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İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Engineering

by
Hakkı Can KARAİMER
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Assist. Prof. Dr. Mustafa ÖZUYSAL
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ABSTRACT

SHAPE BASED DETECTION AND CLASSIFICATION OF VEHICLES USING
OMNIDIRECTIONAL VIDEOS

To detect and classify vehicles in omnidirectional videos, an approach based on

the shape (silhouette) of the moving object obtained by background subtraction is pro-

posed. Different from other shape based classification techniques, the information avail-

able in multiple frames of the video is exploited. Two different approaches were investi-

gated for this purpose. One is combining silhouettes extracted from a sequence of frames

to create an average silhouette, the other is making individual decisions for all frames and

use consensus of these decisions. Using multiple frames eliminates most of the wrong

decisions which are caused by a poorly extracted silhouette from a single video frame.

The vehicle types which are classified are motorcycle, car (sedan) and van (minibus). The

features extracted from the silhouettes are convexity, elongation, rectangularity, and Hu

moments. Three separate methods of classification is applied. The first one is a flowchart

based (i.e. rule based) method, the second one is K nearest neighbor classification, and

the third one is using a Deep Neural Network. 60% of the samples in the dataset are

used for training. To ensure randomization, the procedure is repeated three times with the

whole dataset split each time differently into training and testing samples (i.e. three-fold

cross validation). The results indicate that using silhouettes in multiple frames performs

better than using single frame silhouettes.
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ÖZET

TÜMYÖNLÜ VİDEOLAR KULLANARAK ŞEKİL TABANLİ ARAÇ TESPİTİ VE
SINIFLANDIRMASI

Tümyönlü videolarda araç tespiti ve sınıflandırması için, hareketli nesnenin arka-

plan ayırması sonucu elde edilen şekline (siluetine) dayanan bir yöntem önerilmiştir.

Diğer şekil tabanlı sınıflandırma yöntemlerden farklı olarak, ardışık video karelerinden

elde edilen bilgiden yararlanılmıştır. Bu amaçla, iki farklı yaklaşım incelenmiştir. İlki,

video karelerinden elde edilen siluetleri birleştirerek bir ortalama siluet oluşturmak iken,

diğeri ise her bir kare için ayrı karar verilmesi ve bu kararların konsensusunun kul-

lanılmasıdır. Çoklu çerçevelerin kullanılması, tek bir video karesinden elde edilen bozuk

siluetten kaynaklanan yanlış kararların çoğunu elemektedir. Sınıflandırılan araç tipleri;

motosiklet, binek araç ve dolmuştur. Siluetlerden çıkarılan öznitelikler; dışbükeylik,

uzanım, dikdörtgensellik ve Hu momentleridir. Üç ayrı sınıflandırma yöntemi uygulanmıştır.

İlki, akış şeması tabanlı yöntem, ikincisi K en yakın komşu ve üçüncüsü ise derin yapay

sinir ağı sınıflandırmasıdır. Veri kümesindeki örneklerin %60’ı eğitim için kullanılmıştır.

Rastsallaştırmayı sağlamak için, tüm veri seti, farklı eğitim ve test kümesi olmak üzere

deney üç kere tekrarlanmıştır. Sonuçlar, çoklu çerçevelerdeki siluetleri kullanmanın, tek

bir karedeki silueti kullanmaya göre daha başarılı olduğunu göstermektedir.
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CHAPTER 1

INTRODUCTION

Ability of omnidirectional cameras is providing 360 degree horizontal field of

view in a single image (vertical field of view varies). When a convex mirror is placed

in front of a conventional camera for this purpose, the imaging system is called a cata-

dioptric omnidirectional camera. Two example images from such a camera are given in

Figures 1.1a and 1.1b. This enlarged view is an important advantage in many application

areas such as robot navigation (Goedeme et al., 2007), surveillance (Scotti et al., 2005),

and 3D reconstruction (Bastanlar et al., 2012). However, so far omnidirectional cameras

have not been widely used in object detection and also in traffic applications like vehicle

classification. This is mainly because the objects are warped in omnidirectional images

and most of the techniques developed for standard cameras cannot be applied directly.

(a) (b)

Figure 1.1. Two sample omnidirectional images from our dataset. (a) Image with a
van (b) Image with a car.

Object detection and classification is an important research area in surveillance

applications. A diverse range of approaches have been proposed for object detection. A
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major group in these studies uses the sliding window approach in which the detection

task is performed via a moving and gradually growing search window. Features based

on gradient directions, gradient magnitudes, colors, etc. can be used for classification.

A significant performance improvement was obtained with this approach by employing

HOG (Histogram of Oriented Gradients) features (Dalal and Triggs (2005)). Later on,

this technique was enhanced with part based models (Felzenszwalb et al. (2008)).

In some recent studies, the sliding window approach has been applied to om-

nidirectional cameras as well. For instance, HOG computation is modified for omni-

directional camera geometry to detect humans and vehicles (Cinaroglu and Bastanlar

(2014), (Cinaroglu and Bastanlar, 2015)) Haar-like features are also used with omnidirec-

tional cameras (Amine Iraqui et al. (2010); Dupuis et al. (2011); Karaimer and Bastanlar

(2014)).

Another major group for object detection uses shape based features after back-

ground subtraction step. For instance, Morris and Trivedi (2006a) and Morris and Trivedi

(2006b) created a feature vector consisting of area, breadth, compactness, elongation,

perimeter, convex hull perimeter, length, axes of fitted ellipse, centroid and five image

moments of the foreground blobs. Linear Discriminant Analysis (LDA) is used to project

the data to lower dimensions. Objects are compared by weighted K nearest neighbor

(kNN) classifier. Training set was made up by clustering prototype measurement vectors

with fuzzy-C means algorithm.

When we compare the approaches that use image based features (HOG or Haar-

like features) with approaches that use shape features extracted from silhouettes, extract-

ing shape features is computationally cheaper. Extracting image based features for each

position of sliding window requires a considerable amount of time. Regarding omni-

directional images, an extra load of converting original image to panoramic image (or

conversion of features) is required. Also the storage requirement is much less with shape

features. To decrease the computational load for image based features approach, one can

extract features only for the region where the moving object exists. Even in that case,

fitting a single window to the object is not possible. To give an example, in the study

of Gandhi and Trivedi (2007), where HOG features are computed on virtual perspective

views generated from omnidirectional images, the windows are located manually. These

facts make the image based features unsuitable for real-time applications in most cases.

We are also able to compare the performances of the mentioned two approaches on

standard images. The accuracy of the HOG based method, by Gandhi and Trivedi (2007),
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is lower than the accuracy of shape based classification in their previous work (Morris

and Trivedi (2006a)). The classification accuracy was reported as 64.3% for HOG based

approach (accuracy is 34/36 for sedan, 17/34 for minivan and 5/17 for pickup) and 88.4%

for shape based approach (accuracy is 94% for sedan, 87% for truck, 75% for SUV, 100%

for semi, 90% for van, 0% for TSV and 85% for MT).

Motivated by the facts given above, we decided to develop a shape based method

for omnidirectional cameras. The vehicle types that we worked on are motorcycle, car

(sedan) and van (minibus). The extracted features are convexity, elongation, rectangular-

ity, and Hu moments. We applied three different methods for vehicle classification. First

one uses the features one after another in a flowchart (from now on will be referred as

“flowchart method”). The second one is K nearest neighbor (kNN) classification, and the

last one is Deep Neural Network (DNN) classification.

In the flowchart method, the convexity is used to eliminate poor silhouette extrac-

tion, the elongation is used to distinguish motorcycles from other vehicles, and two other

features (rectangularity and a distance based on Hu moments) are used for labelling an

object as a car or a van. The decision boundary is obtained by applying Support Vector

Machines (SVM) on the training dataset. In our experiments, using the average silhouette

rather than using a single frame (not averaging) improved the rate of correct classification

from 80% to 95% for motorcycle, from 78% to 98% for car, and from 81% to 83% for

van.

Vehicle classification with kNN was used many times before (e.g. Morris and

Trivedi (2006a), Morris and Trivedi (2006b), (Luo et al., 2006), Rashid et al. (2010),

Mithun et al. (2012)). Although they did not employ omnidirectional cameras, we can

consider kNN with single silhouettes as the benchmark method and compare it with using

multiple silhouettes for kNN classification. Using the average silhouette improved the

rate of correct classification from 53% to 97% for motorcycle, from 53% to 98% for car,

and from 72% to 99% for van.

In the DNN classification method which became popular with its powerful ma-

chine learning model. Correct classification rate is improved with the average silhouette

method from 95% to 97% for motorcycle, from 85% to 95% for car.

Averaging silhouettes is not the only way to exploit the information available in

multiple frames of a video. As an alternative, we investigated finding the “consensus”

of silhouettes, where the silhouettes are not averaged but a separate decision is made for

each video frame. When a predefined percentage of samples make the same decision,
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that vehicle type is chosen. This can be considered as a decision-level fusion. The clas-

sification performance is not as good as average silhouettes; however it is faster than the

average silhouettes for kNN classification since the operations in averaging step are more

costly than extracting features from multiple silhouettes.

Our omnidirectional video dataset (Karaimer and Bastanlar, 2015), together with

annotations and binary videos after background subtraction, can be downloaded from our

website (http://cvrg.iyte.edu.tr/).

1.1. Other Related Work

Before giving the details of our method, let us briefly present more related work

on shape based methods for vehicle classification. In one of the earliest studies on vehicle

classification with shape based features, authors first apply adaptive background subtrac-

tion on the image to obtain foreground objects (Gupte et al. (2002)). Location, length,

width and velocity of vehicle fragments are used to classify vehicles into two categories;

cars and non-cars. Vehicle length is used to identify and count trucks on a highway with a

92% success rate in the study of Avery et al. (2004). Hasegawa and Kanade (2005) created

a 11-dimensional vector of image features extracted from from the bounding box, width,

height and area, target colour and different image moments. Their overall classification

accuracy is 91% for 6 object categories using linear discriminant analysis. In another

study, (Kumar et al. (2005)), authors use position and velocity in 2D, the major and minor

axis of the ellipse modeling the target and the aspect ratio of the ellipse as features in a

Bayesian Network. In a ship classification study, researchers use MPEG-7 region-based

shape descriptor which applies a complex angular radial transform to a shape represented

by a binary image and classified ships to 6 types with kNN (Luo et al. (2006)). Ji et al.

(2007) record side views of vehicles, and Gabor filter and minimum distance classifier

are used to classify vehicles into five categories, with classification rates of up to 95%. In

a 3D vehicle detection and classification study which is based on shape based features,

Buch et al. (2008) use the overlap of the object silhouette with region of interest mask

which corresponds to the region occupied by the projection of the 3D object model on

the image plane. In Chen et al. (2011), a similar 3D model based classification is com-

pared with using 2D shape based features and SVM classifier. In Chen and Ellis (2011),

shape based features and pyramid HOG features are merged prior to classification task. In
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Chen et al. (2012), again silhouette and intensity based pyramid HOG features extracted

following background subtraction. Then, foreground blobs are classified with majority

voting. In a patent (Sethna et al. (2012)), researchers classified traffic scenes based on

thresholding after computing shape based features obtained from foreground silhouettes.

Instead of standard video frames, some researchers employed time-spatial images,

which are formed by using a virtual detection line in a video sequence. Rashid et al.

(2010) construct a feature vector obtained from the foreground mask. Employed features

are width, area, compactness, length-width ratio, major and minor axis ratio of fitted

ellipse, rectangularity. The samples are classified by K nearest neighbor algorithm. Later,

they improved their work using multiple time spatial images (Mithun et al., 2012).

Although not applied to vehicle classification, a radically different method that

uses silhouettes was proposed by Dedeoglu et al. (2006). They define “silhouette distance

signal” which is the sum of distances between center of a silhouette and contour points.

They create a database of sample object silhouettes with manually labelling object types.

An object is classified by comparing its silhouette distance signal with the ones in the

template database.

In a human recognition study, Gait Energy Image (GEI) which is the result of

averaging binary gait silhouette images, is proposed by Han and Bhanu (2006). They use

GEI as a representation of gait properties to distinguish individuals from each other. They

also show that GEI is less sensitive to silhouette noise in individual frames.

In a detailed review (Sivaraman and Trivedi, 2013), state of the art vehicle de-

tection algorithms are summarized according to different aspects. For example, usage of

stereo or monocular vision, usage of motion or appearance, and classification algorithms

etc. In another comprehensive study of computer vision techniques for the analysis of ur-

ban traffic, Buch et al. (2011) reviewed previously proposed algorithms based on the usage

of top-down and bottom-up classification techniques. In this work, algorithms stated as

top-down use classification of features, and algorithms stated as bottom-up use interest

point detector and descriptors. According to them, top-down methods can raise issues

under challenging urban conditions. Bottom-up methods have promising result, but are

also limited in some cases. As reported by the authors, clearer definition of scenarios and

better fusion of top-down and bottom-up algorithms is required.

Regarding the shape based classification studies with omnidirectional cameras,

the only work that we found in the literature (Khoshabeh et al., 2007) uses only the area

of the blobs and classifies them into two classes; small and large vehicles.
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1.2. Contributions

The main contribution in our study can be considered as exploiting the informa-

tion available in multiple frames of the video for vehicle classification. The silhouettes

extracted from a sequence of frames are combined to create an “average silhouette”. This

process is known as “temporal averaging of images” in image processing community and

usually used to eliminate noise. We also investigated the use of decision-level fusion,

where the classification is made for each video frame separately and the “consensus” of

these decisions are determined. We experimentally show that both of these multi-frame

approaches perform better than using a single frame.

Another contribution in this thesis is that the area of the silhouette is not a feature

in our method which makes it suitable for portable image acquisition platforms. Previous

work, that employ cameras fixed to buildings, use “area” as a feature to classify vehicles

(Morris and Trivedi (2006a), Morris and Trivedi (2006b), Khoshabeh et al. (2007), Buch

et al. (2008), Rashid et al. (2010), Mithun et al. (2012)). Since that feature becomes in-

valid when the distance between the camera and the scene objects change, those methods

are not versatile.

1.3. Organization of Thesis

The organization of the thesis is as follows. In Chapter 2, we introduce the de-

tails of silhouette averaging and consensus of silhouettes approaches. Vehicle detector

and classifier methods are described in Chapther 3. Experiment results are presented in

Chapter 4 and finally conclusions are given in Chapter 5.
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CHAPTER 2

USING MULTIPLE SILHOUETTES

The silhouettes are obtained after a background subtraction step and a morpho-

logical operation step. For background subtraction, the algorithm proposed by Yao and

Odobez (2007) is used, which was one of the best performing algorithms in the review of

Sobral and Vacavant (2014). The final binary mask is obtained by an opening operation

with a disk, after which the largest blob is assigned as the silhouette belong to the moving

object.

The rest of this chapter explains two different approaches of using multiple sil-

houettes. The first on is “average silhouette” which is the temporal average of silhouettes,

and the second one is “consensus of silhouettes” which is based on majority of individual

classifications of single silhouettes.

2.1. Average Silhouettes

This section presents details of “average silhouettes” (cf. Figure 2.1). To obtain an

“average silhouette” we need to define how many frames are used and the silhouettes from

these frames should coincide spatially. If a silhouette is in range of a previously specified

angle (which we set as [30◦, -30◦], and 0◦ is assigned to the direction that camera is closest

to the road), then the silhouette is rotated with respect to the center of omnidirectional

image so that the center of the silhouette is at the level of the image center. This operation,

also described in Figure 2.2, is repeated until the object leaves the angle range.

Silhouettes obtained in the previous step are added to each other so that the center

of gravity of each blob coincides with others. The cumulative image is divided by the

number of frames which results in “average silhouette” (Figure 2.3). We then apply an in-

tensity threshold to convert average silhouette to a binary image and also to eliminate less

significant parts which were supported by a lower number of frames. Thus we can work

with more common part rather than taking into account every detail around a silhouette

(Figure 2.3g). The threshold we select here eliminates the lowest 25% of grayscale levels.
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Figure 2.1. Summary of the use of average silhouettes, on the contrary of single sil-
houette.

2.2. Consensus of Silhouettes

In addition to silhouette averaging, we present a second way to merge information

in multiple frames. The largest blob for each frame is considered as an input for the

single frame classification method and a decision is made for each. When a predefined

percentage, for instance 50%, of the samples make the same prediction, we consider that

there is a “consensus” among the prediction of the frames and we call that prediction as

the vehicle type.

In our analysis, we have seen that silhouette extraction for consensus of silhouettes

is computationally cheaper than the average silhouette method. For consensus of silhou-

ettes, morphological operations and rotation of silhouette with respect to omnidirectional

image center takes 15 ms per frame, although for average silhouette, extra two operations,

coinciding centers and addition to previous silhouettes takes 169 ms per frame.
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Figure 2.2. Top: An example omnidirectional video frame containing a van. Bottom-
left: The same frame after background subtraction. Also the angle range
that we used, namely [30◦, -30◦], is superimposed on the image. Centroid
of the largest blob is at 29◦. Bottom-right: Rotated blob after morphologi-
cal operations.
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(a) (b) (c)

(d) (e) (f) (g)

Figure 2.3. Example binary images when the centroid of the object is at (a) 29◦ (b)
26◦ (c) 0◦ (d) -11◦ (e) -29◦. (f) Resultant “average silhouette” obtained by
the largest blobs in the binary images. (g) Thresholded silhouette and the
minimum bounding rectangle.
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CHAPTER 3

DETECTION AND CLASSIFICATION

We compare three different approaches of using silhouettes, namely single silhou-

ette that is closest to 0◦, averaged silhouette and the consensus of multiple silhouettes. We

applied three methods of classification for the mentioned three approaches. First one is

the flowchart method that we developed, second one uses kNN classification and it was

previously used for shape based vehicle classification, and the last one is DNN classifica-

tion which became popular in recent years.

3.1. Flowchart Method

The steps of this method are summarized in the block diagram in Figure 3.1.

Firstly, a convexity threshold is applied to a silhouette obtained after morphological op-

erations. If the silhouette averaging approach is used, then the silhouette here is the one

obtained by the procedure described in Section 2.1. Otherwise it is a single-frame silhou-

ette.

The convexity (3.1) is used to eliminate detections that may not belong to a vehicle

class or poorly extracted silhouettes from vehicles.

Convexity =
Oconvexhull

O
(3.1)

where Oconvexhull is the perimeter of the convex hull and O is the perimeter of the

original contour (Yang et al. (2008)). Since we do not look for a jagged silhouette, the

set of detected silhouettes {Ds} is filtered to obtain a set of valid detections {Dv} (3.2)

using the convexity threshold ρ .

{Dv} = {Dv|ConvexityDs > ρ} (3.2)

We set ρ = 0.75 for our experiments. An example is shown for an eliminated silhouette

using convexity threshold in Figure 3.2. The set of valid detections {Dv} is passed to the

classification step. The features we employ for classification are; elongation, rectangular-

ity, and Hu moments. Elongation (3.3) is computed as follows
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Figure 3.1. Block diagram of the detection and classification system. With the pro-
posed method, multiple frames are processed and the extracted average
silhouette is used instead of a silhouette from a single frame.

Figure 3.2. An example of an extracted silhouette and its convex hull. It is extracted
from a van example using a single frame and its convexity is computed as
0.73 which is lower than the threshold. ρ = 0.75.
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Elongation = 1−W/L (3.3)

where W is the short and L is the long edge of the minimum bounding rectangle (Figure

2.3g) which is the smallest rectangle that contains every point in the shape (Yang et al.

(2008)).

We observed that the elongation is able to discriminate motorcycles from other

vehicle types with a threshold. Then, the set of detected motorcycles {Dm} (3.4) is given

by

{Dm} = {Dm|ElongationDv < τ} (3.4)

where τ is the elongation threshold. τ is determined using the samples in the training set.

Rectangularity (3.5) measures how much a shape fills its minimum bounding rect-

angle (Yang et al. (2008)):

Rectangularity = As/Al (3.5)

where As represents area of a shape and Al represents area of the bounding rectangle.

Rectangularity is a meaningful feature to distinguish between sedan cars and vans since

the silhouette of a van has a tendency to fill its minimum bounding box. In our trials,

we observed that setting a threshold for rectangularity alone is not effective enough to

discriminate cars from vans. To discriminate the cars and vans better, we defined an extra

feature, named P1 (3.8), which is based on Hu moments and measures if an extracted

silhouette resembles the car silhouettes in the training set more than it resembles the

van silhouettes. P1 is an exemplar-based feature rather than a rule-based one and it is

computed as follows:

C1 =
1

#cars

#cars∑
i=0

I2(Ds, Cari) (3.6)

V1 =
1

#vans

#vans∑
i=0

I2(Ds, V ani) (3.7)

P1 = C1 − V1 (3.8)

For a new sample, P1 corresponds to the difference between the average I2 (3.10) distance

to the cars in the training set and the average I2 distance to the vans in the training set.
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The mentioned I2 distance is one of the three possible distances, based on 7 Hu moments

(Hu (1962)), used for computing the similarity of two silhouettes:

I1(A,B) =
∑
i=1...7

∣∣∣∣ 1

mA
i

− 1

mB
i

∣∣∣∣ (3.9)

I2(A,B) =
∑
i=1...7

∣∣mA
i −mB

i

∣∣ (3.10)

I3(A,B) =
∑
i=1...7

∣∣∣∣mA
i −mB

i

mA
i

∣∣∣∣ (3.11)

mA
i = sign(hAi ).log(h

A
i ) (3.12)

mB
i = sign(hBi ).log(h

B
i ) (3.13)

where hAi and hBi are the Hu moments of shapes A and B respectively (Bradski and

Kaehler (2008)).

We select I2 (3.10) since it achieved better discrimination in our experiments than

I1 (3.9) and I3 (3.11).

If a detection is not classified as a motorcycle, in other words Elongation > τ ,

then it can be either a car or a van. To determine the decision boundary between car

and van classes we trained a SVM classifier with a linear kernel using the samples in the

training set.

3.2. K Nearest Neighbors

Without using classification scheme in Figure 3.1 we applied kNN classification

with using plausible features from flowchart method. Since vehicle classification with

kNN using features extracted from a single silhouette can be considered as a bench-

mark method (e.g. Morris and Trivedi (2006a), Morris and Trivedi (2006b), Mithun et al.

(2012)), this way we can investigate the improvement gained by using multiple frames.

Using kNN, in the simplest case, a new sample’s label is determined according to

its nearest neighbours label. Closest points label is assigned to new samples label in this

case, i.e. K=1, or nearest neighbour rule. When K is a number greater than 1, majority of
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nearest K neighbours’ label in training set is assigned to new samples label. This is more

powerful rather than using nearest neighbour rule. While exhaustive search takes O(dn)

time on d dimensional dataset, using KD-Tree (k-dimensional tree) which is a suitable,

and efficient data structure, time complexity can be reduced (Duda et al., 2012).

In our case, each neighbours vote is counted 1. An extension to kNN is using

a weighting scheme which is computed based on distance to sample. This, which is

sensible, cause that a closer point to a new sample have a higher vote rather than farther

points. The procedure which is mentioned here is called weighted kNN . (Duda et al.,

2012).

kNN method is applied on average silhouette, consensus of silhouettes, and single

frame silhouette approaches. On our dataset we used the features of elongation, rectan-

gularity, convexity. We also computed solidity and ellipse axes ratio features. However,

increasing the number of features did not improve the results. Therefore in Section 4 we

present the results with three features we mentioned first.

3.3. Deep Neural Networks

As a third alternative classification algorithm, we employed Deep Neural Net-

works (DNN) to analyse improvement on classification performance using multiple sil-

houettes. The reason why we chose DNN’s is their proved, powerful machine learning

model (Hinton and Salakhutdinov, 2006). They described a nonlinear generalization of

PCA (Principle Components Analysis) that uses an adaptive, multilayer “encoder” net-

work to transform the high-dimensional data into a low-dimensional code and a similar

“decoder” network to recover the data from the code. They also present experimental

results on both document and image datasets.

In recent years, Deep Neural Networks have reached remarkable performance on

image classification (Krizhevsky et al., 2012). Rather than simple neural network archi-

tectures, their complex architecture is able to model complex features. Later on, Szegedy

et al. (2013) improved DNN’s not only for object classification but also precise localiza-

tion problems which is led to scalable object detection (Erhan et al., 2014).

Hinton and Salakhutdinov (2006) introduced “pretraining” procedure for binary

data. The “pretraining” procedure learns one layer of features at a time. This way the

procedure helps to gradient descent to work well by finding good initial weights. With
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“pretraining” a stack of restricted Boltzman machines (RBM’s) are learned. Each have

only one layer of feature detectors. One RBM’s learned feature activations are used as

data to train the next RBM in stack. After the “pretraining”, the RBM’s are “unrolled”,

which means obtaining required gradients by chain rule to propogate first through the

decoder network and then through the encoder network. Their whole system is called

“autoencoder”, which is later fine-tuned using backpropagation of error derivatives. An

example to this “pretraining” procedure is given in Figures 3.3, 3.4, and 3.5. It should be

noted that, while the last layer of “pretraining”, cf. Figure 3.5, is trained in a supervised

method, and the others are trained in an unsupervised method.

Similar to Flowchart, and kNN methods we applied Deep Neural Network on

average silhouette, consensus of silhouettes and single frame silhouette approaches. The

results are given in Section 4.3
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Figure 3.3. First layer of “pretraining” procedure. Input is the same size with the im-
age, and output is the same size with the input of next layer.

Figure 3.4. Second layer of “pretraining” procedure. Input is the same size with the
previous layers output layer, and output is the same size with the input of
next layer.

Figure 3.5. Third layer of “pretraining” procedure. Input is the same size with the
previous layers output layer, and output is the same size with the number
of classes.
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CHAPTER 4

EXPERIMENTAL RESULTS

Using a Canon 600D SLR camera and a mirror apparatus (www.gopano.com)

we obtained a catadioptric omnidirectional camera. Figure 4.1 shows a sample catadiop-

tric omnidirectional camera. We constructed a dataset of 49 motorcycles, 124 cars and

104 vans totaling 277 vehicle instances. Dataset is divided into training and test sets.

Training set contains approximately 60% percent of the total dataset corresponding to 29

motorcycles, 74 cars and 62 vans. The rest is used as test set. To ensure the randomization

of data samples, the procedure is repeated three times with the dataset split randomly into

training and testing samples. We summarize our experiment results under three subsec-

tions belonging to flowchart method, kNN, and DNN classification each.

Figure 4.1. A mirror apparatus is placed in front of a conventional camera to obtain a
catadioptric omnidirectional camera.
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4.1. Flowchart Method

We set ρ = 0.75 and SVM’s parameter C = 0.2 for our training set. The elonga-

tion threshold is determined by choosing the maximum elongation value of motorcycles

in the training set since this value discriminates motorcycles from other vehicles.

Regarding the training of car-van classifier, Figures 4.2 and 4.4 show the SVM’s

linear decision boundary, trained with the average silhouette and single frame silhouette

respectively. Training the single frame method with the extracted single frame silhouettes

would not be fair since they contain poorly extracted silhouettes. Therefore, the bound-

aries of the vehicles are manually annotated and used for the training of single frame

method. Test results with and without averaging silhouettes are shown in Figures 4.3 and

4.5 respectively.

Figure 4.2. Training result of SVM using the average silhouette method.

We report the average results of the two compared methods in Table 4.1. Values

in the table correspond to what percentage of the instances of a vehicle type is classified

correctly. Not surprisingly, exploiting the information from multiple frames by averaging

the silhouettes has a greater performance than using the silhouette in a single frame.

Tables 4.2 and 4.3 depict the total number of correctly classified and misclassi-

fied samples for three folds for each class with the average silhouette and single frame

silhouette methods respectively. False negatives (FN) are the missed samples which are

eliminated by convexity threshold.

Figure 4.6 shows an example where a car is correctly classified with using average
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Figure 4.3. Test result with the average silhouette method.

Figure 4.4. Training result of SVM without averaging silhouettes (single frame method.

Figure 4.5. Test result without averaging silhouettes, i.e. using single frame silhouettes.
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Table 4.1. Average classification accuracies for each class when ρ = 0.75 and C =
0.2 for the average silhouette method and for the single frame method.

Motorcycle Car Van Overall
Average

silhouette method 95% 98% 83% 92%
Single frame

method 80% 78% 81% 79%

Table 4.2. Confusion matrix for the approach of using average silhouettes as sum of
three folds (For each fold there are 20 motorcycles, 50 cars, and 42 vans in
test set).

Ground truth Motorcycle Car Van

D
et

ec
tio

n Motorcycle 57 0 1
Car 2 146 2
Van 1 4 104
FN 0 0 20

Table 4.3. Confusion matrix for single frame method as sum of three folds (For each
fold there are 20 motorcycles, 50 cars, and 42 vans in test set).

Ground truth Motorcycle Car Van

D
et

ec
tio

n Motorcycle 48 8 13
Car 0 118 2
Van 2 20 101
FN 10 4 10
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(a)

(b) (c) (d)

Figure 4.6. Example car silhouettes (a) Original frame (b) Result of using a single
silhouette which is misclassified with rectangularity = 0.56 and P1 =
3.381, (c) Average silhouette, (d) Thresholded average silhouette classified
as car rectangularity = 0.68 and P1 = −1.602.
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(a) (b) (c)

Figure 4.7. Example van silhouettes (a) Silhouette from a single frame which is elim-
inated since ρ = 0.548, (b) Average silhouette, (c) Thresholded average
silhouette which is not eliminated since.ρ = 0.823.

silhouette, whereas it is misclassified with using a single silhouette. Figure 4.7 shows an

example where a van has passed the detection phase with average silhouette method, but

failed with the single silhouette method. Such cases constitute the main performance

difference between the two compared methods.

We also examined the performance of “consensus of silhouettes” with flowchart

method. Training set consists of annotated silhouettes. Thresholds, and SVM model used

in scheme (cf. Figure 3.1) are obtained from the training set. As mentioned before, in

consensus approach we require a predefined percentage of the samples make the same

prediction. Table 4.4 shows classification accuracies when required consensus percent-

age changes from 70% to 34% (winner takes all). 34% is the lowest possible consensus

percentage since after this value, the chosen class is no longer the largest group. Values

in the table correspond to what percentage of the instances of a vehicle type is classified

correctly. When we increase the percentage, samples which their consensus value is less

than this number are assumed to be misclassified (i.e. false negative). Decreasing percent-

age more does not increase the accuracy because it no longer becomes the largest group.

Number of frames used is not fixed for every sample, instead we fixed the angle range in

the omnidirectional image as depicted in Figure 2.2. According to these results, for the
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flowchart method, average silhouette approach has the highest performance. The overall

performance of consensus (34%) approach is slightly below the single frame silhouette

approach.

An important point is the required time to compute the features in the flowchart

method. In our analysis we saw that computing P1 takes 5.46 seconds, while the rest of

the features take only 7 milliseconds.

Table 4.4. Classification accuracies for each class for consensus approach. Required
consensus percentage changes from 70% to 34%.

Threshold Motorcycle Car Van Overall
70% 83% 50% 40% 52%
60% 87% 63% 55% 64%
50% 90% 71% 67% 73%
40% 93% 73% 67% 74%
34% 95% 73% 67% 75%

4.2. K Nearest Neighbor Experiments

As mentioned before, we also examined the classification performance of kNN.

Figure 4.8a shows the features of the annotated silhouettes of all samples (using Euclidean

distance) in 3D where dimensions are rectangularity elongation and convexity. Actual la-

bels are indicated with different colors. We see that looking at a certain number of nearest

neighbors of new sample can help us to determine the sample’s label. Top-view of Figure

4.8a is shown in Figure 4.8b, where x and y axes refer to rectangularity and elongation

respectively. It can be observed that elongation plays a dominant role to discriminate mo-

torcycle class from others. Figure 4.8c shows the 2D space with dimensions convexity

and rectangularity. Rectangularity is not adequate to discriminate cars from vans. With

the help of convexity and elongation, car/van classification becomes more accurate.

By dividing the dataset as train and test parts randomly and repeating the experi-

ments three times, we computed average accuracies for different K values. As stated in

(Duda et al., 2012), selection of K is crucial. When K is small, noise can affect classifi-

cation. Otherwise, when K is large, computation costs increase. In our experiments, K

is selected 5, 10, and 15, and the results are quite similar to each other. Table 4.5, 4.8,
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and 4.11 depicts averaged silhouettes, single frame silhouettes, and consensus of silhou-

ettes kNN classification results when K is selected 5, 10, and 15 respectively. We again

observe that average silhouette is the best performing approach. Performance of consen-

sus approach is not as good as average silhouette, but it is considerably better than using

single frame silhouettes. When K is selected 5, Tables 4.6, and 4.7 depict the number of

correctly classified and misclassified samples for each class with the average silhouette

and single frame silhouette methods respectively. When K is selected 10, Tables 4.9, and

4.10 depict the number of correctly classified and misclassified samples for each class

with the average silhouette and single frame silhouette methods respectively. When K

is selected 15, Tables 4.12, and 4.13 depict the number of correctly classified and mis-

classified samples for each class with the average silhouette and single frame silhouette

methods respectively. Numbers in the Tables 4.6, 4.7, 4.9, 4.10, 4.12, and 4.13 are total

correctly classified and misclassified samples of the three folds. False negatives (FN) are

the missed samples.

Since P1 feature is not used in kNN classification, calculation of features is much

faster than the flowchart method. Regarding the two multi-frame approaches, although

the performance of consensus approach is lower than average silhouette approach, it is

more time efficient. Total time for consensus approach with kNN classification is 250

ms including silhouette and feature extraction (assuming 10 frames are used), whereas

average silhouette with kNN takes 1850 ms. We used KD-tree implementation, as we

mentioned in Section 3.2, rather than exhaustive search considering time complexity to

classify a new sample. The required time for classification a new sample with kNN clas-

sification is only 3 milliseconds using the KD-tree implementation when K is selected 5.

Table 4.5. Classification accuracies with kNN (K = 5) for the average silhouette,
consensus of silhouettes and single frame silhouette approaches.

Motorcycle Car Van Overall
Average

silhouette 97% 98% 99% 98%
Consensus of

silhouettes 95% 58% 100% 80%
Single frame

silhouette 53% 53% 72% 60%
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Table 4.6. Confusion matrix for the approach of using average silhouette classified
with kNN (K = 5) as sum of three folds (For each fold there are 20 mo-
torcycles, 50 cars, and 42 vans in test set).

Ground truth Motorcycle Car Van

D
et

ec
tio

n Motorcycle 58 0 0
Car 0 147 1
Van 2 3 125
FN 0 0 0

Table 4.7. Confusion matrix for the approach of using single silhouette classified with
kNN (K = 5) as sum of three folds (For each fold there are 20 motorcycles,
50 cars, and 42 vans in test set).

Ground truth Motorcycle Car Van

D
et

ec
tio

n Motorcycle 32 63 5
Car 5 79 30
Van 23 7 91
FN 0 0 0

Table 4.8. Classification accuracies with kNN (K = 10) for the average silhouette,
consensus of silhouettes and single frame silhouette approaches.

Motorcycle Car Van Overall
Average

silhouette 97% 98% 100% 99%
Consensus of

silhouettes 95% 57% 100% 80%
Single frame

silhouette 53% 53% 73% 61%

Table 4.9. Confusion matrix for the approach of using average silhouette classified
with kNN (K = 10) as sum of three folds (For each fold there are 20
motorcycles, 50 cars, and 42 vans in test set).

Ground truth Motorcycle Car Van

D
et

ec
tio

n Motorcycle 58 0 0
Car 0 147 0
Van 2 3 126
FN 0 0 0
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Table 4.10. Confusion matrix for the approach of using single silhouette classified with
kNN (K = 10) as sum of three folds (For each fold there are 20 motorcy-
cles, 50 cars, and 42 vans in test set).

Ground truth Motorcycle Car Van

D
et

ec
tio

n Motorcycle 32 55 4
Car 5 80 30
Van 23 15 92
FN 0 0 0

Table 4.11. Classification accuracies with kNN (K = 15) for the average silhouette,
consensus of silhouettes and single frame silhouette approaches.

Motorcycle Car Van Overall
Average

silhouette 97% 99% 99% 99%
Consensus of

silhouettes 95% 56% 100% 79%
Single frame

silhouette 43% 53% 74% 59%

Table 4.12. Confusion matrix for the approach of using average silhouette classified
with kNN (K = 15) as sum of three folds (For each fold there are 20
motorcycles, 50 cars, and 42 vans in test set).

Ground truth Motorcycle Car Van

D
et

ec
tio

n Motorcycle 58 0 0
Car 0 148 1
Van 2 2 125
FN 0 0 0

Table 4.13. Confusion matrix for the approach of using single silhouette classified with
kNN (K = 15) as sum of three folds (For each fold there are 20 motorcy-
cles, 50 cars, and 42 vans in test set).

Ground truth Motorcycle Car Van

D
et

ec
tio

n Motorcycle 26 50 3
Car 6 79 30
Van 28 21 93
FN 0 0 0
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(a)

(b) (c)

Figure 4.8. Extracted features of the annotated silhouettes. (a) All dimensions. (b)
First two dimensions. (c) Last two dimensions.
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4.3. Deep Neural Network Experiments

As we mentioned earlier, we also examined the classification performance of

DNN. As stated in (Hinton and Salakhutdinov, 2006), pretraining helps to generalize

DNN’s. Gradient descent is also used for fine-tuning of the weights of our DNN. Fine-

tuning should be applied to all 165 training samples which corresponds to approximately

60% of the total dataset, the resultant system should be tested on the remaining 112 test

samples, approximately 40% of the total dataset.

We trained two different DNN’s using the Matlab example in MathWorks (2015).

First one is for average silhouettes, and the other is for consensus of silhouettes and sin-

gle silhouette. We can summarize the one trained for average silhouettes as follows:

After layer-by-layer pretraining, and fine tuning in a (240 x 180)-100-50-10-3 network,

backpropagation using steepest descent and a small learning rate achieves 95% overall

classification accuracy for average silhouette. The whole system is shown in Figure 4.9,

which is also the combination of the layers (cf. Figures 3.3, 3.4, and 3.5) mentioned in

Section 3.3. It should be noted that similar to flowchart, and kNN experiments average

silhouettes are trained using average silhouettes. Some of the learned features from the

first layer is shown in Figure 4.10. It can be seen that shapes of vehicles can be discrim-

inated from each other. If there is an accumulation on the center of blob, it is tend to be

classified as motorcycle. Otherwise, it is tend to be classified as van.

Our second DNN is trained for consensus of silhouettes and single silhouette ap-

proaches using hand labelled groundtruth silhouettes. Again we trained (240 x 180)-

100-50-10-3 network, and we obtained 92% overall classification accuracy for consensus

of silhouettes, and 90% overall classification accuracy for single frame silhouette. The

scheme of whole system is shown in Figure 4.9. Some of the learned features from the

first layer is shown in Figure 4.11. Similar to Figure 4.10 accumulation on the center of

blobs makes them to be classified more likely to motorcycle, accumulation on the border

of blobs makes them to be classified more likely to van.

Again, similar to Flowchart and kNN experiments, by dividing the dataset as train

and test parts randomly and repeating the experiments three times, we computed average

accuracies for averaged silhouettes, single frame silhouettes, and consensus of silhou-

ettes. Table 4.14 depicts average of three DNN classification experiments’ results. Values

in the table correspond to what percentage of the instances of a vehicle type is classified

correctly. Tables 4.15 and 4.16 depict the number of correctly classified and misclassified
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Figure 4.9. Whole Deep Neural Network system used to train and test of average sil-
houette, consensus of silhouettes and single silhouette.

(a) (b) (c)

(d) (e) (f) (g)

Figure 4.10. Example features obtained from the training of DNN using average silhou-
ettes.
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(a) (b) (c)

(d) (e) (f) (g)

Figure 4.11. Example features obtained from the training of DNN using groundtruth
silhouettes.

samples for each class with the average silhouette and single frame silhouette methods

respectively. Numbers in the Tables 4.15 and 4.16 are total correctly classified and mis-

classified samples of the three folds. False negatives (FN) are the missed samples.

In spite of DNN’s long training intervals, total time required to classify a sample

is quite short. While total time required to classify an averaged silhouette and single

silhouette is 3.6 milliseconds, and for the consensus approach (assuming 10 frames are

classified) it is 36 milliseconds.

Table 4.14. Average classification accuracies with DNN for the average silhouette,
consensus of silhouettes and single frame silhouette approaches.

Motorcycle Car Van Overall
Average

silhouette 97% 95% 94% 95%
Consensus of

silhouettes 100% 95% 84% 92%
Single frame

silhouette 95% 85% 94% 90%
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Table 4.15. Confusion matrix for the approach of using average silhouettes classified
with DNN as sum of three folds (For each fold there are 20 motorcycles,
50 cars, and 42 vans in test set).

Ground truth Motorcycle Car Van

D
et

ec
tio

n Motorcycle 58 0 0
Car 1 143 7
Van 1 7 119
FN 0 0 0

Table 4.16. Confusion matrix for the approach of using single silhouette classified with
DNN as sum of three folds (For each fold there are 20 motorcycles, 50 cars,
and 42 vans in test set).

Ground truth Motorcycle Car Van

D
et

ec
tio

n Motorcycle 57 5 1
Car 3 127 7
Van 0 18 118
FN 0 0 0

We also made an experiment to see how classes response changes when we use

different kind of features. Using five features, we calculated response in training set

between three major vehicle types. Figure 4.12a, Figure 4.13a, Figure 4.14a, Figure 4.15a,

and Figure 4.16a shows the five sample features we used. Figure 4.12b, Figure 4.13b,

Figure 4.14b, Figure 4.15b, and Figure 4.16b shows motorcycle, car, and van response for

each feature. Feature shown in Figure 4.12, shows positive response only to motorcycle

class, since positive weights are accumulated at the center of blob. Feature shown in

Figure 4.13, shows positive dominant response to van class, since weights are arranged

mostly negative close to center of blob. Feature shown in Figure 4.14, shows positive

dominant response to car class, since weights are arranged mostly positive close to center

of blob. Feature shown in Figure 4.15, shows positive dominant response to van class,

and also to motorcycle class. This feature presents also a negative dominant response

to car class, since positive weights are positioned at the center and boundary of blob.

Feature shown in Figure 4.16, shows positive dominant response to car class, and also

negative responses to van and motorcycle classes, since negative weights are positioned

at the center and boundary of blob.
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(a) (b)

Figure 4.12. Class response change by changing sample features. (a) Selected feature.
(b) Response of three major vehicle type.

(a) (b)

Figure 4.13. Class response change by changing sample features. (a) Selected feature.
(b) Response of three major vehicle type.
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(a) (b)

Figure 4.14. Class response change by changing sample features. (a) Selected feature.
(b) Response of three major vehicle type.

(a) (b)

Figure 4.15. Class response change by changing sample features. (a) Selected feature.
(b) Response of three major vehicle type.
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(a) (b)

Figure 4.16. Class response change by changing sample features. (a) Selected feature.
(b) Response of three major vehicle type.

4.4. Comparison of Computation Times

In this section, we summarize, and compare computation times of the methods

which are explained in details in Sections 4.1, 4.2, and 4.3. Table 4.20 summarizes total

computation times to classify a new sample in milliseconds unit. This is the total time

after background subtraction, including silhouette extraction, feature extraction, and clas-

sification. For multiple silhouettes cases, average silhouettes and consensus of silhouettes,

we assume 10 frames are used in calculation of computation times.

We can summarize our inference from Table 4.20, which is combination of sil-

houette extraction times (cf. Table 4.17), feature extraction times (cf. Table 4.18), and

classification times (cf. Table 4.19) as follows. Since flowchart method contains calcu-

lation of P1 feature, total computation time to classify a new sample is too much with

this method. When we compare kNN and DNN classification methods, computation time

of consensus of silhouettes are much less rather than average silhouettes’. However, as

we present in Sections 4.2, and 4.3 the average silhouettes’ classification accuracy is su-

perior than the consensus of silhouettes’ classification accuracy. Table 4.20 makes clear

that there is a trade-off between total computation times and classification accuracy of the

two compared methods, average silhouette and consensus of silhouettes. According to

requirements of the application area, one of them can be chosen.

In this study, we analyzed the results of five background subtraction algorithms,
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Table 4.17. Computation time to extract silhouettes of a new sample for the average
silhouette, consensus of silhouettes and single frame silhouette approaches
(in milliseconds).

Average silhouette Consensus of silhouettes Single frame silhouette
Required

time 1840 150 4.3

Table 4.18. Computation time to extract features of a new sample for the average sil-
houette, consensus of silhouettes and single frame silhouette approaches
(in milliseconds).

Flowchart Method kNN DNN
Average

silhouette 5467 7 0
Consensus of

silhouettes 54670 70 0
Single frame

silhouette 5467 7 0

namely Adaptive Background Subtraction, GMG (Godbehere et al., 2012), LB Adaptive

SOM (Maddalena and Petrosino, 2008), Mixture Of Gaussian V1BGS (KaewTraKulPong

and Bowden, 2002), and Multi Layer BGS (Yao and Odobez, 2007) reviewed in (Sobral

and Vacavant, 2014). After reviewing the quality of these algorithms, we decided to work

on the resultant foreground masks of our videos produced by (Yao and Odobez, 2007),

since its background subtraction is more successful. However, required time to obtain

those masks is almost 2 seconds for a video frame. According to (Sobral and Vacavant,

2014), there is a trade-off between algorithms accuracy and time complexities. For our

videos (resolution is 810x1440 pixels) required time to obtain foreground masks for the

reviewed algorithms are presented in Table 4.21.
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Table 4.19. Computation time to classify a new sample for the average silhouette, con-
sensus of silhouettes and single frame silhouette approaches (in millisec-
onds).

Flowchart Method kNN DNN
Average

silhouette 3.28 3 3.6
Consensus of

silhouettes 32.8 30 36
Single frame

silhouette 3.28 3 3.6

Table 4.20. Total computation time to classify a new sample for the average silhou-
ette, consensus of silhouettes and single frame silhouette approaches (in
milliseconds).

Flowchart Method kNN DNN
Average

silhouette 7310.28 1850 1843.6
Consensus of

silhouettes 54852.8 250 186
Single frame

silhouette 5470.8 14.3 8

Table 4.21. Total computation time to obtain foreground masks (in milliseconds/frame).

ABS GMG LBAdaptiveSOM MOG V1BGS MultiLayerBGS
Required

time 411 167 430 1390 2093
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

We proposed to use multiple frames of a video for shape based classification of

vehicles. We applied three different methods of classification and compared the perfor-

mance of using a silhouette from a single frame with the performance of using multiple

frames. The first one is using features one after another in a flowchart to classify the ve-

hicles. The second one is kNN classification. We decided to include this method in our

experiments because using single frame silhouette with kNN classification can be consid-

ered as the benchmark method in shape based vehicle classification. Lastly we compared

single and multiple frame approaches with a DNN classifier. We included this experiment

in our study because DNN became very popular in recent years. Results of the exper-

iments indicate a significant improvement in classification accuracy by using multiple

frames.

When two alternative approaches of using multiple frames are compared, average

silhouette has a higher performance than using consensus of decisions of multiple frames.

However, consensus approach has the advantage of being computationally cheaper.

In essence, the advantage of the proposed approach is utilizing the information

available in a longer time interval rather than a single frame. Therefore the improvement

can be expected for other objects types and domains other than traffic applications.

We use a portable image acquisition platform and our method is independent of the

distance between the camera and the objects which is more practical than the previously

proposed methods that fix the cameras to buildings and use the object’s area as a feature

since the distance to objects stays same.

For shape based object detection, template based algorithms also exist, for ex-

ample, Chamfer Matching. We also made experiments using Chamfer Matching. For

different training sets, we obtained different templates. According to our experiments for

similar templates, detection results were quite inconsistent, and unreliable. We observed

that the method is pretty sensitive to little changes in the template. Due to this reason, we

did not include the results of Chamfer Matching algorithm to this thesis.

Currently, we can detect and classify three different vehicle types namely, motor-
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cycle, car, and van (minibus) in omnidirectional videos. In the future, we may increase

number of classes detected and classified by our method. For example, we can record

human, truck, bus, SUV videos with current setup and add them to the dataset.

We did not cover scenes that contain occlusion. In the future, we may focus to

this issue. Using object tracking algorithms we can find a solution to classification of

occluded silhouettes.

There may be other use of multiple silhouettes other than we discussed. Current

use of multiple silhouettes gives equal weight to each silhouette. For instance, one can

change this scheme by giving more importance to the silhouettes positioned closer to

center angle. The performance of this scheme can be investigated in the future.
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