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ABSTRACT: A theory is presented to simulate the consolidation of elastic porous media saturated by two
immiscible Newtonian fluids. The macroscopic equations, including mass and momentum balance equations and
constitutive relations, are obtained by volume averaging the microscale equations. The theory is based on the
small deformation assumption. In the microscale, the grains are assumed to be linearly elastic and the fluids are
Newtonian. The bulk and shear moduli of the solid matrix are introduced to obtain the macroscopic constitutive
equations. Momentum transfer terms are expressed in terms of intrinsic and relative permeabilities assuming the
validity of Darcy's law. In one dimension, the governing equations reduce to two coupled diffusion equations
in terms of the pore pressures of the fluid phases. An analytical solution is obtained for a column with a fixed
impervious base and a free drainage surface. Results are presented for cases of practical interest, Le., columns
saturated by oil-water and air-water phases. Results indicate that the presence of a second fluid phase affects
pore water pressure and total settlement.

INTRODUCTION

Many geological formations contain more than one fluid
phase in their pores such as air, water, and oil. The interfacial
tension between these fluids is nonzero and a fluid-fluid inter­
face separates the phases within the pores. Although most
earth materials are saturated by more than one fluid, consoli­
dation of porous media saturated by multiphase fluids received
limited attention from researchers. Almost all studies deal with
soils containing air and water in their pores, i.e., unsaturated
soils. In early studies, Terzaghi's (1923) effective stress prin­
ciple was extended to unsaturated soils to incorporate the ef­
fect of air on pore water pressure. Among them, Bishop's
(1959) principle is the most widely accepted one. Bishop in­
troduced a material parameter to take the presence of air phase
into consideration. Jennings and Burland (1962) showed that
volume changes due to water wetting of the solid phase cannot
be explained by Bishop's expression. For a detailed discussion
of modified effective stress principle, the reader is referred to
Bishop and Blight (1963), Kohgo et al. (1993), and Fredlund
and Morgenstern (1977). However, we should note that these
expressions were obtained based on practical considerations
rather than theoretical ones.

To explain the behavioral alterations in volume change such
as collapse of soil structure, various researchers proposed two
stress states that are treated independently (Jennings and Bur­
land 1962; Coleman 1962; Fredlund and Morgenstern 1976;
Fredlund and Hasan 1979). In this approach, stress states are
chosen as algebraic combinations of the stresses in the solid,
air, and water phases. Then, constitutive relations for volume
changes are expressed in terms of these stress states, e.g., as
a function of the difference between total stress and air pres­
sure, and the difference between air pressure and water pres­
sure (Fredlund and Hasan 1979; Lloret and Alonso 1980).
Fredlund and Hasan (1979) proposed a one-dimensional con­
solidation theory for unsaturated soils by considering volume
changes and fluid flow due to variations in these two stress
states. Their theory consists of two coupled diffusion equations

'Asst. Prof., Izmir Inst. of Technology, Facu. of Engrg., Gaziosman­
pasa Bulvari, No. 16, Cankaya, IZmir, Turkey.

'Prof., Dept. of Civ. Engrg., Texas A&M Univ., College Station, TX
77843-3136.

Note. Associate Editor: James T. Kirby. Discussion open until April
I, 1997. To extend the closing date one month, a written request must
be filed with the ASCE Manager of Journals. The manuscript for this
paper was submitted for review and possible publication on November
21, 1994. This paper is part of the Journal of Engineering Mechanics,
Vol. 122, No. II, November, 1996. ©ASCE, ISSN 0733-9399/96/0011­
1077-1085/$4.00 + $.50 per page. Paper No. 9619.

in terms of air and water pore pressures. Fredlund and Hasan
(1979) have expressed the flow of wetting (water) and non­
wetting (air) phases by Darcy's and Fick's laws, respectively.
Lloret and Alonso (1980) studied swelling and collapse be­
havior of unsaturated soils based on the same principles with
the exception of Darcy's law expressed in terms of respective
relative permeabilities for each phase. Narasimhan and With­
erspoon (1977, 1978a, 1978b) proposed a numerical model for
water flow in deforming unsaturated porous media based on
Richards' equation and Bishop's effective stress principle.
Corapcioglu and Bear (1983) have noted the contribution of
the unsaturated zone above the water table to subsidence of a
deformable phreatic aquifer. Geraminegad and Saxena (1986)
developed a model to predict the coupled transient flow of
heat, water, and air. They solved the resulting equations by
the finite element method. Brutsaert and EI-Kadi (1984) in­
vestigated the relative importance of partial saturation in
ground-water flow by extending Biot's theory to unsaturated
porous media.

Governing equations of compressible porous media can be
obtained by using two different techniques. The first technique
employs the mixture theory that treats the particulate volume
fraction as a constitutive variable for multiphase media like
compressible porous materials (Adkins 1963; Bowen 1982).
The second technique volume averages the microscale gov­
erning equations to obtain macroscale ones (Slattery 1981). In
the present study, we present a theory to simulate the consol­
idation of porous media saturated by two immiscible fluids.
Mass and momentum balance equations as well as the consti­
tutive relations are obtained by volume averaging the equa­
tions and relations expressed at the microscopic scale. The
volume averaging technique has been employed after the de­
velopment of the theorem for volume average of a gradient
(Slattery 1967; Anderson and Jackson 1967; MarIe 1967; Whi­
taker 1967). Although the volume averaging technique has
been used extensively to formulate the flow problems in rigid
porous media (Slattery 1967, 1968; Whitaker 1967), it has
been recently applied to deformable media [e.g., refer to Bear
et al. (1984)]. De la Cruz and Spanos (1985) made the first
attempt to formulate the constitutive relations and balance
equations of wave propagation in saturated porous media. In
a subsequent paper, de la Cruz and Spanos (1989) extended
their theory to include the thermodynamic considerations.
Pride et al. (1992) obtained Biot's (1941, 1956) equations for
satur~ted porous media by employing the volume averaging
techmque. The resulting constitutive relations of Pride et al.
(1992) contained the same parameters as those of Biot and
Willis (1957). As seen in this brief review, there is no theory
available to obtain constitutive relations as well as mass and
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VOLUME AVERAGING THEOREMS

Let L, land r be the characteristic lengths of the macro­
scopic scale, averaging volume, and pore scale, respectively.
The required condition for the volume averaging is (Slattery
1981)

momentum balance equations at macroscale by volume aver­
aging the corresponding microscopic ones. The resulting gov­
erning equations reduce to two coupled one-dimensional dif­
fusion equations. These equations are similar to those obtained
by Fredlund and Hasan (1979) when the external loads are not
functions of time. Finally, we obtain analytical solutions for a
porous column saturated by two immiscible fluids. Specific
cases are studied for air-water and oil-water phases and the
effects of a second phase on pore water pressure and consol­
idation are discussed.

r« l« L (1)

at rest, linearly elastic, isotropic, and experiencing small de­
formations. Then the constitutive relations are given by

Ts = KsV. usl + Gs [ Vus + (Vus/ - ~ V· UsI] (10)

where u" T" K" G" and I = displacement, incremental stress
tensor, bulk modulus, shear modulus of solid phase, and unit
tensor, respectively. The superscript T denotes transpose of a
tensor. We assume that both fluid phases are Newtonian with
constitutive relations

TI = -PJ + fl.1 [VVI + (Vv,/ - ~ V'V,I] i = 1,2 (11)

where v" Ti' PI' and fl., = velocity, incremental stress tensor,
incremental pore fluid pressure, and shear viscosity of fluid
phase i, respectively. In (11), the bulk viscosity of fluids is
assumed to be negligible. The state equations of fluid phases
are assumed to be in the form of

where V = volume of phase i in averaging volume. These two
averages are related by

where V = averaging volume; and RI = region occupied by
phase i. The intrinsic volume average of B j , i.e., the mean
value of B j in R;, is given by

(12)

(15)

(14)

(16)

..!... dPt =.!. dp, i = I, 2
K, dt p, dt

where K I , Pi' and Pf = bulk modulus, density, and pressure
of phase i. The mass balance equations are expressed as

1 dp
- ---! = -V 'VI i = 1,2 (13)
p, dt

By combining (12) and (13), we obtain

1 dP'!'
---'=-V·v· i=I,2
K I dt '

The pressure increment PI can be written as

-Pj = K,V·u, i = 1,2

dVj
V . Tj = pj dt j = s, 1, 2

Since consolidation is a slow phenomenon, the inertial effects
in (16) can be assumed to be negligible. We note that the body
forces do not appear in (16) because equations are expressed
in terms of incremental stresses. The boundary conditions at
the solid-fluid interfaces are expressed as

where UI = displacement of fluid phase i from reference po­
sition, i.e., incremental displacement. We continue with the
momentum balance equation in terms of incremental stresses
and velocities

Vs=V, and Ts'Os+T,'OI=O on Ss' i=I,2 (17)

where subscript (si) denotes interface between solid phase and
fluid phase i; and OJ = unit outward vector normal to interface.
The boundary conditions at the fluid-fluid interfaces are (Slat­
tery 1981)

V,=V2 and TI'O,+T2'02=V,,'Y-2H'Y0 on S'2 (18)

where V"' 'Y, and H = surface gradient operator, interfacial
tension, and mean curvature of interface, respectively. The
terms on the right side of (18) may be interpreted as the rate
of momentum production per unit area of the phase interface.
The first term on the right side incorporates the position de­
pendency of surface tension upon the interface. Therefore, the
surface gradient operator incorporates the spatial variation of
the surface tension along the phase interface because of im­
purities and local temperature variations.

(3)

(2)

(4)

(9)

(8)

i*j,j=I, ... ,N

i *j, j = 1, ... , N

(B) = exiBI

- IJ.B=- BdV'v. ', R,

Vex, = _.!. ( 0, dA
V JS/j

aex 1 Is-' = +- . u·o·dAat V s '
.j

In the present study, we assume that this requirement is sat­
isfied. We continue with the definitions used in volume aver­
aging literature. Let Bi be a field quantity of phase i, then the
volume average of BI is defined as

(BI ) = i J. BI dV
R,

where exi = volume fraction of phase i. Now we set the volume
average theorem for a gradient and a time derivative (Slattery
1967, 1981)

(VBj) =V(Bj) + i { Bjoj dA i *j,j = 1, , N (5)

laB i
\ = a(B) _.!.. ( Bju'oj dA i *j,j = 1, , N (6)

\ at I at vJsu

where Sij = interface between phase i and phase j; OJ = outward
normal of Sij; u· OJ = speed of displacement of Sij into other
phases; and N = number of phases. The theorem of volume
average of a divergence is stated as

(V'B) = V'(Bj) + i LBj'ol dA i *j,j = 1, ... , N (7)
'J

If (BI) is taken to be a constant, (5) and (6) take the following
forms:

MICROSCOPIC CONSTITUTIVE RELATIONS, MASS
AND MOMENTUM BALANCE EQUATIONS

In the present study, the compressible porous medium con­
sists of compressible solid grains, and two immiscible New­
tonian fluids. We assume that there is no mass exchange be­
tween the phases. The solid phase is assumed to be initially

10781 JOURNAL OF ENGINEERING MECHANICS 1NOVEMBER 1996

MACROSCOPIC CONSTITUTIVE RELATIONS

Our next step is to obtain macroscopic constitutive relations
by averaging the microscopic relations. Volume averaging of
(10) yields
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(21)
Since the fluid pressures we are working with are incremental
pressures, as a first-order approximation, we can write

where pr and pr = intrinsic averaged pressures. Pc,p, also
known as capillary pressure, is assumed to be a function of SI
(saturation of the nonwetting phase) only. From now on fluid
phase 1 will be considered as the nonwetting phase and fluid
phase 2 will be considered as the wetting phase. Si is related
to the volume fractions by

(28)

(29)

(30)

S/=~ ;= 1,2
1 - a,

Then

K'j=iL(u'O'+O,u'-~U"O,I)dA ;=1,2 (20)

is second-order tensor with zero trace. Since there is no mass
exchange between the phases, the velocity of the interface is
equal to the velocity of the points at the interface. Hence, by
employing (9), the integral in (19) can be expressed as

.!. Lu . 0 dA = (a - aO) = .la ; = 1 2V 5S S S s'
51;

where

iLT,dV= K, [v.(a,o.) + iLu,'o,dA] 1 + G, {V(a,o.)

+ [V(a,u,)f - ~3 V .(a,o.)1 + K,j} ; = 1,2
(19)

where superscript (0) refers to reference configuration. Since
the displacements are assumed to be small, by definition

(31)

(33)

(34)

(36)

(37)

Eq. (32) does not contain any rotational deformations. For an
elastic porous medium saturated by a single fluid, Pride et al.
(1992) showed that

V.U, = -a, (P. - 15;) _!t.
K r, K,

provided that change in saturation, .lSI' is small.
Deformation of a porous medium can be investigated by

independently considering the volume change behavior (non­
zero trace) and shear deformation behavior (zero trace). In the
following, we first consider the part of constitutive relations
associated with the volume changes. After examining the shear
deformations, we combine these two to finalize the macro­
scopic constitutive relations.

To explore the constitutive relations associated with the vol­
ume changes, we start by introducing Pj

-ajp; = i tr(a/ij) = Kj(ajV·Oj + .laj) j = s, 1,2 (32)

where Kr, is defined as "frame" or "drained" bulk modulus.
We assume that in the case of two fluids, Pf is given by

and

Pf = SIPI + (l - SI)P2

Then, we can rewrite (33) as

V .u, = -a, [p. - S):;; - (1 - SI)?;] _ [S)~ + (l - SI)?;]
K r, K,

(35)
Note that from (29) and (30) we can write

.lal = MSI(l - a,)] = SI(l - a,) - S?(l - a~) = (l - a~).lSI

Since we have already assumed that .lSI and .la, are small,
the product of these terms can be neglected. Eqs. (31), (32),
and (35) can be rewritten as

(23)

(22)

(24)

(26)

(27)

J _ aK ij

ij - at

Then volume averaged constitutive relations for the solid
phase (19) can be expressed as

a,'T; = K,(a,V· 0. + .la,)1 + G, [ a,Vu, + a,(Vo.)T

- ~ a,V·o.l + K"] ; = 1, 2

where T. = intrinsic averaged incremental stress of solid phase.
Similarly, the volume averaged constitutive relations for fluid
phases are

ajTi = Kj(a/V· U; + .laj)1 + ILj [ ajVV; + a/(VV;f

- ~ajV'V;1 + J"+ Jlt] ;"# k,; = 1,2

where

Furthermore, employing the no-slip conditions (17) we can
write

Jij = i Li (VjOj + OjVj - ~ Vi' OJ) dA (25)

Under the small deformations assumption, the interfaces of the
phases are not allowed to experience large deformations. Then
by using (20) and (25), and assuming au;lat » Vj' VU" we
can write

KI} and Jij couple the shear deformation of the phases. How­
ever, we must note that physical meanings of the shear mod­
ulus of the solid phase and viscosity of the fluid phases are
totally different. In almost all studies associated with the de­
formation of the solid matrix, these coupling terms are ne­
glected assuming that all shear resistance is provided by the
matrix only.

The microscopic boundary condition at the fluid-fluid inter­
face [refer to (18)] shows that there is a jump in the stresses
of the immiscible fluids because of the presence of interfacial
tension and curvature of the interface. Assuming smooth pres­
sure variations within the averaging volume, we can write

JOURNAL OF ENGINEERING MECHANICS 1 NOVEMBER 1996/1079
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(39)
(53)

• For the wetting fluid

Eqs. (52)-(54) and (38)-(42) constitute the complete set of
constitutive relations of the porous media. These equations can
be reduced to a case with a single fluid phase by setting
dPcapldS, ~ 0 (i.e., as, ~ 0) and S, = O. In this case, the
definitions ofthe material constants are identical to those given
by Biot and Willis (1957). We should note that in the present
study we are considering a linearly elastic medium experienc­
ing deformations. In some practical situations, the material
parameters are highly nonlinear functions of state variables.
The sum of volume-averaged stresses in all phases (52)-(54)
yields the so-called "total stress" definition in soil mechanics.
Hence

- A, - - _
-asPs = - K [SIP, + (l - S,)Pz] + Kr,V 'Us

s

V·u, = -d"V·us - d 12P, + d 13 Pz

V . Uz = -dz!V . Us + dzzP, - dZ3 P Z

where

A,
d" = ---'-­

Ks(1 - as)

d _ K;(l - as)[K, + AzI(l - S,)] + dPcapldS,SfK,A,

'z - K,K;dPcapldS,S,(l - as)

d
_ K;(I - as) - AzA!

'3 - Z
K sdPcapldS!S,(1 - as)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(54)

(55)

aa = (a.; - as) [P - S P - (l - S )P] (50), K
f
, K

s
s " 1 Z

(56)

(57)

(58)

K f ,
[3=1--

K s

For a porous medium saturated by a single phase fluid, the
effective stress (Terf> is defined as

where 13 = a constant depending on elastic properties of me­
dium. 13 = 1 corresponds to the effective stress principle intro­
duced by Terzaghi (1923). Later, Biot and Willis (1957),
Skempton (1960), and Nur and Byerlee (1971) proposed

where X = material parameter. Bishop and Blight (1963) in­
vestigated the relationship between X and Sz, and observed
almost a linear variation.

The idea behind the effective stress principle is to find the
intergranular stress that causes the deformation of the solid
matrix. If effective stress on the solid matrix is known, the
problem reduces to finding the response of the solid matrix by
using the "drained" matrix parameters. Hence, (55) can be
rewritten as

for a linearly elastic solid matrix. Usually the bulk modulus
of the solid grains, K" is much greater than the bulk modulus
of the frame, K r,. Then 13 can be taken as unity for most cases.
The lower limit of 13 is (1 - as) since K" cannot be greater
than as K s . Similar effective stress principles were proposed
for porous media saturated by two immiscible fluids. Bishop
(1959) proposed

('T,) = ('Terr) - (I - ~:) [SIP, + (l - S!)Pz]I (59)

Eq. (59) is a combination of (56), (57), and (58) for X = Sz
and it can be regarded as a generalized effective stress prin­
ciple for linearly elastic porous media saturated by two im­
miscible fluids .

(48)

(47)

(49)

(51)

• For the solid matrix

d _ K;(l - as) - AzA,

zz - K;dPcapldS, (l - S,)(l - as)

d
_ K;(l - as)(Kz + AzIS,) + dPcapldS,(l - S,)zKzA,

Z3 - Z
KzKsdPcapldS, (l - S,)(l - as)

where TJ) = deviatoric stress of phase j. In other words, the
fluids are viscous but the mechanical shear response of the
porous medium is provided by the solid matrix only. The vis­
cosities of the fluids will be taken into account later when we
discuss the macroscopic momentum balance equations since
they contribute to the energy losses in the system. Then, we
can finalize the constitutive relations as

We also note that - aas is equal to the porosity change.
Our next step is the evaluation of the solid matrix's shear

modulus, Gr,. As noted earlier, we assume that all shear resis­
tance of the porous material is provided by the solid matrix.
This assumption uncouples the shear deformation of the
phases, i.e., Kij = Jij = O. If an external shear stress, Teo is
applied to the material, then by employing (23) we can write

dPcap
A, = a.,K., - K rr and A z = dS, S,(l - Sf)

These constitutive relations simplify significantly if the solid
grains are assumed to be incompressible, i.e., K s ~ 00. We
obtain an expression for aas by substituting (35) in (32) where
j=s

(60)

_ { _ A, - -}
asTs = K"V· US - K

s
[SIP! + (l - S,)Pz] I

+ Gr, [VUs + (Vu,f - ~V'UsI]

• For the nonwetting fluid

(52)

MACROSCOPIC EQUILIBRIUM EQUATIONS

Using the averaging theorems, the volume average of mac­
roscopic momentum balance (16) is obtained as

I r .
V'('Tj ) + VL VOj dA = 0 1= S, 1,2

J'

1080 I JOURNAL OF ENGINEERING MECHANICS I NOVEMBER 1996
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(74)

(75)

(78)

Eqs. (67), (68), and (69) constitute the final set of equations
with the unknowns p., P2 , and US'

ONE-DIMENSIONAL CONSOLIDATION PROBLEM

In general, (67)-(69) have five unknowns: PI' P2 , and three
components of the solid matrix displacement, US' For a one­
dimensional consolidation of a column, (67)-(69) reduce to

oPI oP2-SI(I - a,)dI2 - + SI(I - a,)d13 -ot at

o ( Kkrl aP I ) a2
w,

= - -- - + (1 - a,)(1 + dll)SI -- (70)az fLI oz oz at
ap, op2(1 - SI)(1 - a,)d22 - - (I - S\)(1 - a,)d23 -at at

a ( Kkr2 ap2) a2
w,= - -- - + (1 - a,)(1 + d 21)(1 - SI) -- (71)az fL2 az az at

:z [(Kcr + ~ GC') aa:']

a {( Kcr) - - }- az 1 - K, [SIPI + (1 - SI)P2] = 0 (72)

where W s = vertical displacement of solid matrix. Eqs. (70)­
(72) can be solved for a two-phase saturated column with fixed
impervious base and free drainage surface. We take the z-axis
positive downward. The thickness of the column is ho• We
assume that material parameters are constant and uniform
along the column. Since the total stress is constant at any
depth, (55) can be rewritten as

( 4) ow, ( Kcr) - --Po = Kcr + - GCr - - 1 - - [S'P I + (I - SI)P2]
3 az K,

(73)

where Po =applied stress at top, Z =O. Substitution of (73) in
(70) and (71) yields

where

a21 = -(I - SI)(1 - a,)d22

(1 - a,)(1 + d21)(1 - Kfr/K,)(1 - SI)SI
+..:....-_~..:....-_-.:.:.~---'.:....-..::.:....:;--~

Kcr + 4GcJ3

(64)

(65)

(68)
and

Kkrl
(80)el=--

Il-.

Kkr2
(81)e2=--

(69) fL2

(67)

(61b)

(61a)

(62b)

The second term on the left side represents momentum transfer
between phases. Boundary conditions at the solid-fluid inter­
faces [refer to (17)] imply that

.!. LT'° dA = _.!. LT'° dAV " V I I
5,) 5 11

i r T,'O, dA = -i r T2'02 dA
J~2 L21

Assuming that Darcy's law is valid, we can write the following
by substituting (59) in (60):

1 L (I - a,)2S~fLl - - V-
-- TI '01 dA = (VI - v,) =(I - a,)SI PI

V 5" Kkr,

V'(Tr >= 0

FINAL SET OF EQUATIONS

Based on the set of macroscopic constitutive relations and
momentum balance equations, equations governing the con­
solidation of a porous medium saturated by two immiscible
fluids can be stated. By applying the divergence operator to
(62) we have

- - (Kkrl V-)(1 - a,)SIV, (VI - v,) =V· --;:;; PI

- - (Kkr2 V-)(1 - a,)(1 - SI)V'(V2 - v,) = V· -~ P2 (66)

In writing (65) and (66), we assume that gradients of volume
fractions are small. By employing the constitutive relations
given by (41) and (42), we eliminate the fluid velocities from
(65) and (66) to obtain

(62a)

where K = intrinsic permeability of medium; and krl = relative
permeability of phase i. Because of the boundary condition at
the fluid-fluid interfaces [refer to (18)] we can write

i r TI'OI dA *" -i r T2'02 dA (63)
JS12 JS 21

These terms result in the cross permeabilities known as the
Yuster effect in the literature (Yuster 1953; Scott and Rose
1953). The Yuster effect can be neglected for practical pur­
poses (Bear 1972). Summing the momentum balance of the
solid and fluid phases [refer to (60)], we obtain the macro­
scopic equilibrium equations of the porous medium

aP I aP2-SI(I - a,)dI2 - + SI(I - a,)d13 -at at

=V· ( - K::I VPI) + (1 - a,)(1 + dll)SIV,V:;

apt op2(1 - SI)(1 - a,)d22 - - (1 - SI)(1 - a,)d23 -at ot

= V· (- K::2 VP2 ) + (1 - a,)(1 + d 21 )(1 - SI)V,V

Then, substitution of (55) in (64) yields

V [(Kcr + ~ Gcr) V.U,] + V'(GcrVu,)

- V { (1 - ~:) [SIP. + (1 - SI)P2]} = 0
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Eqs. (74) and (75) are the governing equations of one-dimen­
sional consolidation when external loads are not functions of
time. These equations are similar to those obtained by Fred­
lund and Hasan (1979) for unsaturated soils. However, the
constants are not similar because of different approaches used
in the derivations. The boundary conditions are

Pt(Z, t) = 2: (A~e-r,t + A~e-r2t)sin(AnZ)
n-O

P2(Z, t) = 2: (A~e-r,1 + A~e-r2t)sin(AnZ)
n_O

(96)

(97)

(85)

A~ 2 4ele2A~
~2 (alle2 + a22et) - -~--

(102)

(99)

(98)

(100)

(101)

(103)

where

The total settlement is calculated by

1"" "'-uW,
8 = - -dz

o az

P t = P2 = 0 at z=O (82)

aPI ap2
Z = ho (83)-=-=0 at

az az

PI - P2-..:.._--=- = 0 at t = 0
dPcap/dSt

Substitution of (73) and (85) in (84) gives the initial condition

- - K
PI = P2 = Po ' = Pt at t = 0

K" + 4G,,13 + K,(1 - K,,1K,)
(86)

The general solutions of (74) and (75) can be expressed as
Fourier series

and

Initial changes in volume fractions are zero, Le., /lex. = /lSt =
o at t = O. Then, from (38) and (39) we can write

where

Pt(z, t) =2: an(t)sin(AnZ)
n-O

P2(Z, t) =2: bn(t)sin(AnZ)
n-O

(87)

(88)

Substitution of (73), (96), and (97) in (103) yields

1 - K,,1K,

K" + 4G,,13

.{i [SIA~ + (l - SI)A~]e-rll + [SIA~ + (l - St)A~]e-r21}

n_O All
(104)

The initial values of an(t) and bn(t) are obtained from (86) as

Value
(3)

Symbol
(2)

TABLE 1. Model Parameters

Note that the first term is the final settlement of the column
when t ~ 00.

The parameters in Table 1 are used to obtain numerical re­
sults. Mechanical properties of the solid material are taken
from Ishihara (1967) obtained for loose sand. Van Genuchten's
(1980) closed form expressions for the capillary pressure-sat­
uration relations are employed to obtain dPca/dSt in (31). Van
Genuchten (1980) proposed that

S2 - S'2 = [1 + (a.pcap)n]-m (105)
Sm2 - Sr2 100

where Pcap = capillary pressure (N/m2); S2 = water saturation;
Sm2 = upper limit of water saturation in a two-phase medium;
Sr2 = irreducible water saturation; m = 1 - lin; and a. and

Parameter
(1 )

(89)

(91)
2Pt

an(O) =bn(O) =A h
n 0

(2n + 1)".
An = 2h

o

Substitution of these general solutions in (74) and (75) yields

The application of the Laplace transformation to (90) yields

[
saIl + elA~ Sat2 2] [~(S)] = [all a12] [an(O)]

Sa2t sa22 + e2An bn(s) a2\ a22 bn(0)
(92)

where

The inversion of (93) and (94) yields

10821 JOURNAL OF ENGINEERING MECHANICS 1 NOVEMBER 1996

0.0011 GPa
37.04 GPa
0.007 GPa
10-11 m 2

0.7
2.08 GPa
10-3 Pa' s
1.1 GPa

0.000647 Pa' s
0.14 MPa

1.8 x 10-6 Pa' s
200,000 Pa

10m

K"
K,
G"
K

Bulk modulus of solid matrix
Bulk of solid grains
Shear modulus of solid matrix
Intrinsic permeability
Volume fraction of solid phase
Bulk modulus of water
Viscosity of water
Bulk modulus of oil
Viscosity of oil
Bulk modulus of air
Viscosity of air
External load
Thickness of column

(95)

The solutions of the algebraic equations are

_ an(O)[s~ + e2A~(all + al2)]
an(s) = 2 2 4 (93)

s ~ + sAn(alle2 + a22et) + ete2An
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CASE 1: CONSOLIDATION OF POROUS COLUMN
SATURATED BY OIL AND WATER PHASES

0.00

\
\
\
\
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\

-- t= 50 seconds
........ t-100 seconds
---- t=300 seconds
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FIG. 3. Variation of Porosity with Depth for Water Saturation
5.=0.30

FIG. 2. Variation of Change In 011 Saturation with Depth for
Water Saturation 5. = 0.30

frame bulk modulus is employed, i.e., Kc, = asK.. the change
in porosity is zero.

E
o
:;;
.8 6

<1J

:5

CASE 2: CONSOLIDATION OF POROUS COLUMN
SATURATED BY AIR AND WATER PHASES

10..,-----n;:---------------,

In the second case, the column is saturated by air and water
phases. Material properties are given in Table 1 ("Clark's Ta­
bles" 1971). Parameters of (l05) and (106) are obtained as
a = 0.04, n = 5, Sr2 = 0.10, and Sri = 0.05. Fig. 4 illustrates
the total settlement of a column fully saturated by water and
of a column containing 5% air saturation. As shown in Fig. 4,
although the final settlement and settlement at early times are
not affected by the air presence, there is up to a 5% increase
in settlement due to 5% air saturation. As seen in Fig. 5, the
dimensionless excess pore pressure distribution is affected by
the air presence. For example, at t = 10 s, middepth dimen­
sionless excess pore pressure decreases by 1% from 0.99 to
0.98 as the water saturation decreases from full saturation,
S2 = 1.00 to S2 =0.95. At a later time, t =300 s, the middepth
dimensionless excess pore pressure decreases by 15% as water

1.000.800.600.20

n = material properties. For the relative permeabilities we use
the following expression (Corapcioglu and Hossain 1990):

k - [(I - SrI) - s2f d k _ (S2 - Sr2)3 (106)
rl - (l - Srl)2.3 an r2 - I - Sr2

where SrI =irreducible saturation of nonwetting phase. We will
consider two cases as examples of practical problems. The first
example is a porous column of an oil reservoir saturated by
oil and water. The second is a column of unsaturated soil, i.e.,
air and water phase occupying the pore space.

E
o

] 6

<1J
U
c
.8en
o 2

E
.g 4

<1J

:5

We first analyze consolidation of a porous medium saturated
by water and oil, characterized by material parameters of ben­
zene obtained from Clark's Tables ("Clark's Tables" 1971).
Parameters of (105) and (106) are obtained as a = 0.025, n =
10, Sr2 =0.08, and SrI =0.10 after curve matching the typical
capillary pressure-saturation curve given by Wilson et al.
(1990). The variation of dPca/dS\ with Slo obtained from
(105), is used to relate the pore pressure of the wetting phase
to the pore pressure of the nonwetting phase by (31). As seen
in Fig. I, the dimensionless pore water pressure distribution
along the column is dependent on water saturation. As ex­
pected, for larger water saturation values, excess water pres­
sures are significantly higher. The effect of water saturation,
S2' is even more dramatic with increasing time. For example,
at t = 10 s, middepth (z = 5 m) dimensionless excess pore
pressure (P2IP't) increases by 1% from 0.98 to 0.99 as the
water saturation increases from S2 = 0.2 to 0.5. However, at a
later time (t = 300 s), the middepth excess pore pressures in­
crease by 45 and 200% as S2 increases from 0.2 to 0.3 and
0.5, respectively. This reflects a substantial effect of oil pres­
ence as the medium consolidates. Then, change in oil satura­
tion, SI can be calculated from (31). As shown in Fig. 2, at
all times the decrease in oil saturation, Slo along the column
is relatively small. The increase in water saturation, S2' is also
equally small. Change in (l - a.) (porosity) is calculated from
(38). For parameters given in Table 1, we observe the variation
in porosity, as shown in Fig. 3. In 300 s, we observe a change
in porosity from 0.3 to 0.2975 at the lower boundary. An in­
spection of (50) indicates that when the upper limit of the

0.40
P2/PO'

FIG. 1. Dimensionless Excess Pore Pressure Variation with
Depth at t = 10 and 300 s for Column Saturated by Oil-Water
Phases
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CONCLUSIONS

APPENDIX. REFERENCES

the water saturation increases from 0.2 to 0.3 and 0.5, respec­
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and water phases, the middepth dimensionless excess pore
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saturation decreases by 5%. This demonstrates the effect of air
presence on the total settlement and pore water pressure.
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We obtained macroscopic equations governing the consoli­
dation of porous media saturated by two immiscible fluids by
volume averaging the microscopic constitutive relations, and
mass and momentum balance equations of respective phases.
Momentum transfer terms are expressed in terms of intrinsic
and relative permeabilities assuming the validity of Darcy's
law. In one dimension, the governing equations reduce to two
coupled diffusion equations in terms of the pore pressures of
the fluid phases. An analytical solution is obtained for a col­
umn with a fixed impervious base and a free drainage surface.
Results were presented for cases of practical interest, i.e., col­
umns saturated by oil-water and air-water phases. It has been
shown that the presence of a second fluid phase affects pore
water pressure and total settlement. For example, it has been
noted that in a column saturated by oil and water phases, the
middepth excess pore pressures increase by 45 and 200% as
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