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Tuğrul GÜNER

December 2014
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Department of Physics, İzmir Institute of Technology

Assoc. Prof. Dr. Haldun SEVİNÇLİ
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ABSTRACT

ENTROPIC TUNNELING TIME AND ITS APPLICATIONS

Quantum tunneling is one of the most interesting consequences of quantum be-

haviour. However, even though it is known and understood well, due to non-existence of

a time operator in quantum mechanics, estimating what time it takes for a particle to cross

a barrier remains an open question. There are some attempts like phase time, dwell time,

Larmor clock, Buttiker-Landauer, and Feynman Path Integral approaches. These definitions

do not agree with each other and with experiment.

In this thesis work, tunneling time problem is studied in a rather new context. Knowing time

necessitates momentum, we deal with momentum state vectors and define entropy accord-

ingly. This entropy, which gives a temperature, defines a thermal energy in the tunneling

region. With this thermal energy and uncertainty principle, resulting time deviation of the

particle from the classically instantaneous is stated as our tunneling time, entropic tunneling

time. Moreover, we compare this tunneling time with recent experiments in detail, and find

that, it is in very good agreement with the data. Then, we apply this entropic tunneling time

to α - decay, STM and creation of universe from nothing to predict natural time scale of these

processes.
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ÖZET

ENTROPİK TÜNELLEME ZAMANI VE UYGULAMALARI

Kuantum tünelleme, kuantum mekaniğinin en ilginç sonuçlarından biridir. Ama

iyi bilinmesine ve anlaşılmasına rağmen, kuantum mekaniğinde zaman operatörü yazıla-

mayışından ötürü, bir parçacığın bariyeri ne kadar zamanda katedeceği açık bir soru olarak

durmaktadır. Bu sorunu çözmek icin faz zamanı, dwell zamanı, Larmor saati, Buttiker-

Landauer, ve Feynman Yol İntegrasyonu yaklaşımı gibi bazı girişimler mevcut olsada, henüz

daha bir fikir birliğine varılamamıştır.

Bu tezde, tünelleme zamanı problemi oldukça yeni bir bağlamda çalışıldı. Zamanı anla-

mak momentumu gerekli kılar, ve dolayısıyla, entropiyi tanımlamak için momentum du-

rum vektörleri kullanıldı. Bu entropi, ki ayrıca bir sıcaklık ifade eder, tünelleme bölgesi

için termal enerji tanımlar. Bu termal enerji ve belirsizlik ilkesi neticesinde, parçacık için

sonuçlanan ve klasik olarak anlık ifade edilen zamandan sapmayı temsil eden zaman tanımı

bizim tünelleme zamanımız, entropik tünelleme zamanı, olarak belirlendi. Dahası, bu modeli

deney ile detaylıca karşılaştırdık ve deney sonuçlarıyla oldukça iyi bir şekilde uyuştuğunu

bulduk. Bunun üzerine, entropik tünelleme zamanını α-bozunumu’na, STM’e ve evrenin

tünellemesi’ne, bu süreçlerin doğal zaman skalasını belirleyebilmek için uyguladık.
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CHAPTER 1

INTRODUCTION

Quantum tunneling (for general information you can check (Griffiths, 2005), or for

more detailed information (Razavy, 2003)) is a pure quantum mechanical phenomenon en-

abled by the uncertainty principle which can be explained simply as a penetration of sub-

atomic particles into classically forbidden region. Ordinarily, if a subatomic particle inter-

acts with a barrier that exceeds its energy, we would expect it to be reflected by the barrier.

However, as we mentioned above, contrary to our senses, quantum mechanics implies non-

vanishing probability for any particle to cross this type of barriers. This interesting result of

quantum mechanics’ physical relevance was first established by Gamow during his work on

the α-decay (Gamow, 1928a,b, 1931). Max Born is the one who generalizes and formulates

this effect. Then technological applications such as tunnel diode of Esaki (Esaki, 1976) and

STM (Binning and Rohrer, 1993) followed. Today, quantum tunneling is known to enable

various physical (Razavy, 2003), chemical (McMahon, 2003), biological (Lambert et al.,

2013), and complex systems (Ankerhold, 2007) phenomena.

With the increasing attention to quantum tunneling and its technological applications, having

still no consensus (why there is no consensus on this problem will be explained in Section.1.2

in detail) on the answer of the question, what time it takes for the particle to cross the barrier,

is an important ongoing problem. In this work, we develop a novel formulation for tunneling

time in order to solve this problem (Demir, 2014), and in addition to this, we apply this tun-

neling time formula to some well-known cases as numerical applications (Demir and Guner,

2014). In general, we divide this thesis into three main chapters, and one can follow these

chapters according to given information below.

In the first chapter, we give brief information about quantum tunneling. We summarise

two main approaches that are used for analytical calculations of the tunneling. These two

approaches, which are Rectangular Potential Barrier as a constant potential case and WKB

Approximation as a slowly varying potential case respectively, are the subsections of the first

chapter. Next, we give a quick review and critics of some existing well known approaches

such as Phase Time (Wigner, 1955; Hauge and Støvneng, 1989), Dwell Time, Larmor Clock

(Baz’, 1967a,b; Büttiker, 1983), Buttiker-Landauer Approach (Büttiker and Landauer, 1982,

1985) in one subsection and Feynman Path Integral Approach (Sokolovski and Baskin, 1987)

in another subsection alone. We separate the last one from the others because it fits the ex-

perimental data better than any other tunneling time approaches as we will see in Chapter 2
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explicitly.

Second chapter consists of the formulation of our approach in detail. However, in addi-

tion to development of the tunneling time formula theoretically in one section by following

(Demir, 2014), we analyse the latest experiment about tunneling time in detail in the remain-

ing section. This experiment compares several important and common approaches which

have already been investigated briefly in section.1.2, with the tunneling time data that are

taken by the velocity map imaging spectrometer (VMIS) and the colt-target recoil-ion mo-

mentum spectrometer (COLTRIMS) (these techniques will be explained in Section.2.2, but

for more detail see the experiment section of (Landsman et al., 2013)). Thanks to this exper-

iment, we are able to state that our formulation of tunneling time is consistent with, and is in

good agreement with the experiment.

In third chapter, we apply this approach to some well known cases that are using tunnel-

ing such as α-decay, STM, and creation of universe from nothing by following (Demir and

Guner, 2014).

In last chapter, we will conclude our work, and you can find further details in Appendix

section.

1.1. Review of the Quantum Tunneling

1.1.1. Rectangular Potential Barrier

Rectangular potential barrier is the simplest case, and therefore, commonly studied

while teaching quantum tunneling. According to the time-independent Schroedinger equa-

tion, exact analytical solution exists when we deal with this type of constant potential case.

This is important because for any potential function V (x), solving this Schroedinger equa-

tion exactly is not easy and for most of the cases, impossible. However, approximation like

WKB which we will see it the following subsection in detail, will be used but only for the

specific cases. For the rectangular potential barrier as one can see in Fig.1.1, we have

V (x) =

V0, 0 ≤ x ≤ L

0, elsewhere

Separating all three regions and solving as a stationary case, we have:

2



Figure 1.1. Simple Illustration of the Rectangular Potential Barrier

Region I:

− ~2

2m

d2ψI(x)

dx2
= EψI(x) (1.1)

where E is energy of the particle. Then resulting differential equation is:

d2ψI(x)

dx2
+ k2ψI(x) = 0 (1.2)

where k = 2mE
~2 with m is mass of the particle. Solution is then:

ψI = Aeikx +Re−ikx (1.3)

Region II:

− ~2

2m

d2ψII(x)

dx2
+ V0ψII(x) = EψII(x) (1.4)

3



Differential form becomes:

d2ψII(x)

dx2
− κ2ψII(x) = 0 (1.5)

where κ =

√
2m(V0−E)

~ . Solution is then:

ψII(x) = Ceκx +De−κx (1.6)

Region III:

This region has exactly same solution with Eq.(1.1) because V (x) = 0 here. Therefore,

we expect a solution ψIII(x) = Feikx + Ge−ikx but we have to be aware that, there is no

reflected particle in region III because if particle crosses the barrier, moves forward, cannot

be reflected by any other potential barrier according to Fig.1.1. This simplifies the result as:

ψIII(x) = Teikx (1.7)

Transmission and Reflection Coefficients

We’ve constructed our wavefunction and investigated its analytical behaviour.

ψ(x) =


ψI = Aeikx +Re−ikx, x ≤ 0

ψII = Ceκx +De−κx, 0 ≤ x ≤ L

ψIII = Teikx, x ≥ L

Now, it is important to find transmission (t = |T |2
|A|2 ) and reflection (r = |R|2

|A|2 ) coefficients

because, first, these lead to information about the probabilities that represent particle’s pos-

sible status, and second, we will see in Section.1.2 that some of the known tunneling time

approaches need especially this transmission coefficient to calculate tunneling time. To do

4



so, we should use continuity conditions at the boundaries. First condition is:

ψI(0) = ψII(0) (1.8)

Second condition is:

ψ̇I(0) = ˙ψII(0) (1.9)

Third condition is:

ψII(L) = ψIII(L) (1.10)

And last condition is:

˙ψII(L) = ˙ψIII(L) (1.11)

All of these Eqs.(1.8 - 1.11) lead to following equalities:

A+R = C +D (1.12)

A−R =
κ

ik
(C −D) (1.13)

CeκL +De−κL = TeikL (1.14)

CeκL −De−κL =
ik

κ
TeikL (1.15)

Using Eqs.(1.14) and (1.15), we express two coefficients C and D in terms of T :

C =
T

2
e(ik−κ)L

(
1 +

ik

κ

)
(1.16)

5



D =
T

2
e(ik+κ)L

(
1− ik

κ

)
(1.17)

If we put these C and D in Eqs.(1.12) and (1.13), we get:

T

A
=

4e−ikL

4 coshκL+ 2i(κ
2−k2
κk

) sinhκL
(1.18)

Then, transmission coefficient is,

t =
|T |2

|A|2
=

4

4 cosh2 κL+ (κ
2−k2
κk

)2 sinh2 κL
(1.19)

Particle must be either transmitted or reflected, therefore, t+ r = 1 must be satisfied and this

simplifies the calculation of reflection coefficient, which is:

r =
|R|2

|A|2
= 1− t =

4(κ
2+k2

κk
)2 sinh2 κL

4 cosh2 κL+ (κ
2−k2
κk

)2 sinh2 κL
(1.20)

1.1.2. WKB Approximation

The WKB (Wentzel (Wentzel, 1926), Kramers (Kramers, 1926) and Brillouin (Bril-

louin, 1926)) method is an approximation to time-independent schrodinger equation while

dealing with a potential function V (x) depending on x, as you see in Fig.1.2. In this case,

analytical solution of this

− ~2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x) (1.21)

time-independent Schroedinger equation as we mentioned early, is not easy. Here, assump-

tion of this WKB approximation is simple; potential function V (x) slowly varies with respect

to the position x. According to this, we propose a solution similar to the constant potential

case as you see in Eqs.(1.3) and (1.7). Therefore, expected solution is of the form

ψ(x) = Ae
i
~ϕ(x) (1.22)

6



Figure 1.2. Simple Illustration of the Potential Barrier for the WKB Method

Now, putting Eq.(1.22) into (1.21) leads to the following equation for ϕ(x),

−i~d
2ϕ(x)

dx2
+

(
dϕ(x)

dx

)2

+ 2m(V (x)− E) = 0 (1.23)

Notice that, if we set ϕ(x) = ±~kx, or ϕ(x) = ±i~κx, then we would immediately get

the solutions of the rectangular potential barrier for related regions, but with these ϕ(x), first

term of the Eq.(1.23) vanishes. On the other hand, since Eq.(1.23) is a non-linear equation,

we have to start making approximations to solve this equation. Therefore, based on this

negligible property of this first term and its proportionality to ~ (where ~ → 0 in the classical

limit), we treat this ~ as an indication of smallness1 and we are able to expand the function

ϕ(x) in the power series in terms of it,

ϕ(x) = ϕ0(x) + ~ϕI(x) +
~2

2
ϕII(x) + ... (1.24)

1Details can be found in http://www.pha.jhu.edu/courses/171_303/WKB_notes_
bransden.pdf

7



From now on, all we have to do is placing the above expansion into the Eq.(1.23) and by

equating every coefficient of power of ~ term by term to zero, we obtain

(
dϕ0(x)

dx

)2

+ 2m(V (x)− E) = 0 (1.25)

− i

2

d2ϕ0(x)

dx2
+
dϕ0(x)

dx

dϕI(x)

dx
= 0 (1.26)

−id
2ϕI(x)

dx2
+
dϕ0(x)

dx

dϕII(x)

dx
+

(
dϕI(x)

dx

)2

= 0 (1.27)

We see explicitly that, ϕ0(x), ϕI(x) and ϕII(x) will be solved sequentially because each

higher order term depends on the previous terms. However, we have to notice that, we keep

the ϕII(x) as the highest term because WKB method only considers ϕ0(x) and ϕI(x) terms

and this highest term enables us to show that why this and remaining higher order terms

vanish. Our assumption of slowly varying potential plays its crucial role at this point. For

the E < V (x) case, Eq.(1.25) solved as

ϕ0(x) = ±i
∫ x

q(x)dx (1.28)

where q(x) =
√

2m(V (x)− E). Now, we are able to solve the Eq.(1.26), and the solution

is:

ϕI(x) =
i

2
log q(x) (1.29)

As a final step, solution of the Eq.(1.27) is:

ϕII(x) = i
m

2q(x)3
dV (x)

dx
− i

m2

4

∫ x 1

q(x)5

(
dV (x)

dx

)2

dx (1.30)

Here comes the main assumption, and approximation of the WKB method. We have already

told that potential must be slowly varying with respect to x, and since ϕII(x) ∝ dV (x)
dx

, this

8



means that third term in the Eq.(1.24) is negligible

∣∣∣∣~22 ϕII(x)
∣∣∣∣≪ 1 (1.31)

and this leads to a constraint that must be satisfied to ensure that WKB is applicable:

∣∣∣∣~2mdV (x)
dx

4q(x)3

∣∣∣∣≪ 1 (1.32)

What we have left is, since ϕII and the following terms negligible, by taking the non-

negligible first two terms in Eq.(1.24) and putting it into the Eq.(1.22), we obtain the wave-

function solution of the WKB method,

ψ(x) =
A√
q(x)

e−
1
~
∫ x q(x)dx (1.33)

of course, general solution is a linear combination, but keeping exponentially decaying term

only is enough for now.

So far, we have determined the wavefunction of the particle inside the tunneling region

according to the WKB method. Now, we need to find what is the transmission coeffi-

cient related to this method. However, we know that, at the turning points x1 and x2,

q(x1) = q(x2) = 0 and this diverges the wavefunction in Eq.(1.33). Therefore, connection

formula is necessary to move forward. This connection formula involves Airy functions,

and contains lengthy calculations while finding the transmission coefficient. We leave this

content to Appendix A, and writing down the exact result of the transmission coefficient

here,

Trans =
1

cosh2 Φ
(1.34)

where

Φ =
1

~

∫ x2

x1

q(x)dx (1.35)

9



is Hamilton’s characteristic function (also known as Gamow factor) in units of ~ within the

tunneling region.

1.2. Review of the Tunneling Time Problem

Tunneling is a genuine quantum phenomenon as we already mentioned. Solving

Schroedinger equation, in WKB approximation if not exactly, gives wavefunction inside and

outside the tunneling region. This, however, gives no information about tunneling time. The

question of tunneling time, and therefore defining an average speed for a particle that repre-

sents the barrier crossing was first pointed out by Condon (Condon and Morse, 1931). Then,

MacColl attempted to solve this problem just a year later (MacColl, 1932). Afterwards, this

problem almost did not take attention up to fifties. Problem of defining a tunneling time

is challenging and this is not surprising because in quantum theory time is not an operator

whose expectation value can be evaluated by using the wave-function. From fifties, to date, it

is also for this particular reason that various tunneling time definitions which we have already

mentioned above have been introduced: Büttiker-Landauer, Larmor approach, phase time,

and dwell time. However, contrary to their raison d’etre, all these time definitions utilize a

sort of time operator because they all involve derivatives with respect to energy E or poten-

tial V (x) (Yamada, 2004). Compared to them, the Feynman path integral (FPI) approach

is particularly interesting because it involves times taken by individual classical trajectories

yet tunneling time is still controversial (details can be found in Section.1.2.2). Now, we will

investigate some of the main tunneling time approaches (there are many reviews about these

time approaches that contain both theoretical and experimental point of views, and hence,

one can find more technical details in these reviews (Olkhovsky and Recami, 1992; Landauer

and Martin, 1994; Privitera et al., 2004; Winful, 2006; Maji et al., 2007), and in thesis (Eser,

2011)).

1.2.1. Phase Time, Dwell Time, Larmor Clock and Buttiker-Landauer

Approaches

Phase time approach is about tracking the position of a peak of very narrow wavepacket

around a determined wave number k0. Mostly, stationary phase is considered, and therefore,

notation of simple rectangular potential barrier in Section.1.1.1 is valid here. Under right cir-

cumstances and neglecting the dispersion effects (Olkhovsky and Recami, 1992; Olkhovsky

et al., 2001), one can take this peak of the wave-packet as a reference point.

10



We have to note that, this peak of the wavepacket is consisting of the Fourier components of

the form

ψ(x, t; k) = |T |ei(kx−
Et
~ +α(k)) (1.36)

which dominates the surrounding phase variation around k0, and hence, prohibits the de-

structive interference. Here E is energy of the particle, t is time and α(k) comes from the

T → |T |eiα(k) as phase shifting term to represent contribution of transmission.

We are able to find position of the peak, where the phase is maximum, and hence, stationary

as we told earlier. This will be achieved simply;

d

dk
ψ(x, t; k) =

d

dk

(
|T |ei(kx−

Et
~ +α(k))

)
= 0 (1.37)

Result of this derivation is,

x− dE

dk

t

~
+
dα(k)

dk
= 0 (1.38)

and position x that satisfies above equation is the position of the peak wave-packet which we

call it as x = xD(t). Then,

xD(t) =
dE

dk

t

~
− dα(k)

dk
(1.39)

but to understand what the equation above means, we also have to evaluate the case without

the barrier. In this case, there aren’t any transmission or reflection coefficients, and we must

consider just a free particle that is moving as a wave-packet of the form

ψ(x, t; k) = Cei(kx−
Et
~ ) (1.40)

where C is the amplitude. Applying same procedure which is about finding the location of

the peak of the wave-packet, we have

d

dk
ψ(x, t; k) =

d

dk

(
Cei(kx−

Et
~ )

)
= 0 (1.41)
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then resulting peak position x = xF for this free particle case is

xF =
dE

dk

t

~
(1.42)

This xF is nothing but the first term in the Eq.(1.39), and rearranging xD gives

xD = xF − dα(k)

dk
(1.43)

By looking at the equation above, we immediately conclude that, the term

dα(k)

dk
= δx (1.44)

represents the spatial delay caused by the barrier, phase shift of the particle due to the trans-

mission. In addition to this spatial delay, one will also find a temporal delay by using equa-

tion of motion,

δτ =
δx

vG
(1.45)

where vG is the group velocity, and if we rewrite the Eq.(1.42) as

xF = vGt (1.46)

then the group velocity is nothing but the

vG =
1

~
dE

dk
(1.47)

using both (1.44) and (1.47), temporal delay in Eq.(1.45) becomes

δτ =
dα(k)
dk

1
~
dE
dk

= ~
dα(k)

dE
(1.48)
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We have found temporal delay explicitly. Now, we are able to write down the tunneling time

as phase time which is nothing but the sum of the time that it takes a particle to move a

distance without any barrier and the contribution of the barrier as δτ ,

τt =
x2 − x1
vG

+ δτ (1.49)

where x2 and x1 here represents two distant points external to the barrier region, but barrier

region be somewhere in between these two points. One important note is that, if we call

x1 a point in region I of Fig.(1.1), then x1 ≪ 0 and x2 a point in region III, then x2 ≫ L,

because this time is meaningful only when this narrow wave-packet moves completely out

of the tunneling region. On the other hand, explicitly, phase time (1.49) is

τt =
x2 − x1
vG

+ ~
dα(k)

dE
(1.50)

but in general, for simplicity, they use (1.45) to take into vG parenthesis, and therefore

τt =
1

vG

(
x2 − x1 +

dα(k)

dk

)
(1.51)

this is transmission delay of the phase time approach. In the same way, one finds the reflec-

tion time by again adding phase term to reflection amplitude which is R → |R|eiβ(k) where

β(k) represents the phase term here. This time wavefunction is of the form

ψ(x, t; k)r = |R|ei(−kx−
Et
~ +β(k)) (1.52)

and location of the peak of the wave-packet is

d

dk
ψ(x, t; k)r =

d

dk

(
|R|ei(−kx−

Et
~ +β(k))

)
(1.53)

from here, we get

−x− dE

dk

t

~
+
dβ(k)

dk
= 0 (1.54)
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therefore, solution for the position of the peak x = xRD of the reflected wave-packet is

xRD = −dE
dk

t

~
+
dβ(k)

dk
(1.55)

this time, the term representing the group velocity vG of the without barrier case −dE
dk

1
~ is

with a minus sign because reflected wave-packet moves in opposite direction. Here, dβ(k)
dk

=

δx term is now representing the spatial delay and leads to a

δτ =
δx

vG
=

1

vG

dβ(k)

dk
(1.56)

temporal delay. Then, one finds the reflection delay as

τr =
1

vG
(−x1 − x1 + δτ) (1.57)

if we compare this Eq.(1.57) with the transmission delay in Eq.(1.51), we immediately see

that, here instead of x2, there exists a −x1, and this is simply because of starting from the

point x1, wave-packet travels and comes back to x1 again with −vG, therefore x2
vG

→ x1
−vG

.

Writing the reflection delay explicitly,

τr =
1

vG
(−2x1 +

dβ(k)

dk
) (1.58)

So far, we’ve found both the transmission and reflection delay for this phase time approach.

However, there is some serious criticism about this approach. Mainly, we know that incom-

ing peak of the wave-packet consists of several different energetic components. Therefore,

some of these components of the Fourier may be reflected while peak of this wave-packet

get transmitted. One can argue about physical validity of this approach due to whether the

resulting wave-packet represents incoming one or not (Landauer and Martin, 1994). Also,

again similar reasoning, some of these Fourier components may be higher than the potential

V0 of the barrier, and hence, delay becomes unconnected to tunneling or even if there exists

no components exceeding the potential V0, there will be some components very close to it,

and this will cause these components to be transmitted more effectively. As a result, emerg-

ing packet will have a higher velocity which implies that, tunneling is an electron accelerator

(Hauge and Støvneng, 1989; Landauer and Martin, 1994).
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Another well-known approach, dwell time, is first introduced by Smith (Smith, 1960), and it

is an average time spent by a particle during its motion in the specific bounded region. It is

defined as

τD =
1

vin

∫ x2

x1

|ψ(x)|2dx (1.59)

where vin is the incoming flux. This Eq.(1.59) tells us that, dwell time is the average of

probability of finding the particle in the region of interest over the flux that represents the

same region but without any interaction, which is then simply the free wave-packet group

velocity vin = vG for this particular region.

Calculating dwell time is straightforward. For the case of simple rectangular potential barrier

in Section.1.1.1, we know that in tunneling region 0 < x < L, wavefunction is

ψ(x) = Ceκx +De−κx (1.60)

where C is (1.16), D is (1.17) and κ =

√
2m(V0−E)

~ . We continue by calculating the probabil-

ity density of the tunneling region using (1.60) with the turning points x1 = 0, and x2 = L

|ψ(x)|2 = |C|2e2κx + |D|2e−2κx + C∗D + CD∗ (1.61)

one will simply calculate these coefficients, and result is

|C|2 = |T |2

4
e−2κL (k

2 + κ2)

κ2

|D|2 = |T |2

4
e2κL

(k2 + κ2)

κ2

C∗D =
|T |2

4

(
1− 2

ik

κ
− k2

κ2

)
CD∗ =

|T |2

4

(
1 + 2

ik

κ
− k2

κ2

)


(1.62)

now, integrating the probability density in Eq.(1.61)

∫ L

0

|ψ(x)|2dx =
|C|2

2κ
(e2κL − 1)− |D|2

2κ
(e−2κL − 1) + (C∗D + CD∗)L (1.63)
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and putting the coefficients in (1.62), we get

∫ L

0

|ψ(x)|2dx =

|T |2

8κ
(e2κL − 1)e−2κL (k

2 + κ2)

κ2
− |T |2

8κ
(e−2κL − 1)e2κL

(k2 + κ2)

κ2
+

|T |2

4

(
2− 2

k2

κ2

)
L

(1.64)

if we simplify this result,

∫ L

0

|ψ(x)|2dx =
|T |2

4κ3

(
(k2 + κ2) sinh (2κL) + 2L

(κ2 − k2)

κ2

)
(1.65)

where |T |2 is the transmission coefficient in Eq.(1.19). Solution is then

∫ L

0

|ψ(x)|2dx =

4κ2k2

4(4κ2k2 cosh2 κL+ (κ2 − k2)2 sinh2 κL)

(
(k2 + κ2)

κ3
sinh (2κL) + 2L

(κ2 − k2)

κ2

)
(1.66)

So, dwell time τD = 1
vin

∫ L
0
|ψ(x)|2dx is found by dividing (1.66) to vin = vG = ~k

m
, also

dividing and multiplying by κ

τD =
mk

~κ

(
(κ2 + k2) sinh 2κL+ 2κL(κ2 − k2)

4κ2k2 cosh2 2κL+ (κ2 − k2)2 sinh2 2κL

)
(1.67)

this is the dwell time for the tunneling region.

Main criticism about this approach is that as we have already mentioned above, this time in

Eq.(1.67) measures how much time the particle spends inside the barrier region. Therefore,

one cannot make a specific conclusion about which this time corresponds to: reflection time

or transmission time (Büttiker and Landauer, 1982; Leavens and Aers, 1989).

Now, we will investigate the Büttiker - Landauer approach. This approach is known as

one type of clock approaches in literature. Simply, idea is summarised as: there is a time

modulated barrier, and particle interacts with this barrier by absorbing or emitting quanta.

Hence, by analysing this external effect of modulating barrier to tunneling particle, one will

get the information of tunneling time. This is possible because of the existing dependency

of tunneling time to modulation frequency. Here, there are two cases, in low frequency
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modulation, particle sees a static barrier because its crossing time is lower than the period,

and hence, it sees only a part of the modulation cycle. The other case, higher frequency

modulation, this time particle sees several modulation cycles because, unlike the previous

case, crossing time is now higher than the period, and as a result, particle interacts with the

time-averaged barrier.

We begin with defining the potential function

V (t) = V0 + VL coswt (1.68)

here, V0 represents the static potential, and VL represents the amplitude of this modulation of

the barrier. Then, Hamiltonian becomes

H =
p2

2m
+ V0 + VL coswt (1.69)

we know the solution of energy eigenfunctions ϕE(x) = ψII = Ceκx +De−κx which have

Hamiltonian H = p2

2m
+ V0 already from the Section.1.1.1. Therefore, we need to add the

time evolution part by using

i~
∂

∂t
ϕt(t) = Ĥϕt(t) (1.70)

which is

i~
∂

∂t
ϕt(t) = (E + VL coswt)ϕt(t) (1.71)

therefore, solution is nothing but the

ϕt(t) = e−
iE
~ te−

iVL
~w sinwt (1.72)

as a result, wave-function is found as

ψ(x, t) = ϕE(x)e
− iE

~ te−
iVL
~w sinwt (1.73)
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we have to express ψ(x, t) so that, it contains the related absorbed and emitted quanta E ±
n~w caused by the time modulated barrier. Therefore, we use the identity

e
x
2
( c

2−1
c

) =
n=∞∑
n=−∞

Jn(x)c
n (1.74)

for the last term e−
iVL
~w sinwt in Eq.(1.73) where Jn(x) is the Bessel function of first kind.

After expanding sinwt = eiwt−e−iwt

2i
, then we immediately get this term by x → VL

~w , and

c→ e−iwt. What we get is

e−
iVL
~w sinwt = e−

iVL
~w

(
eiwt−e−iwt

2i

)
=

n=∞∑
n=−∞

Jn

(
VL
~w

)
e−inwt (1.75)

and resulting wavefunction is

ψ(x, t) = ϕE(x)e
− iE

~ t
n=∞∑
n=−∞

Jn

(
VL
~w

)
e−inwt (1.76)

now, we will understand by looking at (1.76) that, particle can absorb or emit quanta as

±n~w due to this interaction with the time modulated barrier. However, to simplify this

expansion, we take care of only the neighbourhood absorbed or emitted quanta energies,

which are E±~w. This assumption leads us to conclude that, there are three wave-functions

with the energies E, E+~w, and E−~w. Here, wave-function with energy E represents the

case that particle is under static potential effect only. On the other hand, since the amplitude

of the modulation VL is small, we will expand the
(
VL
~w

)
term while getting these three

wave-functions. According to the fact that VL~w ≪ 1, then

Jn

(
VL
~w

)
∼
(
VL
~w

)n
1

Γ(n+ 1)
(1.77)

one gets

Jn

(
VL
~w

)
∝
(
VL
~w

)n
(1.78)
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Last step is about determining the ϕE(x) term in the wave-function (1.76). This term is

simply calculated in same way that we did in the Section.1.1.1 while dealing with the simple

rectangular potential barrier case. However, here, there are three wave-functions and we

label related parameters using the same notation in Section.1.1.1 (k, κ, T ) with the energy

E as k±, κ±, and T± that (k+, κ+, T+) corresponds to E + ~w, (k−, κ−, T−) corresponds to

E − ~w energies.

One further assumption is, we consider ~w ≪ E and ~w ≪ V0 − E since VL coswt is a

small perturbation. Therefore,

k± =

√
2m(E ± ~w)

~
=

√
2mE(1± ~w

E
)

~
(1.79)

which will be written as

k± =

√
2mE

~

√
1± ~w

E
≈

√
2mE

~
(1± ~w

2E
) (1.80)

result is then

k± ≈ k(1± ~w
2E

) (1.81)

where E = ~2k2
2m

. Making the same calculations for the κ±

κ± =

√
2m(V0 − (E ± ~w))

~
=

√
2m(V0 − E)(1∓ ~w

V0−E )

~
(1.82)

with using same approach again, we get

κ± ≈ κ(1∓ ~w
2(V0 − E)

) (1.83)

where V0 − E = ~2κ2
2m

.

Solving for the related transmission amplitudes which is multiplied with the related trans-
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mitted wave-functions, then we immediately get

T± = T
VL
2~w

(e±τw − 1) (1.84)

from here, we calculate the relative intensity by

|T±|2 = |T |2
(
VL
2~w

)2

(e±w(
mL
~κ ) − 1)2 (1.85)

where |T |2 is the transmission coefficient in Eq.(1.19). Büttiker-Landauer defined this cross-

ing time for the simple rectangular potential barrier as you see above, τBLT = mL
~κ where L is

the barrier width x2−x1. This time they found measures the duration of interaction between

particle and time modulated barrier.

For the opaque barriers (when κL is large), T+ grows exponentially, but T− decays in same

speed. These authors then define the tunneling time for this case as the difference between

|T+|2 and |T−|2,

tanhwτ =
|T+|2 − |T−|2

|T+|2 + |T−|2
(1.86)

and one will determine tunneling time τ by measuring the |T+|2 and |T−|2.
Last approach that we will investigate in this subsection is the Larmor clock. Again this is

the same type of approach belongs to the clock type approaches like Büttiker-Landauer ap-

proach. However, in this case, applying the method of Baz‘ which was proposed in the paper

(Baz’, 1967a,b) to calculate collision times based on the Larmor precession, Rybachenko

(Rybachenko, 1967) computed the tunneling time. It considers a charged particle which is

tunneling through a barrier under the effect of a weak magnetic field B⃗ = B0ẑ in ẑ direction.

Here, spin-1/2 particles are polarized in x̂ direction, which you see in Fig.1.32. As a result,

while particle is crossing the barrier, due to the existence of this infinitesimal magnetic field,

its spin axis will rotate, and hence, this rotation will provide the necessary information for

2This image is taken from the (Olkhovsky and Recami, 1992)
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Figure 1.3. Set-up of the Larmor clock approach

the tunneling time. we get

τTra =
θTra
w

(1.87)

for average time corresponding to transmission

τRef =
θRef
w

(1.88)

for average time corresponding to reflection. Here w = − eB0

2mc
is the Larmor frequency, θTra

corresponds to angular rotation by transmitted particles, and θRef corresponds to angular

rotation by reflected particles. With this additional action of the magnetic field, Hamiltonian

becomes in the region 0 ≤ x ≤ L with turning points x1 = 0, and x2 = L

ĤL = − ~2

2m

∂2

∂x2
+ V (x)− µB⃗σ̂ (1.89)

then, the solution of the time-independent Schroedinger equation

ĤLψ(x, s) = Eψ(x, s) (1.90)
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where ψ(x, s) contains the spin wave-function. Wave-function solution for this region inside

the barrier is changed due to the energy shift −µB⃗σ̂, but here, our main concern is about

understanding what happens to transmission and reflection coefficients. By switching on the

magnetic field, one changes both coefficients of the wave-function inside the barrier region,

and also change both transmission T and reflectionR coefficients. According to Rybachenko

(Rybachenko, 1967), this change will be written as:

T̂ = ÎT + µB⃗σ̂
δT

δE
(1.91)

R̂ = ÎR + µB⃗σ̂
δR

δE
(1.92)

where Î is identity matrix. Here, δ
δE

= d
dE

−
(
∂
∂E

)
.

If we apply these transmission and reflection operators in (1.91) and (1.92) respectively, we

will get the shifted spin wave-function according to the spin wave-function of the incident

particle. Then, by using this shift, one finds the rotation angles as

θTra = 2µB0Im
(
δ ln |T |
δE

)
(1.93)

θRef = 2µB0Im
(
δ ln |R|
δE

)
(1.94)

Using these angular rotations in the times we give in Eqs.(1.87) and (1.88), we immediately

get

τTra = ~Im
(
δ ln |T |
δE

)
(1.95)

τRef = ~Im
(
δ ln |R|
δE

)
(1.96)

These are the corresponding Larmor clock for both transmission τTra and reflection τRef

times.

Before ending this subsection, we should give brief criticism about these clock type of ap-

proaches. As you notice that, one will introduce many degrees of freedom as a clock. We

learned time modulated barrier, and spin degree of freedom achieve this, but there is no limit
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here. Which one of the clock approaches leads to a better tunneling time, or which one is

true, is an unknown question among these approaches.

As we have pointed earlier in the introduction, obviously there is no consensus on the tun-

neling time. This is because, there are several approaches existing in the literature, and all of

them have some serious disadvantages as we already mentioned while criticising the related

approaches above.

1.2.2. Feynman Path Integral Approach

Feynman Path Integral approach is proposed by Sokolovski and Baskin in 1987, and

it is conceptually based on the Feynman Path Integration which makes this approach distinc-

tive according to the other approaches we have investigated above. Here, classical trajecto-

ries are considered over all paths in the region Ω, and due to this classicality, this approach

is also known as semi-classical approach. This certain region Ω includes all possible paths

between x1 and x2 with time t2 − t1 under the influence of the potential V (x). Note that, t1
is the time when particle is in x1, and t2 is the time when this moving particle is detected at

the x2. Therefore, any particle that is following a classical path x(t) in this region Ω will be

represented by a time expression that gives the time spent by a particle as you see in Fig.1.43,

which is

τ clΩ =

∫ t2

t1

Θ(x(t))dt (1.97)

where ΘΩ(x(t)) is a functional depending on the related path of the particle, and it obeys

ΘΩ(x(t)) =

1, x(t) ∈ Ω

0, otherwise

3This image is taken from the (Sokolovski and Baskin, 1987)
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Figure 1.4. Simple illustration of the domain Ω that contains the classical trajectories
of Feynman Path Integral approach

this condition above leads to a more general form for the definition of time. In one-dimensional

case, Eq.(1.97) will be written as

τ clΩ =

∫ t2

t1

dt

∫
Ω

δ(x− x(t))dx (1.98)

and thanks to this delta function δ(x − x(t)) property, we are able to ensure that only paths

that are belonging to this Ω region are chosen. From here, by taking the mean value for the

functional τ clΩ [x(·)], which also means taking the time average of those paths, we get

τΩ = ⟨τ clΩ [x(·)]⟩ (1.99)

Here, for any functional G[x(·)], mean value is taken as

⟨G[x(·)]⟩ =
∫
Dx(·)G[x(·)]e i

~S[x(·)]∫
Dx(·)e i

~S[x(·)]
(1.100)
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where S[x(·)] is the action, and explicitly

S[x(·)] =
∫ t2

t1

Ldt =

∫ t2

t1

(
1

2
mẋ(·)2 − V (x(·), t

)
dt (1.101)

to calculate Eq.(1.99), Sokolovski and Baskin have used the time functional form in Eq.(1.98),

and then putting it into the mean value definition in Eq.(1.100), they have got

τΩ = ⟨τ clΩ [x(·)]⟩ = i~
∫ t2

t1

dt

∫
Ω

δ ln ⟨x2, t2|x1, t1⟩
δV (x)

(1.102)

where ⟨x2, t2|x1, t1⟩ is the propagator which takes particle from x1 to x2 with the time in-

terval t2 − t1. Also δ
δV

is a functional derivative, and it is defined for any function G[f(x)]

as

δG[V (x)]

δV (y)
= lim

ϵ→0

G[V (x) + ϵδ(x− y)]−G[V (x)]

ϵ
(1.103)

However, this equation above (1.102) is a generalized way of calculating the time using

Feynman Path Integral formulation. From here, using the same calculations, now, we have

to find an expression for the tunneling time. It is necessary to distinguish reflection and

transmission amplitudes for this case, and this will be done by considering particle that is

starting its motion far from the left of the barrier, and it is detected after a long time in the

right of the barrier. We follow Sokolovski and Baskin, and then set

x1 → −∞

τ → ∞
|x1|
τ

= v

x2 > a


(1.104)

which satisfies the conditions we have mentioned above. With the help of these conditions,

authors found

T τΩ = i~
∫ x2

x1

δ ln (Teiα)

δV (x)
(1.105)
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is the transmission time and

RτΩ = i~
∫ x2

x1

δ ln (Reiβ)

δV (x)
(1.106)

is the reflection time where T is the transmission amplitude, R is the reflection amplitude, α

and β are the phase shifts for the transmission and reflection respectively.

As you notice by looking at these transmission and reflection times that, corresponding times

are complex. Not only these but also the generalized time τΩ in Eq.(1.102) is complex in

general. This complexity of resulting times make sense and they are expected because, we

know that for the tunneling process, momentum is imaginary, and therefore, particle has both

imaginary velocity and time while following the classical path. Since this approach is a time

average of these classical paths inside the region Ω, having complex time is not a surprising

result. Here, main criticism about this approach is based on these facts; complex time and

also, the other important criticisms are, this resulting time is a average time of the all paths

inside the region Ω (Fertig, 1990; Martin, 1996), and there will be important consequences

of the interference of these paths (Fertig, 1993; Sokolovski and Connor, 1991, 1993; Mugnai

and Ranfagni, 1992) which cannot be controlled.
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CHAPTER 2

ENTROPIC TUNNELING TIME

2.1. Derivation of the Entropic Tunneling Time

First, we have to answer the question of how time reveals itself. In other words, what

is the key ingredient of expressing time ? In classical realm, the time elapsed while a particle

moves from one point to another cannot be determined without knowing its momentum at

each point in between. Therefore, holding the information of momentum is the answer

(in this section, the content that we are covering is available in (Demir, 2014)). This is

because momentum is the generator of translations and, with strict energy conservation, it

becomes
√

2m (E − V (x)) for a material point moving along x axis with mass m, potential

energy V (x) and total energy E. The tunneling region, bounded by the turning points x1
and x2 > x1 at which V (x1) = E = V (x2) and between which E < V (x), has the particle

diffusing with imaginary momentum. This necessitates time to turn into pure imaginary

direction dt→ idτ where dτ = (m/q(x)) dx (see Zeh (2007) for time arrow) with

q(x) =
√

2m (V (x)− E) (2.1)

being the momentum modulus in tunneling region. The crucial point is that tunneling, being

instantaneous in real time, violates causality. Tunneling time, however, must be real and fi-

nite (Landauer, 1989) as was discussed in (Low and Mende, 1991; Demir, 1998; Grossmann,

2000) by kinematic approaches (spatial discretum causes Zeno effect (Demir and Sargın,

2014)).

In search for a phenomenological approach that can evade problems with tunneling

process, we develop a novel formulation building upon the three observations below:

1. For a proper formulation of tunneling time, we consider only those states having defi-

nite momentum, and among them we specialize to that state which diffuses the particle

from x1 to x2 straight. (Constant potentials and smooth potentials admitting WKB ap-

proximation accommodate such states.)

2. Imaginary time takes propagators in quantum mechanics into partition functions in

equilibrium statistical mechanics (Feynman and Hibbs, 1965), and thus, we resort to
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statistical methods in defining the tunneling time. (Probabilistic interpretation enables

statistical methods for individual quantum states.)

3. While the energy E of the particle is fixed everywhere, the thermal energy is not, and

it facilitates thus formulation of a real tunneling time representative of the entropy

production in tunneling region.

These elements give rise to a consistent framework in which tunneling time can be formu-

lated in verity and its application to most recent attoclock measurements exhibits remarkable

agreement with experimental data.

The wave-function describing diffusion from x1 to x where x1 < x < x2

ψ(x) ∝ 1√
q(x)

e
− 1

~
∫ x
x1
q(x′)dx′ (2.2)

is an approximate solution of the Schroedinger equation in WKB approximation as we al-

ready analysed in Section.1.1.2. This wave-function is an approximate eigenfunction of the

momentum operator with approximate eigenvalue iq(x). Its deviation from exact momentum

eigenfunction, proportional to dV (x)/dx, is small in the WKB regime (see Section.1.1.2).

In effect, particles tunnel with a nearly definite momentum under smooth potentials.

The imaginary time, when interpreted as inverse temperature, is known to convert

quantum mechanical propagators into statistical mechanical partition functions (Feynman

and Hibbs, 1965). This fact can be interpreted to indicate that, statistical methods can pro-

vide correct framework for addressing tunneling time problem. In statistical approach, en-

tropy is the core observable and it is proportional to −p log p for an event with probability

p. This Boltzmann definition takes on different forms depending on the system under con-

sideration. It is taken, for instance, (p − pr)/(r − 1) for non-extensive statistical systems

(Tsallis, 1988), − log p for applications in medical data analysis (Pincus et al., 1991), and

(1/(r− 1)) log pr for entanglement in quantum systems (Renyi, 1961). For quantum tunnel-

ing, following (Demir, 2014), we take it in the form

S(p) = kBp log (1− log p) (2.3)

where kB is the Boltzmann constant. Just as the Boltzmann entropy, this novel entropy

vanishes at the points of impossibility (p = 0) and certainty (p = 1). Its loglog form, which

exhibits double exponential Gompertz distribution (Gompertz, 1825) even for uniform p,

can have requisite distributional structure to account for the diffusive tunneling dynamics
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stemming from the evanescent wave in (2.2).

In (2.3), p is the probability that the tunneling particle diffuses till x2 after entering

the barrier region at x1. It is necessarily proportional to ψ†(x2)ψ(x2). Moreover, irrespective

of whether the particle tunnels to reach x = x2 or is reflected to reappear at x = x1, at

the beginning of scattering, it must be situated at x = x1 with certainty. This condition is

fulfilled by taking

p =
ψ†(x2)ψ(x2)

ψ†(x1)ψ(x1)
= e−2Φ (2.4)

where

Φ =
1

~

∫ x2

x1

q(x)dx (2.5)

is Hamilton’s characteristic function in units of ~ within the tunneling region. It follows from

(2.2). The use of (2.4) in (2.3) returns the entropy produced during diffusion form x1 to x2.

Thermodynamically, energy rate of change of entropy gives reciprocal temperature, and for

the tunneling entropy in (2.3) it reads

1

T
=

∂S

∂E
= −2

kB
~
τ exp (−2Φ)

(
1

1 + 2Φ
+ log

1

1 + 2Φ

)
(2.6)

where

τ =

∫ x2

x1

mdx

q(x)
(2.7)

is the modulus of the classical tunneling time (which is pure imaginary as mentioned above

equation (2.1)). It is not surprising that the temperature T is proportional to the reciprocal τ

(Feynman and Hibbs, 1965).

The energy E of the particle is strictly constant throughout its motion inside and

outside the tunneling region. It is known with certainty. Then, in view of energy-time un-

certainty, only an infinite time lapse can be associated with E. In contrast to E, however,

the thermal energy kBT varies as in (2.6) and physically a finite time interval can well be

associated with it. The finite time interval must be nothing but the time elapsed between

the disappearance of the particle at x1 and its reappearance at x2. In other words, the time
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interval has every reason to qualify as the tunneling time ∆t provided that tunneling process

is properly completed. Again, following (Demir, 2014), this requirement is assured by the

uncertainty product

(
Trans × 2πkBT

)
×
(
∆t
)
=

~
2

(2.8)

where the factor of 2π converts kBT into Matsubara frequency (Matsubara, 1955) of the

particle. In this equation, Trans (1.34) is transmission coefficient from x1 to x2. It must

be present in (2.8) because in case it vanishes (Trans → 0) the tunneling time must tend

to infinity (∆t → ∞) in complete consistency with the nonoccurrence of tunneling. In the

WKB regime (details of this transmission coefficient corresponding to WKB approach can

be found in Appendix (A))

Trans =
1

cosh2 Φ
(2.9)

so that the tunneling time in (2.8) takes the form

∆t = − τ

2π
cosh2Φexp (−2Φ)

(
1

1 + 2Φ
+ log

1

1 + 2Φ

)
(2.10)

which is proportional to the classical classical time τ . In the classical limit, where Φ → ∞,

one gets ∆t → ∞. This infinite limit affirms that the entropic tunneling time is a genuine

real time (Low and Mende, 1991), not the norm of an imaginary time like τ .

2.2. Test of the Entropic Tunneling Time by Experiment

We now study if the entropic tunneling time (2.10) agrees with experimental data.

The electric fields of high-intensity lasers reshape Coulomb potential in atoms to generate

a potential barrier through (see Fig.2.1) which electrons can tunnel to continuum (Keldysh,

1965). At the peak value E of the electric field, an atomic electron possesses the potential

energy

V (ξ) = −Z
ξ
− Eξ (2.11)
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Figure 2.1. Illustration of the potential barrier that is reshaped by the high-intensity laser.

in atomic units (see Appendix B.1 for the detailed calculations of atomic units representa-

tion). The Coulomb potential, proportional to the atomic number Z, turns to linear Stark

form at large ξ (ξ = x
a0

where a0 is the Bohr radius). The electron energy EI remains un-

changed up to second order in Eξ by symmetry. Advancements in ultrafast science, where

strong laser fields are used to ionize atoms, are able to observe the tunneling phenomenon

and measure the tunneling time (Steinberg et al., 1993; Uiberacker et al., 2007; Eckle et al.,

2008; Haessler et al., 2010; Smirnova et al., 2009). In spite of various factors affecting the

experiments (Lein, 2012; Torlina et al., 2014; Shafir et al., 2012; Sabbar et al., 2014), improv-

ing on previous single-particle tunneling time measurements (Eckle et al., 2008), Landsman

and her collaborators have recently performed a refined measurement of the tunneling time

of electrons in He atom (Landsman et al., 2013). We base our phenomenological analysis

below on the data from this recent experiment.

In the experimental set-up, laser intensity 3.5152 × 1016 W/cm2E2 is varied from

0.730× 1014 W/cm2 to 7.50× 1014 W/cm2 by varying the peak electric field E from 0.046

to 0.146 in atomic units (curiously, experiment reports results at E = 0.04, too)(for the

details see Appendix B.3). The electron energy EI = −0.8941 a.u. is the first ionization

energy of He. Momentum distribution of continuum electrons are obtained by cold-target

recoil-ion momentum spectrometer (COLTRIMS) and velocity map imaging spectrometer

(VMIS) (see the experiment section of (Landsman et al., 2013) for details). The VMIS is
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used particularly at low laser intensities. Quantum tunneling is ensured to be the dominant

ionization mechanism by keeping Keldysh parameter small. The experimental results are

given in Fig. 3 of (Landsman et al., 2013). Depicted in Fig. 3 (a) are different tunneling

times that we have already investigated in Section.1.2 contrasted with experiment’s own

results. Given in Fig. 3 (b) and (d) are tunneling times as functions of the peak electric

field E and barrier width (approximated as EI/E a.u. in the experiment). The experiment

concludes that among all widely-used tunneling time definitions only the FPI time comes

closest to its data points (see Fig. 3 (b) and (d)).

For testing our model, we pick up the potential energy (2.11) and use parameters of

the experiment in the formulae leading to ∆t in (2.10). By increasing E from 0.05 a.u. to

0.09 a.u., one finds turning points as: ξL (ξL = ÊI+
√
ÊI

2−4EZ
2E ) increases from 2.616 a.u. to

3.387 a.u., ξR (ξR = ÊI−
√
ÊI

2−4EZ
2E ) decreases from 15.290 a.u. to 6.561 a.u. (see Appendix

B.2 for detailed calculations of these turning points), and correspondingly, modulus of the

classical imaginary time τ decreases from 693.045 as to 396.845 as. At these extremes, the

entropic tunneling time ∆t decreases from 73.066 as to 12.365 as. Numerically, thus, it

takes attosecond times for particle to wend the laser-induced nano-width He barrier. This

theoretical prediction affirms the attoclock experiments studying tunneling time (Steinberg

et al., 1993). Basically, attosecond tunneling times must be the characteristic time scale in

nano-width eV-barriers.

We plot in Figs.(2.2) and (2.3) the entropic tunneling time (2.10) as a function of the

peak electric field E and experiment’s barrier width EI/E (which is not the true barrier width

ξR − ξL). The minimum entropic tunneling time (∆t)min, shown by filled triangles in Figs.

2.2 and 2.3, is superimposed on Fig. 3 (b) and (d) of (Landsman et al., 2013) 1. The figure

ensures that the minimum of the entropic tunneling time is indeed the shortest time among

all theoretical predictions and experimental data (see Fig. 3 (a) of (Landsman et al., 2013)).

The FPI time (Sokolovski and Baskin, 1987; Fertig, 1990; Martin, 1996; Sokolovski et al.,

1994), the theoretical prediction coming closest to the experimental data, overlies data in

the left panel and crosses over data in the right panel. The entropic time, although what is

plotted in Figs. 2.2 and 2.3 is only its minimum, performs even better than the FPI time as

indicated especially by the right panel. Overall, what is interesting is that, in both panels of

Figs. 2.2 and 2.3, the minimum entropic time ∆t stays congruent to the experimental data by

closely following it from a distance. Barring various factors affecting the experiment (Lein,

2012; Torlina et al., 2014; Shafir et al., 2012; Sabbar et al., 2014; Keldysh, 1965; Landsman

1digitized by using http://arohatgi.info/WebPlotDigitizer/
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et al., 2013)), actual value of the entropic time has every reason to agree with the experiment.

The entropic tunneling time ∆t is depicted by filled triangles. It is seen to stay congruent

Figure 2.2. Tunneling times as functions of peak electric field E .

Figure 2.3. Tunneling times as functions of experimental barrier width EI/E .

to the experimental data throughout. The right panel specifically shows how the minimum

entropic time adheres to the experimental data while the FPI time diverges away from data

33



at the asymptotics 2.

In summary, in the present study, we have founded a new tunneling time formula and verified

it with most recent experimental data. The formula works. It has far-reaching consequences

in basic sciences and technological applications because knowing the lower bound means

knowing the highest speed with which the reaction under concern proceeds.

2Data of the experiment
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CHAPTER 3

APPLICATIONS OF THE ENTROPIC TUNNELING

TIME

3.1. α - decay

α - decay is a type of radioactive decay and a well known process. In addition,

stability of nucleus has a strict line, and this provides an important information about when

α-decay becomes a dominant process for the unstable nuclei. As you see in the Fig.3.11, if

Figure 3.1. Stability curve of the radioactivity

the mass exceeds 83 or neutron number is higher than 126, nucleus starts to emit α particles

to become more stable.

How this α escapes from the nucleus was a challenging problem. But it was understood that,

1this image is taken from the http://knowledgepublications.com/doe/doe_nuclear_
physics_detail.htm
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Figure 3.2. Visualization of the α-decay process.

in the nucleus, there exists strong nuclear force which is very strong but effective in very short

range, and electromagnetic force that is trying to push the protons out of the nucleus. Around

some region close to the radius of the nucleus where this strong force and electromagnetic

force becomes comparable as you see in the Fig.(3.2)2, hence, Coulomb potential governing

outside radius of the nucleus provides V (x) has the shape of the potential barrier which

quantum tunneling can take place. Of course, we have to note that this α particle has positive

energy and is not in a bound state which forbids this decay. One will model the α-decay as:

A
ZP →A−4

Z−2 D + α (3.1)

where P represents parent nucleus, D represents daughter nucleus, and we know that α

particle is an isotope of He which having a stable He nucleus, has atomic mass number

A = 4 and atomic number Z = 2.

As we have already mentioned Gamow is the one who attempted to solve this problem first.

2This image is a modified version of the figure taken from the http://ictwiki.iitk.ernet.in/
wiki/index.php/Spontaneous_Decay_Processes_-_Alpha_Decay
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Now, we are starting to analyse the solution 3 with first considering the potential energy

function which is of the form

V (x) =


Z1Z2e2

4πϵ0x
, x ≥ R

−B, x < R

where B is the nuclear binding energy, and R is radius of the Parent nucleus. We set l = 0

for the centrifugal potential l(l+1)~2
2mx2

for simplicity. By looking at this potential above, we

immediately find the turning point which E = V (x2), and hence

x2 =
Z1Z2e

2

4πϵ0E
(3.2)

To calculate tunneling time (2.10)(Demir, 2014; Demir and Guner, 2014) for the α-decay of

any radioactive element like Uranium, we have to find Gamow factor Φ of Eq.(1.35). Gamow

factor is written for this case with x1 = R as

Φ =
1

~

∫ x2

R

√
2mα(

Z1Z2e2

4πϵ0x
− E)dx (3.3)

where mα is the mass of the α particle, and if we set

Z1Z2e
2

4πϵ0x
=
Ex2
x

(3.4)

we can simplify the term inside of the square root. Therefore, Eq.(3.3) becomes

Φ =
1

~

∫ x2

R

√
2mαE(

x2
x

− 1)dx (3.5)

3further details can be found in https://fenix.tecnico.ulisboa.pt/downloadFile/
3779576931836/Ex8Serie1/
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simplified Φ becomes

Φ =

√
2mαE

~

∫ x2

R

√
x2
x

− 1dx (3.6)

this integral is solved easily when we set

x ≡ x2 sin
2 u (3.7)

which leads to dx = 2x2 cosu sinudu, and then

Φ =

√
2mαE

~

∫ (√
x2

x2 sin
2 u

− 1

)
2x2 cosu sinudu (3.8)

using the cos2 u = 1− sin2 u for the term in square root, then integration reduces to

Φ =

√
2mαE

~
2x2

∫
cos2 udu (3.9)

resulting integral is simply
∫
cos2 udu = 1

2
(u+ sinu cosu), and using (3.7), we get for u as

u ≡ arcsin

√
x

x2
(3.10)

then, analytical solution for the Gamow factor Φ becomes

Φ =
√
2mαE

~
2x2

1

2

[
arcsin

√
x

x2

∣∣∣∣x2
R

+ sin

(
arcsin

√
x

x2

)
cos

(
arcsin

√
x

x2

)∣∣∣∣x2
R

]
(3.11)

and applying integral limits, we get the total result

ϕ =

√
2mαE

~
x2

[
π

2
− arcsin

√
R

x2
−
√
R

x2
cos

(
arcsin

√
R

x2

)]
(3.12)
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In addition to this calculation of Φ, we have to also calculate τ in (2.7) to be able to get the

numerical value of our tunneling time (2.10). We write τ for the α-decay as

τ =

∫ x2

R

mα

q(x)
dx = mα

∫ x2

R

1√
2mα(

Z1Z2e2

4πϵ0x
− E)

dx (3.13)

following the same calculation of Φ above, what we get is

τ =
mα√
2mαE

∫ x2

R

1√
x2
x
− 1

dx (3.14)

with the help of Mathematica (Wolfram Research, 2010), we get the result for this integral

as

τ =
mα√
2mαE

[
− x

√
x2
x

− 1

∣∣∣∣x2
R

− x2
2
arctan

(
(2x− x2)

√
x2
x
− 1

2(x− x2)

)∣∣∣∣x2
R

]
(3.15)

applying integral limits

τ =
mα√
2mαE

[
x2
4π

+R

√
x2
R

− 1 +
x2
2
arctan

(
(2R− x2)

√
x2
R
− 1

2(R− x2)

)]
(3.16)

gives us the analytical expression of τ . Before applying our tunneling time approach to this

α-decay via Gamow factor Φ, and τ , we have to mention that, E must be determined by

using the binding energy formula. This formula is necessary because this type of nuclear

processes involve change in the binding energy, and one will calculate the energy of the α

particle by considering it as absorbing the released energy that determines its kinetic energy.

Therefore, released energy, and hence, kinetic energy of the α particle is

E = (mparent −mdaughter −mα)c
2 (3.17)

where mparent is the atomic mass of the parent nucleus, and mdaughter is the atomic mass of

resulting daughter nucleus. Knowing the energy of α particle is not enough, and also, we
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have to determine radius of the related nucleus by using an empirical formula 4

Approximated radius of the nucleus:R ≈ 1.07× 10−15m× A
1
3 (3.18)

where A is the atomic mass number. Putting numerical values of these parameters x2, R,

and E into the expressions of τ , and Φ, we obtain the tunneling times (2.10) for α-decays of

different isotopes of nucleus Uranium (U), Thorium (Th), Polonium (Po), Protactinium (Pa),

and Bismuth(Bi) as you see in Table 3.1 and in Fig.(3.3) 5.

Figure 3.3. Plot of the α-decay tunneling times

4details can be found in http://physics.bu.edu/py106/notes/RadioactiveDecay.html

5Mass of the α-particle is taken as mα = 4.001506u.
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Table 3.1. Calculated tunneling times for α-decay processes of different elements.
Here extra term tc =

x2−R
c

represents the time it takes for a photon to travel
this barrier region. fm is femtometer, as is attosecond, and u is atomic mass
unit.

Parent Nucleus mparent(u) R(fm) mdaughter(u) E(MeV) ∆t(as) tc(as)
218
92 U 218.023540 6.439800 214.011500 9.826900 0.000273 0.000066
220
92 U 220.024720 6.459400 216.011062 11.336000 0.000206 0.000055
222
92 U 222.026090 6.478900 218.013284 10.541000 0.000238 0.000060
224
92 U 224.027605 6.498300 220.015748 9.656100 0.000281 0.000068
226
92 U 226.029339 6.517600 222.018468 8.736300 0.000339 0.000077
228
92 U 228.031374 6.536800 224.021467 7.837000 0.000414 0.000088
230
92 U 230.033940 6.555800 226.024903 7.025400 0.000504 0.000101
232
92 U 232.037156 6.574800 228.028741 6.445200 0.000588 0.000112
234
92 U 234.040952 6.593600 230.033139 5.883600 0.000690 0.000125
236
92 U 236.045568 6.612300 232.038055 5.603700 0.000752 0.000132
238
92 U 238.050788 6.631000 234.043601 5.299600 0.000828 0.000141
240
92 U 240.056592 6.649500 236.049870 4.865800 0.000960 0.000155
210
90 Th 210.015075 6.360000 206.003827 9.088000 0.000306 0.000072
212
90 Th 212.012980 6.380100 208.001840 8.987300 0.000313 0.000073
214
90 Th 214.011500 6.400100 210.000495 8.861300 0.000321 0.000074
216
90 Th 216.011062 6.420000 211.999794 9.106700 0.000304 0.000071
218
90 Th 218.013284 6.439800 214.000108 10.887000 0.000216 0.000056
220
90 Th 220.015748 6.459400 216.003533 9.990100 0.000255 0.000063
222
90 Th 222.018468 6.478900 218.007140 9.162700 0.000300 0.000071
224
90 Th 224.021467 6.498300 220.011028 8.333300 0.000358 0.000080
226
90 Th 226.024903 6.517600 222.015375 7.483500 0.000436 0.000091
228
90 Th 228.028741 6.536800 224.020212 6.551500 0.000554 0.000107
230
90 Th 230.033134 6.555800 226.025410 5.800500 0.000687 0.000124
232
90 Th 232.038055 6.574800 228.0310703 5.110800 0.000857 0.000143
190
84 Po 189.995101 6.151300 185.984239 8.727900 0.000300 0.000070
192
84 Po 191.991335 6.172800 187.980874 8.353800 0.000325 0.000074
194
84 Po 193.988186 6.194200 189.978082 8.020800 0.000350 0.000077
196
84 Po 195.985535 6.215400 191.975785 7.690600 0.000378 0.000082
198
84 Po 197.983389 6.236500 193.974012 7.342600 0.000411 0.000086
200
84 Po 199.981799 6.257400 195.972774 7.014200 0.000447 0.000091
214
91 Pa 214.020920 6.400100 210.00944 9.304400 0.000298 0.000070
220
91 Pa 220.02188 6.459400 216.008720 10.872000 0.000220 0.000057
224
91 Pa 224.025626 6.498300 220.014763 8.728900 0.000334 0.000076
230
91 Pa 230.034541 6.555800 226.026098 6.471300 0.000575 0.000110
186
83 Bi 185.996600 6.107800 181.985670 8.791400 0.000291 0.000068
188
83 Bi 187.99227 6.129700 183.981870 8.296900 0.000324 0.000073
192
83 Bi 191.98546 6.172800 187.976010 7.410700 0.000398 0.000084
196
83 Bi 195.980667 6.215400 191.972230 6.465700 0.000509 0.000100
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3.2. STM

STM (Scanning Tunneling Microscope) is an important instrument that was devel-

oped by Binning and Rohrer in 1981 and they earned the Nobel Prize in Physics in 1986

for this invention. This instrument images surfaces at the atomic level by using quantum

tunneling. One can use STM with two different ways: constant current and constant height.

First one provides better resolution since tip arranges itself to make current fixed, and latter

one is faster but only appropriate for the atomically flat surfaces since the vertical position

of the tip remain unchanged. One can visualize this set up as in Fig.3.46. As you see in

Figure 3.4. Illustration of the STM set-up and tip-sample interaction

this figure, a conducting tip brought very close to the conducting sample. Conductivity is

necessary because these free electrons form the tunneling current when bias voltage is ap-

plied because this bias voltage make electrons to start tunneling between this gap of tip and

sample. This gap which also means a barrier width x2 − x1 is typically ≤ 10Å for the best

resolution because as you see in Eq.(1.19) that, transmission coefficient (t ≈ e−2κL) decays

exponentially as barrier width L (x2−x1) increases, and therefore, is very sensitive to change

in any distance of tip from the sample.

To apply our tunneling time approach in Eq.(2.10) (Demir, 2014; Demir and Guner, 2014) to

6These images are taken from the (left)http://www.iap.tuwien.ac.at/www/surface/
STM_Gallery/stm_schematic.html, and (right)http://www.personal.psu.edu/ewh10/
ResearchBackground.htm
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Figure 3.5. Simple illustration of the tunneling process in STM

STM, we have to understand how we deal with this system first. Most of the studies consider

potential function as constant, and hence, we treat this system as an approximately a rect-

angular potential barrier (details and other approaches can be found in (Pitarke et al., 1989)

and (Olesen et al., 1996)). This simple approach is illustrated in Fig.3.57. According to this

approach, we use κ in Section.1.1.1,

κ =

√
2m(ϕ− E)

~
(3.19)

where ϕ is the work-function here, E is electron’s energy, and m is the mass of electron. ϕ is

work-function because it represents the height that is corresponding to the interval between

EF (fermi-energy level) and top of the barrier. This work-function is approximately taken as

average

ϕ =
1

2
(ϕS + ϕT ) (3.20)

7This picture is taken from the http://www2.fkf.mpg.de/ga/research/stmtutor/
stmtheo.html
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where ϕS is the work-function of the sample, and ϕT is the work function of the tip. There-

fore, Φ in Eq.(1.35) found as

Φ =

√
2m(ϕ− E)

~

∫ x2

x1

dx (3.21)

and if we set turning points as x1 = 0, and x2 = L, result becomes

Φ =

√
2m(ϕ− E)

~
L (3.22)

from here, we approximately treat the system as 8

Φ ≈
√
2mϕ

~
L (3.23)

since applied bias voltage is small compared to the work-function eV ≪ ϕ. In other words,

if we look at the κ term in (3.19), we see that there is energy of the particle E in terms of eV

due to applied voltage V, and if we keep bias voltage very small, then ϕ− E term becomes

dominated by the work-function ϕ which leads to a Φ solution as we seen in (3.23) or we

simply consider that electrons are having energies oscillating around the fermi-energy level

EF that allows us to take E = EF = 0 approximately.

In addition to Φ, we also need to calculate τ (2.7) in this case appropriate for STM where

x1 = 0, and x2 = L, which is

τ =

∫ L

0

mdx

q(x)
(3.24)

and where q(x) =
√

2m(ϕ− E) ≈
√
2mϕ, then τ becomes

τ ≈ m√
2mϕ

L (3.25)

8http://www2.fkf.mpg.de/ga/research/stmtutor/stmtheo.html
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We apply our tunneling time formula in (2.10) to STM using these Φ (3.23), and τ (3.25). To

obtain numerical data, we consider different samples, and three different tip-sample distances

L(1Å, 5Å, and 8Å) as you see in Table 3.2 and Fig.(3.6-3.8), and we take Tungsten (W) as

tip material which has a work-function as ϕT = 4.55eV. We should note that the time it

takes for photon to travel these widths are tc = 0.3333as for 1Å, tc = 1.667as for 5Å, and

tc = 2.667as for 8Å respectively.

Figure 3.6. Plot of the STM tunneling times for 1Å
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Figure 3.7. Plot of the STM tunneling times for 5Å

Figure 3.8. Plot of the STM tunneling times for 8Å
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Table 3.2. Calculated tunneling times for different samples in STM.

Sample ϕS(eV) Width (Å) ∆t(as) Sample ϕS(eV) Width (Å) ∆t(as)

Ag 4.30 1 3.3046 Al 4.15 1 3.3149
Ag 4.30 5 37.9723 Al 4.15 5 38.1620
Ag 4.30 8 72.6869 Al 4.15 8 73.0915
As 3.75 1 3.3426 Au 5.3 1 3.2379
As 3.75 5 38.6866 Au 5.3 5 36.7961
As 3.75 8 74.2140 Au 5.3 8 70.1892
B 4.45 1 3.2944 Ba 2.62 1 3.4217
B 4.45 5 37.7864 Ba 2.62 5 40.3404
B 4.45 8 72.2906 Ba 2.62 8 77.7812
Be 4.98 1 3.2588 Bi 4.31 1 3.3039
Be 4.98 5 37.1569 Bi 4.31 5 37.9598
Be 4.98 8 70.9530 Bi 4.31 8 72.6602
C 5 1 3.2575 Ca 2.87 1 3.4043
C 5 5 37.1339 Ca 2.87 5 39.9501
C 5 8 70.9044 Ca 2.87 8 76.9354

Cd 4.08 1 3.3197 Li 2.9 1 3.4022
Cd 4.08 5 38.2518 Li 2.9 5 39.9043
Cd 4.08 8 73.2833 Li 2.9 8 76.8362
Ti 4.33 1 3.3026 Cr 4.5 1 3.2910
Ti 4.33 5 37.9349 Cr 4.5 5 37.7252
Ti 4.33 8 72.6069 Cr 4.5 8 72.1603
Cs 2.14 1 3.4543 Cu 4.7 1 3.2775
Cs 2.14 5 41.1347 Cu 4.7 5 37.4842
Cs 2.14 8 79.5104 Cu 4.7 8 71.6479
Eu 2.5 1 3.4300 Fe 4.75 1 3.2741
Eu 2.5 5 40.5332 Fe 4.75 5 37.4249
Eu 2.5 8 78.2000 Fe 4.75 8 71.5219
Ga 4.32 1 3.3032 Hg 4.475 1 3.2927
Ga 4.32 5 37.9473 Hg 4.475 5 37.7557
Ga 4.32 8 72.6335 Hg 4.475 8 72.2253
K 2.29 1 3.4443 Se 5.9 1 3.1997
K 2.29 5 40.8798 Se 5.9 5 36.1550
K 2.29 8 78.9542 Se 5.9 8 68.8368

Mg 3.66 1 3.3489 Mn 4.1 1 3.3184
Mg 3.66 5 38.8086 Mn 4.1 5 38.2260
Mg 3.66 8 74.4757 Mn 4.1 8 73.2283
Na 2.36 1 3.4395 Ni 5.20 1 3.2444
Na 2.36 5 40.7629 Ni 5.20 5 36.9073
Na 2.36 8 78.6997 Ni 5.20 8 70.4246
Pb 4.25 1 3.3080 Pt 5.70 1 3.2122
Pb 4.25 5 38.0351 Pt 5.70 5 36.3638
Pb 4.25 8 72.8208 Pt 5.70 8 69.2766
Si 4.85 1 3.2674 Zn 3.90 1 3.3322
Si 4.85 5 37.3075 Zn 3.90 5 38.4865
Si 4.85 8 71.2724 Zn 3.90 8 73.7854
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3.3. Creation of Universe from Nothing

Understanding origin of the universe, and also, trying to provide a satisfactory expla-

nation for the "Universe from nothing" are still ongoing studies in physics. In this section,

we want to apply our tunneling time formula (2.10) (Demir, 2014; Demir and Guner, 2014)

to the universe that emerges by tunneling at the beginning. This idea of tunneling universe is

a point of view towards understanding origin of the universe, and explaining the "Universe

from nothing". To do so, first (details can be found in (Stenger, 2006)), we have to under-

stand how this tunneling occurs, and we need to get the Hamiltonian representing this initial

stage of the universe to find corresponding potential. Following Atkatz (Atkatz, 1994), one

can write action for FRW universe as

S ≡
∫
dtL =

3πc4

4GN

∫
dt

[
− 1

c2

(
∂a

∂t

)2

a+ a

(
1− a2

a20

)]
(3.26)

where a is scale factor that represents the radius, a0 =
√

3c2

Λ
, c is speed of light, Λ is

cosmological constant, and GN is Newton’s gravitational constant. Therefore, Lagrangian is

L =
3πc4

4GN

[
− 1

c2

(
∂a

∂t

)2

a+ a

(
1− a2

a20

)]
(3.27)

and note that, k = 1 which means we have considered FRW universe as closed, and depend-

ing on the variable a. From here, using our classical mechanics knowledge, we get canonical

momentum via Lagrangian above.

pc =
∂L

∂ȧ
=

3πc4

4GN

(
− 2a

c2
∂a

∂t

)
(3.28)

where ȧ = ∂a
∂t

. Then, one gets the Hamiltonian using the canonical momentum pc we have

found above

H = pcȧ− L = pcȧ−
3πc4

4GN

[
− 1

c2
ȧ2a+ a

(
1− a2

a20

)]
(3.29)
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and by looking at the Eq.(3.28), if we represent ȧ in terms of canonical momentum pc

ȧ =
c2pc

−
(

3πc4

4GN

)
2a

(3.30)

if we put (3.30), in Hamiltonian form (3.29), what we get is

H =
c2p2c

−
(

3πc4a
2GN

) − 3πc4

4GN

[
− ac4p2c(

− 3πc4a
2GN

)2 + a

(
1− a2

a20

)]
(3.31)

combining all terms leads to a

H = −c
2p2cGN

3πc4a
− 3πc4

4GN

a
(
1− a2

a20

)
(3.32)

and then

H = − GN

3πc4

[
c2p2c
a

+ 4

(
3πc4

4GN

)2

a
(
1− a2

a20

)]
(3.33)

from here, one will express term that contains pc in terms of ȧ using the (3.30), and as a

result, one gets

H = −3πc4

4GN

[
1

c2
a

(
da

dt

)2

+ a
(
1− a2

a20

)]
(3.34)

according to this Hamiltonian, if we set H = 0, we immediately get

1

c2

(
da

dt

)2

+
(
1− a2

a20

)
= 0 (3.35)

which is one of the Friedmann equations with k = 1. On the other hand, if we use canonical

quantization by

pc = −i~ ∂
∂a

(3.36)
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then Hamiltonian (3.33) becomes

H = − GN

3πc4

[
− c2~2

a

∂2

∂a2
+ 4

(
3πc4

4GN

)2

a
(
1− a2

a20

)]
(3.37)

and multiplying and dividing this Hamiltonian by 2m, and taking into 1
a

and c2 parenthesis,

H = −2mGNc
2

3πc4a

[
− ~2

2m

∂2

∂a2
+

4

2mc2

(
3πc4

4GN

)2

a2
(
1− a2

a20

)]
(3.38)

when we set Hψ = Enψ = 0,

−2mGNc
2

3πc4a

[
− ~2

2m

∂2

∂a2
+

4

2mc2

(
3πc4

4GN

)2

a2
(
1− a2

a20

)]
ψ = 0 (3.39)

this Hamiltonian that is having zero eigenvalue for the energy which represents empty space

without any energy at the beginning of the universe, is Wheeler-DeWitt equation, and wave-

function ψ here is the wave-function of the universe (Hartle and Hawking, 1983).

We can write inside the bracket of Hamiltonian (3.39) in terms of potential and kinetic energy

terms.

H = −2mGNc
2

3πc4a

[
− ~2

2m

∂2

∂a2
+ V (a)

]
ψ = 0 (3.40)

Therefore,

V (a) =
4

2mc2

(
3πc4

4GN

)2

a2
(
1− a2

a20

)
(3.41)

is the potential function that we are looking for. We illustrate this potential as Fig.(3.9)9 now,

to calculate tunneling time for universe, first, we have to calculate Φ in (2.5) again, re-writing

it in terms of a, taking turning points as x1 = 0, x2 = a0, and setting E = 0 because of the

9This image is taken from the Atkatz (Atkatz, 1994)
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Figure 3.9. Illustration of the potential V (a)

Wheeler-DeWitt condition, what we get is

Φ =
1

~

∫ a0

0

√
2mV (a)da =

1

~

∫ a0

0

√
2m

4

2mc2

(
3πc4

4GN

)2

a2
(
1− a2

a20

)
da (3.42)

this leads to

Φ =
1

~
2

c

(
3πc4

4GN

)∫ a0

0

√
a2
(
1− a2

a20

)
da (3.43)

this integral is taken simply by arranging it as

Φ =
1

~

(
3πc3

2GN

)∫ a0

0

a

a0

√
a2 − a20da (3.44)

and then setting a20 − a2 ≡ u gives,

Φ =
1

~

(
3πc3

2GN

)(
− 1

3a0

(
a20 − a2

) 3
2

∣∣∣∣a0
0

)
(3.45)
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then solution is

Φ =
1

~

(
3πc3

2GN

)
a20
3

(3.46)

but we already set a20 =
3
Λ

due to empty space, and

Φ =
1

~

(
3πc3

2GN

)
1

Λ
(3.47)

Since there exists ambiguity on the numerical value of Λ, the precise value of which is

unknown, we have to leave our tunneling time formula (2.10) as a function of Λ.

To apply our tunneling time formula (2.10), also, we have to evaluate τ in (2.7), which results

as

τ = m
2GN

3πc3

∫ a0

0

da√
a2(1− a2

a20
)

(3.48)

and this ntegral is obviously a divergent one. To move on, first, we need to put this integral

into non-dimensional form by making a
a0

= η which

∫ a0

0

da√
a2(1− a2

a20
)
=

∫ 1

0

dη√
η2(1− η2)

(3.49)

and second, we call this divergent integral

∫ 1

0

dη√
η2(1− η2)

= C0 (3.50)

and this C0 is estimated by the Mathematica (Wolfram Research, 2010) approximately as

C0 = 9.59068 (with the error estimation 0.40208) (3.51)
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when we express mass m in terms of planck mass

m =
3π

2

(
~c
GN

) 1
2

(3.52)

we get for the τ as

τ =
3π

2

(
~c
GN

) 1
2 2GN

3πc3
C0 (3.53)

which simplifies to

τ =

(
~GN

c5

) 1
2

C0 (3.54)

if we put (3.47), and (3.54) into our tunneling time formula in (2.10), we get analytical

Figure 3.10. Plot of the tunneling time of the universe with respect to cosmological
constant Λ in Planck units
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expression as a function of Λ,

∆t = −
(~GN

c5

) 1
2

2π
C0 cosh

2

(
1

~

(
3πc3

2GN

)
1

Λ

)
exp

(
−2

~

(
3πc3

2GN

)
1

Λ

)
× 1

1 +

(
2
~

(
3πc3

2GN

)
1
Λ

) + log
1

1 +

(
2
~

(
3πc3

2GN

)
1
Λ

)
 (3.55)

however, in cosmological scale, we have to use planck units where ~ = GN = c = 1, and as

a result

∆t = −C0

2π
cosh2

(
3π

2Λ

)
exp

(
−3π

Λ

)(
1

1 +
(
3π
Λ

) + log
1

1 +
(
3π
Λ

)) (3.56)

where Λ is dimensionless here. This tunneling time is the expression of how long it takes

for the universe to tunnel from its origin to the critical radius a0. If we find Λ precisely, then

this tunneling time formula will give us the Planck order of this time. You find in Fig.3.10

tunneling times of the universe as a function of cosmological constant Λ in Planck units.
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CHAPTER 4

CONCLUSION

In this thesis work, we proposed a new formulation for tunneling time. Unlike the

well-known approaches as we already mentioned in Section.1.2, this entropic tunneling time

approach contains statistical methods due to deterministic behaviour of the time, and also

due to correlation between propagator and partition function that exists when time flows in

imaginary direction. In addition to statistical nature, quantum mechanical contribution as

uncertainty principle played a fundamental role while constructing the entropic tunneling

time. Then, after deriving the tunneling time formula, we analysed the latest tunneling time

experiment (Landsman et al., 2013) in detail, and compared our tunneling time expression

with its data. As a result of this comparison, we found that, our theoretical predictions fit well

to the data. As the next step, we apply this tunneling time formula to α-decay, STM, and

creation of universe from nothing, and our results indicate femtosecond-attosecond times

at characteristic sizes. Consequently, the entropic tunneling time formalism, with direct

applications given here, can serve as a useful tool to define time costs of various biological,

chemical, physical and technological processes.
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APPENDIX A

TRANSMISSION COEFFICIENT IN WKB

APPROACH

According to Section.1.1.2, we have found that wavefunction is of the form (1.33).

However, we have mentioned that, solution is a linear combination which we didn’t consider

the whole solution in that section. Now, to calculate transmission coefficient appropriately
1, we have to write down solution for the wavefunction ψ(x) for all regions. By looking at

Fig.1.2, we separate solution for every region. Therefore, similar to the simple rectangular

potential barrier case in Section.(1.1.1), we write

ψ(x) =



A√
p(x)

e
i
~
∫ x
x1
p(x)dx

+ R√
p(x)

e
− i

~
∫ x
x1
p(x)dx

, x ≤ x1

C√
q(x)

e
1
~
∫ x
x1,2

q(x)dx
+ D√

q(x)
e
− 1

~
∫ x
x1,2

q(x)dx
, x1 ≤ x ≤ x2

T√
p(x)

e
i
~
∫ x
x2
p(x)dx

, x ≥ x2

(A.1)

where p(x) =
√

2m(E − V (x)). One immediately notices that, both p(x) and q(x) di-

verge at the turning points. Therefore, boundary conditions containing these points become

problematic, and without using the boundary conditions, finding transmission and reflection

coefficients are not possible. Solution is, we have to analyse neighbourhood of these turning

points with approximating the change of the the potential as linear.

We have two cases here, around x1 which V ′(x1) = ∂V (x1)
∂x

> 0, and around x2 which

V ′(x2) =
∂V (x2)
∂x

< 0. For the case of V ′(x1) > 0, we write potential as

V (x) ≈ V (x1) + V ′(x1)(x− x1) (A.2)

1Further details of this calculation of the transmission coefficient can be found in, Marcus
A. M. de Aguiar, "The WKB Approximation"(lecture, IFGW - UNICAMP, November 12, 2013).
http://sites.ifi.unicamp.br/aguiar/files/2014/10/wkb1.pdf
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and we know that V (x1) = E since x1 is turning point, therefore

V (x) ≈ E + V ′(x1)(x− x1) (A.3)

if we put (A.3) into the time-independent Schroedinger equation,

(
p̂2

2m
+ E + V ′(x1)(x− x1)

)
ψ(x) = Eψ(x) (A.4)

which is then

(
p̂2

2m
+ V ′(x1)x

)
ψ(x) = V ′(x1)x1ψ(x) (A.5)

and we have to solve this equation. Since p̂2 term contains second order differentiation,

first, we turn this position representation to the momentum representation ψ(x) → ψ(p) to

make it easier, and after finding the solution in terms of momentum wave-function, we use

Fourier transformation to get wave-function in position representation. So, according to the

momentum representation which x̂ = i~ ∂
∂p

, p̂ = p, (A.5) becomes

p2

2m
ψ(p) + i~V ′(x1)

∂ψ(p)

∂p
= V ′(x1)x1ψ(p) (A.6)

and rearranging this equation

ψ′(p)

ψ(p)
= i

(
p2 − 2mV ′(x1)x1

2m~V ′(x1)

)
(A.7)

where ψ′(p) = ∂ψ(p)
∂p

. And, solution of this first order differential equation is simply,

ψ(p) = Ce
ip

6m~V ′(x1)
(p2−6mx1V ′(x1)) (A.8)

63



we find momentum wavefunction, and therefore, position wavefunction is

ψ(x) =
C√
2π~

∫ ∞

−∞
e

ip
6m~V ′(x1)

(p2−6mx1V ′(x1))e
ipx
~ dp (A.9)

from here, since cosine term is symmetric, and sinus term is antisymmetric between −∞
and ∞ according to the point zero, we write the exponential function above only depending

on the cosine term with limits from 0 to ∞. Therefore, if we set 2C√
2π~ → C ′, then

ψ(x) = C ′
∫ ∞

0

cos

(
p3

6m~V ′(x1)
+
p(x− x1)

~

)
dp (A.10)

to see what this integral leads to, we should define variables

j = p

(
1

2m~V ′(x1)

) 1
3

(A.11)

and

z = (x1 − x)

(
2mV ′(x1)

~2

) 1
3

(A.12)

then, (A.10) becomes

ψ(x) = C ′′
∫ ∞

0

cos (
j3

3
− jz)dj (A.13)

where C ′ → C ′′ due to emerging constants while dp → (2m~V ′(x1))
1/3dj. Notice that,

Eq.(A.13) is nothing but the

ψ(x) = D
1

π

∫ ∞

0

cos (
j3

3
− jz)dj ≡ DAi(−z) (A.14)

where Ai(−z) is the airy function. Since z = 0 at the turning points x1 = x, we are not able

to benefit from this result. Therefore, assuming ~2/mV ′(x1) ≪ 1, it makes z to become very

large when move away from the turning points. By doing this, on find approximate wave-

functions ψ(x) representing the WKB approximation. Since z becomes very large, integral
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in Eq.(A.13) starts to oscillate very rapidly. Hence, we need to find stationary behaviour

of ∂
∂j
( j

3

3
− jz) = 0 that is hiding inside this cosine function which makes some constant

contribution to the integral. Following this assumption, and using the integral representation

of the airy function, we get

Ai(−z) =


√

π√
z
cos (2z

3/2

3
− π/4), x < x1, hence z > 0√

π
4
√
−ze

− 2
3
(−z)3/2 , x > x1, hence z < 0

(A.15)

now, we have to arrange them in terms of q(x) and p(x) to make these to become most

appropriate form for the WKB approach. We achieve this by

∫ x

x1

q(x′)dx′ =

∫ x

x1

√
2m(V (x)− E)dx′ (A.16)

using (A.3)

∫ x

x1

q(x′)dx′ ≈
∫ x

x1

√
2mV ′(x1)(x− x1)dx

′ (A.17)

this integration then results as

∫ x

x1

q(x′)dx′ ≈ 2

3
(x− x1)

3/2
√

2mV ′(x1) = ~
2

3
(−z)3/2 (A.18)

with the same way,

∫ x

x1,2

p(x′)dx′ ≈ −2

3
(x1 − x)3/2

√
2mV ′(x1) = −~

2

3
z3/2 (A.19)

using these and

z1/2 =
p(x)

(2m~V ′(x1))1/3
(A.20)

(−z)1/2 = q(x)

(2m~V ′(x1))1/3
(A.21)
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then, what we get for this case of V ′(x1) > 0 is

ψ(x) ≈


1√
p(x)

cos

(
1
~

∫ x
x1
p(x′)dx′ + π/4

)
, x < x1

1

2
√
q(x)

e
− 1

~
∫ x
x1
q(x′)dx′

, x > x1

(A.22)

Now, for the case of V ′(x2) < 0, again following the same steps that we have already done

above, we immediately get

ψ(x) ≈


1√
p(x)

cos

(
1
~

∫ x
x2
p(x′)dx′ − π/4

)
, x > x2

1

2
√
q(x)

e
1
~
∫ x
x2
q(x′)dx′

, x < x2

(A.23)

However, these ψ(x) solutions around the turning points x1 and x2 in terms of the approx-

imated Airy function Ai(−z) cannot be enough alone for the case of tunneling. We will

explain why this is so, but now, we have to understand what is necessary to get full solution.

By looking at the equation in (A.5), if we continue that equation on the position representa-

tion, we get

− ~2

2m

∂2ψ(x)

∂x2
+ V ′(xt)(x− xt)ψ(x) = 0 (A.24)

where xt represents the turning points and using the definition of z in (A.12) while, we get

∂2ψ(x)

∂z2
+ zψ(x) = 0 (A.25)

and this is nothing but the differential form of the Airy functions. As you notice that, this

is a second order differential equation, and we have focused on only one solution which is

(A.14). The other solution is known as in the form

ψ(x) =

∫ ∞

0

(
e−j

3/3−zj + sin j3/3− jz

)
dj ≡ Bi(−z) (A.26)
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Using this solution, and again following the same steps which we have done while dealing

with Ai(−z) above, we would get for Bi(−z) in the case of V ′(x1) > 0

ψ(x) ≈


1√
p(x)

cos

(
1
~

∫ x
x1
p(x′)dx′ − π/4

)
, x < x1

1√
q(x)

e
1
~
∫ x
x1
q(x′)dx′

, x > x1

(A.27)

and for in the case of V ′(x2) < 0,

ψ(x) ≈


1√
p(x)

cos

(
1
~

∫ x
x2
p(x′)dx′ + π/4

)
, x > x2

1√
q(x)

e
− 1

~
∫ x
x2
q(x′)dx′

, x < x2

(A.28)

since we are dealing with the tunneling case, barrier region remains finite, and therefore,

resulting ψ(x) from using Bi(−z) cannot diverge as x → ±∞. However, unlike the case

of tunneling, if it is the case of boundary states, then one lets x → ±∞ which diverges the

corresponding ψ(x). This property of Bi(−z) in boundary state problem, forces one to set

the coefficient corresponding this function to zero, then Bi(−z) vanishes. As a result, we

conclude that, in the tunneling case, it is appropriate to use also Bi(−z).
Now, we know that, solution for the wave-function ψ(x) is (A.1), and we have found that,

to find these coefficients, solution must include a linear combination of the two independent

solutions Ai(−z) and Bi(−z) for all regions: region I, region II, and region III. Therefore,

for the case of V ′(x2) < 0,

ψ(x) ≈ KAi(−z) + LBi(−z) (A.29)

is the expected solution. For region III, and then taking the x > x2 solutions both from the

Ai(−z) and Bi(−z), we get

ψ(x) =
K√
p(x)

cos

(
1

~

∫ x

x2

p(x′)dx′ − π/4

)
+

L√
p(x)

cos

(
1

~

∫ x

x2

p(x′)dx′ + π/4

)
(A.30)
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if we setL = iK, then combining this linear combination results as

ψ(x) ≈ K√
p(x)

e
i
~
∫ x
x2
p(x′)dx′−π/4 (A.31)

and we have to compare this solution above with the x ≥ x2 case in (A.1), what we have

found is that

T = Ke−i
π
4 (A.32)

For the region II, which we have to consider x < x2 in this case, and hence, again by looking

at solutions both from Ai(−z) and Bi(−z), we have

ψ(x) ≈ K

2
√
q(x)

e
1
~
∫ x
x2
q(x′)dx′

+
L√
q(x)

e
− 1

~
∫ x
x2
q(x′)dx′ (A.33)

again if we set L = iK, then result becomes

ψ(x) ≈ K

(
1

2
√
q(x)

e
1
~
∫ x
x2
q(x′)dx′

+
i√
q(x)

e
− 1

~
∫ x
x2
q(x′)dx′

)
(A.34)

and when we compare this solution with x1 ≤ x ≤ x2 in (A.1), then using (A.32), what we

obtain is

C =
K

2
=
T

2
ei

π
4 (A.35)

and

D = iK = iTei
π
4 (A.36)

we have done our analysis for he case of V ′(x2) < 0. Now, we should investigate the

V ′(x1) > 0 case, which solution of the form is expected now

ψ(x) ≈ NAi(−z) +MBi(−z) (A.37)
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then for the region II, we have to consider now x > x1 cases for both Ai(−z) and Bi(−z)
which

ψ(x) ≈ N

2
√
q(x)

e
− 1

~
∫ x
x1
q(x′)dx′

+
M√
q(x)

e
1
~
∫ x
x1
q(x′)dx′ (A.38)

from here, to make this equation look similar to the solution above (A.34), we have to rear-

range integrals, if we define

Φ =
1

~

∫ x2

x1

q(x)dx (A.39)

and then if we separate integrals

∫ x

x1

q(x′)dx′ =

∫ x2

x1

q(x)dx+

∫ x

x2

q(x′)dx′ = ~Φ +

∫ x

x2

q(x′)dx′ (A.40)

then using this property of integral in (A.38), we get

ψ(x) ≈ N

2
√
q(x)

e
− 1

~ (~Φ+
∫ x
x2
q(x′)dx′)

+
M√
q(x)

e
1
~ (~Φ+

∫ x
x2
q(x′)dx′) (A.41)

then one gets

ψ(x) ≈ Ne−Φ

2
√
q(x)

e
− 1

~
∫ x
x2
q(x′)dx′

+
MeΦ√
q(x)

e
1
~
∫ x
x2
q(x′)dx′ (A.42)

then, we have to compare this equation with the (A.34), and (A.1). Comparing with (A.34)

is necessary because unlike the other cases which there exists one to one correspondence

between region I, and region III in terms of Airy solutions and WKB solutions (A.1) as we see

above, here, for the region II, we have to understand two different solutions must represent

one unique solution in this region. V ′(x1) > 0 where x > x1, and V ′(x2) < 0 where

x < x2 cases are the solutions corresponding to same wave-function, therefore, according to

this fact, since we have already set C in (A.1) corresponds to K which is the coefficient of

Ai(−z) in (A.29), and set D in (A.1) corresponds to iK which is the coefficient of Bi(−z)
in(A.29), we must compare C and D coefficients in (A.1) with the coefficients of Ai(−z)
which is N , and coefficient of Bi(−z) which is M for this case now. This change of sign of
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the integral in this case (V ′(x1) > 0 where x > x1) according to the previous case (V ′(x2) <

0 where x < x2) are already encoded in their related airy functions Ai(−z),and Bi(−z), and

therefore, instead of determining coefficients by looking at their integral signs as we did for

previous cases, we must compare these coefficients by looking at their corresponding airy

functions. Then, this statement leads to a solution for the coefficients

Ne−Φ

2
= C =

K

2
=
T

2
ei

π
4 (A.43)

and

MeΦ = D = iK = iTei
π
4 (A.44)

which then leaving N and M alone gives

N = Tei
π
4
+Φ (A.45)

and

M = iTei
π
4
−Φ (A.46)

we are now in the last part of this calculation. We have to consider region I, which we need

to look at the solutions of both Ai(−z) and Bi(−z) for the case of x < x1. Therefore, again

using the expected solution (A.37),

ψ(x) ≈ N√
p(x)

cos

(
1

~

∫ x

x1

p(x′)dx′ + π/4

)
+

M√
p(x)

cos

(
1

~

∫ x

x1

p(x′)dx′ − π/4

)
(A.47)
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writing these cosine functions in terms of their exponential equivalent form

ψ(x) ≈ N√
p(x)

(
e
i( 1~

∫ x
x1
p(x′)dx′+π/4)

+ e
−i( 1~

∫ x
x1
p(x′)dx′+π/4)

2

)
+

M√
p(x)

(
e
i( 1~

∫ x
x1
p(x′)dx′−π/4)

+ e
−i( 1~

∫ x
x1
p(x′)dx′−π/4)

2

)
(A.48)

then if we rearrange above,

ψ(x) ≈ 1√
p(x)

(
Nei

π
4 +Me−i

π
4

2

)
e

i
~
∫ x1
x p(x′)dx′+

1√
p(x)

(
Ne−i

π
4 +Mei

π
4

2

)
e−

i
~
∫ x1
x p(x′)dx′ (A.49)

comparing this result with the x ≤ x1 case in (A.1), what we get for the coefficient A is

A =
Nei

π
4 +Me−i

π
4

2
(A.50)

then putting (A.45) and (A.46), result becomes

A =
Tei

π
4
+Φei

π
4 + iTei

π
4
−Φe−i

π
4

2
=
Tei

π
2
+Φ + iTe−Φ

2
(A.51)

and if we write e
iπ
2 = i, then

A =
iTeΦ + iTe−Φ

2
= iT

(
eΦ + e−Φ

2

)
= iT coshΦ (A.52)

using the definition of transmission coefficient, which is

Trans =
|T |2

|A|2
=

|T |2

(iT coshΦ)(−iT coshΦ)
=

1

cosh2 Φ
(A.53)
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APPENDIX B

EXPERIMENTAL SET-UP IN TERMS OF ATOMIC

UNITS

B.1. Hamiltonian Representation

First we have to write the standard representation of the Hamiltonian

Ĥ = − ~2

2me

▽̂
2
− Ze2

4πϵ0x
− |e|Ex (B.1)

whereme is the mass of the electron, ▽̂ is the gradient operator, ϵ0 is the vacuum permittivity,

E is the applied electric field, and e is charge of the electron. From here, if we make a

substitution to express above with dimensionless parameters such as

ξ =
x

a0
≡ dimensionless (B.2)

E =
E

|e|/(4πϵ0a20)
≡ dimensionless (B.3)

where a0 is the Bohr radius. If we rewrite the Hamiltonian again in terms of these dimen-

sionless parameters

Ĥ = − ~2

2mea20
▽̂

2

ξ −
e2Z

4πϵ0a0ξ
− |e|a0

|e|
4πϵ0a20

(
E

|e|/(4πϵ0a20)

)
ξ (B.4)

which is

Ĥ = − ~2

2mea20
▽̂

2

ξ −
e2Z

4πϵ0a0

(
Z

ξ
+ Eξ

)
(B.5)
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now, to take all expression into one parenthesis, we have to do some algebra on ~2
2mea20

term

above

e2

4πϵ0
×
(

1
e2

4πϵ0

× ~2

2mea20

)
=

4πϵ0~2

mee2
× e2

(4πϵ0)2a20
(B.6)

since first term of the result above is Bohr radius a0, we immediately get

~2

2mea20
=

e2

2(4πϵ0a0)
(B.7)

therefore, if we put above into the Hamiltonian (B.5), we get

Ĥ =
e2

4πϵ0a0

(
− 1

2
▽̂

2

ξ − (
Z

ξ
+ Eξ)

)
(B.8)

here, e2

4πϵ0a0
is the Hartree energy, and it is 4.36× 10−18J or 27.211eV . This Hartree energy

is considered as 1a.u.. Therefore, we have just found the atomic unit representation of the

Hamiltonian, which is

Ĥ = −1

2
▽̂

2

ξ −
(Z
ξ
+ Eξ

)
(B.9)

B.2. Turning Points

To calculate turning points which make momentum to vanish p̂ = 0, first

Ĥψ = −EIψ (B.10)

where EI is the ionization energy of the He atom. However, we have to make EI dimension-

less, using the Hamiltonian (B.8),

Ĥ =
e2

4πϵ0a0

(
− 1

2
▽̂

2

ξ − (
Z

ξ
+ Eξ)

)
ψ =

e2

4πϵ0a0

(
− EI

e2

4πϵ0a0

)
ψ (B.11)
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dividing and multiplying EI with e2

4πϵ0a0
gives us dimensionless ÊI which

ÊI =
EI
e2

4πϵ0a0

(B.12)

and since first ionization energy of the He is in SI units EISI
= 24.59eV , we immediately

get ÊI = 0.8941 in terms of Hartree energy. From here, using the equality in (B.11),

p̂2

2
− (

Z

ξ
+ Eξ) = −ÊI (B.13)

then what we get for the momentum in terms of atomic units is

p̂ =

√
2

∣∣∣∣ p̂22 − (
Z

ξ
+ Eξ − ÊI)

∣∣∣∣ (B.14)

hence, one finds turning points as

Z

ξ
+ Eξ − ÊI = 0 (B.15)

if we multiply this equation with ξ and then solve this second order polynomial, we get

turning points as

ξL,R =
ÊI ±

√
ÊI

2
− 4EZ

2E
(B.16)

where Z = 2 for He atom.

B.3. Laser Intensity

Laser intensity is

Laser Intensity = LI =
1

2
ϵ0cE

2 (B.17)
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where c is the speed of light. Using the dimensionless form of the applied electric field in

(B.3), then we get

LI =
1

2
ϵ0c

(
e

4πϵ0a20

)2

E2 (B.18)

if we divide and multiply the e term in parenthesis with 4πϵ0~c,

LI =
1

2
ϵ0c

( e2

4πϵ0~c4πϵ0~c
(4πϵ0a20)

2

)
E2 (B.19)

then, using the definition of fine structure constant α = e2

4πϵ0~c ≈
1

137
, we get

LI =
1

2
α

1

4π

~c2

a40
(B.20)

if we put their numerical values, what we get for the laser intensity in atomic units 1a.u. is

LI = 3.5152× 1020W/m2 · E2 = 3.5152× 1016W/cm2 · E2 (B.21)

we know that, in this experiment, laser intensity range is given as

LIexp = (0.73− 7.5)× 1014W/cm2 (B.22)

therefore, in terms of atomic units, this interval must give

(0.73− 7.5)× 1014W/cm2 = 3.5152× 1016W/cm2 · E2 (B.23)

as a result, peak electric field interval is found in terms of atomic units as

E = (0.0456− 0.1461)a.u. (B.24)
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