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ABSTRACT 

 

THE USE OF NONEXTENSIVE FRAMEWORK IN CONNECTION 

WITH TRAFFIC FLOW 

 

In the analysis of vehicular traffic flow, numerous techniques are utilized in the 

literature. In this thesis, distinct from the literature, to reveal the complexity of the 

traffic flow and its connection with the urban and traffic factors, nonextensive 

thermostatistics is implemented. In real systems, e.g. vehicular traffic flow, the 

probability distributions would become q-Gaussian and thus the use of nonextensive 

thermostatistics would be relevant. This approach allows a statistical interpretation to 

handle the given traffic flow problem. In this thesis, highway traffic flow modeling is in 

question in the nonextensive framework and two case studies are presented. First is 

related with lane changing and driver behavior, and the other is related with the 

superstatistics and traffic flow. In the first case study, scenario-based vehicular 

interactions are examined and driver behaviors are extracted by virtue of given entropy 

approaches. Given the configurations, Tsallis entropy approach characterizes safe 

driving behavior, whereas Boltzmann-Gibbs one describes unsafe driving. In the second 

case, vehicle speeds on the selected highway are analyzed through superstatistics 

theory. Two distinct q values are computed as 1.3 and 1.8 out of q-Gaussian and beta 

parameter distributions, respectively. The q value of 1.3 represents the highway 

segment with a certain flow, while the q value of 1.8 specifies the history of the traffic 

flow. As a result, it is revealed that the real vehicular traffic flow would involve the 

nonadditivity, which mainly stems from vehicular interactions as well as the urban and 

traffic planning decisions.  
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ÖZET 

 

GENİŞLETİLEMEZLİK İLKESİNİN TRAFİK AKIŞI ÜZERİNDE 

KULLANIMI 

 

Literatürde araç trafik akış analizi için pek çok teknik kullanılmaktadır. Bu tezde 

farklı olarak trafik akışının kompleksiliğini, kentsel ve trafik faktörleriyle ilişkisini 

ortaya koyabilmek için genişletilemez termoistatistiği uygulanmıştır. Gerçek 

sistemlerde örneğin araç trafik akışında olasılık dağılımları q-Gaussian çıkmakta ve 

dolayısıyla genişletilemez termoistatistiğinin kullanımı uygun olmaktadır. Bu yaklaşım 

trafik akış problemleri ile baş edebilmek için istatistiksel bir çıkarım sağlamaktadır. Bu 

tezde, genişletilemezlik ilkesinde karayolu trafik akış modellemesi söz konusu 

olmaktadır ve iki örnek çalışma verilmektedir. İlki şerit değiştirme ve sürücü davranışı, 

diğeri ise süperistatistik ve trafik akışı ile ilgilidir. İlk örnek çalışmada, söz konusu 

entropi yaklaşımlarına dayanarak senaryo temelli araç ilişkileri incelenmektedir ve 

sürücü davranışları ortaya çıkartılmaktadır. Tez kabulleri altında, Tsallis entropisi 

yaklaşımı güvenli sürüşü, Boltzmann-Gibbs entropisi ise güvensiz sürüşü tarif 

etmektedir. İkinci örnek çalışmada, seçilen karayolunda araç hızları superistatistik 

teorisi yoluyla analiz edilmektedir. Beta parametresi ve q-Gaussian dağılımlarından 

sırasıyla 1.8 ve 1.3 olmak üzere iki farklı q değeri hesaplanmıştır. Bulunan 1.3 q değeri 

belli bir akışta o karayolu parçasını temsil ederken, 1.8 q değeri trafik akışının geçmişini 

belirtmektedir. Sonuç olarak, gerçek trafik akışının esas itibarıyle araç etkileşimleri, 

kent ve trafik planlama kararlarından etkilenen toplanamazlık içereceği gösterilmiştir. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1. Literature Review 

 

Traffic flow and the highways reflect the ever growing complexity of the human 

society. This growing complexity demands tools and techniques matching its intricacy. 

It is surmised that traffic flow is composed of many long-range interacting agents, 

generating a long-term memory, hence non-Markovian dynamics. Unfortunately the 

literature lacks research on long-term or long-range memory. Hence, it is safe to say 

that the traffic flow has never been fully analyzed reflecting its true complex nature. 

None of the models could fully represent real life and, the true complexity of the 

vehicular traffic flow. 

An ideal model should account for multifarious aspects such as long-range 

interactions, long-term memory, non-Markovian dynamics, non-Gaussian distributions. 

These aspects are an interplay of factors composed of for example traffic lights, vehicle 

overtaking, peripheral elements, speed bumps, bus stops etc. However, writing a 

hypothetical formula by substituting each and every factor mentioned above would not 

only be complex, but also would be very difficult to analyze. Instead of dealing with 

each individual constituting factor, a macroscale solution embodying all of those factors 

may still reflect the original complexity. This solution is also expected to be more 

straightforward to deal with. The complexity of vehicular traffic flow is thus described 

through such a macroscale approach and in the thesis this approach is no other than 

nonextensive statistical mechanics.  The framework allows a statistical interpretation to 

handle the given traffic flow problem. The main reason to use nonextensivity is that it 

would cover the aforementioned aspects of the real traffic flow. Specifically, lane 

changing and driver behavior analyses, and a superstatistical model of the traffic flow 

are presented in this thesis. 

The given literature in the following sections is consistent with the main topics 

of this thesis. The literature review consists of car following models, lane changing and 
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driver behavior modeling, statistical mechanics and vehicular traffic modeling, and 

finally superstatistics and vehicular traffic modeling. 

 

1.1.1. Car-following models 

 

Car-following models have been studied for almost more than half of a century 

in the literature.  In a strict sense, the car-following behavior is considered how a 

vehicle adjusts its own speed and position depending on the vehicle ahead and other 

surrounding drivers. The car-following behavior can be investigated on a single lane or 

multi-lane within a short-ranged or long-ranged vehicular distances and interactions 

under different traffic flow conditions. An extensive number of models are formulated 

to tackle car-following behavior. During 1950s, the first efforts of researchers establish 

follow the leader models. Pipes (1953) explains an idealized law of separation, and thus 

each vehicle adjust the certain distance with preceding vehicle under the safe-distance 

car following behavior.  The study of Chandler, Herman and Montroll (1958) at the 

General Motors (GM) Research Lab proposes another widely known car following 

models in fifties. The model developments are carried on by the various studies such as 

Herman, Montroll, Potts and Rothery (1959), Gazis, Herman and Potts (1959), Edie 

(1961), and Heyes and Ashworth (1972). The studies deal with finding the optimal 

parameter combinations for Gazis-Herman-Rothery model and those are examined in 

the paper of Brackstone and McDonald (1999). 

The study of Brackstone and McDonald (1999) gives a thorough overview of the 

car following models. The authors investigate car following models in five categories. 

Those are Gazis-Herman-Rothery (GHR), safety distance or collision avoidance (CA), 

linear (Helly), psychophysical or action point (AP), and fuzzy logic-based models. 

Car-following theory can be classified in different groups especially in regard to 

the oldest examples in traffic literature. For example, Gunay (2007) propose two groups 

with their examples. Namely, stimulus-based (or psycho-psysical) models, e.g. GM 

models; and stopping-distance based (or safety distance) models, e.g. Gipps’ model. 

Likewise, Hoogendoorn and Bovy (2001) put forward three types of models that are 

safe-distance models, stimulus–response models and psycho-spacing. The authors show 

the widely known examples of each group. For example, the study of Pipes (1953) are 

attributed to the safe-distance models, whereas the study of Chandler et al. (1958) is 



3 

 

given for the stimulus-response models and that models are known as follower response 

to the stimuli. In those models, the response of the following vehicle may describe the 

accelerations and decelerations, whereas stimulus may involve relative velocity between 

the leader and follower, distance-headway and time-headway.  Gazis-Herman-Rothery 

model in the study of Gazis, Herman and Rothery (1961) is proposed as another 

example for the stimulus-response models. In their model, speed differences between 

follower and leading vehicles are utilized and driver’s sensitivity coefficient is 

processed. Hoogendoorn and Bovy (2001) also discuss psycho-spacing models with 

reference to the first developed examples and in the literature.  

Wang, Zhang, Guo, Bubb and Ikeuchi (2011) deal with the simulation modeling 

of driver's safety approach behavior. Deceleration and acceleration algorithms 

concerning driver's car following safety behavior is presented. In the light of different 

modules such as module of leading vehicle and following vehicle, the authors simulate 

the driver's car following behavior. The performance of their model is validated under 

three different car-following cases and the simulation results are discussed in their 

paper. The authors state that since their model is depended on driving human factor 

analysis, it may be considered as a realistic starting point for the driver's car following 

models. 

 

1.1.2. Lane Changing and Driver Behavior Modeling 

 

Various kinds of studies on lane changing and driver behavior have evolved in 

the traffic literature. In the traffic there could be many factors affecting lane changing 

behavior. Whereas some of those factors are related to road, weather conditions etc., 

some can be directly connected with driver behaviors and characteristics. Before 

reviewing recent modeling research, it is important to notice that the classical studies on 

the development of driver behavior models date back to early 20
th

 century. Hence, one 

of the classical articles of the time which is considered in psychological perspective 

belongs to Gibson and Crooks (1938). The study is basically governed by the concepts 

of the field of safe travel and the field of minimum stopping zone. In the study, for 

example, factors limiting the field of safe travel are presented and influences of various 

obstacles on the field of safe travel are discussed. Further, that the minimum stopping 

could be dependent on the speed, road-surface and brakes is emphasized. In a large 
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time-span Vaa (2014) covers some the other representative classical driver behavioral 

models in traffic psychology. 

In the pursuit of mathematical model building and problem definition for this 

thesis, there are more relevant recent research on lane changing and driving behavior 

models. For example, Sun and Elefteriadou (2011) in their study consider a few reasons 

for lane changing. These reasons are, for example, the existence of heavy vehicle/truck 

in front of the drive, pavement conditions, passing stopped bus at a bus stop, presence 

of tailgating vehicle etc. The questionnaire regarding the attributes above is presented to 

the participants and the authors obtain the analysis of the results. The analyses present 

the driver type classification, actions of different driver types, factors affecting each 

lane-changing scenario. The authors state that the results could be applicable for the 

urban street network. The article of Lv, Song and Fang (2011) points out that there is an 

interaction among diverse individuals under certain restricts. Since the drivers want to 

travel at a desired velocity or better driving conditions, they try to change lanes and in 

the lane changing rule-set of the study, decision to change lane is considered by two 

criteria i.e. incentive and security. The study also emphasizes the simulation of multi-

lane changing behavior to represent the reality. On a three-lane roadway, the authors 

adopt optimal velocity and full velocity difference single-lane model in their 

simulations and investigate the effects of lane-changing behavior on several traffic 

based variables. Li, Jia, Gao and Jiang (2006) extend symmetric two-lane cellular 

automata (STCA) model to simulate traffic. The authors bring in new set of lane-

changing rules to update the STCA model for aggressive lane-changing behavior of fast 

vehicle and diverse lane-changing behaviors of different types of vehicles. Influences of 

different lane-changing probabilities and aggressive lane-changing behavior of fast 

vehicles are discussed, and the results of the default STCA model and their new model 

are presented in their study. 

As a widely known study by Nagel, Wolf, Wagner and Simon (1998) proposes 

two-lane traffic rules in regard to cellular automata under lane changing behavior. The 

authors also discuss security and incentive criteria, velocity-based and gap-based rules 

for the lane changing, and generate space-time plots and fundamental diagrams. 

Another study by Knospe, Santen, Schadschneider and Schreckenberg (2002) seems 

representative for the lane changing rules, presenting symmetric and asymmetric models 

and comparing single-lane and two-lane traffic. Huang (2002) proposes lane changing 

rules for the two-lane highway configuration. In regard to the lane changing rules, 
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incentive and safety criteria are classified and the effects of the three parameters in the 

study are investigated. On the work of the lane changing for the two-lane traffic, Nagai, 

Nagatani and Taniguchi (2005) consider traffic states, jamming transitions and the 

effect of a bus. The study applies optimal velocity model and the simulation results are 

discussed. The research by Qian, Luo, Zeng, Shao and Guo (2013) establishes three-

lane model and focuses on the overtaking ratio under different control conditions. On 

four-lane highway, the lane changing and overtaking behavior of the vehicles under 

mixed traffic conditions are discussed (Chandra & Shukla, 2012).   

In various studies, the relationships between driver characteristics and 

overtaking processes are considered. Mohaymany, Kashani and Ranjbari (2010) find 

that the younger drivers who have less driving experience, more dangerous maneuvers 

and more risk-taking behaviors are most likely be at fault in overtaking crashes. The 

study also recommends that new drivers who are in the first year of driving should be 

banned to drive on the rural roads. Moreover, driver stress and driving performance are 

investigated in the study by Matthews et al., 1998. The comparison between young male 

and female drivers during overtaking on the two-lane highway is addressed, and the 

Bayesian methodology is proposed (Vlahogianni & Golias, 2012). The statistical 

analyses are involved by Bar-Gera and Shinar (2005) to provide whether tendency of 

the drivers to pass is correlated with the driver attributes. The research by Farah and 

Toledo (2010) models the passing maneuvers in two stages i.e. desire to pass model and 

gap acceptance model. For example, the probability to desire passing is influenced by 

the difference between the desired speed of the subject vehicle and the speed of the 

leading vehicle, and by the following distance. The individual specific error term which 

captures the driver characteristics is also related with the probabilities of desiring 

passing and accepting the available gap in their study. Farah, Bekhor and Polus (2009) 

propose passing risk-prediction model, testing the regression-based models. They utilize 

some explanatory variables related with the road geometry, traffic conditions, driver’s 

characteristics. 
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1.1.3. Statistical Mechanics and Vehicular Traffic Modeling 

 

Wilson (2009) shows the applicability of the methods of statistical mechanics 

and thermodynamics in the field of urban modeling. The author states the importance of 

modeling of transport flow in cities and spatial interactions in regard to statistical 

mechanical analogy. In the light of statistical mechanics terms, the entropy 

maximization is explained under the suitable constraints for the urban modeling 

examples i.e. retail and transport flow models. Another recent study i.e. Wilson (2010) 

presents the importance of entropy maximizing concept and relates its usage to 

geography, and especially transportation and retail modeling with underlying statistical 

mechanical concepts. In some parts, the author exhibits retrospective look and indicates 

the relationship between the entropy maximizing model and widely known examples 

such as Bayesian methodology, Shannon information theory and cost-benefit analysis in 

transportation planning and economics. The study presents some analogies between the 

application fields of entropy maximizing approach and statistical mechanics. For 

example, in transportation modeling, particularly the expressions of the balancing 

factors exhibit similarities to the partition functions of Boltzmann thermostatistics. The 

author implies that the methods of statistical mechanics could safely be applied to a 

large class of transportation problems. The study also addresses the integration of 

entropy modeling with potential other approaches e.g. economics, agent-based 

modeling, activity-based approach, network and spatial analyses. 

Mean energy constraint in traffic flow is important for this study. Energy can be 

given via Hamiltonian mechanics as in some relevant traffic studies in literature. For 

example, Krbálek (2007) considers N identical vehicles on a circle and describes the 

energy in the traffic system via Hamiltonian. Hamiltonian function in Krbálek (2007) 

involves the mean velocity and particle velocity to express the kinetic energy part. 

Through the same function, spacing between neighboring vehicles that is claimed to be 

short-range relations is also processed. This is described as short-ranged potential 

energy in the second part of the Hamiltonian. Chi-square values are provided within the 

traffic density figures, for varying alpha values ranging from 1 to 5. For the described 

potential function, alpha values would be larger than 1 to reveal the short-range 

interactions. However, the best results are presented with alpha values 1 or near it, and 

therefore the term short-range becomes objectionable. Furthermore, this thesis with an 
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enquiring look doubts what would happen if the alpha values are slightly less than unity, 

but that would violate the claim that the interactions are short-ranged. Another possible 

critic is that the values of alpha in the same figures larger than 3 are redundant. The 

other would be that chi-square value gets larger towards larger densities and thus a 

potential comment to Krbálek (2007) may be that the alpha values would be varied. 

That is, alpha values ought to be reduced as density gets larger. The last objection is that 

the formulations, seemingly, based on a canonical ensemble, if so, it is also violated 

there. The hunch of the author of the thesis is that it is neither the microcanonical nor 

canonical. Likewise, the works of Krbálek and Helbing (2004), Abul-Magd (2006), and 

Weber, Mahnke, Kaupužs and Strömberg (2007) are also representative of using 

Hamiltonian energy function in traffic flow. 

Šurda (2007) applies a non-Hamiltonian approach to a small system of cars on a 

single lane road. The nearest neighbor interactions are assumed and the velocities and 

the coordinates of the cars are considered in the conditional probabilities of the model. 

The microcanonical and canonical ensembles are utilized in the context of the car 

system of the study. 

There are also some examples of presenting different traffic flow phases in 

literature. Weber et al. (2007) consider that traffic flow has two separate phases i.e. jam 

and free-flow and the relationship between those phases is considered within the 

thermodynamically traffic liquid-gas transitions. The other study, Sopasakis (2004), 

shows the categorization of traffic regions, free-flow, synchronized traffic, wide moving 

jams, congested traffic, for example.  

In the study of Kosun and Ozdemir (2014), in the given basic car following 

scenario the distance between adjacent vehicles are analyzed within the entropy 

framework. Depending on the interaction between the vehicles, the use of Boltzmann-

Gibbs and Tsallis entropies is discussed. 

 

1.1.4. Superstatistics and Vehicular Traffic Modeling 

 

The theory of superstatistics is well-presented in the study of Beck and Cohen 

(2003). The most relevant research papers for both superstatistics and traffic flow 

belong to Kosun and Ozdemir (2016), Abul-Magd (2007), and Nie, Lu and Shi (2010). 

In the work of Abul-Magd (2007), the clearance distributions of the traffic flow and the 
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time-headway distributions are studied. Using an analogy, traffic states are considered 

to be phase changes of matter, as a function of vehicle density. An analytic expression is 

derived for the spacing distributions that interpolates from the Poisson distribution. The 

fast dynamics is represented by the vehicle velocity, whereas the slow dynamics by the 

traffic density. In the study of Nie et al. (2010), characteristics of headway distribution 

for urban expressway traffic has been analyzed. Kosun et al. (2016) analyze the vehicle 

speeds, speed differences, and the shuffled speed data through superstatistics. Tsallis q 

values out of q-Gaussian fit and beta-fit are computed. The authors claim that there 

ought to be two distinct q values, reflecting the highway or traffic properties, and the 

interactions. 
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CHAPTER 2 

 

PROBLEM DEFINITION 

 

Vehicular traffic flow is an important research topic for cities and regions. 

Traffic flow may consist in a large number vehicles, and is strongly affected by road 

conditions, weather conditions, interactions among vehicles, environment etc. In the 

analysis of traffic flow a numerous techniques are developed and implemented in the 

literature.  Some of those techniques are utilized within the framework of 

thermodynamics and statistical mechanics. This thesis focuses on the vehicular traffic 

flow phenomenon in the context of nonextensive statistical mechanics. Nonextensive 

statistical mechanics is the generalization of Boltzmann-Gibbs (BG) thermostatistics. 

Boltzmann-Gibbs thermostatistics could be described as a special and limiting case of 

nonextensive thermostatistics. In the traffic flow literature, fingerprints of Boltzmann-

Gibbs thermostatistics have been revealed. For example, lane changing and traffic flow 

models are considered within short-range interacting or the closest neighborhood 

vehicular flow systems. Thus, in regard to statistical mechanics, the models of the lane 

changing behaviors and many other traffic flow analysis are handled in the framework 

of Boltzmann-Gibbs thermostatistics where the total entropy of a system corresponds to 

the sum of the entropies of the N independent parts of the system i.e. additivity property 

holds.  However, this thesis claims that for a real traffic flow this is generally not so. It 

is worth emphasizing that the real traffic flow system may involve long-range 

interaction effects, long-term memory (non-Markovian processes) and (multi)fractal 

space. Aforementioned properties could make BG statistical mechanics restrictive 

despite the fact that it can still have relevant position in some standard physical systems 

where such properties as strong mixing, short-range memory, positive Lyapunov 

exponent occur. Hence, the author of this thesis states that if lane changing behavior, car 

following, acceleration, deceleration etc. would be related to the nonextensive (Tsallis) 

thermostatistics, the traffic flow could be represented more realistically.  

One of the main properties of the Tsallis thermostatistics is nonadditivity where 

the Tsallis entropic index q corresponds to a value except for unity. Nonadditivity or 

additivity property explicitly implies that subsystems are assumed to be probabilistically 
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independent. The nonadditivity property can be classified in two groups i.e. subadditive 

(q>1) and superadditive (q<1) according to the value of Tsallis entropic index q, 

privileges common and rare events, respectively. Here, the q value describes the degree 

of nonextensivity.  

A number of traffic flow variables and mobility conditions may be handled in 

the nonextensive statistics. In long-range interacting systems, probability distributions 

e.g. velocities may not be Gaussian and in this situation exponential decay of 

Boltzmann-Gibbs thermostatistics disappears. Indeed, this thesis asserts that vehicular 

traffic flow is not typical case of the BG thermostatistics and has not Gaussian form, but 

it could exhibit power-law decay in the form of q-exponential functions. Also, the q-

exponential function may have a cutoff property in some cases.  

In this thesis, the lane changing behavior of the vehicles and vehicle speeds are 

examined as two distinct cases within the nonextensive framework. This yields the 

questions such as how to relate the vehicular traffic flow to nonextensivity, how to 

analyze the lane changing behavior and vehicle speed parameter in nonextensive 

context, how to extract driver behaviors from the lane changing scenarios, how to test 

the nonextensivity in the traffic flow, and how to connect the nonadditivity and 

additivity in the traffic flow with the urban and traffic planning decisions. 

The first case of the two mentioned above, the lane changing behavior of the 

vehicles is studied through different hypothetical scenarios in connection with long-

range, quasi long-range and short-range interactions. In terms of entropy and energy, 

lane changing scenarios are linked with traffic characteristics and driver behaviors. The 

number of accessible and forbidden states are affected through lane changing scenarios 

with regard to given statistical mechanics formalism. In this case, distinct from the 

literature, the thesis explores lane changing rules and driver behaviors in the traffic flow 

within the framework of superadditivity, subadditivity, additivity, extensivity and 

nonextensivity concepts.  

In the second case, the quantitative basis of the research is more pronounced. It 

is evident that a large number of interacting vehicles may generally exist and in this 

case their macroscopic dynamics is explained by a statistics, i.e. superstatistics. Certain 

statistical analyses are carried out to describe the effects of the long-range interactions, 

long-term memory, environment, etc. on the vehicle speeds at the selected highway. 

The problem is how to obtain the Tsallis entropic index q indicating the degree of 

nonextensivity and the number of the entropic indices characterizing the traffic flow. 
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Notice that the literature still lacks distinctive entropic indices q of a given time series 

and the thesis extracts two different Tsallis entropic indices from the given traffic flow 

data. One of them designates the general characteristics of the traffic flow on the 

highway segment, whereas the other represents how the traffic flow has happened in a 

time history. The probability distribution of a given parameter is important in extracting 

the nonextensivity parameters q. For example, the distribution of the local variances of 

the whole time series is the key to one of the entropic indices. The deviations from the 

Gaussianity are also investigated by the help of the probability distributions of the given 

time series. 

Let us consider the two cases in more detail to clarify the problem definition of 

this thesis. In the following sections some of the diagrammatic examples related to the 

cases are given.  

 

2.1. Lane Changing and Driver Behavior Analyses Case 

 

Lane changing behavior is a crucial part of the vehicular traffic flow and it may 

involve certain rules especially in real traffic flow. Lane changing behavior can be 

performed by discretionary or mandatory bases. During lane changing maneuvers, 

different drivers generally behave in particular manners and some of drivers do not 

observe the identified rules, whereas the others might do. This reveals that the specific 

driver characteristics could happen in the traffic flow. Those drivers may be described 

as aggressive, risky, young, experienced etc. according to the context of the study. 

Lane changing is generally required in the traffic flow due to the complexity of 

the given road segment. Depending on the different road types such as rural ways, 

arterials and highways, the frequency and behavior of the lane changing could change. 

Besides, the complexity of the given road could stem from such factors as the 

environment, vehicular interactions, number of lanes, maintenance, signalization, 

parking, etc. With respect to the vehicular interactions, nearest neighborhood 

interactions in lane changing models are well studied in the literature. However, these 

interactions can be designated short-range and involved in BG statistics. The 

complexity of the traffic flow and lane changing behavior would embody the long-range 

vehicular interactions as well. Occurrence of those interactions in the traffic flow is 

directly related to the lane changing behavior. This thesis states that underlying statistics 
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to examine those long-range interactions is the Tsallis thermostatistics. Energywise and 

entropywise considerations are provided, and four classes of traffic flow and driver 

behaviors are extracted, details can be found in Chapter 5. Two of those classes are well 

within the nonextensive entropy, whereas the others are involved in BG 

thermostatistics. For example, the entropywise consideration of the traffic flow can be 

illustrated in Figure 2.1.  Four scenarios are generated for this consideration.  

 

 

Figure 2.1. Entropywise Consideration of Traffic Flow  

 

Several key points for the scenarios from 1 to 4 are respectively given as 

follows: 

 Drivers may choose all the states and the traffic is disordered.  

 Entropic nonadditivity emerges and the prudent drivers leave a safe distance 

among vehicles around themselves. Traffic flow is ordered. 

 Reckless driving behavior generates entropic additivity. Those drivers could 

choose any unoccupied space. Since allowable states are no longer 
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proportional to the number of vehicles, the entropic nonextensivity emerges. 

The disordered traffic flow is present.  

 Entropic nonextensivity is observed as in the third case. The traffic flow 

tends to congest. The traffic flow belongs to subadditive region. 

 

The extracted driving behaviors from the analyses of entropic extensivity and 

additivity could be shown in Figure 2.2. 

 

 

Figure 2.2. Extraction of Driver Behaviors from Entropywise Consideration of Traffic  

                    Flow 

 

The scenarios involved in subadditive region exhibit safe driving, whereas the 

scenarios in additive region exhibit malicious and reckless driving. As a result, safe 

driving and unsafe driving can be explained by Tsallis and BG statistical mechanics, 

respectively. 

 

2.2. Superstatistics and Traffic Flow Case 

 

Complex nonequilibrium systems may be considered as the superposition of 

different dynamics with well separated time scales. In this thesis, real vehicular traffic 

flow system is described by superimposed dynamics with different time scales and it is 

designated as a superstatistical complex system. Two different time scales are extracted 

whose dynamics are fast and slow, details of how to extract the sufficient time scales 



14 

 

are given in Chapter 5. By utilizing superstatistics, two entropic indices (q) are 

computed and non-Gaussian behavior of the traffic flow is displayed. To apply the 

superstatistics theory, vehicle speed time series data are utilized. This thesis contends 

that the traffic time series data are formed hinging on the factors such as the long-term 

memory, long-range interactions and environment. In this case, the superstatistics is 

employed to expound this argument. The results of the analyses substantiate the 

connection between nonextensivity and traffic flow. Thus, the real traffic flow usually 

does not manifest a random behavior, but rather ordered characteristics.  The inverse 

local variances of the time series are selected to correspond to the inverse temperature 

parameters and their fluctuations are considered to demonstrate the complex 

nonequilibrium traffic flow system in the superstatistics approach. From the probability 

distributions of the inverse local variances, the Tsallis q-statistics is obtained. Hence it 

may be stated that the probability distribution of the partitioned windows of the time 

series could exhibit non-Gaussian behavior. Additionally, the probability distribution of 

the given whole data supports the characteristics of non-Gaussianity and displays the q-

Gaussian behavior with a specific q entropic index. To illustrate the difference between 

q-Gaussian and Gaussian behavior, the semi-log plot of the speed time series can be 

given as an example below in Figure 2.3. It is seen in Figure 2.3 that the tails of the 

probability distribution deviate from the Gaussian form. The probability distribution of 

the given data matches well q-Gaussian form. Heavy tails are visible and they are well 

described by the q-Gaussian distribution in this thesis. For more on the issue, please see 

the discussion under the Section 5.6. The results reveal that the traffic flow displays 

subadditive property. 

 

 

Figure 2.3. Semi-Log Plot of Speed Time Series and Fitting Plots of Gaussian and q- 

Gaussian Forms (Source: Kosun & Ozdemir, 2016) 
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The deviation from the Gaussianity is obtained by superstatistics theory and that 

the degree of the nonextensivity differs from the unity accounts for this deviation. In 

this thesis, the given data of traffic flow fall into the subadditive region in the 

nonextensive framework and thus the complexity of the traffic flow is endeavored to be 

formulated by this framework. 
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CHAPTER 3 

 

EXTENSIVE ENTROPY 

 
In this chapter, the extensive entropy is introduced within the framework of 

Boltzmann-Gibbs thermostatistics. Entropy is a thermodynamic property of a system 

and can be basically defined as the measure of disorder. The entropy of a system is the 

sum of the entropies of each subsystem and in the equilibrium systems the entropy is at 

a maximum under suitable constraints. The term entropy was coined by Rudolf Clausius 

in the 19
th

 century. After Clausius, Boltzmann and Gibbs have made great attempt to 

formulate the entropy for the equilibrium systems. 

 

3.1. Statistical Ensembles 

 

This section explains the ensembles in equilibrium statistical mechanics. The 

widely known ensembles microcanonical, canonical, and grand-canonical are explained. 

 

3.1.1. Microcanonical Ensemble 

 

The microcanonical ensemble equals to an isolated system composed of N 

particles which has total energy E  within a constant volume V. The total energy has 

some precision E  and the number of states i with  EEEE i   can be 

designated by W (Tsallis, 2009). All the states which have same energies are equally 

probable in this ensemble and the entropy is at maximum due to Wpi /1 . The entropy 

is given by the celebrated Boltzmann expression below. 

 

 

WkS ln  (3.1) 

 

 

where S is the entropy, k is the Boltzmann constant, and W is the total number of 

configurations or set of the states. 
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The thermally isolated N particle system i.e. microcanonical ensemble is shown 

in Figure 3.1. Circular traffic flow system can be given as an example for the 

microcanonical ensemble. 

 

 

Figure 3.1. Representation of Microcanonical Ensemble 

 

The Boltzmann expression represents that the entropy of the system is related 

with the probabilities of the states. Indeed increase in state probability i.e. molecular 

randomness or uncertainty leads to rise of the entropy. Thus, the measure of molecular 

randomness or disorder can be explained by the entropy. Whenever W increases, the 

information about the system is lost. When all the states have equal probabilities, full 

uncertainty or zero information occurs. 

The fundamental thermodynamic relation in regard to internal energy can be 

given below 

 

dNPdVTdSEd   (3.2) 

 

where T  is the temperature, S  is the entropy, P  is the pressure,V is the volume,   is 

the chemical potential, N  is the number of molecules. 

 

From this relation, the temperature T is expressed as 

 

E

W
k

E

S

T

BG











ln1  
(3.3) 

 

where )/(1 kT   and   is the inverse temperature. 
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3.1.2. Canonical Ensemble 

 

Canonical ensemble describes N particle system that is in long-standing thermal 

contact with an infinitely large heat bath (thermostat) whose temperature T (Figure 3.2). 

Thermal equilibrium is achieved when the system and heat bath reach the temperature 

of the heat bath in a fixed volume. The mean energy E  is known through the 

thermostat (Tsallis, 2009).  

 

 

Figure 3.2. Representation of Canonical Ensemble 

 

In the development of the entropic forms J. W. Gibbs supported the ideas of 

Boltzmann and the Boltzmann-Gibbs (BG) logarithmic formulation for the entropy is 

emerged as seen in Equation (3.4) (Tsallis, 2009; 2011). 

 

i

W

i

iBG ppkS ln
 

(3.4) 

 

1
W

i

ip
 

(3.5) 

 

 EEp i

W

i

i

 
(3.6) 

 

where 
iE  are state energies, E  is the mean energy. 
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BG entropy optimization under the norm and energy constraints, for a system in 

thermal equilibrium with a thermostat at temperature T, provides BG factor or weight 

(Tsallis, 2009). The obtained BG factor i.e. probability distribution by employing 

Lagrange multiplier method is shown below. 

 

Z

e
p

iE

i



  (3.7) 

 

And the partition function is given by Equation (3.8) 

 

 


W

i

EieZ
  

(3.8) 

 

where Lagrange parameter is the inverse temperature and its expression is kT/1 . 

 

In the canonical ensemble, any system in contact with a heat bath has constant 

number of particles. Therefore, there is no particle exchange with the thermostat, while 

energy can be transferred between the thermostat and the system due to the thermal 

contact. All states of the system have any energy, thus they are not degenerate (Bowley 

& Sánchez, 1999). 

The mean energy of the system is expressed with the following formulas 

(Sethna, 2006). 
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Therefore, in terms of partition function the mean energy can be expressed as 

 





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Z
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(3.10) 
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The Helmholtz free energy ( F ) for a thermodynamic system is also shown in 

terms of inverse temperature and the partition function, 

 

ZTSEF ln
1


  

(3.11) 

 

3.1.3. Grand Canonical Ensemble 

 

Suppose a system is coupled with heat bath (Figure 3.3). Particle exchange is 

allowed bi-directionally, and this case is called the grand canonical ensemble. The 

particle transition is the distinctive property of the grand canonical ensemble rather than 

the aforementioned ensembles. Bowley and Sánchez (1999) consider the heat bath as 

particle reservoir for the grand canonical ensemble and point out that the combination of 

the system and particle reservoir is closed and isolated from the rest of the universe. The 

reservoir i.e. heat bath and the system also allow an exchange of energy. The schematic 

representation of the grand canonical ensemble can be shown below. 

 

 

 

Figure 3.3. Representation of Grand Canonical Ensemble 

 

In the grand canonical ensemble, the number of particles and energy fluctuate, 

while temperature, volume and chemical potential are fixed. In a vehicular traffic flow, 

vehicles can flow in and out of a highway system in the framework of grand canonical 

ensemble. Thus, exit-ramps and entrance-ramps can be seen as vehicular exchange 

routes on the highway system. 
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The probability of a state i of the system with N particles and Ei energies is 

(Sethna, 2006) 

Z

kTNE
p i

i

)/)(exp( 
  (3.12) 

 

where  
N

S
T



  is the chemical potential. 

 

The normalization factor called as grand partition function is defined as (Sethna, 

2006) 

 

 


n

TkNE BnneVT
/)(

),,(
  

(3.13) 

 

3.2. Ergodicity, Time and Ensemble Averages 

 

Boltzmann-Gibbs thermodynamics is relied on ergodic theorem and Tsallis 

(2009a) states that when q entropic index is equal to unity, the system dynamics exhibits 

positive Lyapunov exponent, hence mixing, hence ergodic, hence leading to an 

Euclidean, nonfractal geometry.  

The equivalence of the time and ensemble averages of the quantities states that 

the system would be ergodic. The time average of a quantity is defined as (Peebles, 

1993) 

 

    dt
T

A

T

T
T 




 .
2

1
lim.  (3.14) 

 

 

A denotes time average similar with X for the statistical average. Specific 

averages are the mean value  )(txAx  of a sample function and the time 

autocorrelation function is denoted as   )()()(   txtxARxx
 (Peebles, 1993). 

The functions are expressed as 
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Suppose that the random variables x  and )(xxR  have zero variances i.e. 

x  and )(xxR  are constants (Peebles, 1993). Then, Xx   

and )()(  XXxx RR  . The ergodic theorem satisfies their equivalences. In other 

words, the time averages x  and )(xxR is equal to the statistical averages X  and 

)(XXR , respectively. If a process is called ergodic, it satisfies the ergodic theorem. 

 

 

3.3. Expressions of Heat and Work in Traffic Flow 

 

The change in the average internal energy is obtained by the summation in 

Equation (3.17) when the changes are small (Bowley & Sánchez, 1999). 

 

 

 
i

ii

i

ii dEpEdpEd  
(3.17) 

 

The addition of a small amount of heat would be equivalent to changing the 

probabilities slightly, leaving the energy levels constant. In contrast, the addition of a 

small amount of work would correspond to changing the energy levels slightly at 

constant probabilities (Bowley & Sánchez, 1999). 
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Figure 3.4. Graphical Representation of the Process When Heat is Added 

 

 

 

 
Figure 3.5. Graphical Representation of the Process When Work is Done 

 

Figures 3.4 and 3.5 represent the changes in the cases of heat addition to the 

system and doing work on the system.  

In a traffic flow, suppose that vehicles’ velocities correspond to their energies, 

while probabilities represent the choices related to either lanes or regimes in the traffic. 

Work done on the system always changes the vehicle energies, keeping the lane-based 

probabilities fixed. Yet, if the regime-based probabilities are considered when work is 

done, the probabilities of the regimes e.g. congested, intermediate, free-flow occupied 

by the vehicles change. These two distinct scenarios are analogies of the expressions of 

ideal work and ideal heat.  

Based on the discussion above, work is done on the system via traffic regulating 

elements e.g. speed bumps, traffic lights. These elements could affect the number of the 

regimes by altering the velocities of the vehicles, turning some of the regimes accessible 

or inaccessible. Hence, this may violate the ergodicity should the number of regimes 

decrease. As a result, something even a simple as a speed bump could violate the 
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ergodicity principle. Similarly, when the heat transfers into or out of the system, this 

may generate new regimes or cancel existing ones. For example, adding a new lane on 

the highway may correspond to adding energy to the system and it changes the regime 

probabilities at constant energy levels.  

The inputs such as traffic signalization, speed bump, grading, warning signs 

could yield work on the system since lane-based energy levels change but the 

probabilities are still the same. Regarding changing probability values, the inputs for 

example adding a new lane and changing the density of the traffic via auxiliary lane 

connecting an off-ramp would mean the addition of energy to the system. 
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CHAPTER 4 

 

NONEXTENSIVE ENTROPY 

 

This chapter explains the nonextensive entropy i.e. generalization of Boltzmann-

Gibbs entropy that is known as Tsallis entropy. In 1988, Tsallis postulated the 

nonextensive formalism for the generalization of the Boltzmann-Gibbs thermostatistics 

(Tsallis, 1988). Boltzmann-Gibbs entropy might be a convenient expression for the 

particular cases; however it has some limitations when regarding, for example, the 

systems involving ergodicity breaking and long-range interactions. Such system may 

not be expounded by Boltzmann-Gibbs entropy.  

 

4.1. Expression of Tsallis Entropy 

 

In the new formalism, Tsallis introduces the q entropic index into the entropy 

formulation and it is written in the following form 
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where k is the Boltzmann constant, q is the entropic index, and pi  is the state 

probability. 

For the case q=1, Tsallis entropy represents the Boltzmann-Gibbs entropy (S1 = 

Sq). For the discrete case, it is obtained as below 
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If all of the probabilities are equal i.e. iWpi  /1  , the entropy qS  is 

obtained as 
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WkS qq ln           )( 1 BGSS   (4.3) 

   

where the q-logarithmic function is defined as 
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Its inverse, the q-exponential function is shown as below 
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The extremization of qS under the constraints of norm Equation (4.6) and mean 

energy Equation (4.7) yields Equation (4.8). 
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The different forms of constraints for the extremization of Sq are discussed in the 

studies of (Tsallis, Mendes, & Plastino, 1998; Tsallis, 2009a). 

Let us consider the some typical features of systems (Table 4.1.) where standard 

BG thermostatistics or nonextensive statistical mechanics prevails (Tsallis, 2011). 
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Table 4.1. Typical Features of Systems under Different Statistical Mechanics  

                          Framework 

 

q=1 (BG entropy) q≠1 (Tsallis entropy) 

Short-range interactions Long-range interactions  

Markovian processes 
Nonmarkovian processes  

(long-term memory)  

Ergodicity, mixing Nonergodicity  

Gaussian distributions  q-Gaussian distributions  

Strong chaos  

(positive maximal Lyapunov exponent) 
Weak Chaos  

 

 

4.2. Subadditivity and Superadditivity 

 

Suppose that A  and B  are two probabilistically independent subsystems and if 

the joint probability satisfies ))(( ijppp B

j

A

i

BA

ij  , and verified that, for example in 

Tsallis (2009b) 

 

k

BS

k

AS
q

k

BS

k

AS

k

BAS qqqqq )()(
)1(

)()()(



 (4.9) 

 

 

This is also rearranged as 
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For q=1, the additivity of BG entropy is obtained for any finite value of k. 

 

)()()( BSASBAS BGBGBG   (4.11) 
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4.3. Short and Long-Range Interactions 

 

As provided in Tsallis (2001; 2009a), it is considered that a classical mechanical 

many-body system is characterized by the Hamiltonian below  
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where m is microscopic mass, ip  and ir  are the d -dimensional linear momenta and 

positions associated with N particles, and ijij rrr  . 

The two-body potential energy )(rV  can be presented near the origin in the 

0r  limit. The potential energy at r  can be also classified as short-range and 

long-range interactions (Tsallis, 2002). The potential energy is shown below (Tsallis, 

2009a) 
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Analysis of the average potential energy 
potE  per particle 
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where d is the spatial dimension. 

 

The integral converges for 1/ da  and referred to short-range interactions for 

classical systems. On the other hand, it diverges for 1/0  da  and referred to long-

range interactions (Tsallis, 2009a). In the first case the potential is integrable and energy 

is extensive i.e. energy is finite in the thermodynamic limit N . However, in the 

second case, the system becomes finite and expressed now by Equation (4.15) (Tsallis, 

2009a). Energy is also nonextensive for long-range interactions. 
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From the expression three cases are extracted as below in the limit N  
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Let us consider that a dynamic system in which the particles interact with all the 

other particles with no regard to distance where the Hamiltonian model called 

Hamiltonian Mean Field can be as follows (Tsallis, 2009a): 
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The first term in the right hand-side of Equation (4.20) corresponds to the 

kinetic energies of the particles, and the second term describes the interaction potential. 

The range of interaction parameter a would equal zero in the Hamiltonian mean field 

model.  
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4.4. Superstatistics 

 

Superstatistics was introduced by the work of Beck and Cohen (2003), and it 

covers the q-statistics and BG statistics (Tsallis, 2009a). Superstatistics is the 

superimposition of two statistics and it is derived from the Boltzmann factor 
Ee 

of 

ordinary statistical mechanics and an intensive parameter   (Beck, 2004). This 

intensive parameter can be inverse temperature, chemical potential, energy dissipation 

etc. The main aspect of the superstatistics concept is the fluctuations in the quantity of 

the selected intensive parameter in a driven nonequilibrium system. Consider that the 

system is composed of a series of artificially generated windows and in each window 

the is approximately constant, thus the system is described by an ordinary Boltzmann-

Gibbs statistics. In the long-term, the local intensive quantities in the system would 

fluctuate.  

Suppose that there is a given time series data and it has two different time scales 

 and T . T designates the length of the equally partitioned windows of the time series. 

To reach the local equilibrium, the condition T should be satisfied where 

 determines how fast the local equilibrium is reached in each window of the time 

series so that when a different dynamics of the following window starts, the dynamics 

of the previous window has already reached an equilibrium. 

Let us consider the function of an averaged Boltzmann factor )(BF in (Beck, 

2004) 
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where E  is the energy, )(f  is the probability distribution of  . So that 
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where 
Z

1
is the normalization constant of 

Ee 
. 
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For a  -dependent normalization constant, the probability distribution becomes 
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It is timely to point out an interesting fact that if )(f from data analysis turns 

out to be a chi-square distribution ( 2 ), )(Ep  assumes a Tsallis distribution. For the 

other classes of )(f  distributions, one could investigate such studies as (Beck, 2004), 

(Beck, Cohen, & Swinney, 2005) and (Rabassa & Beck 2015). 
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CHAPTER 5 

 

NONEXTENSIVE FRAMEWORK IN TRAFFIC FLOW 

 

In this chapter, some of the properties of the Boltzmann-Gibbs (BG) and Tsallis 

entropies are presented in connection with traffic flow. Of these properties, extensivity, 

nonextensivity, additivity and nonadditivity become the focal points in the analyses of 

the traffic flow. 

As Touchette (2002) reveals that additivity and extensivity are two different 

statements. However they are often confused and utilized to imply one another in the 

literature. To notice that Touchette (2002) on one hand defines additivity as “a many-body 

(or joint) physical observable )( nxQ is said to be additive with respect to two subsystems with states 

m

m xxxx ...21  and 
nmm

mn xxxx ...21 

   if )()()( mnmn xQxQxQ  ”, on the 

other hand, defines extensivity as “a joint observable )( nxQ  is extensive if the Q density, 

defined by the ratio nxQ n /)(  reaches a constant in the limit n .” 

Touchette (2002) also points out that if the total energy and entropy of a system 

are both extensive quantities, the system has a thermodynamic limit. 

 

5.1. Lane Changing and Driver Behavior Analyses in terms of Entropy 

 

The extensivity/nonextensivity and additivity/nonadditivity concepts can be 

classified into four categories called quadrants within the notion of ordered and 

disordered traffic flow on a given highway. This classification can be summarized in 

Figure 5.1. What the important factors in that classification are that the number of 

vehicles tends to infinity and entropies of the vehicles are assigned. 

Quadrant 1: Suppose in a traffic flow that is considered to be in BG domain that 

is in extensive and additive quadrant in Figure 5.1, all the drivers can choose all the 

states without taking care of any long-range interactions. This driver behavior can be 

observed under the disordered traffic flow. 

Quadrant 2: In the subadditive and extensive quadrant, the characteristics of the 

prudent drivers may give raise to entropic nonadditivity. Those drivers take care not to 

bother other drivers. While the number of vehicles tends to infinity, entropic extensivity 
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exists since allowable states are proportional to N (Equation (5.1)) until a certain 

saturation. In this quadrant, traffic flow is said to be ordered. 

Quadrant 3:  In the additive and nonextensive quadrant, entropic additivity 

would exist due to the reckless drivers, in the sense that individual entropies of the 

drivers are additive due to lack of consideration of others (very short-range 

interactions). Nonextensivity emerges since allowable states are no longer proportional 

to N. The traffic flow in this quadrant is thought to be disordered. Since a certain 

saturation is being reached due to the loss of extensivity. At worst traffic jams are 

expected to occur but the author of the thesis does not involve the case of solid-jam into 

this quadrant. The evaluation of the solid state of the traffic flow is beyond the scope of 

the thesis. 

Quadrant 4: When a congested flow is imminent, the system entropy is 

nonextensive due to loss of allowable states, and the entropy is still considered to be 

subadditive since the drivers are even more prudent. The traffic flow would be 

inevitably ordered in the system. Quadrant 4 may also lead to initialization of traffic 

jam, and drivers will gradually consider forbidden states allowable filling up available 

space among the cars but still observing the usual codes of conduct in traffic flow.   

The entropic extensivity could be formulated as below, 

 

 
N

NS
N

)(
lim0  (5.1) 

 

where S is entropy, N is the number of vehicles. 

 

When the energy extensivity is in question, the formula can be considered in 

terms of energy. 

 

 

 
N

NE
N

)(
lim0  (5.2) 

 

where E is energy, N is the number of vehicles. 

 

This classification within the notion of ordered and disordered traffic flow can 

be tabulated as below, 
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Figure 5.1. Classification of Traffic Flow in terms of Entropic Additivity and Entropic  

                    Extensivity  

 

The analyses of this thesis state that there would be transitions among the 

quadrants of the traffic flow and those are explained below. The possible transitions are 

also shown in Figure 5.2. 

Transition from 2 to 3: From the viewpoint of the transition from 2 to 3, prudent 

drivers of quadrant 2 do not bother the other drivers especially when the long-range 

interactions are present. This driver behavior is placed in the extensive and subadditive 

quadrant. When the traffic flow gets congested, the capacity is slowly reached and the 

state choices begin to be consumed. Concurrently, the nonextensivity emerges and the 

drivers could also attempt to occupy the empty spaces. The system remains in 

nonextensive and additive quadrant, the entropy drops as well. 

 Transition from 2 to 4, and then 3: If the traffic congestion is beginning to 

appear where the prudent drivers travel within the subadditive and extensive quadrant, 

the traffic can tend to nonextensive and subadditive zone. Due to increasing congestion 

the drivers change their own behaviors and want to occupy the adjacent states ignoring 

all the interactions. Therefore, the traffic flow is said to be additive and nonextensive 

until traffic is literally congested, that is to say, nonextensive and additive. 

 Transition from 1 to 3: Suppose that the traffic flow is in the additive and 

extensive quadrant, strictly in BG domain. If the traffic is congested and the drivers are 



35 

 

positioned bumper to bumper at worst, the traffic flow system is transferred to the 

additive and nonextensive quadrant. 

 

 

Figure 5.2. Transitions among Traffic Flow Classification in terms of Entropic  

                          Additivity and Entropic Extensivity 

 

Through the aforementioned quadrant descriptions, lane changing scenarios can 

be illustrated as in Figure 5.3. One can describe driver behavior under these 

classifications. For example, the behavior of the motorbike driver in the traffic can be 

displayed in Figure 5.3 in terms of entropy. 

 

5.1.1. Short-Range and Quasi Long-Range Interactions in terms of                   

          Entropy 

 

In this section, the thesis exhibits the short-range interactions, and quasi long-

range interactions among the vehicles in the traffic flow in terms of entropic additivity 

and entropic extensivity. 
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Figure 5.3. Comparison of Four Different Driver Behaviors in the Traffic Flow in terms  

                   of Entropic Additivity and Entropic Extensivity   

 

In Figure 5.3 four different driver behaviors are extracted based on the traffic 

flow classifications. For all the four scenarios depicted in Figure 5.3, suppose that the 

leading vehicle has a constant velocity and travel on the right lane. However the 

motorbike, the following vehicle, tries to overtake the car. The driver behavior 

designation in Figure 5.4 is formed after analyzing the each scenario in Figure 5.3. 

For the driver behavior 1 in Figure 5.3, the following vehicle, motorbike, intends 

to overtake the car with constant velocity. When overtaking, the motorbike does not 

change lane and prefers to travel on the same state with the car rather than travelling on 

the adjoining state of the overtaking route. The author of this thesis calls this driving 

behavior as malicious driving. The driver can choose any possible state with equal 

probability and the system is defined in additive and extensive quadrant.  

In the driver behavior 2, the following vehicle has to now change the lane to 

overtake the car. The motorbike driver has no intention to occupy the state of the 

leading vehicle. Moreover, the motorbike driver does take into account a safe distance 
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from the leading vehicle and thus the entropy decreases. Under these conditions, the 

thesis designates this behavior as safe driving and the system is extensive but 

subadditive. For this scenario, the interactions are described as quasi long-range. 

For the driver behavior 3, the motorbike again approaches the leading car to 

overtake. Similar to the first driving scenario, the motorbike driver chooses the state of 

the leading vehicle. So, this is called as reckless driving based on the thesis 

assumptions. The system entropy thus additive but the fact that the states are filled up 

indicates the nonextensivity of the system. 

Let us consider the driver behavior 4, the motorbike driver is more prudent to 

overtake the car. That is, the driver does not want to choose the state behind the car and 

has also utmost reluctance to pass into the state of the leading vehicle. Furthermore, the 

motorbike can not overtake the car because it takes into account the approaching 

vehicle, thus it can not pass the adjoining state of its own. Therefore, the entropy is 

subadditive. Moreover, the other states can not compensate for the increase in N 

(vehicles) and entropic extensivity is violated. All in all, in the fourth behavior, the 

motorbike driver shows safe driving profile. Like scenario 2, the interactions in the 

scenario are described as quasi long-range. Therefore, it is safely to say that when the 

quasi long-range interactions are in question, the nonadditive entropy region may 

emerge since the state choices are not proportional to 1/W. 

 

 

Figure 5.4. Representation of Driver Behaviors in terms of Entropic Additivity and  

                       Entropic Extensivity 
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Figure 5.4 can be interpreted by means of Figure 5.1 and it presents the driver 

behaviors in terms of entropy. According to Figure 5.4, entropy of the system 

constituted by N elements is extensive at the first row and it is between 

 NNS /)(0  
Nlim  , while the entropy is additive at the first column 

where 1q . In each entropy domain (BG or Tsallis), loss of allowable states results in 

different driving behavior. As a result, in the light of all the figures i.e. Figure 5.1, 5.2, 

5.3, 5.4, it can be pointed out that traffic system is twofold: cooperative and 

uncooperative traffic system. In the cooperative traffic system, vehicles are travelling in 

harmony with each other. Some of the states are forbidden automatically, and random 

movements are decreasing. Cooperation gets traffic system into Tsallis entropy domain 

and traffic is considered within long-range relationships. In contrast, the traffic system 

being uncooperative can display random movements provided that no collisions among 

the vehicles are allowed. The uncooperative traffic system is considered in Boltzmann-

Gibbs statistical mechanics where short-range interactions are present. 

 

5.1.2. Short and Long-Range Interactions are Revisited in terms of   

          Entropy 

 

The scenarios given in Figure 5.3 describe the interactions between a motorbike 

and a car, but not restricted to these two vehicles. The number of alternative scenarios 

could be increased for the traffic flow example. In Figure 5.3, the short interactions, or 

quasi long-range interactions, have been emphasized. In this section, the distinction 

between long-range and short-range interactions is clarified.  
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Figure 5.5. Representation of Short and Long-Range Interactions in terms of Entropy 

 

As it is seen in Figure 5.5, the first driving profile is identical with the scenario 1 

in Figure 5.3. The author of this thesis refrains from the restating the features of the 

scenario 1 in this section. Let us consider the driving scenario 2 in Figure 5.5. In this 

scenario, the long-range interactions are present. The motorbike driver follows the 

leading vehicle until the driver observes the road block ahead. After observing it, the 

motorbike passes the adjoining state of its own and follows a new route. The driver 

behavior could be classified in subadditive and extensive quadrant (Figure 5.6). Here, 

the safe driving behavior emerges due to the long-range interactions. In the driving 

scenario 3, the entropy is in nonextensive and additive quadrant, and the reckless 

driving behavior appears. The traffic flow is congesting and the allowable states are 

substantially occupied. The scenario 4 in Figure 5.5 exhibits safe conditions in the 

traffic flow and the motorbike driver is in the subadditive region. Here, the interactions 

could be designated long-range. 
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Figure 5.6. Representation of Driver Behaviors in terms of Entropy 

 

5.1.3. Nonextensivity and Nonadditivity of the Traffic Flow 

 

This section emphasizes the importance of nonextensive and nonadditive 

quadrant in Tsallis statistical mechanics and traffic flow. As it is seen that the traffic 

flow transitions discussed in Figure 5.2 ultimately visit the last quadrant that is 

classified as nonextensive and additive. That the traffic flow gets congested indicates 

the violation of entropic extensivity. The traffic flow may start to move the system 

dynamics from BG domain to the Tsallis one, and then BG domain again. Short and 

long-range interactions emerge in this process and the traffic flow also tends to display 

nonextensive behavior. Consequently, the traffic flow makes a transition into the 

nonextensive and additive quadrant since the relationship NNS )(  can not be 

maintained for 1N . This is to say that entropic nonextensivity appears when the 

number of available traffic states decreases and the traffic capacity saturates where the 

traffic flow is present in quadrant 3.  

 

5.1.4. Entropy Rates in the Traffic Flow  

 

This part explains the entropy rates which are the distinctive characteristics of 

each quadrant in Figure 5.2. Entropy rates in the traffic flow can be defined with 

(non)additive and non(extensive) pairs. Entropy rate in quadrant 1 (extensive and 
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additive quadrant) is the maximum among others. If 
111 /)( cNNS   and 

222 /)( cNNS   then 
21 cc  . The entropy rates in the quadrants 3 and 4 can be 

formulated as, 0/)( 33 NNS , 0/)( 44 NNS , respectively. Only that 

33 /)( NNS  tends to zero faster than 44 /)( NNS , and a threshold at a small value of 

44 /)( NNS , a switch-over is expected from quadrant 3 to 4. However, the main 

difference is that entropy rate of the quadrant 3 approaches to zero faster.  

In the light of these findings, entropy rates can be classified as high, 

intermediate high, low, and intermediate low for each successive quadrant number. 

 

5.1.5. Lyapunov Exponents and the Traffic Flow  

 

The largest Lyapunov exponent among all the other Lyapunov exponents is the 

main indicator of the chaotic systems. When the largest Lyapunov exponent (LE) is 

positive, the strong chaos occurs, hence entropy production is present. Indeed, there is a 

quick sensitivity to the initial conditions and the entropy is BG, thus extensivity appears 

with regard to independent systems and velocity distribution is Maxwellian (i.e. 

Gaussian) (Tsallis, 2001). Contrary to this exponential function realm, slow sensitivity 

to the initial conditions, which would account for zero Lyapunov exponents, indicates 

the nonextensivity hence Tsallis entropy. In this statistical mechanics, the energy 

distribution is power-law and this implies that velocities are not Gaussian but they may 

display, for example, Levy or Student’s t-distributions (Tsallis, 2001). 

As Tsallis (2001) discussed, BG statistical mechanics (q=1) involve strongly 

chaotic systems and disordered systems, and the natural corollary of this is the fact that 

BG framework is the least predictable thermostatistics. This is where the statistical 

methods are the most useful. However, the entropy 
qS  ( 1q ) would be more 

predictable that is called intermediate predictable and it should be noted that 

conventional statistical methods would fail.   

Considering )0(x  a small variation in the initial condition 0x  and time 

evolution )(tx , the sensitivity function )(t  is defined as  

)0(

)(
lim)( 0)0(

x

tx
t x




   

. And )(t  can satisfy )exp()( 1 tt    where 
1  is the LE.  
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When 01  , the system is strongly sensitive to the initial conditions i.e. 

strongly chaotic. However, the case 01   characterizes the system as strongly 

insensitive to the initial conditions. 

Quadrant 1 in our traffic scenarios, disordered traffic, would exhibit the case 

0
max

1   which implies exponential functional form, mixing, ergodicity and 

Euclidean geometry. Those properties conform to BG statistical mechanics. However, 

when 
max

1 vanishes i.e. nonergodic and slowly mixing, time dependence of the initial 

conditions should be evaluated in the nonextensive statistical mechanics framework. 

Hence, in the traffic quadrant 4, the 
max

1 is expected to vanish.  

 

5.2. Cooperative and Uncooperative Traffic Flow in terms of Energy 

 

As discussed before, traffic system has two distinct subdivisions i.e. cooperative 

and uncooperative systems. Those can be discussed from the energy perspective in this 

section. In this thesis, energy is appealed to the velocity in traffic flow. To begin with 

the cooperative traffic flow, if the possible velocities that could be selected by the 

drivers decrease when the number of vehicles in the traffic flow is increasing and 

approaching infinity, the system would be nonextensive. Moreover, if the drivers want 

to travel in harmony with the other vehicles in regard to velocity, the system also 

becomes nonadditive and this traffic flow is said to be cooperative. The cooperative 

traffic is also considered in extensive and nonadditive quadrant. That is, in spite of the 

fact that the vehicles are able to select all possible velocities, they do not and they prefer 

to be prudent. Those vehicles want to travel in cooperative journey considering long-

range interactions and without at risk of collision. 

 On the contrary, in the uncooperative traffic flow, suppose that possible 

velocity choices are decreasing due to increasing number of vehicles, resulting in 

violation of extensivity. However, the drivers try to choose all the existing velocities 

ignoring the long-range interactions and this could be dangerous in the journey. Such a 

system stands in the nonextensive and additive quadrant. Probably the worst scenario, 

which is involved in extensive and additive quadrant, indicates the uncooperative traffic 

flow as well. In this scenario, the drivers can travel at all the velocities with disregard to 
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safety. These drivers do not want to adjust their velocities because they choose to ignore 

the traffic rules. 

From the discussion above, the driver behaviors for each traffic flow quadrant 

can be given in Figure 5.7. 

 

 
Figure 5.7. Representation of Driver Behaviors in terms of Energy 

 

5.2.1. Representation of Speed Values and States in the Traffic Flow 

 

Speed values in a traffic flow can be attributed to the states. Thus, each state has 

a specified speed interval. This is where both accessible states and forbidden states can 

exist. The number of accessible and forbidden states is varied depending on the traffic 

regime. The representation of accessible and forbidden states in terms of congested, 

intermediate and free-flow regimes on the slow-lane of a three lane highway is given in 

Figure 5.8. 
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Figure 5.8. Representation of Speed Values and Their States 

 

The author of the thesis considers that the probability distributions of each 

quadrant would be different from each other (Figure 5.9). Transitions among quadrants 

imply distinctive probability distributions.  

The distributions might be ),(),(),(),( NANEpANEpNAEpAEp  . 

 

 

Figure 5.9. Probability Distributions of Each Quadrant 
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5.3. Lane Changing and Driver Behavior Analyses in terms of Energy       

       and Entropy 

 

Traffic flow classifications are evaluated in a different perspective by the new 

specific example here. The thesis here puts forward the traffic flow example to be 

analyzed within both entropy and energy framework as in Figure 5.10. 

 

5.3.1. Short-Range and Quasi Long-Range Interactions in terms of     

          Energy and Entropy 

 

In this section, the thesis exhibits the short-range interactions, and quasi long-

range interactions among the vehicles in the traffic flow in terms of entropy and energy. 

 

 
Figure 5.10. Comparison of Four Different Driver Behaviors in the Traffic Flow in  

 terms of Entropy and Energy    

 



46 

 

The thesis now introduces the traffic flow analysis depending on both energy 

and entropy together. The entropic additivity and energy extensivity are discussed. The 

following interpretation for the traffic flow scenario could be included in the 

consideration of short-range and quasi long-range interactions. 

In the first scenario, let us consider a disordered traffic flow with finite capacity, 

while the number of the vehicles tends to infinity, vehicle energies progressively wane. 

However, in this scenario, the system energy is extensive, and the entropy could be 

temporarily additive since the vehicles can choose any state until congestion. 

In the second scenario in Figure 5.10, in the ordered traffic flow the entropy is 

considered as nonadditive and energies progressively diminish and remain extensive. 

The important point is that drivers can not choose any of the states with equal 

probability due to the entropic nonadditivity. In this scenario the interactions among the 

vehicles are described quasi long-range. 

In the third scenario, the entropy is additive and the extensivity of energy can be 

temporarily achieved until the vehicle and the succeeding traffic meet the congestion 

ahead.  

In the fourth scenario, an ordered traffic flow indicates the nonextensivity and 

nonadditivity with regard to energy and entropy. Since the drivers leave forbidden states 

among the vehicles, they exhibit safe driving profile.   

 

5.3.2. Short and Long-Range Interactions are Revisited in terms of  

          Entropy and Energy 

 

In this section, this thesis exhibits the short and long-range interactions among 

the vehicles in the traffic flow in terms of entropy and energy. 
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Figure 5.11. Representation of Short and Long-Range Interactions in terms of Entropy  

                      and Energy 

 

For the scenario 1 in Figure 5.11, the following vehicle, the motorbike, intends 

to overtake the car. When overtaking, the motorbike does not change lane and prefers to 

travel in the state of the car. The author of this thesis calls this driving behavior as 

malicious driving. Since the driver can choose any possible state with equal probability 

and may select any velocity, the system can be included in additive and extensive 

quadrant. 

In the scenario 2 in Figure 5.11, the motorbike driver notices the low velocity of 

the vehicle well ahead i.e. long-range interactions are present and the motorbike passes 

to the left lane to overtake the car in front. However, the state of the car is not accessible 

for the motorbike. The entropy decreases and the driver may prefer to choose any 

velocity in the traffic. In spite of the fact that the motorbike driver takes into account a 

safe distance with the vehicle in front, the velocity choices are not restricted. Since the 

motorbike driver opts to drive safe, he may also wish to drive safe energywise. Under 

these assumptions, the quadrant 2 is assumed to be safe driving. However, it must be 

noted that quadrant labels are conditional and subject to driver behavior. This behavior 
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is designated safe driving and the system is extensive but nonadditive in terms of energy 

and position, respectively. 

In the scenario 3 in Figure 5.11, the motorbike could have diverse velocities 

before overtaking the car. Like the first driving behavior, the motorbike driver is free for 

the state selection and chooses state of the car. When overtaking the car, the motorbike 

reduces its velocity. Due to the state selection motorbike driver behavior is called 

reckless driving. The system entropy is thus additive but the fact that the vehicles travel 

with reduced velocities yields the nonextensivity. 

When considering the scenario 4 in Figure 5.11, the motorbike driver perceives 

the slow vehicle further ahead (long-range interaction) and does not overtake the car in 

front, leaving a safe distance since the left-lane is also occupied by the other vehicles. 

The motorbike exhibits nonadditive behavior in terms of entropy. Furthermore the 

motorbike falls into the nonextensive region in terms of energy since it is constricted to 

slow speeds. The behavior of the driver could be considered safe driving. 

The number of alternatives can be increased and different behaviors may be 

extracted. For the scenarios in Figure 5.11, the driver behaviors are described as 

illustrated in Figure 5.12. 

 

 
Figure 5.12. Representation of Driver Behaviors in terms of Entropy and Energy  

 

 

Figure 5.12 presents the driver behaviors in terms of energy and entropy. 

According to Figure 5.12, energy is conserved at the first row, whereas the entropy is 

conserved at the first column (Figure 5.13). Exclusive to quadrant 4, it should be noted 



49 

 

that neither the energy nor the entropy of the system is conserved, a corollary of an 

approaching traffic jam. In each entropy domain, loss of energy results in safer driving. 

Safe driving also suggests an increase in entropic index q in subadditive region. 

 

 
Figure 5.13. Representation of Driver Behaviors in terms of Constant Entropy and  

                         Energy 

 

5.4. Energy and Position Planes of the Traffic Flow 

 

If a driver is in extensive and additive quadrant in energy plane, he/she could be 

in extensive and additive or extensive and nonadditive quadrants of the position plane. 

The driver may be temporarily present in nonextensive and additive quadrant of the 

position plane until the capacity saturates and the driver is restrained. However, he/she 

can not participate in the nonextensive and nonadditive quadrant of the position plane.   

If the driver is in extensive and nonadditive quadrant in energy plane, he/she 

could surely drive in extensive and nonadditive, and nonextensive and nonadditive 

quadrants of the position plane.  

If the driver is in nonextensive and additive quadrant in energy plane, he/she can 

be present in nonextensive and additive or nonextensive and nonadditive quadrants, 

whereas can not drive in additive and extensive, and extensive and nonadditive 

quadrants of the position plane.  

In last scenario when the driver travels in the nonextensive and nonadditive 

quadrant of the energy plane, he/she can only continue to the travel in the nonextensive 

and nonadditive quadrant of the position plane. 
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The given statements above in which the link between energy and position plane 

is established can be illustrated in Figure 5.14. 

 

 

Figure 5.14. A Maximum Allowable Position States in Position Plane for a Given  

                          Energy Plane 

 

The thesis therefore suggests that extensivity and additivity concepts would be 

considered in terms of both positionwise and energywise domain. The configuration 

space and momentum space under microcanonical ideal gas in the study of Sethna 

(2006) can be adduced to explain those positionwise and energywise considerations in 

the thesis. 

In the energy and position planes of the traffic flow, there could be different q 

values. On one hand, q values will change simultaneously in both energy and position 

planes. On the other hand, q value of any of them remains constant in time, whereas the 

q value of the other one is changing. Thus, a pair of q values would emerge within the 

plane pairs. 

This thesis also prescribes finite capacity for the traffic flow on a highway. 

When referring to extensivity on the energy and position planes, the system is realized 

to be extensive up until the highway capacity. Otherwise, the system always appears to 

be extensive. Therefore, it is assumed that the system could be extensive for a while, 

and then it would be nonextensive. 

It is important to expound on the third quadrant (nonextensive and additive) 

here. That is to say, the third quadrant where all the transitions terminate is subsumed 

under just the congested category. However, the third quadrant can also represent the 
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moving traffic with constant velocity, where this quadrant may be regarded as heavy but 

moving traffic on a given roadway.  

 

5.5. Additivity, Superadditivity and Tsallis q Index of the Traffic Flow 

 

In the case of 1q the entropy 
qS  is nonadditive. This case is classified 

according to q value and total entropy. Let us remind that if 1q  and 

)()()( BSASBAS qqq  then the system is called superadditive. If 1q  and 

)()()( BSASBAS qqq   then the system is called subadditive. 

In traffic flow, drivers could travel in additive, subadditive and superadditive 

domains. As discussed before, drivers commonly tend to travel in additive or 

subadditive ones. However, the superadditive domain can also be eligible for the 

drivers. Particularly, the drivers could temporarily utilize the inaccessible speed and 

position states making the system superadditive. The driver psychology could be 

construed as a significant factor in the emergence of superadditivity.  

Superadditivity in traffic flow is a special case where driver-driven (anger) or 

emergency-driven (ambulance, fire engine) maneuvering is present. Drivers in 

superadditivity domain observe the traffic regulations only where there are no 

interactions among vehicles. Just after the interactions occur, the drivers start to violate 

the traffic regulations in this domain. For example, in a free-flow traffic an ambulance 

driver moves on the fixed path e.g. left-lane on a highway (Figure 5.15), however when 

a densely traffic or interactions are in question, the ambulance driver drops observing 

the traffic regulations, exhibiting reckless driving. Furthermore, additivity in traffic flow 

is analogous to the superadditivity in that additivity may be considered as a lower limit 

of superadditive entropy. However, unlike superadditivity, the drivers in additivity 

domain disregard the traffic regulations at all times, such as zigzagging in a free-flow 

traffic, regardless of interactions (Figure 5.15). The reason behind additivity domain 

driving may be driving under influence (DUI). As for the prudent driver behavior, it is 

identified with the subadditive domain. So, the prudent drivers’ concern is generally 

safety in all kinds of traffic flow conditions such as free-flow or congested traffic. 
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Figure 5.15. Representation of Additivity and Superadditivity in the Traffic Flow 

 

This thesis proposes that the position entropy is the function of velocity 

)(VEE pp  . In a densely flowing traffic, the number of accessible states decreases 

for high velocities, leading eventually to a drop in entropy. On the other hand, it 

increases for average velocities since there are more accessible states available for the 

drivers. Similarly, it can be propounded that the energy entropy is the function of 

position )(PEE vv  . That is, in free flow traffic, a vehicle travelling on the fast-lane 

may shift lanes by observing lanes’ speed ranges. But, when this speeding vehicle 

approaches a densely flowing traffic; the driver is forced to decelerate on the fast lane, 

resulting in a drop in the number of accessible energy states, hence a drop in entropy. 

From a different perspective, the number of accessible energy states may increase for 

those travelling on the middle lane with average velocities since they may choose any 

other velocity states by changing their velocities and lanes easily in a densely flowing 

traffic and this results in a rise in entropy. 

The author of the thesis asserts that q value is an index of driver psychology, 

experience or conformity in the traffic flow. For example, it is here hypothesized that if 

the driver is prudent, then the mindset of the driver would drive the q value from 1, 

making larger than 1 ( 1q ). Different drivers in the traffic flow could have dissimilar 

characteristics. All of those characteristics will affect the q value of the system.  

For the sake of clarity, physical and psychological accessibility terms have 

emerged in this study. Accessibility/inaccessibility of one affects the 

accessibility/inaccessibility of the other. Physical entropy of position stipulates no extra 

constraints on the accessible states, whereas drivers may or may not impose 
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psychological constraints on those accessible states, rendering some of the states 

inaccessible. Likewise, physical entropy of velocity (energy) implies that vehicles can 

attain any speed, yet in terms of the psychological entropy of the velocity, some of those 

states again may be perceived forbidden. 

 

5.6. Superstatistics and Traffic Flow 

 

Real life dynamics of a certain system e.g. vehicular traffic flow system is often 

an interwoven dynamics of multiple of those superimposed on one another. If the 

system demonstrates driven nonequilibrium system characteristics, with multiple time 

scale separation, then one may suspect of the presence of superstatistics. 

In this thesis, firstly the probability distributions of the speed variable at a local 

point selected from a highway segment are investigated. If the space is Euclidean, the 

memory is Markovian and the time is continuous, the distribution of a given system 

would then be considered in a Boltzmann-Gibbs formalism. However, for a real system, 

such as vehicular traffic flow on the highway segment, this may not be so. Since the 

systems may exhibit (multi)fractal, non-Markovian properties and the time is discrete, 

we expect, at least occasionally, that the distributions become q-Gaussian and Tsallis 

formalism could be the underlying statistical mechanics. The vehicular traffic flow is 

modeled through q-Gaussian distributions. 

 

5.6.1. Description of Time Scales of the Superstatistical Model 

 

The dataset is defined as   in this thesis. Consider  n ......., 21  and 

each value in the dataset corresponds to single point speed observations. 

Let us assume that the local equilibrium is represented by approximately a 

Gaussian distribution. When the local characteristics of each partitioned cells (windows) 

of the time series exhibit Gaussian behavior with zero mean and variance uT ,/1  , the 

formulae of the local moments are given as in (Van der Straeten & Beck, 2009) 
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And the condition for the kurtosis 3, uT  hints at local Gaussians. 

The correlation function of a time series   can be obtained as in (Van der 

Straeten & Beck, 2009) 
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The short time scale  of the time series is described by the exponential decay of 

)(, sC  and shown as follows (Van der Straeten & Beck, 2009): 
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Consider the kurtosis to determine the long time scale (Van der Straeten & 

Beck, 2009): 
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where N is the total number of identical windows and T is the length of the windows. 

 

Let the kurtosis quantity for a time window of the time series data corresponds 

roughly to 3.  This indicates that the time windows contain data which is approximately 

normally distributed. 

Let us consider that the local behavior of the windows of length T  has not 

perfect Gaussian distribution, then uT ,  is introduced to determine the deviations from 

the fourth moment of 3, and shown as (Van der Straeten & Beck, 2009): 
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Gaussian approximation is obtained when 1  by 
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For a suitable Gaussian approximation, the numerator in the formula would tend 

to zero. Thus, for the Gaussian approximation of a given time series, the value   

should be small. 

 

5.6.2. q-Gaussian Formulations 

 

In superstatistics, the marginal probability )(p is given as, (Beck, 2004) 

 

  dpfp )|()()(  (5.9) 

 

In Equation (5.9), as stated, if )(f  is a 
2 distribution and the )|( p is 

Gaussian one, then the )(p becomes Tsallis distribution. 

Under 
2 distributed , the generalized canonical distributions of nonextensive 

statistical mechanics become, (Beck, 2004) 
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where 
  is the inverse temperature, q is the entropic index. 

Consider the 
2  distribution Equation (5.11) in the integration of Equation 

(5.9), 

 

0212/

2/

02

2

1
)(












n

n

n

e
n

n
f





















  

(5.11) 



56 

 

The relation between the parameters q and n is given as, (Beck, 2001), (Beck, 

2004) 

 

1

2
1




n
q  (5.12) 

 

where n is the number of degrees of freedom. 

 

5.6.3. Superstatistical Analyses of the Vehicle Speed Data 

 

The speed data collected from a surveillance point on Çanakkale-İzmir highway 

are utilized for the superstatistical analyses. In one direction, several traffic variables 

were collected for three days, and approximately 37-hours' individual vehicle speed 

dataset is processed in the analyses. Some descriptive statistics of the sample speed data 

extracted from the dataset are given below, Table 5.1. 

 

Table 5.1. Descriptive Statistics of the Selected Three Days from 6:00 a.m. to 12:30  

                     p.m. 

Days Mean Median Mode 
Standard  

Deviation 
Variance Range 

1st 82.18 82.3 84.09 14.58 212.58 126.52 

2nd 80.63 80.5 112.16 14.22 202.24 100.45 

3rd 81.14 81.4 35.76 14.27 203.69 104.50 
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 The kurtosis diagram for the speed data is obtained as below: 

 

 
Figure 5.16. Average Kurtosis Diagram of Vehicle Speeds 

(Source: Kosun & Ozdemir, 2016) 

 

The kurtosis value corresponds to roughly 3 where the local Gaussian 

distributions are satisfied. The optimal time scale T  of time series data for the vehicle 

speeds is obtained at around 18 (Figure 5.16). 

Let us consider the short time scale  for the vehicle speed time series data. By 

virtue of Equations (5.4) and (5.5), the correlation diagram and    are obtained. The 

 value corresponds to 2.4 where the correlation function crosses the point of e/1  

(Figure 5.17). 

 

 
Figure 5.17. Correlation Function of Vehicle Speeds 

(Source: Kosun & Ozdemir, 2016) 
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According to the analyses above, the ratio T/ equals 0.13. The ratio is 

relatively small enough and partially verifies that the speed time series is 

superstatistical. The  value is also computed as 0.01 and satisfies the Gaussian 

approximation. 

From the vehicle speed time series data, this thesis asserts that two different 

Tsallis q entropic indices specifying the road segment with a certain traffic flow and the 

interactions would be obtained. The q index from the fit out of a q-Gaussian reflects the 

highway or traffic properties with a certain flow and it is time-independent. However, 

the q index from the beta (inverse temperature) distributions indicates the time history 

of vehicle flow and interactions, and thus it is time-dependent. These distinct q values 

are obtained by considering the probability distribution of beta values and, speed time 

series and fitting plots of q-Gaussian distribution. 

 

 
Figure 5.18. Probability Distribution of Beta Values for Vehicle Speeds 

(Source: Kosun & Ozdemir, 2016) 

 

The inverse temperature values are distributed with respect to a chi-square 

distribution (Figure 5.18) and from this distribution q value is obtained to be 1.8. 
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Figure 5.19. Semi-Log Plot of Speed Time Series and Fitting Plots of Gaussian and q- 

                      Gaussian Forms (Source: Kosun & Ozdemir, 2016) 

 

From Figure 5.19, the deviation from the Gaussian distribution is observed. This 

confirms that the q value of entropic index would be different from the unity. With q 

value of 1.3, the q-Gaussian distribution fits well the speed time series where the 

characteristics of the highway with a certain flow displays non-Gaussianity. 
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CHAPTER 6 

 

ENTROPY-BASED URBAN AND TRAFFIC PLANNING 

 

6.1. Urban and Traffic Planning under Boltzmann-Gibbs and Tsallis  

       Entropy Formalisms 

 

In this thesis two cases i.e. lane changing and driver behavior analyses, and 

superstatistics and traffic flow were examined. The first is related with the scenario-

based lane changing analyses in terms of energy and position entropy, while the second 

one depends on obtaining the deviation from the Gaussianity by virtue of vehicle speeds 

within the framework of superstatistics. Fundamentally, in the first case, the short-

range, long-range and quasi long-range interactions in connection with traffic scenarios 

are investigated. In the second case, the probability distributions from beta parameter 

and speed values are plotted and as it was explained, they generate different Tsallis q 

values above unity.   

This thesis reveals that the findings from the analyses would be related to the 

technical aspects of urban and traffic planning. The technical aspects here are directly 

linked with the design and implementation. In this chapter, the local and potential 

planning decisions causing the emergence of additive and subadditive regions in the 

traffic flow are considered. Therefore, distinct from the literature, the influences of the 

potential planning decisions on the traffic flow are discussed within the framework of 

both Tsallis and Boltzmann-Gibbs thermostatistics. The lane changing scenarios depict 

that unsafe driving corresponds to Boltzmann-Gibbs entropy region, whereas safe 

driving matches the Tsallis entropy domain well. Planners must decide how the road 

traffic would be safe and thus, from the thermostatistics context in this thesis, how the 

road traffic remains in Tsallis entropy domain. 

To clarify the connection between the entropy and planning, some possible 

instances of the occurrence of additive and subadditive entropy regions in traffic flow 

would be given in the following sections. 
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6.2. Planning and Tsallis Entropy Formalism 

 

The emergence of both long-range interactions and safe driving can hinge on the 

driver behaviors and the precautions against possible traffic problem in the practice of 

physical planning.  Those precautions may be connected with the technical aspects of 

the planning such as relevant locations of car parking lots (e.g., avoiding locating them 

near the intersections), relevant position of the entrance and exit of the school buildings 

and industrial areas (e.g., avoiding locating them at the side of the urban collectors, 

arterials etc.), well-arranged vehicle route, leaving sufficient and well-designed paths 

for pedestrians, bicyclists and the disabled along the urban roads.  

Preferably, planners should also refrain from designing sharp curves on roads. 

For example, pedestrian crossing locating at a short distance ahead would be dangerous 

for both drivers and pedestrians, making the traffic additive. Further, for example the 

presence of early warning systems and real-time monitoring in traffic may lead to the 

generation of long-range interactions, and hence subadditive entropy region. As a result, 

the traffic flow turns out to be cooperative and safe.  

From the superstatistics viewpoint, the deviation from the Gaussian distribution 

of the speed values could indicate that the traffic does not move randomly, holding 

nonadditivity. This puts forward that the long-range and quasi long-range interactions 

mostly occur in the traffic flow, and this stems from the effects of the vehicular 

interactions, environmental factors, driver behaviors etc. Since the local characteristics 

of every factor may change, their effects on the traffic flow would be also different.   

To achieve safe driving in vehicular traffic flow, the goal is to obtain the Tsallis 

q index above unity. However, further work needs to be carried out to find how large 

the proper q value should be. This thesis infers that, by quantitatively interpreting, 

planning decisions regarding the neighborhoods of the roads ought to keep the q index 

above unity for safe driving in terms of both positional and energy entropies in the 

traffic flow.  
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6.3. Planning and Boltzmann-Gibbs Entropy Formalism 

 

Possible urban and the traffic planning problems could lead to the emergence of 

Boltzmann-Gibbs entropy formalism. For example, at the bottlenecks, the traffic could 

remain in additive region, resulting in unsafe driving. This can stem from the behavior 

of the drivers where some of them could display reckless driving behavior to be ahead 

throughout the traffic flow. Apart from this, other major and minor factors, such as the 

presence of parking problems along the roadways (Figure 6.1(a)), pedestrian inflow and 

outflow of such as administrative buildings, shopping malls and schools (Figure 6.1(c)) 

along the urban collectors, uncontrolled interruptions on the bicycle routes (Figure 

6.1(d)), uncontrolled intersections (Figure 6.1(e)), directly merging the exits of the 

parking lots with the roadways (Figure 6.1(f)), and even the improper position of waste 

container along the roadways, may lead to additive manner in the traffic. Of these 

factors, for example, the parking problem along the roadways may emerge by such 

factors as land-use decisions, lack of parking lots. The illegal parking along the 

roadways leads to lane blockages, prompting the reckless driving behavior. For another 

problem, there could be students plunging into the roadway segment from the exit of 

school buildings nearby the roadway. This may result in a traffic accident due to the 

potential short-range interactions, and hence additivity where the states are freely 

chosen by drivers on the given roadway. Such potential problems can be the outputs of 

the urban and traffic planning process.  

Despite the emergence all of those factors related with planning, driver 

psychology (Figure 6.1(b)) may also have prominent effect on the occurrence of 

additivity and subadditivity in traffic flow at both urban areas and uninterrupted 

highways. 

In the real traffic flow, the behaviors of the vehicles (drivers) exposed to all 

these and related factors could exhibit a distribution approaching a Gaussian where the 

Tsallis q index corresponds to unity. The reason why the distribution approaches a 

Gaussian is that the drivers fill up available spaces among the vehicles due to a lack of 

the quasi long-range or long-range interactions. In this instance, the traffic flow 

becomes uncooperative and unsafe, and only the very short-range interactions would 

emerge. 
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a (Source: Baodanang, 2015) b (Source: Wikispaces, 2015) 
  

  
c (Source: Anadoludabugun, 2015) d (Source: Turkiyebisikletrotalari, 2015) 
  

  
e (Source: Kandarpck, 2015) f (Source: Fhwa, 2015) 
  

Figure 6.1. Possible Examples Generating Additivity in Traffic Flow 

 

6.4. Revisiting the Traffic Flow Quadrants in terms of Real Traffic 

Flow Examples 

 

This thesis proposes four quadrants in connection with Tsallis and Boltzmann-

Gibbs entropy as stated in Chapter 5. In this section, four real traffic flow examples are 

presented for each quadrant in the corresponding entropy formalisms. In the first 

quadrant (Figure 6.2(a)), the vehicle on the right-lane tries to overtake the vehicle in 

front albeit the middle-lane is occupied by the other vehicles in traffic. This overtaking 

behavior corresponds to the unsafe driving since the driver can choose any state with 

equal probability and thus the system is additive. Moreover, the presence of 
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uncongested traffic matches the extensivity well. In the second quadrant (Figure 6.2(b)), 

the given traffic flow is uncongested, thus the traffic flow system is in extensive region. 

The drivers leave a forbidden state i.e. safe distance among the vehicles, hence the 

subadditivity occurs. In the third quadrant (Figure 6.2(c)), the traffic flow is congested 

and the vehicles e.g. motorbikes try to choose the states of the other vehicles. In this 

quadrant, because of the occurrence of congestion and reckless driving, the system 

displays nonextensive and additive properties. In the fourth quadrant (Figure 6.2(d)), it 

is assumed that the traffic flow is in the congested category; however the drivers 

maintain a safe distance among the vehicles. Due to the congestion, entropic extensivity 

is violated. Furthermore, since the safe distance emerges among vehicles, the traffic 

flow could be involved in Tsallis entropy formalism. Please note that Figure 6.1 and 

Figure 6.2 only represent the instantaneous traffic, thus the distinction between 

Boltzmann-Gibbs and Tsallis entropies is determined in the light of these traffic 

conditions. 

 

                      ADDITIVE 
 

                   SUBADDITIVE 
 

  
a (Source: Wikispaces, 2015) b (Source: Newstech, 2016) 

 

  
c (Source: Gmanews, 2016) d (Source: Streetsblog, 2016) 

 

BG entropy 

 

Tsallis entropy 
 

Figure 6.2. Possible Examples in connection with the Proposed Traffic Flow Quadrants 
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CHAPTER 7 

 

CONCLUSIONS 

 

This thesis has dealt with the analysis of a complex phenomenon known as 

traffic flow. This complexity stems from not only an interplay of the types of vehicles, 

volume, driving behavior, the number of lanes, signalization, pedestrian crossing, 

parking zones, left and right-turns, grade, urban land-use but also more global factors 

such as an interconnected networks of from the highways to byways. Apart from the 

traffic elements, one of the possible suspected factors that is the urban land-use has 

considerable impact on traffic characteristics such as vehicular interactions and speeds 

etc.  It is known that the influence of the urban-land use on vehicular traffic flow is 

stronger in urban centers. This is because existing roads in urban centers may be 

insufficient to compensate for the vehicular flow generated by land-use and planning 

decisions. As much as the traffic flow interruption factors are in question, the 

complexity of the flow may be much more pronounced.  Since this thesis has focused 

on a highway segment outside the urban centre, it is assumed that urban land-use factor 

may have slighter local or instantaneous effects on the traffic flow. 

In the thesis, the effects of every individual elements or factors on complexity of 

traffic flow have not been evaluated, and instead its complexity has been described 

through a macroscale solution. Namely, examining the behavior of each vehicle and 

their interactions would be involved in many-body problem, making the traffic flow 

analyses too complex, and this is also far beyond the scope of the thesis. Within the 

framework of the macroscale solution, the author of this thesis has therefore 

investigated the statistics of the given problem. Especially the analyses of the vehicle 

speed time series data display this consideration in the fifth chapter of the thesis.  

The deviation from the Boltzmann-Gibbs thermostatistics of the vehicle speed 

time series data can reveal the complexity of the traffic flow. Concurrently, the signs 

and effects of non-Markovian memory, long-range interactions, multifractality, 

environment, traffic elements and such other factors on the vehicle speed behaviors 

could emerge.  
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In the light of these, the given problem of this thesis has been investigated under 

nonextensive thermostatistics. For the unity of the entropic index, the nonextensive 

thermostatistics exhibits the Boltzmann-Gibbs thermostatistics. Therefore, observing the 

distinctive characteristics of the nonextensive approach in the traffic flow has become 

the major task of this thesis. This has been carried out through two cases, namely, lane 

changing and driver behavior analyses, and superstatistics and the traffic flow. In the 

lane changing and driver behavior case, short-range, long-range and quasi long-range 

interactions have been discussed. The short-range and long-range interactions among 

the particles in physics have been a motivational factor, and the occurrence of those 

interactions among the vehicles is investigated under hypothetical scenarios in traffic 

flow. In spite of the fact that the interactions are only represented by the cars and 

motorbikes, one could conceive the interactions among other vehicle types in the given 

scenarios.    

As it was stated that the long-range interactions implicate nonextensive (Tsallis) 

thermostatistics, whereas the short-range interactions fall into the Boltzmann-Gibbs one. 

Apart from these interactions, this thesis also brings forth the new concept called quasi 

long-range interactions in traffic flow. This new concept emerges since some of the 

interactions in the traffic flow scenarios have not only been involved in the short-range 

but also in the long-range interaction categories. However, in this thesis, quasi long-

range interactions were subsumed under Tsallis entropy domain due to its close 

connection with the long-range interactions. All of these interactions were examined in 

the entropy and energy framework. According to the traffic flow scenarios, distinctive 

driver behaviors e.g. malicious, reckless, safe are extracted. The analyses are shown 

that, by virtue of the energy and positional entropy of the vehicles, Tsallis entropy 

formalism corresponds to safe driving behavior while Boltzmann-Gibbs thermostatistics 

corresponds to unsafe driving. In the analyses, the objective is to whether the given lane 

changing behavior fall into Boltzmann-Gibbs or Tsallis formalism i.e. the q entropic 

index is unity or not. Further research may reveal the exact values of the entropic index 

q for the lane changing behavior in the real traffic flow. Incidentally, since the driving 

behavior has a significant role in the traffic flow, the number of alternative scenarios 

could be expanded and evaluated in terms of Boltzmann-Gibbs and Tsallis entropies in 

a future work. 

Moreover, the solid jam condition in the traffic flow is excluded from the traffic 

scenarios and this condition would be evaluated in further research. However, in this 
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thesis, it is expected that the beginning of the traffic congestion leads to diminishing of 

the safe distance among the vehicles. Hence, a number of forbidden states are still 

allowable in the traffic. For example, let us consider the presence of the reckless drivers 

in this flow, in such a case it is safe to say that the traffic exhibits additive 

characteristics. As a result, factors leading to the congestion may hold the traffic in 

additive region.  

In the thesis, additivity in the traffic corresponds to the disordered flow where 

the sum the individual entropies of the vehicles are equal to the system entropy. In 

contrast, nonadditivity concurs with the ordered flow. The presence of additivity and 

nonadditivity in the traffic flow are also investigated through superstatistics. The results 

in regard to Tsallis q indices in the superstatistics case are given under the probability 

distribution of beta parameter and vehicle speed time series data. Two different Tsallis q 

indices are computed out of the traffic flow, which is the distinctive contribution to the 

literature. One of these indices is time-independent, but the other is time-dependent. The 

analyses also reveal that the long-range interactions or Tsallis entropy region most 

likely occur in the traffic flow.  

The possible factors affecting the traffic flow are picked out pertaining to 

Boltzmann-Gibbs and Tsallis entropies. Although the individual influence of each factor 

on the traffic flow has not been investigated, it turned out that their overall contribution 

is revealed in the so-called Tsallis q parameter, in an effort to make sense of the traffic 

complexity. This thesis asserts that nonextensive statistical mechanics framework 

depicts the traffic flow complexity duly. Consequently, one of the most likely outcomes 

is that Boltzmann-Gibbs formalism could be replaced by nonextensive framework for a 

better understanding of the complexity of the traffic flow. Future research may endeavor 

to utilize this framework in different traffic studies.  

As a final point, in this thesis, even though the highway segment is chosen as the 

case study, possible factors affecting the traffic flow in urban collectors, local roads etc. 

are given.  A future work may focus on the traffic in urban centers and investigate those 

and other factors. Vehicular traffic flow is in question in this thesis and investigated 

under the given entropy formalisms. Furthermore, later studies may very well tackle 

other quantifiable urban phenomena and the proposed macroscale solution here could 

identify its complexity as well. 
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