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Body waves in poroelastic media saturated 
by two immiscible fluids 

Kagan Tuncay • and M. Yavuz Corapcioglu 
Department of Civil Engineering, Texas A&M University, College Station 

Abstract. A study of body waves in elastic porous media saturated by two immiscible 
Newtonianfluids is presented. We analytically show the existence of three compressionalwaves 
and one rotationalwave in an infinite porous medium. The first and second compressional 
waves are analogousto the fast and slow compressionalwaves in Biot's theory. The third 
compressionalwave is associated with the pressure difference between the fluid phases and 
dependent on the slope of capillary pressure-saturationrelation. Effect of a second fluid phase 
on the fast and slow waves is numerically investigatedfor Massilion sandstone saturated by air 
and water phases. A peak in the attenuationof the first and second compressionalwaves is 
observed at high water saturations. Both the first and second compressional waves exhibit a 
drop in the phase velocity in the presence of air. The results are compared with the experimen- 
tal data available in the literature. Although the phase velocity of the first compressional and 
rotationalwaves are well predicted by the theory, there is a discrepancy between the experimen- 
tal and theoretical values of attenuationcoefficients. The causes of discrepancy are explained 
based on experimental observations of other researchers. 

Introduction 

Biot's theory ofwave propagation in linear, elastic, saturat- 
ed porous media has been the basis of many velocity and 
attenuation analyses [Blot, 1956a,b]. Biot demonstrated the 
presence of two compressional and one rotational wave in a 
porous medium saturated by a single fluid phase. The first 
compressional wave (also referred to as fast wave) is analo- 
gous to the compressional wave in elastic media. The second 
compressional wave is slower and highly attenuated. Because 
of its highly dissipative behavior, this wave is very difficult to 
observe. The second compressional wave was first observed by 
Plozza [1980] (also see Bcroqnan [1980]). However, we must 
note that neither of these waves propagate as a wave in the 
fluid or in the matrix alone, both travel jointly in the matrix 
and pore fluid. All waves are dispersed and attenuated. 
Attenuation arises because of the relative movement of solid 

and fluid phases. At low frequencies, attenuation is related to 
the permeability of solid matrix. Since laminar flow assump- 
tion does not hold for high frequencies, the theory needs 
modifications [Biot, 1956b]. We refer to Corapcioglu and 
Tmzcay [1996] for an extensive review of Biot's theory. 

In addition to the three types of body waves, other types of 
waves exist close to the interfaces. Analogous to elastic media, 
Dcr½sicv•cx [1962] and Jones [1961] showed the existence of 
surface waves in saturated porous media. They examined 
surface waves by considering the coupling of the transverse 
and the fast compressional waves. Later Tajuddin [1984] 
presented a study of Rayleigh waves considering all three 
types of body waves. Love waves which appear due to 
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stratification of the Earth were investigated by Deresisvdcz 
[1961, 1964, 1965] and Chattopadhyay and Ds[1983]. 

In contrast to porous media saturated by a single fluid, 
wave propagation in porous media saturated by multiphase 
fluids received limited attention from the researchers. The 

general trend is to extend Biot's formulation developed for 
saturated medium by replacing model parameters with the 
ones modified for the fluid-fluid or fluid-gas mixtures 
[Doraszd•o, 1974; Mo•hizula; 1982; Murphy, 1984; PrMs st 
a/., 1992]. This approach results in two compressional waves 
and has been shown to be successful in predicting the first 
compressional and rotational wave velocities for practical 
purposes. Brutsasrt [1964] who extended Biot's theory appears 
to be the first one to predict three compressional waves. The 
third compressional wave arises due to presence of a second 
fluid phase in the pores. Brutsasrt andLuthin [1964] provided 
experimental data which agrees with the results of Brutsasrt's 
[1964] theory. The third compressional wave was also predict- 
ed by Garg and Nayœsh [1986] and Santos st al. [1990]. We 
should note that in these studies, although same type of 
governing equations were employed, the expressions for 
material constants differed. Miksis [1988] developed a model 
for wave attenuation in partially saturated rocks based on the 
local three-phase physics in the pore space. Tuncay [1995] 
derived the governing equations and constitutive relations of 
elastic porous media saturated by two Newtonian fluids by 
employing the volume-averaging technique. 

In this study, starting from the governing equations, we 
investigate the types of waves and their characteristics in 
infinite isotropic porous media saturated by two fluids. We 
show that three compressional waves and one rotational wave 
exist. All waves are dispersed and attenuated. First and second 
compressional waves are similar to those in saturated media. 
We show that the third compressional wave occurs because of 
the existence of capillary pressure. Because of the very low 
velocity and high attenuation ofthe third compressional wave, 
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an experimental observation does not appear to be possible. 
Finally, we compare the results of model with experimental 
data obtained in terms of phase velocities and attenuation 
coefficients of the first compressional and rotational waves. 

Final Set of Governing Equations 
We start by introducing the governing equations for elastic 

porous media saturated by two immiscible Newtonian fluids, 
for example, water and air. In the derivation, we assume that 
there is no mass exchange between the phases and the phases 
are at rest. Furthermore, the solid phase is assumed to be 
isotropic, experiencing small deformations and providing all 
shear resistance of the porous medium. Momentum transfer 
terms are expressed in terms of intrinsic and relative 
permeabilities assuming the validity of Darcy's law. At very 
low saturations (i.e., residual saturations), the theory may not 
be valid since not all phases of the medium are interconnected. 

Furthermore, the theory employed in this study is limited 
to low-frequency wave propagation. Let L, ] and •-be the 
characteristic lengths of the macroscopic scale, averaging 
volume, and pore scale, respectively. The required condition 
for the volume averaging is •' << ] << L. In this study we 
assume that this requirement is satisfied, and furthermore, if 
), is the wavelength of the wave, we assume ] < < X. Therefore 
we limit the present study to low-frequency waves. In the case 
of two pore fluids, the low-frequency limit should be lower 
than that of a single fluid case since the size of averaging 
volume would be larger to include the presence of two pore 
fluids. In the case of a single pore fluid, the size of the averag- 
ing volume is determined by the pore structure only. However, 
when two fluids are present in the pores, the orientation of 
fluid phases is an important factor on the size of averaging 
volume. 

In addition to assuming an isotropic elastic porous matrix 
saturated by two immiscible Newtonian fluids, validity of 
Darcy's Law, and low-frequency wave propagation, we 
furthermore assumed the validity of the relationship between 
capillary pressure and a fluid saturation, and negligibility of 
cross permeabilities known as the Yuster effect. 

The governing equations are obtained in terms of displace- 
ments of solid and fluid phases as [ Tu•cay, 1995] 

(@s;•-=V((z,,+ 7 )V'•s+ Zl:V'T+ al•V'uz) (1) 

_ _ _ 

(3) 

where angle brackets and overbar are the volume average and 
intrinsic average operators, respectively. Subscripts s, l, and 
2 correspond to the solid phase, nonwetting phase, and 
wetting phase, respectively. In (1)-(3), Pi and u i are the density 
and displacement vector of phase i, respectively. Gtr is the 
drained shear modulus of the solid matrix. The constants aij 
are given by 

z,,Aa-Ks[A , as(K•A:S• +K•K, +K•A2(1 -•)) 
+ Kfi•r,(1-a •)(K• ( 1 -•)+ •K: +A:)] 

•, 2A3 IflK/l •l ( 1 -a s)(A2 + K:); 
•,3a3lf•f/l (1 - •)( 1 -a s)(A2 + K•) 

(5) 

•2! lal 2 ; 

•22 A , = K, •(1 - a s)[K•s(1 - a s)(K2 + A2/• ) 
+K2A2A,(1 -•)/•] 

(6) 

a2•A3 I - K• K• $• (1- S• )(1- a •)[- K:s(1- e •) + A2A , I ; 
•311•13 

(7) 

(8) 

where 

dP 
all•l•$_ft•; a2l •$1(1 _ •l ) (9) 

dS, 

A3 = A , ( K• A 2• + K• K• + K:A2( 1 - •)) 

+K•(1 -as)(K•(1 - •)+ 
(10) 

In (4)-(10), I•r, I•., as, S,, and Peap are the drained bulk 
modulus of the solid matrix, bulk modulus of phase i, volume 
fraction ofthe solid phase, saturation of the nonwetting phase, 
and capillary pressure, respectively. Peap, which is equal to the 
pressure difference between the nonwetting and wetting 
phases, is assumed to be a function of the saturation of the 
nonwetting phase, S• only. Assuming the validity of Darcy's 
law, C• and C 2 become 

(1-as)2dUl (11) 
Kkr/ 

•l (1 -• •)2(1 - •)2la 2 (12) 
where K, gi, ka are the intrinsic permeability, viscosity, and 
relative permeability of phase i, respectively. Equations (1) 
and (3) reduce to Blots [1956a] equations for a single fluid 
phase by setting S l and A 2 to zero. 

Compressional Waves 

The formulation for the compressional waves is obtained 
by applying the divergence operator to (1)-(3), 

\02es ß 2 0•1 
Ps;-•-=al mY •s+ •l 2V2• l + •13V2•2+ CI ('•- •') (13) 

•2 • 

\o•e I O• 10• s 
P l/'•-/' =/221V2•s + •22V2• 1 + R23V2•2 -- Ci (-•- -•-) (14) 

\•e2 2 2 • o•s (15) P2;-•l•31V •$+ •32 V •, + •3V2•2 -- •(•--•) 
whe• %=V. uj and all =all+4Gt/3. The dflamtional plane 
ha•onic waves propagatMg along the z d•ction a• given by 
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where Bj is the wave amplitude, 1[ is the wave number, to is the 
frequency, and i is the imaginary number. In general, 1[ is a 
complex number. For convenience we rewrite (16) as 

e/..• -•. •t•z-•0 (17) 

where [i and [r are the imaginary and real parts of [, respec- 
tively. The imaginary part of the wave number [i is usually 
called the attenuation coefficient. The phase velocity is defined 
as c=(o/[ r Substitution of (16) in (1)-(3) yields 

(18) 

+i,•-q-q q q 
q -q oq G 0 - 

B• 0 

which implies that for nonzero solutions the determinant of 
the coefficient matrix must be equal to zero. This equation is 
known as the dispersion equation in wave mechanics. The 
determinant can be expressed as 

Z•Xa + •2 +Z3X+ Z4.0 (19) 

where X=toe/[ 2. The complex coefficients of (19) are given by 

-i , 

(20) 

Z2 w• 

(i) 2 

+2a C, p +2a p 

(21) 

( 2 2 Z4-'ai, a22a•3-a23)-a,2•3+ a,3(2a12az•-a,•a22) 

(22) 

(23) 

In general, for a given frequency to, the polynomial in (19) has 
three complex roots and the wave number [, has six roots. 
However, only three of these roots are physically possible, that 
is, the amplitudes of waves should decrease so that the 
imaginary part of [ must be greater than zero. This implies 
the existence of three compressional waves in a poroelastic 
medium saturated by two immiseible fluids. When we set 
A2=0, we find Z4=0 which indicates that one of the com- 
pressional waves is associated with the pressure difference 
between two fluid phases, that is, capillary pressure. 

RotationalWaves 

The formulation for the rotational waves is obtained by 
applying the curl operator to (1)-(3) 

( \a•ci, fool, acl,] (25) 

where flj=Vx•j. •e substitution ofhamonic waves as given 
by Eq. (16) in Eqs. (24)-(26) yields 

o o 
•2 

(27) 

+i,,,-G-G q q q -q 

C• 0 - 

B• 0 

The dispersion equation is the determinant of the coefficient 
matrix and is in the form of 

x•(zlx+z9.o (28) 

where 

(29) 

•s) 2 

Equation (28)shows the existence of a single rotational wave 
in porous medium saturated by two immiseible fluids. 

Numerical Results 

We solve (19) and (28) for Massilion sandstone saturated 
by air and water. The material properties of Massilion 
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Table 1. Material Parameters of Massilion Sandstone 

Saturated by Air and Water Phases 

Parameter Symbol 

Bulk modulus of solid matrix, GPa Kfr 
Bulk modulus of solid grains, GPa K s 
Shear modulus of solid matrix, GPa Gfr 
Density of solid grains, kgm 3 Intrinsic permeability, m • 
Volume fraction of solid phase •s 
Density of water, kg/m3 
Bulk modulus of water, GPa •2 
Viscosity of water, Pa s is 2 
Density of air, kg/m 3 P 1 
Bulk modulus of air, MPa K 1 
Viscosity of air, Pa s I• l 

After Muz'phy[1982, 1984] 
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Figure 2. Effect of water saturation on the phase 
velocity of P1. 

sandstone taken from Murphy [1982, 1984] are listed in Table 
1. V• G•nuchteds [1980] closed fern exp•ssions for the 
capflla• p•ssu•-saturation •lations a• mployed to obtain 
dP=•dS• • (9). Van Genuchten proposed that 

where P•p is the capillary pressure (N/m2), S 2 is the water 
saturation, St2 is the irreducible water saturation, Sin2 is the 
upper limit of water saturation in a two-phase medium, m= l- 
I/n, and •x and n are material parameters. Parameters of (31) 
are chosen as a=0.025, n=10, and St2=0.0. We use the relative 
permeability curves of W. ycœoff and Botset [1936] shown in 
Figure 1. 

Figures 2-5 illustrate the effect of water saturation on the 
phase velocities at four different frequencies. From this point 
on we will represent the compressional waves by "P" and 
rotational wave by "S." Since there are three compressional 
waves, we will number them according to the magnitude of 
their phase velocity, P1 being the fastest. We observe a sudden 
drop in the phase velocity of the first compressional wave 
because of high compressibility of air (Figure 2). The reduc- 

tion in the phase velocity of P1 because of 1% air is almost 
50%. We observe a similar trend in the phase velocity of the 
second compressional wave, P2 (Figure 3). The third compres- 
sional wave, which arises because of the pressure difference 
between the fluid phases, has the lowest phase velocity (Figure 
4). As expected, P3 vanishes when only one fluid phase exists. 
P3's maximum velocity in the frequency range of interest is 
less than 1 m/s which makes it very difficult to observe, if not 
impossible. Figure 5 illustrates the phase velocity of the 
rotational wave as a function of saturation. We note that the 
drop in the phase velocity is not observed in the rotational 
wave. The phase velocity of S shows linear dependence on 
water saturation. The jumps in P1 and P2 can be explained by 
the considerable changes in compressibility of pore fluids with 
a highly compressible phase, that is, air. 

Figures 6-9 illustrate the frequency dependence of phase 
velocities of body waves. The drop in the phase velocity of P1 
can also be seen in Figure 6. Comparing Figures 6-8, we 
observe that the phase velocities of P2 and P3 approach zero 
when the frequency approaches zero. Thus we can conclude 
that P1 is a wave analogous to the compressional wave in 
elastic solids. Figure 8 shows that the maximum phase velocity 
of P3 is less than 6 m/s. Therefore, P 1 and P2 correspond to 

1.O 

0.8 - 

o.s - 

..•3 0.4. -- 

0.2 - 

ø'øo. % o., o.'a o.a 1. 
Wciter saturation 

Figure 1. Relative permeability curves [after Wyakoffand 
Bot•t, 1936]. 
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Figaro 3. Effect of water saturation on the phase 
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Figure 4. Effect of water saturation on the phase 
velocity of P3. 
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Figure 6. Frequency dependence of the phase velocity of P1. 

the fast and slow waves in Biot's theory. Figure 9 demon- 
strates the frequency dependence of the rotational wave. We 
observe that as the water saturation increases, the frequency 
dependence of phase velocity of S becomes more significant. 

Figures 10-13 show the effect of water saturation on the 
attenuation coefficient, that is, the imaginary part of wave 
number. We should note that the attenuation coefficient 

calculated is the part due to the contribution of the relative 
movement between solid and fluid phases (equations (11)- 
(12)). Inelastic energy losses are not taken into consideration. 
Figure 10 shows that the attenuation coefficient of P1 starts 
from zero and gradually increases as the water saturation 
increases. We observe a sudden drop when the water satura- 
tion approaches unity. We should note that viscosity of air is 
much smaller than that of water which explains why the first 
compressional wave is so little attenuated in air-saturated 
specimens. In case of a more viscous fluid than air, one should 
expect a curve starting from a nonzero attenuation coefficient. 
The attenuation coefficient of P2 as a function of water 

saturation is illustrated in Figure 11. Again, we observe a peak 
in the attenuation coefficient around S2=0.8. We should note 
that the attenuation of the second compressional wave is 
determined by the kinematic viscosity, that is, the viscosity- to 
density ratio. The kinematic viscosity of air is much higher 

than that of water which explains why P2 is much more 
attenuated in air-saturated samples than in water-saturated 
ones [Nagy ct M., 1990; Nagy, 1993]. The attenuation coeffi- 
cient of P3 is illustrated in Figure 12. As can be seen in Figure 
12, the attenuation coefficient becomes very large when the 
water saturation approaches zero or unity, that is, single pore 
fluid. Furthermore, the attenuation coefficient of P3 is always 
much larger than that of P 1 and P2. Considering low velocity 
and high attenuation of P3, we believe that an experimental 
observation of P3 is not possible. From the above discussion, 
we can conclude that P1 is a wave, whereas P2 and P3 are 
associated with a dissipative type of behavior. However, it 
should be noted that upon reflection and transmission of P1 
at an interface, significant amounts of wave energy could be 
partitioned into P3 and dissipated into the medium under 
ideal circumstances. This would alter the amplitudes of the 
observable P1 waves and would not be accounted for in solid 

elasticity or even in Biot's poroelasticity theory. 
We also observe that the presence of air reduces the phase 

velocity and increases the attenuation coefficient of P2 which 
makes an experimental observation of P2 also difficult. Since 
Plon•'s [1980] first successful experiment, it is well known that 
water-saturated specimens have to be vacuum - impregnated 
to eliminate the remanent air saturation before the slow 

compressional wave P2 appears. Similarly, air-saturated speci- 
1 ooo 
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Figure 5. Effect of water saturation on the phase 
velocity of S. 
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Figure 8. Frequency dependence of the phase velocity of P3. Figure 10. Effect of water saturation on the attenuation 
coefficient of P 1. 

mens have to be completely dried to remove the residual water 
saturation before P2 appears [Nagy ½t M., 1990]. Therefore as 
noted earlier, it seems to be highly probable that any degree of 
partial saturation eliminates P2. Figure 13 illustrates the 
attenuation coefficient of the rotational wave. Although the 
t•end is similar to that of P1, we do not observe a peak in the 
attenuation coefficient. Comparing Figures 10 and 13, we find 
that attenuation coefficients of P1 and S are in the same order 

of magnitude. 

Comparison With Experimental Data 
Although there are several experimental studies in the 

literature on the phase velocities and attenuations of body 
waves in elastic porous media saturated by two fluids, most of 
them are limited to high-frequency wave propagation. Among 
the ones dealing with high-frequency wave propagation, one 
can note Domenico [1974, 1976], Gregory [1976], Elliot and 
Wiley [1975]. Domenico [1974, 1976] who investigated the 
effects of water saturation on reflection, refraction, and phase 
velocity of body waves, pointed out the difficulties in conduct- 
ing experiments with multiphase fluids. Dom½•co [1974, 
1976] demonstrated that the drainage process used in many 
laboratory studies results in heterogeneous gas distribution in 

the samples. Since we assume isotropy and homogeneity in the 
calculations, some of the discrepancies between our model 
results and the experimental data can be associated with 
Domenico's conclusions. Another comment was made by ¾/n 
½t al [1992] who experimentally examined the effect of open 
and dosed boundaries on the attenuation coefficient of P1. 

They found that the attenuation coefficient depends on 
saturation history as well as degree of saturation and bound- 
ary flow conditions. ¾/n ½t M. [1992] observed a signif'leant 
difference in the attenuation of P1 during drainage and 
imbibition. Mucl•hy [1982] provided experimental data on 
low-frequency wave attenuations and phase velocities in 
Massilion sandstone saturated by air and water. The material 
properties of Massilion sandstone are shown in Table 1. 
Parameters of (31) are chosen as •=0.025, n=10, and Sa=0.0. 
We use the relative permeability curves of WyckotTa•dBotsct 
[1936] shown in Figure 1. 

Figure 14 shows very favorable comparisons of model 
calculated and experimental phase velocities of P1 and S. As 
predicted by our model, experimental data show a jump in the 
phase velocity of P1 close to full water saturation. After a 
significant reduction, the phase velocity increases as the water 
saturation decreases. The phase velocity of S also increases as 
the water saturation decreases. 
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Figure 9. Frequency dependence of the phase velocity of S. 
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Figure 12. Effect of water saturation on the attenuation 
coefficient of P3. 
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Numerical Results 
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Figure 14. Comparison of predicted and experimental phase 
velocities of P1 and S. 

As mentioned previously, our model considers the attenua- 
tion due to the relative movement of solid and fluid phases. 
Inelastic losses or contact relaxation are not taken into 

consideration. Thus we can only partially compare our results 
for the attenuation coefficients. Y/n ½t aZ [1992] observed an 
intrinsic attenuation at moderate water saturations, probably 
due to the moist rock frame which tends to behave like a 

standard inelastic solid. We inspect a similar trend of 
Murphy's [1982] experimental results. This part of the attenu- 
ation was analyzed by Winldcr and Nttr [1982], and Murphy 
½ta/. [1986]. As suggested by Y/n ½ta/. [1992], we subtract this 
part of the attenuation to obtain the attenuation due to the 
relative movement of solid and fluid phases. 

In Figures 15-16 we use the inverse quality factor, I/Q, 
instead of the attenuation coefficient. Quality factor is a 
measure of the energy lost during one period of oscillation. 
The inverse quality factor is calculated from 

1 2 c •i (32) 

Attenuation of S at a frequency of 500 Hz can be seen in 
Figure 15. The match is reasonable for water saturations less 
than 0.90. Figure 16 shows the attenuation of P1 as a function 

of water saturation for different values of permeability. 
Although both experimental and theoretical results exhibit a 
peak in the attenuation, the match is not favorable. As seen in 
Figure 16, attenuation of P1 at 600 Hz increases for larger 
permeabilities. Although permeability affects the magnitude 
of attenuation, the location of the peak of 1/Q does not 
change. 

We should note that although the experimental and 
theoretical peaks in the attenuation of P 1 do not quite match, 
Y/n ½ta/. [1992] concluded that the peak is strongly dependent 
on the history of saturation. Their experimental results 
showed that attenuation peak for imbibition shifts toward a 
higher water saturation around 97%. 

Conclusions 

We analyzed the characteristics of body waves in 
poroelastic porous media saturated by two immiscible 
Newtonian fluids. We demonstrated the existence of an 

additional compressional wave arising because of a second 
fluid phase in the pores. The first and second compressional 
waves are analogous to the fast and slow compressional waves 
in Biot's theory. We showed that the third compressional wave 
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is associated with the pressure difference between the fluid 
phases and dependent on the slope of capillary pressure- 
saturation relation. We numerically examined the effect of 
water saturation and frequency on the phase velocities and 
attenuation coefficients of body waves for Massilion sand- 
stone saturated by air and water phases. Our numerical results 
showed that presence of a gas phase significantly reduces the 
phase velocities of the first and second compressional waves. 
The third compressional wave has the lowest phase velocity 
and highest attenuation coefficient which make it very difficult 
to observe, if not impossible. We also examined the effect of 
water saturation on the attenuation coefficients. The attenua- 

tion coefficient of the first compressional wave is very small 
when the medium is saturated by air only. It increases as the 
water saturation increases and exhibits a peak at a very high 
water saturation. The attenuation of the rotational wave is 

similar except for the presence of a peak. We compared the 
results with the experimental data available in the literature. 
Although the phase velocity of the first compressional and 
rotational waves are well predicted by the theory, there is a 
discrepancy between the experimental and theoretical values 
of attenuation coefficients. However, it was previously shown 
that the drainage process used in many laboratory studies 
results in heterogeneous gas distribution in the samples 
[Domenico, 1974, 1976]. Since we assume isotropy and 
homogeneity in the calculations, some of the discrepancies 
between our model results and the experimental data can be 
associated with Domenico's conclusions. Yin ½t al [1992] 
showed that the peak in the attenuation coefficient of P1 is 
strongly dependent on the history of saturation. Their experi- 
mental results demonstrated that attenuation peak for imbibi- 
tion shifts toward a higher water saturation around 97%. 
These comments may explain the discrepancies between the 
model results and experimental data for the attenuation coeffi- 
dents. 

Appendix' Derivation of Governing Equations 
In this appendix we apply the volume averaging technique 

to obtain the governing equations of wave propagation in a 
linearly elastic porous medium saturated by two immiscible 
Newtonian fluids. The macroscale mass and momentum 

balance equations and constitutive relations will be obtained 
by volume averaging the corresponding microscale equations. 

In the microscale, the grains will be assumed to be linearly 
elastic and the fluids are Newtonian. The coefficients of 

macroscopic constitutive relations will be expressed in terms 
of measurable quantities. Momentum transfer terms will be 
formulated in terms of intrinsic and relative permeabilities 
assuming the validity of Darcy's law. 

Microscopic Constitutive Relations, Mass and 
Momentum Balance Equations 

In this study the compressible porous medium consists of 
compressible solid grains and two immiscible viscous com- 
pressible fluids. Then the constitutive relations are given by 

x s- KsV'u sI+ O s u•+ (Vu) r V'u• 

where us, xs, Ks, Gs, and I are the displacement, incremental 
stress tensor, bulk modulus, shear modulus of the solid phase, 
and the unit tensor, respectively. The superscript T denotes the 
transpose of a tensor. We assume that both fluid phases are 
Newtonian with constitutive relations 

ti -- -Pi I + Di[•7•. + •7v).r - -2• 7' I] (A2) 3 Vi i=1,2 
where vi, xi, Pi, and Di are the velocity, incremental stress 
tensor, incremental pore fluid pressure, and shear viscosity of 
fluid phase i, respectively. In (A2) the bulk viscosity of fluids 
is assumed to be negligible. The state equations of fluid phases 
are assumed to be in the form of 

1 dP/ 1 dPi (A3) •- i=1,2 
Kidt @idt 

where Ki. , @i, and Pi are the bulk modulus, mass density, and 
pressure of phase i, respectively. The mass balance equations 
of fluid phases are expressed as 

1 d@•=_V.•. i- 1, 2 (A4) 
@i dt 

where u i is the displacement of the fluid phase i from a 
reference position, that is, incremental displacement. We 
continue with the momentum balance equation in terms of 
incremental stresses and velocities as 

aS' (AS) 
V•cj- Os• j-s, 1,2 

We can rewrite (A5) by using the mass balance equations (A4) 
as 

O(OY5')+V-(oy5.5. ) j-s, 1, 2 (A6) V"Cj - at 

Macroscopic Constitutive Relations 

Our next step is to obtain macroscopic constitutive rela- 
tions by averaging the microscopic relations over a repre- 
sentative elementary volume [Bear, 1972]. Volume averaging 
of (A1) yields 

a: sdV- K, '(ets• ) +l • u/ndA I , . (A?) 

+ r- ,+ 4 /-,,2 
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where 

- u,-• , 
is a second-order tensor with zero trace. Since there is no mass 

exchange between the phases, the velocity of the interface is 
equal to the velocity of a point at the interface, that is, 
material surface. By employing the volume averaging rules, 
the integral in (A7) can be expressed as 

i- 1, 2 (A9) 

where the superscript ( 0 ) refers to the reference configura- 
tion. Since the displacements are assumed to be small, by 
definition •j.Vaj ~ 0. Then volume averaged constitutive 
relations for the solid phase can be expressed as 

[ 4 +O, 11,V•+11•7•) r- 11,V'• I+ i-l, 2 

where •s is the intrinsic averaged incremental stress of the 
solid phase. Similarly, the volume averaged constitutivc 
relations for fluid phases are 

%• i' Ki (11iV' ui+ A ai) ! 

2 

4.. 2 .ar)d4 (A12) v,t 
Under the small deformations assumption, the interfaces of 
the phases are not allowed to experience large deformations. 
Then by using Eqs. (AS) and (A12), and assuming 0u]& >> 
VrVU i, we can write 

OK;). (A13) 
J#' 0t 

We must note that here is a jump in the stresses of the 
immiscible fluids at the fluid-fluid interface because of the 

presence of interfacial tension and curvature of the interface. 
Assuming smooth pressure variations within the averaging 
volume, we can write 

•* - •2' "V•w(•) (A14) 
where P• and P2 are thc intrinsic avcraged pressures. Pcap, 
also known as capillary pressure is assumed to be a function 
of Sk(saturation of the nonwetting phase) only. From now on 
fluid phase 1 will be considered as the nonwetting phase and 
fluid phase 2 as the wetting phase. S• is related to the volume 
fractions by 

11 i 
$,. - i- 1, 2 (A15) 

1 

Then Si+S2= 1. Noting that fluid pressures we work with are 
the incremental pressures, as a first-order approximation we 
can write 

• - •22 ' dPex'AS, (A16) 
provided that change in saturation, AS• is small. 

To explore the constitutive relations associated with the 

volume changes, we start by introducing •j 
-- 1 

-11jPj- •tr(11j•.) - Kj(11/V'•.+A11j) j-s, 1, 2 (A17) 
Equation (A17) does not contain any rotational deformations. 
For an elastic porous medium saturated by a single fluid, 
Pride et al. [1992] showed that 

(Ps -P) Pr (A18) V.u s - -11s• 

where Krr is defined as the "frame" or "drained" bulk modulus. 
We assume that in case of two fluids P'-r is given by 

Then, we can rewrite Eq. (A18) as 

(P•-$,P,-(1-•)P2) ($,P• +(1-•)P:) (A20) V'u• - -11• - 

We can express the change in volume fraction of the 
nonwetting phase from (A18) as 

0 

= = 
(A21) 

and the change in volume fraction of the wetting phase as 
. 0 A112 A((1-•)(1-11)) = (1-•)(1-11)-(1 _•o )(1-11s ) 

(A22) 
- 

Since we have already assumed that AS• and A a s are small, 
the product of these terms can be neglected. Equations (A16), 
(Al7), and (A20) can be rewritten in the matrix form, and 
solutions for the unknowns, A11 s, AS•, ]Ys, •, and •2 are 
obtained by inverting the coefficient matrix as 

A11s - b,V'•+ b=V.u•+ baV'• (A23) 

AS, - 

-11•P• - allU. u•+ a12U. u ! + al•7.u 2 

(A24) 

(A25) 

(A26) 

-(1-11s)(1-•)•2 ' a,,V'•+ anV.u'•+ aa3V.• 2 (A27) 

where ai•, b i, and c i are constants expressed in terms of material 
parameters (see (4)-(10)). 

Our next step is the evaluation of the solid matrix's shear 
modulus G w We assume that all shear resistance of the porous 
medium is provided by the solid matrix only. This uncouples 
the shear deformation of all phases, that is, Kij=Jij=0. If an 
external shear stress •e is applied to the material, we can write 

--D --D --D -- 

where •jD is the deviatoric stress of phase j. In other words, 
the fluids are viscous but the mechanical shear response of the 
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porous medium is provided by the solid matrix only. Fluid 
viscosities will be taken into consideration later when we 

discuss the momentum transfers between the phases. We can 
rewrite the constitutive relations by introducing (A28) into 
(A25) and definitions of incremental stress tensor of phases 1 
and 2 into (A26) and (A27). 

+ 
('• 1)' S1(1- •s)•l' (•21V"•S + •22V'•11 + •23V'V3)I (A30) 

(A31) 

Macroscopic Momentum Balance Equations 

Employing the volume averaging theorems, the volume 
average of (A6) is obtained as 

•0i5> •v. c<oiS. vi>)+--•! O•5. C •- u) .•idA Ot ,, (A32) 

The •te•al on the left-hand side of (A32) vanishes s• the 
velocity of the •tefface is •ual to the velocity of a po•t at 
•e •tefface, that is, no mms exchange between the phases. 
We assume •at the se•nd te• on the left-hand side can be 

neglected under •e small derogation assumption. Avenge 
velodties and displa•ments for all phases a• •lat• by 

.5..aaA j,g 3s, 1,2 
S•ce we a• •terest• • the 1ow-f•quency wave propaga- 
tion, that is, characteristic leng• of the micros•pic •ale is 
•aller than the wavelength, the displa•ents ap•afing • 
•e •tegr•d • (A33) •n be assum• to be •nstant. Em- 
plo•ent of •e ave•g•g •les aM substitution of (A33) • 
(A32) • l•ea•ation of <0j> • •e •sult•g •uations 
yield 

O)•-•'(xj)+•fxj'ajdA j• i-s, 1,2 (A34) 
Momentum Transfer 

Due to the complexity of the pore-scale problem, we 
approximate the interaction terms by assuming the validity of 
Darey's law. Since the theory is for low-frequency waves, the 
assumption of laminar flow is a reasonable one. Then, 

(l - a$)•g•!(V,_ V) (A35) 

(A36) 

where K is the intrinsic permeability of the porous medium 
and k a is the relative permeability of phase i. 

Substitution of the constitutive relations (equations (A29)- 
(A31)) and the interaction terms (equations (A35) and (A36)) 
in the averaged momentum balance equations (A34) yield (1)- 
(3). Equations (1)-(3) are the governing equations for low- 
frequency wave propagation in a poroelasfic medium saturat- 
ed by two immiseible fluids with unknowns: u,, u•, and u-- 2. 
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