc-FeNi and fcc-
CrN w2x. Lower implantation temperatures(;220–350
8C) result in hexagonal nitride,́-(Fe,Cr,Ni) N with2qx

both paramagnetic and magnetic characteristicsw6,7x.
The metastability of theg phase has also beenN

investigated both in the presence and absence of low-
temperature plasma nitriding conditions. One such study
w8x, a systematic investigation of the thermal stability
of theg phase as a function of both temperature(200–N

600 8C) and time(20–3000 h), found that theg phaseN

is thermodynamicallymetastable due to its extremely
high solubility of nitrogen(N content reported in the
plasma nitrided state was;22 at.%, which is actually
quite low in comparison to that found with our low-
energy, high-flux N ion beam processing conditions,
;30 at.%).
The g phase stability needs further investigationN

since under the low-energy N implantation conditions
the top surface of fcc-SS becomes magnetic due to very
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high N contents and residual stressesw3,4x. Having a
magnetic g layer on a non-magnetic substrate(gN

phase) in addition to its high strength may have other
useful applications. This aspect of theg phase(i.e. itsN

magnetic character) somehow has not been an important
issue, even though this phase has now been studied
extensively by various research groups. Prior to our
work, there were only few studies related to the magnetic
nature and stability of this phasew9,10x, one of which
(an ion nitriding study of 304 SS at 4008C) found that
the nitrided layer was composed of theg phase andN

was of ferromagnetic naturew9x, and the other(hydrogen
incorporation into fcc-SS by cathoding charging meth-
od) found a high-H-phase(this phase is referred to as
the fcc hydride phase and is a high solid solution phase
similar to the g phase) which had the magneticN

properties of a soft magnetic materialw10x. In our
research, the magneticg was also found to be ferrom-N

agnetically soft in nature, and to be distributed in the
highest concentration(top-most) region of the implanted
layer. The g transformed to the paramagnetic stateN

deeper into the layer as the N concentration and degree
of lattice expansion decreasedw3x. More recently, mag-
netic force microscopy studies have revealed a micron-
sized, maze-like magnetic domain structure for the
ferromagneticg w1,11x.N

Of ongoing interest, and of relevance to the magnetic
and phase stability, have been the N diffusion depth and
the associated mechanism(s), as well as the nearly
rectangular shape of the N concentration profiles for the
low-energy, high-flux beam conditions. An experiment
coupled with a qualitative modelw12x provided direct
evidence of the critical role played by the substrate
element Cr in the formation of theg phase and theN

retention of high N contents in the same phase along
with an explanation of non-error function, reaction front-
like N concentration profiles. As shown in Parascandola
et al. w13x, a more careful analysis of the N diffusivity
including trappingydetrapping of the N, presumably at
the Cr atoms, yielded a reasonable explanation of the
non-error function shape of the N profiles(some exper-
imental depth profiles are of approximately rectangular
shape).
In this paper, we present a post-ion-implantation

annealing study of a low-energy, high-flux N ion
implanted 304 SS to examine the thermal stability of
the implantation-induced near-surface phases, both mag-
netic and paramagneticg , and to induce further diffu-N

sion of the N in the absence of the ion beam. In
addition, further diffusion of the N in the absence of
the ion beam will be investigated to shed more light on
the N diffusion behavior under the low-energy N ion
beam conditions.

2. Experimental

Austenitic fcc AISI 304 SS with elemental composi-
tions of 70% Fe, 19% Cr, 7% Ni, 0.4% C, 2% Mn, 2%
Si, 0.08% P, and 0.05% S,(all in at.%), was the base
specimen into which N was implanted. The specimen
was a square plate 2.5 cm on the side and 0.2 cm thick,
and its average polycrystalline grain size, obtained by
metallography, was;50 mm. Before implantation the
specimen was polished to mirror-like quality with a
mean surface roughness of approximately 0.02mm
based on surface profilometry. The following implanta-
tion conditions were implemented:(1) ion beam energy
of 0.7 keV; (2) ion beam current density of 2.5 mAy
cm ; (3) substrate temperature of 4008C (measured by2

a thermocouple attached to the back of the specimen
and controlled by a combination of ion beam heating
and a substrate heater); and(4) implantation time of 10
min.
After implantation, the specimen was subjected to

isothermal annealing at 4008C for increasing times up
to 36 h. The annealings were carried out under constant
flow of high purity He in a quartz tube furnace with a
temperature stability of"1 8C. The temperature was
measured with an alumel–chromel(type K) long rod
thermocouple placed adjacent to the sample.
Near-surface phases, N contents, and the N layer

thicknesses of the as-implanted and annealed specimen
after each anneal step(total of five steps) were made
by conversion electron Mossbauer spectroscopy¨
(CEMS) and symmetric(Bragg–Brentano) X-ray dif-
fraction(XRD). In addition, conversion X-ray Mossbau-¨
er spectroscopy(CXMS) was used to provide further
information on the depth distributions of the implanted
and annealed layer phases extending deeper into the
substrate. The XRD data for the as-implanted state and
after annealing at increasing times were analyzed quan-
titatively to extract average N contents and average N
depths. More details related to quantitative XRD can be
found in Ozturk and Williamsonw3x.¨ ¨

3. XRD results and discussion

Fig. 1 shows the XRD results for the as-implanted
state (0 h) and after 4008C annealing at increasing
times. The fcc substrate(304 SS) peaks are labeled as
g and the implantation induced ones asg , in thisN

figure. Note that the square root of the intensity is
plotted to reveal more clearly the weaker peaks. The
XRD results for the as-implanted state are consistent
with those of other low-energy, high-flux implanted SS
samplesw1,3,4x in that theg (200) peak is shifted moreN

than the g (111) relative to the (200) and (111)N

substrate,g peaks. Also, the implanted integrated layer
thickness(see Ozturk and Williamsonw3x for details as¨ ¨
to how the g layer thicknesses and N contents areN

calculated) associated with(200) oriented grains,L ,200
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Fig. 1. XRD data for the as-implanted sample and after 4008C anneal
at increasing times. The(111) and (200) g–g pairs indicated. TheN

a is the annealing -induced phase attributed to small bcca-(Fe,Ni)
precipitates.

Table 1
XRD-determined N contents for an(hkl) plane,C (at.%), and Nhkl

layer thicknesses,L (mm), based on various grain orientations par-hkl

allel to the surface of the sample

Anneal C111 C200 C220 C311 C222 L111 L200 L220
time
(h)

0 23 (21) 36 (31) – – – 1.5 1.9 –
1 13 (11) 25 (20) 9.6 13 14 2.0 2.4 1.0
4 9.6 14 8.4 10 12 2.3 2.8 1.2
9 8.8 10 7.9 8.4 10 2.5 2.9 1.6
16 8.4 9.3 7.1 7.5 9.2 2.7 3.7 1.7
36 8.2 8.7 6.4 6.5 7.8 3.2 3.8 2.2

Due to the broad and weak nature of the Bragg peaks associated
with the as-implanted state(0 h), the N contents and layer thicknesses
belonging to the(200), (311) and (222) grain orientations are not
available. The values in parentheses are the N contents corrected for
residual stress operating in the N-implanted layer, assumed to be 2
GPaw3x.

is significantly larger thanL . Based on the lattice111

constant analysis of theg phase, and the relativeN

integrated intensities of theg andg peaksw3x, 23 andN

36 at.% N are distributed to depths of 1.5 and 1.9mm
in the (111)- and (200)-oriented grains, respectively.
These results clearly suggest larger N contents and larger
N penetration in the(200)-oriented grains.
The 1 h anneal at 4008C causes dramatic shifts in

the g peak positions relative to theg peaks(the gN N

peak positions move to higher angles). The XRD data
also show increases in the relative intensities of thegN
peaks compared to the substrateg peaks, consistent with
a thickening of theg layer. According to the XRDN

analysis, N contents of 13 and 25 at.% are distributed
to 2 and 2.4mm depths in the(111) and (200) grains,
respectively. Comparison of these values with those of
the as-implanted state clearly demonstrates significant
N diffusion into the substrate.
The effect of longer annealing is the continued N

diffusion into the substrate as can be inferred from the
increases in the relative intensities of both the(111)
and (200) g peaks relative to the(111) and (200)N

substrate,g peaks. The increase in the N depth in the
(111) and (200) grains is compensated by the further
decrease in the N contents in the same grains as seen
by the reduced separations in the(111)–(200) g–gN
pairs. After the 36-h anneal at 4008C, XRD analysis

gives N contents of 8.2 and 8.7 at.% distributed to
depths of 3.2 and 3.9mm in the(111) and(200) grains,
respectively.
The XRD data also show the existence of a rather

broad peak labeleda in Fig. 1. In fact, this peak first
appears after the 1 h anneal step and nearly remains the
same(in intensity and broadness) following the subse-
quent anneal steps as seen from Fig. 1. This broad peak
is believed to be due to small precipitates of bcca-
(Fe,Ni). This phase was also observed as a result of
400 8C annealing(64 h) of a paramagnetić -nitride
phase that was produced by N implantation of a 304 SS
at 210 8C w6x. However, the observation ofa in the
latter experiment was much more obvious in that the
XRD-detected(110) a peak was sharper and a higher
ordera peakw(200) near 658x was also clear. The broad
nature of thea peak observed here is attributed to the
small size of the precipitates.
Higher angle XRD data associated with higher(hkl)

g–g pair peaks indicate that the annealing at increasingN

times clearly produces observable shifts and sharpening
of the (220), (311) and (222) as-implantedg peaks.N

These qualitative trends may be interpreted as decreases
and increases in the N contents and the N depths,
respectively(due to the N diffusion into the substrate)
in the (220), (311) and (222) oriented grains. Quanti-
tative analyses of these patterns yield the concentrations
listed in Table 1, together with a summary of the results
discussed above. As can be seen from this table, the
decreases in the(111) and (200) N contents are steep
at the beginning but show saturation behavior at longer
annealing times and this seems to correlate well with
the maximum nitrogen solubility ing-Fe w14x. The
(220), (311) and (222) N contents also show a slow,
but a continuous decrease as the annealing time increases
with corresponding increases in the layer thicknesses.
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Fig. 2. CEMS data for the as-implanted sample and after 4008C
anneal at increasing times. The paramagnetic substrate phase,g , con-s

tributes to the as-implanted(0 h) CEMS resonance.

4. N diffusion analysis

The diffusion coefficients for N in 304 SS were
estimated from the N depths listed in Table 1. The
anneal times were selected in anticipation of a root-
mean-square diffusion distance being proportional to
(Dt) , whereD is the diffusion coefficient andt is the1y2

anneal time. The N diffusivities in the(111), (200) and
(220) grains, calculated under the assumptionLs
(Dt) , are found to be 2.0=10 , 3.0=10 and1y2 y13 y13

1.7=10 cm ys, respectively. Thus, the values suggesty13 2

that the thermal mobilities of N in the(111), (200) and
(220) oriented grains are nearly the same. The average
D found here, 2.2=10 cm ys, is one order ofy13 2

magnitude higher than that obtained from an earlier
annealing studyw6x. The higher N diffusivity found in
this experiment might be related to the fact that the
initial g (the as-implanted state) layer had a muchN

larger N content(an average of;26 at.% after the
stress correctionw3x) than that noted in Ozturk and¨ ¨
Williamson w6x. The results here suggest that the N
diffusivity depends on the N content. TheD-value found
here is also a few orders of magnitude greater than those
in the literature based on thermal diffusion of N in fcc-
SS. A temperature annealing study of a low-dose, 40
keV N implanted 316 SS, based on a nuclear resonance
broadening method, foundD to be approximately
5=10 cm ys at 400 8C w15x. However, a similary16 2

study by RBS of a MeV N implanted 304 SS found an
averageD of 5=10 cm ys at 4008C w16x.y15 2

The smallness of theD values in Refs.w15,16x as
compared to the one found in this experiment is likely
due to the differences in the N contents of the N
implanted specimens and the role played by the substrate
element Cr. The specimens in Hirvonen and Anttilaw15x
and Fink et al.w16x were implanted with an N dose of
approximately 10 ionsycm , while in this experiment,17 2

the N dose was higher by at least two orders of
magnitude. As a consequence, Hirvonen and Anttila
w15x reported only a few at.% N in solution in compar-
ison to 26 at.% here.
It is well known that the substrate element Cr has a

trapping effect on the migration of N in 304 SS(or 316
SS). Past research indicates that the reduction in the
mobility of N is due to the selective bonding between
N and Cr w17x. The trapping by Cr is more effective
when the N contents are low as compared to the
relatively high Cr concentration(;19 at.% in 304 SS).
So, the higherD-value in this experiment is attributed
to the larger N contents, which are less affected by the
Cr trapping(many of the Cr traps are already occupied
by N).
Even though theD-value found here as a result of

the annealing experiment is higher than the literature
values, it is still too small to explain the deep penetration
effect observed in low-energy, high-flux N implanted

304 SS at 4008C w1–4x. In the latter case, the effective
diffusion constant is estimated to be;10 cm ysy11 2

based ong thickness growth modeled with a simpleN

diffusion equation including sputteringw1x. Much more
detailed explanation about the enhanced N diffusivity
under the low-energy, high-flux implantation conditions,
in particular the role played by the high-flux beam and
the substrate element Cr in forming theg and affectingN

the N concentration profile, is explained elsewherew13x.
The D-value obtained here is also smaller than that of
N diffusion in pure fccg-Fe, which is on the order of
10 cm ys based on extrapolation of high temperaturey11 2

data to 4008C w4x.

5. CEMS results and discussion

Figs. 2 and 3 show the CEMS results for the as-
implanted sample(0 h) and after 4008C annealing at
increasing times. The CEMS spectrum of the as-implant-
ed sample(0 h) is clearly dominated by the magnetic
g , designatedg (m), which is the dominant phase forN N

low-energy, high-flux implanted samplesw1,3,4x. Based
on the XRD resultsw3x this phase is also attributed to
an fcc structure with N in octahedral sites but with
larger N contents than the paramagneticg phase,N

g (p). Large lattice expansions due to large N contentsN

and residual stresses in the top-most implanted layer are
believed to be responsible for the formation of the
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Fig. 3. CEMS data after 4008C anneal at increasing times of 9, 16
and 36 h, respectively. The weak magnetic component,a-(Fe,Ni),
fitted with six Lorentzian lines, is indicated by a six-line stick
diagram.

Table 2
Mossbauer(CEMS) hyperfine parameters and resonance fractions as a function of anneal time at 4008C¨

Anneal Phases
time

g (m)N g0 g1 g2 a
(h)

d H F d F d F F H F

0 0.293 14.7 95 – – – – – – –
1 0.271 12.1 87 – – 0.108 7 – – –
4 0.167 11.7 56 0.033 6 0.109 22 10 – –
9 0.169( f ) 11.7 ( f ) 22 y0.009 15 0.112 52 5 – –
16 – – – y0.017 28 0.105 60 – 32.9 7
36 – – – y0.009 41 0.090 43 – 33.9 10

All measurements were made at room temperature.d is the isomer shift(relative toa-Fe) in mmys, andH is the hyperfine field in Tesla.F
is the relative resonance area fraction in percent.f in parentheses indicates that the parameter was fixed. The paramagneticg is composed ofN

the sub-resonancesg , g andg (due to various Fe sites with various N environments) as explained by Ozturk and Williamsonw3x.0 1 2
¨ ¨

magnetic phase. The broad nature of the resonance
signal is similar to those of the other low-energy, high-
flux implanted samplesw3,4x and is due to variations in
the local N, Cr, Ni environments around Fe. An average
hyperfine field of 14 T was obtained from the distribu-
tion fit of the CEMS magnetic resonance. The fraction
of the magnetic resonance is 95% and this result indi-
cates that the top-most implanted layer(;0.1 mm,
which is the effective probe depth of CEMS) is 100%
magnetic since approximately 6% of the total CEMS

resonance signal is attributed to the paramagnetic sub-
strate phasew18x, g-SS(labeled asg in Fig. 2).s

The CEMS spectrum after the 1 h anneal at 4008C
still indicates theg (m) to be the main phase withinN

the top annealed layer(;0.1 mm) with only a small
fraction of the as-implantedg (m) phase(8%) trans-N

forming into the paramagneticg phase labeled asgN 1

(attributed to the Fe atoms with one or two nearest-
neighbor N atoms). Based on the results of another
sample w3x implanted under similar conditions to the
one in this study the relatively large fraction of the
g (m) phase suggests the top annealed layer must beN

under still large lattice expansions(due to high N
contents and accompanying residual stresses). However,
the XRD data show significant reductions in thegN
lattice constants resulting in significantly reduced N
contents based on both the(111) and(200) planes. This
can be explained by the fact that the N content obtained
by XRD is averaged over a much larger depth than
probed by CEMS, so the N contents must be still high
at the top annealed layer probed by CEMS. The apparent
high N content in the top annealed layer(;0.1 mm)
might also be enhanced by the N trying to diffuse out
the surface since the XRD data after the 1 h anneal
indicates the loss of N. In fact, as can be calculated
from Table 1 data, the decrease in the retained N
(;C L r, where r is the matrix atomic density)hkl hkl

supports the latter idea. However, this apparent decrease
in the retained N dose might be explained by a residual
stress relaxation, i.e. the N contents are overestimated
at earlier anneal times due to effects of high compressive
stressesw3x. The out(or back) diffusion has also been
found to be quite significant for the low-energy, high-
flux as-implanted specimensw2x.
The effect of further annealing(4 and 9 h) is to

destabilize the magnetic state of theg by transformingN

it into the paramagnetic state, as can be seen by the
decreases in the relative fraction of theg (m) phase.N

This transformation correlates quite well with the XRD



293O. Ozturk, D.L. Williamson / Surface and Coatings Technology 158 –159 (2002) 288–294¨ ¨

data which show a thickerg layer with less N in solidN

solution and less lattice expansion. The effect of the
annealing on the destabilization of theg (m) phase canN

also be seen in the Mossbauer parameters as listed in¨
Table 2. This table clearly shows that both the internal
field (H) and the isomer shift(d) decrease as the anneal
time increases and this is consistent with reductions in
lattice expansion and less N in solutionw3x.
The paramagneticg resonance is composed of theN

sub-resonancesg , g and g (due to Fe sites with0 1 2

various N environments) as described in detail in Ozturk¨ ¨
and Williamsonw3x. Table 2 also shows the Mossbauer¨
parameters of these components as a function of anneal
time. From this table it is seen that both CEMS fractions
belonging tog andg components increase as function1 0

of anneal time. The increase in theg component may0

be interpreted as N diffusion into the substrate leaving
lower N contents near the surface, such that more Fe
sites without nearest-neighbor N now exist. The increase
in the relative fraction of theg component, up to 16 h,1

coupled with the decrease in theg (m) fraction, clearlyN

illustrates the transformation taking place between the
two states of theg phase. After 36 h annealing, theN

fraction of the g decreases while theg fraction1 0

increases consistent with N diffusion out of the top
annealed layer.
The CEMS spectrum after the 16 h anneal also reveals

a weak magnetic component attributed to a bcc(a)-
phase, which becomes more apparent after 36 h as
indicated in Fig. 3. Table 2 shows that the hyperfine
field of thea phase slightly increases going from 16 to
36 h of annealing, but in both cases the field value is
much larger than that of a 19 at.% Cra-phase alloy
w19x. This finding can be explained by Cr segregation
taking place in the surface layer resulting ina-(Fe,Ni),
since Cr is known to decrease the hyperfine field while
Ni is known to increase itw19x. This result agrees quite
well with a similar annealing experiment which(by
CEMS and XRD) found even a larger hyperfine field
after a 64 h anneal at 4008C w6x. It also agrees with an
earlier XPS study, which indicated a surface Cr enhance-
ment in a 316 SS(similar in composition to 304 SS)
annealed at 4008C w20x.
The clear observation ofa by CEMS in contrast to

its relatively broad and weak signal by XRD(Fig. 1)
can be explained by either a fine precipitate effect or a
surface effect. In the first case, the precipitate size is
such that it is detected clearly by CEMS(a local atomic-
scale probe), but not so clearly by XRD due to the peak
broadening effect of small crystallites. The surface effect
has to do with the fact that thea phase is localized at,
or very near to, the surface which is seen by CEMS
because of its much better near-surface sensitivity com-
pared to XRD. Although the formation of thea-(Fe,Ni)
phase suggests Cr segregation, there is no clear evidence
of CrN formation after 36 h anneal at 4008C (this

study), and even after 64 h at 4008C (see Ozturk and¨ ¨
Williamson w6x) (i.e. no CrN peaks near 38 and 648 in
the XRD patterns). This finding is also supported by Li
et al. w8x (an isothermal annealing study of low-temper-
ature plasma nitrided stainless steel), which (by XRD
and TEM) found no chromium nitrides even after 60
and 100 h anneals at 4008C (the specimens in this
study were nitrided at 4008C for 20 h). However, the
g phase formed during low-temperature plasma nitrid-N

ing was totally decomposed into CrN as a result of 600
8Cy20 h anneal w8x. The isothermal transformation
diagram constructed as a result of this study finds the
decomposition of theg phase into the stable phase ofN

CrN to be time- and temperature-dependent, i.e. while
the g phase decomposes within several minutes atN

temperatures higher than 5008C, it will not decompose
even after thousands of hours at temperatures lower than
350 8C w8x.
Supplemental data were obtained by CXMS, which

show both magnetic and paramagneticg (g compo-N 1

nent only) resonances, and finds that the magneticgN
phase has a distribution range of approximately 0.8mm
into the implanted layer(see Williamson et al.w18x for
quantitative CXMS analysis). This observation corre-
lates well with the results of another sample implanted
under similar conditions which showed theg (m) toN

exist within the top 1mm of the implanted layerw3x.
The CXMS totalg resonance fraction(32%) predictsN

a depth of approximately 1.5mm for the N-containing
layer, which correlates well with the XRD depths. The
CXMS spectrum after the 1 h anneal at 4008C indicates
the g (m) phase extending to approximately 0.6mm,N

but with a reduced hyperfine field and isomer shift. The
CXMS results for the longer annealing steps are consis-
tent with further diffusion of N into the substratew21x.

6. Conclusions

Post-ion beam processing via annealing experiments,
done to examine the thermal stability of the low-energy,
high-flux N implantation-induced near-surface phases
and to induce further diffusion of the N in the absence
of the ion beam, showed that the magneticg phaseN

was destabilized as a result of annealing at 4008C,
thereby resulting in thicker and predominantly paramag-
netic g layers with less N in solution and less latticeN

expansion. Based on XRD data, the N diffusivity in the
absence of the N ion beam was estimated to be
;10 cm ys at 400 8C, two to three orders ofy13 2

magnitude higher than that in fcc-SS with low N content,
but too small by approximately two orders of magnitude
to explain the N diffusivity during the low-energy, high-
flux N ion implantation into 304 SS. The higher diffu-
sivity found here is attributed to the large N content of
theg phase in the as-implanted state(approx. 26 at.%)N

and to the role played by the substrate element Cr, the
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trapping by which is less effective when the N contents
are high.
Although there is no decomposition into CrN at 400

8C, which would be associated with poor corrosion
resistance, the dramatic reduction in N content due to
in and out diffusion has led to disappearance of the
magnetic state of theg and a much thickerg layer.N N

This behavior will be of significant relevance involving
possible magneticytribologicalycorrosion-resistant appli-
cations of such surfaces that may reach this temperature
in service.
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