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Mehmet S. Dinleyici and David B. Patterson,Member, IEEE

Abstract—We present a vector modal solution for the evanes-
cent coupler comprising an optical fiber and a slab waveguide.
We identify the normal vector ridge modes of the device for
different configurations. The dispersion characteristics and the
power transmission properties of these modes are presented. Also,
the effect of the proximity between the waveguides on the ridge
modes is investigated.

Index Terms—Dielectric waveguides, optical waveguide com-
ponents, waveguide couplers.

I. INTRODUCTION

T HE fiber-to-planar waveguide coupler system has been
studied recently by a number of researchers [1]–[3]

because of the wide variety of applications for this in-line com-
ponent in fiber optic communication systems. Some of these
applications are wavelength division multiplexing (WDM),
in-line fiber modulators and tunable filters [4]–[7]. A math-
ematical model used by many researchers has been developed
by Marcuse [3] using coupled mode theory (CMT). This model
assumes only weak perturbation of the normal modes of the
individual waveguides, namely, the fiber and the slab. How-
ever in the close proximity of the guides employed in these
components (where the guides may be in contact), these modes
are highly perturbed, and their propagation constants can be
affected to the degree that CMT is no longer valid. As Marcuse
notes in [3], the modes obtained by CMT are not sufficient
to construct a mathematical model which will explain the
observed behavior of these devices. Also, as Johnstone states
in [4], the wavelength-dependent loss mechanism in the system
is not fully understood.

In this paper we have adapted a mode expansion model,
first introduced by Marcuse [8] for the modeling of D-
fiber modes, to identify the approximate ridge modes of
the fiber/slab system. We then use the characteristics of
these modes to explain the experimentally observed device
behaviors, including the dispersion relations of the system and
the power transmission properties. It is important to clarify
our definitions of modes here. Ridge modes are defined as
hybrid modes of the fiber-slab system that are confined in both
transverse directions, while unbounded modes are defined as
slab-guided solutions that extend indefinitely in the direction
along the slab interface. Thus, the isolated fiber mode is a
ridge mode solution (if the core index exceeds the slab index),
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but the isolated slab mode solution is unbounded, representing
the cut-off condition of the ridge mode.

We first define the problem, providing the mode expansion
functions and outlining the method of solution for the stated
geometries. We also provide corrections to some errors that we
have identified in the derivations of [8]. These errors comprise
sign errors and transposed subscripts which lead to significant
errors in the field calculations, particularly in the case of weak
guidance (i.e., small normalized frequency,) in the fiber.
We note that, for large in the symmetric coupler cases
considered in [8], the resulting errors are small and not likely
to be recognized.

We next analyze the numerical solutions to the problem,
varying the fiber-slab distance, the slab refractive index, and
the fiber core refractive index. The solutions obtained are those
having electrical field nearly perpendicular to the slab/cladding
boundary, quasi-TM modes, and those having electrical field
nearly parallel to this boundary, quasi-TE modes. For the
weakly-guiding parameters assumed in this paper, the mode
solutions are nearly degenerate quasi-TM and quasi-TE modes.
However, the full vectorial analysis provided here is applicable
to the general case with no assumption of weak guidance. We
analyze the problem for-TM modes, with the -TE mode
relations provided in Appendix C.

We show that two types of modes are present in the hybrid
structure: confined ridge modes and unbounded continuous
modes. We characterize the behavior of the ridge modes,
and use these modes to model the behavior of the fiber/slab
coupling system, providing theoretical curves for the expected
transmission properties and tunability of such a device.

II. M ATHEMATICAL MODEL

We begin by describing the optical modes of the fiber/slab
structure with expansions into the orthonormal functions char-
acteristic of the local geometries of the various regions. This
approach, first developed by Marcuse [8] to describe the
coupling between a D-fiber and a semi-infinite cladding, is
adapted here to include a finite-width slab region between the
fiber cladding and a semi-infinite region.

In Fig. 1, a schematic representation of the composite
waveguide with relevant geometries and optical parameters
is shown. In this geometry, the planar waveguide (PWG) is
not bounded in the-direction, and the circular fiber cladding
is assumed sufficiently large so that no significant reflection
occurs at the cladding-air boundary (e.g., at the large negative
value of ). A core of uniform refractive index and radius
is centered at the origin of the coordinate system, surrounded
by a cladding of index The cladding/PWG interface, in
the - plane, is located a distancefrom the core-cladding
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Fig. 1. Geometry of the evanescent coupler.

boundary in the positive -direction. The PWG has thickness
and refractive index Outside the slab region is a semi-

infinite cover region with index
We begin by assuming monochromatic light, with a fre-

quency dependence like and find the general
solutions to the vector Helmholtz equation describing opti-
cal propagation in the various locally-homogeneous regions.
Clearly, the geometries of the different regions lead to logical
orthogonal function expansions in either Cartesian or cylin-
drical coordinate systems. These functions have the common
feature of propagation in the positive-direction with a
dependence like

Using the symmetry of the system, we may represent the
-components of the electric and magnetic fields in the core

for -TM modes as

(1)

where and
is the normalized radius. Also, are the fields

coefficients in the core. The expansion functions are
Bessel functions of the first kind with order Note that
corresponds to in Fig. 1. The cladding fields may be
expanded in terms of modified Bessel functionsand

(2)

where The terms and
can be interchanged in (1), (2) to form a second set of
solutions -TE modes) with polarization orthogonal to those
of (1). The expressions for -TE modes are provided in
Appendix C. Matching fields of the cladding and the core
at the boundary we may express the coefficients
as linear combinations of coefficients

The fields of the slab may be expressed as a superposition
of plane waves having the lack of a favorable propagation

direction in the - plane, but bounded in the-direction

(3)

where and is the normalized
separation distance, All distances represented via
capital letters are normalized to the core radius,The fields
in the semi-infinite cover region outside the slab, assuming
boundedness in the-direction, have the form

(4)

where and is the normalized
distance from the origin to the slab/cover medium boundary.
That is, When the tangential fields of
the slab and the cover medium are matched at
four independent equations are obtained. By eliminating the
coefficients and from these four equations, the
following two sets of equations are found:

(5)

(6)

where the terms , , and represent normalized trans-
verse propagation constants in the various regions and are
defined as and

The terms and are normal-
ized frequencies of the slab

is the normalized frequency of the fiber
and is the free space impedance.

While the fields at the slab-cladding interface may be
matched directly, we instead follow the approach of [1] in
expressing the cladding fields in Cartesian coordinates:

(7)

where Finally, we
relate the cylindrical forms of the cladding fields (2) to these
Cartesian forms (7), and we equate the slab fields at the
cladding-PWG boundary to the fields of (7) to complete the
set of equations. The former problem has been addressed in
detail in [1], [2], and is reproduced for the present geometry in
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Fig. 2. The field coefficients in the various areas. Note that two different
representations of the cladding fields are used: in Cartesian and cylindrical
coordinates.

Appendix A. The latter problem is a straight-forward boundary
value problem.

At this point we have expressed the coefficients in the
various expansions as linear combinations of coefficients of
other expansions, forming a set of linear equations. In Fig. 2
we provide a diagram showing the field coefficients and their
respective regions.

Upon substitution of all boundary constraints [(1)–(4) and
(7)] into (5) and (6), we arrive at a system of equations of

unknown coefficients (e.g., and and propagation
constant which may be expressed in matrix form as

(8)

Here, are submatrices with elements that are
complicated functions of integral equations. These relations
also are found in Appendix B. This complex system of
equations has nontrivial solutions when its determinant is zero.
As we may use the propagation constantas a variable
in these relations, the roots of the equation provide mode
solutions for the composite waveguide structure. Having found
the roots, we next calculate the field coefficients by back
substitution of our solution into (8).

The system of equations generated by the mathematical
model described in Fig. 2 has been solved using standard
mathematical libraries for Bessel function evaluation, matrix
evaluation and numerical integration. The modes of the coupler
have been identified by calculating the determinant of the
matrix of (8), using four 20 20 submatrices, , ,

, and . Then, the expansion coefficients for the various
modes have been calculated by back-substituting the solution
of into (8). The results obtained for different configurations
are presented in the next section. The computation time
required to calculate a determinant root of the matrix in (8)
varies with the integral accuracy. When we use 40 point
abcissas and weights in the Gaussian quadrature calculation,
the computation time is less than 7 s with a 166 MHz Pentium
machine.

III. M ODAL SOLUTIONS OF THE COUPLER

The roots of the determinant of the coefficient matrix
have been calculated numerically, with the modal propagation
constant determining the mode solution. While several mode
solutions are identified for any given geometry and accuracy of
solution, we classify these solutions into two groups, namely,
ridge modes and unbounded continuous modes. The ridge
modes are well confined in the region of the slab-fiber system
and are very stable with the change of computation accuracy,
namely, numerical integration and the number of components
in the field expansion.

The unbounded modes are distinguished by lack of bound-
edness in the -direction and lack of solution stability with
increasing accuracy of numerical calculation. The stability is-
sue might lead one to believe that these are spurious solutions;
however, the observation that these modes consistently satisfy
the boundary conditions over the regions of interest lead us
to conclude that they are solutions within the continuum of
unbounded slab modes.

In Fig. 3 we show the characteristics of the-TM mode
solutions of the evanescent coupler with changing fiber core
index using the following parameters:

m m m The
upper limit in the propagation constant and the lower
limit are due to the slab and the cover medium indexes,
respectively, which must bound any modes guided by the slab
structure. The solution [10] for an isolated single-mode fiber
with the corresponding values of , , and has been
superimposed on the curves of Fig. 3 for reference, and is
denoted “fiber mode.” The unbounded modes have continuous
propagation constants in the region labeled the unbounded
mode region. In this region, we identify even modes, which
have the same field direction in the slab and the fiber and
are located above the isolated fiber curve. The odd unbounded
modes occupy the region below the isolated fiber solution;
these modes are characterized by a zero crossing between the
field lobes in the slab and the fiber core region.

The ridge mode, which has the largest propagation constant,
is the only mode that is well-bounded in the vicinity of the
fiber core (even when the field is primarily in the slab). For
this mode, we plot the modal fields (Fig. 4) at the solution
points A, B, C, and D of Fig. 3. The ridge mode approaches
the fiber mode asymptotically with increasing particularly
as exceeds the slab index, eventually becoming a perturbed
fiber mode. Fig. 4 also shows the transfer of power between
the two waveguides, as the core refractive index increases.
Near point A, the fiber core acts as a weak attractor for
the slab fields, providing only weak guidance for the slab
mode. However, near point D, the field is nearly a fiber mode
solution, with tight field confinement in the slab near the core
region.

The comparison of -TE and -TM modes, shown in
Table I, reveals that the differences in propagation constants,

for these configurations are very small as stated in
[8]. Therefore, we have considered only-TM solutions
throughout this analysis; however we provided the expressions
for -TE modes in Appendix C.
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Fig. 3. Mode propagation constants of the evanescent coupler versusn1 for
n3 = 1:4745; n2 = n4 = 1:46; � = 2:5�m; s = 3�m; andd = 3�m: The
region labeled the leaky mode region contains a continuum of solutions.

We compare our results with propagation constants of the
ridge modes obtained using CMT [2] for the same configura-
tion in Table I. Although only small differences are observed
in the differences in the transverse propagation constants,
which dictate mode profiles and, hence, coupling coefficients,
may be quite large. In the examples shown, the difference
in transverse propagation constant is found to be as large as
13%. The maximum error occurs when the fiber core index is
much lower than the slab index, where the effect of the slab
perturbs the fiber solution strongly.

In Fig. 3, a gap is observed between the ridge mode solution
and the upper limit of the unbounded mode region. This gap
may be explained by considering the modal parameters of the
planar waveguide. The relationship between the propagation
constants in the rectangular coordinate system is

(9)

In this equation, the left-hand side is nearly constant for a
mode of the planar waveguide becausethe propagation
constant in the -direction, must provide for approximately
one-half wavelength across the slab (for lower-order modes).
The right-hand side of the equation includes, the propagation
constant in the -direction, which must be complex for a
bounded mode. When becomes complex for the bounded
mode, the propagation constantmust increase to maintain
equality, and thus a bounded ridge mode must have a larger
propagation constant than an unbounded slab mode. In the
limit of small we observe that the ridge mode solution
asymptotically approaches the unbounded slab mode value.

IV. POWER TRANSMISSION

We now use these observations to consider the optical power
transmission behavior of a tunable device, where the overlay

TABLE I
COMPARISON OF PROPAGATION CONSTANT SOLUTIONS

BETWEEN CMT AND MODE EXPANSION THEORY

index may be adjusted (e.g., electro-optically). The device
geometry is pictured in Fig. 5, where we assume that single-
mode fibers are coupled to a device of lengthat the input
and output. The fiber parameters are identical to the “fiber”
of the coupler.

We note that unbounded modes in the-direction will not
effectively transfer power through the coupler; instead, any
power coupled into these modes will be transferred outward
from the core region so that very little power may be coupled
to an output fiber after propagation through the device. We also
observe that the best power transmission, i.e., strong coupling
between the device and input/output fibers, will occur in cases
where the ridge mode behaves as a perturbed fiber mode,
such as in Fig. 4(d). Here, the field overlap will be strong
for launching the ridge mode and for coupling the ridge mode
to the output fiber.

We begin by considering the case where is large and
variable, so that more than one ridge mode solution is allowed
in the planar waveguide. Fig. 6 shows the dispersion curve
for the two ridge modes (unbounded modes are omitted
here), with parameters

m m and m The horizontal line at
the bottom represents the behavior of the isolated fiber mode
solution (which is independent of The top horizontal
line corresponds to the plane wave propagation constant of
the core When the slab index approaches the
cladding index the solution for of the first ridge
mode approaches that of the isolated fiber, as expected. As

increases, the first ridge mode deviates from the isolated
fiber solution, approaching Beyond this value, the first
ridge mode is no longer strongly guided by the core, becoming
an unbounded slab mode (i.e., fields extend indefinitely in the
-direction). Here, the mode is essentially a weakly perturbed

slab mode carrying very little power in the core region.
As increases further, a second, odd, ridge mode solution

is produced with an initial propagation constant very nearly
that of the isolated fiber. Thus, just beyond the cutoff for
this mode, most of its power is located in the core region
of the fiber, as in Fig. 4(d). Further increase of leads to
weaker guidance in the core region until the mode becomes
unbounded; this occurs more rapidly for the second ridge mode
due to its higher spatial frequency in the-direction.

Transmission of optical power through the coupler may be
calculated by means of coupling to ridge modes. The power
carried by the input optical fiber is first decomposed into the
ridge modes, propagated through the fiber/slab structure, and
launched into the second fiber. We neglect any power coupled
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(a) (b)

(c) (d)

(e)

Fig. 4. The transverse E-fields of the ridge mode at the points A, B, C, and D shown in Fig. 3. (a)n1 = 1:47; (b) n1 = 1:473; (c) n1 = 1:475; (d)
n1 = 1:478; and (e) the field magnitudes on thex-axis for the cases A, B, C, and D.

into unbounded modes in this analysis, assuming such power
to be completely dissipated at the device output. Because the
first ridge mode becomes unbounded prior to the onset of the

second ridge mode, we may consider the modes individually
over their respective regions of where significant coupling
occurs.
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Fig. 5. Model for power transmission calculations for the evanescent coupler
with fiber pigtails.

Fig. 6. Propagation constant solutions for the ridge modes versusn3 for
n1 = 1:4646; n2 = n4 = 1:46; � = 2:5�m; s = 3�m; andd = 3�m:

In Fig. 7, we plot the transmission versus for our
model, and for the geometry described above. We observe
that the power transmission peaks when the ridge mode
field is concentrated in the fiber core region, corresponding
to maximum overlap between the waveguide modes. As
is increased, the ridge mode field becomes concentrated in
the slab region, and the overlap between modes smoothly
approaches zero. As increases further, higher-order ridge
modes are launched, producing efficient power transmission
over ranges where the particular ridge mode field approximates
the fiber mode field.

V. DEPENDENCE ONGUIDE SEPARATION:
CONVERGENCE TOISOLATED GUIDE MODES

We next investigate the dependence of the ridge mode
solutions on the separation between the fiber core and the slab
waveguide. We consider two cases: i) when and ii)
when . As we shall see, the ridge mode solution will
converge to the isolated waveguide solution of the strongest
guide as the separation increases, so the two cases must be
considered separately.

First, consider the case when so that the slab index
is greater than the core index. The propagation constant for

Fig. 7. Power transmission characteristic of the coupler versusn3:

Fig. 8. Propagation constant solution versus guide separation(n3>n1):
Note the convergence of the ridge mode to the slab mode.

the ridge mode and the transmitted power are plotted versus
guide separation in Fig. 8 for the following parameters:

m m
and m We observe that the ridge mode solution
converges to the isolated slab propagation constant,

as the separation increases, converging beyond
m Here, the power transmission through the device

is reduced toward zero due to two effects. In addition to the
increasing guide separation, which tends to pull the field lobe
toward the slab guide, the ridge mode solution extends further
in the -direction as the separation d increases, eventually
converging to an unbounded slab mode as the interaction
between the slab and the fiber core becomes negligible.
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Fig. 9. Propagation constant solution versus guide separation(n1>n3).
Note the convergence of the ridge mode to the fiber mode.

Now consider the case when where the fiber core
index exceeds the slab index. We take as an example the
same parameters as in the preceding case, except that the
slab index is reduced to 1.463. Fig. 9 shows the dependence
of the ridge mode propagation constant and the transmitted
power on the guide separation in this case. Here, the solution
converges to the isolated fiber solution, withapproaching
10.808 as the separation increases. Again, beyond a sep-
aration of about 4.2 m the ridge mode behaves as the
fundamental mode of the fiber. This is verified by the large
power transmission through the device as the separation is
increased, indicating only a slight perturbation in the fiber
mode.

It is therefore clear that our solution for the ridge mode
behaves asymptotically as expected, converging to the isolated
waveguide solution for one of the two interacting guides.
However, we observe that the solution always converges to
the fundamental mode solution of the strongest waveguide,
although in reality both isolated guides should propagate
power independently. When the convergent mode is the slab-
guided mode, large guide separation causes the solution to
depend strongly on the accuracy of the computation so that
the ridge mode becomes indistinguishable from the unbounded
continuous slab modes.

VI. CONCLUSION

We have investigated the vector mode solutions of the
evanescent coupler comprising a slab and a single mode
optical fiber. The method which we have used in this paper
has been developed by Marcuse [8] for analyzing a fiber
system having a cladding limited by an infinite half-space. We
have expanded this analysis to the fiber/slab coupler system,
formulating the full coefficient matrix of the mode expansions
and incorporating corrections to minor errors in the original
derivation of [8].

By solving the coefficient matrix as explained in the text,
we have found ridge modes and unbounded modes. However,
when these models are scrutinized, it is apparent that only one
ridge mode, if any, is well bounded at any one time. This
explains why modal interference effects predicted by CMT
have been not observed. This fundamental result makes this
coupler different than the other couplers which rely on the
beating of those two modes, namely, odd and even ridge
modes.

The propagation constant solutions of the CMT and the
vector modal method have been compared for a variety of
configurations. We have found that CMT produces errors in the
computation of transverse propagation constants, particularly
in the case of large slab index or close waveguide proxim-
ity, and thus will produce inaccurate predictions for optical
transmission in many geometries.

In addition, we have investigated the effect of separation
distances between the two waveguides on the propagation
constant and on transmitted power. We found that increasing
the separation distance causes the ridge mode to converge to
the individual waveguide mode, either a slab or a fiber mode
depending on the initial configuration of the coupler. We also
note that our analysis remains valid even in the case of close
proximity where the assumptions of CMT break
down.

The optical fiber used in these calculations has been as-
sumed to support the fundamental mode only, but the model
is applicable to higher order mode solutions as well. Also
an asymmetric PWG can be used in the model by choosing
the cladding index and cover medium index to be
different. Finally, although the spectral response of the device
has not been analyzed here, application of this model to the
design of wavelength filters is straightforward, and shall be
addressed in a future publication.

APPENDIX

These appendices are provided to serve two purposes. First,
we provide mathematical relationships between expansion
coefficients in our mathematical model and give the explicit
forms of the , , , and submatrices. Second,
we provide corrections to typographic errors that we have
identified in [8], the foundation of this formulation.

The relevant errors in [8] that affect the analysis consist of
sign errors and transposition of matrix indexes. In Appendix
B, we provide the applicable expressions, which are quite
similar to those of [8], and the equation sign convention and
index order provided here may be applied to the corresponding
equations in [8] in order to correct the latter. One exception
is (30) of [8], for a parallel is not provided here; the correct
equation should read

(A.1)

APPENDIX A

The following relations between the cladding field expan-
sion coefficients in the Cartesian and cylindrical representa-
tions have been derived by Marcuse [8] and Vassallo [9]. We
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provide them here for completeness

(A.2)

(A.3)

(A.4)

(A.5)

where

otherwise
and

APPENDIX B

As stated in the text, applications of the boundary conditions
at the various interfaces and the equating of the cladding field
representations provided in Appendix A allow the construction
of a coefficient matrix. Upon substitution of these conditions
into two of the boundary equations [we use (5) and (6) for
convenience], the cladding coefficients may be expressed in
a form

(B.1)

(B.2)

Here, and may be regarded as reflection coef-
ficients relating the exponentially increasing and decreasing
components of the cladding fields. Although these terms
may be expressed in closed form, the expressions are quite
cumbersome and best solved in parts. We will not provide their
forms here, although their calculation is quite straightforward.

The terms and are expressed in (A.4) and (A.5) in
terms of and respectively. By substituting these
equations into (B.1) and (B.2), we obtain and in
terms of The (A.2) and (A.3) can be expressed in four
coefficients upon substitution of the and The
last step to complete the eigensystem is to use the relations
between the coefficients of cladding and core obtained at the
core/cladding boundary. Then these two equations, in terms
of and can be arranged in the matrix form of (8).
Here the submatrix expressions have the following forms:

(B.3)

(B.4)

(B.5)

(B.6)

where
We emphasize that these equations are similar in form to

those of [8], with sign errors corrected in (B.4) and (B.5).
Also, the order of the indexes of the and

matrix elements differ from those of the reference, and
an additional term (the ratio of the refractive indexes) has
been incorporated into (B.3).

The matrix elements may be found from the reflection
coefficients defined in (B.1) and (B.2) using

(B.7)

(B.8)

(B.9)

(B.10)

The limits of integration are constrained by the maximum
allowed spatial frequency For a given
eigenvalue the value is constrained by

.

APPENDIX C

The relations below are derived for-TE modes. The
cladding fields are related by the following equations:

(C.1)

(C.2)

(C.3)

(C.4)

where is same for both polarizations.
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The submatrices and assume the follow-
ing integral expressions , , , and for
-TE modes

(C.5)

(C.6)

(C.7)

(C.8)

Then (8) for -TE modes becomes

(C.9)

where the matrix elements are found by substituting
(C.5)–(C.8) into (B.3)–(B.6).
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