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Vector Modal Solution of Evanescent Coupler

Mehmet S. Dinleyici and David B. Pattersokember, IEEE

Abstract—We present a vector modal solution for the evanes- but the isolated slab mode solution is unbounded, representing
cent coupler comprising an optical fiber and a slab waveguide. the cut-off condition of the ridge mode.
We identify the normal vector ridge modes of the device for g first define the problem, providing the mode expansion
different configurations. The dispersion characteristics and the functions and outlining the method of solution for the stated
power transmission properties of these modes are presented. Also, > . .
the effect of the proximity between the Waveguides on the ridge geomet”es. We alSO prOVIde corrections to some errors that we
modes is investigated. have identified in the derivations of [8]. These errors comprise

Index Terms—Dielectric waveguides, optical waveguide com- sign er'rors and transposgd SUbscri.ptS Whif:h lead to significant
ponents, waveguide couplers. errors in the field calculations, particularly in the case of weak
guidance (i.e., small normalized frequendy) in the fiber.
We note that, for largel’ in the symmetric coupler cases
considered in [8], the resulting errors are small and not likely

HE fiber-to-planar waveguide coupler system has beém be recognized.
studied recently by a number of researchers [1]-[3] We next analyze the numerical solutions to the problem,

because of the wide variety of applications for this in-line convarying the fiber-slab distance, the slab refractive index, and
ponent in fiber optic communication systems. Some of thetfe fiber core refractive index. The solutions obtained are those
applications are wavelength division multiplexing (WDM)having electrical field nearly perpendicular to the slab/cladding
in-line fiber modulators and tunable filters [4]-[7]. A mathboundary, quasi-TM modes, and those having electrical field
ematical model used by many researchers has been develapeatly parallel to this boundary, quasi-TE modes. For the
by Marcuse [3] using coupled mode theory (CMT). This mod&eakly-guiding parameters assumed in this paper, the mode
assumes only weak perturbation of the normal modes of teelutions are nearly degenerate quasi-TM and quasi-TE modes.
individual waveguides, namely, the fiber and the slab. Howtowever, the full vectorial analysis provided here is applicable
ever in the close proximity of the guides employed in thege the general case with no assumption of weak guidance. We
components (where the guides may be in contact), these modealyze the problem fog-TM modes, with theg-TE mode
are highly perturbed, and their propagation constants can re¢ations provided in Appendix C.
affected to the degree that CMT is no longer valid. As Marcuse We show that two types of modes are present in the hybrid
notes in [3], the modes obtained by CMT are not sufficiestructure: confined ridge modes and unbounded continuous
to construct a mathematical model which will explain thenodes. We characterize the behavior of the ridge modes,
observed behavior of these devices. Also, as Johnstone stated use these modes to model the behavior of the fiber/slab
in [4], the wavelength-dependent loss mechanism in the systeoupling system, providing theoretical curves for the expected
is not fully understood. transmission properties and tunability of such a device.

In this paper we have adapted a mode expansion model,
first introduced by Marcuse [8] for the modeling of D- I
fiber modes, to identify the approximate ridge modes of ] o . ]
the fiber/slab system. We then use the characteristics ofVe begin by describing the optical modes of the fiber/slab
these modes to explain the experimentally observed devgguc?ur_e with expansions into _the orthonormal funct!ons cha_r-
behaviors, including the dispersion relations of the system afgferistic of the local geometries of the various regions. This
the power transmission properties. It is important to clarifgPProach, first developed by Marcuse [8] to describe the
our definitions of modes here. Ridge modes are defined GUPIiNg between a D-fiber and a semi-infinite cladding, is
hybrid modes of the fiber-slab system that are confined in b@ffapted here to include a finite-width slab region between the
transverse directions, while unbounded modes are definedi3gr cladding and a semi-infinite region. _
slab-guided solutions that extend indefinitely in the direction I Fig- 1, a schematic representation of the composite
along the slab interface. Thus, the isolated fiber mode is"@veguide with relevant geometries and optical parameters

ridge mode solution (if the core index exceeds the slab indel§, Shown. In this geometry, the planar waveguide (PWG) is
not bounded in the-direction, and the circular fiber cladding

is assumed sufficiently large so that no significant reflection
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direction in they-z plane, but bounded in the-direction

z y /Optical fiber o '
3 " €3 = / exp (jrY )(CfP eI 7 =P)
(2) gim(X—D)
y ny / ) _ +Ce ) dy
n . _/'7- p—
° Y has = / exp (jrY )(CfPemITX=P)
1 - (4) im(X=D)
s ng ' +CVel ) dy 3
) Slab Waveguide 5 5 919 o 5 . .
where 7= 4+ ¥ = p*(k*n; — #*) and D is the normalized
ng separation distancd) = d/p. All distances represented via
Y capital letters are normalized to the core radjusThe fields
X in the semi-infinite cover region outside the slab, assuming
Fig. 1. Geometry of the evanescent coupler. boundedness in the-direction, have the form

boundary in the positive-direction. The PWG has thickness Cz4 = / D) exp (=y(X = L)) exp (jpY) dv
s and refractive indexs. Outside the slab region is a semi- o
infinite cover region with indexu. hay = / DP exp (—v(X — L)) exp (juY)dv  (4)

We begin by assuming monochromatic light, with a fre- e
quency dependence likexp {—j/3t}, and find the general where? — 42 = (k*n — 3%)p? and L is the normalized
solutions to the vector Helmholtz equation describing optitistance from the origin to the slab/cover medium boundary.
cal propagation in the various locally-homogeneous regiorhat is, L = (d + s)/p. When the tangential fields of
Clearly, the geometries of the different regions lead to logicéile slab and the cover medium are matchedXat= L,
orthogonal function expansions in either Cartesian or cylifour independent equations are obtained. By eliminating the
drical coordinate systems. These functions have the commgiefiicients Dz(,l) and DI(,Q) from these four equations, the

feature of propagation in the positive-direction with a following two sets of equations are found:
dependence likexp {jwz}.

Using the symmetry of the system, we may represent the ~ C1” exp (=275)Zok(jQ3y + Qi)

z-components of the electric and magnetic fields in the core + CH(jQ3y — Q) Zok
for ¢-TM modes as = (CP + WM exp (—278)) BV VE (5)
N k .
e = 3 A, (UR) cos (ng) CP) 5 (n3rQ3 = iy @) = CfY exp (~275)
n=0 k .
< s+ ini)
ha = > AR, (UR)sin (n) (1) W o .
n=0 = (Cz/ + Cz/ exXp (_27_5))/3‘/3 (6)

where U = p(k*ni — B2)Y%4 R = r/p;k = 2x/X and  where the terms),, Q5, andQ, represent normalized trans-

R is the normalized radius. Also,élﬁll),Aﬁf) are the fields verse propagation constants in the various regions and are
coefficients in the core. The expansion functioghgUR) are defined a3 = (k*n3 — 3%)p?, Q3 = (k?n} — 5%)p?, and
Bessel functions of the first kind with order Note thatp =0 Q3 = (k?n3 — ?)p2. The termsV, and V3 are normal-
corresponds tg = 0 in Fig. 1. The cladding fields may beized frequencies of the slaby? = p2k?(n3 — n3),VZ =
expanded in terms of modified Bessel functidhsand K,,  p?k?(n3 — n2),V is the normalized frequency of the fiber

N V2 =k2p%(n? — n3) and Z is the free space impedance.
Coo = Z(B,(Ll)Kn(WR)+B,(f)fn(WR))COS (ng) While the fields at the slab-cladding interface may be
=0 matched directly, we instead follow the approach of [1] in
N expressing the cladding fields in Cartesian coordinates:
h.o =Y (BPK,(WR)+ BWI,(WR))sin (n¢)  (2) o0
nzzzo €, = / exp (jry)(P,e "X =P) 1 Qe X PNy dy
whereW = p(82—k?n3)!/2. The termssin (n¢) andcos (n¢) oo .
can be interchanged in (1), (2) to form a second set of= =/ exp (jry)(Ry,e "X +5,e2 =Pl dy - (7)

solutions(g-TE modes) with polarization orthogonal to those
of (1). The expressions for-TE modes are provided inwheres? = 12 + p*(5% — k*n3) = v* + W2, Finally, we
Appendix C. Matching fields of the cladding and the coreelate the cylindrical forms of the cladding fields (2) to these
at the boundany® = 1, we may express the coefficients, Cartesian forms (7), and we equate the slab fields at the
as linear combinations of coefficienis,. cladding-PWG boundary to the fields of (7) to complete the
The fields of the slab may be expressed as a superpositsah of equations. The former problem has been addressed in
of plane waves having the lack of a favorable propagatiatetail in [1], [2], and is reproduced for the present geometry in
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b @) [ll. M ODAL SOLUTIONS OF THE COUPLER
D(v Dy The roots of the determinant of the coefficient matrix
have been calculated numerically, with the modal propagation
constant3 determining the mode solution. While several mode
solutions are identified for any given geometry and accuracy of
solution, we classify these solutions into two groups, namely,
ridge modes and unbounded continuous modes. The ridge
modes are well confined in the region of the slab-fiber system
and are very stable with the change of computation accuracy,
namely, numerical integration and the number of components
in the field expansion.

The unbounded modes are distinguished by lack of bound-
edness in they-direction and lack of solution stability with
increasing accuracy of numerical calculation. The stability is-
sue might lead one to believe that these are spurious solutions;
however, the observation that these modes consistently satisfy
Fig. 2. The field coefficients in the various areas. Note that two differega boundary conditions over the regions of interest lead us
representations of the cladding fields are used: in Cartesian and cyllndrl&a}l conclude that they are solutions within the continuum of
coordinates.

unbounded slab modes.
In Fig. 3 we show the characteristics of theTM mode
lutions of the evanescent coupler with changing fiber core

1) (@ (0 o)
sab GGG

Cartesian coordinates

Py, Qv.Ry.Sy

(1) p(2) RB) p(4)
Bn ’Bn ’Bn ’Bn

fiber

Cylindrical coordinates

Appendix A. The latter problem is a straight-forward boundaré(0
value p_roblem. - . .index n; using the following parametersi; = 1.46,n3 =
At this point we have expressed the coefficients in t 4745 ma — 146\ — 13 4M. 0 — 2.5 um. s — 3 um. The
various expansions as linear combinations of coefficients o'fper ’Iirﬁit_in t'he7 prgpaéaﬁor;pc&sté("gn ’) a_nd 'frble'lower
. . . . . 3
other expansions, forming a set of linear equations. In F'g'limit (kns) are due to the slab and the cover medium indexes,

we prO\.”de a o!lagram showing the field coefficients and ther'éspectively, which must bound any modes guided by the slab
respective regions.

Upon substitution of all boundary constraints [(1)~(4) anat_ructure. The solutiqn [10] for an isolated single-mode fiber
(7)] into (5) and (6), we arrive at a system & equations of with the corresponding values ofy, ns, and p has been

95, unknown coefficients (e.gAgll) andAﬁf)) and propagation superlmp?‘o_sed on th? curves of Fig. 3 for reference, z_ind is
X . . denoted “fiber mode.” The unbounded modes have continuous
constant3, which may be expressed in matrix form as

) propagation constants in the region labeled the unbounded
Klpn K2mpn A%Q) — 0] ) mode region. In this region, we identify even modes, which
K3nn Kidmn AR ' have the same field direction in the slab and the fiber and

Here, K1, K2, K3, K4 are submatrices with elements that ar8"® located above the isolated fiber curve. The odd unbounded
complicated functions of integral equations. These relatiof®2d€s occupy the region below the isolated fiber solution;
also are found in Appendix B. This complex system d‘.pese mod(?s are characterized py a zero crossing between the
equations has nontrivial solutions when its determinant is zeftg!d lobes in the slab and the fiber core region.
As we may use the propagation constghtas a variable The ridge mode, Whl(.:h has the Iargest. propagation constant,
in these relations, the roots of the equation provide modfethe only mode that is well-bounded in the vicinity of the
solutions for the composite waveguide structure. Having foui#er core (even when the field is primarily in the slab). For
the roots, we next calculate the field coefficients by badRis mode, we plot the modal fields (Fig. 4) at the solution
substitution of our solution into (8). points A, B, C, and D of Fig. 3. The ridge mode approaches
The system of equations generated by the mathematil3g fiber mode asymptotically with increasing, particularly
model described in Fig. 2 has been solved using stand@@1 e€xceeds the slab index, eventually becoming a perturbed
mathematical libraries for Bessel function evaluation, matrffoer mode. Fig. 4 also shows the transfer of power between
evaluation and numerical integration. The modes of the couptf two waveguides, as the core refractive index increases.
have been identified by calculating the determinant of ti¥¢ear point A, the fiber core acts as a weak attractor for
matrix of (8), using four 20x 20 submatricesk1, K2, the slab fields, providing only weak guidance for the slab
K3, and K4. Then, the expansion coefficients for the variougode. However, near point D, the field is nearly a fiber mode
modes have been calculated by back-substituting the solutfsution, with tight field confinement in the slab near the core
of 3 into (8). The results obtained for different configurationgegion.
are presented in the next section. The computation timeThe comparison ofg-TE and ¢-TM modes, shown in
required to calculate a determinant root of the matrix in (8)able I, reveals that the differences in propagation constants,
varies with the integral accuracy. When we use 40 poift, for these configurations are very small as stated in
abcissas and weights in the Gaussian quadrature calculat{8h, Therefore, we have considered onlyTM solutions
the computation time is less than 7 s with a 166 MHz Pentiuthroughout this analysis; however we provided the expressions
machine. for ¢-TE modes in Appendix C.
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TABLE |
kn, COMPARISON OF PROPAGATION CONSTANT SOLUTIONS
712 BETWEEN CMT AND MODE EXPANSION THEORY
Ridge mode D m B (CMT) | Bridge (TE) | Priage (TM)
\ % 1.4817 | 7.125755 | 7.1258700 | 7.1258701
A B ,,,C Fiber mode 1.4756 | 7.104438 |7.1043102 |7.1042100
7.10 E—
- / '\\ 1.4745 | 7.103230 | 7.1025700 | 7.1023902
Ig even mode region 1 / Slab mode 1.4709 | 7.102521 | 7.1009098 | 7.1006301
Q
& 708 |  UNBOUNDED CONTINUOUS MODE REGION
index may be adjusted (e.g., electro-optically). The device
odd mode region geometry is pictured in Fig. 5, where we assume that single-
mode fibers are coupled to a device of lendthat the input
7.06 and output. The fiber parameters are identical to the “fiber”
kn, - of the coupler.
. We note that unbounded modes in thelirection will not
ey e e | ey effectively transfer power through the coupler; instead, any

1465 1470 1.475 1.480 power coupled into these modes will be transferred outward
from the core region so that very little power may be coupled
to an output fiber after propagation through the device. We also
Fig. 3. Mode propagation constants of the evanescentch?upler versfﬁs observe that the best power transmission, i.e., strong coupling
Liganliié,ii’é g I’e‘gk; é{égépr%%: e igsga“g’n%ﬂuur;;’;’;h ;oﬁs_ between the device and input/output fibers, will occur in cases
where the ridge mode behaves as a perturbed fiber mode,

such as in Fig. 4(d). Here, the field overlap will be strong

~ We compare our results with propagation constants of & |5 nching the ridge mode and for coupling the ridge mode
ridge modes obtained using CMT [2] for the same configurgs he output fiber.

tion in Table 1. Although only small differences are observed We begin by considering the case where is large and

in 5, the differences in the transverse propagation constangyiapie so that more than one ridge mode solution is allowed
which dictate mode profiles and, hence, coupling coefficients, o planar waveguide. Fig. 6 shows the dispersion curve

may be quite large. In the examples shown, the differengg yho o ridge modes (unbounded modes are omitted
in transverse propagation constant is found to be as Iargeh%§e)' with parametera; — 1.4646,ny = ny = 1.46, A =
13%. The maximum error occurs when the fiber core index('5§85 um, p = 2.5.m, and s = 3Nm" The horizontal iine at
much lower than the slab index, where the effect of the slghy po11om represents the behavior of the isolated fiber mode
perturps the f|ber.solut|on strongly. . solution (which is independent afs). The top horizontal

InFig. 3, agapis observed between the ridge mode SP'Ut'f?ﬁ‘e corresponds to the plane wave propagation constant of
and the upper limit of the unbounded mode region. This g

. R e core(kny). When the slab indexns) approaches the
may be explained by considering the modal parameters of gdding index (n2), the solution for3 of the first ridge

planar Wayeguide. The relationship between th? propagatircﬁ%de approaches that of the isolated fiber, as expected. As

constants in the rectangular coordinate system is ng increases, the first ridge mode deviates from the isolated
k*n3 —12/p% = g2 + 12/ p% (9) fiber solution, approachingn;. Beyond this value, the first

ridge mode is no longer strongly guided by the core, becoming

In this equation, the Ieft-hanq side is nearly constantl for & unbounded slab mode (i.e., fields extend indefinitely in the
mode of the planar waveguide becausethe propagation y-direction). Here, the mode is essentially a weakly perturbed

constant in ther-direction, must provide for approximately g,y mode carrying very little power in the core region.
one-half Waveler_lgth across the_ sla_b (for lower-order m_OdeS)'As ng increases further, a second, odd, ridge mode solution
The right-hand side of the equation includgshe propagation ;g produced with an initial propagation constant very nearly

constant in they-direction, which must be complex for ay,5¢ of the isolated fiber. Thus, just beyond the cutoff for
bounded mode. When becomes complex for the boundeqhis mode, most of its power is located in the core region

mode, the propagation constafitmust increase to maintain j¢ 4o fiber, as in Fig. 4(d). Further increase rof leads to

equality, and thus a bounded ridge mode must have a Iargﬁéraker guidance in the core region until the mode becomes

pro_pagation constant than an unbound_ed slab mode. m mﬁ)ounded;this occurs more rapidly for the second ridge mode
limit of small n;, we observe that the ridge mode solut|0|?jue to its higher spatial frequency in thedirection

asymptotically approaches the unbounded slab mode value. Transmission of optical power through the coupler may be

calculated by means of coupling to ridge modes. The power

carried by the input optical fiber is first decomposed into the
We now use these observations to consider the optical powieige modes, propagated through the fiber/slab structure, and

transmission behavior of a tunable device, where the overlayinched into the second fiber. We neglect any power coupled

ny

IV. POWER TRANSMISSION
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Fig. 4. The transverse E-fields of the ridge mode at the points A, B, C, and D shown in Fig.s8. €a)1.47, (b) ny = 1.473, (¢c) n; = 1.475, (d)
ny = 1.478, and (e) the field magnitudes on theaxis for the cases A, B, C, and D.

into unbounded modes in this analysis, assuming such powecond ridge mode, we may consider the modes individually
to be completely dissipated at the device output. Because theer their respective regions af where significant coupling
first ridge mode becomes unbounded prior to the onset of thecurs.



DINLEYICI AND PATTERSON: VECTOR MODAL SOLUTION OF EVANSCENT COUPLER 2321
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Fig. 5. Model for power transmission calculations for the evanescent couple
with fiber pigtails.
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Power Trans
-

kn,
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First ridge mode

10.820 0
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g
Z N,
oo
10815 Fig. 7. Power transmission characteristic of the coupler vensus
Second fidge mode 10.8160 ] T %8
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Fig. 6. Propagation constant solutions for the ridge modes versufor = Podt a
ny = 1.4646,n9 = ny = 1.46,p = 2.5um,s = 3 um, andd = 3 gm. 10.8145 N o
\ \ - 0.4
) i ) Bn‘dge : \
In Fig. 7, we plot the transmission versug for our 10.8140 | N
model, and for the geometry described above. We observe L \\ - 03
that the power transmission peaks when the ridge mode } ‘ .
field is concentrated in the fiber core region, corresponding ;535 ‘ P 0.2

to maximum overlap between the waveguide modesnis 3 4

is increased, the ridge mode field becomes concentrated in

the slab region, and the overlap between modes smoothly

approaches Zero. A@g increases further, hlgher_order rldgézlg 8. Propagation constant solution versus guide Separéﬁom ni).
. _ . — .Note the convergence of the ridge mode to the slab mode.

modes are launched, producing efficient power transmission

over ranges where the particular ridge mode field approximates

the fiber mode field. the ridge mode and the transmitted power are plotted versus
guide separatiod in Fig. 8 for the following parameters; —
V. DEPENDENCE ONGUIDE SEPARATION: 1.4646,n3 = 1.465,n2 = ng = 1.46,p = 2.5 um, s = 3 pm,
CONVERGENCE TOISOLATED GUIDE MODES and A = 1.3um. We observe that the ridge mode solution

We next investigate the dependence of the ridge mofi@nNverges to the isolated slab propagation constdnt=
solutions on the separation between the fiber core and the sii$13 745, as the separation increases, converging beyond
waveguide. We consider two cases: i) when< ns and ii) d =~ 4.2 ym. Here, the power transmission through the device
whenn; >ns. As we shall see, the ridge mode solution wilis reduced toward zero due to two effects. In addition to the
converge to the isolated waveguide solution of the strongddgreasing guide separation, which tends to pull the field lobe
guide as the separation increases, so the two cases mustop&@rd the slab guide, the ridge mode solution extends further
considered separately. in the y-direction as the separation d increases, eventually

First, consider the case when > n1, so that the slab index converging to an unbounded slab mode as the interaction
is greater than the core index. The propagation constant ftween the slab and the fiber core becomes negligible.

d (um)
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10.8098 ,‘ 1.00 By solving the coefficient matrix as explained in the text,
108096 -\ — we have found ridge modes and unbounded modes. However,
‘ \\ Pout L1 - 0.98 when these models are scrutinized, it is apparent that only one
10.8094 \ // ridge mode, if any, is well bounded at any one time. This
10.8092 \ / | L 0.96 explains why modal interference effects predicted by CMT
g have been not observed. This fundamental result makes this
_ 108080 T— i | 0.64 coupler different than the other couplers which rely on the
& 10,8088 % beating of those two modes, namely, odd and even ridge
2 / \ % modes
. - 0.92 : . .
10.8086 / AN The propagation constant solutions of the CMT and the
10.8084 / N | 0.90 vector modal method have been compared for a variety of
/ \\ Brisge configurations. We have found that CMT produces errors in the
108082 ‘ Lo~ 088 computation of transverse propagation constants, particularly
10.8080 | L. : : ' in the case of large slab index or close waveguide proxim-
10,8078 | | | Proer 0.6 ity, and thus will produce inaccurate predictions for optical
' 3 4 ‘ transmission in many geometries.
¢ (um) In addition, we have investigated the effect of separation

distances between the two waveguides on the propagation
Fig. 9. Propagation constant solution versus guide separétign>n3). constant? and on transmitted power. We found that increasing
Note the convergence of the ridge mode to the fiber mode. the separation distance causes the ridge mode to converge to
the individual waveguide mode, either a slab or a fiber mode
depending on the initial configuration of the coupler. We also
e that our analysis remains valid even in the case of close
(d — 0), where the assumptions of CMT break

Now consider the case when > ns, where the fiber core
index exceeds the slab index. We take as an example .
same parameters as in the preceding case, except that xIMIty
slab index is reduced to 1.463. Fig. 9 shows the depende Qn.

of the ridge mode propagation constant and the transmitted he optical fiber used in these calculations has been as-

power on the guide separation in this case. Here, the solut%l‘{ned to support the fundamental mode only, but the model

converges to the isolated fiber solution. withapproachin Is applicable to higher order mode solutions as well. Also
9 fihapp g %B_asymmetric PWG can be used in the model by choosing

10.808 as the separation increases. Again, beyond a s L : .
aration of about 4.2um. the ridge mode behaves as thé'€ cladding indexn,) and cover medium indens) to be
’ rent. Finally, although the spectral response of the device

fundamental mode of the fiber. This is verified by the Iarg%

iffe
power transmission through the device as the separation fp not otk analyzed_here,_ appligation of this model to the
increased, indicating only a slight perturbation in the ﬁb&e&gn of wavelength filters is straightforward, and shall be
’ addressed in a future publication.

mode.
It is therefore clear that our solution for the ridge mode
behaves asymptotically as expected, converging to the isolated APPENDIX

waveguide solution for one of the _two interacting guides. Tpege appendices are provided to serve two purposes. First,
However, we observe that the solution always converges i nrovide mathematical relationships between expansion
the fundamental mode solution of the strongest waveguidgefficients in our mathematical model and give the explicit
although in reality both isolated guides should propagai§ims of the K1, K2, K3, and K4 submatrices. Second,

power independently. When the convergent mode is the slals provide corrections to typographic errors that we have
guided mode, large guide separation causes the solutiond@ntified in 18], the foundation of this formulation.

depend strongly on the accuracy of the computation so thatrhe relevant errors in [8] that affect the analysis consist of

the ridge mode becomes indistinguishable from the unboundggy, errors and transposition of matrix indexes. In Appendix

continuous slab modes. B, we provide the applicable expressions, which are quite
similar to those of [8], and the equation sign convention and
index order provided here may be applied to the corresponding
VI]. CONCLUSION equations in [8] in order to correct the latter. One exception
(30) of [8], for a parallel is not provided here; the correct

We have investigated the vector mode solutions of tH 20,
ation should read

evanescent coupler comprising a slab and a single mode!
optical fiber. The method which we have used in. this PaPer,; = (5Q2 + 7Q2)(n20Q2 + n2rQ2) — 102 GVi. (A1)
has been developed by Marcuse [8] for analyzing a fiber
system having a cladding limited by an infinite half-space. We
have expanded this analysis to the fiber/slab coupler system,
formulating the full coefficient matrix of the mode expansions The following relations between the cladding field expan-
and incorporating corrections to minor errors in the originaion coefficients in the Cartesian and cylindrical representa-
derivation of [8]. tions have been derived by Marcuse [8] and Vassallo [9]. We

APPENDIX A
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provide them here for completeness K3 =gt V_QJ (U)K (WS + D 1 e
Jore) m,n T Z U2 n n n,m n, m C,rn/ Z
B® = 3/ Q,exp(—aD)ocosh(ng)dg (A.2) Vg 1 W 0
n Joo LI O(W) = Co =
" o> U2 ™ " e ern U
BW = &) / S, exp(—oD)osinh(ng)dg (A.3)
En J oo <W LIV L(W) + UL(W)Jy (U))
P, = eXP(TUD Z B cosh (ng) (A4) (B.5)
o}
—jex (—O'D K4m,n = _n e ‘[;2 ZOJ (U)IN(W)Cn,m + -Dn,mi
R, = L0 Z B®sinh(ng)  (A5) nW n3 Cm
T e = (WIUM(W) +U (W) Jn(U)
where U W
— ! !
o= {8 i 00 v (7). ¢ UM U
I (U)) (B.6)
h = .
APPENDIX B wherenes = fi/k

We emphasize that these equations are similar in form to
As stated in the text, applications of the boundary conditiotisose of [8], with sign errors corrected in (B.4) and (B.5).
at the various interfaces and the equating of the cladding fiedtko, the order of the indexes of thé, ., By, ., C m, and
representations provided in Appendix A allow the constructioD,, ,,, matrix elements differ from those of the reference, and
of a coefficient matrix. Upon substitution of these conditionsn additional term (the ratio of the refractive indexes) has
into two of the boundary equations [we use (5) and (6) fdseen incorporated into (B.3).
convenience], the cladding coefficients may be expressed irThe matrix elements may be found from the reflection
a form coefficients defined in (B.1) and (B.2) using

Q, =AP, + jBR, (B.1)

gm ~
R . Apm = A —20D h h d
S, =GP, 1 DR,. (B.2) 7 /_gm exp (—20 D) cosh (ng) cosh (mg) dg

Here, A, B,C, and D may be regarded as reflection coef-

ficients relating the exponentially increasing and decreasing
components of the cladding fields. Although these terms
may be expressed in closed form, the expressions are quite
cumbersome and best solved in parts. We will not provide their

gm
Bn,rn:/
—Gm

(B.7)
Bexp (—20D)sinh (ng) cosh (mg) dg
(B.8)

Gm

forms here, although their calculation is quite straightforward. Cnm = / C exp(=20D) cosh (ng) sinh (mg) dg

The termsP, and R,, are expressed in (A.4) and (A.5) in o
terms of B and BY”, respectively. By substituting these I
equations into (B.1) and (B.2), we obtai},, and S, in Dypm =
terms ofB() The (A.2) and (A.3) can be expressed in four Tam B.10
coefficients BY upon substitution of they, and S,. The (8.10)
last step to complete the eigensystem is to use the relatidree limits of integration are constrained by the maximum
between the coefficients of cladding and core obtained at théowed spatial frequencit/,.x = W sinh (g,,)). For a given
core/cladding boundary. Then these two equations, in tereigenvalues, the value is constrained by? < v2.. =
of AS) and A%, can be arranged in the matrix form of (8).(kn3 — £2)rho®.
Here the submatrix expressions have the following forms:

(B.9)
D exp (=20 D) sinh (ng) sinh (mg) dg.

N N V2 1 W APPENDIX C
Klmn = em 2o U2J (W) Brm + Anm em U The relations below are derived fof-TE modes. The
, , cladding fields are related by the following equations:
(WE L)L)+ UL ) e
%/V B® = /2 / Q. exp (—oD)osinh (ng)dg (C.1)
+ g7 <W LI K (W) + U 62 -
B = - Sy exp(—oD)ocosh(ng)dg (C.2)
K;<W>Jn<U>) ®3 i
exp(—o
Neg V2 n Teg P, = BE A — Z BW sinh (ng) (C.3)
K2rn,n =N WZOJ (U) n(W)én m +An Tne ? n=0
m 2 (a9}
—oD)
V2 W1 R, =22 B® cosh (ng (C.4)
UQZOJ W(O) I, (W)+BnmUe—m 20 nz::O (ng)
-(WI(U)L,(W) + UIL,(W)J,(U)) (B.4) wheree, is same for both polarizations.
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The submatriced(1, K2, K3, and K4 assume the follow- [4] W. Johnstone, G. Thursby, D. Moodie, R. Varshrey, and B. Culshaw,

i i i “Fiber optic wavelength channel selector with high resolutidigctron.
ing integral expressionsi,, ., By m, Cnm, and D, , for Lett. vol. 28, pp. 1364-1366, July 1992,
q-TE modes [5] K. McCallion and W. Johnstone, “Tunable in-line fiber-optic bandpass
g 6l f6ilter," Opt. Lett, V(l?ll. 19, pp. 542d—544,_Apr. 1993. o
2 . . . Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N.
Apm = / Aexp (—20D)sinh (ng) sinh (mg) dg Carter, and T. G. Ryan, “In line fiber-optic intensity modulator u)s/ing
—m electro-optic polymer,Electron. Lett, vol. 28, pp. 984-986, May 1992.
(C.5) [7] K. McCallion, W. Johnstone, and G. Thursby, “Investigation of optical
gm fiber switch using electro-optic interlaysElectron. Lett. vol. 28, pp.
B = Bexp (—20D)sinh (mg) cos (ng) d 409-411, Feb. 1992.
e /—gm p( ) ( g) ( g) g [8] D. Marcuse, F. Ladouceur, and J. D. Love, “Vector mode®eshaped
(C 6) fibers,” Inst. Elec. Eng. Proc. Jvol. 139, pp. 117-126, Apr. 1992.
g ) [9] IC Vazsgllo, “Il?lgortl)zuls theornyor moldgz of opst;zzl gggrsAwﬂh fée;%dlng
A . imite a plane,Electron. Lett, vol. 22, pp. —946, Aug. .
Chm = / C exp (=20 D) cosh (mg) sinh (ng) dg [10] Allan W.ySn;)der and John D. Lgv@ptical F\)I\Eaveguide Theo?y New
—gm York: Chapman & Hall 1991, ch. 14.
(C.7)
gm A
Dy = D exp (—20D) cosh (ng) cosh (mg) dg.
—9m
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where the matrix elements are found by substituting
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