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Abstract. A study of body waves in fractured porous media saturated by two fluids is presented. We 
show the existence of four compressional and one rotational waves. The first and third compressional 
waves are analogous to the fast and slow compressional waves in Biot's theory. The second compres- 
sional wave arises because of fractures, whereas the fourth compressional wave is associated with 
the pressure difference between the fluid phases in the porous blocks. The effects of fractures on the 
phase velocity and attenuation coefficient of body waves are numerically investigated for a fractured 
sandstone saturated by air and water phases. All compressional waves except the first compressional 
wave are diffusive-type waves, i.e., highly attenuated and do not exist at low frequencies. 
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1. Introduction 

Biot ' s  work  on wave propagat ion in saturated porous media  dominated the field 
over  three decades and influenced the direction of  future research more  than any 

other person who ever  worked in this area (Biot, 1956a,b). Biot ' s  theory predicts 
two compress ional  waves  and one rotational wave in a saturated porous medium.  

The first compress ional  wave  is analogous to the compressional  wave  in elastic 
solids. The  second compress ional  wave is s lower and highly attenuated. Because 
of  its highly dissipative behavior, it took more than 20 years to observe the second 
compress ional  wave  (Plona, 1980). 

Brutsaert  (1964) extended Biot ' s  theory and predicted three compress ional  
waves  in elastic porous media  saturated by two fluids. The third compress ional  

wave  was also predicted by Garg and Nayfeh (1986), Santos et  al. (1990a,b), and 
Tuncay and Corapcioglu (1996, 1996a) employed  the volume averaging technique 

to derive the macroscopic  constitutive relations as well as the macroscopic  mass  
and m o m e n t u m  balance equations. Their  analysis showed that the third compres-  
sional wave  is associated with the pressure difference of  the fluid phases. The third 
compress ional  wave  has the lowest  velocity and it is highly attenuated like the 
second compress ional  wave. Wave propagat ion in saturated porous media  has been 
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extensively studied, e.g., Bedford and Stem (1983), Nakoryakov et al. (1989), Bear 
and Corapcioglu (1989). A review of the subject has been presented in Corapcioglu 
(1991). 

Deformable fractured porous media have been the subject of very few studies. 
Aifantis and co-workers published a series of papers on consolidation of saturated 
fractured porous media (Wilson and Aifantis, 1982; Beskos and Aifantis, 1986; 
Khaled et al., 1986). The phenomenological coefficients of Aifantis' theory were 
expressed in terms of measurable coefficients by Wilson and Aifantis (1982). 
Uniqueness and general solutions were investigated by Beskos and Aifantis (1986). 
Wilson and Aifantis (1984) extended Aifantis' work to study wave propagation 
in saturated fractured porous media and predicted three compressional waves. 
The third compressional wave arises because of the fluid phase in the fractures 
(secondary pores). Similar results were obtained by Beskos who published a series 
of papers on the dynamics of fractured porous media (Beskos, 1989; Beskos et al., 
1989a,b). 

In this study, we investigate the types and characteristics of waves in infinite 
isotropic fractured porous media saturated by two fluids based on the governing 
equations derived by Tuncay and Corapcioglu (1996). We present a quantitative 
investigation of body waves for a fractured sandstone saturated by air and water 
phases. 

2. Final Set of Governing Equations 

We start by introducing the constitutive relations and governing equations for frac- 
tured porous media saturated by two fluids obtained by Tuncay and Corapcioglu 
(1996). In the derivation, the fluid phases are assumed to be immiscible and at 
rest. Furthermore, the solid phase is assumed to be isotropic, experiencing small 
deformations and providing all shear resistance of the porous medium. Momentum 
transfer terms are expressed in terms of intrinsic and relative permeabilities assum- 
ing the validity of Darcy's law in fractured porous media. The theory is limited 
to low frequency wave propagation. The medium is assumed to have fractures 
which are referred as secondary pores. The pores of the nonfractured part of the 
porous medium are referred as primary pores. The secondary pores are saturated by 
wetting fluid whereas the primary pores are saturated by wetting and nonwetting 
fluids. The mass transfer between the primary pores and secondary pores per unit 
volume is approximated by Tuncay and Corapcioglu (1996) 

1 fs2 p2(u - v2) -n2 dA 
V .( 

1 fs  p 2 ( u - v l ) ' n l d A =  R p z ( P f -  P2), 
= - - V  .f2 

(1) 
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where R is a material property of the porous medium and the wetting fluid, P2 
and/sf  are the pressures in fluid phase 2 and phase f ,  respectively. From now on, 
subscripts s, 1,2 and f will refer to the solid phase, nonwetting phase, wetting phase 
in the primary pores, and the fluid phase in the fractures, respectively. Barenblatt 
et al. (1960) proposed R as 

R -  cK]A~2, (2) 

#2 

where A is the area of fracture-block contact per unit volume, c denotes a dimen- 
sionless shape factor of the fractured medium and Ky is the permeability of the 
fractures. The macroscopic constitutive relations are obtained as 

a l lV �9 us + �9 Ul + al3V �9 ~2 q- a14 ~7 �9 uf + al2V 

(3) 

al/Sa a21V �9 us + a22 ~7 �9 ~1 + a23V �9 u2 + 

+a24V'?zf + (a24\af a23) m ' a 2  (4) 

a2/52 = a31V-usq-a32V'~ l  q-a33V'u2q- 

-t-a34V'uf -t- (a34\ a f a33) M ' a 2  (5) 

af[gf = a 4 1 V - ~ s + a 4 2 V . ~ l - i - a 4 3 V - u 2 +  

t' 
q-a44V �9 uf q- [a44 

\ a f  
a43o~2 ) M. (6) 

The reader is referred to Tuncay and Corapcioglu (1996) for expressions of aij 
in terms of material parameters: I(~, bulk modulus of the solid grains; Kyr, bulk 
modulus of the fractured porous medium; Kf'~, bulk modulus of the nonfractured 
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porous medium; ozi, volume fraction of phase i; $1, saturation of the nonwetting 
fluid phase; K1, bulk modulus of the nonwetting fluid phase;/s bulk modulus 
of the wetting fluid phase; Pc~ap, derivative of the capillary pressure-saturation 
relation with respect to 5"1; Gf~, shear modulus of the solid matrix and F, a material 
propertiy associated with the changes in volume fraction of fractures. M is given 
by 

OM 
Ot - R ( P I  - / 5 2 ) .  (7) 

We note that p2OM/Ot is equal to the mass transfer rate of wetting fluid phase 
between the primary pores and fractures. The volume averaged momentum balance 
equations are obtained as 

<o. Ps) - ~  -- V a l l  -1- V ' ' a s - { -  a l 2 V " ~ l  q - a l 3 V " a 2 q -  

+a'4  

+Ct( 'Ol  - Vs) -1-" C2('o2 - Vs) -}- C3(g2f - Vs), 

, 02"~1 
Pl)  - ~  -- V (a21V �9 "as + a22V �9 "al + a23V �9 '~2 + 

-[-a24V. gzf -[- ( a24 a231 M )  - C , ( ~ I  - ~s) , 
\ ce s c~2 I 

,02'~2 
P2) ~ -- V ( a 3 1 V . u s  + a 3 2 V ' ~ l  q - a 3 3 V ' u 2  + 

_t_a34V.fz f q_ ( a 3 4  a33~ 
\ ~ f  ~2 ,] 

02fZf 
(pf) Oqt2 --~ V (a41V �9 ~'s -[- a42 ~7" ~,1 q" 

q-a44V . fzf -Jr- ( a44 a43"~ 
\ OZf O~ 2 f 

where 

(1 - ~ - (~s)2S12.1 
C1 Kpk~l 

M )  - C2(~2 - vs), 

a43V �9 u2 -/- 

M~ - C 3 ( ~ / -  ~s), 
/ 

(8) 

(9) 

(lO) 

(11) 

(12) 
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(1 - oe, - o e f ) 2 ( 1  - $ 1 ) 2 # 2  
C2 = 

I~pkr2 
(13) 

c~}#2 (14) C3 = K I  " 

In Equations (13)-(14), / i  v is the intrinsic permeability of the nonfracmred porous 
medium and kri is the relative permeability of phase i, KI is the intrinsic perme- 
ability of the fractures and #i is the viscosity of phase i. Equations (5)-(11) form 
the final set of 15 equations with 15 unknowns ~,, gl,  ~2, ~f,  Py, P2 and M. 

3. Compressional Waves 

To investigate compressional waves, we apply divergence to Equations (8)-(11) to 
obtain 

02gs 
(Ps) Ot 2 

+ (a~4 a13] V2 M 
\ O~f O~ 2 ] 

(o s %) 
+ C3 Ot Ot ) ' 

_ a]'lVZg, q- a12V2~'l q- a13V2C2 q- al4V2gf q- 

(0 , :2)  r (981 OqCs ") _~_ C 2 -}- 
+ cl  \ 0 7  at j t,-~7-) 

(15) 

Oq2E 1 
(Pl) Oqt2 

0q2C2 
(P2) O, 2 

02~ f 
(Pf) Or2 

_ a21V2gs o r- a22V2r + a23V2~'2 q- a24V2cf --}- 

+ a24 a23 V 2 M - C 1  
O~ f O~ 2 ] 0]5 Ot ' 

a31V26s q-- a32V261 q- a33V262 q- a34V2gf + 

= a41V2gs Jr- a42V2~'l + a43V2e2 -]- a44V2ef q- 

(o f a44 a43~ V2 M _ C3 
+ af a2/  \ Ot Ot J 

(16) 

(17) 

(18) 
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where ej = V �9 aj  and a~l = all qt_ 4Gyr/3.  We state the dilatational plane 
harmonic waves propagating along the z direction by 

sj = Bj e i(~z-wt),  

Pf = Aj e i(~z-r176 

M = Bm e i(~z-c~ 

Pp = Ap ei(O-'~ 
(19) 

where Bj, Bin, Ay and Ap are the wave amplitudes, ( is the wave number, co is the 
frequency and i is the imaginary number. The phase velocity is defined as c = co/(r 
where ~ is the real part of the wave number. The imaginary part of ~ is called the 
attenuation coefficient. Substitution of Equation (19) in Equations (5)-(11) yields a 
set of homogeneous algebraic equations and for nontrivial solution the determinant 
of the coefficient matrix must be equal to zero. The coefficient matrix is obtained 
as shown in Equation (20) opposite. 

For a given co, the determinant of the coefficient matrix equated to zero, is 
known as the 'dispersion equation' in wave mechanics literature. It is an eighth- 
order polynomial in terms of wave number. The polynomial contains only the even 
powers of the wave number. Because the amplitude of the waves should decrease 
as they propagate, imaginary part of the wave number must be greater than zero. 
This implies the existence of four compressional waves. Since the determinant of 
the coefficient matrix is extremely lengthy, the reader is referred to Tuncay (t995) 
for the explicit expression of the determinant. When M = 0, i.e., no mass exchange 
between the porous blocks and fractures, the number of unknowns reduce to twelve 
(gg, ul,  u2 and ~f)  and the coefficient matrix reduces to a four by four matrix. 

4. Rotational Waves 

To investigate the rotational waves, we apply curl operator to Equations (8)-(11) 

(ps) or2 
oa.) oa.) 

gi ] + 

Ofly Ofl~) (21) 
+C3 Ot Ot ) ' 

(Pl) Oq~: 2 -- ~ , ~ "  , (22) 

02~-~2 ( 0 ~ 2  00__~t s ) 
(p2) 3 7  - - c 2  \ ~  (23) 

OZft y ( Of~ y 
{PJ) b 7  - - c 3  \ oft~Ot ) ' (24) 

where ftj  = V • ~j. Substitution of harmonic waves in (21)-(24) yields 
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I - - O j  
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Similar to compressional waves, the dispersion equation is the determinant of the 
coefficient matrix (Tuncay, 1995). The determinant is a second-order polynomial 
containing only even powers of the wave number which implies the existence of 
one rotational wave in a fractured porous medium. 

/ i  
/ 

o e ,~ / /  

~ ' 

0 . 2  

o .o  o .o  o.'= o.'4 o,'6 o.'B , .o 
W a t e r  s e t u r ~ t i o n  

Figure 1. Relative permeability curves of a 
sandstone saturated by air and water phase 
(after Wyckoff and Botset, 1936). 
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Figure 2. Frequency dependence of the phase 
velocity of P1. 
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Figure 3. Frequency dependence of the phase 
velocity of P2. 
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Figure 4. Frequency dependence of the phase 
velocity of P3. 
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Table I. Material parameters of a fractured sandstone saturated by air and water 
phases. 

267 

Parameter Symbol Value 

Bulk modulus of fractured medium Kj,~ 
Bulk modulus of nonfractured blocks K ~  
Bulk modulus of solid grains K~ 
Shear modulus of solid matrix GI~ 
Density of solid grains p~ 
Intrinsic permeability of fractures I<y 
Intrinsic permeability of nonfractured medium Kp 
Volume fraction of solid phase a8 
Density of water p2 
Bulk modulus of water K2 
Viscosity of water /z2 
Density of air pl 
Bulk modulus of air l~'l 
Viscosity of air /z 1 
Rate coefficient of mass transfer R 
A dimensionless material parameter F 

1.44 GPa 
3.00 GPa 
35.00 GPa 
1.02 GPa 
2650 kg/m 3 
10 -11 m 2 
10 -13 m 2 

0.77 
997 kg/m 3 

2.25 GPa 
10 -3 Pa.s 
1.1 kg/m 3 

0.145 MPa 
1.8 x 10 -6 Pa.s 
2 x 10 -I6 1/Pa.s 

0.8 

0.5 

-t 
& 
~0.4 

0.2 

P4 

$ 1 = 0 1  volume f r o c t i O n o ~ o f r O c t u r e s  
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..... 0.02 
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Figure 5. Frequency dependence of the phase 
velocity of P4. 
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Figure 6. Frequency dependence of the phase 
velocity of S. 

5. N u m e r i c a l  R e s u l t s  

T h e  d i s p e r s i o n  equa t ions  for  c o m p r e s s i o n a l  and  ro t a t iona l  w a v e s  are  the  de ter -  

m i n a n t s  o f  E q u a t i o n s  (20) and  (25) equa ted  to zero,  r e spec t ive ly .  F o r  a g i v e n  

f requency ,  these  equa t ions  are  s o l v e d  for  the  wave  number .  The  p h a s e  v e l o c i t y  is 

de f ined  as c = a ; / ~ ,  w h e r e  ~r is the  real  par t  o f  the  w a v e  number .  T h e  i m a g i n a r y  

par t  o f  ( is  c a l l e d  the  a t t enua t ion  coeff ic ient .  T h e  ma te r i a l  p a r a m e t e r s  in  Tab le  I cor -  

r e s p o n d  to a f r ac tu red  s a n d s t o n e  sa tu ra ted  b y  ai r  and  wa te r  phases .  Van G e n u c h t e n ' s  
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(1980) closed form expressions for the capillary pressure-saturation relations are 
employed to obtain/Zctap which appear in aij expressions. Van Genuchten proposed 
that 

( ( O~Pcap ~ n~ -m 
5,2 - -  5,T2 _ 1 + (26) 

5,raZ -- 5,r2 \ 100 J J ' 

where Pcap is the capillary pressure (N/m2), $2 is the water saturation, 5,ra2 is the 
upper limit of  water saturation, 5,T2 is the irreducible water saturation, ra = 1 - 1/n,  
and o~ and n are material parameters. Realizable parameters for a sandstone are 
o~ = 0.025, n = 10 and S~2 = 0.0. We use the relative permeability curves of  
Wyckoff and Botset (1936) for a sandstone shown in Figure 1. 

Figures 2 -6  illustrate the frequency dependence of  body waves for different 
values of  volume fraction of  fractures c~y when the air saturation 5,1 = 0.1. From 
now on, we will represent the compressional waves by 'P' and rotational wave by 
'S'. Since there are four compressional waves, we will number them according to 
the magnitude of  their phase velocity, P1 being the fastest. As seen in Figure 2, as 
the volume fraction of  the fractures increases, the phase velocity of P1 increases. 
However, the increase is not very significant. Comparing Figures 2-5,  we conclude 
that the volume fraction of fractures causes a notable change in the phase velocity 
of  P2 only. Especially, the phase velocities of  P3 and P4 appear to be independent 
of the volume fraction of  fractures. We should note that P2 vanishes when as the 
volume fraction of  fractures approaches zero. We conclude that P2 is associated 
with the fluid phase in the fractures and vanishes when the medium is nonfractured. 
As seen in Figure 6, the rotational wave 5' has the second highest phase velocity. 

1 4 8 o  

~> 2 -  

8 
~_ O . l O  

S l = 0 . 1  
Frequency ~ 1 0 0 0  H z  

P4  

O.05  

~176176 o.6~ 0.82 o.Ss 
V c l , , m e  f r a c t i o n  of f ractures 

Figure 7. Effect  o f  v o l u m e  o f  fractures on the 
ve loc i ty  o f  P1,  P3, and P4. 

4 0 0  �9 

3 5 0  �9 

3 0 0  ' 

E ' 2 5 0  ' 

"<~ 2 0 0 "  

150"  

1 0 0 "  

. 5 0 .  

o ~ 

P2 
$1=O.1  
Frequency ~ 1 0 0 0  H z  

J 
J 

o.61 0.62 o.6~ 
Volume fraet;on of  f ractures 

Figure 8. Effect  o f  v o l u m e  o f  fractures on the 
phase  ve loc i ty  o f  P2. 
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Figure 9. Effect of  volume of fractures on the 
phase velocity of  S. 

Figure 10. Effect of  air saturation on the phase 
velocity of  P1. 

The effect of volume fraction of fractures on the phase velocities is shown 
in Figures 7-9.  The air saturation and frequency are taken as 0.1 and 1000Hz, 
respectively. We observe almost a linear variation in the phase velocities of  P1 
and S as the volume fraction of  fractures changes in Figures 7 and 9, respectively. 
Since the reported volume fractions of fractures in the literature are normally less 
than 0.03, the horizontal scale of  Figures 7 -9  is limited to that value. We find that 
even when c~f = 0.03, the phase velocity of P1 increases less than 1%. The phase 
velocity of  P2 starts from zero and rises as o U increases (see Figure 8). P3 and P4 
show no dependence on the volume fraction of  fractures. 

s 

2 -  

votum~ ~ra~Uo. o~ r , o~  ~ o.ol 
. . . . . . .  lOOO H~ 

~.oo o.65 030 ols o.~o o.~5 030 
A~ s~ tu roUon  S~ 

Figure 11. Effect of air saturation on the phase 
velocity of P2 and P3. 
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"~ O.15 

~ 0 . I 0  

0.05 

o.oo 
o,oo 0.65 alia 035 0.~0 0,~5 o.~o 

Air s o t u r o t i o n  S, 

Figure 12. Effect of  air saturation on the phase 
velocity of P4. 

Then, we investigate the saturation dependence of  phase velocities (Figures 10-  
13). The volume fraction of fractures and frequency are taken as 0.01 and 1000 Hz, 
respectively. In Figure 10, we observe a significant drop in the phase velocity of  
P1. This is due to the high compressibility of  the air phase. This behavior was 
observed in several experimental studies (Domenico, 1974; Murphy, 1982). After 
a minimum value, the phase velocity of P1 increases with increasing air saturation. 
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The phase velocity of P2 does not change with changes in the air saturation (Figure 
11). The phase velocity of P3 behaves similar to that of P1. As seen in Figure 
12, P4 vanishes when the pores are fully saturated by water. We conclude that 
P4 arises because of the second fluid phase in the primary pores. In nonfractured 
porous media, Tuncay and Corapcioglu (1995) showed that this compressional 
wave depends on the capillary-pressure-saturation relation and vanishes when the 
pressures of the fluid phases are equal. Figure 13 illustrates the dependence of 
phase velocity of S on the air saturation. We observe almost a linear variation as 
the air saturation increases. 
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Figure 13. Effect of air saturation on the phase 
velocity of S. 
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uation coefficient of P3. 
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uation coefficient of S. 

~5oo. 

~ooo. 

.~E =soo. 

o lSOO 

lOOO�84 

soo 

3 .o -  

~ o~o o.~o o ~o 
Air suLu,~Jon S, 

Figure 20. Effect of air saturation on the atten- 
uation coefficient of P2 and P3. 
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uation coefficient of S. 

Figures 14-18 illustrate the frequency dependence of the attenuation coeffi- 
cients. The air saturation $1 is taken as 0.1. The volume fraction of  fractures 
changes the order of magnitude of the attenuation coefficient of  P1 and S more 
than one order for frequencies less that 1000Hz. This can be explained by the 
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high intrinsic permeability of the fractures. The attenuation coefficient of P2 shows 
dependence on the volume fraction of fractures for frequencies higher than 100 Hz 
(see Figure 15). The attenuation coefficient of P2 increases with the volume fraction 
of fractures. As seen in Figures 16-17, the attenuation coefficients of P3 and P4 do 
not depend on the volume fraction of fractures. As in P1, attenuation coefficient of 
S significantly depends on the volume fraction of fractures (see Figure 18). 

Figures 19-22 show the attenuation coefficients of the body waves as a function 
of the air saturation $1. The volume fraction fractures and frequency are taken as 
0.01 and 1000 Hz, respectively. The attenuation coefficients of P1 and S decrease 
as air saturation $1 increases (see Figures 19 and 22). The attenuation coefficient 
of P2 is almost independent of the saturation. As seen in Figures 20 and 21, the 
attenuation coefficients of P3 and P4 significantly depend on the saturation. As 
noted earlier P4 disappears when there is only one fluid phase in the primary pores. 
As seen in Figure 21, the attenuation coefficient of P4 reaches to very large values 
when the air saturation approaches zero. 

6. Conclusions 

We studied the characteristics of body waves in fractured porous media saturated 
by two fluids. We showed the existence of four compressional and one rotational 
waves. The fastest wave (P1) is analogous to Biot's fast wave. The second wave 
(P2) arises because of the fluid phase in the fractures and it vanishes when the 
medium is not fractured. The third compressional wave (P3) corresponds to the 
slow wave of Biot's theory. The fourth compressional wave (P4) is due to the 
second fluid phase (nonwetting fluid) in the primary pores. The second, third and 
fourth compressional waves disappear when the frequency approaches zero and 
are associated with diffusive-type processes, i.e., highly attenuated. The rotational 
wave (S) is analogous to the rotational wave in elastic solids. All waves are 
dispersed and attenuated. Especially, the second, third and fourth compressional 
waves are highly attenuated. Because of the high attenuation, an experimental 
confirmation of these waves can be very difficult. We numerically examined the 
frequency, saturation, volume fraction of fractures dependence of phase velocity 
and attenuation coefficient of body waves. The third and fourth compressional 
waves do not depend on the volume fraction of fractures. The phase velocities 
of the first compressional and rotational waves slightly change due to the volume 
fraction of fractures. However, we observed a change in the order of magnitude of 
the attenuation coefficients of the first compressional and rotational waves due to the 
presence of the fractures. This can be explained by the high intrinsic permeability 
of the fractures. 



BODY WAVES IN FRACTURED POROUS MEDIA 273 

References 

Bear, J, and Corapcioglu, M. Y.: 1989, Wave propagation in porous media-governing equations, in: 
D. Karamanlidis and R. B. Stout (eds), Wave Propagation in Granular Media, ASME, New York, 
pp. 91-94. 

Bedford, A. and Stem, M. A.: 1983, A model for wave propagation in gassy sediments, J. Acoust. 
Soc. Am. 73,409-417. 

Beskos, D. E.: 1989, Dynamics of saturated rocks, I: Equations of motion, J. Eng. Mech. ASCE 115, 
983-995. 

Beskos, D. E., Vgenopoulou, I. and Providakis, C. P.: 1989a, Dynamics of Saturated rocks II: Body 
forces, J. Eng. Mech. ASCE 115,996-1016. 

Beskos, D. E., Papadakis, C. N. and Woo, H. S,: 1989b, Dynamics of saturated rocks, III: Rayleigh 
waves, J. Eng. Mech. ASCE 115, 1017-1034. 

Beskos, D. E. and Aifantis, E. C.: 1986, On the theory of consolidation with double porosity-II, Int. 
J. Eng. Sci. 24, 1697-1716. 

Blot, M. A.: 1956a, Theory of propagation of elastic wave in a fluid saturated porous solid, I. Low 
frequency range, J. Acoust. Soc. Am. 28, 168-178. 

Biot, M. A.: 1956b, Theory of propagation elastic waves in a fluid saturated porous solid, II. Higher 
frequency range, J. Acoust. Soc. Am. 28, 169-191. 

Brutsaert, W.: 1964, The propagation of elastic waves in unconsolidated unsaturated granular medi- 
ums, J. Geophys. Res. 69, 243-257. 

Bmtsaert, W. and Luthin, J. N.: 1964, The velocity of sound in soils near the surface as a function of 
the moisture content, J. Geophys. Res. 69, 643-652. 

Corapcioglu, M. Y.: 1991, Wave propagation in porous media - A review, in: J. Bear and M. Y. 
Corapcioglu (eds), TransportProcessesin Porous Media, Martinus Nijhoff, Dordrecht, 373-471. 

Garg, S. K. and Nayfeh, A. H.: 1986, Compressional wave propagation in liquid and/or gas saturated 
elastic porous media, J. AppL Phys. 60, 3045-3055. 

Khaled, M. Y., Beskos, D. E. and Aifantis, E. C.: 1984, On the porosity of consolidation with double 
porosity- III A finite element formulation, Int. J. Num. Meth. Eng. 8, 101-123. 

Nakoryakov, V. E., Kuznetsov, V. V. and Dontsov, V. E.: 1989, Pressure waves in saturated porous 
media, Int. J. Multiphase Flow 15, 857-875. 

Plona, T. J.: 1980, Observation of a second bulk compressional wave in a porous medium at ultrasonic 
frequencies, Appl. Phys. Lett. 36,259-261. 

Santos, J. E., Corbero, J. M. and Douglas, J.: 1990a, Static and dynamic behaviour of a porous solid, 
,1. Acoust. Soc. Am. 87, 1428-1438. 

Santos, J. E., Douglas, J., Corbero, J. M. and Lovera, O. M.: 1990b, A model for wave propagation 
in a porous medium saturated by a two-phase fluid, J. Acoust. Soc. Am. 87, 1439-1448. 

Tuncay, K.: 1995, Wave propagation in single- and double-porosity deformable porous media sat- 
urated by multiphase fluids, PhD Dissertation, Department of Civil Engineering, Texas A&M 
University. 

Tuncay, K. and Corapcioglu, M. Y.: 1996, Wave propagation in fractured porous media, Transport in 
Porous Media 23,237-258. 

Tuncay, K. and Corapcioglu, M. Y.: 1996a, Wave propagation in poroelastic media saturated by two 
fluids, submitted to J. Appl. Mech. 

Wilson, R. K. and Aifantis, E. C.: 1982, On the theory of consolidation with double porosity, Int. J. 
Eng. Sci. 22, 1009-1035. 

Wilson, R. K. and Aifantis, E. C.: 1984, A double porosity model for acoustic wave propagation in 
fractured-porous rock, Int. J. Eng. Sci. 22, 1209-1217. 

Wyckoff, R. D. and Bosset, H. G.: 1936, The flow of gas-liquid mixture through unconsolidated 
sands, Physics 7, 325-345. 


