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Abstract

Artificial neural networks (ANN) were constructed to predict prevalence of building-related symptoms (BRS) of office building

occupants. Six indoor air pollutants and four indoor comfort variables were used as input variables to the networks. A symptom metric

was used as the measure of BRS prevalence, and employed as the output variable. Pollutant concentration, comfort variable, and

occupant symptom data were obtained from the Building Assessment and Survey Evaluation study conducted by the US Environmental

Protection Agency, in which all were measured concurrently. Feed-forward networks that employ back-propagation algorithm with

momentum term and variable learning rate were used in ANN modeling. Root mean square error and R2 value of the simple linear

regression between observed and predicted output were used as performance measures. Among the constructed networks, the best

prediction performance was observed in a one-hidden-layered network with an R2 value of 0.56 for the test set. All constructed networks

except one showed a better performance than the multiple linear regression analysis.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Symptoms like eye, nose, throat, and skin irritation,
difficulty in breathing, headache, fatigue, dizziness experi-
enced by occupants in a building and generally improve
away from the building are known as building-related
symptoms (BRS), sometimes also called as sick building
syndrome. These non-specific symptoms are thought to be
the results of job related, personal, psychological [1], and
organizational factors [2], in addition to indoor environ-
mental quality (IEQ). Linking IEQ and symptoms of
building occupants has been a difficult task. In general,
occupant symptoms were studied to correlate with
individual environmental factors on individual occupant
basis. There have been many studies conducted; some of
which reported correlations with BRS: ventilation rate or
carbon dioxide [1,3], bacterial endotoxin [4], groups of
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volatile organic compounds (VOCs) [5], fungal beta-
glucans [6], moisture, mold, or moisture related micro-
organisms [7–9], higher temperature [10,11]. However,
some studies were either inconclusive [12], reported
negative relationships [13], or found associations for some
pollutants but were inconclusive for others [14–16].
BRS, in part, may be the result of overall IEQ rather

than specific individual pollutants or comfort variables.
Relationships between overall indoor air/environmental
quality and occupant symptom prevalence were investi-
gated on building basis in our previous studies through use
of indices that rate indoor air pollution [17] and IEQ [18] in
office buildings. Both studies reported high levels of
correlations between IAP/IEQ indices and symptom
indices; however, the results were based on average values
of groups of office buildings.
Human body is a very complex structure; therefore

responses of such systems to their environment, the
symptoms, are difficult to predict on building, and even
on occupant basis. This study aimed to explore the
applicability of artificial neural networks (ANN), a method
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inspired by the human brain, to predict prevalence of BRS
on building basis using IEQ variables as inputs, and
without use of IAP/IEQ indices. In fact, ANN has been
proposed to predict atmospheric concentrations of NOx

[19,20], ozone [21,22], benzene [23], SO2 [24–26], and
particulate matter [27,28], but was not used in indoor air
quality or predicting occupant symptom prevalence.

The pollutant concentration and occupant symptom
data were obtained from the Building Assessment
and Survey Evaluation (BASE) study [29] conducted by
the US Environmental Protection Agency, EPA, between
1994 and 1998. The BASE study, concurrently, measured
a number of indoor air pollutant concentrations in office
buildings throughout the United States, and identified
occupant symptoms using self-administered question-
naires.
2. Material and methods

2.1. Artificial neural networks

ANN are systems that consists of interconnected
neurons that process information. As opposed to the
traditional modeling techniques, ANN is a data driven,
self-adaptive, black-box method, which learns from exam-
ples. Networks can often correctly infer on a population
when trained with sufficient data, even if the underlying
relationships are unknown or difficult to describe as
generally it is in the nonlinear nature of the real-world
events. As a result, ANN has found use in many fields
including environmental sciences.

This study used feed-forward networks which are
successfully employed in environmental studies. In feed-
forward networks, the input quantities are fed into input
neurons, processed, and then passed onto the next level,
hidden layer neurons. In the process, input signal is
multiplied by a weight that determines the intensity of
the input. The weighted input received from each input
neuron is added up by the hidden layer neurons, and
associated with a bias before passing the result onto the
next level using a transfer function. All bias neurons are
connected to all neurons in the next hidden and output
layers.

Training is of the most fundamental importance to the
ANN in which observed values of the output variable is
compared to the network output, and then the error is
minimized by adjusting the weights and biases. During
training, a neuron receives inputs from a preceding layer,
weights each input with a predetermined value, and
combines the weighted inputs using

netj ¼
X

xivij , (1)

where netj ¼ summation of the weighted input for the jth
neuron, xi ¼ input from the ith neuron to the jth neuron,
and vij ¼ weight from the ith neuron in the preceding layer
to the jth neuron in the present layer.
Level of activation is determined by calculating a
transfer function value for netj. In this study, hyperbolic
tangent function was employed as activation function. The
upper and lower limits of hyperbolic tangent function are
½�1; 1�; its derivative is continuous [30]. Values of input and
output variables were scaled to ½�1; 1� range by normal-
izing the mean and standard deviation of the training set.
Learning is defined as a network’s ability to change

weights [31]. In this study, the learning of ANN was
accomplished by a back-propagation algorithm. Back-
propagation is the most commonly used supervised
training algorithm in multilayer feed-forward networks.
In back-propagation networks, information is processed in
the forward direction from the input layer to the hidden
layer(s) and then to the output layer. The objective of a
back-propagation network is to find the optimal weights
which would generate an output vector Y ¼ ðy1; y2; . . . ; ypÞ

as close as possible to target values of output vector T ¼
ðt1; t2; . . . ; tpÞ with a selected accuracy, by minimizing a
predetermined error function:

E ¼
X

P

X

p

ðyi � tiÞ
2, (2)

where yi ¼ component of an ANN output vector Y ; ti ¼

component of a target output vector T; p ¼ number of
output neurons; and P ¼ number of training patterns.
All the neural network calculations in this study were

performed using MATLABt Neural Network Toolbox.
Over-fitting is a problem for large networks with small data
sets, such as the 100 building data set used in this study.
Early stopping method was employed to avoid over-fitting.
Data set was divided as 60–20–20 buildings as training,
validation, and test sets, respectively. A network training
function that updates weight and bias values according to
gradient descent momentum and an adaptive learning rate
is employed with early stopping. Two values (0.90 and
0.75) were tried for momentum constant, MC. Mean
square error (MSE) is used as the performance function in
gradient descent algorithm.

2.2. The data

Data from the BASE study [29] were used in this work.
The BASE study surveyed 100 office buildings from 10
geographical/climatic regions of the United States. Pollu-
tant concentrations and comfort variables were measured,
building characteristics and occupant symptoms were
determined using questionnaires. The study was conducted
according to a standard protocol [32]. Surveyed pollutants
included carbon dioxide (CO2), carbon monoxide (CO),
radon, particulate matter (PM10 and PM2:5), VOCs,
airborne bacteria, and fungi in indoor air. Temperature,
relative humidity (RH), light, and noise were among the
measured comfort variables. CO2, CO, and comfort
variables were measured continuously; PM was collected
by inertial impaction onto pre-weighed Teflon air sampling
membrane filters using a particle size selection device.
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The mass of the collected particulates was determined
gravimetrically using a microbalance. VOCs (except
aldehydes) were collected in canisters, and analyzed by
thermal desorption and gas chromatography/mass spectro-
scopy. Formaldehyde (HCHO) samples were collected on
dinitrophenyl hydrazine cartridges and analyzed by
high-performance liquid chromatography. Microbiological
contaminants were collected on six-stage Andersen sam-
plers. Occupants completed self-instructed questionnaires
that inquired about their symptoms. Persistency and
status of the symptoms away from the building were
questioned. In this study, persistent and building-related
symptoms that were experienced at least 1–3 days per week
and that got better away from the building were
considered. A symptom index, POPS2, defined as percent
of occupants in the sampling area of the office building
with two or more persistent symptoms [18] was calculated
for BRS. Detailed information regarding questionnaires,
sampling, and analytical methods can be found elsewhere
[32]. Articles in scientific journals and presentations
from Indoor Air and Healthy Buildings conferences held
between 1995 and 2003, describing the study and summar-
izing preliminary results, are currently listed on the study
website [33].
3. Results and discussion

3.1. Descriptive statistics

Descriptive statistics for pollutant and comfort
variables and the symptom index are presented in
Table 1. Pollutant concentrations show large variations
with right skewed distributions. Concentrations of two of
the six pollutants are distributed log-normally, while
concentrations of three pollutants are best described with
gamma distribution, and Weibull is the best fitting
distribution for one pollutant. Comfort variable distribu-
tions are more symmetrical compared to pollutant con-
centration distributions, and POPS2 values are normally
distributed.
Table 1

Descriptive statistics of input and output variables

Statistic TVOC HCHO CO2 PM2:5 Fung

ðmgm�3Þ ðmgm�3Þ (ppm) ðmgm�3Þ ðcfum

Mean 2168 15.7 573 8.0 62.9

Median 1613 14.8 528 6.9 42.3

Standard deviation 1664 8.3 127 3.8 68.3

Minimum 159 3.4 381 2.4 3.5

Maximum 9820 43.6 983 24.7 333.3

Distribution LN W G LN LN

Parameters m ¼ 2178 L ¼ 2:68 L ¼ 355 m ¼ 7:98 m ¼
s ¼ 1793 Sc ¼ 14:46 Sc ¼ 78 s ¼ 3:87 s ¼
— Sh ¼ 1:59 Sh ¼ 2:81 — —

G: gamma, L: logistic, LN: lognormal, N: normal, W: Weibull, Sc: scale, Sh:
3.2. ANN modeling

In this study, one or two-hidden-layered networks
were employed. Hyperbolic tangent function was used as
the transfer function. The database was divided into three
sections for early stopping. Data from 60% of the buildings
were used in training the networks, 20% were designated
as the validation set, and the remaining 20% of the buildings
were employed in testing. Performance of the networks was
determined by two measures: coefficient of determination
ðR2Þ for the regression between observed and modeled
values of the output variable, and root mean square error
(RMSE) about the modeled values. Six pollutants
(CO2;PM2:5, HCHO, total VOCs, bacteria, fungi) and
four comfort variables (temperature, RH, light and noise
levels) were considered as input variables. All buildings had
close mean noise levels, i.e., variation in mean noise level
among buildings was small. Since the contribution of mean
noise would have been low in predicting BRS due to small
variation, the range of measured noise in each building was
determined, and was considered as the noise input variable
values. CO was not selected as an input variable because a
large portion of the data were below detection limit; PM10

was not included because it is correlated with PM2:5, and
PM2:5 penetrates more into the respiratory system. POPS2
was used as the output variable.
Structures of constructed networks and their perfor-

mance levels are shown in Table 2. R2 values ranged from
0.14 for the 20-neuron two-hidden-layered network
(Model-8) to 0.56 for the 10-neuron one-hidden-layered
network (Model-1). Structure of the best performing
network is presented in Fig. 1. Training and testing
performance of the network is shown in Fig. 2. All RMSE
values were close, taking values around 8% except for one
network (10.6%). Increasing the number of neurons in the
hidden layers from 10 to 20, and reducing the value of the
MC from 0.90 to 0.75 decreased the level of performance in
terms of R2 values.
Considering only the better performing networks, those

with testing R of 40:60 (Models-1,3, and 5), all three
models were consistent in having a problem predicting low
i Bacteria Temp. RH Light Noise POPS2
�3Þ ðcfum�3Þ (1C) (%) (lux) (dB) (%)

46.1 20.7 44.9 446 44 57.0

39.1 21.2 46.0 425 43.2 57.5

26.1 2.0 15.8 154 9.1 10.5

0.0 15.7 13.2 183 25.7 25

134.3 25.5 74.4 953 71.6 81.5

G W N L LN N

66:8 L ¼ 0 L ¼ 11:2 m ¼ 44:9 m ¼ 435 m ¼ 44 m ¼ 57

94:2 Sc ¼ 19:1 Sc ¼ 10:3 s ¼ 15:8 Sc ¼ 85 s ¼ 9 s ¼ 11

Sh ¼ 5:39 — — — —

shape.
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Table 2

Results of the network structure optimization

Network number Network structure Momentum constant Training R Testing R Testing RMSE

1 10-10-1 0.90 0.78 0.75 8.4

2 10-10-1 0.75 0.61 0.43 8.0

3 10-20-1 0.90 0.71 0.68 8.9

4 10-20-1 0.75 0.57 0.49 7.8

5 10-10-10-1 0.90 0.88 0.62 10.6

6 10-10-10-1 0.75 0.68 0.54 7.5

7 10-20-20-1 0.90 0.62 0.51 7.7

8 10-20-20-1 0.75 0.44 0.36 7.6

R: correlation coefficient, RMSE: root mean square error.

Fig. 1. Structure of the best performing network.

Fig. 2. Observed vs. predicted POPS2 by Model-1 for (a) training and (b) testing sets.

S.C. Sofuoglu / Building and Environment 43 (2008) 1121–11261124
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and high ends of the POPS2 range. Although Model-5
produced the highest RMSE value, about 1.25 times
compared to the other two models, it performed better
than the other models at both ends of the POPS2 range.

The literature, in general, investigated the relationship
between indoor air quality and symptom prevalence on the
individual occupant basis, and used logistic regression as
the method of approach. There are a few comparable
studies in the literature that approached the issue on the
building basis, two of which are our previous index studies:
the IAPI [17] and the IEI [18]. However, the relationships
were based on average values of groups of buildings.
Results of this study show that by employing ANN
modeling, occupant symptom prevalence on building basis
can be predicted using IEQ variables as inputs, and without
grouping the buildings.

Multiple linear regression analyses were conducted to
compare the results of ANN modeling. POPS2 was
considered as the dependent variable; the 10 IEQ variables
were considered as the independent variables. The R2 value
for the model was 0.14. The ANOVA test showed that the
model was significant only at p ¼ 0:16. Among the 10
independent variables, only formaldehyde (p ¼ 0:03), tem-
perature (p ¼ 0:08Þ, and bacteria (p ¼ 0:09) were significant
at significance level of 0.10. In addition, p-value for light
was 0.14 for the t-statistic. The t-statistic p-values for the
remaining independent variables were 40:40. Residuals
showed no patterns for any of the independent variables.

The results obtained from the ANN modeling are
encouraging compared to the constructed multiple linear
regression model ðR2 ¼ 0:14Þ. R2 values for the regression
between observed and modeled output variable ranged
between 0.26 and 0.56 for the networks trained with an MC
of 0.90. The best performance ðR2 ¼ 0:56Þ was obtained by
a model that had one hidden layer with 10 neurons. The
level of performance supports the claim that a part of the
variation is explained by factors other than indoor environ-
mental variables, such as job related, personal, and
psychological variables. Large number of data sets is
preferred in artificial intelligence methods to capture the
variations in data; therefore, it would be reasonable to
expect a better performance at the individual occupant level.

In conclusion, ANN modeling was applied to predict an
index of occupant symptom prevalence using levels of
indoor air pollutant concentrations and comfort variables
as input variables at building level for the US office
buildings. Back-propagation feed-forward networks that
use hyperbolic tangent function as the transfer function are
shown to predict occupant symptom prevalence with
R240:50.
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