

Date: 14 April 2016, At: 00:15

Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry

ISSN: 0094-5714 (Print) 1532-2440 (Online) Journal homepage: http://www.tandfonline.com/loi/lsrt19

Synthesis, Characterization and Reactivity of [exonido-Rh(PPh₃)₂(η^5 -C₂B₉H₁₀Me₂)]

Işil Topaloğlu

To cite this article: Işil Topaloğlu (1996) Synthesis, Characterization and Reactivity of [exo-nido-Rh(PPh₃)₂(η^5 -C₂B₉H₁₀Me₂)], Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 26:8, 1295-1305, DOI: $\underline{10.1080/00945719608005125}$

To link to this article: http://dx.doi.org/10.1080/00945719608005125

	Published online: 21 Aug 2006.
	Submit your article to this journal $oldsymbol{\overline{C}}$
ılıl	Article views: 5
Q ^L	View related articles ☑
2	Citing articles: 1 View citing articles ☑

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=lsrt20

SYNTHESIS, CHARACTERIZATION AND REACTIVITY OF [exo-nido-Rh(PPh₃)₂(η⁵-C₂B₉H₁₀Me₂)]

Işıl Topaloğlu

Department of Chemistry, Faculty of Science, Izmir Institute of Technology, Izmir, Turkey

ABSTRACT

In this work, the reaction of the 16-electron species $[Rh(\eta^3-C_8H_{13})-(\eta^5-C_2B_9H_9Me_2)]$ with PPh₃ was investigated and the product, $[exo-nido-Rh-(PPh_3)_2(\eta^5-C_2B_9H_{10}Me_2)]$, which is in an equilibrium with the closo analogue was characterized by $^{31}P\{^1H\}$, 1H , ^{13}C and ^{11}B NMR spectroscopy. A mechanism for the complex formation is suggested which is related to the previously reported reactions between the 16-electron complex and PR₃ (R = Me and Et) ligands.

INTRDUCTION

The *nido*-icosahedral cage fragments η^5 -C₂B₉H₉R₂ (R = H or Me), known as carborane ligands, assigned formally a dinegative charge, are regarded as a tridentate ligand and are isolobal with the more familiar

uninegative η -C₅R₅ (R = H or Me) groups of organometallic complex chemistry.^{1,2} These similarities have led to the synthesis of carborane analogues of metallocenes, arenes and other known types of metal complexes.³ The salt [NEt4][Rh(CO)(PPh₃)(η ⁵-C₂B₉H₁₁)] was first reported by Hawthorne et al.⁴ as part of an extensive study of hydrogenation reactions homogeneously catalysed by rhodocarborane complexes.⁵⁻⁸ Stone and co-workers^{9,10} have synthesised the salts [NEt4][Rh(CO)(L)-(η ⁵-C₂B₉H₉Me₂)] (L=CO or PPh₃)]. The salt [NEt4][Rh(cod)-(η ⁵-C₂B₉H₉Me₂)] was also prepared by these workers by a different method¹¹ to that described by Hawthorne et al.¹²

The carborane ligands are isolobal with the familiar η -C₅R₅ (R = H or Me) groups, therefore, the anionic rhodacarborane complexes will be isolobal with the species [Fe(CO)₂(η -C₅R₅)]⁻ and [M(CO)₅]⁻ (M = Mn or Re), and the latter complexes have been known as useful synthons for preparing mixed metal complexes.¹³⁻¹⁶ Anionic rhodacarborane complexes were expected to behave in a similar manner and Stone et al. have reported several heteropolynuclear metal complexes using these anions as precursors.9,10,17-21

Hawthorne et al.²² described the synthesis and reactivity of 12-vertex-closo-bis(triphenylphosphine)hydridorhodacarborane complexes, many of which show catalytic activity in a variety of reactions including the hydrogenation and isomerization of alkenes.

Related to the above bis(triphenylphosphine)hydridorhodacarborane compounds is $[RhH(PEt_3)_2(\eta^5-C_2B_9H_9Me_2)]^{11}$, prepared as one of the products of the reaction of $[Rh(\eta^3-C_8H_{13})(\eta^5-C_2B_9H_9Me_2)]^{23}$ with PEt₃.

RESULTS AND DISCUSSION

Reaction with PPh3

The reaction between the 16-electron compound $[Rh(\eta^3-C_8H_{13})-(\eta^5-C_2B_9H_9Me_2)]$ with PPh₃ in CH₂Cl₂ at 25°C gave the *exo-nido* species

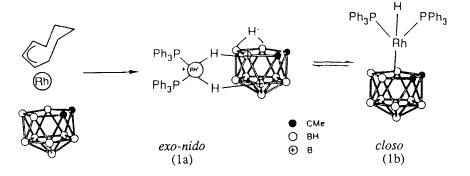


Fig. 1. The Reaction of the 16-Electron Compound [Rh(η^3 -C₈H₁₃) (η^5 -C₂B₉H₉Me₂)] with PPh₃ and the *closo-exo-nido* Equilibrium in Solution

[exo-nido-Rh(PPh₃)₂(η^5 -C₂B₉H₁₀Me₂)] (1a) which is in an equilibrium with the closo species, [RhH(PPh₃)₂(η^5 -C₂B₉H₉Me₂)] (1b), in solution (Fig. 1).

Analytical, physical and $^{31}P\{^{1}H\}$, ^{1}H , ^{13}C , ^{11}B NMR data for the complex [exo-nido-RhH(PPh₃)₂(η ⁵-C₂B₉H₁₀Me₂)] are given in Table I.

NMR Spectra

The ${}^{31}P-{}^{1}H}-NMR$ data of the compound $[Rh(\eta^3-C_8H_{13}(\eta^5-C_2B_9H_9-Me_2)]$ (Table I) revealed two doublets at δ 44.8 $[J(RhP)=188\ Hz]$ and δ 43.5 $[J(RhP)=143\ Hz]$ in the ratio of ca. 2:1 which is attributed to the exo-nido and closo species, respectively. The ${}^{1}H$ NMR data (Table I) showed a multiplet for the terminal metal hydride of (1b) at δ -9.16 and a broad resonance at ca. δ -2.5 which indicated the presence of a B-H-B bridge in the exo-nido species (1a). As mentioned above, Hawthorne et al. reported the compound $[RhH(PPh_3)_2(\eta^5-C_2B_9H_{11})]$ obtained from the reaction of $[RhCl(PPh_3)_3]$ and [nido-7,8- $C_2B_9H_{12}]$ - or [nido-7,9- $C_2B_9H_{12}]$ - in absolute ethanol at reflux temperature. The ${}^{31}P$ -{ $^{1}H}$ } NMR spectrum of (1a) displayed a doublet at δ 39.5 $[J(RhP)=125\ Hz]$ and the ${}^{1}H$ NMR

Table I. NMR Data for (${}^{31}P{1H}$, ${}^{1}H$, ${}^{13}C$, ${}^{11}B$) the Complex [exo-nido-Rh(PPh₃)₂(η^5 -C₂B₉H₁₀Me₂)]

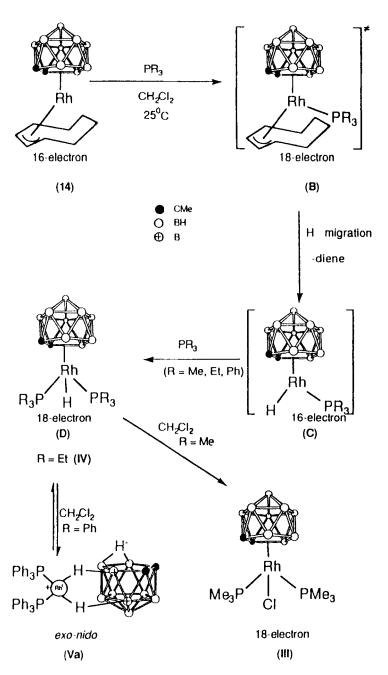
31pa,b,c	44.8 [d, RhP, nido J(RhP) 188] 43.5 [d, RhP, closo J(RhP) 143]
1 _H b,f	*-9.16 [m, 1H, RhH], *2.17 (s, 6H, Me), 2.30 (s, 6H, Me), 7.12-7.85 (m, Ph)
13Ca,d,f	135.7-134.1 (Ph), 72.0 (s, CMe), *70.6 (s, CMe), *29.4 (s, CMe), 28.5 (s, CMe)
11Ba,b,e	3.5 (1B), -3,5 (2B), -8.8 (1B), -11.6 (3B), -14.1 (2B)

aProton decoupled, bChemical shifts in ppm, Coupling constants in Hz, Measurements in CD₂Cl₂ at ambient temperatures. ^cChemical shifts are relative to 85% H₃PO₄ (external), dChemical shifts are referenced versus SiMe₄ (0.0 ppm), eChemical shifts are referenced versus BF₃.Et₂O (external), fPeaks asterisked are due to minor isomer.

spectrum revealed a peak at δ -8.40 [J(PH) = 29 Hz, J(RhH) = 17 Hz]. It should be noted that these data are in good agreement with those obtained for the complex (1b).

Reaction with PMe3

The reaction of the compound $[Rh(\eta^3-C_8H_{13})(\eta^5-C_2B_9H_9Me_2)]$ with excess PMe₃ and PEt₃ has previously been investigated.¹¹ In the case of PMe₃, the reaction was carried out in CH₂Cl₂ at 25°C and instead of the


expected product, $[Rh(PMe_3)(\eta^3-C_8H_{13})(\eta^5-C_2B_9H_9Me_2)]$, a chlorobis-(trimethylphosphine) species, formulated as $[RhCl(PMe_3)_2(\eta^5-C_2B_9H_9Me_2)]$, was obtained. The $^{31}P-\{^{1}H\}$ NMR spectrum of this compound revealed a doublet at δ 3.17 [J(RhP) = 125 Hz] which showed a PMe₃ group coordinated to rhodium. The molecular structure of the compound $[RhCl-(PMe_3)_2-(\eta^5-C_2B_9H_9Me_2)]$ was fully established by a single crystal X-ray diffraction study.¹¹

Reaction with PEt3

The reaction between the compound $[Rh(\eta^3-C_8H_{13})(\eta^5-C_2B_9H_9Me_2)]$ with excess PEt3 in CH₂Cl₂ at 25°C afforded the hydrido compound $[RhH-(PEt_3)_2(\eta^5-C_2B_9H_9Me_2)]$. The $^{31}P-\{^{1}H\}$ NMR spectrum displayed a doublet at δ 32.6 $[J(RHP)=135\ Hz)$ and the ^{1}H NMR spectrum revealed a high-field resonance at δ -9.87 $[t,\ J(PH)=31\ Hz].^{11}$ Hawthorne et al.²² have also obtained the compound $[RhH(PEt_3)_2(\eta^5-C_2B_9H_{11})]$ from the reaction of $[Rh(PEt_3)_3[BF_4]$ and $[nido-7,8-C_2B_9H_{11}]^-$ in methanol.

Proposed Mechanism for the Reaction of $[Rh(\eta^3-C_8H_{13})(\eta^5-C_2B_9H_9Me_2)]$ with Phosphine Ligands

Related to the reactions of the compound $[Rh(\eta^3-C_8H_{13})-(\eta^5-C_2B_9H_9Me_2)]$ with phosphine ligands, a mechanism can be suggested for the reaction described herein. (Scheme 1). The first step of the reaction involves the addition of the phosphine ligand to the 16-electron compound $[Rh(\eta^3-C_8H_{11})(\eta^5-C_2B_9H_9Me_2)]$ to form an 18-electron intermediate (B) in which both groups $\eta^3-C_8H_{11}$ and PR₃ are coordinated to the rhodium metal centre. Migration of a hydride from the $\eta^3-C_8H_{13}$ ligand to rhodium and loss of cyclooctadiene would then produce the 16-electron intermediate (C) which then reacts with an additional phosphine ligand to form the 18-electron hydride complex (D). In case of PPh₃, a closo-exo-nido equilibrium is established. Examples of closo-exo-nido tautomers have been demonstrated and exo-nido rhodium species have been reported by

Scheme 1. Proposed Mechanism For The Complexes Formed by the Reaction of $[Rh(\eta^3-C_8H_{13})(\eta^5-C_2B_9H_9Me_2)]$ with PR_3 (R = Me, Et, Ph) Ligands

Hawthorne et al. ²⁴ They prepared the compound [Rh(PPh₃)(η⁵-C₂B₉H₉-{μ-(o-xylylene)}] by heating [RhCl(PPh₃)₃] with [Me₃NH][nido-7,8-μ-(o-xylylene)-7,8-C₂B₉H₁₀] in ethanol. Reaction of this compound with two equivalents of PCy₃ (Cy = cyclohexyl) exchanged one PPh₃ by PCy₃ and produced a red-orange species. The distinguishing feature associated with rhodocarboranes of this class is the presence of an [RhL₂]⁺ (L = phosphine) moiety tightly held to a [nido-7,8-C₂B₉H₁₂]⁻ fragment through the agency of a pair of B-H—>Rh three-centre, two electron bonds. Since the carborane anion and the rhodium cation retain their formal charges in the exo-nido compounds, these species may be thought of as ion pairs whose Coulombic binding interaction is greatly augmented by the two cis-B-H—>Rh bridge bonds.

Hawthorne et al.²⁴ suggested a general *closo-exo-nido* equilibrium for all phosphinerhodacarboranes derived from the isomeric *nido*-[C₂B₉H₁₂]⁻ anions and their substituted derivatives. The *closo-exo-nido* tautomerism reported was formally viewed as a reversible oxidative addition-reductive elimination equilibrium in which the 12-electron [Rh(PPh₃)₂]⁺ moiety oxidatively adds the B-H—>B bridge system of the *nido*-carborane anion accompanied by η⁵-bonding to the open face of the anion.

closo-exo-nido Tautomerism

Hawthorne et al.²⁴ have reported that the exo-nido tautomers exhibited interesting behaviour in their ¹H NMR spectra in the B-H—>B and Rh-H—>B bridging region (ca. δ -2 to -8) which is consistent with the broad band at δ -2.5 observed for the compound [exo-nido-Rh(PPh₃)₂-(η ⁵-C₂B₉H₁₀)].

In the view of these results, interconversions between the tautomers (1a) and (1b) must be slow on the NMR time scale since peaks due to both the *closo* and *exo-nido* species were observed in the ¹H and ³¹P{¹H} NMR spectra.

In the reaction of $[Rh(\eta^3-C_8H_{11})(\eta^5-C_2B_9H_9Me_2)]$ with PEt₃, the close-hydrido complex $[RhH(PEt_3)_2(\eta^5-C_2B_9H_9Me_2)]$ was obtained as the

final product and no peaks due to exo-nido species were observed in any of the spectra. 11

It was reported that 11 the reaction between the compound [Rh- $(\eta^3-C_8H_{13})(\eta^5-C_2B_9H_9Me_2)$] and PMe₃ afforded the *closo* chloro compound [Rh(PMe₃)₂($\eta^5-C_2B_9H_9Me_2$)] which was characterised by an X-ray diffraction study. It was suggested 11 that this reaction proceeds in the same way to produce the hydrido compound [RhH(PMe₃)₂($\eta^5-C_2B_9H_9Me_2$)] which subsequently exchanges the hydride ligand for chloride in CH₂Cl₂ solution.

Hawthorne and co-workers²² have synthesized *closo*-chlororhoda-carborane complexes bearing phosphine ligands. The compound [RhCl-(PPh₃)₂(η⁵-C₂B₉H₁₁)] was prepared by heating the hydrido species [RhH-(PPh₃)₂(η⁵-C₂B₉H₁₁)] in CHCl₃-aqueous HCl, whereas the compound [RhCl(PMe₂Ph)(η⁵-C₂B₉H₁₁)] was simply obtained by recrystallisation of the compound [RhH(PMe₂Ph)₂(η⁵-C₂B₉H₁₁)] in CH₂Cl₂.

It was reported²² that a bright orange crystalline complex [RhClH-(PPh₃)(η^5 -C₂B₉H₁₀Ph)] was obtained, as well as the expected chloro compound [RhCl(PPh₃)₂(η^5 -C₂B₉H₁₀Ph)], when the complex [RhClH(PPh₃)-(η^5 -C₂B₉H₁₀Ph)] was recrystallised slowly by layering heptane over a CH₂Cl₂ solution of the complex.

EXPERIMENTAL

The synthesis was carried out using Schlenk-tube techniques, under a dry, oxygen-free nitrogen atmosphere. All solvents were rigourously dried before use. Light petroleum refers to the fraction of b.p. 40-60°C.

Alumina used in chromatography columns (ca. 20 cm in length and 3.0 cm in diameter) was BDH aluminium oxide (Brockman Activity II). The NMR spectra were recorded on JEOL JNM FX90Q, GX270 or GX400 spectrometers. The compound [Rh(η³-C₈H₁₃)(η⁵-C₂B₉H₉Me₂)] was prepared by treating [NEt₄][Rh(cod)(η⁵-C₂B₉H₉Me₂)] with excess HBF₄ in CH₂Cl₂ at -78°C, a method which is slightly different from the one described previously by Hawthorne et al.²³

Preparation of the Complex [exo-nido-Rh(PPh₃)₂(η⁵-C₂B₉H₉Me₂)]

The complex [Rh(η³-C₈H₁₃)(η⁵-C₂B₉H₉Me₂)]²³ (0.20 g, 0.53 mmol) was treated with PPh₃ (0.14 g, 0.53 mmol) in CH₂Cl₂ (15 mL) at 25°C and the mixture was stirred for α. 8 h. The solvent was removed *in vacuo* and the residue was chromatographed on alumina. Elution with CH₂Cl₂-light petroleum (1:3) afforded one major orange band. Removal of solvent *in vacuo* gave a red solution. Recrystallisation from CH₂Cl₂-light petroleum (1:4) gave brick-red microcrystals of [exo-nido Rh(PPh₃)₂-(η⁵-C₂B₉H₁₀Me₂)], m.p. 162 °C (decomp.); yield, 0.18 g (43 %).

Anal. Found: C, 58.4, H, 5.9, P, 7.6 %

Calcd. for C40H46P2B9Rh.1/2CH2Cl2: C, 58.5, H, 5.7, P, 7.5 %

M.W: 831.35

ACKNOWLEDGEMENT

This work was carried out at the University of Bristol, England. The author is grateful to Prof. F. G. A. Stone and Dr. J. C. Jeffery for their interest, encouragement and advice.

REFERENCES

- 1. M. F. Hawthorne, Acc. Chem. Res., <u>1</u>, 281 (1968).
- 2. K. P. Callahan and M. F. Hawthorne, Adv. Organomet. Chem., 14, 145 (1976).
- L. I. Zakharin and V. N. Kalinin, Vsp. Khim., <u>43</u>, 1207 (1974).
- J. A. Walker, C. B. Knobler and M. F. Hawthorne, Inorg. Chem., 24, 2688 (1985).
- T. E. Paxson and M. F. Hawthorne, J. Am. Chem. Soc., <u>96</u>, 4674 (1974).

R. T. Baker, M. S. DeLaney, R. E. King, C. B. Knobler, J. A. Long, T. B. Marder, T. E. Paxson, R. G. Teller and M. F. Hawthorne, J. Am. Chem. Soc., 106, 2965 (1984).

- 7. P. E. Behnken, J. A. Belmont, D. C. Busby, M. S. Delaney, R. E. King, C. W. Kreimendahl, T. B. Marder, J. J. Wilczynski and M. F. Hawthorne, J. Am. Chem. Soc., 106, 3011 (1984).
- M. F. Hawthorne, "Advances in Boron and the Boranes", VCH, Weinheim, 1988; Chapter 10 and references therein.
- M. U. Pilotti, I. Topaloğlu and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1355 (1991).
- 10. N. Carr, M. C. Gimeno, J. E. Goldberg, M. V. Pilotti, F. G. A. Stone and I. Topaloğlu, J. Chem. Soc., Dalton Trans., 2253 (1990).
- 11. J. C. Jeffery, F. G. A. Stone and I. Topaloğlu, Polyhedron, 12, 319 (1993).
- 12. D. M. Speckman, C. B. Knobler and M. F. Hawthorne, Organometallics, 4, 1692 (1985).
- 13. R. B. King, P. M. Treichel and F. G. A. Stone, Chem. Ind., 747 (1961).
- 14. D. A. Roberts and G. L. Geoffroy, "Comprehensive Organometallic Chemistry", Pergamon Oxford, Vol. 6, Chapter 40 (1982).
- 15. R. Hoffmann, Angew. Chem., Int. Ed. Engl., 21, 711 (1982).
- 16. F. G. A. Stone, Adv. in Organomet. Chem., 31, 53 (1990).
- 17. M. U. Pilotti, F. G. A. Stone and I. Topaloğlu, J. Chem. Soc., Dalton Trans., 1621 (1991).
- J. R. Fernandez, G. F. Helm, J. A. K. Howard, M. U. Pilotti and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1747 (1990).
- J. E. Goldberg, J. A. K. Howard, H. Müller, M. U. Pilotti and F. G. A. Stone J. Chem. Soc., Dalton Trans., 3055 (1990).

- J. E. Goldberg, D. F. Mullica, E. L. Sappanfield, F. G. A. Stone, J. Chem. Soc., Dalton Trans., 2495 (1992).
- 21. J. E. Goldberg and F. G. A. Stone, Polyhedron, 11, 2841 (1992).
- R. T. Baker, M. S. Delaney, R. E. King III, C. B. Knobler, J. A. Long, T. B. Marder, T. E. Paxson, R. G. Teller and M. F. Hawthorne, J. Am. Chem. Soc., 106, 2965 (1984).
- 23. D. M. Speakman, C. B. Knobler and M. F. Hawthorne, Organometallics, 4, 426 (1985).
- J. A. Long, T. B. Marder, P. E. Behnken and M. F. Hawthorne, J. Am. Chem. Soc., 106, 2979 (1984).

Received: 28 November 1995 Referee I: L. Barton Accepted: 2 May 1996 Referee II: L. J. Todd