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Inequalities for the Vibrating Clamped Plate Problem

K.P. McHale, U. Ufuktepe

Abstract

We study the eigenvalues of the vibrating clamped plate problem. We have made
improvements on the bounds of the ratios of the eigenvalues of the biharmonic op-

erator (clamped plate) using the methods of Payne, Polya, and Weinberger. The

difference in our proof lies mainly with the trial functions and the orthogonality
arguments. While Payne, Polya, and Weinberger and Hile and Yeh project away
components along u1, u2,..., uk to meet the orthogonality conditions,we use a trans-

lation/rotation argument to meet these conditions.

1. Introduction

In the present paper, we consider the biharmonic eigenvalue problem

∆2u− µu = 0 in D
u = ∂u

∂n
= 0 on ∂D

}
(1.1)

with ”clamped” boundary conditions on a bounded domain D ⊂ Rn (n ≥ 2) where ∆
denotes the Laplace operator, n denotes the outward normal to ∂D, and 0 < µ1 < µ2 < ...
denote the successive eigenvalues, with multiplicity, and ui denotes the corresponding
eigenfunction.
Payne, Polya, and Weinberger [3] showed that for domains in the plane,

µk+1 ≤ µk +
8
k

k∑
i=1

µi ≤ 9µk. (1.2)

A related result for a domain D ⊂ Rn (n ≥ 2), was obtained by Hile and Yeh [1] :

k∑
i=1

√
µi

µk+1 − µi
≥ n2k3/2

8(n+ 2)

(
k∑
i=1

√
µi

)−1/2

. (1.3)
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From this they derived the weaker, but explicit, bound

µk+1 ≤ µk +
8(n+ 2)
n2k3/2

(
k∑
i=1

µi

)1/2( k∑
i=1

√
µi

)
. (1.4)

and also obtained the still weaker bound

µk+1 ≤ µk +
8(n+ 2)
n2k

(
k∑
i=1

µi

)
≤
(

1 +
4
n

)2

µk, (1.5)

which is the natural extension to dimensions n ≥ 2 of the bound (1.2) for domains in the
plane. In particular, for k = 1, we have

µ2 ≤
(

1 +
4
n

)2

µ1. (1.6)

Hook [2] showed, using abstract operator theory,

k∑
i=1

√
µi

µk+1 − µi
≥ n2k2

8(n+ 2)

(
k∑
i=1

√
µi

)−1

. (1.7)

Considering low eigenvalues in R2, we see from (1.2) that

µ2 ≤ 9µ1 and µ3 ≤ 9µ2 ≤ 81µ1. (1.8)

Even better, (1.2) yields the following bound in R2

µ3 ≤ 4µ1 + 5µ2 ≤ 49µ1. (1.9)

Improved estimates for some of the lower eigenvalues of (1.1) where also found by Hile
and Yeh [1]. They showed that for any σ > 0

µk+1 ≤ (1 + σ)µk + q(σ)
M(n)
k

k∑
i=1

µi (1.10)
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where

q(σ) =
(

(1 + σ)3

σ

)1/2

,

M(n) =
32
3

√
2
3
n−1(n + 2)−1/2,

and furthermore, they proved that (1.10) is better than (1.5) for certain low values of k
(depending on the dimension n). In particular, for n = 2, k = 1, σ = .4 they found

µ2 ≤ 7.103µ1, (1.11)

and for n = 2, k = 2, σ = .34 they obtained µ3 ≤ 2.897µ1 + 4.237µ2,

2. Trial Function Method

An ever-present tool in our method will be the Rayleigh-Ritz inequality given by

µi+1 ≤

∫
D

Ψi∆2Ψi∫
D

Ψ2
i

, i = 1, 2, ..., n

which is satisfied by any sufficiently smooth function Ψi, such that

Ψi =
∂Ψi

∂n
= 0 on D

and ∫
D

Ψiuj = 0, j ≤ i, i = 1, ..., n

For the vibrating clamped plate problem, Payne, Pólya, and Weinberger (PPW)and Hile

and Yeh (HY) use trial functions Ψi = xui −
k∑
j=1

aijuj .With the appropriate choice of

aij , the orthogonality conditions necessary to use the Rayleigh-Ritz quotient are met.
They both use rotations later in their proofs to simplify the Rayleigh-Ritz inequality.
The method used here is to rotate coordinates so that the trial functions used in the
PPW/HY method are simpler to use. For Theorem 2.1, we would like to use just
Ψi = xiu1 as trial functions for µi+1 for i = 1, ..., n. However, given an arbitrary choice
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of Cartesian coordinates xi, we have no guarantee that the appropriate orthogonalities (
i.e., < Ψi, uj >= 0 for all j ≤ i, where < ·, · > denotes the appropriate inner product)
will hold. To remedy this situation, we argue that we can always find a suitable rotation

of axes to a new system of Cartesian coordinates x
′

i so that the desired orthogonalities

are obtained ( i.e., < Ψ̃i, uj >= 0 for all j ≤ i and i = 1, ..., n where Ψ̃i = x
′

iu1). Thus

the necessary orthogonality conditions will hold for the trial functions Ψ̃i = x
′

iu1, where

the new Cartesian variables x
′

i are obtained via a rotation from our original variables.

In other words, there exists a real orthogonal matrix S such that x
′

i =
n∑
j=1

Sijxj , for

i = 1, ..., n, and the following theorem holds.

Theorem 1 There exists a set of Cartesian coordinates x
′

i such that the functions Ψ̃i =

x
′

iu1 are suitable trial functions for µi+1 in the corresponding Rayleigh quotient. That is,
we have

Ψ̃i = ∂Ψ̃i
∂n = 0 on ∂D (2.12)

< Ψ̃i, uj >= 0, for all 1 ≤ j ≤ i ≤ n. (2.13)

Proof. We start from the arbitrary system of Cartesian coordinates xi and let Ψi =
xiu1. We can assume that these obey < xiu1, u1 >= 0, for, if not, we can simply translate

each xi by ai = <xiu1,u1>
<u1,u1>

. Assuming this has been done, we find that Ψ̃i = x̃iu1

satisfies (2.12) for all i and satisfies (2.13) for j = 1 and all i, 1 ≤ i ≤ n. To prove
(2.13) for j = 2, 3, ..., i, let C be an nxn matrix such that C = [cij]1≤i≤j≤n where
cij =< Ψi, uj+1 >=< xiu1, uj+1 > .

Then

C =


< Ψi, u2 > < Ψi, u3 > · · · < Ψi, un+1 >
< Ψi, u2 > < Ψi, u3 > · · · < Ψi, un+1 >
...

...
...

< Ψi, u2 > < Ψi, u3 > · · · < Ψi, un+1 >

 = [~c1, ~c2, ..., ~cn]

where the ~cj’s are the columns of C. Now using the Gram-Schmidt procedure we can
orthogonalize the ~cj ’s in order, followed by the standard basis vectors ~ei as needed, to
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get n independent, orthonormal column vectors ~rj. Let R be the matrix with columns ~rj
, 1 ≤ j ≤ n. Then we have C = RT where R is an nxn real orthogonal matrix and T is

an nxn upper triangular matrix. Therefore, RTC = T and each entry in the matrix T ,
denoted by Tij, can be represented as follows:

Tij =
n∑
k=1

(RT )ikckj =
n∑
k=1

(RT )ik < xku1, uj+1 >

=

〈(
n∑
k=1

(RT )ikxku1

)
, uj+1

〉
=< x

′

ku1, uj+1 > .

Thus we identify S from our discussion leading up to this theorem as RT . Since T is

an upper triangular matrix, we have < x
′

iu1, uj+1 >= 0 for 1 ≤ j ≤ i, i = 2, ..., n. So

< x
′

iu1, uj >= 0 for 2 ≤ j ≤ i, and thus Ψ̃i = x
′

iu1 ⊥ u2, u3, ..., ui for i = 2, 3, ..., n.
We note also that since < xku1, u1 >= 0 for k = 1, ..., n, <

x
′

iu1, u1 >=
n∑
k=1

(RT )ik < xku1, u1 >= 0 for each i = 1, ..., n. We therefore have

< Ψ̃i, uj >=< x
′

iu1, uj >= 0 for 1 ≤ j ≤ i and i = 1, ..., n, which shows that (2.13) is
satisfied.

3. Useful Calculations

In this section, some of the more useful formulas used later in this paper are given.
Calculating the numerator in the Rayleigh-Ritz inequality, we have the following lemmas.

Lemma 1 Given the trial functions Ψi = xiu1, we have

∫
D

Ψi∆2Ψi = µ1

∫
D

x2
iu

2
1 + 4

∫
D

xiu1∆uxi
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Proof. ∫
D

Ψi∆2Ψi =
∫
D

Ψi(∆2xiΨi)

=
∫
D

Ψi(∆(∆xiu)) =
∫
D

Ψi∆(xi∆u+ 2uxi)

=
∫
D

Ψi(xi∆2u+ 2∆uxi + 2∆uxi)

=
∫
D

xiu(xiµ1u+ 4∆uxi)

= µ1

∫
D

x2
i u

2 + 4
∫
D

xiu1∆uxi

2

Lemma 2 ∫
D

|∇ui|2 ≤
√
µi

Proof. ∫
D

|∇ui|2 =
∫
D

ui(−∆ui)

≤
∫
D

|ui∆ui|

≤

∫
D

u2
i

1/2∫
D

(∆ui)2

1/2

≤

∫
D

ui∆2ui

1/2
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=

µ1

∫
D

u2
1

1/2

=
√
µi

2

Here we made use of Cauchy-Schwarz inequality, the fact that our eigenfunctions ui
are real-valued and enjoy the orthonormality property

∫
D

u2
1 = 1. Finally, we need the

following lemma. We define

Jl =
k∑
i=1

∫
D

Ψil∆uixl and J =
n+ 2

2n

k∑
i=1

∫
D

|∇ui|2 . (3.14)

Lemma 3 The inequalities Jl and J satisfy:

(i)
1
n

n∑
l=1

Jl = J,

(ii) J ≤ n+ 2
2n

k∑
i=1

√
µi,

(iii)
nk2(n+ 2)

8
≤ J

n∑
l=1

k∑
i=1

Ψ2
il.

Proof. of (i). We have

n∑
l=1

Jl =
n∑
l=1

k∑
i=1

∫
D

Ψil∆uixl

=
n∑
l=1

 k∑
i=1

∫
D

xlui∆uixl −
k∑

i,j=1

aij

∫
D

uj∆uixl

 . (3.15)
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The second term on the left-hand side of (3.15) vanishes because of the symmetry of aij

and the antisymmetry of
∫
D

uj∆uixl. Next we observe that

∫
D

xlui∆uixl =
1
2

∫
D

|∇ui|2 +
∫
D

u2
ix
l
. (3.16)

Summing (3.16) over i and l, and substituting the result into (3.15) yields

n∑
l=1

Jl =
n∑
l=1

 k∑
i=1

∫
D

xlui∆uixl


=

k∑
i=1

n

2

∫
D

|∇ui|2 +
k∑
i=1

∫
D

|∇ui|2

=
k∑
i=1

n+ 2
2

∫
D

|∇ui|2

= nJ.

This completes the proof of (i). To prove (ii), we employ Lemma 3.1, making use of

the Cauchy-Schwarz inequality and the fact that
∫
D

(∆ui)2 = µi. Thus:

J =
n+ 2

2n

k∑
i=1

∫
D

|∇ui|2 ≤
n+ 2

2n

k∑
i=1

√
µi.

To prove (iii), we consider the following:

k∑
i=1

∫
D

Ψiluixl =
k∑
i=1

∫
D

xluiuixl =
k∑

i,j=1

aij

∫
D

ujuixl . (3.17)

Using integration by parts, we have∫
D

xluiuixl = −1
2
. (3.18)
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Thus, again using the symmetry of aij, the antisymmetry of
∫
D

uiuixl, and substituting

(3.18) into (3.17), we have

k∑
i=1

∫
D

Ψiluixl = −k
2
. (3.19)

Applying the Cauchy-Schwarz inequalities both for integrals and sums to (3.19), yields

k

2
≤

 k∑
i=1

∫
D

Ψ2
il

 1
2
 k∑
i=1

∫
D

u2
ixl

 1
2

.

Summing over l and using the Cauchy-Schwarz inequality again we have

nk

2
≤

 n∑
l=1

k∑
i=1

∫
D

Ψ2
il


1
2
 k∑
i=1

∫
D

|∇ui|2


1
2

or, upon squaring and using the definition of J,

(
n+ 2

2n

)
n2k2

4
≤ J

n∑
l=1

k∑
i=1

∫
D

Ψ2
il.

The proof of Lemma 3 is now complete. 2

4. Bounds on µ2+...+µn+1
µ1

Theorem 2 Let D be a bounded domain in Rn (n ≥ 2), with boundary ∂D. Let µ1, µ2, ...

denote the successive eigenvalues of (1.1) with u = u1the eigenfunction corresponding to
µ1. Then

µ1 + µ2 + ...+ µn+1

µ2
≤ n

(
1 +

24
n

)
, (4.20)

and
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n∑
i=1

√
µi+1 ≤ (n + 4)

√
µ1. (4.21)

Proof. of (4.20).
Let Ψi = xiu, where u = u1. The conditions for the Rayleigh-Ritz inequality are met

by virtue of the boundary conditions and an appropriate translation and rotation of the
coordinate axes, which is detailed in the Theorem 2.1. By Lemma 3.1, we have

µi+1 ≤
µ1

∫
D

x2
iu

2 + 4
∫
D

xiu∆uxi∫
D

x2
iu

2
. (4.22)

By normalization and integration by parts, we have

1 =
∫
D

u2 = −
∫
D

xi2uuxi .

Squaring both sides and using the Cauchy-Schwarz inequality we have

1 =

2
∫
D

xiuuxi

2

≤

4
∫
D

u2
xi

∫
D

x2
iu

2

 .

Thus

1∫
D

x2
i u

2
≤ 4

∫
D

u2
xi. (4.23)

Substituting (4.23) into (4.22) yields

µi+1 − µ1 ≤

4
∫
D

xiu∆uxi

4
∫
D

u2
xi

 . (4.24)

From the divergence theorem and integration by parts, we have

2
∫
D

xiu∆uxi =
∫
D

|∇u|2 + 2
∫
D

u2
xi
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Note that we avoid using Hile and Yeh’s rotation convention here. Instead, we use the
rotation convention outlined in Theorem 2.1 to meet the orthogonality conditions and
simplify the Rayleigh-Ritz inequality further before summing over i. Thus (4.24) becomes

µi+1 − µ1 ≤ 2

∫
D

|∇u|2 + 2
∫
D

u2
xi

4
∫
D

u2
xi



= 8
∫
D

u2
xi

∫
D

|∇u|2 + 16

∫
D

u2
xi

2

(4.25)

Summing on i from 1 to n, and utilizing Lemma 3.2, we have

µ2 + µ3 + ...+ µn+1 − nµ1 ≤ 24

∫
D

|∇u|2
2

≤ 24µ1,

achieving the desired result,

µ2 + µ3 + ...+ µn+1

µ1
≤ n+ 24.

Proof of (4.21). Let ai =
∫
D

u2
xi

and I =
∫
D

|∇u|2 . Then from (4.25) we have

µi+1 − µ1 ≤ 8ai(2ai + I)

= 16a2
i + 8aiI

≤ 16a2
i + 8ai

√
µ1

= (4ai +
√
µ1)2 − µ1. (4.26)

Canceling the µ1’s and taking the square root of both sides, we have
√
µi+1 ≤ 4ai +

√
µ1.

Summing over i, we have (using
n∑
i=1

ai = I ≤ √µ1),

n∑
i=1

√
µi+1 ≤ (n+ 4)

√
µ1, (4.27)
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5. Improved ratio results

Improvements to Hile and Yeh’s work are shown in the next theorem. In addition, we
offer an alternate proof of (5.28) originally found by Hook [2] using an operator method.

Theorem 3 Let D be bounded domain in Rn, n ≥ 2, with boundary ∂D. Let the
eigenvalues of (1.1) be designated by 0 ≤ µ1 ≤ µ2 ≤ .... Then we have for n ≥ 2
and k ≥ 1, the implicit bound

k∑
i=1

√
µi

µk+1 − µi
≥ n2k2

8(n+ 2)

(
k∑
i=1

√
µi

)−1

(5.28)

and the explicit bound

µk+1 − µk ≤
8(n+ 2)
n2k2

(
k∑
i=1

√
µi

)2

(5.29)

Proof. Following Payne, Polya, and Weinberger, we consider the trial functions

Ψil = xlui −
k∑
j=1

aijuj, i = 1, 2, ..., k, l = 1, 2, ..., n

where x = (x1, ..., xn) ∈ Rn, and the constants aij are defined by

aij =
∫
D

xluiuj

(we suppress the dependence on l) so that

∫
D

Ψiluk =
∫
D

xluiuk −
k∑
j=1

aij

∫
D

ujuk

=
∫
D

xluiuj − aik = 0.

In addition,

Ψil =
∂Ψil

∂n
= 0 on ∂D.
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Therefore, the Rayleigh-Ritz inequality holds

µk+1 ≤

∫
D

Ψil∆2Ψil∫
D

Ψ2
il

, i = 1, 2, ..., k. (5.30)

Using Lemma 3.1 and summing over i, (5.30) becomes

µk+1

k∑
i=1

∫
D

Ψ2
il ≤

k∑
i=1

µi

∫
D

Ψ2
il + 4

k∑
i=1

∫
D

Ψil∆uixl. (5.31)

Introducing a new parameter α, α > µk we have from (5.31) and (3.14),

(µk+1 − α)
k∑
i=1

∫
D

Ψ2
il ≤

k∑
i=1

(µi − α)
∫
D

Ψ2
il + 4Jl. (5.32)

Using the simple inequality ab ≤ |ab| ≤ δ
2a

2 + 1
2δ b

2 for any δ > 0, the new parameter

α,and (3.19), we obtain ∀ δ > 0,

k

2
≤ δ

2

k∑
i=1

(α− µi)
∫
D

Ψ2
il +

1
2δ

k∑
i=1

(α− µi)−1
∫
D

u2
ixl . (5.33)

Denote S =
n∑
l=1

k∑
i=1

∫
D

Ψ2
il, T =

n∑
l=1

k∑
i=1

(α− µi)
∫
D

Ψ2
il ; then (5.32) when summed on l

from 1 to n gives (using (i))

(µk+1 − α)S + T ≤ 4nJ (5.34)

and similarly (5.33) gives

nk ≤ δT + δ−1
k∑
i=1

(α− µi)−1
∫
D

|∇ui|2

≤ δT + δ−1
k∑
i=1

√
µi

α− µi
, (5.35)
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since ∫
D

|∇ui|2 ≤
√
µi.

To minimize the right-hand side of (5.35) we need to find δ such that

T − 1
δ2

k∑
i=1

√
µi

α− µi
= 0, (5.36)

and thus

δ = T−
1
2

(
k∑
i=1

√
µi

α− µi

)1/2

(5.37)

Putting this value of δ into (5.35), squaring both sides, and solving for T yields

nk ≤ 2T
1
2

(
k∑
i=1

√
µi

α− µi

)1/2

,

n2k2

4
≤ T

k∑
i=1

√
µi

α− µi
, (5.38)

T ≥ n2k2

4

(
k∑
i=1

√
µi

α− µi

)−1

,

From Lemma 3.3 (ii) , we have

J ≤ n+ 2
2n

k∑
i=1

√
µi. (5.39)

Substitution of (5.38) and (5.39) into (5.34) yields

(µk+1 − α)S ≤ 2(n+ 2)
k∑
i=1

√
µi −

n2k2

4

(
k∑
i=1

√
µi

α− µi

)−1

. (5.40)

Recall that α > µi, i = 1, ..., k. Choose α such that the right-hand side of (5.40) is 0.
Then α > µk+1 (since S > 0) and it follows that

k∑
i=1

√
µi

µk+1 − µi
≥

k∑
i=1

√
µi

α− µi
=

n2k2

8(n+ 2)

(
k∑
i=1

√
µi

)−1

. (5.41)
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Thus we have recovered Hook’s bound using the trial function method. To prove (5.29)
we transpose (5.41)

n2k2

8(n+ 2)
≤
(

k∑
i=1

√
µi

)(
k∑
i=1

√
µi

µk+1 − µi

)

≤
(

1
µk+1 − µk

)( k∑
i=1

√
µi

)2

(5.42)

or

µk+1 − µk ≤
8(n+ 2)
n2k2

(
k∑
i=1

√
µi

)2

(5.43)

Additionally, let ai =
√
µi

µk+1−µi , bi =
√
µi. Then both of these terms are increasing with i

and now Chebyshev’s inequality, which states that
k∑
i=1

ai
k∑
i=1

bi ≤ k
k∑
i=1

aibi when ai and

bi are similarly ordered, yields the following when applied to (5.42)

k∑
i=1

√
µi

µk+1 − µi
≥ n2k

8(n+ 2)
.

To recover (1.3) we note that

k∑
i=1

√
µi ≤

√
k

(
k∑
i=1

µi

)1/2

which implies

k−1/2

(
k∑
i=1

µi

)−1/2

≤
(

k∑
i=1

√
µi

)−1

(5.44)

Therefore, from (5.28) we have

k∑
i=1

√
µi

µk+1 − µi
≥ n2k2

8(n+ 2)

(
k∑
i=1

√
µi

)−1

≥ n2k
3
2

8(n+ 2)

(
k∑
i=1

√
µi

)−1/2

. (5.45)
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To recover (1.5) we apply (5.44) to (5.45), obtaining

µk+1 − µk ≤
8(n+ 2)
n2k2

(
k∑
i=1

√
µi

)2

≤ 8(n+ 2)
n2k

(
k∑
i=1

µi

)
.
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