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Abstract 

 

The Chebyshev approximation is well known to be applicable for the approximation of single input-single output functions 

by means of a function generator mechanism. The approximation method may be also applied to multi-input functions, 

although until recently, it was not used for function generation with multi-degrees-of-freedom mechanisms. In a recent 

study, the authors applied the approximation method to a two-degrees-of-freedom mechanism for the first time, however the 

selection and iteration of the design points at which the errors were minimized was not satisfactory. In this study, an 

alternative method of selection and iteration for these design points is introduced and the corresponding spacing is called the 

“regional spacing”. As a case study for the application of the approximation of multi-input functions, a spherical 5R 

mechanism is used to generate a two input-single-output function. The input joints of the mechanism are selected as one of 

the fixed joints and the moving mid-joint, whereas the remaining fixed joint represents the output. The synthesis problem is 

analytically formulated and presented in polynomial form for five and six unknown parameters. The synthesis problem for 

five unknown parameters is illustrated as a numerical example. Regional spacing is used for the selection and iteration of 

design points for the synthesis. The Chebyshev approximation along with the Remez algorithm is utilized to find the 

unknown construction parameters and the error of the function. The design points and the coefficients of the approximation 

polynomial are determined by numerical iteration using six moving points. At each iteration step, the design points are 

relocated at the extremum error points in their respective regions. Iterations are repeated until the magnitudes of the 

extremum point errors are approximately equal. Finally, the construction parameters of the mechanism are determined and 

the variation of the percentage error between the desired and generated function values is obtained. 

 

Keywords: function generation synthesis, Chebyshev approximation of bivariate functions, Remez algorithm, regional 

spacing, spherical five bar mechanism 

 

1. Introduction 

 

The well-known kinematic synthesis problems are path generation, body guidance and function 

generation. Although kinematic synthesis of single degree-of-freedom (dof) systems have been vastly 

studied, publications on synthesis of multi-dof systems are not very common. Svoboda [1] devised 

geometric means for designing planar mechanisms for simple two-input (bi-variate) functions such as 

addition, multiplication, and division of two numbers. Allen [2] made use of a graphical method for 

function generation synthesis with 2-dof linkages for a limited number of precision points. Philip and 

Freudenstein [3] worked on function generation with some of Svoboda’s mechanisms by solving the 

loop closure equations numerically for 10 or 13 precision points. Lakshminarayana et al. [4-10] have 

worked on precision point and higher order synthesis of 7- and 9-link planar mechanisms to generate 

bi-variate functions. Mruthyunjaya [11-12] developed a graphical procedure based on point position 

reduction with six precision points. Kohli and Soni [13] worked on function/path and motion 

generation with 2-dof 7-link planar mechanisms by formulating the equations with displacement 

matrices and solving the set of equations numerically. For the function generation problem, they used a 
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2RRR-RR planar parallel mechanism with 13 precision points. Alizade et al. [14] formulized an 

unconstrained minimization problem for function generation, where the objective function was the sum 

of the squares of the errors at the selected design points on the two-dimensional input domain. The 

solution was found by an iterative numerical algorithm. Rao [15] combined a 2-dof planetary gear train 

with either a four-bar or a cam mechanism for function generation. Zhou and Cheung [16] designed a 

planar 5R (R: revolute joint) linkage using genetic algorithms. Lastly, Kim and Tsai [17] designed a 3-

dof 3-RPS parallel manipulator for rigid body guidance with six precision points in its workspace. In 

this study, the displacement equations between different poses of the platforms are written and the 

synthesis problem is formulized as a linear set of equations. The determinant of the coefficient matrix 

results in a maximum 10th degree polynomial in terms of one of the link length parameters, which is 

solved numerically.  

Most of the synthesis methods described above are based on the equations, where the functions are 

exactly generated at certain precision points in the domain of definition of the function. These methods 

are deemed interpolation methods. In the least squares approximation method, the aim is to minimize 

the sum of the squares of the errors at selected design points on the function domain. In [18-19], 

interpolation approximation is used for bi-variate function generation 2-dof linkages. 

In both of interpolation and least squares approximation methods, the error between the desired 

function output and the output of the function generation mechanism (the structural error) are 

uncontrolled on the points on the domain other than the precision/design points. On the other hand, in 

the Chebyshev (Best) approximation method, the aim is to minimize the maximum absolute error on 

the whole function domain by equating the absolute error values at selected design points. Hence, if 

applicable, Chebyshev approximation appears superior than the other two methods for minimizing the 

maximum error. Interpolation, least squares and Chebyshev approximations methods were presented 

and used for the function generation problem of the planar four-bar linkage by Levitskii [20].  

Although it is known that the Chebyshev approximation method can be also applied to multi-input 

functions [21-23], until recently, it has not been used for function generation with multi-degrees-of-

freedom mechanisms. An example of engineering applications is the design of two dimensional non-

recursive digital filters [24]. In a recent study [25], the authors applied the Chebyshev approximation 

method to a two-degrees-of-freedom mechanism for the first time. A planar five-bar mechanism is used 

and the five design points are chosen on the boundaries of the rectangular two-dimensional function 

domain. This type of selection is limited because the inside area of the function domain cannot be used. 

Selection of design points is one of the most important stages of approximation methods. For univariate 

function generation problems, it is known that the so-called Chebyshev spacing results in less error 

compared to other spacings [26]. For two-dimensional function domains, Freudenstein [27] has worked 

on optimum spacing for approximation with (m·n)th degree polynomials and m·n many precision 

points. The optimum spacing was found to be Chebyshev spacing for both of the variable axes. 

However, this spacing proves useful if the approximation function is a polynomial.  

In this study, we use a new type of selection for design points, which we call regional spacing. This 

type of spacing is superior to the other types of spacing alternatives we used before in that it allows a 

larger domain for the selection of design points and hence, increases the probability of obtaining a 

feasible solution with relatively less error. 

As a case study of the application of Chebyshev approximation using regional spacing, we present the 

necessary formulation for a spherical 5R mechanism as a function generator. At the end of the study, a 

numerical example is presented, where iterative determination of the design points is performed 

starting with regional spacing and repeated until the extremum point errors are stabilized. 

Kinematic synthesis with spherical mechanisms is widely studied. The function generation synthesis 

problem for spherical four-bar mechanisms for four precision points is studied by Zimmerman [28]. 



Computational methods for the exact kinematic synthesis of a spherical 4R mechanism for function 

generation synthesis problem are studied by Cervantes-Sánchez et al. [29]. Function synthesis with 

spherical 4R mechanisms for the five precision points is studied analytically by Alizade and Kilit [30]. 

Alizade and Gezgin [31] presented function generation synthesis of spherical four bar mechanism using 

quaternion algebra and introduced the comparison of interpolation, least squares, and Chebyshev 

approximations methods. A new algorithm is proposed by Peñuñuri et al. for path generation problem 

of spherical 4R mechanism [32]. A novel optimization based methodology for synthesizing adjustable 

spherical four-link mechanisms is presented by Chanekar et al. [33]. Motion generation synthesis is 

studied with least square approximation method for spherical linkages by Alizade et al. [26]. A general 

theory for synthesis of spherical mechanisms is given in [34]. The reader is suggested to read Alizade 

et al. [26, 30, 31] for a more detailed review of design of spherical mechanisms. 

 

2. Chebyshev Approximation 

 

Polynomial approximation methods were first studied by Chebyshev in 1850s [35, 36]. Let f(x) be a 

continuous function defined on x  [a, b]. A polynomial Pn(x) of degree n is called the best 

approximation of f(x) if L = max|f(x) – Pn(x)| is minimum. The alternation theorem of Chebyshev states 

that for a given function f(x) and order n, the best approximation is unique and the maxima L are 

attained n + 1 times on [a, b] alternately with opposite signs. Although this theorem guaranties the 

unique existence of the best approximation of a function, it does not lead to a method to find the best 

approximation. An iterative method is proposed by Remez [37]. The Remez algorithm is as follows 

[38]: 

1. Select design points xi
0 [a, b], i = 1, .., n + 1 (usually x1 = a, xn+1 = b) and linearly solve for 

the n coefficients of an approximation polynomial Pn
0(x) and the error L from the n + 1 

equations Pn
0(xi

0) – f(xi
0) = (–1)iL 

2. Find the n + 1 local extrema xi
1 of E0(x) = Pn

0(xi
0) – f(xi

0) in [a, b] 

3. Repeat steps 1 and 2 by replacing xi
k by xi

k+1 (k = 0, 1, …) until the design points stabilize 

In function synthesis of mechanisms, we derive the input/output (I/O) relationship as a function of the 

construction parameters of the mechanism and input and output variables. The I/O equation is written 

in a polynomial form        
n

n j j

j 1

P F Pf F


  i i
x x x x , where Pj are functions of the construction 

parameters, fj are the functions of the input and output variables represented by x and F(x) is the 

approximated function, called the objective function. If the number of coefficients Pj = n is equal to the 

number of construction parameters, then given n + 1 many design points  
n 1

i 1


x , the coefficients  

n

j 1
P  

and the Chebyshev error L are linearly solved from 

       
n

i

j j

j 1

Pf F 1 L


   i i
x x  for i = 1, ..., n + 1        (1) 

When the Chebyshev approximation is applied for single-variable functions, the sign of the error L is 

alternating for consecutive design points. However, in our case we have a function with two inputs, so 

it is not possible to define alternation properly over the two-dimensional domain. Our solution to this 

problem is addressed in Section 4. 



After  
n

j 1
P  are found, the construction parameters are determined from Pj. If the number of coefficients 

Pj = n is greater than the number of construction parameters, it means that the coefficients Pj are 

interrelated. For illustration, consider the case where there are n – 2 construction parameters, but  
n

j 1
P . 

Let Pn-1 = 1, Pn = 2, j j j 1 j 2P m n     for j = 1,...,n – 2 and 1 2L nm   . Eq. (1) becomes 

             
n 2

j j 1 j 2 j 1 n 1 2 n 1 2

j 1

m n f f f F m n






            i i i i
x x x x  for i = 1,...,n – 1 (2) 

Equating the coefficients of  and the remaining parts in Eq. (2) we obtain  

             
n 2 n 2 n 2

j j j j n 1 j j n

j 1 j 1 j 1

f F  , m f m f  and n f n f
  



  

       i i i i i i
x x x x x x , i = 1,...,n – 1   (3) 

 
n 2

j 1


,  

n 2

j 1
m


,  

n 2

j 1
n


, , m and n are solved linearly from Eq. (3). After the unknowns are 

determined, since there is a relationship between Pn-1 = 1, Pn = 2 and some other coefficients 

j j j 1 j 2P m n    ,  is solved from this relationship. j j j 1 j 2P m n     for j = 1,...,n – 2 and 

1 2L nm    are determined and the n – 2 construction parameters are solved from  
n 1

j 1
P


.  

 

3. I/O Equation and Error Analysis 

 

In this section we derive the I/O relationship of the mechanism to be used in Chebyshev approximation.

 

3.1 Derivation of the I/O Equation for Spherical 5R Mechanism  

 

The kinematic representation and the parameters of five-bar mechanism are presented on the kinematic 

diagram shown in Fig. 1. A Cartesian reference frame O-xyz is located at the center of the spherical 

mechanism such that the z-axis points along one of the fixed joint axis and the two fixed joint axes 

define the xz-plane. Since the scale of the mechanism does not affect the I/O relationship, we assume 

that the radius of spherical surface equals to 1. The construction parameters are  
5

j 1
 , the input angles 

are  and  and the output angle is  whereas the function to be synthesized is given by   = f(, ). 

The input and output joints are chosen as joints A, C, E; however, if the designer has the freedom to 

choose the input and output joints, the necessary formulation must be obtained for different 

configurations. For the case of a spherical five-bar mechanism, there are two alternative choices for the 

selection of these three joints: either all joints are adjacent to each other or one of the joints is separated 

from the other two which are adjacent. Considering the I/O relationship of the mechanism, which of 

these three joints is the output does not quite matter. Furthermore, it does not matter which joints will 

be the fixed joints because one can apply kinematic inversion before and after the synthesis. For 

example, selecting A, C, and E joint in Fig. 1 is equivalent to selecting A, B, and D. As it will be 

apparent from the formulations below, when the input and output joints are chosen such that one of the 

joints is separated from the other two, we obtain a linear set of equations. For conciseness, we do not 

provide the formulation for the case where the three joints are selected such that all three are adjacent 

to each other, but it can be shown that in that case the problem is highly nonlinear and an analytical 

solution is not possible.   



The I/O equation for the spherical 5R mechanism is determined by expressing the joint locations in 

terms of the inputs and the output and by making use of a simplification of the 5R mechanism to a 4R 

mechanism with a variable-length imaginary link represented by 6 as a function of the second input  

as depicted in Fig. 1. 

 

 

Fig. 1 Spherical five-bar mechanism 

The coordinates of points B and D (see Figure 1) with respect to reference frame O-xyz can be 

described as follows: 

     
2

2 2

2

0 S C

B Z Y 0 S S

1 C

    
   

     
   
      

        
5 1 1 5

1 5 5

5 1 5 1

0 C S C S C

 D Y Z Y 0 S S

1 C S S C C

        
   

      
   
            

  (4)                     

where Z(.) and Y(.) are rotation matrices about z and y axes, respectively [34] and S and C represent 

the sine and cosine functions, respectively. 

The scalar product of B and D  vectors yields: 

                6B D B D C                                                                        (5) 

Using spherical law of cosines for the spherical triangle BCD: 

                                      3 4 3 4 6 C C S S C C                                                         (6) 

Combining Eqs. (4), (5) and (6) we obtain the I/O equation of the spherical 5R mechanism: 

5 1 2 3 4 3 4 2 2 2

1 2 5 1 2 5 5 1 1

C C C C C S S T T T
  C C S S C C C 0

S C S S C S T S T

          
        

        
 (7) 

where T represents the tangent function. The I/O equation can be expressed in polynomial form: 

   
5

j j

j 1

Pf F L


  i i
x x  for i = 1,...,6                              (8) 

where xi represents the vector of the inputs i, i and the output i, L is the Chebyshev error and  
5

j 1
P  

are the unknown coefficients defined by  
5

j 1
  as: 



5 1 2 3 4
1

1 2 5

C C C C C
 P

S C S

     


  
, 3 4

2

1 2 5

S S
 P

S C S

  


  
, 2

3

5

T
 P

T





, 2

4

1

T
 P

S





, 2

5

1

T
 P

T





  (9) 

and   
5

j 1
f x  and  F x  are functions of the design points i  , i  and i   where, 

 1 f 1
i

x ,  2 iCf   
i

x ,  3 iCf   
i

x ,  4 i i f S S  
i

x ,  5 i i f C C  
i

x  and   i F C 
i

x   

Eq. (8) with five unknown parameters  
5

j 1
P  and the error parameter L requires six design points over 

the two-dimensional input domain. Eq. (8) can be written in matrix form as  

    

         

         

         

         

         

         

 

 

 

 

 

1 1 2 1 3 1 4 1 5 1 1

1 2 2 2 3 2 4 2 5 2 2

1 3 2 3 3 3 4 3 5 3 3

1 4 2 4 3 4 4 4 5 4 4

1 5 2 5 3 5 4 5 5 5 5

1 6 2 6 3 6 4 6 5 6

1

2

3

4

5

f f f f f 1 F

f f f f f F

f f f f f F

f f f f f F

f f f f f F

f f f f

P

f F

1 P

1 P
 

1 P

1 P

1 L

 
 
 
 

 
 
 
 

  
 
 
 
 

  
 
 

    

x x x x x x

x x x x x x

x x x x x x

x x x x x x

x x x x x x

x x x x x x 6

 
 
 
 
 
 
 
 
  

                          (10) 

Thus, unknown parameters  
5

j 1
P  and the error L can be solved uniquely for the function generation 

synthesis problem with Chebyshev approximation. In Eq. (10), the selection of signs in the last column 

of the coefficient matrix changes during the iterations, as illustrated in Section 4. 

After sufficient number of iterations  
5

j 1
P  are determined and the construction parameters are solved 

from Eq. (9) as follows: 

  2
5

1 1 15 1 2 1
3

2
1 2 4 1

4 3

4

P T E E E E
  Cos ,  Tan  P S Tan   , ,

P P
,  

2 2

   
 

           

where      1 1

1 2 1 5 1 2 1 5 2 2 1 5 1 2 1 5E Cos C C C P P S S ,E Cos C C C P P S S                       .   

 

3.2 Derivation of I/O Equations with Initial Positions of Input-Output Angles (, , ) 

 

Extra construction parameters can be introduced when we change the reference with respect to which 

the input-output angles are measured. When there are more construction parameters, we can use more 

design points and increase the accuracy. Instead of ,  and  we use in Section 3.1, we may use  =  

+ p,  =  + p and  =  + p such that 0, 0 and 0 are the initial constant angles to be designed 

and p, p and p are the new joint variables.

 Firstly, let us introduce  =  + p into Eq. (7): 

5 1 2 3 4 3 4 0 3 4 0 2
p p

1 2 5 1 2 5 1 2 5 5

2 2

1 1

C C C C C S S C S S S T
  C S C

S C S S C S S C S T

T T
S S C C C 0

S T

            
     

         

 
      

 

        (11) 

Representation of the I/O equation in polynomial form can be defined as: 



   
6

j j

j 1

Pf F L


  i i
x x  for i = 1,...,7                              (12) 

where,  
6

j 1
P  are:  

5 1 2 3 4 3 4 0 3 4 0 2 2 2
1 2 3 4 5 6

1 2 5 1 2 5 1 2 5 5 1 1

C C C C C S S C S S S T T T
 P ,P ,P ,P ,P ,P

S C S S C S S C S T S T

              
      

           
(13) 

and     
6

j j1
f , Fx x  are the functions 

             1 2 3 4 5pi pi i i i 6 i i if 1, f , f , f , f , C S C S S C C  andf  F C            
i i i i i i i

x x x x x x x   

Given seven design points,  
6

j 1
P  and L can be solved linearly from Eq. (12). Then, the construction 

parameters are solved from Eq. (13) as 

 1 1 1 13 6 2 1 2 1 2
0 1 32 5 1 5 4

2 5 4

P P T E E E E
Tan , Cos , Tan P S , Tan , ,

P P P 2 2

      
              

 
 

where 1 2
1 2 1 5 1 1 5

0

P
E Cos C C C P S S

C


   

             

, 

1 2
2 2 1 5 1 1 5

0

P
E Cos C C C P S S

C


   

             

. 

 Similar with the other input angle, applying newly defined  as  = 0 + p, where 0 is the 

constant angle measured from the xz-plane about the z-axis in Fig. 1 and p is the variable input angle 

measured further from 0. Modifying Eq. (7) for  = 0 + p: 

1 2 5 3 4 3 4 1
1 p 0 p

2 5 0 2 5 0 2 0

1 01
p p 1 0 p p

5 5

C C C C C S S S
  C C C C C T S C

S S C S S C T C

SS
C S C T C S

T

T
S S 0

T

        
          

       

 
            

 

   

The I/O equation can be expressed in polynomial form as 

   
8

j j

j 1

Pf F L


  i i
x x  for i = 1,...,7                              (14) 

where the unknown coefficients  
8

j 1
P  are 

1 2 5 3 4 3 4 1
1 2 3 4 1 5 0

2 5 0 2 5 0 2 0

1 01
6 8 1 0

5 5

7
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 P ,P ,P ,P C ,P T ,

S S C S S C T C
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P ,P C T

T

T
,P

T

        
        

       

 
    

 

 (15) 

and     
8

j j1
f , Fx x  are 
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       
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i i i i i

i i i i

x x x x x

x x x x
 

There are eight coefficients Pj, but six construction parameters. Two of the Pj depend on the others as 

follows: 

7 5 6 8 4 5P P P  and P P P                            (16) 

Let P7 = 1 and P8 = 2, j j j 1 j 2P m n     for j = 1,...,6 and 1 2L nm   . When we apply the 

linear solution procedure explained in Section 2, j , mj, nj, , m and n are determined uniquely. Next, 

1 and 2 should be solved from Eq. (16): 

     5 5 61 5 2 1 6 2 1 1 46 4 4 2 1 25 5 5 2n n 0 and m m n n 0m m                  (17) 

Eliminating either of 1 or 2 form Eq. (17) results in a cubic equation in the remaining variable. The 

details of this elimination can be seen in [26]. The cubic equation can be solved analytically and there 

is either single real solution, or three real solutions. In case of three real solutions, the designer shall 

use the solution which yields less error. Once 1 and 2 are determined, j j j 1 j 2P m n     for j = 

1,...,6 and the construction parameters are solved from  
6

j 1
P  as 

1 1 1

3 4

11 1 1 2 1 2
0 5 1 4 2 5

3 0 6

S S E E E E
Tan P , Cos P , Tan ,, Tan ,

P C P 2 2

      
              

 

where   1

1 1 2 5 1 2 2 5 0E Cos C C C P P S S C         , 

  1

2 1 2 5 1 2 2 5 0E Cos C C C P P S S C         .   

 Finally, substituting  = 0 + p into Eq. (7):   

1 2 5 3 4 3 4 2 2
p p

1 2 5 0 1 2 5 0 5 0 0 1

2 2 2
p p p p

1 1 0 1 0

C C C C C S S T T1
C C C C S

S C S S S C S S T S T T

T T T
S C C C S S S 0

S T T S T

         
      
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           
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    (18) 

Eq. (18) can be expressed in polynomial form as Eq. (14), where  
8

j 1
P  are  
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    (19) 

and     
7

j j1
f , Fx x  are 
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In the polynomial representation of the spherical 5R mechanism, there are eight unknowns but only six 

linear equations.  



7 4 5 8 4 6P P P  and P P P                             (20) 

Eq. (20) have the same form as in Eq. (16) and the solution procedure is as described above. The 

construction parameters of the mechanism are solved from Eq. (19) as follows: 

 1 1 1 15 2 1 2 1 2
0 1 2 6 1 5

4 6 3 0

3 4

P T E E E E1
Tan , Cos , Tan P S , Tan , ,

P P P S 2 2
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    
                   

 

where   1

1 2 1 5 1 2 1 5 0E Cos C C C P P S S S            , 

  1

2 2 1 5 1 2 1 5 0E Cos C C C P P S S S            . 

 

4. The Synthesis Problem 

 

Let the function to be generated be z = f(x, y) for xmin  x  xmax, ymin  y  ymax and zmin  z  zmax. The 

independent variables x and y should be related to the mechanism inputs  and  and the dependent 

variable z should be related to the mechanism output . Depending on the application some or all of 

the function z = f(x, y), xmin, xmax, ymin and ymax may be demanded by the specific task. However, the 

designer can freely select the limits min, max, min, max, min and max of the mechanism inputs and 

output.  

We shall linearly relate x to , y to  and z to  as

 min min min min min min

max min max min max min max min max min max min

x x y y z z
 ,  , 

x x y y z z

     
  

        
 (21) 

Then desired ,  and  values for given x, y, z are found from Eq. (21) as follows:

      max min max min max min
min min min min min min

max min max min max min

x x  , y y  , z z
x x y y z z

     
        

  
 (22) 

and conversely

      max min max min max min
min min min min min min

max min max min max min

x x y y z z
x x  , y +y  , z z

  
       
     

 (23) 

We use Eq. (22) for determining the design points  
6

i 1
 ,  

6

i 1
  and  

6

i 1
  from  

6

i 1
x ,  

6

i 1
y  and 

    
66

i i i1 1
z f x ,y . We use Eq. (23) after the synthesis is done and we need to check the error in between 

zdesired = f(x, y) and zgenerated with the mechanism. A good measure of this error is the percentage error 

defined as

 
desired generated

desired

z z
%Error 100

z


    

When evaluating zgenerated, one shall determine the output values of the mechanism for several given 

input values, say 100 values, by solving the I/O relationship. 

It is necessary to select an initial spacing for the design points  
6

i i 1
x ,y  on the two dimensional domain 

defined by xmin  x  xmax, ymin  y  ymax and also the limits of the sub-regions for iteration of each 

design point needs to be determined. We tried several alternative ways of spacing. In [25] we had five 



design points and selected four of the initial design points at the corners of the rectangular domain and 

the remaining one at the center. During the iterations, the points at the corners remained, while the 

other point was relocated at the location of maximum error at each iteration step. This type of spacing 

has the drawback that only one of the design points can be relocated and this limits the amount of 

enhancement in terms of error at each iteration step. In this study, we first tried to locate the initial 

position of four of the design points on the four respective sides and locate the other two inside the 

domain. We relocated the points on the boundaries along the respective sides according to the 

maximum errors and the points inside were relocated inside the domain. This modification still did not 

result in the sufficient mobility for the design points and the simulation results were not satisfactory. 

Finally we decided on a different type of spacing where four of the initial design points are in 

rectangular regions about the corners and the remaining two are in the remaining region, as depicted in 

Fig. 2. We call this spacing as regional spacing. Regional spacing allows the design points to be 

selected and relocated in larger domains. By this way, the design points have more freedom for 

relocation in between iteration steps and this increases the probability to obtain better results at each 

iteration step. 

 

Fig. 2 Regional Spacing  

 

Although this spacing method is superior to the other spacing methods mentioned, it still does not 

guarantee minimization of the maximum absolute error and may even diverge. Initially, the errors of 

the design points in regions 1-4 in Fig. 2 are equated to +L and the errors of the remaining two design 

points in region 5 are equated to +L for one and –L for the other. During the iterations, the design 

points in regions 1-4 are relocated to the points in their respective regions, where the extremum error 

value is attained, while the two design points in region 5 are relocated to the points where minimum 

and maximum errors are attained in that region. 

                     



5. Case Study with Regional Spacing for Six Design Points 

 

A case study is worked out using the I/O equation given by Eqs. (7, 8) for generation of the function z 

= xy for 6  x 10 and 8  y 12. After several trials, the mechanism input/output angle limits 

are chosen as 60°   120°, 80°   130° and 75°   135°. The authors are aware of the fact that 

this is a purely academic example without any particular geometric meaning. The result of the 

optimization is sensitive against shifting the boundaries of the variables, and the periodic character of 

the angle measures is neglected. 

The error variation plots and minimum and maximum error values at each iteration step are given in 

Table 1. The coloring in the figures in Table 1 range from blue (minimum) to red (maximum). After the 

first calculation, the maximum absolute errors are attained for  
6

i 1
 ,  

6

i 1
  and the design points are 

modified accordingly. At each iteration step, the maximum and minimum approximation error are 

calculated and compared. The shape of the error surface stabilizes and the maximum and minimum 

errors reach close to their stable values at the fourth iteration, meaning the maximum and minimum 

error absolute values are approximately equal to the previous iteration. Finally, the maximum 

percentage error in z is found as 0.824%. The percentage error variation over the input domain is 

depicted in Fig. 3. The calculated construction parameters are presented in Table 2. There are two sets 

of solutions due to the nonlinear dependency of the construction parameters to the coefficients Pj’s. A 

CAD model of the designed spherical 5R mechanism is constructed with the parameters in Table 2 and 

the function generation is confirmed. 

Table 1. Calculation Results for (a)First, (b)Second, (c)Third and (d)Fourth Iteration  

  

Iteration 1 Iteration 2 

Errormin –1.39049310-2 Errormin –2.22633010-2 

Errormax 2.58255010-2 Errormax 1.95512610-2 

  



Iteration 3 Iteration 4 

Errormin –1.43157510-2 Errormin –1.43158610-2 

Errormax 1.43467210-2 Errormax 1.43468110-2 

 

 

 

Fig. 3 Variation of percentage error in z 

 

Table 2. Designed construction parameter values 

     

49.971° or 

300.029° 

159.172° or 

339.172° 

44.336° or 

315.664° 

26.925° or 

333.075° 

40.3417° or 

139.658° 

 

6. Conclusions 

 

In this paper, the application of Chebyshev approximation method for generation of bi-variate functions 

using regional spacing is introduced through a case study: a 2-dof spherical 5R mechanism. First, the 

iterative algorithm for the approximation method is given. The synthesis problem for the spherical 5R 

mechanism is formulated by expressing the I/O equation of the mechanism analytically for five and six 

link-length parameters to be determined and then the Remez algorithm for Chebyshev approximation is 

applied. As a numerical example, the synthesis problem with five unknown parameters is solved in 

order to generate the function z = xy for 6  x 10 and 8  y 12. As a result, the maximum 

percentage error in the generated function throughout the function domain is kept below 1%. 

The spherical 5R mechanism is chosen in this study as a rather simple multi-dof mechanism. In further 

studies we plan to apply analytical and/or semi-analytical synthesis methods to other multi-dof 

mechanisms with more complicated structure and also more than 2-dof. 
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