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ABSTRACT

MODELING AND FITTING OF THE WIND DATA USING DIFFERENT TIME
SERIES MODELS AND INVESTIGATING THE RELATED APPLICATIONS OF

FITTED DATA. URLA AND RISØ CASES.

This thesis is prepared as an outcome of Energy Engineering Master of Science

program at IZTECH. Main purpose of this study is to investigate the possible ways of

estimating the evolution of wind speed in Turkey, which is useful in predicting the wind

power generation.

Wind Energy has recently been recognized as one of the most promising renew-

able energy sources in the world. Despite its high potential, one major problem is that it is

an intermittent energy source which follows, in general, statistically a quite noisy evolu-

tion with large variability and difficulty in forecasting. Standard time series models have

been employed to forecast the wind speed in the literature (such as ARIMA, ARMA). The

majority of these, however, are based on a univariate modelling. This is likely to create a

significant loss in forecast accuracy as the important dynamics of wind such as ambient

temperature, absolute pressure, wind direction and humidity are ignored.

So, aim of the present study is to incorporate these factors in a multivariate VAR

setting and estimate the wind speed in 4 different locations around Urla City (nearby

Izmir-Turkey) by employing hourly data between June-2000 and October-2001. To pro-

vide a benchmark, I also compare estimations from VAR with the predictions from ARIMA

and SARIMA models. The results indicate two important conclusions. First, it has been

shown that all models provide an accurate estimate of wind speed. Second, multivariate

VAR and SARIMA is clearly shown to outperform the ARIMA model by improving the

wind speed predictions and producing less forecast errors.

Thus, these models are demonstrated to be helpful in estimating the wind power

generation as well.

iv



ÖZET

RÜZGAR VERİLERİNİN ÇEŞİTLİ ZAMAN SERİSİ YÖNTEMLERİYLE
MODELLENMESİ ÜRETİLEN VERİNİN UYGULAMA ALANLARININ

İNCELENMESİ.URLA VE RISØ ÖRNEKLERİ

Bu çalışma İzmir Yüksek Teknoloji Enstitüsü, Enerji Mühendisliği Yüksek Lisans

programının bitirme tezidir.

Tezin ana amacı rüzgar hızını modellemede ve tahminlemede kullanılan olası is-

tatistiksel yöntemleri araştırmak ve bu yöntemlerin sonuçlarını kıyaslayarak veri temi-

zleme ve eksik datayı tahminleme işlemleri için yöntem önerisi yapmaktır. Halihazırda

literatürde varolan ve rüzgar güç santralleri için oldukça önemli bir yere sahip olan is-

tatilsel yöntemler taranmıştır. Ancak farklı meteorolojik değişkenleri hesaba katabilecek

çok değişkenli modellerle ilgili calışmaların kısıtlı olduğu tespit edilmiştir.

Bu calışmada VAR yöntemiyle rüzgar hızını tahminlerken basınç, sıcaklık,rüzgar

yönü ve nem kayıtları da girdi olarak kullanılmıştır. SARIMA yöntemi mevsimsel etkileri

yakalayabilmek için kullanılmıs, çok değişkenli VAR ve ARIMA yöntemleri dört farklı

data seti için kurulmuş ve tahminlenen değerler doğruluk ölçme araçlarıyla kıyaslanmıştır.

Özetle çoklu değişkenin kullanıldığı VAR ve mevsimselliği tahminlemelerde kullanılan

SARIMA modeli ARIMA modelinden daha az hata vermiştir. Dolayısıyla, rüzgar enerjisi

tahmin ve modellemelerinde bir çok meteorolojik değişkeni ve mevsimselliği göz önüne

almak tahmin verimliliğini arttırmaktır.
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CHAPTER 1

INTRODUCTION

Main goal and the objectives are listed in below section. Organization of thesis

is given in second part. Due to increase understandability of study and rough road map

which is designed according to contents of chapters and sections.

1.1. Thesis’ Aim and Objectives

Wind Energy has recently been recognized as one of the most promising renew-

able energy sources in the world (Erdem and Shi, 2011). Its increasing trend during the

last few decades has undoubtedly confirmed this potential. Such that the World installed

capacity has risen from 7,480 MW in 1997 to 74,112 MW in 2006 and to 318,529 MW

in 2013 (WWEA’s annual report, 2012 and Key statistics of World Wind Energy Report,

2014). In other words, the total capacity has grown more than 44 times over the last 15

years and estimated to reach about 700,000 MW in 2020 (WWEA).

Despite its high potential, one major problem is that wind energy is an intermit-

tent source which follows, in general, a quite noisy evolution with large variability and

difficulty in forecasting (Erdem and Shi, 2011). Thus, the power generated from turbines

can hardly be predicted (Erdem and Shi, 2011). Forecasting the wind speed is, therefore,

critical to predict the amount of power generation (Erdem and Shi, 2011). A small change

in the direction and magnitude of the wind might, in fact, create large deviations in power

production (Erdem and Shi, 2011).

With regard to the literature on wind speed forecasting, there exist several method-

ologies. One may partition these approaches into three groups. The first one incorporates

physical factors, such as terrain, mountains and obstacles, in wind speed forecasting (Lei

et al., 2009), (Giebel et al., 2011), (Erdem and Shi, 2011). Generally, these methods have

been used for large-scale places like regions or countries and they are unlikely to fit to the

local sites (Lei et al., 2009), (Giebel et al., 2011), (Erdem and Shi, 2011). Second group

consists of Artificial Neural Network (ANN) methods which are adopted by a strand of

scholars in order to model the wind speed (Li and Shi, 2010) (Carolin Mabel and Fernan-
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dez, 2008) (Erdem and Shi, 2011). The main advantage of ANN is that it does not require

an assumption of a certain form of regression function, thus, represents a more general

approach in that sense. However, the drawback is the weakness of forecast accuracy com-

pared to the other conventional methodologies. (Cadenas and Rivera, 2007), (Gomes and

Castro, 2012).

The third group, perhaps the most influential, includes conventional statistical

time series methods which rely mostly on ARMA (Autoregressive Moving Average) and

ARIMA (Autoregressive Integrated Moving Average) based models (Cadenas and Rivera,

2007), (Erdem and Shi, 2011). ARIMA has, initially been introduced by Box-Jenkins (Er-

dem and Shi, 2011) and useful in incorporating the persistence, variance and stationarity

(order of integration) of wind in predictions (Erdem and Shi, 2011). In addition, more

recently developed SARIMA model takes into account the seasonality component. It is

argued to outperform the former models and provide more accurate results (Erdem and

Shi, 2011). Some examples of these studies are Bivona et al. (2011) who implement

wind speed forecasting in Italy (Cammarata Mazzarrone) between 1st Jan 2003 to 31 st

December 2006 by employing SARIMA and ANN, Cadenos and Rivera (2007) who pre-

dict wind speed in Oaxaca (Mexico) between June 1994- May 2000 and conclude that

SARIMA outperforms the ANN based approaches, Pedro et al (2012) who perform sim-

ilar analysis in Iberia and concludes that ARMA based model produces more accurate

results.

The present thesis aims at contributing to literature by departing from other studies

in three ways. First, the vast majority of existing studies is based on a uni-variate mod-

elling. In other words, wind speed is estimated solely using its former values. However,

this is likely to create a significant loss in forecast accuracy as the important dynamics of

wind such as ambient temperature, absolute pressure; wind direction and humidity are ig-

nored (Erdem and Shi, 2011). Two exceptional studies are Zhang et al (2002) and Erdem

and Shi (2011) who incorporate wind direction and temperature (in Zhang et al. (2002) in

their forecasts and obtained efficient results. Besides these studies, literature considering

these dynamics is rather scarce. I intend to take them into account in a Vector Autoregres-

sion (VAR) model which is a widely used methodology in interdependent multivariate

settings, mostly used in economics and social sciences (Sims, 1980). Specifically, VAR

methodology is used to estimate directly the co-variates of endogenous variables by using

time lags of all variables. The dynamics of wind speed, such as wind direction, pressure,

humidity, etc., are included in VAR model so to capture their possible effect on wind
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speed predictions.

Second novelty of our study comes from the fact that we compare the estimations

from 4 different locations. It therefore provides an advantage of cross-locational compar-

ison of model predictions and their robustness. Similarly, we compare our results from

three methodologies, one is multivariate VAR and the others are uni-variate ARIMA and

SARIMA.

Lastly, to the best of our knowledge, this thesis is one of the first attempts which

try to model the wind speed in Turkey. In fact, wind is seen as one of the most potential

energy sources in Turkey since there exist many persistently windy locations. Indeed,

wind energy exhibits an increasing trend in recent years. Such that installed capacity has

risen from 363,7 MW in 2008 to 791,6 MW in 2009, to 1320,2 in 2010 and to 1728,2 in

2011. (Turkish Republic Energy Market Regulatory Authority, 2012).

With regard to the locations of study, we analyze the wind speed from 4 differ-

ent stations. The first one is called URLA-RES which is a met mast located in Urla

(sub-province of Izmir-Turkey) and within the campus area of Izmir Institute of Technol-

ogy. Secondly, we use data measured at Izmir Adnan Menderes Airport (ADM) which

is about 50 km away from Urla. The third dataset is called MERRA (MODERN ERA

RETROSPECTIVE-ANALYSIS FOR RESEARCH AND APPLICATIONS). Originally,

the data is provided by Global Modeling and Assimilation Office of NASA/Goddard

Space Flight Center. The wind speed measurement is implemented from a location on

the Aegean Sea which is nearby Urla. Specifically, its coordinates are latitude; 38.5 and

longtitude; 26.6. The fourth data is called CFSR (Climate Forecast System Reanalysis).

This data is provided and processed by EMD International A/S. The location of measure-

ment is again nearby places of Urla (Latitude: 38.2, Longtitude: 26.3). All the data we

use have an hourly frequency and cover the period from June-2000 to October-2001.

Overall, the main objectives of the study can be summarized in a following way:

i To be able to understand the state of art and summarize the mostly accepted method-

ologies in the literature

ii To employ multivariate methodologies which takes into account meteorological

variables in the estimation process.

iii To compare different methodologies’ accuracy power using several criteria such as

Root mean square error, Mean absolute error, Mean absolute square error tools.
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iv To contribute to the literature with an engineering application by comparing the raw,

filled and fitted data in terms of their resulting annual energy production values.

1.2. Organization of Thesis

Structure of the thesis can be summarized as follows. General pictures of wind

energy industry in World and in Turkey are presented in chapter 2 herein reader can gain

an overview the scales of numbers, statistics of this market. In chapter 3, I provide the the-

oretical explanations of general concepts such as wind and occurrence of wind, meteoro-

logical characteristics and mathematical/physical explanations of wind and measurement

tools.

Chapter 4 has been devoted to provide a brief account of the time series models.

Therefore, basic terminology and standard procedures of estimations will be summarized

in this part. Specifically, I will focus on unit root and stationarity concepts and, then,

explain the three models; VAR, ARIMA, SARIMA.

After this point, in Chapter 5, I summarize the related literature by reviewing the

empirical published papers and document their main methodologies and results

In Chapter 6, I explain the dataset that I employ, the variables, their measurements

and locations.Herein mainly two types of data family will be used. On the one hand,

the met mast data from four different stations nearby Urla-Izmir will be used which is

given in chapter 6 whereas, SCADA engineering application dataset from Denmark will

be introduced in chapter 8.

Chapter 7 has been devoted to reporting the obtained results and comparsion of

wind speed predictions of 3 different methodologies and 4 locations. Optimization of

models; ARIMA(p,d,q), SARIMA(p,d,q)(P,D,Q) and VAR(p) and procedure is also ex-

plained. Herein fitted values obtained from estimation of each models and for each month

has been displayed together with actual wind speed data to have a preliminary idea on the

eccuracy of estimations. Residuals have also been plotted to check whether they satisfy

the white noise property. Cross-comparsion of models in estimation accuracy is evalu-

ated using different criteria. IRFs (Impulse-Response functions) are provided to illustrate

better the dynamics of wind speed.

In chapter 8, I pursue the engineering application. After the determination of the

most powerful method, I will use this methodology to fill missing data for data cleaning
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procedure. Herein annual energy productions of raw, produced and filtered data sets will

be used as comparison tool. WAsP program will be employed for the calculation of annual

energy production values.

Finally, in chapter 9, I will conclude my study by providing several final remarks.
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CHAPTER 2

WIND ENERGY MARKETS IN WORLD AND IN TURKEY

The current chapter is devoted to summarising stylized key facts on wind energy

markets in world and in Turkey.

As known, in today’s world, there is an undeniable fact that civilization established

heavily relies on energy dependent activities like manufacturing, production, transporta-

tion, heating, cooling, air conditioning, etc.. Energy, however, is not infinite. A renewable

system is, therefore, required.

Conventional energy sources, such as gas, coal, etc., include quite important draw-

backs. In detail, they represent a clear threat to sustainability and environment. A list of

potential problems is documented below:

i Green house gasses emission problem and in parallel global warming

ii Unequal distribution of conventional energy sources, price risks,security problems

due to transportation

iii Limitation in this sources, they are neither sustainable nor renewable.

One possible solution could be through the Wind Energy. Although wind is known

as renewable and sustainable energy source there is a little misunderstanding. Wind en-

ergy is also limited but compared to conventional sources, it will not be ran out of or

perish. In reality, none of the energy types will be perished and they will be transforming

each other and burning process. In the most of applications, this process is irreversible. So

when you burn a coal there will be heat energy and if you use this energy to boil water you

can access the vapor with pressure and the movement of the vapor you can turn propellers.

This means one has converted the heat energy into a kinetic energy and from this kinetic

energy, electricity can be produced. But here energy conversion procedure depends on

the consumption of coal. After some point the energy sources (i.e. coal, petroleum) can

not meet the demand as long as they are not renewable .

The global available energy in the wind was calculated by several authors. Ac-

cording to one of the pessimist estimation, its potential is about 1 TW in global scale

(Castro et al., 2011). In another words about 8.4% of today’s energy demand can be
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obtained from the wind for the pessimist estimation. Let’s make this calculation to get

familiar with units and scales.(Agency, 2014) in 2012 world total energy consumption is

8979 Mtoe.

1 toe = 11.63 MWh

8979 Mtoe = 1.0442577x1014 kWh

in 1 year 8760 hours

1.0442577x1014 kWh/8760 h=11920750000 kW

1TW=1 000 000 000 kW

As a result 11920750000 kW/1 000 000 000= 11.92075 TW is the total consumption

and 1 TW approximately equals to ≈8.4% of total consumption.(Castro et al., 2011) also

listed other estimations in his study. In the table 2.1 this general summary can be found.

Table 2.1. Wind Power Potential in World According to several authors

Authors Technical power (TW) Economic/sustainable
power (TW)

Capps and Zender
(2010)

39 (offshore)

DeVries et al. (2007) 4.5(in 2050)
EEA (2009) 8.6 (Europe) 3.5(Europe 2030)
Elliott et al. (2004) and
Musial (2005)

1 (EEUU)

Greenblatt (2005) 70.4 (global)
Greenpeace (2008) and
Greenpeace (2010)

1 in (2050) 1.2 (in
2050)

Hoogwijk et al. (2004) 11 2,4 6 (economic)
Lu et al. (2009) 78(onshore),> 7(offshore)
Miller et al., (2010) 17− 38 (onshore, geographi-

cal potential)
Schindler et al. (2007) 6.9(sustainable)
WEC (1994) 55.2 (global)
Wijk and Coelingh
(1993)

2.3(onshore,OCDE)

Zerta et al. (2008) 6.9(sustainable)

In more optimistic estimation,The Global Wind Energy Council and Greenpeace

International Global Wind Energy announced that wind power could reach 2000 GW

by 2030 which equals to 17-19% of Global electricity demand, this means also over 2

million new jobs and reducing C02 emissions by more than 3 billion tones per year in

2014. Herein it stated also 21000 jobs for a year are created by the investment of every
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billion Euro in offshore wind.(Global Wind Energy Council (2014)).

Here, I need to explain some terms more for the sake of clarity. So, our termi-

nology starts with energy mix which is the term to explain a country’s primary energy

sources used to produce electricity. Installed capacity is a term used for explaining the

maximum technological capacity that can be produced by the maximum power in opti-

mum conditions, like wind blowing in the range of 11 m/s and 18 m/s.

With regard to the current situation in world, global installed capacity of wind

power and its regional distribution are presented in Table 2.2.

Table 2.2. Global Installed Wind Power Capacity (MW) Regional Distribution
(Source : Global Wind Energy Council.,2014)

end of 2012 new 2013 end of 2013
AFRICA & MIDDLE EAST 1,165 90 1,255

ASIA 97,715 18,216 115,927
EUROPE 109,817 12,031 121,474

NORTH AMERICA 67,748 3,063 70,811
PACIFIC REGION 3,219 655 3,874

World total 283,194 35,289 318,105

By the end of 2013, total world capacity is 318,105 MW. The region with the

largest capacity is Asia (near to 50 % of global capacity) followed by Europe, North

America, Pacific, Africa and Middle East.

Regarding the ranking at the country level, the world leader country is China fol-

lowed respectively by US and Germany. Turkey is 16th in the ranking.

In terms of production techniques of wind energy, 3.6 MW offshore turbine can

produce in average the sufficient amount of electricity for 3312 EU households (European

Wind Energy Association). On the other hand 2-5 to 3 MW onshore turbine can produce

6 million kWh in a year which is enough to meet 1500 EU households’ electricity de-

mands.(European Wind Energy Association).

Figure 2.1 illustrates instead the installed wing energy within EU. The total in-

stalled capacity is 117,289 MW while candidate countries have far little capacity (i.e.

2,956 MW), reaching to an overall capacity of 121,474. Regarding the individual coun-

tries, Germany, Spain, UK and Italy are the leading countries with respective capacities

of 33,230 MW, 22,959 MW, 10,531 MW and 8,551.
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Figure 2.1. EU Installed Wind Energy in 2013

Regarding Turkey, renewable energy potential versus operational situation are

summarized in below table 2.3

In terms of potential, Solar energy has the highest value. Wind and Hydro elec-

tric energy represents the other promising sources followed by Geothermal and Biomass

energy accordingly.

In operation, Hydro-electricity seems to be the dominating energy production sys-

tem in Turkey which has annual production of 17359.3 MW in 2012. It has been followed

by wind energy (1792.7 MW), Biomass (117.4 MW) and Geothermal energy (114.2 MW).

Percentage shares of different energy sources are depicted in Figure2.2. At a

glance, one may easily understand that renewable sources cover only 25.2 % of total pro-

duction while remaining 74.8 % is produced by Thermal sources (i.e. coal, etc). Among

the renewable sources, share of hydro is 22.8 % and share of wind energy is 2.3 %. Al-

though, actual production values do not totally represent the importance of wind power,

its capacity is quite large. Therefore, it is also a matter of energy policies and investments

are needed in this sector.
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Table 2.3. Turkey Renewable Energy Situation(Source: EPDK.,2012))

TYPE POTENTIAL IN OPERATION
Hydro 45,000 MW 17359.3 MW
Wind 48,000 MW 1792.7 MW
Solar 300 TWh/year −

Geothermal 600 MW 114.2 MW
Biomass 17 MTEP 117.4 MW

Figure 2.2. Turkey Energy Mix in 2011(Source: EPDK., 2012)

Figure 2.2 and Table 2.4 provide more detailed information on the recent develop-

ments of wind energy sector in Turkey. In Figure 2.2, we can observe that wind installed

capacity shows a clear tendency to increase over the last years. Its capacity has risen from

about 363 MW in 2008 to 1728 MW in 2011. Moreover, its relative share in total energy

capacity rises from 0.87 % in 2008 to 3.25 % in 2011.

Table 2.4. Turkey Wind Energy Situation in the end of 2013 (MW)
(Source: TUREB., 2013)

Installed Capacity Under Construction Licensed Wind Power Plants
2958.45 980.90 5776

In 2012, Turkey has 2.312 GW wind energy power plants and 646 MW is con-

structed after that. Finally, by the end of 2013 this value has reached to 2.959 GW. The

total number of Licensed Wind Power Plants is 5776.
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Figure 2.3. Turkey Wind Energy Installed Capacity between 2008 and 2011
(Source: EPDK., 2012)

Finally, a last figure in this chapter regards the geographical distribution of wind

power plants in Turkey. In figure 2.4, it is obvious that Turkey’s wind energy applica-

tions are denser in the west part of the country. They are mostly concentrated on the

Western and Aegean Sea shore since the wind speed in those locations is quite strong and

persistently blowing. Another reason for such an agglomeration is the capital structure.

Big investors are available around Istanbul and Marmara which directs the investment to

accumulate around these zones.
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Figure 2.4. Turkey Wind Turbine Map
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CHAPTER 3

THEORITICAL BACKGROUND

As a physical definition, wind is the air motion driven by the uneven heating and

cooling of the earth’s surface. It occurs at Troposphere layer. I has been explained within

boundary layer theory and by different balance situations of pressure gradient force, Cori-

olis force, frictional force, gravitational force, centrifugal force and thermal gradient.

The horizontal movement of the air, parallel to the earth’s surface is measured by

direction and magnitude of wind. Occurrence of wind is highly uncertain in time and

space, which has a complex periodicity and non-linearity.

Thus, the wind speed is closely related to other meteorological factors such as

pressure and temperature, and it can also be easily influenced by obstacle and terrain.

An overview of related concepts are provided in this chapter.

3.1. The Wind

Movement of air is a natural phenomena which is caused by changing at balance

of atmospheric forces mostly due to nonequivalent warming and cooling of earth.

We will discuss this issue within different aspects in this chapter. In order to give

a general overview to reader, first part is reserved for explanation of theoretical basement.

Herein we will start with the answers of two crucial question, “where” and “when” to

define wind as a natural phenomena with the equivalent of physical and mathematical

models. Main concepts are listed below;

i Where? Atmosphere via Troposphere, layers

ii Which forces? Definition of atmospheric force, Pressure, Gravity, Coriolis, Ther-

mal.

iii When? The time of balance between forces
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3.1.1. Atmosphere and Troposphere

According to Robert Henson Atmosphere is a life sustaining soup which has the

main ingredients oxygen,ozone and water vapour. The ninety percent of atmosphere lies

within 32 km of the planet’s surface. Comparatively to earth’s radius (13 000 km) at-

mosphere is a thin film covering the surface of earth and “weather layer” of atmosphere

where we can find our “wind”, is even thinner. Above that there are several atmospheric

layers. Each of them has different characteristics like chemical combination, temperature

profile, cloud types etc.

The Ground layer is the location where our wind is hidden, Troposphere. It is the

bottom of atmosphere extending from sea level up to around 10-16 km high, depending

on the season and the location figure 3.1 (poles, equator etc.). As a typical limit of tropo-

sphere its height can reach up to a maximum at the place where the air is warmest and at

the time where the air is warmest.(Henson, 2011)

What keeps the troposphere moving are contrasts between warm and cold, moist

and dry (Henson, 2011). Generally troposphere defined with sub-layers; surface layer,

ekman layer, free atmosphere.

3.1.1.1. Atmospheric Forces

Until here we already defined “the place”. Right now we will start to define “parame-

ters” which can structure the theory basement. Force is a physical parameter that defined

as multiplication of acceleration and mass. The fundamental forces are sorted below;

(Ackerman et al., 2013)

i) Pressure Gradient Force (The PGF always pushes from higher pressure towards

lower pressure. Its magnitude is equal to the change in pressure over some distance,

divided by the air density.)

PGF =
−1

ρ
∗ change in pressure

distance
(3.1)
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Figure 3.1. Troposphere and height change from equator to pole.
(Source: sky.aero.,2014)

ii) Coriolis Force (The rotation of the Earth produces this force which is felt in the

frame of reference of the spinning planet) The magnitude of the Coriolis force (CF)

per unit mass is proportional to the distance from the equator and the speed of the

wind. This can be written mathematically as:

CF = ±f ∗WS (3.2)

In equation 3.2 WS is the wind speed and f is the Coriolis parameter, defined as:

f = 2ω sinϕ (3.3)

w: Earth’s rotation rate
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sinϕ : sin of lattidude

iii) Centrifugal Force (When an object changes its direction of motion it is accelerating

even if its speed does not change. This acceleration is called centripetal acceleration

(centripetal means “pushed toward a center”).(Ackerman et al., 2013))

CENTF =
WS2

r
(3.4)

R is the radius of curvature part.

iv) Frictional(Viscous)Force (The frictional force in the atmosphere is, for our current

purposes, caused by the flow of wind over the roughness of the Earth’s surface.)

Mathematically, the frictional force (FF) per unit mass can be written very simplis-

tically as:(Ackerman et al., 2013)

FF = −z0 ∗WS (3.5)

in equation 3.5 z0 is a parameter describing the roughness of the Earth’s surface

and WS is the wind speed. The minus sign emphasizes that friction opposes the the

wind regardless of its direction.

v) Gravitational Force (Gravitational force is defined with the perpendicular direction

through ground and with magnitude of the mass times the gravitational acceleration,

9.8 meters per square second.)

3.1.1.2. Atmospheric Balances

In this subsection I will introduce atmospheric balances of troposphere for the

definition of time when the wind occurs. In table 3.1 rows represent the balance types and

columns represent the each force which have a place in that specific balance situation. By
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the way balance means equilibrium of different forces in reverse directions with the same

magnitude so in the balance time there will be no motion however in nature attitude of

forces towards the balance is weaker than the attitude of forces towards the motion. The

wind occurs during to the motion of forces to reach balance.

Table 3.1. Force Affect table

Forces versus Balances PGF H CF CeF FF GF PGF V
Hydrostatic Balance (PG+GF = 0) X X
Geostrophic Balance (PG+ CF = 0) X X
Gradient Balance X X X
Guldberg-Mohn Balance X X X

PGF H: Pressure Gradient Force Horizontal

CF: Coriolis Force

CeF: Centrifugal Force

FF: Frictional Force

GF: Gradient Force

PGF V: Pressure Gradient Force Vertical

3.1.1.3. Gradient Balance

Geostrophic balance requires that the wind blow in a straight line. However, this is

rarely the case. More often, upper-level winds undulate in curvy patterns. This requires

the inclusion of a third force, the centrifugal force. The three-way balance of horizontal

pressure gradient, Coriolis force and centrifugal force is called gradient balance, and the

wind that results from this balance is called the gradient wind. The gradient wind is an

excellent approximation to the actual wind observed above the Earth’s surface, especially

at middle latitudes and in the jet stream.(Ackerman et al., 2013)

Gradient balance illustrates that high and low pressure areas differ not only in the

direction but also the strength of the wind. Remember that the centrifugal force always

pushes toward the outside of curves and is proportional to the square of the wind speed.

Therefore, in the case of a curved low-pressure area, the centrifugal force pushes in the

same direction as the Coriolis force. Since both of these forces are related to wind speed,
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the wind does not need to be as strong in this case as in the case of uncurved flow in order

to achieve balance with the PGF. The wind is therefore slower in this situation than in a

purely geostrophic case, and is called subgeostrophic.(Ackerman et al., 2013)

Conversely, in the case of a curved high-pressure area the centrifugal force teams

up with the PGF, both pushing outward from the high. The Coriolis force attempts to

balance this double-team of forces. To accomplish this, the wind speed to which the

Coriolis force is proportional-must be considerably higher than in the purely geostrophic

case. This is called supergeostrophic flow.

Therefore, for high- and low-pressure areas that have the same spacing of isobars

or isoheights, winds around a high will be stronger than winds around a low because of

gradient balance.

3.1.1.4. Guldberg-Mohn Balance

Near the Earth’s surface, the frictional force plays a pivotal role in wind. The ad-

justment to balance in these situations is profoundly affected by the ability of friction

to slow the wind and therefore weaken the Coriolis force. This three-way balance of

horizontal PGF, Coriolis force, and frictional force is sometimes called Guldberg-Molln

balance.(Ackerman et al., 2013)

The creation of a PGF creates a wind from higher toward lower pressure. How-

ever, near the surface this wind triggers not only the Coriolis force, but also the frictional

force. Friction opposes the wind, so the wind slows down which in turn makes the Cori-

olis force weaker. As the situation evolves, the PGF wins the tug-of-war. This is because

of the balance of the three forces. Without the influence of the Coriolis force, the wind

would blow straight into lower pressure. With the Coriolis force at full strength opposing

the PGF, the wind would blow parallel to the isobars as in. geostrophic balance. But in

this case, friction weakens the wind and the Coriolis force, and the air parcel crosses the

isobars toward lower pressure. (Ackerman et al., 2013)
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3.2. The Atmospheric Boundary Layer

Ludwig Prandtl defined the concept of boundary layer in 1904 in terms of the layer

where a moving fluid comes across with a solid boundary. (Tani, 1977). In this concept

atmosphere divides mainly two region according to importance of viscosity.

The Boundary Layer can be defined as: “that part of the troposphere that is directly

influenced by the presence of the earth’s surface and responds to surface forcing with a

time scale of about an hour or less.”(Stull, 1988)

The lowest one tenth part of the atmospheric boundary layer, is called the surface

layer. In this layer the turbulent fluxes remain more or less (within 10%) constant with

height, and the Coriolis effects are negligible.

3.2.1. Wind Profile

The concept of boundary layer gave us the opportunity to formulate vertical wind

profile.

In the surface layer turbulence is generated by wind shear near the ground; the

no-slip condition requires that velocity at the ground is zero. This is expressed in terms

of Reynolds stress, and can be defined a velocity scale WS*.(frictional velocity)

WS∗ =
τ

ρ0
(3.6)

Where is τ the shear stress in an arbitrary layer of fluid and is the density of the

fluid.

WS(z) =
WS∗
K

ln
z

z0
(3.7)

In equation 3.7, K represents von Karman’s constant WS(z) is the wind speed at

height z, z0 is the roughness length. The roughness of a terrain is included to formulation

with the parameter of the roughness length ( z0 ), in another words terrain roughness is
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the measurement of hindrance which is “seen by” the surface wind. (Crockford and Hui,

2007a)

For the forestry region this formulation turns to equation 3.8.

WS(z) =
WS∗
K

ln
z − d
z0

(3.8)

The wind profile is essentially shifted upwards by d (tree height), zero plane dis-

placement height. In general its value is based on the estimation which is vary between

0.6 and 0.8 times the height of the canopy (forestry(tree) or city(building)) (Stull, 1988).

3.3. Anemometer and Measurement Tools

Development of wind industry depends on improvement of measurement tools.

This is a crucial issue in the improvement of quality, frequency and accessibility of mea-

sured data. Wind industry and measurement technology of atmospheric variables affect

each others directly.

Basically three main phases require measurements in wind power plants. First

one is screening phase which it is focused on description of wind climate in a specific

area. Second one is referred as to a development phase where input can be collected,

measured, predicted for energy calculations, investment decisions, turbulence and wake

analysis, wind shear analysis, extreme wind analysis, choice of turbine type (IEC class 1,

class 2, A, B..), site calibration. Finally last phase calls as operational domain. We can

define it here as a produced power measurements.

IEC standards ( International Electrotechnical Commission) and MEASNET (In-

ternational Network for Harmonized and Recognized Measurements in Wind Energy)

regulations are widely accepted in wind industry. General rules based on requirement

of measurements at least 12 complete and consecutive months at wind park area. Data

specifications require that it must be recorded within 10-min averages, preferably with a

sampling rate of 1 Hz or faster .

If we start to investigate techniques firstly mast measurements should be explained

with different construction types and advantages and disadvantages. Met mast tower could

be tubular mast or lattice mast.
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Tubular masts provide benefits such as having low cost measurements. It is easier

to erect the mast and concrete foundation can be avoided comparatively lattice mast. But

maintenance issues are really challenging in this type since it is difficult to change the

sensors and mast must be taken down. During the winter, this type of mast can not hold

heavy ice loads. Furthermore, there is a height limit, i.e. like smaller that 80 m(short

masts).

Lattice masts show controversial specifications with tubular masts. In this type,

climbing is possible, holding heavy icing loads depend on the design. Tall towers must

be designed as lattice masts. If we check disadvantages list here we must face with high

investment costs and height so high altitude have influence on the measurements (shadow

effect). The desired mast structure and equipment specifications can be listed as follows:

i) Well documented and tested equipment

ii) Calibration and mount according to IEC and MEASNET

iii) Lighting protection

iv) Sensors at different heights

v) Two sensors mounted at the top of met mast

vi) The met mast should be at least 2/3 of hub height

vii) Usage of suitable sensors for local climate (icing)

viii) Monitoring the sensors and the met masts continuously

ix) Ensure a good documentation of the measurement program

The widely accepted tool in the industry is the cup anemometer. But most roughly

and simple measurements record from cup anemometer. Cup anemometers locate at tur-

bines and within different altitudes at met mast for collecting information (such as wind

speed and wind direction)

Maintenance issue is the main challenge because of high altitude climbing and

changing of sensors are generally difficult and at least 1 year measurement duration is

interrupted because of icing affects, lighting etc. Loss of data decreases the accuracy of

expected annual energy production values so real situation could not be captured directly

with met mast measurements.
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We have alternative systems of measurement based on remote sensing. Sodar,

Lidar, Ultrasonic anemometer are the alternatives to cup anemometers.

Sonic anemometers deviates from cup anemometer with the different measure-

ment methodology based on sound speed.

Light Detection And Ranging so Lidar based on light speed measurement. The

most expensive application but it is removable and presents much more wide range for

the different atmospheric variables.

Ultrasonic anemometer has already some standards on IEC but it is expensive than

cup anemometer but some new application like nacelle montaged ultrasonic anemometers,

this technology is the closest one which can be accepted as a standard and take place of

cup anemometers.
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CHAPTER 4

METHODOLOGY

Herein the main tools, those are summoned due to complete computational and

numerical calculations, are listed with details in following sections.

4.1. Statistical Processes That Impacts ARIMA & VAR

There exists some data characteristics and processes in time series literature which

have a direct impact on the predictive performance and estimation of AR,ARMA, ARIMA

(autoregressive time series analysis) models. These are namely stationarity and seasonal-

ity for which the brief definitions are given below.

On the one hand, stationary is a concern about stochastic process which is based

on probability distribution that does not tend to change when shifted in time. The main

characteristic of stationary variables is the fact that the first and second moment of distri-

butions (mean and variance) do not tend to increase or decrease over time.

Many socio-economic variables follow a non-stationary processes with either vary-

ing mean and/or variance. The processes which have a constant mean (i.e. mean rever-

sion) and variance are called stationary processes, if the mean is 0 and variance is constant,

the process is referred to as white noise.

On the other hand, seasonality is another concept related to our issue. Many of the

variables in nature follow a seasonal pattern. Such that they exhibit a periodic increase

and decrease due to a change in the season. For instance, in Izmir, rain fall accelerates

during the winter and autumn while it fades out during summer. Likewise, wind speed

and direction are likely to have different characteristics over the seasons. That’s why, it is

a crucial issue to be handled.
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4.1.1. STATIONARITY & STABILITY

4.1.1.1. Unit Root Test

A time series is considered to be stationary if the autoregressive component is

significantly different from 1. If that is equal to 1, it means the variable has a unit root

characteristic and follows a non-stationary process.(Halim and Bisono, 2008)

There are many tests available in the literature that examines whether a variable is

stationary or not. Among others the most widely accepted ones are DF (Dickey-Fuller)

test, ADF(Augmented Dickey Fuller) test, PP (Philips Perron) test and so on. (Gao et al.,

2009)

For this project ADF test is selected as a testing methodology.

In ADF test, the same equation with DF test is accepted;

∆yt = α + βt+ γyt−1 + δ1∆yt−1 + · · ·+ δp−1∆yt−p+1 + εt, (4.1)

- t is the time index,

- α is an intercept constant called a drift,

- β is the coefficient on a time trend,

- γ is the coefficient presenting process root, i.e. the focus of testing,

- p is the lag order of the first-differences autoregressive process,

- εt is an independent identically distributes residual term.

(FinMath.,2014)

The focus of testing is whether the coefficient γ equals to zero, what means that

the original ADF Time Series process has a unit root; hence, the null hypothesis of γ = 0

(random walk process) is tested against the alternative hypothesis γ ¡ 0 of stationarity.

A time series is a set of time dependent data of some activity (trend,homogeneity, sta-

tionarity,white noise etc.), over defined time period. It is the historical record of some
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certain activity, with measurements taken at defined regular time domains in the activity

and without changing the method of measurement.

Uncertainties of measurement technique and device capabilities like anemometer

sensitivity (cup anemometer,Lidar,Sodar etc.)affects method of measurement and time

series characteristics.

The following fundamental statistical definitions are reviewed even though it might

be familiar to the reader.

The Variance of random variable X with expected value EX = µx is defined as

(µ is mean of X series)

var(X) = E((X − µx)2) (4.2)

The covariance between random variable Y and Z, with expected values µy and

µz, is defined as

cov(Y, Z) = E((Y − µy)(Z − µz)) (4.3)

Variance and Covariance are important definitions for defining time series and

white noise characteristics. But it is mainly crucial for autoregressive modelling, partic-

ularly in parameter (lag) selection part. To be able to decide optimum lagged value and

moving average parameter, we need to calculate Autocorrelation Function(ACF) and Par-

tial Autocorrelation Function(PACF). Hence, ACF and PACF are depend on Variance and

Covariance definitions.

ACF(Autocorrelation Function) is an outcome of the sample autocorrelations, ver-

sus h (the time lags). In other terms the ACF represents the randomness degree in a data

set. For random data, autocorrelation function should give a result near zero for whole

time domain. If non-random, then at least one of the autocorrelations will give a non-zero

outcome.(Friendly, 2002) For a stationary process Yt, the autocovariance between Yt and

Yt−j is

γk = Cov(Yt − Yt−j) = E[(Yt − µ)(Yt−j − µ)] (4.4)
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and the autocorrelation function is

ρk = Corr(Yt − Yt−j) =
γk
γ0

(4.5)

γ0 = V ar(Yt) (4.6)

PACF(Partial Autocorrelation Function) is the correlation between Yt and Yt−j

after their mutual linear dependency on the intervening variables Yt−1, Yt−2 ..., Yt−j+1 has

been removed. The conditional correlation

Corr(Yt − Yt−j)|Yt−1, Yt−2, ...Yt−j+1) = φkk (4.7)

is usually referred as the partial autocorrelation in time series. One example:

φ11 = Corr(Yt − Yt−1) = ρ1φ22 = Corr(Yt − Yt−2|Yt−1) (4.8)

After defining the basic statistical derivations and definitions we will now intro-

duce the autoregressive models in next sub-section. Autoregressive models give us op-

portunity to have an initial idea on how one can model the wind speed and other variables

using time series models.

4.2. Univariate Time Series Models

The methods of estimations in this study rely on autoregressive and moving aver-

age procedures, a brief account of which are documented in this part. So, AR (autoregres-

sive), MA (moving average) and a combination of previous ones ARMA, ARIMA models

will be introduced below.
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4.2.0.2. AR(p) Model Form

Let y be random univariate time dependent variable and y(t) = y(t1), y(t2)...y(tn),y(t)

series are generated from an AR (p) model

yt =

p∑
j=1

φjyt−j + εt (4.9)

ε is error term, model deviation from actual value. εt ∼ N(0,σ2
ε ) meaning that the

εt are identically independently distributed each with a normal distribution having mean

equals 0 and constant variance. Properties of errors ε are independent of y.

Yt = φ1Yt−1 + φ2Yt−2 + ...+ φpYt−p + εt (4.10)

for t=1,2,... (and conceptually t=0,-1,...) and with εs ⊥ εt for t 6=s

In a typical autoregressive model, yt is regressed on historical values of y. And,

the order p represents the lenght of past periods that will be incorporated into the model.

(Gerolimetto, 2010)

AR model is univariate linear prediction model.yt follows a linear, homogeneous

Gaussian process, and has time reversible characteristic. But other accepted common

models with non-Gaussian shocks are linear yet but not time reversible. The main char-

acteristic of Gaussian is that the process is completely specified through its first moments

(mean, variance, covariance). So, if mean and variance, covariance matrix
∑

are known,

the process is known.

In AR(p) processes: the ACF function is infinitely extended and PACF is infinitely

extended (to order p) for identifying an AR(p) process the PACF plays a very important

role.

4.2.0.3. Backshift Operators & Characteristic Polynomials

- Operator B such that Bys = ys−1 and so Bk ys= ys−k for all k.
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- yt−p =
∑p

j=1 ΦjBjyt + εt

- Φ(B)yt = εt

- Chararectristic Polynamial Φ(u) = 1−Φ1u−Φ2u
2−...−Φpu

p. This is a polynamial

of order p defined on |u| < 1.

4.2.0.4. Inversion and Moving Averages(MAs)

Moving average is another important concept that explains the degree of smooth-

ness of the error terms in time series processes. It can be expressed mathematically in this

way:

MA(1);

yt = µ+ εt + α1εt−1 (4.11)

µ is the mean of yt series.

yt =
∞∑
j=1

αεt−j + εt (4.12)

As in the AR(1) case, iterative substitution of yt−1 then yt−2 and so on in the right

hand side of the model equation represents yt as a linear function of more distant past ys
and εt,εt−1... Formally, assuming the inversion can be performed,

yt = αt − εαt−1 − ε2αt−2...− εt (4.13)

α: is a weight
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yt = Φ(B)−1εt (4.14)

Operator B and characteristic polynomial are defined in previous section. (Gerolimetto,

2010)

This gives the explicit representation of yt as a linear combination of independent

innovations, a linear (Gaussian) process. This is also referred to as a Moving Average

(MA) representation. If the weights αj cut-off to zero after some finite lag q, we have a

finite MA(q) representation.

In MA(q) processes: the ACF function is infinitely extended (to order q) and PACF

is infinitely extended for identifying an MA(q) process the ACF plays a very relevant role.

4.2.0.5. ARMA Model

ARMA(p,q) models are defined by

Xt = Φ1Xt−1 + Φ2Xt−2 + ...ΦpXt−p︸ ︷︷ ︸
autoregressive part

−θ1αt−1 − ...− θqαt−q︸ ︷︷ ︸
moving avarage part

(4.15)

In the ARMA equation above, p represents the lag length and the order of autore-

gressive process and q represents a parameter for a determination of degree of moving

average. Supposing p=q=1, then we have ARMA(1,1)

Xt = Φ1Xt−1 − θ1αt−1 + αt (4.16)

4.2.0.6. ARIMA Model

ARIMA is a comprehensive model that incorporates autoregressive, moving aver-

age and stationarity components. As a de-trending treatment, regular differencing is ap-
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plied together with AR and MA. I means “integrated” and it explains the need for a differ-

encing procedure. ARIMA might be seen as improved version of ARMA which considers

additional aspects like non stationarity in mean and seasonal behaviours. (Gerolimetto,

2010)

If the sequence is not stationary, the smoothing of time series become essential

for procedure. In reality, many atmospheric variable (wind speed, wind direction, tem-

perature, pressure, humidity, thermal radiation etc.) may or may not be stationary in first

moment (mean).

In order to model the atmospheric parameters, the source of variation must be re-

moved. Generally this treatment is done by differencing (I) the series.(Shoba and Shobha,

Shoba and Shobha)

Suppose Xt is nonstationary in mean, to set up an ARMA model on the series

wt,de-trending process is defined here as the result of the operation of differencing the

series d times (in general d = 1): wt = δdXt. (Gerolimetto, 2010)

So, ARIMA models are the generalized version if ARMA models. When I=0,

ARIMA becomes equivalent to ARMA. If the series are non-stationary, dth order differ-

encing process is as follows:

Introduce orderly differential operator δy = 1−By for the original non-stationary

time series first order difference transform

δyt − (1−B)yt − yt − yt−1 (4.17)

The original time sequence through d-order difference,

δdyt − (1−B)dyt (4.18)

Difference series and final ARIMA equation becomes;

Φ(B)∆dyt = θBαt (4.19)
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where Φ(B)∆d is called generalized autoregressive operator and ∆dyt is a result

after the differentiation operator cleaned the non-stationarity and now this time series can

be modelled with an autoregressive- moving average methodology. (Hui et al., 2011)

Examples:

- ARIMA(1,0,0)=AR(1)

- ARIMA(0,0,1)=MA(1)

- ARMA(1,0,1)= ARMA(1,1)

(a) (b)

(c) (d)

Figure 4.1. a) ADM b) MERRA c) URLA d) CFSR ARIMA 24 hours forecasts for
01-July-2000

Above in Figure 4.1, an initial example of 24 hours forecasts of wind speed for 4

different stations are depicted. All are estimated using an ARIMA model. It is important

to mention that these graphs are relevant just as an initial example. We will present our

empirical analysis and results at the later stages after explaining our data and models.
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4.2.1. SARIMA Model

As we mentioned in previous sub-section ARIMA model has three parametric

linear components, AR(p) lagged value, I(d) integration value and MA(q) is the moving

average parameter. Adopting the dataset, these parameters are used to estimate the model

coefficients. This model can forecast the future value from the previous records with an

random error. Inclusion of seasonality component in SARIMA model is expected to rise

the forecast accuracy while decreasing the magnitude of errors. This seems plausible as

many socio-economic variables as well as wind and meteorological variables are likely to

have a seasonal component.

Mostly used seasonal components in SARIMA modelling are listed below.

i For hourly observations s=24 (24 in 1 day)

ii For daily observations s=365 (365 in 1 year)

iii For quarterly observations; as representatives of autumn,winter,spring,summer s=4

(4 in 1 year)

iv For monthly observations s=12 (12 in 1 year)

Now we can define seasonal part of SARIMA model. Non-seasonal version of

SARIMA model is a typical ARIMA model. So herein already p,d,q components will be

used and additionally P,D,Q values will be added to catch seasonality affect.

SARIMA are ARIMA(p,d,q) models whose residuals αt are ARIMA(P,D,Q).(Gerolimetto,

2010)

ϕp(L)ΦpB
sOdOsDyt = θq(B)ΘQ(Bs)αt (4.20)

αt noise component and P seasonal autoregreesive component, D seasonal differ-

ence component finally Q seasonal moving average parameter OD, Θ,Φ seasonal coefficients.(Ruiz-

Aguilar et al., 2014)

The effect of seasonality is very clear in forecasted values

Above in Figure 4.2, an initial example of 24 hours forecasts of wind speed for 4

different stations are depicted. All are estimated using an SARIMA model. It is important
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(a) (b)

(c) (d)

Figure 4.2. a) ADM b) MERRA c) URLA d) CFSR SARIMA 24 hours forecasts for
01-July-2000

to mention that these graphs are relevant just as an initial example. We will present our

empirical analysis and results at the later stages after the explaining our data and models.
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4.3. Sims Methodology(VAR)

The vector autoregression (VAR) model is widely used and suggested methodol-

ogy for the modelling multivariate time series. It is an improved version of the univariate

autoregressive model that captures dynamic multivariate time series characteristics.

Sims (1980) published his studies on vector autoregressive (VAR) models.(Sims,

1980) His aim was to explain the dynamic structure of the variables. So in this model,

every variables affects one another and with time lags. There are two types of variables.

First, endogenous variables; which affect other variables and affected by other variables,

second, exogenous variables, which affect variables but unaffected from any variable.

(Gujarati, 2012)

The differences between ARIMA and SARIMA are below summarised.

i) In (S)ARIMA models we only the derive the actual value from past values. (uni-

variate case)

ii) VAR models give us chance to investigate exogenous variables affects

iii) VAR models give us chance to see dynamic relationships between variables.

iv) In VAR methodology value is explained by its own history and by the history of

other variables as well. (multivariate case)

(Gujarati, 2012)

4.3.1. Terminology, Notation and General Assumptions

4.3.1.1. General Definition

Definition of main equation based on Yt = (y1t, y2t, ..., ynt) 0. It denotes an (nx1)

vector of time series variables. The first order vector autoregressive VAR(1) model with

2 endogenous variables defined as y1,t, y2,t

y1,t = α1,1y1,t−1 + α1,2y2,t−1 + ε1,t (4.21)
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y2,t = α2,1y1,t−1 + α2,2y2,t−1 + ε2,t (4.22)

Assumption about the error terms is that expected residuals have a zero mean and

not autocorrelated.(Gujarati, 2012)

4.3.1.2. Matrix Notation

yt = A1yt−1 + εt (4.23)

A1 =

(
α1,1 α1,2

α2,1 α2,2

)
(4.24)

for example VAR(2) model;

(
y1,t

y2,t

)
=

(
α1,1 α1,2

α2,1 α2,2

)(
y1,t−1

y2,t−2

)
+

(
ε1,t

ε2,t

)
(4.25)

VAR coefficients can be calculated with Cramer or Inverse Matrix rule.

In literature (Baum, 2013) different types of VAR models could be find.

i) Recursive VARs: based on construction the error term in each regression to be

uncorrelated with the error in the preceding equations.

ii) Reduced VARs: based on assumption of neglecting contemporaneous correlation

between the variables

iii) Structural VARs: on the contrary of reduced VARs, here the basement is to organise

the contemporaneous relationships between the variables
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iv) Vector Error Correction Model VECM: special case solution for not covariance

stationary variables

4.4. Accuracy Measurement Tools

After having defined the time series models that we would like to use in our analy-

sis, now, a few words on how we can compare their accuracy and estimating performances

should be mentioned. In the literature, there are three main criteria for the comparison of

models’ estimate accuracy. The First one is RMSE (Root Mean Square Error) (Hyndman

and Koehler, 2006):

RMSE =

√∑n
t=1(ŴSt −WSt)2

n
. (4.26)

where WS is the actual value of wind speed and ŴSt is the predicted one. So, it

represents the magnitude of residuals per observation. Second criterion is MASE (Mean

Absolute Scaled Error): which takes the following form (Hyndman and Koehler, 2006):

MASE =

∑n
t=1 |ŴSt −WSt|

n
n−1

∑n
t=2 |ŴSt −WSt|

. (4.27)

Lastly, the third criterion is MAE (Mean Absolute Error) (Hyndman and Koehler,

2006):

MAE =
1

n

n∑
t=1

|ŴSt −WSt|. (4.28)

which represents the sum of total error terms in absolute values divided into the

number of observations.

All three criteria summarize actually the magnitude of forecast errors. Hence, it

means that the models with lowest values have lower forecast errors and higher predicting

power.
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CHAPTER 5

THE WIND SPEED FORECASTING LITERATURE

REVIEW

Weather forecasting is a complex and difficult study field. However, estimation

of wind characteristics is more challenging than temperature or humidity estimation. The

main features of the wind are referred to as its direction and magnitude.

Forecasted wind characteristics are crucial in various fields like structure, trans-

portation, fishing, power production etc. For example to construct a skyscrapers, there is a

need for crane rent and crane usage has certain regulations related with weather conditions

and wind speed levels.

Indeed, wind speed prediction is the main parameter for wind energy power plants

for the control, scheduling, maintenance, transportation of wind turbine parts and blades,erection

of turbine tower. As an example wind turbine blades can reach up to 63 meters (Enercon,

2014). So, transportation of this long parts and assembly of blades to nacelle must be

done at proper weather conditions which are defined according to specific regulations.

In fact power production issue has high priority among all problems due to inter-

mittency of wind speed. In the field of power systems, a traditional generator is known

as dispatchable which means ability to provide power regardless of weather conditions.

Wind power production is, instead, famous with non dispatchable characteristics. (Foley

et al., 2012)

The literature on wind speed and power forecasting applications, methodologies

and their classifications are very well summarized in a study by Soman.(Soman et al.,

2010) The Reader can find the details of the classification procedure in time zone; very

short term, short term,medium term and long term forecasting applications related with

engineering applications like grid security, wind turbine maintenance schedule, electricity

market price estimations in power industry.

Short-term wind speed forecasting can be implemented over different time fre-

quencies. Usually, hourly forecasts of expected winds are helpful in dispatching decision-

making, daily forecasts of hourly winds are useful for the load scheduling strategy, and

weekly forecasts of day-to-day winds greatly facilitate maintenance scheduling.
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To handle wind speed prediction, many methods have been developed. Mainly;

(i) physical models (Numerical Weather Forecasting)

(ii) spatial correlation models (Meso-Scale Models)

(iii) conventional statistical models (Box-Jenkins, Sims Methodology etc.)

(iv) artificial intelligence and new models(Artificial Neural Networks, Fuzzy logic etc.)

More specifically, one may partition these approaches into three groups. The first

one incorporates physical factors, such as terrain, mountains and obstacles in wind speed

predictions Generally, these methods have been used for large- scale places like regions

or countries and they are unlikely to fit to the local sites. Second group consists of Artifi-

cial Neural Network (ANN) methods which are adopted by a strand of scholars in order

to model the wind speed. The main advantage of ANN is that it does not require an as-

sumption of a certain form of function, thus, represents a more general approach in that

sense. However, the drawback is the weakness of forecast accuracy compared to the other

methodologies.

The third group, perhaps the most influential, includes conventional statistical

time series methods which rely mostly on ARMA (Autoregressive Moving Average) and

ARIMA (Autoregressive Integrated Moving Average) based models. ARIMA has, ini-

tially been introduced by Box-Jenkins It is a useful model in incorporating the persis-

tence, variance and stationarity (order of integration) of wind in predictions. In addition,

more recently developed SARIMA model takes into account the seasonality compo- nent

as well. It is argued to outperform the former models and provide more accurate results

Some examples of these studies are Bivona et al. (2011) who perform a wind speed fore-

casting in Italy (Cammarata Mazzarrone) be- tween 1st Jan 2003 to 31 st December 2006

by employing SARIMA and ANN, Cadenos and Rivera (2007) who predict the wind

speed in Oaxaca (Mexico) between June 1994- May 2000 and conclude that SARIMA

outperforms the ANN, Pedro et al (2012) who perform similar analysis in Iberia and con-

cludes that ARMA based model produces more accurate results.

Soman et al. (2010) have summarized well the statistical forecasting family, phys-

ical and hybrid approaches. In their study, a list of methodology starts with the naive

and persistence models which are considered as reference methodologies. Indeed the new

trend is to use hybrid methodologies in the literature for wind speed forecasting. (Chang,

2014) Main idea is to increase the accuracy of models and decreasing time consumption.
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The hybrid systems can be in form of combinations of physical and statistical

models or artificial intelligence and statistical models etc. Numerical weather prediction

models can take into account the geographical factors and prediction methods are classi-

fied from global to local scales.

Foley, Aoife M.(2012) stated that one of the main problems of current numerical

weather prediction models is their design environment assumption which is based on

onshore site. The outcomes of these models deviate from real data for offshore site errors

become more serious. Another problem is the poor availability of recorded data. (Foley

et al., 2012)

In current thesis, our selected family is conventional statistical models. Several

papers have been published on this issue. We summarize their main findings and method-

ology below.

Firstly for the statistical models we need to handle with stationarity as a common

obligation for Box-Jenkins methodology.(Arwade and Gioffre, 2014) But Sanjay R. Ar-

wade and Massimiliano Gioffre presented a study that is based on statistic tests to control

the assumption of stationarity of wind speed. Their key finding is that wind speed stati-

noarity assumption is valid for one week duration and for monthly data it causes more

serious prediction errors. However, in the end just the division of two period, roughly

winter and summer seasons the wind speed shows consistent characteristics.

Garcia Torres have implemented a comparison of models based on measured wind

speed within 10 minutes intervals in Navarre Spain at five different station. Herein authors

have adopted two methods; persistence model and ARMA. As an accuracy measurement

tool root mean square error has been used. Results are obtained from five different cases

and ARMA was found to outperform the persistence methodology. Also the lowest RMSE

values of forecasts are corresponded to the highest measured wind speeds. to forecast

hourly averaged wind speed.(Torres et al., 2005)

Another study is written by Gomes and Castro which is very valuable study and

compares the AutoRegressive Moving Average (ARMA) and Artificial Neural Networks

(ANN) methodologies.(Gomes and Castro, 2012). The details of short term power fore-

casting can be found in this study. Fundamental tools; persistence, ARMA and ANN

are employed by the researcher for the comparison cases. MAE , MRE and RMSE

accuracy measurement tools approve that ARMA and ANN methodology outperforms

reference “persistence” methodology The main result is that ARMA and ANN; Autore-

gressive models can achieve to reach smaller errors. However, their process period is
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longer than ANN models.

ARMA models are powerful accepted methodology but one of the weakness of

them is the fact that it simulates seasonal effects especially when the subject is wind,

season, day and night time.

Indeed (Cadenas and Rivera, 2007) inspected this effect with the monthly period

in Mexico case. Cadenas, Erasmo have selected SARIMA and ADALINE which is the

one of the ANN tools to investigate seasonal effects. MAE, MSE and MAPE have been

adopted. SARIMA methodology showed lower statistical errors than ADALINE.

Another important study is implemented by Bivona et al. (2011) which is an em-

pirical article. Here SARIMA and ANN methodologies are investigated with R and Java

environments. Authors pointed out as a focusing concern creation of a general class of

stochastic models for hourly wind speed.

Unknown parameters and requirement of large data sets are the challenging main

problems. So, authors employed two considerable data sets for 4 years from Sicily Italy,

after that with the derivation of deterministic model they reached to stochastic model.

Using SARIMA methodology, they took into consideration diurnal seasonality and as

performance criteria they used MAE,MASE,MAPE.

Extension of auto regressive methods to multivariate space is called vector auto

regressive (VAR). It is supposed to have a greater forecasting ability as it considers a

range of variables rather than just 1 variable. Erdem and Shi (2011) have shown this in

comparison to ARMA-linked models.

Another study in which the wind speed estimation using VAR is done by Ewing

et al. (2007) In this study, the author used only wind speed measurements which are

recorded at different heights. So, estimation of wind speed and turbulence are done with

the consideration of vertical wind profile. .

Our way of thinking is consistent with VAR model and its proponent. We ar-

gue that using multivariate models may help increasing the forecast accuracy of wind

speed.Indeed, there exists many meteorological variables that might play a significant

role in affecting wind speed dynamics.

Forecasting accuracy is the main parameter to validate studies with these purpose

accuracy of forecasting is given in four section by Jung,Jaesung.(Jung and Broadwater,

2014). According to his study accuracy should be investigated with the terms of accuracy

by forecast time horizon and as a rule when the prediction length increases, accuracy of

forecast decreases, accuracy by location complexity, terrain complexity is another param-
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eter decreases accuracy comparatively flat sites, accuracy by seasonal variability herein

the researcher claims winter months have smaller forecasting errors comparatively sum-

mer months, accuracy by weather condition in another words weather stability which is

evaluated by meteorological risk index (MRI), has a linear relationship with forecasting

accuracy when MRI increases error of forecasts increase.
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CHAPTER 6

DATA

In this chapter reader can find the location information and collection procedure

of taken datasets.

6.1. Location of Study: IZMIR Bay

Izmir is the third biggest city of Turkey. It is famous as an international port city,

due to its location in the western part of Anatolia along Aegean sea. Climatology of Izmir

is classified as Mediterranean climate. In other words long, hot and dry summers and

rainy, mild cool and short winters characterize the climate.

Izmir’s important physical features are determined by Gediz river(second biggest

river in Anatolia) and Gulf of Aegean sea (between the peninsula of Karaburun and Foca)

Region has a quite hilly topography.

Two important circulations are valid in Izmir Bay. First one is horizontal and

vertical mixing and advection between mainland (Anatolia) and sea (Aegean). This cir-

culation refers to as wind-driven circulation. The second one is the thermoline-driven or

baroclinic circulation.(Sayın, 2003)

Shape of Izmir Bay seems like roughly L letter. Region must be investigated with

three main sub-classes, these are Outer, Middle and Inner Bay. Our data set is taken from

Gulbahce Bay and Karaburun Peninsula where is located in Outer Bay.

6.2. Data

To begin with the detailed description of data measurement, we provide in table

6.1 main properties of 4 data sources (locations) and variables with their units.

In the first data type, obtained from URLA RES EGENDA Company, the wind

speed, direction, temperature, pressure and relative humidity were measured within the

campus area of Izmir Institute of Technology (IZTECH) in Urla which is a sub-province
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Table 6.1. Model Progress Data Sets Range 06,2000-10,2001

Data Set Wind Speed Wind Dir. Pressure Temperature Humidity Radiation Disp. Height Heat Flux
Urla Res (m/s) (deg) (hPa) (degC) % RH (x) (x) (x)

CFSR (m/s) (deg) (x) (degC) g/kg W/m2 (x) W/m2

MERRA (m/s) (deg) (hPa) (degC) (x) (x) (m) (x)
ADM (m/s) (deg) (hPa) (degC) % RH (x) (x) (x)

of Izmir. The met mast is located within the campus area and the data measurement has

been implemented at two different heights; 30 meters and 10 meters, specifically sensors

which are located at 10 meters measure the direction and 30 meters anemometers (THIES

4) measure the wind speed. This data is recorded in 10 minutes intervals. For the sake of

tractability, we create hourly average of wind speeds as input data.

The second dataset is taken from Izmir Adnan Menderes Airport Meteorology Sta-

tion. Measurements are done at 10 meter height. Relative humidity, pressure, temperature

and wind speed measurements (hourly) are used for our research.

For detailed comparison and validation of our analysis, we employed also MERRA

and CFSR datasets. MERRA (Modern ERA RETROSPECTIVE-Analysis for Research

and Applications), CFSR (Climate Forecast System Reanalysis) are obtained from Wind-

Pro program (EMD) . MERRA dataset gave us the opportunity to create a multivariable

set which consist of pressure, wind speed, wind direction, temperature and displacement

height variables.

On the other hand CFSR dataset includes the following variables; wind speed,

wind direction, temperature, cloud cover, solar radiation, humidity and heat flux. Both of

them are available as hourly averaged wind speeds.

As mentioned before, our period of analysis runs from 2000 June to 2001 October

on an hourly basis. Although, some of the wind speed data is available for a longer period,

we lack some other variables and that’s why, we resort only to 2000 June-2011 October

period.

With regard to the geographical and climate characteristics of Urla, it is located

along the Aegean Sea and in a quite mountainous place. It has recently attracted attention

and known as a convenient place for wind energy harvesting. To support this visually, we

present in Figure 6.1 the map of wind speed in Turkey.

It is seen at a glance that Urla belongs to the orange layer which represents the
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Figure 6.1. Wind Speed Map of Turkey (Source:energy.gov.tr,.2014)

second high-potential group for wind energy and has the average wind speed about 7.5

meters/second (measured at 50 meters height). In addition, the campus area of IZTECH

is likely to exhibit even higher values as it is located towards the main wind direction

(north).

Figure 6.2. Run plot for wind direction from 1 June 2000 to 25 October 2001 (windo-
grapher software tool is employed)

To provide more information on the wind characteristics of Urla, we present a

related figure 6.2 that captures the main wind direction during different months (illustrated

using windographer software) We observe that the two main wind directions are north
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and south. The wind blowing from north dominates during the summer times, especially

during June, July, August, September and October months. The wind blowing from South

is mostly observed during June, May and April. The east-west direction is quite rarely

observed.

Figure 6.3. Data set locations (Obtained from WindPro program)

In Figure 6.3 above, the data-set locations are depicted where URLA-RES is just

within the IZTECH campus area, CFSR is in the south, MERRA is in the north and ADM

is in the east of URLA-RES.

Figure 6.4. Time series plot for Wind Speed ADM
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Figure 6.5. Time series plot for Wind Speed URLA RES

We think it is useful to illustrate the time series plots of our variables in order to

have an initial idea about them.

To begin with the ADM case, temperature (in Celcius degrees), wind speed (meter-

s/second), humidity (% RH) and pressure data (hPA) clearly follow a stationary process

with constant mean and variance. Quite similarly, the same variables for URLA-RES

dataset also seem to follow a stationary process, exhibiting mean reversion in the level

and constant variance.

Figure 6.6. Time series plot for Wind Speed CFSR

In CFSR case the available three endogenous variables, temperature, wind speed

and humidity, and in MERRA data, wind speed, temperature and displacement height data
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Figure 6.7. Time series plot for Wind Speed MERRA

(displacement height is a variable of special tree heights located around the mat mast and

which might affect vertical wind speed profile) seem to exhibit desired stationary evolu-

tions with a constant mean and variance. Hence, all variables have convenient evolution

for our analysis.

To have a better understanding of the wind speed characteristics of our data set,

one may compare the wind speed values obtained from 3 data-set with the meteorological

mast of Urla-Res. As a measure of closeness, lower values of RMSE indicate more similar

values of wind speed. So, having calculated it, MERRA seems to be exhibit the most

similar wind speed data (with a RMSE score of 4,7743) followed by ADM and CFSR

which takes the respective scores (5,14046 and 6,8842).This information is important to

know accuracy power of data sets like MERRA and CFSR which are taken from WindPro

program database. In general they are taken as main input data in the calculation of annual

energy production estimation of wind energy power plants.
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CHAPTER 7

MODEL SPECIFICATIONS AND RESULTS

Now I will introduce main parameters and statistical models which are used during

this thesis study.

7.1. Set of Variables, Selection of Model Parameters and AIC

Criteria

With regard to the variables employed in models. IN SARIMA adn ARIMA mod-

els, only wind speed has been used. In VAR model, however, the following set of variables

are adopted:

Xurlares=endogenous : P,W,D,H; exogenous : T

Xmerra=endogenous : P,W,D; exogenous : T,Hd

Xcfsr=endogenous : F,W,D,H; exogenous : T,R

Xadm=endogenous : P,W,D,H; exogenous : T

Where W is the wind speed (meters/second). T is the ambient temperature (in

Celcius-degrees), H is the level of humidity, P is the air pressure and D represents the

wind direction, specifically the deviation of wind from north, measured in degrees. Hd is

the displacement height data as explained before. F denotes the Heat Flux and R is the

Solar radiation. As mentioned before, all variables are measured on hourly basis and for

the period June 2000- October 2001.

In terms of determination of model parameters, We choose the p,d,q values for

ARIMA and SARIMA according to Akaike Information Criterion(AIC). Although there

exist other criteria in the literature that are used for model comparison, such as BIC

(Bayesian Information Criterion) or HQ (Hannan-Quinn), AIC is known as one of the
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most widely accepted one. For this reason, we prefer adopting it. AIC is based on the

following formula.(Akaike, 1974)

AIC = ln(σ̂2
ε) +

2k

T
(7.1)

Where k is the number of parameters estimated and T is the number of observa-

tions, σ̂2
ε is the penalty parameter and the estimated variance. The lower values of AIC

indicate greater estimation accuracy for the model. In modelling, we select the parameters

that minimize the AIC for each month.

1)ARIMA=auto.arima(...seasonal=FALSE,ic=c(”aic”))

2)SARIMA=auto.arima(...seasonal=TRUE,ic=c(”aic”))

3)VAR=VAR(...lag.max = 10, ic = c(”AIC”))

7.2. Estimation Results

To begin with the results, for all stations, we perform the estimations for each

month. So, there are 17 estimations in total as there are 17 months in dataset. (from

June-2000 to October-2001). The data is in the form of hourly estimation.

We estimate the three models and present the fitted values versus actual data. Fig-

ures from 7.1 to 7.16 present these results for 4 different data-stations and 3 models.

Within the graphs, red dots represent the observed data, black-crosses represent the fitted

values from ARIMA model, purple crosses represent the fitted values from SARIMA and

green-crosses represent the fitted values from VAR model.

Figures from 7.1 to 7.4 illustrate the results for ADM case. For the summer

months, all the three models seem to exhibit a fair match with raw data.

However, at the beginning of autumn, the accuracy tends to weaken. Actually

September and April are the most problematic months in which sudden and unexpected

jumps in wind can be observed.

Figures 7.5 to 7.8 presents the results for URLA-RES case in which the wind was

measured at mat mast. For all months, the three models seem to perform well in fitting

the real data.

Rest of the graphs from 7.9 to 7.12 represents the fitted values for MERRA (Fig-

ures 7.9- 7.12) and CFSR (Figures 7.13-7.16) datasets both of which were obtained from
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WindPro program. Although in both cases models provide a quite powerful match with

the actual data, CFSR seems to provide slighly better estimates of wind speed.

Overall, an interesting feature appears to emerge from graphs. All models provide

a reasonably good fit to the actual data. In other words, the models we run produce low

levels of forecast errors as the actual data overlaps well with the fitted data.

(a) (b)

(c) (d)

Figure 7.1. ADM CASE Run plot of Actual and Fitted values (1)
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(a) (b)

(c) (d)

Figure 7.2. ADM CASE Run plot of Actual and Fitted values (2)

(a) (b)

(c) (d)

Figure 7.3. ADM CASE Run plot of Actual and Fitted values (3)
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(a) (b)

(c) (d)

(e)

Figure 7.4. ADM CASE Run plot of Actual and Fitted values (4)
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(a) (b)

(c) (d)

Figure 7.5. URLA CASE Run plot of Actual and Fitted values (1)

(a) (b)

(c) (d)

Figure 7.6. URLA CASE Run plot of Actual and Fitted values (2)
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(a) (b)

(c) (d)

Figure 7.7. URLA CASE Run plot of Actual and Fitted values (3)
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(a) (b)

(c) (d)

(e)

Figure 7.8. URLA CASE Run plot of Actual and Fitted values (4)
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(a) (b)

(c) (d)

Figure 7.9. CFSR CASE Run plot of Actual and Fitted values (1)

(a) (b)

(c) (d)

Figure 7.10. CFSR CASE Run plot of Actual and Fitted values (2)
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(a) (b)

(c) (d)

Figure 7.11. CFSR CASE Run plot of Actual and Fitted values (3)
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(a) (b)

(c) (d)

(e)

Figure 7.12. CFSR CASE Run plot of Actual and Fitted values (4)
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(a) (b)

(c) (d)

Figure 7.13. MERRA CASE Run plot of Actual and Fitted values (1)

(a) (b)

(c) (d)

Figure 7.14. MERRA CASE Run plot of Actual and Fitted values (2)
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(a) (b)

(c) (d)

Figure 7.15. MERRA CASE Run plot of Actual and Fitted values (3)
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(a) (b)

(c) (d)

(e)

Figure 7.16. MERRA CASE Run plot of Actual and Fitted values (4)
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7.3. Accuracy Comparision

In order to provide a detailed and numerical cross comparison between the perfor-

mances of models, we adopt three most commonly used performance criteria.

Initially, Table 7.1 summarizes the performance criteria values for all models and

all stations. The values are averaged over 17 months and lower values indicate lower

forecast errors and greater accuracy.

Table 7.1. Comparison of Model Forecasting Performances for 17 months means

CASES ARIMA SARIMA VAR

ADM
RMSE=2.91
MAE=2.22

MASE=1.03

RMSE=2.69
MAE=1.98

MASE=0.91

RMSE=2.75
MAE=2.11

MASE=0.43

URLA RES
RMSE=1.35

MAE=1
MASE=0.99

RMSE=1.33
MAE=0.99

MASE=0.97

RMSE=1.34
MAE=1

MASE=0.31

MERRA
RMSE=0.22
MAE=0.16

MASE=0.54

RMSE=0.2
MAE=0.14

MASE=0.46

RMSE=0.22
MAE=0.16

MASE=0.09

CFSR
RMSE=0.47
MAE=0.33

MASE=0.81

RMSE=0.42
MAE=0.29

MASE=0.70

RMSE=0.45
MAE=0.31

MASE=0.15

As a general result, both VAR and SARIMA models outperform, in almost all

cases, the performance of ARIMA. Hence, VAR and SARIMA models are found to be

superior in wind speed predictions. This actually means that taking into account other

meteorological variables and seasonality increases the fitting performance of estimations.

This shows once more the validity of our approach to wind speed estimations. This aspect

has not yet been adequately studied in the literature which should, therefore, be considered

as our major contribution to literature.

In detail, there are 4 stations x 3 performance criteria. Hence, we have 12 cross

method comparison cases in total. Out of 12, VAR outperforms others in 4 cases. SARIMA

performs best in 8 cases by producing lowest errors. And, in none of the cases, ARIMA

performs best. Hence, one may derive a general ranking in a following way; SARIMA

performs better than VAR that performs better than ARIMA.

Table 7.2 summarizes the performance values in ADM case. It presents detailed

results for all months. According to MASE criteria, VAR model outperforms in all
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months. However, in MAE criteria SARIMA is dominating as a superior model. Like-

wise, as for the RMSE criterion, SARIMA outperforms others in all most all cases.

It is obvious that ARIMA is the model which has the ability neither to catch sea-

sonality nor multivariate parameters and, therefore,has the poorest performance results.

ADM case shows that in the forecasting of summer months’ wind speeds, other

meteorological variables like temperature and pressure increases their effects. So, VAR

model increases the forecasting accuracy.

Table 7.2. Comparison of Model Forecasting Performances for ADM

Months RMSE MAE MASE
1 2.99 2.32 1.02
2 2.96 2.28 1.05
3 2.73 2.10 1.02
4 2.86 2.14 1.05
5 3.07 2.31 1.06
6 2.54 1.92 1.01
7 3.22 2.39 1.02
8 2.96 2.21 1.04
9 2.76 2.08 1.04
10 2.84 2.15 1.01
11 2.90 2.26 1.00
12 3.04 2.38 1.00
13 2.99 2.35 1.03
14 2.91 2.18 1.05
15 2.98 2.32 1.03
16 2.92 2.25 1.01
17 2.85 2.19 1.04

Means 2.91 2.22 1.03

(a) ARIMA

Months RMSE MAE MASE
1 2.74 2.00 0.88
2 2.77 2.03 0.93
3 2.71 2.07 1.01
4 2.47 1.77 0.87
5 2.77 1.99 0.91
6 2.51 1.89 1.00
7 3.12 2.28 0.98
8 2.64 1.85 0.88
9 2.44 1.68 0.85

10 2.63 1.92 0.91
11 2.69 2.00 0.89
12 2.81 2.08 0.88
13 2.86 2.26 0.99
14 2.55 1.77 0.85
15 2.70 2.00 0.89
16 2.78 2.10 0.95
17 2.60 1.91 0.90

Means 2.69 1.98 0.91

(b) SARIMA

Months RMSE MAE MASE
1 2.77 2.17 0.43
2 2.82 2.18 0.41
3 2.58 1.97 0.50
4 2.64 2.01 0.37
5 2.84 2.15 0.38
6 2.42 1.83 0.42
7 3.05 2.27 0.43
8 2.86 2.14 0.45
9 2.66 2.03 0.36
10 2.75 2.08 0.45
11 2.83 2.21 0.51
12 2.89 2.24 0.45
13 2.81 2.21 0.41
14 2.70 2.04 0.43
15 2.75 2.14 0.45
16 2.75 2.08 0.41
17 2.67 2.07 0.40

Means 2.75 2.11 0.43

(c) VAR

In table 7.3, forecasting performance of models are presented for Urla RES met

mast data case. In MASE criterion, the leader is clearly the VAR model among others.

This happens to be true consistently for all months.

MAE performance criterion claims that all tree models approximately have the

same level of forecasting errors.

RMSE gave us an interesting picture between months; June 2000 and July 2000

are the months in which SARIMA outperforms. August 2000 have same forecast errors

between SARIMA and VAR.

As a general result, in RMSE, the leader is ambigous and varying betwen SARIMA

and VAR.

Table 7.4 summarizes the performance values of models for CFSR case. To start

with RMSE, SARIMA clearly outperforms the others, in allmost all months. Regarding

MAE, once more SARIMA is clearly shown to outperform the other models. However,
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Table 7.3. Comparison of Model Forecasting Performances for URLA

Months RMSE MAE MASE
1 1.38 1.06 0.99
2 1.31 1.01 0.99
3 1.27 0.96 0.97
4 1.18 0.89 0.97
5 1.31 0.97 0.97
6 1.22 0.89 0.98
7 1.56 1.12 0.98
8 1.43 0.98 0.98
9 1.50 1.09 0.99
10 1.43 1.06 0.99
11 1.64 1.18 0.98
12 1.52 1.11 0.99
13 1.34 1.00 0.98
14 1.29 1.00 0.99
15 1.27 0.97 1.00
16 1.17 0.87 1.01
17 1.18 0.88 0.98

Means 1.35 1.00 0.99

(a) ARIMA

Months RMSE MAE MASE
1 1.14 0.83 0.77
2 1.29 1.00 0.97
3 1.25 0.96 0.96
4 1.18 0.89 0.97
5 1.31 0.97 0.97
6 1.21 0.89 0.98
7 1.56 1.12 0.98
8 1.42 0.97 0.97
9 1.49 1.09 0.99

10 1.42 1.06 0.99
11 1.65 1.18 0.98
12 1.53 1.11 0.99
13 1.33 1.00 0.98
14 1.29 1.00 0.98
15 1.25 0.96 0.98
16 1.16 0.87 1.01
17 1.18 0.88 0.98

Means 1.33 0.99 0.97

(b) SARIMA

Months RMSE MAE MASE
1 1.38 1.07 0.34
2 1.32 1.02 0.35
3 1.25 0.95 0.38
4 1.16 0.89 0.29
5 1.30 0.96 0.28
6 1.23 0.89 0.32
7 1.58 1.12 0.28
8 1.41 0.97 0.28
9 1.48 1.08 0.26
10 1.37 1.03 0.28
11 1.67 1.18 0.34
12 1.50 1.08 0.30
13 1.30 0.98 0.34
14 1.27 0.99 0.34
15 1.25 0.95 0.31
16 1.17 0.88 0.30
17 1.17 0.87 0.24

Means 1.34 1.00 0.31

(c) VAR

in MASE criterion, VAR shows a very clear and distinquished accuracy performance. In

total, SARIMA and VAR clearly outperforms ARIMA which is robust across seasons and

performance criteria.

Finally, Table 7.5 documents the performance values of models in MERRA case.

The findings are quite similar to the previous cases. In terms of RMSE and MAE,

SARIMA is the best model again in fitting the wind speed. And, VAR takes the lead

in MASE case which performs best.

Overall, the message conveyed in this part points to the benefits of incorporating

meteorological variables and seasonality in wind speed forecasting. Hence, VAR and

SARIMA models are shown to perform better as they take into account these additional

factors.
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Table 7.4. Comparison of Model Forecasting Performances for CFSR

Months RMSE MAE MASE
1 0.52 0.36 0.77
2 0.44 0.33 0.72
3 0.40 0.30 0.74
4 0.46 0.33 0.76
5 0.44 0.31 0.89
6 0.41 0.27 0.84
7 0.50 0.33 0.91
8 0.41 0.28 0.87
9 0.54 0.36 0.85
10 0.56 0.38 0.89
11 0.59 0.40 0.82
12 0.56 0.40 0.84
13 0.49 0.35 0.76
14 0.44 0.32 0.67
15 0.43 0.32 0.78
16 0.47 0.34 0.84
17 0.40 0.28 0.88

Means 0.47 0.33 0.81

(a) ARIMA

Months RMSE MAE MASE
1 0.43 0.28 0.59
2 0.39 0.27 0.60
3 0.34 0.24 0.61
4 0.43 0.30 0.70
5 0.36 0.24 0.68
6 0.39 0.25 0.79
7 0.48 0.33 0.90
8 0.36 0.23 0.71
9 0.53 0.35 0.83

10 0.52 0.35 0.82
11 0.59 0.40 0.81
12 0.55 0.39 0.82
13 0.38 0.26 0.56
14 0.38 0.26 0.55
15 0.35 0.24 0.59
16 0.41 0.27 0.65
17 0.33 0.21 0.68

Means 0.42 0.29 0.70

(b) SARIMA

Months RMSE MAE MASE
1 0.48 0.32 0.16
2 0.40 0.29 0.14
3 0.35 0.25 0.15
4 0.43 0.31 0.15
5 0.43 0.29 0.14
6 0.40 0.26 0.14
7 0.50 0.34 0.11
8 0.41 0.28 0.12
9 0.52 0.35 0.13
10 0.56 0.38 0.14
11 0.57 0.39 0.15
12 0.55 0.39 0.18
13 0.45 0.32 0.16
14 0.39 0.28 0.14
15 0.37 0.27 0.17
16 0.45 0.32 0.18
17 0.38 0.26 0.14

Means 0.45 0.31 0.15

(c) VAR

Table 7.5. Comparison of Model Forecasting Performances for MERRA

Months RMSE MAE MASE
1 0.25 0.17 0.56
2 0.24 0.18 0.56
3 0.23 0.17 0.55
4 0.23 0.16 0.52
5 0.24 0.15 0.54
6 0.22 0.15 0.52
7 0.20 0.14 0.53
8 0.17 0.12 0.50
9 0.18 0.14 0.47
10 0.21 0.16 0.54
11 0.26 0.18 0.51
12 0.27 0.19 0.58
13 0.26 0.19 0.59
14 0.25 0.18 0.56
15 0.21 0.15 0.59
16 0.21 0.15 0.49
17 0.20 0.14 0.53

Means 0.22 0.16 0.54

(a) ARIMA

Months RMSE MAE MASE
1 0.19 0.13 0.41
2 0.20 0.14 0.44
3 0.18 0.13 0.41
4 0.21 0.15 0.47
5 0.21 0.12 0.44
6 0.21 0.15 0.51
7 0.18 0.13 0.49
8 0.16 0.12 0.48
9 0.17 0.13 0.45

10 0.19 0.14 0.48
11 0.25 0.18 0.49
12 0.26 0.17 0.52
13 0.23 0.16 0.51
14 0.20 0.15 0.44
15 0.17 0.12 0.44
16 0.19 0.14 0.43
17 0.16 0.11 0.40

Means 0.20 0.14 0.46

(b) SARIMA

Months RMSE MAE MASE
1 0.24 0.17 0.10
2 0.24 0.17 0.11
3 0.22 0.16 0.10
4 0.22 0.16 0.09
5 0.19 0.14 0.07
6 0.22 0.15 0.07
7 0.19 0.14 0.06
8 0.17 0.12 0.06
9 0.19 0.14 0.06
10 0.22 0.16 0.07
11 0.25 0.18 0.08
12 0.27 0.19 0.09
13 0.25 0.18 0.11
14 0.23 0.17 0.11
15 0.21 0.15 0.11
16 0.21 0.15 0.09
17 0.19 0.14 0.07

Means 0.22 0.16 0.09

(c) VAR
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7.4. Impulse Response Function

Finally, it is worthwhile to investigate the dynamics of wind speed more in de-

tail. In order to do this, we calculate the Impulse-Response Functions (IRF) of wind

speed from VAR estimations with respect to different variables. In general, IRF summa-

rizes over time the impact of unexpected movements in one variable to another. Figures

7.17,7.20,7.18,7.19 present below the IRF of wind speed to unexpected changes in differ-

ent variables for 4 datasets.

(a) (b)

(c) (d)

Figure 7.17. ADM CASE IRF Plots

It seems that an unexpected increase in pressure decreases the wind speed persis-

tently in 4 cases. The mechanism is likely to work in a following way; it is well known

that pressure is higher above the sea. As air pressure rises on land, it will balance the

pressure between sea and land, thus, the wind speed should slowdown. In contrast, if the

pressure decreases further on land, then the unbalance of pressure between sea and land

would indeed widen that will accelerate the wind speed. This case fits perfectly to our

URLA-RES case since the mat mast is on the campus area which just towards the Aegean

Sea. Hence, air pressure stands as one of the most important dynamics of wind speed.

With regard to humidity, an unexpected increase in humidity accelerates the wind speed.
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(a) (b)

(c)

Figure 7.18. CFSR CASE IRF Plots

Wind direction gives, in contrast, an ambiguous message. Such that In URLA-RES and

ADM case, deviation of wind direction from north to south lowers the wind speed in the

first few hours but then accelerates it afterwards. Controversially, in CFSR and MERRA

case, its impact is positive: change in the direction towards south increases the wind speed

in the first few hours then decreases.

(a) (b)

Figure 7.19. MERRA CASE IRF Plots
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(a) (b)

(c) (d)

Figure 7.20. URLA RES CASE IRF Plots

7.5. Robustness Check for model residuals and White Noise Property

This sub-section is devoted to checking whether obtained residuals satisfy the

White Noise caractheristics. As one can remind, White Noise is a special case and desired

property of residuals which follow a normal distribution with zero mean and constant

variance.

In order to check this, initially we present the average value of residuals for each

model in Table 7.6. The error terms in this table are estimated from aggregated 17-months

time series models. We observe that VAR model produces errors with mean extremely

close to zero. Error terms obtained from SARIMA are positive and from ARIMA are

negative. But in any case, they are pretty close to zero which approves the validity of zero

mean.

As for the variance, we depict the evolution of residuals for all models and stations

in figures from 7.21 to 7.24. In all cases, error terms seem to follow a very clear stationary

process, with mean close to zero and variance remaining more or less constant over time.

Hence, one may argue that the models we run are technically adequate to satisfy the White

Noise property.
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Table 7.6. Means of Residulas (four digits)

Model ADM CFSR MERRA URLA RES
VAR 0 0 0 0

ARIMA 0.0055 0.0009 -0.0019 -0.001
SARIMA -0.0063 0.002 -0.0005 -0.0025

(a) (b)

(c)

Figure 7.21. ADM CASE residuals for a)VAR model b)ARIMA model c)SARIMA
model
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(a) (b)

(c)

Figure 7.22. CFSR CASE residuals for a)VAR model b)ARIMA model c)SARIMA
model

(a) (b)

(c)

Figure 7.23. MERRA CASE residuals for a)VAR model b)ARIMA model c)SARIMA
model
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(a) (b)

(c)

Figure 7.24. URLA RES CASE residuals for a)VAR model b)ARIMA model
c)SARIMA model
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7.6. Forecasted Values

(a) ADM (b) URLA

(c) CFSR (d) MERRA

Figure 7.25. Forecasted Values versus Real Data of 01 July 2000

Red dots are the original measured values and green ones VAR forecasted values,

whereas black ones ARIMA and purple ones SARIMA future forecasts. Reader should

be aware the difference between future forecast and fitted values which were presented in

previous sections. In figure 7.25 Herein it can be seen VAR model is superior to SARIMA

and ARIMA models. In figure 7.25 and 7.26 it can be seen also forecast accuracy depends

site and case.
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(a) ADM (b) URLA

(c) CFSR (d) MERRA

Figure 7.26. Forecasted Values versus Real Data of 01 October 2000
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CHAPTER 8

ENGINEERING APPLICATION

In the most of the cases engineers must handle with missing datasets actually reg-

ulations state clearly that minimum 1 year in another words four seasons must be captured

for wind resource assessment which is obligatory for commercial applications. Actually

minimum three years data set is more trustful representative for correct characteristics of

terrain. However anemometers can be broken or data loggers could cause problems, also

the maintenance issues or natural phenomena like thunder, icing etc. can interrupt both

Met mast and SCADA records from turbine.

As a result the recovery rate of measured data could not be 100%. Although full

data set is required to determine the characteristics and capacity of terrain, simulations,

energy estimations etc. can not be performed with actual measured full data. As we in-

vestigated in our previous chapters our time series analysis and methodologies can predict

future value or missing value. For now we will see the comparison of raw missing data

with recovery rate approximately 50% annual energy production and measured annual

energy production of data versus filled data with our time series models.

8.1. Data

Here for the engineering application part Nordtank data set is employed to see

affect of selected methodology in filling procedure.The Data is provided by DTU Wind

Energy Department, Kurt Hansen. The reader can ask the question why we are not mod-

elling Urla case and change our data set. The answer is in Urla case the project is still

on the way with 15 MW wind farm (EGENDA, 2014) so there is no available produced

power data. For the comparison and to know accuracy of estimations this information is

crucial. Because of that in this part we will change our data set.

DTU and Risø National laboratory erected a test turbine for the mainly three sci-

entific purposes; meteorological data collection, wind turbine operational statistics deter-

mination, investigation of structural loads. Our data is taken from these project.

In figure8.1 mast measurement heights, turbine characteristics heights and loca-
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Figure 8.1. Nordtank Data Station (Source:Hansen et al., 2006)

tion of sensors are illustrated for the measurement station. (Hansen et al., 2006)

Location of data set is the Risø Campus, Roskilde Denmark, a country gener-

ally known as with impressive wind characteristics and typical example of flat orography

which is highly desirable for wind energy applications and Roskilde has pastoral terrain

characteristics (Larsen and Hansen, 2004). Three-bladed stall regulated Nordtank, with

36 meters hub height wind turbine is located with the consideration of main leading wind

direction which is free undisturbed Westerly wind sector. (Hansen et al., 2006).

In this project wind speed, wind direction, pressure, temperature, grid connected

power production records with 10 minutes intervals are employed. Units and details of

used data are listed below in table 8.1.

Table 8.1. Nordtank Data Set

Parameter Unit Cover Range
Wind Speed (m/s) 12,2003-04,2008

Wind Direction (deg) 12,2003-04,2008
Pressure (hPa) 12,2003-04,2008

Temperature (degC) 12,2003-04,2008
Power(grid connected) (kW) 12,2003-2005
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8.2. Annual Energy Production (AEP)

Annual energy production calculation actually is based on probability density

function of wind speed and power curve characteristics of turbine in one year (approxi-

mately 8760 hours).

AEP = 8760
n∑
i=1

P (WSi)R(WSi) (8.1)

R(WSi) is the distribution of wind speed this distribution is generally represents

with Rayleigh distribution and P (WSi) is the wind turbine’s power curve, i represents

observations .(Crockford and Hui, 2007b)

In another way to calculate it frequency table method.

AEP =
∑
j=1

fjP (WSj) (8.2)

(Gerdes, 2005) fj frequency of wind speed class j, P (WSj)is the power which

produced in wind class j according to turbine manufacturer power curve versus wind

speed graph or power curve table.j is the representative of wind classes generally it starts

from 1 m/s and stops at 25 m/s, but generally power values are given listed from 3 m/s to

25m/s due to cut in and cut out wind speeds of wind turbine.

8.2.1. Weibull Distribution

f(v) =
k

A
(
WS

A
)k−1exp((−WS

A
)) (8.3)

WS is the wind speed k is the Weibull shape parameter A is the scale parameter.

Rayleigh Distribution is a type of Weibull distribution which is the k parameter is set to 2.

These probability density functions actually creates a curve which fits the actual data for

our case y axes probability (from zero to one)in another words occurrence probability of
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certain wind speed classes and x axes represents wind speed which starts from zero stops

generally at 25 m/s. Variation of wind speeds can be seen easily from distribution plot.

8.3. WAsP

WAsP, Wind atlas analysis and application program is one of engineering tool,

the widely accepted in wind energy sector which is developed in DTU. It depends on lin-

ear model (The logarithmic wind profile (Based on geostrophic balance)) and suitable for

flat terrains. Although WAsP is a time efficient program comparatively with non linear

solvers and CFD (computational fluid dynamics) based programs, it has some limitations

about wake calculations and turbulence, number of wind turbines(high number of wind

turbines means at the same time wake occurrences, for example WAsP suggests only a

fixed ratio for wakes like %10 reduction in AEP due to wake.) and terrain characteristics

(weakness on complex terrain). WAsP module can take into account Stability, Rough-

ness(for example open sea has 0.0002 m roughness length and city has 2 m), Shelter and

Orography(mountain,hills or elevation of the terrain).

Wind atlas methodology is known with two main approaches in the one hand

observational wind atlas and in the other hand numerical wind atlas.

For now observational wind atlas part is crucial for our application. Indeed until

know we dealt with raw data, cleaning procedure, fitting and statistics of data so we are

already familiar with the first step, observed wind climatology and the all process can be

summarized by below listed steps.

Meteorological mast or SCADA data of wind turbine in another words measure-

ment censor is placed in space with certain three coordinates. First input is the 3-D co-

ordinates of measurement censor, and for the second input measurements are required in

chapter 3 we explained the data measurement and collection procedure. In third input we

have raw data which is recorded in certain time period at end creation of our wind direc-

tion and wind speed time series is completed. Finally if we take statistics of these time

series we can reach mean, variance, Weibull distribution etc. in terms of observed wind

climate (OWC) and than if we add site information such as roughness, elevation to OWC

,wind atlas of region can be calculated which equals to regional wind climate (RWC).

(WAsP, 2014)

Now if add to wind turbine coordinates and wind farm site descriptions to RWC
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we can reach predicted wind climate. Predicted wind climate and power curve combina-

tion will give us to annual energy production (AEP) of a wind turbine.

8.4. Results

(a) (b)

Figure 8.2. Roughness Effect and Wind Rose

In figure 8.2a terrain and test case can be seen. Westerly winds are dominant,

West,South-South-West directions are the main leading wind directions in figure 8.2b

Figure 8.3. Wind Atlas

This atlas is the product of SARIMA filled wind speed and na filled with optimized

box-cox transformation seasonality included na.intep wind direction. As you can see from

figure 8.3 for our case roughness class 1 and height 3 is the representative of our case.

As a result we can assume 0.738258 GWh is the annual energy production repre-

sentative with highest recovery rate. So we will model only 2004 year.If we assume linear
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Table 8.2. Measured Power Outputs

Years AEP(kW10min) kWh Recovery Rates%
2003-12-17 to end of year 253147.7 42191.29 69

2004 4429552.5 738258.74 62
2005 1273615.8 212269.30 53

relationship is valid between recovery rate and AEP values we can find 1.190739 GWh

per year.

Na.interp is the one of function in the forecasts package of R. That function is

used often to cleaning and filling procedure. Linear interpolation based process is used to

complete some cases.

Table 8.3. Comparison for only 2004 (GWh)

AEP result Case
1.19 Measured

1.775 Missing Data Estimated Value
1.550 NA interp filled Data Estimated
1.546 NA interp filled VAR model fitted with lambda coefficient
1.602 SARIMA Wind NA direction
1.952 monthly mean filled
1.546 lambda zero SARIMA

i) VAR, ARIMA and SARIMA models can fill missing values without changing gen-

eral statistics of data set. (Weibull distributions)

ii) Filled data is more successful comparatively measured missing data set in AEP

estimation.

iii) VAR, ARIMA and SARIMA can create fitted sets and also forecasted cells.

iv) Due to lack of recovery date problem our measured value is not certain.

v) Due to processing limitations, time problem occurred each step model coefficient

estimation for all missing values, we could not see directly forecasted wind affect
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with SARIMA and VAR models but at least for 2004 we took forecasted values of

wind with SARIMA model.
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CHAPTER 9

CONCLUSION

This study has investigated the various ways of estimating the wind speed and

power generation in Turkey. Our estimates from 4 different stations (ADM; URLA RES,

MERRA, CSFR and three different time series models (ARIMA; SARIMA; VAR) indi-

cate several important conclusions.

First, Both SARIMA, ARIMA and VAR models provide an accurate estimate of

wind speed as the forecasted values of models fit quite well to the actual data.

Second, multivariate VAR and univariate SARIMA are shown to outperform ARIMA

by improving the wind predictions and producing less forecast errors. This result is quite

robust across different stations. This has been shown using three performance criteria

which indicate the magnitude of forecast errors. In detail, SARIMA and VAR exhibits a

better performance in all seasons and for all criteria. One may rank the performance of

models as “SARIMA outperforming VAR that performs better than ARIMA”.

Third, among the dynamics of wind speed, air pressure, humidity and wind di-

rection is shown to influence the wind speed significantly. Residual of models seem to

provide a satisfactory view for White Noise property that in all stations and models, resid-

uals have a mean close to zero and display a constant variance over time.

Overall, the most important lesson we get from our analysis is that incorporating

multivariate models and seasonality component can be useful in improving the forecast

accuracy of wind speed that may provide additional benefits to energy harvesting and

power production.

Filling procedure code requires a considerable calculation time. However, the

code can be written with shortcuts for loops like a fix model parameters. Also Measure-

Correlate-Predict module should be run with 10 years ADM case and Urla RES to see

affect of MCP improvement in energy estimations via our new suggested methodology

after the URLA RES power production records.

For further study the time when the turbines starts power generation, Supervisory

Control and Data Acquisition power production data can be investigated for the compari-

son of energy estimations which data set may create more accurate results comparatively
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with measured power production. Another important study area is the multivariate stabil-

ity analysis, a comparison between stability model and VAR multivariate model could be

interesting.
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APPENDIX A

MODEL PARAMETERS

Table A.1. Model Parameters for ADM

Months p d q
June00 2 0 0
July00 1 0 0

August00 2 0 0
September00 4 0 1

October00 1 0 2
November00 2 0 0
December00 2 0 0
January01 2 0 0

February01 2 0 0
March01 4 0 1
April01 4 0 0
May01 4 0 1
June01 1 0 0
July01 1 0 0

August01 1 0 0
September01 3 0 1

October01 3 0 1

(a) ARIMA

Months p d q P D Q
June00 2 0 0 3 0 1
July00 1 0 1 2 0 1

August00 2 0 0 1 0 0
September00 2 0 1 3 0 4

October00 2 0 1 3 0 3
November00 2 0 0 0 0 2
December00 2 0 1 1 0 1
January01 2 0 0 3 0 3

February01 1 0 1 4 0 2
March01 1 0 1 2 0 4
April01 3 0 1 3 0 1
May01 3 0 0 3 0 1
June01 4 0 0 2 0 2
July01 2 0 1 4 0 2

August01 3 0 0 2 0 2
September01 2 0 0 1 0 1

October01 2 0 1 3 0 1

(b) SARIMA(s=24)

Months p
June00 6
July00 4

August00 6
September00 6

October00 6
November00 5
December00 6
January01 4

February01 6
March01 4
April01 4
May01 3
June01 6
July01 5

August01 5
September01 6

October01 6

(c) VAR

Table A.2. Model Parameters for CFSR

Months p d q
June00 2 0 1
July00 2 0 2

August00 2 0 0
September00 2 0 0

October00 2 0 0
November00 4 0 0
December00 2 0 0
January01 2 0 0

February01 3 0 1
March01 2 0 0
April01 4 0 0
May01 2 0 0
June01 3 0 1
July01 2 0 1

August01 2 0 0
September01 2 0 0

October01 2 0 0

(a) ARIMA

Months p d q P D Q
June00 2 0 0 3 0 3
July00 2 0 3 2 0 2

August00 4 0 0 2 0 2
September00 2 0 0 3 0 3

October00 2 0 2 4 0 2
November00 3 0 1 1 0 1
December00 3 0 1 0 0 2
January01 2 0 0 4 0 0

February01 2 0 0 3 0 0
March01 2 0 0 3 0 2
April01 2 0 0 1 0 0
May01 2 0 0 0 0 2
June01 1 0 3 4 0 1
July01 2 0 0 3 0 1

August01 3 0 1 1 0 2
September01 2 0 0 4 0 0

October01 2 0 0 3 0 2

(b) SARIMA (s=24)

Months p
June00 3
July00 3

August00 6
September00 5

October00 3
November00 6
December00 3
January01 3

February01 6
March01 3
April01 2
May01 2
June01 6
July01 6

August01 6
September01 3

October01 3

(c) VAR
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Table A.3. Model Parameters for MERRA

Months p d q
June00 6 0 3
July004 0 2

August00 5 0 1
September00 5 0 2

October00 2 0 1
November00 3 0 1
December00 4 0 1
January01 3 0 2

February01 3 0 1
March01 2 0 1
April01 2 0 2
May01 2 0 1
June01 3 0 3
July01 5 0 2

August01 4 0 4
September01 2 0 1

October01 3 0 3

(a) ARIMA

Months p d q P D Q
June00 2 0 1 2 0 1
July00 2 0 2 2 0 4

August00 3 0 2 1 0 2
September00 5 0 0 3 0 0

October00 3 0 4 3 0 3
November00 1 0 4 1 0 2
December00 3 0 1 0 1
January01 4 0 1 1 0 2

February01 3 0 3 4 0 0
March01 3 0 1 2 0 2
April01 2 0 2 1 0 3
May01 2 0 1 2 0 1
June01 2 0 1 4 0 4
July01 3 0 3 3 0 0

August01 5 0 0 1 0 2
September01 3 0 3 2 0 4

October01 5 0 0 3 0 0

(b) SARIMA (s=24)

Months p
June00 6
July00 6

August00 6
September00 6

October00 6
November00 4
December00 6
January01 6

February01 3
March01 6
April01 6
May01 6
June01 6
July01 6

August01 6
September01 6

October01 6

(c) VAR

Table A.4. Model Parameters for URLA RES

Months p d q
June00 4 0 1
July00 1 0 0

August00 2 0 1
September00 2 0 1

October00 1 0 1
November00 1 0 1
December00 2 0 1
January01 3 0 1

February01 2 0 0
March01 1 0 0
April01 3 0 3
May01 5 0 2
June01 2 0 2
July01 2 0 2

August01 1 0 0
September01 1 0 0

October01 2 0 1

(a) ARIMA

Months p d q P D Q
June00 4 0 3 4 0 0
July00 1 0 0 0 0 2

August00 2 0 1 2 0 1
September00 2 0 1 1 0 0

October00 1 0 1 0 0 0
November00 1 0 2 0 0 1
December00 2 0 1 0 0 0
January01 1 0 1 2 0 0

February01 2 0 0 0 0 1
March01 1 0 0 1 0 2
April01 2 0 0 1 0 0
May01 3 0 2 1 0 0
June01 2 0 0 0 0 2
July01 1 0 0 2 0 0

August01 3 0 1 1 0 0
September01 1 0 1 0 0 1

October01 2 0 1 2 0 0

(b) SARIMA (s=24)

Months p
June00 3
July00 3

August00 4
September00 3

October00 2
November00 3
December00 3
January01 3

February01 4
March01 3
April01 6
May01 3
June01 6
July01 5

August01 3
September01 3

October01 4

(c) VAR
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APPENDIX B

NORDTANK TURBINE POWER CURVE

Table B.1. Power Curve Data of Turbine

Speed [m/s] Power [kW] Thrust coefficient
4.00 0 0.8
5.00 27 0.82
6.00 67 0.85
7.00 117 0.82
8.00 179 0.78
9.00 245 0.74

10.00 306 0.68
11.00 362 0.62
12.00 413 0.55
13.00 456 0.49
14.00 490 0.43
15.00 515 0.38
16.00 534 0.32
17.00 546 0.28
18.00 554 0.25
19.00 555 0.21
20.00 550 0.2
21.00 542 0.19
22.00 531 0.17
23.00 520 0.16
24.00 510 0.15
25.00 501 0.14
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APPENDIX C

CODES

C.1. URLA RES Accuracy Table and Figures Code

require(graphics)

library(astsa)

library(forecast)

library(vars)

library(nlme)

library(stats)

library(xtable)

june0 <- read.table("june00.txt",header=F)

june00 <- na.omit(june0)

P <-june00$V1

T <-june00$V2

H <-june00$V3

W <-june00$V4

D <-june00$V5

n1data <- cbind(P,W,D,H)

n1test <- VAR(n1data, type = c("const"),season = NULL, exogen = T, lag.max = 6,ic = c("

AIC"))

n1univariatetimeseries <- ts(june00$V4, frequency=24, start=c(1), end=c(30))

n1fit1 <- auto.arima(n1univariatetimeseries, max.q=10,max.d=10,max.p=10,max.order=5,

start.p=0, start.q=0,seasonal=FALSE,stationary=TRUE,trace=FALSE)

n1fit2 <- auto.arima(n1univariatetimeseries,max.q=10,max.d=10,max.p=10,max.P=4, max.Q=4,

max.order=5,start.p=0, start.q=0, start.P=0, start.Q=0,seasonal=TRUE,stationary=

TRUE,trace=FALSE)

write.table(residuals(n1fit2), file = "fittedS.txt",append = TRUE,col.names = FALSE,row.

names=FALSE)

write.table(residuals(n1fit1), file = "fittedA.txt",append = TRUE,col.names = FALSE,row.

names=FALSE)

write.table(residuals(n1test$varresult[[2]]), file = "fittedV.txt",append = TRUE,col.

names =FALSE,row.names=FALSE)

jpeg(’figURLA1.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality =

100)

plot(ts(W, frequency=24, start=c(1), end=c(31)), col="red",type ="p",pch = 19,lwd=0.5,

main=" Fitted Wind data & Raw Wind data", sub="JUNE-2000", xlab="Date (days)", ylab

="Wind Speed (m/s)")
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points(ts(fitted(n1fit1), frequency=24, start=c(1), end=c(31)),col="black",pch = 4,lwd

=0.5)

points(ts(fitted(n1fit2), frequency=24, start=c(1), end=c(31)),col="blueviolet",pch = 4,

lwd=0.5)

points(ts(n1test$varresult[[2]]$fitted,frequency=24, start=c(1), end=c(31)),col="green",

pch = 4,lwd=0.5)

par(xpd=TRUE)

legend(.5,0,c("RAW","ARIMA","SARIMA","VAR"),lty=c(1,1),col= c("red", "black","blueviolet

","green"), lwd=c(1.5,1.5,1.5,1.5), text.col = "black",horiz=FALSE,merge = TRUE,bty

= "n")

dev.off()

july0 <- read.table("july00.txt",header=F)

july00<- na.omit(july0)

P <-july00$V1

T <-july00$V2

H <-july00$V3

W <-july00$V4

D <-july00$V5

n2data <- cbind(P,W,D, H)

n2test <- VAR(n2data, type = c("const"),season = NULL, exogen = T, lag.max = 6,ic = c("

AIC"))

n2univariatetimeseries <- ts(july00$V4, frequency=24, start=c(1), end=c(31))

n2fit1 <- auto.arima(n2univariatetimeseries, max.q=10,max.d=10,max.p=10,max.order=5,

start.p=0, start.q=0,seasonal=FALSE,stationary=TRUE,trace=FALSE)

n2fit2 <- auto.arima(n2univariatetimeseries,max.q=10,max.d=10,max.p=10,max.P=4, max.Q=4,

max.order=5,start.p=0, start.q=0, start.P=0, start.Q=0,seasonal=TRUE,stationary=

TRUE,trace=FALSE)

write.table(residuals(n2fit2), file = "fittedS.txt",append = TRUE,col.names = FALSE,row.

names=FALSE)

write.table(residuals(n2fit1), file = "fittedA.txt",append = TRUE,col.names = FALSE,row.

names=FALSE)

write.table(residuals(n2test$varresult[[2]]), file = "fittedV.txt",append = TRUE,col.

names =FALSE,row.names=FALSE)

jpeg(’figURLA2.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality =

100)

plot(ts(W, frequency=24, start=c(1), end=c(31)), col="red",type ="p",pch = 19,lwd=0.5,

main=" Fitted Wind data & Raw Wind data", sub="JULY-2000", xlab="Date (days)", ylab

="Wind Speed (m/s)")

points(ts(fitted(n2fit1), frequency=24, start=c(1), end=c(31)),col="black",pch = 4,lwd

=0.5)

points(ts(n2test$varresult[[2]]$fitted,frequency=24, start=c(1), end=c(31)),col="green",

pch = 4,lwd=0.5)

points(ts(fitted(n2fit2), frequency=24, start=c(1), end=c(31)),col="blueviolet",pch = 4,

lwd=0.5)

par(xpd=TRUE)

legend(.5,0,c("RAW","ARIMA","SARIMA","VAR"),lty=c(1,1),col= c("red", "black","blueviolet

","green"), lwd=c(1.5,1.5,1.5,1.5), text.col = "black",horiz=FALSE,merge = TRUE,bty
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= "n")

dev.off()

august0 <-read.table("august00.txt",header=F)

august00<- na.omit(august0)

P <-august00$V1

T <-august00$V2

H <-august00$V3

W <-august00$V4

D <-august00$V5

n3data <- cbind(P,W,D, H)

n3test <- VAR(n3data, type = c("const"),season = NULL, exogen = T, lag.max = 6,ic = c("

AIC"))

n3univariatetimeseries <- ts(august00$V4, frequency=24, start=c(1), end=c(31))

n3fit1 <- auto.arima(n3univariatetimeseries, max.q=10,max.d=10,max.p=10,max.order=5,

start.p=0, start.q=0,seasonal=FALSE,stationary=TRUE,trace=FALSE)

n3fit2 <- auto.arima(n3univariatetimeseries,max.q=10,max.d=10,max.p=10,max.P=4, max.Q=4,

max.order=5,start.p=0, start.q=0, start.P=0, start.Q=0,seasonal=TRUE,stationary=

TRUE,trace=FALSE)

write.table(residuals(n3fit2), file = "fittedS.txt",append = TRUE,col.names = FALSE,row.

names=FALSE)

write.table(residuals(n3fit1), file = "fittedA.txt",append = TRUE,col.names = FALSE,row.

names=FALSE)

write.table(residuals(n3test$varresult[[2]]), file = "fittedV.txt",append = TRUE,col.

names =FALSE,row.names=FALSE)

jpeg(’figURLA3.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality =

100)

plot(ts(W, frequency=24, start=c(1), end=c(31)), col="red",type ="p",pch = 19,lwd=0.5,

main=" Fitted Wind data & Raw Wind data", sub="AUGUST-2000", xlab="Date (days)",

ylab="Wind Speed (m/s)")

points(ts(fitted(n3fit1), frequency=24, start=c(1), end=c(31)),col="black",pch = 4,lwd

=0.5)

points(ts(n3test$varresult[[2]]$fitted,frequency=24, start=c(1), end=c(31)),col="green",

pch = 4,lwd=0.5)

points(ts(fitted(n3fit2), frequency=24, start=c(1), end=c(31)),col="blueviolet",pch = 4,

lwd=0.5)

par(xpd=TRUE)

legend(.5,0,c("RAW","ARIMA","SARIMA","VAR"),lty=c(1,1),col= c("red", "black","blueviolet

","green"), lwd=c(1.5,1.5,1.5,1.5), text.col = "black",horiz=FALSE,merge = TRUE,bty

= "n")

dev.off()

september0 <- read.table("september00.txt",header=F)

september00<- na.omit(september0)

P <-september00$V1

T <-september00$V2

H <-september00$V3

W <-september00$V4

D <-september00$V5
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n4data <- cbind(P,W,D, H)

n4test <- VAR(n4data, type = c("const"),season = NULL, exogen = T, lag.max = 6,ic = c("

AIC"))

n4univariatetimeseries <- ts(september00$V4, frequency=24, start=c(1), end=c(30))

n4fit1 <- auto.arima(n4univariatetimeseries, max.q=10,max.d=10,max.p=10,max.order=5,

start.p=0, start.q=0,seasonal=FALSE,stationary=TRUE,trace=FALSE)

n4fit2 <- auto.arima(n4univariatetimeseries,max.q=10,max.d=10,max.p=10,max.P=4, max.Q=4,

max.order=5,start.p=0, start.q=0, start.P=0, start.Q=0,seasonal=TRUE,stationary=

TRUE,trace=FALSE)

write.table(residuals(n4fit2), file = "fittedS.txt",append = TRUE,col.names = FALSE,row.

names=FALSE)

write.table(residuals(n4fit1), file = "fittedA.txt",append = TRUE,col.names = FALSE,row.

names=FALSE)

write.table(residuals(n4test$varresult[[2]]), file = "fittedV.txt",append = TRUE,col.

names =FALSE,row.names=FALSE)

jpeg(’figURLA4.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality =

100)

plot(ts(W, frequency=24, start=c(1), end=c(31)), col="red",type ="p",pch = 19,lwd=0.5,

main=" Fitted Wind data & Raw Wind data", sub="September-2000", xlab="Date (days)",

ylab="Wind Speed (m/s)")

points(ts(fitted(n4fit1), frequency=24, start=c(1), end=c(31)),col="black",pch = 4,lwd

=0.5)

points(ts(n4test$varresult[[2]]$fitted,frequency=24, start=c(1), end=c(31)),col="green",

pch = 4,lwd=0.5)

points(ts(fitted(n4fit2), frequency=24, start=c(1), end=c(31)),col="blueviolet",pch = 4,

lwd=0.5)

par(xpd=TRUE)

legend(.5,0,c("RAW","ARIMA","SARIMA","VAR"),lty=c(1,1),col= c("red", "black","blueviolet

","green"), lwd=c(1.5,1.5,1.5,1.5), text.col = "black",horiz=FALSE,merge = TRUE,bty

= "n")

dev.off()

october0 <- read.table("october00.txt",header=F)

october00<- na.omit(october0)

P <-october00$V1

T <-october00$V2

H <-october00$V3

W <-october00$V4

D <-october00$V5

n5data <- cbind(P,W,D, H)

n5test <- VAR(n5data, type = c("const"),season = NULL, exogen = T, lag.max = 6,ic = c("

AIC"))

n5univariatetimeseries <- ts(october00$V4, frequency=24, start=c(1), end=c(31))

n5fit1 <- auto.arima(n5univariatetimeseries, max.q=10,max.d=10,max.p=10,max.order=5,

start.p=0, start.q=0,seasonal=FALSE,stationary=TRUE,trace=FALSE)

n5fit2 <- auto.arima(n5univariatetimeseries,max.q=10,max.d=10,max.p=10,max.P=4, max.Q=4,

max.order=5,start.p=0, start.q=0, start.P=0, start.Q=0,seasonal=TRUE,stationary=

TRUE,trace=FALSE)
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write.table(residuals(n5fit2), file = "fittedS.txt",append = TRUE,col.names = FALSE,row.

names=FALSE)

write.table(residuals(n5fit1), file = "fittedA.txt",append = TRUE,col.names = FALSE,row.

names=FALSE)

write.table(residuals(n5test$varresult[[2]]), file = "fittedV.txt",append = TRUE,col.

names =FALSE,row.names=FALSE)

jpeg(’figURLA5.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality =

100)

plot(ts(W, frequency=24, start=c(1), end=c(31)), col="red",type ="p",pch = 19,lwd=0.5,

main=" Fitted Wind data & Raw Wind data", sub="October-2000", xlab="Date (days)",

ylab="Wind Speed (m/s)")

points(ts(fitted(n5fit1), frequency=24, start=c(1), end=c(31)),col="black",pch = 4,lwd

=0.5)

points(ts(n5test$varresult[[2]]$fitted,frequency=24, start=c(1), end=c(31)),col="green",

pch = 4,lwd=0.5)

points(ts(fitted(n5fit2), frequency=24, start=c(1), end=c(31)),col="blueviolet",pch = 4,

lwd=0.5)

par(xpd=TRUE)

legend(.5,0,c("RAW","ARIMA","SARIMA","VAR"),lty=c(1,1),col= c("red", "black","blueviolet

","green"), lwd=c(1.5,1.5,1.5,1.5), text.col = "black",horiz=FALSE,merge = TRUE,bty

= "n")

dev.off()

november0 <- read.table("november00.txt",header=F)

november00<- na.omit(november0)

P <-november00$V1

T <-november00$V2

H <-november00$V3

W <-november00$V4

D <-november00$V5

n6data <- cbind(P,W,D, H)

n6test <- VAR(n6data, type = c("const"),season = NULL, exogen = T, lag.max = 6,ic = c("

AIC"))

n6univariatetimeseries <- ts(november00$V4, frequency=24, start=c(1), end=c(30))

n6fit1 <- auto.arima(n6univariatetimeseries, max.q=10,max.d=10,max.p=10,max.order=5,

start.p=0, start.q=0,seasonal=FALSE,stationary=TRUE,trace=FALSE)

n6fit2 <- auto.arima(n6univariatetimeseries,max.q=10,max.d=10,max.p=10,max.P=4, max.Q=4,

max.order=5,start.p=0, start.q=0, start.P=0, start.Q=0,seasonal=TRUE,stationary=

TRUE,trace=FALSE)

write.table(residuals(n6fit2), file = "fittedS.txt",append = TRUE,col.names = FALSE,row.

names=FALSE)

write.table(residuals(n6fit1), file = "fittedA.txt",append = TRUE,col.names = FALSE,row.

names=FALSE)

write.table(residuals(n6test$varresult[[2]]), file = "fittedV.txt",append = TRUE,col.

names =FALSE,row.names=FALSE)

jpeg(’figURLA6.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality =

100)

plot(ts(W, frequency=24, start=c(1), end=c(31)), col="red",type ="p",pch = 19,lwd=0.5,
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main=" Fitted Wind data & Raw Wind data", sub="November-2000", xlab="Date (days)",

ylab="Wind Speed (m/s)")

points(ts(fitted(n6fit1), frequency=24, start=c(1), end=c(31)),col="black",pch = 4,lwd

=0.5)

points(ts(n6test$varresult[[2]]$fitted,frequency=24, start=c(1), end=c(31)),col="green",

pch = 4,lwd=0.5)

points(ts(fitted(n6fit2), frequency=24, start=c(1), end=c(31)),col="blueviolet",pch = 4,

lwd=0.5)

par(xpd=TRUE)

legend(.5,0,c("RAW","ARIMA","SARIMA","VAR"),lty=c(1,1),col= c("red", "black","blueviolet

","green"), lwd=c(1.5,1.5,1.5,1.5), text.col = "black",horiz=FALSE,merge = TRUE,bty

= "n")

dev.off()

december0 <- read.table("december00.txt",header=F)

december00<- na.omit(december0)

P <-december00$V1

T <-december00$V2

H <-december00$V3

W <-december00$V4

D <-december00$V5

n7data <- cbind(P,W,D, H)

n7test <- VAR(n7data, type = c("const"),season = NULL, exogen = T, lag.max = 6,ic = c("

AIC"))

n7univariatetimeseries <- ts(december00$V4, frequency=24, start=c(1), end=c(31))

n7fit1 <- auto.arima(n7univariatetimeseries, max.q=10,max.d=10,max.p=10,max.order=5,

start.p=0, start.q=0,seasonal=FALSE,stationary=TRUE,trace=FALSE)

n7fit2 <- auto.arima(n7univariatetimeseries,max.q=10,max.d=10,max.p=10,max.P=4, max.Q=4,

max.order=5,start.p=0, start.q=0, start.P=0, start.Q=0,seasonal=TRUE,stationary=

TRUE,trace=FALSE)

write.table(residuals(n7fit2), file = "fittedS.txt",append = TRUE,col.names = FALSE,row.

names=FALSE)

write.table(residuals(n7fit1), file = "fittedA.txt",append = TRUE,col.names = FALSE,row.

names=FALSE)

write.table(residuals(n7test$varresult[[2]]), file = "fittedV.txt",append = TRUE,col.

names =FALSE,row.names=FALSE)

jpeg(’figURLA7.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality =

100)

plot(ts(W, frequency=24, start=c(1), end=c(31)), col="red",type ="p",pch = 19,lwd=0.5,

main=" Fitted Wind data & Raw Wind data", sub="December-2000", xlab="Date (days)",

ylab="Wind Speed (m/s)")

points(ts(fitted(n7fit1), frequency=24, start=c(1), end=c(31)),col="black",pch = 4,lwd

=0.5)

points(ts(n7test$varresult[[2]]$fitted,frequency=24, start=c(1), end=c(31)),col="green",

pch = 4,lwd=0.5)

points(ts(fitted(n7fit2), frequency=24, start=c(1), end=c(31)),col="blueviolet",pch = 4,

lwd=0.5)

par(xpd=TRUE)
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legend(.5,0,c("RAW","ARIMA","SARIMA","VAR"),lty=c(1,1),col= c("red", "black","blueviolet

","green"), lwd=c(1.5,1.5,1.5,1.5), text.col = "black",horiz=FALSE,merge = TRUE,bty

= "n")

dev.off()

january1 <- read.table("january01.txt",header=F)

january01<- na.omit(january1)

P <-january01$V1

T <-january01$V2

H <-january01$V3

W <-january01$V4

D <-january01$V5

n8data <- cbind(P,W,D, H)

n8test <- VAR(n8data, type = c("const"),season = NULL, exogen = T, lag.max = 6,ic = c("

AIC"))

n8univariatetimeseries <- ts(january01$V4, frequency=24, start=c(1), end=c(31))

n8fit1 <- auto.arima(n8univariatetimeseries, max.q=10,max.d=10,max.p=10,max.order=5,

start.p=0, start.q=0,seasonal=FALSE,stationary=TRUE,trace=FALSE)

n8fit2 <- auto.arima(n8univariatetimeseries,max.q=10,max.d=10,max.p=10,max.P=4, max.Q=4,

max.order=5,start.p=0, start.q=0, start.P=0, start.Q=0,seasonal=TRUE,stationary=

TRUE,trace=FALSE)

write.table(residuals(n8fit2), file = "fittedS.txt",append = TRUE,col.names = FALSE,row.

names=FALSE)

write.table(residuals(n8fit1), file = "fittedA.txt",append = TRUE,col.names = FALSE,row.

names=FALSE)

write.table(residuals(n8test$varresult[[2]]), file = "fittedV.txt",append = TRUE,col.

names =FALSE,row.names=FALSE)

jpeg(’figURLA8.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality =

100)

plot(ts(W, frequency=24, start=c(1), end=c(31)), col="red",type ="p",pch = 19,lwd=0.5,

main=" Fitted Wind data & Raw Wind data", sub="January-2001", xlab="Date (days)",

ylab="Wind Speed (m/s)")

points(ts(fitted(n8fit1), frequency=24, start=c(1), end=c(31)),col="black",pch = 4,lwd

=0.5)

points(ts(n8test$varresult[[2]]$fitted,frequency=24, start=c(1), end=c(31)),col="green",

pch = 4,lwd=0.5)

points(ts(fitted(n8fit2), frequency=24, start=c(1), end=c(31)),col="blueviolet",pch = 4,

lwd=0.5)

par(xpd=TRUE)

legend(.5,0,c("RAW","ARIMA","SARIMA","VAR"),lty=c(1,1),col= c("red", "black","blueviolet

","green"), lwd=c(1.5,1.5,1.5,1.5), text.col = "black",horiz=FALSE,merge = TRUE,bty

= "n")

dev.off()

february1 <- read.table("february01.txt",header=F)

february01<- na.omit(february1)

P <-february01$V1

T <-february01$V2

H <-february01$V3
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W <-february01$V4

D <-february01$V5

n9data <- cbind(P,W,D, H)

n9test <- VAR(n9data, type = c("const"),season = NULL, exogen = T, lag.max = 6,ic = c("

AIC"))

n9univariatetimeseries <- ts(february01$V4, frequency=24, start=c(1), end=c(28))

n9fit1 <- auto.arima(n9univariatetimeseries, max.q=10,max.d=10,max.p=10,max.order=5,

start.p=0, start.q=0,seasonal=FALSE,stationary=TRUE,trace=FALSE)

n9fit2 <- auto.arima(n9univariatetimeseries,max.q=10,max.d=10,max.p=10,max.P=4, max.Q=4,

max.order=5,start.p=0, start.q=0, start.P=0, start.Q=0,seasonal=TRUE,stationary=

TRUE,trace=FALSE)

write.table(residuals(n9fit2), file = "fittedS.txt",append = TRUE,col.names = FALSE,row.

names=FALSE)

write.table(residuals(n9fit1), file = "fittedA.txt",append = TRUE,col.names = FALSE,row.

names=FALSE)

write.table(residuals(n9test$varresult[[2]]), file = "fittedV.txt",append = TRUE,col.

names =FALSE,row.names=FALSE)

jpeg(’figURLA9.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality =

100)

plot(ts(W, frequency=24, start=c(1), end=c(31)), col="red",type ="p",pch = 19,lwd=0.5,

main=" Fitted Wind data & Raw Wind data", sub="February-2001", xlab="Date (days)",

ylab="Wind Speed (m/s)")

points(ts(fitted(n9fit1), frequency=24, start=c(1), end=c(31)),col="black",pch = 4,lwd

=0.5)

points(ts(n9test$varresult[[2]]$fitted,frequency=24, start=c(1), end=c(31)),col="green",

pch = 4,lwd=0.5)

points(ts(fitted(n9fit2), frequency=24, start=c(1), end=c(31)),col="blueviolet",pch = 4,

lwd=0.5)

par(xpd=TRUE)

legend(.5,0,c("RAW","ARIMA","SARIMA","VAR"),lty=c(1,1),col= c("red", "black","blueviolet

","green"), lwd=c(1.5,1.5,1.5,1.5), text.col = "black",horiz=FALSE,merge = TRUE,bty

= "n")

dev.off()

march1 <- read.table("march01.txt",header=F)

march01<- na.omit(march1)

P <-march01$V1

T <-march01$V2

H <-march01$V3

W <-march01$V4

D <-march01$V5

n10data <- cbind(P,W,D, H)

n10test <- VAR(n10data, type = c("const"),season = NULL, exogen = T, lag.max = 6,ic = c

("AIC"))

n10univariatetimeseries <- ts(march01$V4, frequency=24, start=c(1), end=c(31))

n10fit1 <- auto.arima(n10univariatetimeseries, max.q=10,max.d=10,max.p=10,max.order=5,

start.p=0, start.q=0,seasonal=FALSE,stationary=TRUE,trace=FALSE)

n10fit2 <- auto.arima(n10univariatetimeseries,max.q=10,max.d=10,max.p=10,max.P=4, max.Q
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=4, max.order=5,start.p=0, start.q=0, start.P=0, start.Q=0,seasonal=TRUE,stationary=

TRUE,trace=FALSE)

write.table(residuals(n10fit2), file = "fittedS.txt",append = TRUE,col.names = FALSE,row

.names=FALSE)

write.table(residuals(n10fit1), file = "fittedA.txt",append = TRUE,col.names = FALSE,row

.names=FALSE)

write.table(residuals(n10test$varresult[[2]]), file = "fittedV.txt",append = TRUE,col.

names =FALSE,row.names=FALSE)

jpeg(’figURLA10.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality =

100)

plot(ts(W, frequency=24, start=c(1), end=c(31)), col="red",type ="p",pch = 19,lwd=0.5,

main=" Fitted Wind data & Raw Wind data", sub="March-2001", xlab="Date (days)",

ylab="Wind Speed (m/s)")

points(ts(fitted(n10fit1), frequency=24, start=c(1), end=c(31)),col="black",pch = 4,lwd

=0.5)

points(ts(n10test$varresult[[2]]$fitted,frequency=24, start=c(1), end=c(31)),col="green"

,pch = 4,lwd=0.5)

points(ts(fitted(n10fit2), frequency=24, start=c(1), end=c(31)),col="blueviolet",pch =

4,lwd=0.5)

par(xpd=TRUE)

legend(.5,0,c("RAW","ARIMA","SARIMA","VAR"),lty=c(1,1),col= c("red", "black","blueviolet

","green"), lwd=c(1.5,1.5,1.5,1.5), text.col = "black",horiz=FALSE,merge = TRUE,bty

= "n")

dev.off()

april1 <- read.table("april01.txt",header=F)

april01<- na.omit(april1)

P <-april01$V1

T <-april01$V2

H <-april01$V3

W <-april01$V4

D <-april01$V5

n11data <- cbind(P,W,D, H)

n11test <- VAR(n11data, type = c("const"),season = NULL, exogen = T, lag.max = 6,ic = c

("AIC"))

n11univariatetimeseries <- ts(april01$V4, frequency=24, start=c(1), end=c(30))

n11fit1 <- auto.arima(n11univariatetimeseries, max.q=10,max.d=10,max.p=10,max.order=5,

start.p=0, start.q=0,seasonal=FALSE,stationary=TRUE,trace=FALSE)

n11fit2 <- auto.arima(n11univariatetimeseries,max.q=10,max.d=10,max.p=10,max.P=4, max.Q

=4, max.order=5,start.p=0, start.q=0, start.P=0, start.Q=0,seasonal=TRUE,stationary=

TRUE,trace=FALSE)

write.table(residuals(n11fit2), file = "fittedS.txt",append = TRUE,col.names = FALSE,row

.names=FALSE)

write.table(residuals(n11fit1), file = "fittedA.txt",append = TRUE,col.names = FALSE,row

.names=FALSE)

write.table(residuals(n11test$varresult[[2]]), file = "fittedV.txt",append = TRUE,col.

names =FALSE,row.names=FALSE)

jpeg(’figURLA11.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality =
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100)

plot(ts(W, frequency=24, start=c(1), end=c(31)), col="red",type ="p",pch = 19,lwd=0.5,

main=" Fitted Wind data & Raw Wind data", sub="April-2001", xlab="Date (days)",

ylab="Wind Speed (m/s)")

points(ts(fitted(n11fit1), frequency=24, start=c(1), end=c(31)),col="black",pch = 4,lwd

=0.5)

points(ts(n11test$varresult[[2]]$fitted,frequency=24, start=c(1), end=c(31)),col="green"

,pch = 4,lwd=0.5)

points(ts(fitted(n11fit2), frequency=24, start=c(1), end=c(31)),col="blueviolet",pch =

4,lwd=0.5)

par(xpd=TRUE)

legend(.5,0,c("RAW","ARIMA","SARIMA","VAR"),lty=c(1,1),col= c("red", "black","blueviolet

","green"), lwd=c(1.5,1.5,1.5,1.5), text.col = "black",horiz=FALSE,merge = TRUE,bty

= "n")

dev.off()

may1 <- read.table("may01.txt",header=F)

may01<- na.omit(may1)

P <-may01$V1

T <-may01$V2

H <-may01$V3

W <-may01$V4

D <-may01$V5

n12data <- cbind(P,W,D, H)

n12test <- VAR(n12data, type = c("const"),season = NULL, exogen = T, lag.max = 6,ic = c

("AIC"))

n12univariatetimeseries <- ts(may01$V4, frequency=24, start=c(1), end=c(31))

n12fit1 <- auto.arima(n12univariatetimeseries, max.q=10,max.d=10,max.p=10,max.order=5,

start.p=0, start.q=0,seasonal=FALSE,stationary=TRUE,trace=FALSE)

n12fit2 <- auto.arima(n12univariatetimeseries,max.q=10,max.d=10,max.p=10,max.P=4, max.Q

=4, max.order=5,start.p=0, start.q=0, start.P=0, start.Q=0,seasonal=TRUE,stationary=

TRUE,trace=FALSE)

write.table(residuals(n12fit2), file = "fittedS.txt",append = TRUE,col.names = FALSE,row

.names=FALSE)

write.table(residuals(n12fit1), file = "fittedA.txt",append = TRUE,col.names = FALSE,row

.names=FALSE)

write.table(residuals(n12test$varresult[[2]]), file = "fittedV.txt",append = TRUE,col.

names =FALSE,row.names=FALSE)

jpeg(’figURLA12.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality =

100)

plot(ts(W, frequency=24, start=c(1), end=c(31)), col="red",type ="p",pch = 19,lwd=0.5,

main=" Fitted Wind data & Raw Wind data", sub="May-2001", xlab="Date (days)", ylab=

"Wind Speed (m/s)")

points(ts(fitted(n12fit1), frequency=24, start=c(1), end=c(31)),col="black",pch = 4,lwd

=0.5)

points(ts(n12test$varresult[[2]]$fitted,frequency=24, start=c(1), end=c(31)),col="green"

,pch = 4,lwd=0.5)

points(ts(fitted(n12fit2), frequency=24, start=c(1), end=c(31)),col="blueviolet",pch =
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4,lwd=0.5)

par(xpd=TRUE)

legend(.5,0,c("RAW","ARIMA","SARIMA","VAR"),lty=c(1,1),col= c("red", "black","blueviolet

","green"), lwd=c(1.5,1.5,1.5,1.5), text.col = "black",horiz=FALSE,merge = TRUE,bty

= "n")

dev.off()

june1 <- read.table("june01.txt",header=F)

june01<- na.omit(june1)

P <-june01$V1

T <-june01$V2

H <-june01$V3

W <-june01$V4

D <-june01$V5

n13data <- cbind(P,W,D, H)

n13test <- VAR(n13data, type = c("const"),season = NULL, exogen = T, lag.max = 6,ic = c

("AIC"))

n13univariatetimeseries <- ts(june01$V4, frequency=24, start=c(1), end=c(30))

n13fit1 <- auto.arima(n13univariatetimeseries, max.q=10,max.d=10,max.p=10,max.order=5,

start.p=0, start.q=0,seasonal=FALSE,stationary=TRUE,trace=FALSE)

n13fit2 <- auto.arima(n13univariatetimeseries,max.q=10,max.d=10,max.p=10,max.P=4, max.Q

=4, max.order=5,start.p=0, start.q=0, start.P=0, start.Q=0,seasonal=TRUE,stationary=

TRUE,trace=FALSE)

write.table(residuals(n13fit2), file = "fittedS.txt",append = TRUE,col.names = FALSE,row

.names=FALSE)

write.table(residuals(n13fit1), file = "fittedA.txt",append = TRUE,col.names = FALSE,row

.names=FALSE)

write.table(residuals(n13test$varresult[[2]]), file = "fittedV.txt",append = TRUE,col.

names =FALSE,row.names=FALSE)

jpeg(’figURLA13.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality =

100)

plot(ts(W, frequency=24, start=c(1), end=c(31)), col="red",type ="p",pch = 19,lwd=0.5,

main=" Fitted Wind data & Raw Wind data", sub="June-2001", xlab="Date (days)", ylab

="Wind Speed (m/s)")

points(ts(fitted(n13fit1), frequency=24, start=c(1), end=c(31)),col="black",pch = 4,lwd

=0.5)

points(ts(n13test$varresult[[2]]$fitted,frequency=24, start=c(1), end=c(31)),col="green"

,pch = 4,lwd=0.5)

points(ts(fitted(n13fit2), frequency=24, start=c(1), end=c(31)),col="blueviolet",pch =

4,lwd=0.5)

par(xpd=TRUE)

legend(.5,0,c("RAW","ARIMA","SARIMA","VAR"),lty=c(1,1),col= c("red", "black","blueviolet

","green"), lwd=c(1.5,1.5,1.5,1.5), text.col = "black",horiz=FALSE,merge = TRUE,bty

= "n")

dev.off()

july1 <- read.table("july01.txt",header=F)

july01<- na.omit(july1)

P <-july01$V1
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T <-july01$V2

H <-july01$V3

W <-july01$V4

D <-july01$V5

n14data <- cbind(P,W,D, H)

n14test <- VAR(n14data, type = c("const"),season = NULL, exogen = T, lag.max = 6,ic = c

("AIC"))

n14univariatetimeseries <- ts(july01$V4, frequency=24, start=c(1), end=c(31))

n14fit1 <- auto.arima(n14univariatetimeseries, max.q=10,max.d=10,max.p=10,max.order=5,

start.p=0, start.q=0,seasonal=FALSE,stationary=TRUE,trace=FALSE)

n14fit2 <- auto.arima(n14univariatetimeseries,max.q=10,max.d=10,max.p=10,max.P=4, max.Q

=4, max.order=5,start.p=0, start.q=0, start.P=0, start.Q=0,seasonal=TRUE,stationary=

TRUE,trace=FALSE)

write.table(residuals(n14fit2), file = "fittedS.txt",append = TRUE,col.names = FALSE,row

.names=FALSE)

write.table(residuals(n14fit1), file = "fittedA.txt",append = TRUE,col.names = FALSE,row

.names=FALSE)

write.table(residuals(n14test$varresult[[2]]), file = "fittedV.txt",append = TRUE,col.

names =FALSE,row.names=FALSE)

jpeg(’figURLA14.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality =

100)

plot(ts(W, frequency=24, start=c(1), end=c(31)), col="red",type ="p",pch = 19,lwd=0.5,

main=" Fitted Wind data & Raw Wind data", sub="July-2001", xlab="Date (days)", ylab

="Wind Speed (m/s)")

points(ts(fitted(n14fit1), frequency=24, start=c(1), end=c(31)),col="black",pch = 4,lwd

=0.5)

points(ts(n14test$varresult[[2]]$fitted,frequency=24, start=c(1), end=c(31)),col="green"

,pch = 4,lwd=0.5)

points(ts(fitted(n14fit2), frequency=24, start=c(1), end=c(31)),col="blueviolet",pch =

4,lwd=0.5)

par(xpd=TRUE)

legend(.5,0,c("RAW","ARIMA","SARIMA","VAR"),lty=c(1,1),col= c("red", "black","blueviolet

","green"), lwd=c(1.5,1.5,1.5,1.5), text.col = "black",horiz=FALSE,merge = TRUE,bty

= "n")

dev.off()

august1 <- read.table("august01.txt",header=F)

august01<- na.omit(august1)

P <-august01$V1

T <-august01$V2

H <-august01$V3

W <-august01$V4

D <-august01$V5

n15data <- cbind(P,W,D, H)

n15test <- VAR(n15data, type = c("const"),season = NULL, exogen = T, lag.max = 6,ic = c

("AIC"))

n15univariatetimeseries <- ts(august01$V4, frequency=24, start=c(1), end=c(31))

n15fit1 <- auto.arima(n15univariatetimeseries, max.q=10,max.d=10,max.p=10,max.order=5,
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start.p=0, start.q=0,seasonal=FALSE,stationary=TRUE,trace=FALSE)

n15fit2 <- auto.arima(n15univariatetimeseries,max.q=10,max.d=10,max.p=10,max.P=4, max.Q

=4, max.order=5,start.p=0, start.q=0, start.P=0, start.Q=0,seasonal=TRUE,stationary=

TRUE,trace=FALSE)

write.table(residuals(n15fit2), file = "fittedS.txt",append = TRUE,col.names = FALSE,row

.names=FALSE)

write.table(residuals(n15fit1), file = "fittedA.txt",append = TRUE,col.names = FALSE,row

.names=FALSE)

write.table(residuals(n15test$varresult[[2]]), file = "fittedV.txt",append = TRUE,col.

names =FALSE,row.names=FALSE)

jpeg(’figURLA15.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality =

100)

plot(ts(W, frequency=24, start=c(1), end=c(31)), col="red",type ="p",pch = 19,lwd=0.5,

main=" Fitted Wind data & Raw Wind data", sub="August-2001", xlab="Date (days)",

ylab="Wind Speed (m/s)")

points(ts(fitted(n15fit1), frequency=24, start=c(1), end=c(31)),col="black",pch = 4,lwd

=0.5)

points(ts(n15test$varresult[[2]]$fitted,frequency=24, start=c(1), end=c(31)),col="green"

,pch = 4,lwd=0.5)

points(ts(fitted(n15fit2), frequency=24, start=c(1), end=c(31)),col="blueviolet",pch =

4,lwd=0.5)

par(xpd=TRUE)

legend(.5,0,c("RAW","ARIMA","SARIMA","VAR"),lty=c(1,1),col= c("red", "black","blueviolet

","green"), lwd=c(1.5,1.5,1.5,1.5), text.col = "black",horiz=FALSE,merge = TRUE,bty

= "n")

dev.off()

september01 <- read.table("september01.txt",header=F)

september1<- na.omit(september01)

P <-september01$V1

T <-september01$V2

H <-september01$V3

W <-september01$V4

D <-september01$V5

n16data <- cbind(P,W,D, H)

n16test <- VAR(n16data, type = c("const"),season = NULL, exogen = T, lag.max = 6,ic = c

("AIC"))

n16univariatetimeseries <- ts(september01$V4, frequency=24, start=c(1), end=c(30))

n16fit1 <- auto.arima(n16univariatetimeseries, max.q=10,max.d=10,max.p=10,max.order=5,

start.p=0, start.q=0,seasonal=FALSE,stationary=TRUE,trace=FALSE)

n16fit2 <- auto.arima(n16univariatetimeseries,max.q=10,max.d=10,max.p=10,max.P=4, max.Q

=4, max.order=5,start.p=0, start.q=0, start.P=0, start.Q=0,seasonal=TRUE,stationary=

TRUE,trace=FALSE)

write.table(residuals(n16fit2), file = "fittedS.txt",append = TRUE,col.names = FALSE,row

.names=FALSE)

write.table(residuals(n16fit1), file = "fittedA.txt",append = TRUE,col.names = FALSE,row

.names=FALSE)

write.table(residuals(n16test$varresult[[2]]), file = "fittedV.txt",append = TRUE,col.
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names =FALSE,row.names=FALSE)

jpeg(’figURLA16.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality =

100)

plot(ts(W, frequency=24, start=c(1), end=c(31)), col="red",type ="p",pch = 19,lwd=0.5,

main=" Fitted Wind data & Raw Wind data", sub="September-2001", xlab="Date (days)",

ylab="Wind Speed (m/s)")

points(ts(fitted(n16fit1), frequency=24, start=c(1), end=c(31)),col="black",pch = 4,lwd

=0.5)

points(ts(n16test$varresult[[2]]$fitted,frequency=24, start=c(1), end=c(31)),col="green"

,pch = 4,lwd=0.5)

points(ts(fitted(n16fit2), frequency=24, start=c(1), end=c(31)),col="blueviolet",pch =

4,lwd=0.5)

par(xpd=TRUE)

legend(.5,0,c("RAW","ARIMA","SARIMA","VAR"),lty=c(1,1),col= c("red", "black","blueviolet

","green"), lwd=c(1.5,1.5,1.5,1.5), text.col = "black",horiz=FALSE,merge = TRUE,bty

= "n")

dev.off()

october1 <-read.table("october01.txt",header=F)

october01<- na.omit(october1)

P <-october01$V1

T <-october01$V2

H <-october01$V3

W <-october01$V4

D <-october01$V5

n17data <- cbind(P,W,D, H)

n17test <- VAR(n17data, type = c("const"),season = NULL, exogen = T, lag.max = 6,ic = c

("AIC"))

n17univariatetimeseries <- ts(october01$V4, frequency=24, start=c(1), end=c(31))

n17fit1 <- auto.arima(n17univariatetimeseries, max.q=10,max.d=10,max.p=10,max.order=5,

start.p=0, start.q=0,seasonal=FALSE,stationary=TRUE,trace=FALSE)

n17fit2 <- auto.arima(n17univariatetimeseries,max.q=10,max.d=10,max.p=10,max.P=4, max.Q

=4, max.order=5,start.p=0, start.q=0, start.P=0, start.Q=0,seasonal=TRUE,stationary=

TRUE,trace=FALSE)

write.table(residuals(n17fit2), file = "fittedS.txt",append = TRUE,col.names = FALSE,row

.names=FALSE)

write.table(residuals(n17fit1), file = "fittedA.txt",append = TRUE,col.names = FALSE,row

.names=FALSE)

write.table(residuals(n17test$varresult[[2]]), file = "fittedV.txt",append = TRUE,col.

names =FALSE,row.names=FALSE)

jpeg(’figURLA17.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality =

100)

plot(ts(W, frequency=24, start=c(1), end=c(31)), col="red",type ="p",pch = 19,lwd=0.5,

main=" Fitted Wind data & Raw Wind data", sub="October-2001", xlab="Date (days)",

ylab="Wind Speed (m/s)")

points(ts(fitted(n17fit1), frequency=24, start=c(1), end=c(31)),col="black",pch = 4,lwd

=0.5)

points(ts(n17test$varresult[[2]]$fitted,frequency=24, start=c(1), end=c(31)),col="green"
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,pch = 4,lwd=0.5)

points(ts(fitted(n17fit2), frequency=24, start=c(1), end=c(31)),col="blueviolet",pch =

4,lwd=0.5)

par(xpd=TRUE)

legend(.5,0,c("RAW","ARIMA","SARIMA","VAR"),lty=c(1,1),col= c("red", "black","blueviolet

","green"), lwd=c(1.5,1.5,1.5,1.5), text.col = "black",horiz=FALSE,merge = TRUE,bty

= "n")

dev.off()

dogruluk1<- accuracy(n1test$varresult[[2]])

dogruluk2<- accuracy(n1fit1)

dogruluk4<- accuracy(n2test$varresult[[2]])

dogruluk5<- accuracy(n2fit1)

dogruluk7<- accuracy(n3test$varresult[[2]])

dogruluk8<- accuracy(n3fit1)

dogruluk10<- accuracy(n4test$varresult[[2]])

dogruluk11<- accuracy(n4fit1)

dogruluk13<- accuracy(n5test$varresult[[2]])

dogruluk14<- accuracy(n5fit1)

dogruluk16<- accuracy(n6test$varresult[[2]])

dogruluk17<- accuracy(n6fit1)

dogruluk19<- accuracy(n7test$varresult[[2]])

dogruluk20<- accuracy(n7fit1)

dogruluk22<- accuracy(n8test$varresult[[2]])

dogruluk23<- accuracy(n8fit1)

dogruluk25<- accuracy(n9test$varresult[[2]])

dogruluk26<- accuracy(n9fit1)

dogruluk28<- accuracy(n10test$varresult[[2]])

dogruluk29<- accuracy(n10fit1)

dogruluk31<- accuracy(n11test$varresult[[2]])

dogruluk32<- accuracy(n11fit1)

dogruluk34<- accuracy(n12test$varresult[[2]])

dogruluk35<- accuracy(n12fit1)

dogruluk37<- accuracy(n13test$varresult[[2]])

dogruluk38<- accuracy(n13fit1)

dogruluk40<- accuracy(n14test$varresult[[2]])

dogruluk41<- accuracy(n14fit1)

dogruluk43<- accuracy(n15test$varresult[[2]])

dogruluk44<- accuracy(n15fit1)

dogruluk46<- accuracy(n16test$varresult[[2]])

dogruluk47<- accuracy(n16fit1)

dogruluk49<- accuracy(n17test$varresult[[2]])

dogruluk50<- accuracy(n17fit1)

d1<-accuracy(n1fit2)

d2<-accuracy(n2fit2)

d3<-accuracy(n3fit2)

d4<-accuracy(n4fit2)

d5<-accuracy(n5fit2)
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d6<-accuracy(n6fit2)

d7<-accuracy(n7fit2)

d8<-accuracy(n8fit2)

d9<-accuracy(n9fit2)

d10<-accuracy(n10fit2)

d11<-accuracy(n11fit2)

d12<-accuracy(n12fit2)

d13<-accuracy(n13fit2)

d14<-accuracy(n14fit2)

d15<-accuracy(n15fit2)

d16<-accuracy(n16fit2)

d17<-accuracy(n17fit2)

totalA<- rbind(dogruluk2,dogruluk5,dogruluk8,dogruluk11,dogruluk14,dogruluk17,dogruluk20

,dogruluk23,dogruluk26,dogruluk29,dogruluk32,dogruluk35,dogruluk38,dogruluk41,

dogruluk44,dogruluk47,dogruluk50)

totalV<- rbind(dogruluk1,dogruluk4,dogruluk7,dogruluk10,dogruluk13,dogruluk16,dogruluk19

,dogruluk22,dogruluk25,dogruluk28,dogruluk31,dogruluk34,dogruluk37,dogruluk40,

dogruluk43,dogruluk46,dogruluk49)

totalS<- rbind(d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15,d16,d17)

model1<-rbind(n1fit1,n2fit1,n3fit1,n4fit1,n5fit1,n6fit1,n7fit1,n8fit1,n9fit1,n10fit1,

n11fit1,n12fit1,n13fit1,n14fit1,n15fit1,n16fit1,n17fit1)

model2<-rbind(n1fit2,n2fit2,n3fit2,n4fit2,n5fit2,n6fit2,n7fit2,n8fit2,n9fit2,n10fit2,

n11fit2,n12fit2,n13fit2,n14fit2,n15fit2,n16fit2,n17fit2)

model3<-rbind(n1test$varresult[[2]],n2test$varresult[[2]],n3test$varresult[[2]],n4test$

varresult[[2]],n5test$varresult[[2]],n6test$varresult[[2]],n7test$varresult[[2]],

n8test$varresult[[2]],n9test$varresult[[2]],n10test$varresult[[2]],n11test$varresult

[[2]],n12test$varresult[[2]],n13test$varresult[[2]],n14test$varresult[[2]],n15test$

varresult[[2]],n16test$varresult[[2]],n17test$varresult[[2]])

write.table(model1, file = "Asummary.txt", col.names = TRUE,row.names=FALSE)

write.table(model2, file = "Ssummary.txt", col.names = TRUE,row.names=FALSE)

write.table(model3, file = "Vsummary.txt", col.names = TRUE,row.names=FALSE)

exo1<-june00$V2[1:24]

exo1=matrix(exo1,nrow=24,ncol=1)

exo2<-july00$V2[1:24]

exo2=matrix(exo2,nrow=24,ncol=1)

exo3<-august00$V2[1:24]

exo3=matrix(exo3,nrow=24,ncol=1)

exo4<-september00$V2[1:24]

exo4=matrix(exo4,nrow=24,ncol=1)

exo5<-october00$V2[1:24]

exo5=matrix(exo5,nrow=24,ncol=1)

exo6<-november00$V2[1:24]

exo6=matrix(exo6,nrow=24,ncol=1)

exo7<-december00$V2[1:24]

exo7=matrix(exo7,nrow=24,ncol=1)

exo8<-january01$V2[1:24]

exo8=matrix(exo8,nrow=24,ncol=1)
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exo9<-february01$V2[1:24]

exo9=matrix(exo9,nrow=24,ncol=1)

exo10<-march01$V2[1:24]

exo10=matrix(exo10,nrow=24,ncol=1)

exo11<-april01$V2[1:24]

exo11=matrix(exo11,nrow=24,ncol=1)

exo12<-may01$V2[1:24]

exo12=matrix(exo12,nrow=24,ncol=1)

exo13<-june01$V2[1:24]

exo13=matrix(exo13,nrow=24,ncol=1)

exo14<-july01$V2[1:24]

exo14=matrix(exo14,nrow=24,ncol=1)

exo15<-august01$V2[1:24]

exo15=matrix(exo15,nrow=24,ncol=1)

exo16<-september01$V2[1:24]

exo16=matrix(exo16,nrow=24,ncol=1)

exo17<-october01$V2[1:24]

exo17=matrix(exo17,nrow=24,ncol=1)

va1<-predict(n1test, n.ahead = 24, ci = 0.95,dumvar=exo1)

va2<-predict(n2test, n.ahead = 24, ci = 0.95,dumvar=exo2)

va3<-predict(n3test, n.ahead = 24, ci = 0.95,dumvar=exo3)

va4<-predict(n4test, n.ahead = 24, ci = 0.95,dumvar=exo4)

va5<-predict(n5test, n.ahead = 24, ci = 0.95,dumvar=exo5)

va6<-predict(n6test, n.ahead = 24, ci = 0.95,dumvar=exo6)

va7<-predict(n7test, n.ahead = 24, ci = 0.95,dumvar=exo7)

va8<-predict(n8test, n.ahead = 24, ci = 0.95,dumvar=exo8)

va9<-predict(n9test, n.ahead = 24, ci = 0.95,dumvar=exo9)

va10<-predict(n10test, n.ahead = 24, ci = 0.95,dumvar=exo10)

va11<-predict(n11test, n.ahead = 24, ci = 0.95,dumvar=exo11)

va12<-predict(n12test, n.ahead = 24, ci = 0.95,dumvar=exo12)

va13<-predict(n13test, n.ahead = 24, ci = 0.95,dumvar=exo13)

va14<-predict(n14test, n.ahead = 24, ci = 0.95,dumvar=exo14)

va15<-predict(n15test, n.ahead = 24, ci = 0.95,dumvar=exo15)

va16<-predict(n16test, n.ahead = 24, ci = 0.95,dumvar=exo16)

va17<-predict(n17test, n.ahead = 24, ci = 0.95,dumvar=exo17)

a1<-forecast(n1fit1,h=24)

a2<-forecast(n2fit1,h=24)

a3<-forecast(n3fit1,h=24)

a4<-forecast(n4fit1,h=24)

a5<-forecast(n5fit1,h=24)

a6<-forecast(n6fit1,h=24)

a7<-forecast(n7fit1,h=24)

a8<-forecast(n8fit1,h=24)

a9<-forecast(n9fit1,h=24)

a10<-forecast(n10fit1,h=24)

a11<-forecast(n11fit1,h=24)

a12<-forecast(n12fit1,h=24)
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a13<-forecast(n13fit1,h=24)

a14<-forecast(n14fit1,h=24)

a15<-forecast(n15fit1,h=24)

a16<-forecast(n16fit1,h=24)

a17<-forecast(n17fit1,h=24)

sa1<-forecast(n1fit2,h=24)

sa2<-forecast(n2fit2,h=24)

sa3<-forecast(n3fit2,h=24)

sa4<-forecast(n4fit2,h=24)

sa5<-forecast(n5fit2,h=24)

sa6<-forecast(n6fit2,h=24)

sa7<-forecast(n7fit2,h=24)

sa8<-forecast(n8fit2,h=24)

sa9<-forecast(n9fit2,h=24)

sa10<-forecast(n10fit2,h=24)

sa11<-forecast(n11fit2,h=24)

sa12<-forecast(n12fit2,h=24)

sa13<-forecast(n13fit2,h=24)

sa14<-forecast(n14fit2,h=24)

sa15<-forecast(n15fit2,h=24)

sa16<-forecast(n16fit2,h=24)

sa17<-forecast(n17fit2,h=24)

jpeg(’figforecast1.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(ts(july00$V4[1:24], frequency=1, start=c(1), end=c(24)), col="red",type ="p",pch =

19,lwd=0.5,main=" Forecasted Wind data & Next Month Recorded Wind data", sub="July

-01-2000", xlab="Date", ylab="Wind Speed (m/s)")

points(ts(a1$mean[1:24], frequency=1, start=c(1), end=c(24)),col="black",pch = 4,lwd

=0.5)

points(ts(va1$fcst$W[1:24],frequency=1, start=c(1), end=c(24)),col="green",pch = 4,lwd

=0.5)

points(ts(sa1$mean[1:24], frequency=1, start=c(1), end=c(24)),col="blueviolet",pch = 4,

lwd=0.5)

dev.off()

jpeg(’figforecast2.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(ts(august00$V4[1:24], frequency=1, start=c(1), end=c(24)), col="red",type ="p",pch

= 19,lwd=0.5,main=" Forecasted Wind data & Next Month Recorded Wind data", sub="

August-01-2000", xlab="Date", ylab="Wind Speed (m/s)")

points(ts(a2$mean[1:24], frequency=1, start=c(1), end=c(24)),col="black",pch = 4,lwd
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=0.5)

points(ts(va2$fcst$W[1:24],frequency=1, start=c(1), end=c(24)),col="green",pch = 4,lwd

=0.5)

points(ts(sa2$mean[1:24], frequency=1, start=c(1), end=c(24)),col="blueviolet",pch = 4,

lwd=0.5)

dev.off()

jpeg(’figforecast3.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(ts(september00$V4[1:24], frequency=1, start=c(1), end=c(24)), col="red",type ="p",

pch = 19,lwd=0.5,main=" Forecasted Wind data & Next Month Recorded Wind data", sub=

"September-01-2000", xlab="Date", ylab="Wind Speed (m/s)")

points(ts(a3$mean[1:24], frequency=1, start=c(1), end=c(24)),col="black",pch = 4,lwd

=0.5)

points(ts(va3$fcst$W[1:24],frequency=1, start=c(1), end=c(24)),col="green",pch = 4,lwd

=0.5)

points(ts(sa3$mean[1:24], frequency=1, start=c(1), end=c(24)),col="blueviolet",pch = 4,

lwd=0.5)

dev.off()

jpeg(’figforecast4.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(ts(october00$V4[1:24], frequency=1, start=c(1), end=c(24)), col="red",type ="p",pch

= 19,lwd=0.5,main=" Forecasted Wind data & Next Month Recorded Wind data", sub="

October-01-2000", xlab="Date", ylab="Wind Speed (m/s)")

points(ts(a4$mean[1:24], frequency=1, start=c(1), end=c(24)),col="black",pch = 4,lwd

=0.5)

points(ts(va4$fcst$W[1:24],frequency=1, start=c(1), end=c(24)),col="green",pch = 4,lwd

=0.5)

points(ts(sa4$mean[1:24], frequency=1, start=c(1), end=c(24)),col="blueviolet",pch = 4,

lwd=0.5)

dev.off()
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jpeg(’figforecast5.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(ts(november00$V4[1:24], frequency=1, start=c(1), end=c(24)), col="red",type ="p",

pch = 19,lwd=0.5,main=" Forecasted Wind data & Next Month Recorded Wind data", sub=

"November-01-2000", xlab="Date", ylab="Wind Speed (m/s)")

points(ts(a5$mean[1:24], frequency=1, start=c(1), end=c(24)),col="black",pch = 4,lwd

=0.5)

points(ts(va5$fcst$W[1:24],frequency=1, start=c(1), end=c(24)),col="green",pch = 4,lwd

=0.5)

points(ts(sa5$mean[1:24], frequency=1, start=c(1), end=c(24)),col="blueviolet",pch = 4,

lwd=0.5)

dev.off()

jpeg(’figforecast6.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(ts(december00$V4[1:24], frequency=1, start=c(1), end=c(24)), col="red",type ="p",

pch = 19,lwd=0.5,main=" Forecasted Wind data & Next Month Recorded Wind data", sub=

"December-01-2000", xlab="Date", ylab="Wind Speed (m/s)")

points(ts(a6$mean[1:24], frequency=1, start=c(1), end=c(24)),col="black",pch = 4,lwd

=0.5)

points(ts(va6$fcst$W[1:24],frequency=1, start=c(1), end=c(24)),col="green",pch = 4,lwd

=0.5)

points(ts(sa6$mean[1:24], frequency=1, start=c(1), end=c(24)),col="blueviolet",pch = 4,

lwd=0.5)

dev.off()

jpeg(’figforecast7.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(ts(january01$V4[1:24], frequency=1, start=c(1), end=c(24)), col="red",type ="p",pch

= 19,lwd=0.5,main=" Forecasted Wind data & Next Month Recorded Wind data", sub="

January-01-2001", xlab="Date", ylab="Wind Speed (m/s)")

points(ts(a7$mean[1:24], frequency=1, start=c(1), end=c(24)),col="black",pch = 4,lwd

=0.5)

points(ts(va7$fcst$W[1:24],frequency=1, start=c(1), end=c(24)),col="green",pch = 4,lwd
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=0.5)

points(ts(sa7$mean[1:24], frequency=1, start=c(1), end=c(24)),col="blueviolet",pch = 4,

lwd=0.5)

dev.off()

jpeg(’figforecast8.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(ts(february01$V4[1:24], frequency=1, start=c(1), end=c(24)), col="red",type ="p",

pch = 19,lwd=0.5,main=" Forecasted Wind data & Next Month Recorded Wind data", sub=

"February-01-2001", xlab="Date", ylab="Wind Speed (m/s)")

points(ts(a8$mean[1:24], frequency=1, start=c(1), end=c(24)),col="black",pch = 4,lwd

=0.5)

points(ts(va8$fcst$W[1:24],frequency=1, start=c(1), end=c(24)),col="green",pch = 4,lwd

=0.5)

points(ts(sa8$mean[1:24], frequency=1, start=c(1), end=c(24)),col="blueviolet",pch = 4,

lwd=0.5)

dev.off()

jpeg(’figforecast9.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(ts(march01$V4[1:24], frequency=1, start=c(1), end=c(24)), col="red",type ="p",pch =

19,lwd=0.5,main=" Forecasted Wind data & Next Month Recorded Wind data", sub="

March-01-2001", xlab="Date", ylab="Wind Speed (m/s)")

points(ts(a9$mean[1:24], frequency=1, start=c(1), end=c(24)),col="black",pch = 4,lwd

=0.5)

points(ts(va9$fcst$W[1:24],frequency=1, start=c(1), end=c(24)),col="green",pch = 4,lwd

=0.5)

points(ts(sa9$mean[1:24], frequency=1, start=c(1), end=c(24)),col="blueviolet",pch = 4,

lwd=0.5)

dev.off()

jpeg(’figforecast10.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)
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plot(ts(april01$V4[1:24], frequency=1, start=c(1), end=c(24)), col="red",type ="p",pch =

19,lwd=0.5,main=" Forecasted Wind data & Next Month Recorded Wind data", sub="

April-01-2001", xlab="Date", ylab="Wind Speed (m/s)")

points(ts(a10$mean[1:24], frequency=1, start=c(1), end=c(24)),col="black",pch = 4,lwd

=0.5)

points(ts(va10$fcst$W[1:24],frequency=1, start=c(1), end=c(24)),col="green",pch = 4,lwd

=0.5)

points(ts(sa10$mean[1:24], frequency=1, start=c(1), end=c(24)),col="blueviolet",pch = 4,

lwd=0.5)

dev.off()

jpeg(’figforecast11.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(ts(may01$V4[1:24], frequency=1, start=c(1), end=c(24)), col="red",type ="p",pch =

19,lwd=0.5,main=" Forecasted Wind data & Next Month Recorded Wind data", sub="May

-01-2001", xlab="Date", ylab="Wind Speed (m/s)")

points(ts(a11$mean[1:24], frequency=1, start=c(1), end=c(24)),col="black",pch = 4,lwd

=0.5)

points(ts(va11$fcst$W[1:24],frequency=1, start=c(1), end=c(24)),col="green",pch = 4,lwd

=0.5)

points(ts(sa11$mean[1:24], frequency=1, start=c(1), end=c(24)),col="blueviolet",pch = 4,

lwd=0.5)

par(xpd=TRUE)

legend(.5,3,c("RAW","ARIMA","SARIMA","VAR"),lty=c(1,1),col= c("red","black","blueviolet"

,"green"), lwd=c(1.5,1.5,1.5,1.5), text.col = "black",horiz=FALSE,merge = TRUE,bty =

"n")

dev.off()

jpeg(’figforecast12.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(ts(june01$V4[1:24], frequency=1, start=c(1), end=c(24)), col="red",type ="p",pch =

19,lwd=0.5,main=" Forecasted Wind data & Next Month Recorded Wind data", sub="June

-01-2001", xlab="Date", ylab="Wind Speed (m/s)")

points(ts(a12$mean[1:24], frequency=1, start=c(1), end=c(24)),col="black",pch = 4,lwd

=0.5)

points(ts(va12$fcst$W[1:24],frequency=1, start=c(1), end=c(24)),col="green",pch = 4,lwd
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=0.5)

points(ts(sa12$mean[1:24], frequency=1, start=c(1), end=c(24)),col="blueviolet",pch = 4,

lwd=0.5)

dev.off()

jpeg(’figforecast13.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(ts(july01$V4[1:24], frequency=1, start=c(1), end=c(24)), col="red",type ="p",pch =

19,lwd=0.5,main=" Forecasted Wind data & Next Month Recorded Wind data", sub="July

-01-2001", xlab="Date", ylab="Wind Speed (m/s)")

points(ts(a13$mean[1:24], frequency=1, start=c(1), end=c(24)),col="black",pch = 4,lwd

=0.5)

points(ts(va13$fcst$W[1:24],frequency=1, start=c(1), end=c(24)),col="green",pch = 4,lwd

=0.5)

points(ts(sa13$mean[1:24], frequency=1, start=c(1), end=c(24)),col="blueviolet",pch = 4,

lwd=0.5)

dev.off()

jpeg(’figforecast14.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(ts(august01$V4[1:24], frequency=1, start=c(1), end=c(24)), col="red",type ="p",pch

= 19,lwd=0.5,main=" Forecasted Wind data & Next Month Recorded Wind data", sub="

August-01-2001", xlab="Date", ylab="Wind Speed (m/s)")

points(ts(a14$mean[1:24], frequency=1, start=c(1), end=c(24)),col="black",pch = 4,lwd

=0.5)

points(ts(va14$fcst$W[1:24],frequency=1, start=c(1), end=c(24)),col="green",pch = 4,lwd

=0.5)

points(ts(sa14$mean[1:24], frequency=1, start=c(1), end=c(24)),col="blueviolet",pch = 4,

lwd=0.5)

dev.off()

jpeg(’figforecast15.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(ts(september01$V4[1:24], frequency=1, start=c(1), end=c(24)), col="red",type ="p",

pch = 19,lwd=0.5,main=" Forecasted Wind data & Next Month Recorded Wind data", sub=

"September-01-2001", xlab="Date", ylab="Wind Speed (m/s)")
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points(ts(a15$mean[1:24], frequency=1, start=c(1), end=c(24)),col="black",pch = 4,lwd

=0.5)

points(ts(va15$fcst$W[1:24],frequency=1, start=c(1), end=c(24)),col="green",pch = 4,lwd

=0.5)

points(ts(sa15$mean[1:24], frequency=1, start=c(1), end=c(24)),col="blueviolet",pch = 4,

lwd=0.5)

dev.off()

jpeg(’figforecast16.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(ts(october01$V4[1:24], frequency=1, start=c(1), end=c(24)), col="red",type ="p",pch

= 19,lwd=0.5,main=" Forecasted Wind data & Next Month Recorded Wind data", sub="

October-01-2001", xlab="Date", ylab="Wind Speed (m/s)")

points(ts(a16$mean[1:24], frequency=1, start=c(1), end=c(24)),col="black",pch = 4,lwd

=0.5)

points(ts(va16$fcst$W[1:24],frequency=1, start=c(1), end=c(24)),col="green",pch = 4,lwd

=0.5)

points(ts(sa16$mean[1:24], frequency=1, start=c(1), end=c(24)),col="blueviolet",pch = 4,

lwd=0.5)

dev.off()

jpeg(’figforURLAA1.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(forecast(n1fit1,h=24))

dev.off()

jpeg(’figforURLAS1.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(forecast(n1fit2,h=24))

dev.off()

jpeg(’figforURLAA2.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(forecast(n2fit1,h=24))

dev.off()

jpeg(’figforURLAS2.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(forecast(n2fit2,h=24))

dev.off()
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jpeg(’figforURLAA3.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(forecast(n3fit1,h=24))

dev.off()

jpeg(’figforURLAS3.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(forecast(n3fit2,h=24))

dev.off()

jpeg(’figforURLAA4.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(forecast(n4fit1,h=24))

dev.off()

jpeg(’figforURLAS4.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(forecast(n4fit2,h=24))

dev.off()

jpeg(’figforURLAA5.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(forecast(n5fit1,h=24))

dev.off()

jpeg(’figforURLAS5.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(forecast(n5fit2,h=24))

dev.off()

jpeg(’figforURLAA6.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(forecast(n6fit1,h=24))

dev.off()

jpeg(’figforURLAS6.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(forecast(n6fit2,h=24))

dev.off()

jpeg(’figforURLAA7.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(forecast(n7fit1,h=24))

dev.off()

jpeg(’figforURLAS7.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(forecast(n7fit2,h=24))

dev.off()

jpeg(’figforURLAA8.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(forecast(n8fit1,h=24))

dev.off()

jpeg(’figforURLAS8.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(forecast(n8fit2,h=24))
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dev.off()

jpeg(’figforURLAA9.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(forecast(n9fit1,h=24))

dev.off()

jpeg(’figforURLAS9.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(forecast(n9fit2,h=24))

dev.off()

jpeg(’figforURLAA10.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(forecast(n10fit1,h=24))

dev.off()

jpeg(’figforURLAS10.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(forecast(n10fit2,h=24))

dev.off()

jpeg(’figforURLAA11.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(forecast(n11fit1,h=24))

dev.off()

jpeg(’figforURLAS11.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(forecast(n11fit2,h=24))

dev.off()

jpeg(’figforURLAA12.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(forecast(n12fit1,h=24))

dev.off()

jpeg(’figforURLAS1.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(forecast(n12fit2,h=24))

dev.off()

jpeg(’figforURLAA13.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(forecast(n13fit1,h=24))

dev.off()

jpeg(’figforURLAS13.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(forecast(n13fit2,h=24))

dev.off()

jpeg(’figforURLAA14.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(forecast(n14fit1,h=24))

dev.off()

jpeg(’figforURLAS14.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)
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plot(forecast(n14fit2,h=24))

dev.off()

jpeg(’figforURLAA15.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(forecast(n15fit1,h=24))

dev.off()

jpeg(’figforURLAS15.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(forecast(n15fit2,h=24))

dev.off()

jpeg(’figforURLAA16.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(forecast(n16fit1,h=24))

dev.off()

jpeg(’figforURLAS16.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(forecast(n16fit2,h=24))

dev.off()

jpeg(’figforURLAA17.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(forecast(n17fit1,h=24))

dev.off()

jpeg(’figforURLAS17.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(forecast(n17fit2,h=24))

dev.off()

totalA<-round(totalA,digits=3)

totalV<-round(totalV,digits=3)

totalS<-round(totalS,digits=3)

print(xtable(totalA), type="latex", file="outputA.tex")

print(xtable(totalV), type="latex", file="outputV.tex")

print(xtable(totalS), type="latex", file="outputS.tex")

write.table(totalA, file = "accuracyonefileA.txt", col.names = TRUE,row.names=FALSE)

write.table(totalV, file = "accuracyonefileV.txt", col.names = TRUE,row.names=FALSE)

write.table(totalS, file = "accuracyonefileS.txt", col.names = TRUE,row.names=FALSE)

resV <-read.table("fittedV.txt",header=F)

resA <-read.table("fittedA.txt",header=F)

resS <-read.table("fittedS.txt",header=F)

jpeg(’resfark1VURLA.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(ts(resV),type ="l",main=’URLA-VAR’, xlab=’Observations’, ylab=’Residuals’)

dev.off()

jpeg(’resfark2URLA.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality

= 100)

plot(ts(resA),type ="l",main=’URLA-ARIMA’, xlab=’Observations’, ylab=’Residuals’)

dev.off()

jpeg(’resfarkSURLA.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality
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= 100)

plot(ts(resS),type ="l",main=’URLA-SARIMA’, xlab=’Observations’, ylab=’Residuals’)

dev.off()

C.2. URLA RES IRF Code

require(graphics)

library(astsa)

library(forecast)

library(vars)

library(nlme)

library(stats)

library(circular)

june0 <- read.table("june00.txt", header=F)

july0 <- read.table("july00.txt", header=F)

august0 <- read.table("august00.txt", header=F)

september0 <- read.table("september00.txt", header=F)

october0 <- read.table("october00.txt", header=F)

november0 <- read.table("november00.txt",header=F)

december0 <- read.table("december00.txt",header=F)

january1 <- read.table("january01.txt",header=F)

february1 <- read.table("february01.txt",header=F)

march1 <- read.table("march01.txt",header=F)

april1 <- read.table("april01.txt",header=F)

may1 <- read.table("may01.txt",header=F)

june1 <- read.table("june01.txt",header=F)

july1 <- read.table("july01.txt",header=F)

august1 <- read.table("august01.txt",header=F)

september01 <- read.table("september01.txt",header=F)

october1 <- read.table("october01.txt",header=F)

datam <- rbind(june0,july0,august0,september0,october0,november0,december0,january1,

february1,march1,april1,may1,june1,july1,august1,september01,october1)

newdata <- na.omit(datam)

P <-ts(newdata$V1)

T <-ts(newdata$V2)

H <-ts(newdata$V3)

W <-ts(newdata$V4)

D <-ts(newdata$V5)

sum <- cbind(P,W,D, H)

total <- VAR(sum, type = c("const"),season = NULL, exogen = cbind(T),lag.max = 6,ic = c

("AIC"))

irf.P<- irf(total, impulse = c ("P"), response = c("W"), n.ahead=24,otho =TRUE,

cumulative =TRUE, boot=FALSE, ci=0.95)
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irf.H<- irf(total, impulse = c ("H"), response = c("W"), n.ahead=24,otho =TRUE,

cumulative =TRUE, boot=FALSE, ci=0.95)

irf.D<- irf(total, impulse = c ("D"), response = c("W"), n.ahead=24,otho =TRUE,

cumulative =TRUE, boot=FALSE, ci=0.95)

irf.W<- irf(total, impulse = c ("W"), response = c("W"), n.ahead=24,otho =TRUE,

cumulative =TRUE, boot=FALSE, ci=0.95)

jpeg(’irfP.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality = 100)

plot(irf.P)

dev.off()

jpeg(’irfH.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality = 100)

plot(irf.H)

dev.off()

jpeg(’irf.D.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality = 100)

plot(irf.D)

dev.off()

jpeg(’irfW.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality = 100)

plot(irf.W)

dev.off()

jpeg(’fig1.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality = 100)

plot( W, col=’black’, type=’l’, main=’Wind Speed Data’, xlab=’Time’, ylab=’Wind speed (m

/s)’,xaxt=’n’)

text(seq(1, 12281, by = 740), par("usr")[3] - 0.2, labels =c("06-2000", "07-2000", "

08-2000","09-2000", "10-2000", "11-2000","12-2000", "01-2001", "02-2001","03-2001",

"04-2001", "05-2001","06-2001", "07-2001", "08-2001","09-2001", "10-2001"), srt =

90, pos = 2, xpd = TRUE)

dev.off()

jpeg(’fig2.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality = 100)

plot( T, col=’black’, type=’l’, main=’Temperature Data’, xlab=’Time’, ylab=’Temperature

(C)’,xaxt=’n’)

text(seq(1, 12281, by = 740), par("usr")[3] - 0.2, labels =c("06-2000", "07-2000", "

08-2000","09-2000", "10-2000", "11-2000","12-2000", "01-2001", "02-2001","03-2001",

"04-2001", "05-2001","06-2001", "07-2001", "08-2001","09-2001", "10-2001"), srt =

90, pos = 2, xpd = TRUE)

dev.off()

jpeg(’fig3.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality = 100)

plot( P, col=’black’, type=’l’, main=’Pressure Data’, xlab=’Time’, ylab=’Pressure (hPa)’

,xaxt=’n’)

text(seq(1, 12281, by = 740), par("usr")[3] - 0.2, labels =c("06-2000", "07-2000", "

08-2000","09-2000", "10-2000", "11-2000","12-2000", "01-2001", "02-2001","03-2001",

"04-2001", "05-2001","06-2001", "07-2001", "08-2001","09-2001", "10-2001"), srt =

90, pos = 2, xpd = TRUE)

dev.off()

jpeg(’fig4.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality = 100)

plot( H, col=’black’, type=’l’, main=’Humidity Data’, xlab=’Time’, ylab=’ 0% to 100% RH

’,xaxt=’n’)

text(seq(1, 12281, by = 740), par("usr")[3] - 0.2, labels =c("06-2000", "07-2000", "

08-2000","09-2000", "10-2000", "11-2000","12-2000", "01-2001", "02-2001","03-2001",
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"04-2001", "05-2001","06-2001", "07-2001", "08-2001","09-2001", "10-2001"), srt =

90, pos = 2, xpd = TRUE)

dev.off()

jpeg(’fig5.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality = 100)

univariatetimeseries <- ts(W, frequency=24, start=c(1), end=c(12432))

plot( acf(univariatetimeseries, 2400,na.action = na.contiguous),main=’’,xlab=’Lag (in

days)’)

dev.off()

jpeg(’fig6.jpg’,width = 800, height = 400, units = "px", pointsize = 12,quality = 100)

univariatetimeseries <- ts(W, frequency=24, start=c(1), end=c(12432))

plot( pacf(univariatetimeseries,2400, xlim=c(1,20),na.action = na.contiguous),main=’’,

xlab=’Lag (in days)’)

dev.off()

C.3. NORDTANK Filler

library(astsa)

library(forecast)

library(vars)

library(lubridate)

library(zoo)

nordtank.2 <- read.csv("˜/Google Drive/nurseda/nordtank-2.csv")

#nortdank.2<-nordtank.2[8837:116063,1:7]

date<-strptime(nordtank.2$run_name,"%Y%m%d%H%M")

WS35_5<-nordtank.2$WS35_5

WD33<-nordtank.2$WD33

T03<-nordtank.2$T03

P03<-nordtank.2$P03

POWER<-nordtank.2$POWER

STAT<-nordtank.2$STAT

nd<-data.frame(date,WS35_5,WD33,T03,P03,POWER,STAT)

#grid <- data.frame(date=seq.POSIXt(as.POSIXct("2004-04-08 13:40:00"),to=as.POSIXct

("2008-04-08 13:30:00"), by="10 mins"))

grid <- data.frame(date=seq.POSIXt(as.POSIXct("2003-12-17 16:10:00"),to=as.POSIXct("

2008-04-08 13:30:00"), by="10 mins"))

namevector<-c("WS35_5","WD33")

datand<- merge(grid, nd, by="date", all.x=TRUE)

datef<-datand$date

WS35_5<-datand$WS35_5

WS35_5<-na.interp(WS35_5)

#W<-datand$WS35_5

checkp <- aggregate(nordtank.2, list(Date=format(date, "%Y-%m")),mean)

month<-month(as.POSIXlt(datand$date))

year<-year(as.POSIXlt(datand$date))
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time<-cbind(month,year)

d<-na.aggregate(datand,as.yearmon)

check<-mean(datand[1:2064,2],na.rm=TRUE)

m<-cbind(datef[1:2064],datand$WS35_5[1:2064])

case<-na.aggregate(m,as.yearmon)

WD33<-datand$WD33

WD33<-na.interp(WD33)

D<-aggregate(datand$WD33, list(Date=format(datand$date, "%Y-%m")),mean)

T03<-datand$T03

T03<-na.interp(T03)

T<-aggregate(datand$T03, list(Date=format(datand$date, "%Y-%m")),mean)

P03<-datand$P03

P03<-na.interp(P03)

P<-aggregate(datand$P03, list(Date=format(datand$date, "%Y-%m")),mean)

POWER<-datand$POWER

POWER<-na.interp(POWER)

STAT<-datand$STAT

STAT<-na.interp(STAT)

naraw<-cbind(datef,WS35_5,WD33)

n1data <- cbind(WS35_5,WD33,P03)

nvunivariatetimeseries <- ts(WS35_5)

ndunivariatetimeseries <- ts(WD33)

fitSARIMAv <- auto.arima(nvunivariatetimeseries,max.q=10,max.d=10,max.p=10,max.P=4, max.

Q=4, max.order=5,start.p=0, start.q=0, start.P=0, start.Q=0,seasonal=TRUE,stationary

=TRUE,trace=FALSE)

fitSARIMAd <- auto.arima(ndunivariatetimeseries,max.q=10,max.d=10,max.p=10,max.P=4, max.

Q=4, max.order=5,start.p=0, start.q=0, start.P=0, start.Q=0,seasonal=TRUE,stationary

=TRUE,trace=FALSE)

fitVAR <- VAR(n1data, type = c("const"),season = NULL, exogen = cbind(T03), lag.max =

10,ic = c("AIC"))

Wind<-fitVAR$varresult[[1]]$fitted

Dir<-fitVAR$varresult[[2]]$fitted

WindS<-fitted(fitSARIMAv)

DirS<-fitted(fitSARIMAd)

fitARIMAv <- auto.arima(nvunivariatetimeseries,max.q=10,max.d=10,max.p=10,max.P=4, max.Q

=4, max.order=5,start.p=0, start.q=0, start.P=0, start.Q=0,seasonal=FALSE,stationary

=TRUE,trace=FALSE)

fitARIMAd <- auto.arima(ndunivariatetimeseries,max.q=10,max.d=10,max.p=10,max.P=4, max.Q

=4, max.order=5,start.p=0, start.q=0, start.P=0, start.Q=0,seasonal=FALSE,stationary

=TRUE,trace=FALSE)

WindA<-fitted(fitARIMAv)

WindA<-round(WindA,digits=2)

DirA<-fitted(fitARIMAd)

DirA<-round(DirA,digits=2)

setA<-data.frame(datef,WindA,DirA)

write.table(setA, file = "DATASETARIMA112.txt")
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setS<-data.frame(datef,WindS,DirS)

write.table(setS, file = "DATASETSARIMA112.txt")

setV<-data.frame(datef[11:226637],Wind,Dir)

write.table(setV, file = "DATASETVAR112.txt")

naraw<-data.frame(datef,WS35_5,WD33)

write.table(naraw, file = "DATASETNA112.txt")

C.4. NORDTANK Cleaner Filler

library(astsa)

library(forecast)

library(vars)

nordtank.2 <- read.csv("˜/Google Drive/nurseda/nordtank-2.csv")

date<-strptime(nordtank.2$run_name,"%Y%m%d%H%M")

WS35_5<-nordtank.2$WS35_5

WD33<-nordtank.2$WD33

T03<-nordtank.2$T03

P03<-nordtank.2$P03

POWER<-nordtank.2$POWER

STAT<-nordtank.2$STAT

nd<-data.frame(date,WS35_5,WD33,T03,P03,POWER,STAT)

grid <- data.frame(date=seq.POSIXt(as.POSIXct("2003-12-17 16:10:00"),to=as.POSIXct("

2008-12-17 16:10:00"), by="10 mins"))

datand<- merge(grid, nd, by="date", all.x=TRUE)

input<-datand[1:263091,1:7]

cleaner<-function(x){

n1univariatetimeseries2 <- ts(x$WS35_5)

#n1<-match(NA,(n1univariatetimeseries2))

b<-which(is.na(x$WS35_5), arr.ind=TRUE)

b<-na.pass(b)

a<-as.numeric(b[1]-1)

#b<-as.numeric(b)

#if (b[1]<0) break

#n1<-which(is.na(x$WS35_5[1]))

fit <- auto.arima(n1univariatetimeseries2[1:a],max.q=10,max.d=10,max.p=10,max.P=4, max.Q

=4, max.order=5,start.p=0, start.q=0, start.P=0, start.Q=0,seasonal=TRUE,stationary=

TRUE,trace=FALSE)

pred<- forecast(fit,h=1)

#n1univariatetimeseries2[1:(b[1]-1)] <- fitted(fit)

n1univariatetimeseries2[b[1]] <- pred$mean[1]

n1univariatetimeseries2<-round(n1univariatetimeseries2,digits=4)
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return(n1univariatetimeseries2)

}

for(i in 1:nrow(input)) {

repeat { input[i + 1]<- cleaner(input);write.table(input$WS35_5, file = "

windarimaforecastedSARIMA.txt"); if (input[i]<=nrow(input)) break; }

}

}
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