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ABSTRACT 
 

STRENGTH REQUIREMENTS OF SHEAR DIAPHRAGMS  
USED TO BRACE STEEL I-BEAMS 

 

Lateral torsional buckling, also known as flexural torsional buckling is a failure 

mode that often controls the design of I-shaped steel beams during construction. In 

order to increase the lateral torsional buckling capacity of the girders in this stage, 

discrete or continuous bracing systems are often utilized in building and bridge 

constructions. Light gauge metal decking acts like a shear diaphragm and provides 

continuous lateral bracing to the beams. The building industry has long relied on metal 

decking to laterally support the beam top flanges. Bridge construction industry does not 

consider metal decking as a brace source due to the flexible connection between the 

girder and the diaphragm. However, recent studies have shown that metal sheeting can 

also be used in the bridge industry as construction bracing as long as the flexibility of 

the connections can be controlled by modifications.  

An adequate bracing system must possess sufficient strength and stiffness to 

control deformations and brace forces. A parametrical study was conducted to 

investigate the stiffness and strength of shear diaphragms used to brace stocky and 

slender steel I-beams. This thesis focuses on the strength requirements. The 

parametrical study consists of eigenvalue buckling analyses and large displacement 

analyses on a twin girder shear diaphragm system with various girder and metal deck 

configurations. A three-dimensional finite element analysis program was selected for 

the analyses. In the model metal deck-girder connections and the connection between 

adjacent decks are modeled respectively. Finite element model is verified by a full-scale 

twin-girder buckling test as the part of a previous study. According to the numerical 

study an equation is proposed for the estimation of the brace forces in the deck 

connections. The equation is shifted for possible deck and girder configurations. 
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ÖZET 
 

ÇELİK I-KİRİŞLERİ DESTEKLEMEK İÇİN KULLANILAN KAYMA 
DİYAFRAMLARININ MUKAVEMET İHTİYACI 

 

Yanal burulmalı burkulma I-kesitli çelik kirişlerin tasarımında dayanımı kontrol 

eden limit durumlarından biri olarak kabul edilmektedir. Çelik yapı ve köprülerin yapım 

aşamalarında kirişlerin yanal burulmalı burkulma dayanımını arttırmak için sürekli veya 

tek noktada etki eden destek sistemleri kullanılmaktadır. Bina inşaatlarında beton 

döşeme kalıp sistemi, çatı ve cephe kaplamaları olarak sıklıkla kullanılan trapez sac 

kalıplar kayma diyaframı gibi çalışmakta ve bağlı oldukları kiriş boyunca sürekli yanal 

destek sağlamaktadır. Çelik yapı endüstrisi sac kalıbın düzlem içindeki yüksek kayma 

rijitliğini gözönüne almakta ve inşaat aşamasında kirişlere sürekli yanal destek kaynağı 

olarak kullanılmasına izin vermektedir. Çelik köprü endüstrisinde ise kalıp-kiriş 

bağlantılarındaki göreceli esneklik buna imkan vermemektedir. Sac kalıp–kiriş 

bağlantısı üzerine yapılan çalışmalar sonucunda önerilen bir iyileştirme sac kalıbın I-

kirişlere sürekli destek sağlamasını mümkün kılmıştır.  

Bu çalışmanın amacı narin ve narin olmayan I-kesitli çelik kirişlerin kayma 

diyaframları ile kiriş boyunca yanal desteklenebilmesi için gerekli ve yeterli mukavemet 

değerinin belirlenmesidir. Çalışma kapsamında iki I kiriş ve arasında bir kayma 

diyaframından ibaret olan bir sonlu elemanlar modeli oluşturulmuştur. Kirişler basit 

mesnetli olup mesnetlerde çarpılma serbestliği verilmiştir. ANSYS sonlu elemanlar 

yazılımı kullanılarak model üzerinde elastik sınırlar dahilinde burkulma analizleri 

yapılmıştır. Modelde kalıp bağlantıları vida ile modellenmiş olup kalıp-kiriş arası ve 

kalıplar arası bağlantılar ayrı ayrı modellenmiştir. Diyafram kayma rijitliği, basınç 

başlığı genişliği, gövde narinlik değeri ve olası kalıp-kiriş bağlantı dizilimleri göz önüne 

alınan değişkenler arasındadır. Sonlu eleman modeli daha önce yapılan bir çalışma 

kapsamında gerçekleştirilmiş olan tam ölçekli burkulma deneyi sonuçları ile 

karşılaştırılmış ve doğrulanmıştır. Nümerik çalışma sonucunda diyafram vida 

kuvvetlerinin basitçe hesaplanmasına olanak sağlayacak bir denklem önerilmiştir. 

Denklem farklı döşeme oluşumları için katsayıları içerecek şekilde genişletilmiştir. 
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CHAPTER 1 

 

INTRODUCTION 

 
1.1. General Information 

 

Steel cross-sections could develop their full strength under tensile stresses. On 

the other side, under compressive stresses they are susceptible to local or global 

buckling before reaching to ultimate strength. Various types of buckling may occur 

depending on the geometry of the cross section, the direction of loading or conditions 

and locations of the supports.  

Lateral torsional buckling, also known as flexural torsional buckling is a failure 

mode that often controls the design of I-shaped steel girders or beams during 

construction. While the concrete slab is still fresh, the girders or beams have to carry the 

entire construction loads and the weight of the fresh concrete. In order to increase the 

buckling capacity of the girders in this stage, discrete or continuous bracing systems are 

often utilized. In bridge construction discrete bracing systems in the form of cross-

frames and diaphragms are generally utilized. Whereas in building construction, 

continuous bracing systems in the form of stay-in-place deck forms, often named as 

shear diaphragms, are commonly utilized.  

Floor decks are often used in unshored construction of steel structures as 

formwork for concrete slab. They provide support to fresh concrete until it hardens and 

composite action initiates between steel girders/beams and concrete slab. Composite 

floor systems consist of steel beam, shear studs, stay-in-place metal deck forms, and 

concrete deck as shown in Figure 1.1 

The building industry has long relied on metal decking to laterally support the 

beam top flanges. The deck forms are often treated as shear diaphragms that provide 

continuous lateral support against flexural torsional buckling. In the building industry, 

the decks are continuous over the tops of the beams as seen in Figure 1.1 and are 

generally attached to the top flanges using puddle welds, shear studs or fasteners 

(Egilmez et. al, 2009). 
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Figure 1.1. Composite floor system   
(Source: Owen, 2013) 

 

In the bridge industry, composite girders in positive moment bending regions 

usually have narrower top flanges with respect to the bottom flanges. This is mainly due 

to the fact that the final sizes of the girders are often determined by taking composite 

action into account. In contrast to advantages of the mono-symmetry in ultimate stress 

design, relatively small top flange weakens the system against lateral torsional buckling. 

Although reinforced concrete slab along the top flange of the steel girder is a continuous 

bracing source against lateral torsional buckling after the concrete deck hardens, there is 

usually a need for additional bracing in the early construction phases, while the concrete 

deck is still fresh. 

American Association of State Highway and Transportation Officials 

(AASHTO) Load and Resistance Factor Design (LRFD) Bridge Design Specifications 

(2012) does not currently permit permanent metal deck forms (PMDF) to be relied on as 

a bracing source against lateral torsional buckling; due to the conventional flexible 

connection detail. Instead, the specification requires cross frames or diaphragms to be 

used to increase the lateral torsional buckling capacity of girders. Implementation of 

discrete bracing by means of cross frames in a bridge deck can be seen in Figure 1.2. 

Drawbacks of these discrete bracing systems are fatigue problems encountered 

in girder-cross frame connections and their relatively higher costs. These drawbacks 

have led researchers to investigate the conventional flexible connection detail. Modified 

connection details were developed that significantly improve the stiffness and strength 
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of the permanent metal deck form systems (Egilmez et. al, 2007 and 2012) used in the 

bridge industry. 

 

 
 

Figure 1.2. Intermediate discrete braces with metal deck forms 
(Source: Weeks, 2013) 

 

Following the guidelines from Egilmez et. al (2007 and 2012), two bridges in 

Houston, Texas were constructed using permanent metal deck forms as construction 

bracing. Figure 1.3 shows a photograph during the construction phase of these bridges. 
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Figure 1.3. Diaphragm bracing implementation from Houston, TX, USA 
 

1.2. Forming Systems 
 

Various materials, such as plywood, precast concrete and stay-in-place metal 

deck are being used for concrete formwork in bridge constructions. However, in steel 

bridge and building applications due to the high strength and ease of implementation, 

stay-in-place metal deck forms or permanent metal deck forms (PMDF) are widely 

chosen as the primary forming system. 

PMDF consist of galvanized corrugated sheets that usually change from 60 cm 

to 90 cm wide. The forms generally change in thickness from 0.91 to 1.52 mm (22 to 16 

gauge). PMDF are as light as plywood forms but have relatively larger spans of 2.70 m. 

to 3.60 m. 

Building and bridge applications of PMDF differ in both geometry and 

connection detail. Bridge forms usually have a deeper profile with considerably thicker 

sheets than that used in the building industry. Figure 1.4 and Figure 1.5 illustrate deck 

forms used in building and bridge applications respectively. In building applications 

forms span over more than two beams and are open ended. Bridge metal deck forms are 

generally shorter since they only span between adjacent girders. Closed end forms are 
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used in bridge applications to prevent leaking of the concrete. Types of end closures for 

bridge applications are seen in Figure 1.6. 

 

 
 

Figure 1.4. PMDF in building industry 
(Source: Cordeck, 2014) 

 

US Route 219 – Southern Expressway project by New York City Department of 

Transportation can be taken as an applied case, Figure 1.5. Entire project consists of 12 

sections. Southern Expressway was the 5th section, which consists of two lanes in each 

direction, northbound and southbound, and nine bridges. The photo was taken before 

the concrete pouring of a 215 meter span arch bridge deck over the Cattaraugus Creek 

gorge. 

 

 
 

Figure 1.5. PMDF in bridge industry 
(Source: New York State Department of Transportation [NYSDOT], 2009) 
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Figure 1.6. Types of PMDF used in bridge industry 
(Source: Texas Department of Transportation [TxDOT], 2014) 

 

In building applications forms are attached directly to the top flange by 

mechanical fasteners, puddle welds or by welding the shear studs through the 

formwork. Figure 1.7 shows the deck form layout for building applications. 

 

 
 

Figure 1.7. Deck form layout for building applications 
(Source: Egilmez, 2005)  

 

In bridge applications, due to the differential camber or different flange 

thicknesses of adjacent girders; deck forms are fastened to cold formed support angles, 

which are welded to girder top flanges generally with an eccentricity. Figure 1.8 shows 

deck form arrangement for bridge applications.  
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Figure 1.8. Deck form arrangement for bridge applications 
(Source: Egilmez, 2005) 

 

As previously mentioned past research has shown that the softening effects of 

the eccentric cold form support angles can be eliminated by a simple modification to the 

connection detail (Egilmez et. al, 2007, 2009, and 2012). The modified connection 

detail consists of transverse stiffening angles that span between adjacent girders, which 

can be connected directly to the top flanges or indirectly through a gusset plate as 

shown in Figure 1.9. 

 

Stiffening
Angle

Support
Angle

Girder Top Flange

Girder Top Flange
 

 

Figure 1.9. Modified connection detail by Egilmez et. al, (2007, 2009, and 2012) 
(Source: Egilmez et al, 2014) 
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According to the Figure 1.9 the stiffening angles are positioned at side-lap 

locations so the decks are directly fastened to the stiffening angles at side-lap seams. 

 

1.3. Objective and Scope 
 

A research study has been conducted to enhance the understanding of the 

bracing behavior of shear diaphragms used as PMDF in steel building and bridge 

construction. Development of stiffness and strength requirements for diaphragm bracing 

of I-sections are in the scope of the current research studies. Study presented in this 

thesis mainly focuses and presents results on strength requirements. 

A parametric study on a twin girder-shear diaphragm system with finite element 

approach was conducted by using ANSYS Mechanical APDL (2007). Past studies on 

diaphragm bracing (Helwig & Yura, 2008) of beams showed that shear strength of a 

diaphragm is generally controlled by either the shear strength of longitudinal edge 

connections –sheet to structural member connections along the edges- or shear strength 

of interior connections between panels –sheet to sheet connections along side laps-. 

Hence, a finite element model originally developed by Davies and Bryan (1982) was 

adopted and simply modified to address the forces that developed at both edge and side 

lap fasteners. The finite element model was validated by the tests conducted at 

University of Houston, TX by Egilmez (2005). Since an adequate bracing system must 

possess sufficient stiffness and strength (Winter, 1960), displacements are also taken 

into account in order to achieve stiffness requirements. Edge and side-lap fasteners were 

modeled separately; enabling the fastener forces to be directly calculated. Various 

analyses were conducted in order to obtain the parameters that affect the behavior. 

This report consists of seven chapters. Background information with previous 

studies follows the introduction. Chapter 3 gives information about the finite element 

model used for the permanent metal deck form systems. Chapter 4 summarizes the 

numerical study. Chapter 5 summarizes results from stiffness requirements. Chapter 6 

gathers the results on strength requirements, Chapter 7 summarizes and concludes the 

study. 
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CHAPTER 2 

 

BACKGROUND 

 
2.1. Overview 

 

This chapter gives background information on stability bracing of steel I 

girders/or beams by shear diaphragms. Basic concepts of structural stability, buckling 

and lateral torsional buckling phenomena are discussed. Bracing concepts and literature 

overview of shear diaphragm bracing are reported briefly. 

 

2.2. Stability and Bracing 
 

Stability concept has been in focus of the researchers for a long time ago. 

Leonhard Euler proposed the critical load concept for members under compression in 

the 18th century. The critical load or Euler load is the axial force on a member just 

before it buckles. Elastic critical buckling load of an initially straight and simply 

supported column is: 

 

 2

2π
L
EIPP Ecr   (2.1) 

 

where, 

 

PE = Euler critical buckling load; 

EI = Flexural rigidity of the cross section; 

L = Unbraced length of the column. 

 

Unbraced length of a member implies the distance between brace locations. If a 

brace exists at mid-height as shown in Figure 2.1, the elastic critical buckling load of 

the column increases to four times the Euler buckling load. The significant increase in 

the buckling capacity clearly shows the importance of the design of bracing members in 
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a structural system. On the right hand side of Figure 2.1, braces are illustrated by 

springs with a specific stiffness that should be larger than the required value in order to 

provide stability to the system. Otherwise system may loose the stability and a sudden 

collapse may follow. 

 

 
 

Figure 2.1. Importance of bracing 
(Source: Helwig, 2013) 

 

2.3. Lateral Torsional Buckling 
 

According to the Guide to Stability Design Criteria for Metal Structures (2010); 

lateral torsional buckling is a limit state of structural usefulness where the deformation 

changes from predominantly in-plane bending to combined lateral deflection and 

twisting. Lateral torsional buckling involves twist of the cross section around the center 

of twist - the point where an axis passing through the web of the unbuckled girder 

intersects the same axis of the buckled girder - and lateral bending of the top flange. 

Center of twist is illustrated in Figure 2.2. 

Lateral torsional buckling involves lateral movement of the compression flange 

plus twist of the cross-section around the center of twist. Steel I-shaped cross sections 

are more likely to undergo this failure mode rather than torsionally stiffer box-sections. 

Lateral torsional buckling is illustrated in Figure 2.3. 
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Figure 2.2. Center of twist 
 

 
 

 
Figure 2.3. Lateral torsional buckling 

(Source: U.S. Department of Transportation Federal Highway Administration, 2013) 
 



 

 12 

Lateral torsional buckling capacity of beams has been studied for a long time. 

Timoshenko and Gere (1961) derived Equation 2.2 for elastic lateral torsional buckling 

capacity of simply supported, doubly-symmetric beams subjected to uniform moment 

loading. 
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where, 

 

Mcr = Lateral torsional buckling capacity of the beam; 

Lb = Unbraced length; 

E = Modulus of elasticity; 

Iy = Weak axis moment of inertia; 

G = Shear modulus; 

J = St. Venant’s torsional constant; 

Cw = Warping constant. 

 

The latest version of the Specification for Structural Steel Buildings (AISC, 

2010) utilizes Equation 2.3 for elastic doubly symmetric I-sections. Equation 2.3 is 

identical Timoshenko’s solution with the exception of the moment gradient factor, Cb. 

Equation 2.3 is applicable to beams under different types of loading. 
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(2.3b) 

 

where, 

 

Mn = Nominal flexural strength; 

Fcr = Critical stress; 

Sx = Elastic section modulus taken about the x-axis; 
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Cb = Lateral torsional buckling modification factor for non-uniform moment 

diagrams; 

E = Modulus of elasticity of steel, 200 000MPa; 

Lb = Unbraced Length; 

rts = Effective radius of gyration; 

J = St. Venant’s torsional constant; 

c = A constant dependent on cross-section (1 for doubly sym. I-shapes); 

h0 = Distance between the flange centroids. 

 

Various solutions were proposed for Cb factor up to now. AISC, 2010 

specification recommends using the following equation: 
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where, 

 

Mmax = Absolute value of maximum moment in the unbraced segment; kN-m; 

MA = Absolute value of moment at quarter point of the unbraced segment; kN-

m; 

MB = Absolute value of moment at centerline of the unbraced segment; kN-m; 

MC = Absolute value of moment at three-quarter point of the unbraced 

segment; kN-m. 

 

Kitipornchai and Trahair (1980) proposed a solution for the lateral torsional 

buckling capacity of singly symmetric I sections. Design specifications such as 

American Institute of Steel Construction Specification for Steel Structures (AISC, 2010) 

utilize more simplified solutions. Buckling capacity solution given by the Specification 

for Structural Steel Buildings (AISC, 2010) for simply supported singly symmetric 

cross-sectional girders under uniform moment loading is: 
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 xccrn SFM   (2.5a) 
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where, 

 

Mn = Nominal flexural strength of a singly symmetric beam; 

Fcr = Critical stress; 

Sxc = Elastic section modulus of the compression flange taken about the x-

axis; 

rt = Radius of gyration of the flange components in flexural compression 

plus one-third of the web area in compression due to application of major 

axis bending moment alone. 

 

Unbraced length, which is the distance between braces, Lb, is an important 

parameter for the lateral torsional buckling capacity. Type of loading, height of loading 

in the cross section, support conditions, and restraints at the ends of the beam also 

affects the capacity.  

Cb factor that was already defined above represents the effects of moment 

gradient. Timoshenko’s solution defined in Equation 2.2 was for simply supported, 

doubly symmetric beams under uniform moment loading. Transverse loading of a beam 

results in variable moment values along the girder. Solutions for girders under 

transverse loading are simply the product of uniform moment loading solutions and the 

Cb factor. Buckling moment capacity of girders with moment gradient is larger than 

those under uniform moment loading. 

All expressions demonstrated up to this point about elastic lateral torsional 

buckling capacity of beams under transverse loading were all based on an assumption 

that the load was applied at the shear center. Guide to Stability Design Criteria for 

Metal Structures, 2010 proposed Cb
* expression instead of typical Cb factor in order to 

overcome load height effect of doubly and singly symmetric sections and double 

curvature bending of singly symmetric I-section members. The Cb factor equation that 

takes load height effect into account is given by: 
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where, 

 

y = Height of loading relative to shear center ; 

h0 = Distance between flange centroids; 

Iy = Weak axis moment of inertia; 

Iy_ top = Moment of inertia of top flange about minor axis of section. 

 

Rm coefficient in Equation 2.6a represents the single & double curvature effect 

and should be taken “1” for unbraced lengths subjected to single-curvature bending. 

Otherwise Rm has to be calculated according to Equation 2.6b 

 

2.4. Initial Imperfections and Ideal Stiffness 
 

As indicated previously, the critical load definition is valid for members that are 

initially straight overall the full length. But this concept is not realistic for in-situ 

applications because of the geometrical imperfections on the members due to the effects 

of lifting, temperature etc. 

First major specification in the United States that gives provisions about stability 

bracing systems is the third edition of American Institute of Steel Construction Load 

and Resistance Factor Design (AISC 2001). The specification proposed only a design 

strength requirement for the bracing system which is 2% of the compression force on 

the member to be braced. 

The stiffness requirement of a bracing system can be found by conducting an 

eigenvalue buckling analysis on initially straight in other words, perfect systems. 

According to Winter (1960); an adequate brace system requires both strength and 

stiffness. Winter (1960) showed that brace forces in a system are directly proportional 
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to the geometrical imperfections of the member to be braced. The brace stiffness that 

enables the member without an initial imperfection to reach its buckling capacity is 

often called ideal stiffness. 

 

 
 

Figure 2.4. Winter’s model for column bracing. 
 

Winter (1960) developed a simple model for column bracing. Winter’s simple 

model consists of a column with a lateral single brace located at the mid-height that is 

seen in Figure 2.4. The lateral brace is represented with a spring. Effects of the initial 

imperfections on the bracing behavior can be seen in Figure 2.5. 

Figure 2.5 demonstrates the relationship between the forces and the buckling 

deformations on the member to be braced. Vertical axis shows the force level on the 

system normalized by PE, the critical buckling load of the system. Horizontal axis shows 

the maximum deflections, which are proportioned to the initial imperfection. Winter 

indicated that providing the ideal stiffness, βi to an initially imperfect system results in 

excessive deformations at the critical load level. However, a brace with two times the 

ideal stiffness resulted with a deformation equal to the initial imperfection at the 

estimated buckling capacity. Further increasing the stiffness resulted with even smaller 

deformations at the estimated buckling capacity. 

Although beam bracing is somewhat more complicated then column bracing, 

Figure 2.5 also reflects the beam bracing behavior. 
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Figure 2.5. Effect of initial imperfections on bracing behavior 
 

Figure 2.6 illustrates the four general types of bracing systems as relative 

bracing, discrete bracing, continuous bracing and lean-on bracing. Relative bracing 

systems control the deformation of a point along the length of the member to be braced 

with respect to another point. A truss inside the steel frames designed for earthquake is 

a general example for relative bracing. A discrete brace controls the movement of the 

point that it is attached to. Cross frames between adjacent girders in bridge systems are 

an example of discrete bracing. Diaphragm bracing of beams, a siding attached to the 

columns are examples of continuous bracing. One can understand from the name that 

there is no unbraced length for continuous bracing systems. Buckling of a member that 

requires the buckling of an adjacent member is lean on buckling. 
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Figure 2.6. Types of bracing systems: (a) relative (b) discrete (c) continuous (d) lean-on 
(Source: Guide to Stability Design Criteria for Metal Structures, 2010) 

 

2.5. Beam Bracing 
 

Beam bracing is available by either lateral braces or torsional braces. Beam 

braces must prevent the twist of the cross section that is generated with the relative 

displacement of the top and bottom flanges (Guide to Stability Design Criteria for Metal 

Structures, 2010). Lateral braces restrain the lateral movement of the cross section. 

Joists attached to the compression flange of a simply supported beam are examples of 

beam lateral bracing. Torsional braces restrain the twist of the cross section. Cross 

frames or diaphragms attached to both top and bottom flanges of adjacent girders at 

mid-span are examples of beam torsional bracing. By this way unbraced length is 

reduced to half of the overall beam length. In steel building frames or steel bridge deck 

systems hardened concrete slab attached to the girder with shear studs provides lateral 

and torsional bracing simultaneously. 
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2.6. Stability Bracing of Girders by Shear Diaphragms 
 

Compression in the top flange develops lateral torsional buckling and causes 

lateral movement of the top flange accompanied by the twist of the cross section around 

center of twist. Lateral movement of the top flange results with shear deformations on 

the metal deck.  Metal deck form between the girders with high in-plane shear stiffness 

resists the lateral movement of the top flanges and generates the diaphragm action as 

seen in Figure 2.7. 

Although larger top flanges may work as well, shear diaphragms considered as 

continuous bracing source may keep the top flange narrower and provide economy to 

the system. 

 

 
 

Figure 2.7. Diaphragm bracing analogy 
(Source: Helwig, 1994) 

 

The major property of a shear diaphragm in girder bracing is shear rigidity, Q 

which has units of kN/rad. Helwig & Yura (2008-I) stated the shear rigidity as 

resistance of the diaphragm along the beam length for a 1 rad shear strain. Shear rigidity 

of the diaphragm is calculated as follows; 
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where, 

 

G’
 = Effective shear modulus of the deck; 

sd = Tributary width of a deck bracing a single beam; 

n = Number of girders in the system; 

sg = Spacing between girders. 

 

The effective shear modulus, G’ can be obtained by performing a shear test on a 

cantilever test frame illustrated in Figure 2.8. For design phase Steel Deck Institute 

Diaphragm Design Manual (Luthrell, 2004) provides a set of equations to calculate the 

effective shear modulus of various types of metal forms. 

 

 
 

Figure 2.8. Cantilever test frame 
(Source: Luthrell, 2004) 
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According to Figure 2.8: 
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τ '

'   (2.8) 

 

where, 

 

G’
 = Effective shear modulus of the deck; 

τ’ = Average effective shear stress; 

γ = Average shear strain in the system. 

 

It’s noted in the Diaphragm Design Manual (Luthrell, 2004) that classical shear 

modulus, G, is not used since the metal sheet is not a thick flat plate material. Detailed 

information about cantilever test frame and shear modulus can be obtained from the 

Diaphragm Design Manual (Luthrell, 2004). 

Detailed information about previous studies on shear diaphragm bracing of 

girders in a historical sequence is given in the following part. 

 

2.7. Previous Studies on Diaphragm Bracing 
 

There have been a number of previous works on the bracing behavior of shear 

diaphragms used for stability bracing of beams or girders since the beginning of the 

latter half of the 20th century. 

Winter (1960) showed that adequate stability bracing requires both sufficient 

stiffness and strength. During 1960’s a significant work was conducted at Cornell 

University. In the scope of an extensive research; Errera and Apparao (1976) presented 

a procedure for the design of I-section girders with diaphragm bracing. As a result of 

this study Errera and Apparao (1976) proposed the closed-form solution below for the 

buckling capacity of beams with uniform moment loading and bracing by a shear 

diaphragm on the top flange: 
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where, 

 

EIy = Weak axis bending rigidity; 

ECw = Warping rigidity; 

GJ = Torsional rigidity; 

e = The distance between the center of gravity of the beam and the plane of 

the diaphragm; 

n = A constant for different end support conditions. 

 

It’s notable that; for simplicity, Errera and Apparao (1976) limited the design 

procedure to “fully” braced beams and columns according to Winter (1960). Full 

bracing implies a restraint that allows no twist at a point (Helwig, 1994). In addition; a 

sinusoidal shaped lateral displacement and twist of the cross section was assumed in the 

solution. 

Since Equation 2.9 is a little bit complicated for the design phase, Errera and 

Apparo (1976) as well as Nethercot and Trahair (1975) simplified the expression to: 

 

 QeMM gcr 2  (2.10) 
 

where, 

 

Mg = Buckling capacity of the girder alone; 

Q = Shear rigidity of the shear diaphragm; 

e =Distance from center of gravity of the beam to plane of shear 

diaphragm.  

 

Later, Helwig and Frank (1999) compared the energy based solution (Equation 

2.9) with the simplified solution (Equation 2.10) for a W30x90 (US) section with a span 

to depth ratio (L/d) of 20 and uniform loading with a shear diaphragm for bracing. The 

comparison resulted with a very good match for both solutions. 
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Lawson and Nethercot (1985) evaluated Equation 2.9 and Equation 2.10 and re-

defined “e” as the distance between the plane of decking and the shear centre of the 

beam. 

Since Equation 2.9 and Equation 2.10 are valid for beams with uniform moment 

loading, Lawson and Nethercot (1985) proposed the following equation for the buckling 

capacity of beams with transverse loading and bracing by a shear diaphragm on the top 

flange; 
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where, 

 

Cb = Factor for moment gradient; 

d = Depth of the girders; 

g =Factor to take into account load height; 

Pe = Weak axis Euler buckling load; 

G = Shear modulus of the beam material; 

J = Torsional constant of the beam; 

Q = Shear rigidity of the shear diaphragm; 

2

2π
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P y
e  ; 

2d
GJPT  . 

 

A computational study that consisted of a finite element approach was 

conducted by Helwig and Frank (1999) on the way to investigate the ability of metal 

deck forms to provide lateral bracing to I-shaped girders. They modified the simplified 

uniform moment solution (Equation 2.10) of Errera and Apparo (1976) and Nethercot 

and Trahair (1975) to be applicable for both uniform moment loading cases and cases 

with moment gradients caused by transverse loading applied at different load heights. 

They modeled the shear diaphragm with panels constructed from four-node shell 
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elements stiffened by beam elements that only have out-of-plane stiffness. They focused 

on simply supported girders that were also free to warp at the supports. Various slender 

web plate girder cross sections were analyzed in the study with a web slenderness ratio 

of 96 and 160. They also investigated singly symmetric cross sections. Unlike doubly 

symmetric sections; shear centre and gravity center of the singly symmetric cross 

sections do not coincide on each other and may either be above or below mid height of 

the section. Eventually they proposed the following equation for the buckling capacity 

of I-beams braced by a shear diaphragm at the top flange and compression in the top 

flange: 

 

 mQdMCM gbcr  *  (2.12) 
 

where, 

 

Mcr = Buckling capacity of a diaphragm-braced beam; 

Cb
* = Moment gradient factor that considers load height effects; 

Mg = Buckling capacity of the girder alone; 

m = Factor for load type and load height effects; 

Q = Shear rigidity of the shear diaphragm; 

d  = Depth of the beam. 

 

Helwig and Frank (1999) redefined the parameter “e” in Equation 2.10 as the 

distance from mid height of the beam to the plane of shear diaphragm for both singly 

symmetric and doubly symmetric beams. In Equation 2.11 by Nethercot and Trahair 

(1975), Cb factor represents the moment gradient factor due to transverse loading and is 

applied to the buckling capacity of both girder and shear diaphragm. Helwig and Frank 

(1999) reevaluated the moment gradient concept and applied the Cb factor only to the 

buckling component of the girder, Mg. They utilized center of twist concept to show that 

the deck is less effective for cases with moment gradient factor caused by transverse 

loading with respect to cases with uniform moment loading.  

Center of twist may lie below or within the depth of the girder depending on the 

loading type as well as the existence of bracing. As the center of twist comes up to the 

top flange, bracing implemented at the top flange becomes less effective since the 

buckled shape of the girder does not have as much lateral movement at the top flange. 
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Consequently, top flange loading results in lower buckling capacities compared with 

mid height loading. Helwig and Frank (1999) showed that center of twist is below the 

bottom flange through the girder under uniform moment loading. With a moment 

gradient caused by the transverse loading applied at the mid height; center of twist is 

again below the bottom flange without bracing but elevates to the depth of the girder by 

the existence of bracing. They also showed that top flange loading additionally 

decreases the effectiveness of the bracing with an over-closure of the center of the twist 

to the top flange. 

Helwig and Frank (1999) reflected the load type and load height effect on 

bracing behavior of the deck with an “m” factor applied to the deck contribution in 

Equation 2.10. They recommended “m” values of 5/8 for mid height loading and 3/8 for 

top flange loading. They adopted the load height effect factor of Helwig et al. (1997) 

and Galambos (1998) on the girder buckling capacity with a Cb
* =Cb/1.4 for top flange 

loading in which Cb is the typical moment gradient factor for mid height loading. 

Equation 2.12 can be used to determine the required shear diaphragm stiffness 

for a specific design load or buckling capacity that is often called “ideal stiffness”. For 

discrete and relative bracing systems ideal stiffness is defined by Helwig & Yura (2008-

I) as the required stiffness to force a perfectly straight beam to buckle between brace 

points. Since structural elements like girders and beams naturally involve an initial 

imperfection, as discussed in Section 2.4 Winter (1960) showed that a larger stiffness 

than the ideal value is required to control deformations and brace forces. 

Helwig & Yura (2008-I and 2008-II) performed parametric studies on stability 

bracing of a twin-girder system with shear diaphragms. Results for both stiffness and 

strength behavior of shear diaphragm bracing of stocky beams were demonstrated. The 

effects of load type and load position were also considered. Helwig & Yura (2008-I) 

dealt with the behavior of the general stability bracing behavior of the system. Helwig 

& Yura (2008-II) outlined the design requirements for shear diaphragm bracing and 

mainly focused on stiffness and strength requirements of shear diaphragms used to 

brace steel beams. 

Helwig & Yura (2008-I) considered the stiffness requirements to control girder 

deformations and brace forces. They rearranged the “m” values of Equation 2.12 for 

stocky beams that were already proposed by Helwig and Frank (1999) for slender plate 

girders. They also conducted analyses with a cross frame at mid-span. Since the 
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magnitude of the brace force is a function of the initial imperfection in the member to 

be braced, they used an initial beam twist of: 

 

 )
500

(θ0 d
Lb  (2.13) 

 

where, 

 

θ0 = Initial twist in radians; 

Lb = Spacing between points of zero twist; 

d = Depth of the beam. 

 

Initial twist expression in Equation 2.13 depends on an assumption that top 

flange of the beam has a lateral sweep of Lb/500 whereas bottom flange is kept straight 

along the beam length. This value is twice the value defined in the Specification for 

Structural Steel Buildings (AISC 2005a). Helwig & Yura (2008-I) conducted both 

eigenvalue buckling analyses in order to determine ideal stiffness of the shear 

diaphragm to reach a prescribed load level in a perfectly straight beam and large 

displacement analyses in order to determine brace strength requirements. They modeled 

the shear diaphragm with panels built up from two-node truss elements and arranged the 

shear rigidity of the diaphragm by changing the cross-sectional area of the truss 

elements. They verified the truss element model with the shell element diaphragm 

model of Helwig and Frank (1999). According to the results by Helwig & Yura (2008-

I); intermediate discrete bracing greatly reduced the effects of top flange loading. They 

rearranged the “m” values for stocky beams that were previously proposed by Helwig 

and Frank (1999) for slender web plate girders. These values are presented in Table 2.1. 

 

Table 2.1. m values 
(Source: Helwig & Yura (2008-I)) 

 
 Stocky Slender 

Bracing Condition Centroid 
loading 

Top flange 
loading 

Centroid 
loading 

Top flange 
loading 

No intermediate 
discrete bracing 0.85 0.5 0.5 0.375 

With intermediate 
discrete bracing 0.85 0.85 0.5 0.375 
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They conducted large displacement analysis on girders with initial imperfections 

to obtain stiffness and strength requirements of diaphragm bracing. Although additional 

analyses with stiffer diaphragms were conducted, a stiffness of four times the ideal 

value was deemed sufficient to control deformations and brace forces. The stiffness 

requirement was given by: 
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where, 

 

Mu = Maximum design moment of a diaphragm-braced beam; 

Cb
* = Moment gradient factor that considers load height effects; 

Mg = Buckling capacity of the girder alone; 

m = Factor for load type and load height effects; 

Q = Shear rigidity of the shear diaphragm; 

d  = Depth of the beam. 

 

Helwig & Yura (2008-II) conducted large displacement analyses on stocky cross 

sections and reported the brace forces in the shear diaphragm along the girder length by 

means of the warping restraining moment per unit length along the longitudinal axis of 

the beam, Mbr
’ as seen in Figure 2.9. Consequently they recommended utilizing the 

following expression for Mbr
’. 
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where, 

 

Mu = Maximum design moment of a diaphragm-braced beam; 

Mbr
’
 = Warping restraining moment per unit length along the longitudinal axis 

of the beam; 

L = Spacing between discrete bracing points; 

d  = Depth of the beam. 
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Figure 2.9. Brace moment and shear on corrugated sheet. 
(Source: Helwig & Yura, 2008-II) 

 

As seen in Figure 2.9. each corrugated sheet is fastened to both structural 

element by edge fasteners and adjacent sheets by side-lap fasteners. Since they modeled 

each sheet by a truss element they assumed that the shear force in the sheet-girder 

connection is resisted equally by the edge fasteners. In order to carry out the 

assumption, they converted the brace moment per length, Mbr
’ to a moment on a 

corrugated sheet Mbr as seen in Figure 2.9. From equilibrium on the panel, Helwig & 

Yura (2008-II) proposed the expressions for the shear force in an edge fastener as; 
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where, 

 

FV = Component of brace force parallel to beam longitudinal axis; 

FM = Component of brace force perpendicular to beam longitudinal axis; 

Vbr = Brace shear in diaphragm truss panel; 

ne = Number of fasteners per panel along end of diaphragm sheeting; 
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Mbr = Brace moment in diaphragm truss panel; 

Mbr
’
 = warping restraining moment per unit length along the longitudinal axis 

of the beam; 

Ld = Spacing between discrete bracing points; 

wd = width of diaphragm sheet; 

Mu = Maximum design moment of a diaphragm-braced beam; 

L = Total span of a beam; 

d  = Depth of the beam. 

 

Note that FM was proposed for five fasteners along end of diaphragm sheeting 

and they did not propose any expressions for the forces on the side-lap fasteners. 
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CHAPTER 3 

 

FINITE ELEMENT MODEL 

 
3.1. Overview 

 

This parametrical study consists of numerical analyses on lateral-torsional 

buckling capacity of I-shaped steel twin girder system with a metal deck form attached 

to the compression flange. The system to be modeled is illustrated in Figure 3.1. 

 

 
 

Figure 3.1. Twin girder and metal deck form system 
(Source: Helwig, 1994) 

 

Three-dimensional finite element analysis (FEA) program ANSYS Mechanical 

APDL (2007) was used throughout the study to perform eigenvalue buckling and large 

displacement analyses. Both doubly symmetric and singly symmetric cross sections 

with various deck configurations were analyzed. Analyses with a torsional brace at mid-

span were also conducted. 

In the finite element analysis (FEA) model both girders and shear diaphragm 

were modeled using elements that possess linear elastic material behavior. Since initial 

imperfection of the beams play an important role in the strength behavior of diaphragm 

bracing, geometrical non-linearity of steel I girders were taken into account. Figure 3.2 

is the ANSYS (2007) output for the twin girder-metal deck form system. 
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This chapter gives basic information on finite element modeling of twin girders, 

shear diaphragm, fasteners, cantilever test frame and verification of the finite element 

model. 

 

 
 

Figure 3.2. Twin girder system FEA model 
 

3.2. Finite Element Model of Girders and Loading Procedure 
 

Twin girders shown in Figure 3.2 were named as south and the north girder with 

respect to the z-axis. South girder was located through x-axis at z=0 and north girder 

was located through x-axis shifted by an amount equal to the girder spacing from the 

south girder. The girders were simply supported in flexure. Bottom flange mid node 

displacement is restrained in three directions at one support and restrained for 

displacements in y and z-axis at the other support. Girders were torsionally simply 

supported at the supports, i.e. free to warp at the supports but out of plane translation of 

the cross section was restrained at the top and bottom of the web at the both ends to 

prevent girder twist. In other words top flange mid node displacement is restrained in z-



 

 32 

direction at both ends. Twin girders were stiffened by transverse web stiffeners at least 

at the supports for concentrated force effects or throughout the slender girder length. 

 Girders and transverse web stiffeners were modeled with SHELL93, structural 

shell element from the ANSYS (2007) element library. Flanges were divided into two 

corresponding elements through the girder length. Webs and transverse web stiffeners 

were meshed into four elements. Common node of web and flange shell elements was 

rigidly coupled to each other. 

SHELL93 is an 8 noded structural shell in quadrilateral geometry. SHELL93 has 

plasticity, stress stiffening, large deflection, and large strain capabilities. SHELL 93 has 

six degrees of freedom at each node; translations in the nodal x, y and z directions and 

rotations about the nodal x, y and z-axes. SHELL93 element is illustrated in Figure 3.3. 

 

 
 

Figure 3.3. SHELL93 geometry and stress output 
(Source: ANSYS, 2007 Finite Element Model Users Manual) 

 

Aspect ratio of the elements used in the model was in the range of one and three. 

Effect of element quantity on the results was also investigated. Use of four elements 

along the height of the webs not only resulted with an efficient behavior compared to 

finer meshes like eight elements, but also provided a considerable reduction in process 

times. Properties of the cross sections are tabulated in the following chapter and in the 

Appendix A with element aspect ratios. 

Mesh geometry of the north girder at the support is demonstrated in Figure 3.4. 
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Figure 3.4. North girder mesh. 
 

Parametrical studies were simulated with ANSYS (2007) Batch environment. 

Girders were modeled according to the ASTM A992 grade steel. Elastic modulus and 

Poisson’s ratio were taken as 205 000 MPa and 0.3 respectively. 

As indicated in the previous chapter initial imperfections play a critical role in 

bracing behavior. Wang and Helwig (2005) focused on choosing the most critical 

imperfection shape and the distribution of the imperfection along the girder for torsional 

and lateral bracing systems. Wang and Helwig (2005) especially investigated the effect 

of initial imperfections on stability brace forces of bridge girder systems. Wang and 

Helwig (2005) reported that the critical imperfection which is expected to occur in 

practice is a cross-sectional twist resulting from a lateral displacement of one flange 

while the other flange remains straight. In this study; same shape and magnitude of 

initial imperfections recommended by Wang & Helwig (2005) and Helwig &Yura 

(2008-I) was adopted where bottom flange is straight and top flange is laterally 

displaced throughout the girder as shown in Figure 3.5. According to the Figure 3.5, 

initial twist of the cross section follows a sinusoidal path which is zero at the supports 

and reaches the maximum value at mid-span with the value of; 

 

 
d

Lb

5000   (3.1) 
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where, 

 

θ0 = Maximum initial twist of the girder at mid-span; 

Lb = Unbraced length of the beam; 

d = Depth of the beam. 

 

 
 

Figure 3.5. Shape and plan view of girder imperfections used in the study. 
(Source: Egilmez, 2005) 

 

Twin girder-shear diaphragm system was subjected to uniformly distributed 

loading in gravitational direction at each mid node of the top flange through the girder. 

Load was applied in 12 steps: 3 steps with 20% increment, 2 steps with 10% increment, 

2 steps with 5% increment and 5 steps with 2% increment. Each load step involved 105 

sub steps. In each sub step displacement, force and moment convergence criteria were 

checked by means of equilibrium iterations. Newton-Raphson procedure was utilized 

for the solution. Some analyses were terminated due to insufficient convergence criteria.  

 

3.3. Finite Element Model of Shear Diaphragm 
 

Various types of shear diaphragm models were used in previous studies that are 

aforementioned in the previous chapters. In this study, a shear diaphragm model 

originally developed by Davies and Bryan (1982) was adopted and simply modified. 

Shear diaphragm model utilized in this study is illustrated in Figure 3.7. 

Figure 3.7 represents a twin girder-shear diaphragm system that consists of four 

metal deck forms. Metal deck sheet profiles modeled in the study represent a typical 

sheet form with three corrugations used in both building and bridge industry. 
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In the model each metal sheet consists of four transverse and three diagonal 3-D 

axial elements as seen in Figure 3.7. Axial elements in the transverse direction have 

sufficiently high stiffness that enables the axial strain to be neglected. In addition, the 

ends of the girders at the supports are generally connected to each other by transverse 

diaphragms as seen in Figure 3.6 to prevent rotation at the supports. In current 

applications metal deck forms are generally connected to these transverse diaphragms at 

the supports. The stiffness of the connection was reflected to the model by additional 

dimensionless spring elements located in the mid node of the girder top flange at both 

ends.  

 

 
 

Figure 3.6 Transverse diaphragm between the girders 
 

On the other hand connection of the adjacent sheets was modeled with 

additional transverse axial elements named as side-laps. Side-laps are illustrated with 

seams in Figure 3.7. However seams and transverse axial elements are illustrated apart 

from each other for visual concerns, they are over lapped on each other in the finite 

element model. Consequently, while transverse rigid elements transfer the loads from 

one girder to other and connect diagonals to each other, diagonal axial members 

provided the unique shear stiffness source of the decks. To achieve a certain amount of 

stiffness, the area of the diagonal members were altered. In order to determine the 

required area of the diagonal members, a shear test frame was also simulated which is 

discussed a few pages later. 
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Figure 3.7. Shear diaphragm finite element model 
(Source: Egilmez et al., 2014) 

 

Axial elements were modeled with LINK8 element from the ANSYS (2007) 

element library. LINK8 was utilized as a uni-axial tension compression member without 

considering any bending. LINK8 has three degrees of freedom at each node; translation 

in the nodal x, y and z directions. LINK8 geometry and displacement output is 

illustrated in Figure 3.8. 

Representation of the metal deck form by these axial elements enables to model 

deck to girder connection and monitor the brace forces in the fasteners due to shear 

diaphragm action. Number of axial elements can be arranged according to the number 

of fasteners used in shear diaphragm-twin girder connection. 

 

 
 

Figure 3.8. LINK8 geometry and displacement output 
(Source: ANSYS, 2007 Finite Element Model Users Manual) 
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3.4. Finite Element Model of Fasteners 
 

Diaphragm sheets can be connected to the structural member or adjacent sheet 

by welds, screws, power driven pins etc. Connection type has a major effect on 

diaphragm strength and stiffness (Luthrell, 2004). In this study sheet to girder and side-

lap connections were assumed to be constructed by screws. Fastener layout and 

connection forces generated within a single deck sheet is illustrated in Figure 3.9. 

 

Ld

wd

Edge fastener 
longitudinal component

Edge fastener 
transverse component

Side-lap fastener force

 
 

Figure 3.9. Brace forces that develop in a single deck sheet 
(Source: Egilmez et al., 2014) 

 
In the finite element model sheet to girder connections were modeled by means 

of dimensionless spring elements that possess equal stiffness in x and z directions. At 

sheet to girder connections dimensionless spring elements were attached to the end of 

the axial members. This connection was assembled on the mid node of the top flange. 

Although these spring elements are illustrated with a finite length in Figure 3.7, in fact 

they are dimensionless. 

These dimensionless spring elements were modeled with mass free COMBIN14 

elements from the ANSYS (2007) element library. COMBIN14 is modeled as a uniaxial 

tension compression member without considering any bending or torsion by utilizing 
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longitudinal spring-damper mode capability. COMBIN14 geometry and stress output is 

illustrated in Figure 3.10. 

 

 
 

Figure 3.10. COMBIN14 geometry and stress output 
(Source: ANSYS, 2007 Finite Element Model Users Manual) 

 

In the finite element model, side-lap connections were modeled with a 

transverse axial member at the side-lap seams on Figure 3.7 that connects opposite 

edges of adjacent sheets. The stiffness of these transverse axial members was taken 

equal to summation of stiffness of the total number of side-lap fasteners at a seam as 

discussed in the following paragraph. Seams are connected to the girders by means of 

dimensionless fasteners that already connects the transverse truss elements to the 

girders. 

Strength and stiffness values of the connections were taken from Luthrell 

(2004). Structural connections were modeled according to the Buildex BX-12 or 

Buildex BX-14 screws and side-lap connections were modeled according to the #12 

screws. Stiffness equations used for structural fasteners and side-lap fasteners in terms 

of mm/kN from Luthrell (2004) are listed in Equation 3.2 respectively. 

 

 
4.37

1000 tK f   (3.2a) 

 
3.86

1000 tK s   (3.2b) 

 

where, 

 

t = Base sheet metal thickness in mm. 
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Strength equations used for structural fasteners and side-lap fasteners in terms of 

kN from Luthrell (2004) are listed in Equation 3.3 respectively. Shear strength results 

according to the Equation 3.3 must be modified by resistance factors (Φ) per the “Load 

and Resistance Factor Design” (LRFD) or by safety factors per the “Allowable Stress 

Design” (ASD) to account for reasonable design conditions (Luthrell, 2004). 

 

 









1380
1

5.31
yy

f

FtF
Q  (3.3a) 

 tdQs *793.0  (3.3b) 
 

where, 

 

t = Base sheet metal thickness in mm; 

Fy  = Yield strength of sheet steel in MPa; 

d  = Major diameter of the screw in mm. 

 

3.5. Finite Element Model of Cantilever Test Frame 
 

As mentioned in finite element modeling of the shear diaphragm, shear stiffness 

of a metal deck form is provided by the diagonal axial elements of the trusses. Various 

shear stiffness values can be obtained directly by changing the cross sectional area of 

these diagonal members. In order to do that a test frame was modeled similar to the twin 

girder-shear diaphragm model according to the Luthrell (2004). Finite element model of 

the test frame is illustrated by ANSYS (2007) output in Figure 3.11. 

Test frame shown with end conditions in Figure 3.11 consisted of 2 beams in the 

perimeter and 8 metal sheets inside. Test Frame was loaded as seen in the figure. Beams 

were modeled with BEAM3 elements from the ANSYS (2007) element library. 

BEAM3 is a uniaxial element with tension, compression and bending capabilities. The 

element has 3 degree of freedom at each node; translations in local x and y-axes and 

rotation about the local z axis. BEAM3 elements are connected to each other with a 

pinned connection. Metal sheets were modeled with LINK8 elements as in the twin 

girder model. Since vertical axial elements were rigid, only diagonal axial elements 

constituted the shear stiffness of the diaphragm. Fastener connections were modeled 

with the same procedure of twin girder-shear diaphragm model.  
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Since these diaphragms were fastened to the girders edge wise, the decking 

system was only exposed to shear deformations when girders displaced. 

 

 
 

Figure 3.11. Test frame output by ANSYS 
 

3.6. Verification of the Finite Element Model 
 

Finite element model was verified by a full-scale twin-girder buckling test 

conducted by Egilmez (2005) at the structural engineering laboratory of University of 

Houston, Texas. Twin girders were 14.63 m. long -48 ft-singly symmetric I-shaped 

sections that were flame cut from original W760x134 US wide flange beams. Top 

flanges were narrowed to 158.8 mm’s that corresponds to a ρ; Iyc/Iy-moment of inertia 

ratio of the top flange to the entire cross section about the weak axis- of 0.18.The metal 

deck forms were 610 mm. wide, 1.22 mm -18 gauge - thick and supported to the twin 

girders with a modified connection detail that diminishes the flexibility of the 

connection. Measured shear stiffness of the metal deck form was 9842 kN/rad that 

corresponds to 5.4 times the ideal stiffness of a deck brace system under 210 MPa stress 

level. Girders were subjected to point loads at one thirds of the total span. Detailed 

information is available at Egilmez et al. (2005). 
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Laboratory test and finite element model results are compared in Figure 3.12. 

Vertical axis in the figure demonstrates the mid-span bending moment level. Horizontal 

axis demonstrates the ratio of mid-span total twist and the initial twist of the girder. 

According to the results finite element model predicted the rotation behavior 4.9% 

higher that the rotations observed in the test. 

 

 
 

Figure 3.12. Comparison of FEM and laboratory test results 
(Source: Egilmez et al., 2014) 
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CHAPTER 4 

 

OVERVIEW OF THE STUDY 

 
4.1. Introduction 

 

This chapter presents an overview of the study. The steel sections utilized in the 

analyses, the parameters that are investigated, and the procedure followed in the 

analyses is briefly presented.  

The study consists of eigenvalue buckling analyses, test frame shear-

displacement analyses and large displacement analysis on various steel I- sections to 

observe the stiffness and strength behavior of shear diaphragm. Analyses were 

conducted by ANSYS Mechanical APDL (2007). Output from the analyses consists of 

nodal displacements, rotations, element forces, stresses etc. Analysis results are used to 

investigate the behavior of the twin girder-shear diaphragm system and to propose 

stiffness and strength requirements of the shear deck. For this purpose rotation of the 

mid-span around the x-axis with respect to center of twist, brace forces in the structural 

connectors on longitudinal and transverse direction and, side-lap connector forces on 

transverse direction were processed. Since ANSYS (2007) post process data is in a raw 

condition, a commercial software package (MATLAB 7.12, The MathWorks Inc., 2011) 

was used for data processing. 

Results of the study are reported in two parts. The first part mainly focuses on 

the general stiffness behavior of diaphragm bracing. Detailed results and discussion on 

the first part will be available in the on-going thesis work of Akbaba (2015). The second 

part focuses on the strength behavior of diaphragm bracing. This thesis concentrates in 

the second part. The objective is approached through large displacement analyses on 

twin girder-deck system with different configurations. Eigenvalue buckling analysis and 

test frame analysis procedures are also covered briefly since they are a supplementary 

component of the whole study. 
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4.2. Parameters 
 

In this study; stocky, doubly and singly symmetric I-shaped girders were 

analyzed. Detailed information about the girder cross sections is available in Table 4.1. 

 

Table 4.1. Sections of the study 
 

SECTION
DESIGNATION

bT(mm) bB(mm) hTOTAL(mm) tweb(mm) tTF(mm) tBF(mm) λweb λtop flange λtop flange

Stocky#1 140 140 366 6 9 9 58.00 7.78 7.78

Stocky#2 280 280 732 12 18 18 58.00 7.78 7.78

Slender-100#1 300 300 1464 14.14 25 25 100.00 6.00 6.00

Slender-160#1 300 300 1464 8.84 25 25 159.95 6.00 6.00

Slender-100#2 300 300 1830 17.8 25 25 100.00 6.00 6.00

Slender-160#2 300 300 1830 11.13 25 25 159.93 6.00 6.00

SS-100# 19 210 300 1464 14.21 17.5 25 100.04 6.00 6.00

SS-100# 29 240 300 1464 14.19 20 25 100.00 6.00 6.00

SS-100# 39 270 300 1464 14.16 22.5 25 100.04 6.00 6.00

SS-160# 19 210 300 1464 8.88 17.5 25 160.08 6.00 6.00

SS-160# 29 240 300 1464 8.87 20 25 159.98 6.00 6.00

SS-160# 39 270 300 1464 8.85 22.5 25 160.06 6.00 6.00  
 

Girders considered in this study are simply illustrated in Figure 4.1. 

 
Figure 4.1. Sections considered in the study 
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Doubly symmetric sections were mainly named according to the web 

slenderness ratio. A doubly symmetric section with web slenderness ratio smaller than 

60 was named as “Stocky Section”, otherwise “Slender Section” designation was used. 

Slender sections were named according to the web slenderness ratio and web height. 

Slender sections had two different web slenderness ratio of 100 and 160 and two 

different total girder depth of 1464 mm and 1830 mm. Slender section flange width was 

taken constant as 300 mm according to the requirements on AASHTO Standard 

Specifications (2012). 

Singly symmetric sections were named according to the web slenderness ratio 

and top flange beam width. A singly symmetric section was obtained by changing the 

width and thickness of the compression flange. Singly symmetric sections were divided 

into two main groups according to the web slenderness ratio: 100 and 160. Each group 

consists of three non symmetric sections with a constant bottom flange of 300 mm –

same with doubly symmetric sections-. However, the width of the top flange was 

changed to achieve mono-symmetry ratios of 0.19, 0.29, and 0.39.  Mono symmetry 

ratio is the ratio of top flange second moment of inertia to the overall cross-sectional 

second moment of inertia around weak axis.  

Due to concentrated force effects on the supports, both stocky and slender 

sections had transverse web stiffeners at the supports. Additionally, slender sections had 

transverse web stiffeners throughout the girder. These stiffeners are spaced with a 

distance equal to the girder depth. Web stiffener thickness was constant as 20 mm. 

Span to depth ratio, “L/d” of the analyses with stocky sections was altered from 

15 to 20, 25 and 30. Span to depth ratio of the analyses with slender sections was 10 and 

15. 

As explained in the previous chapter; in the study performed by Helwig & Yura 

(2008) uniform loading was applied through the girder at the top flange since bracing is 

least effective under top flange loading. Only uniformly distributed loading was 

considered in the study since it is a good representative of the loading characteristics of 

a concrete pour during construction. In this study, a uniform load that causes a 

maximum flexural stress level of 210 MPa at the extreme fiber of the section is applied. 

The selected 210 MPa stress level is a reasonable estimate of the expected stress levels 

during construction. Load values are available in the design example presented in the 

Appendix B. Analyses according to a stress level of 300 and 345 MPa were also 
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conducted in order to make a comparison with Helwig (2008-I) and inspect the behavior 

at the yield point of the beams. 

In order to investigate the effects of deck thickness on brace forces three 

different deck thicknesses were considered: 16 gauge (1.52 mm), 18 gauge (1.22 mm) 

and 20 gauge (0.91 mm). 

Deck stiffness is a major parameter in the study. The brace stiffness required for 

a structural member to reach a specific load level or buckling capacity is often called the 

“ideal stiffness”. Since utilizing a brace stiffness equal to the ideal stiffness results in 

large deformations and brace forces (Winter, 1960), analyses were conducted with 

diaphragm stiffnesses of two (2Qi), three (3Qi), four (4Qi), five(5Qi) and six times the 

ideal stiffness (6Qi) of the diaphragms. Various analysis with 3, 4, 5 edge fasteners; 4, 5 

and 6 side-lap fasteners were conducted. 

The effects of wider decks and mid-span cross frame were also investigated. A 

list of analyses conducted throughout the study is represented in the Appendix A. 

 

4.3. Numerical Analysis Process 
 

Numerical study started with the definition of the finite element model. Girders, 

shear diaphragm, diaphragm-girder connectors, side-lap connectors and cross frame (if 

exists) were modeled respectively. After that, load value of each node corresponding to 

a bending stress level of 210 MPa is calculated. Following this preliminary step 

numerical analysis by ANSYS (2007) performed with 3 consecutive steps: 

 

4.3.1. Eigenvalue Buckling Analyses 
 

Eigenvalue buckling analyses provided elastic bifurcation loads of perfectly 

straight members, in other words a member without any initial imperfection. Eigenvalue 

buckling analyses were conducted on each configuration. First of all eigenvalue 

buckling analyses were conducted on a single perfectly straight girder. Analysis output 

of section Slender-160#1 with a span to depth ratio of 10 is given in Figure 4.2. 

Slender-160#1 demonstrated lateral torsional buckling as the top flange translated in 

lateral direction and the web rotated through the girder.  
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Figure 4.2. Single girder eigenvalue buckling analysis output 
 

The purpose of conducting eigenvalue buckling analyses on single girders 

initially was to get an estimate for the buckling load inputted in ANSYS (2007). 

Following this analyses twin-girder systems with shear diaphragm bracing were 

conducted. The area of the diagonal truss elements of the shear diaphragm FEA model 

was increased incrementally until the buckling load created a bending stress of 210 MPa 

at the midspan extreme fiber.  

Eigenvalue buckling analysis on the twin girder system with Slender-160#1 

section and an L/d ratio of 10 pointed out with a factored load level of 21032.1 

Newton’s. The factored load level corresponds to a 210 MPa bending stress level in the 

girders. And the corresponding stiffness is 2320 kN/rad. This value is the ideal stiffness, 

Qi of the shear diaphragm.  
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4.3.2. Shear Frame Analyses 
 

Large displacement analyses were conducted on twin girder systems with 

diaphragm stiffnesses of two, three, four, five, and six times the ideal stiffness. Shear 

displacement tests were conducted on a cantilever test frame FEA model in order to 

calculate the area of the diagonal truss elements that correspond to the specific 

diaphragm stiffnesses Again for Slender-160#1 section with an L/d ratio of 10; twice 

the ideal stiffness, 2Qi is equal to 4640 kN/rad. Test frame analysis output is given in 

Figure 4.3. In Figure 4.3 non-displaced state and displaced state of a test frame analysis 

are demonstrated together. Shear displacement is noticeable in Y direction with the 

amount of 0.53 mm’s. By using the amount of displacement and Equation 2.8 and 2.7, 

4640 kN/rad stiffness was calculated consequently. 

 

 
 

Figure 4.3. Test frame analysis output 
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4.3.3. Large Displacement Analyses 
 

After gathering the diagonal truss member area for specific stiffness values, 

large displacement analyses on imperfect girders were conducted. Figure 4.4 

demonstrates the support conditions, loads and the entire geometry of section Slender-

160#1. Figure 4.5 is the large displacement analysis output of section Slender-160#1 

with an L/d ratio of 10 and twice the ideal stiffness. Displaced state in Figure 4.5 is 

scaled up 5 times the original. The contour plot demonstrates the displacement in z-

direction. 

Twin girder-shear diaphragm system was subjected to uniformly distributed 

loading in gravitational direction at each mid node of the top flange through the girder. 

Load was applied in 12 steps: 3 steps with 20% increment, 2 steps with 10% increment, 

2 steps with 5% increment and 5 steps with 2% increment. Each load step involved 105 

sub steps. In each sub step; displacement, force and moment convergence criteria were 

checked. Some analyses were terminated due to insufficient convergence criteria. 

 

 
 

Figure 4.4. Slender-160#1 pre-processed state 
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Figure 4.5. Slender-160#1 post-processed state 
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CHAPTER 5 

 

CALCULATED STIFFNESS REQUIREMENTS 

 
5.1. Introduction 

 

The general philosophy for the design of stability bracing systems is to enable 

the braced member to support the design load while controlling deformations. In order 

to achieve this, an adequate bracing system must have sufficient strength and stiffness 

(Winter, 1960). Strength requirements for bracing members are often developed for 

specific brace stiffness.  

In this part related results on stiffness of the deck systems obtained by Akbaba 

(2015) in a parallel companion study are reported in order to provide integrity on the 

presentation. 

 

5.2. Results 
 

Table 5.1 and Table 5.2 demonstrates the midspan twist ratio and edge fastener 

maximum resultant brace force, side-lap fastener maximum brace force results of stocky 

doubly symmetric sections respectively. 

Mid-span twist ratio was calculated as the amount of rotation at the mid-span 

section around the x-axis with respect to center of twist to the amount of initial 

imperfection. Maximum force of a fastener occurred at the end of 12th load step that 

corresponds to a bending stress level of 210 MPa.  

Although several cases were analyzed for the twin girder-shear diaphragm 

system, most of the analyses were performed in a standard configuration. A standard 

twin girder-shear diaphragm system consists of 16 gauge thick deck sheets with 4 edge 

fasteners on both sides connecting each deck sheet to the girder and 5 side-lap fasteners 

on each sheet-to-sheet connection. Results presented in the following tables were 

constructed on the standard configured systems. 
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Table 5.1. Stocky sections mid-span twist ratio 
 
 

 

WSR = 60 30 X 4.51 3.49 3.11

2.48 2.27

25 5.79 3.38 2.82 2.57

15 4.10 2.77

d = 732 mm
20 4.38 2.92

2.34 2.13

30 X 4.02 3.22 2.89

bf = 140 mm 15 4.29 2.84 2.37 2.15

25

Stocky#1
(SEC2)

20 4.37 2.90 2.46 2.24

Section 
Designation

Section 
Properties

WSR = 60

Stocky#2
(SEC3)

bf = 280 mm

4Qideal3Qideal2Qideal

θT/θo

5Qideal

L/d

d = 366 mm
5.39 3.25 2.73 2.48

 
 

Table 5.2. Stocky sections brace forces 
 

 

32000 2895910296 8199 7420 40212WSR = 60 30 X

20545

22100

5650

657525 7631

24972 21931

2385729872 25681

15 30345

35447

48761

4715

d = 732 mm
20

5683 5019

30 1938

bf = 140 mm 15

5069

25

Stocky#1
(SEC2)

7704

11489

1412 1327

1768

20

1445 1281 1204 5542

Section 
Designation

Section 
Properties

WSR = 60

Stocky#2
(SEC3)

bf = 280 mm

2Qideal5Qideal4Qideal

1598

3Qideal

Fbr-side (N)

5Qideal

6826

L/d

4832 4494

d = 366 mm

7265 6251 58121490

19531 18349

1601

2360

1852

X 9157

Fbr-edge (N)

3Qideal 4Qideal

X

12425

9046

7739

X

2927

2251

1971

2Qideal

6184 5407

7502

8786

6408 5303

6108

 



 

 52 

Cross marks in the last row of the Table 5.1 and Table 5.2 implies that Stocky 

#1 and Stocky#2 section analysis with an L/d ratio of 30 did not converge with two 

times the ideal stiffness. 

Table 5.3 and Table 5.4 demonstrate the midspan twist ratio and edge fastener 

maximum resultant brace force, side-lap fastener maximum brace force results of 

slender doubly symmetric sections respectively. Table 5.5 and Table 5.6 demonstrate 

the results for singly symmetric sections in the same way with doubly symmetric 

sections. 

 

Table 5.3. Slender doubly symmetric sections mid-span twist ratio 
 

 
Section 

Designation
Section 

Properties L/d
θT /θo

2Qideal 3Qideal 4Qideal 5Qideal

Slender-
160#1

bf = 300 mm 10 3.83 2.72 2.36

d = 1464 mm 15 3.99 2.87 2.50

Slender-
100#1

bf = 300 mm 10 3.57 2.57 2.24

15 4.74 3.30 2.87

d = 1464 mm 15 4.22 2.98 2.59 2.40

2.39 2.22

3.13 2.74 2.55

2.52 2.34

2.18

Slender-
100#2

10 3.74 2.73

Slender-
160#2

10

2.66

3.96 2.88

15 4.38

2.08

2.33

bf = 300 mm

d = 1464 mm

bf = 300 mm

d = 1464 mm
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Table 5.4. Slender doubly symmetric sections brace forces 
 

 

8772

10424

7772

9117

Fbr-side (N)

5Qideal

6618

4Qideal2Qideal 3Qideal

7779

6191

10225

13591

9705

7042

9759 7319

11476 8407 7475

9212 8238

8205

Section 
Designation

Section 
Properties L/d

Fbr-edge (N)

2Qideal 3Qideal 4Qideal 5Qideal

6549

10306

Slender-
160#1

bf = 300 mm 10

d = 1464 mm 15

Slender-
100#1

bf = 300 mm 10

15

7758 6981

12354

d = 1464 mm 15

110901248317011

9151

15348 10969

12124

7991

Slender-
100#2

10

13344

Slender-
160#2

21725 15982

15520 11724 10525

14234

10

15

9976

17405 13222 11899 11275

15857

19603 13984 12361 11612

14608 10738 9614 8990

12486 9364 8365

9989 8990 854913110

11861 10613 9989

bf = 300 mm

d = 1464 mm

bf = 300 mm

d = 1464 mm
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Table 5.5. Slender singly symmetric sections mid-span twist ratio 
 

 

bcf = 210 mm
Iyc/Iy  = 0.19
d = 1464 mm
WSR = 100
bcf = 240 mm
Iyc/Iy  = 0.29
d = 1464 mm
WSR = 100
bcf = 270 mm
Iyc/Iy  = 0.39
d = 1464 mm
WSR = 100
bcf = 210 mm
Iyc/Iy  = 0.19
d = 1464 mm
WSR = 160
bcf = 240 mm
Iyc/Iy  = 0.29
d = 1464 mm
WSR = 160
bcf = 270 mm
Iyc/Iy  = 0.39
d = 1464 mm
WSR = 160

4.16 2.91 2.52 2.34

3.66 2.61 2.26 2.10

4.01 2.81 2.44 2.26

4.02 2.77 2.39 2.21

3.57 2.52 2.19 2.03

3.84 2.73 2.38

3.51 2.46 2.13 1.97

3.96 2.81 2.45 2.28

3.49 2.50 2.18 2.02

2.21

3.33 2.41 2.10 1.95

3.73 2.66 2.32 2.16

3.24 2.34 2.05 1.90

θT /θo

2Qideal 3Qideal 4Qideal 5Qideal

15
SS-160# 39

10

15
SS-160# 29

10

15
SS-160# 19

10

Section 
Designation

Section 
Properties L/d

15
SS-100# 39

10

15
SS-100# 29

10

15
SS-100# 19

10
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Table 5.6. Slender singly symmetric sections brace forces 
 

 

bcf = 210 mm
Iyc/Iy  = 0.19
d = 1464 mm
WSR = 100
bcf = 240 mm
Iyc/Iy  = 0.29
d = 1464 mm
WSR = 100
bcf = 270 mm
Iyc/Iy  = 0.39
d = 1464 mm
WSR = 100
bcf = 210 mm
Iyc/Iy  = 0.19
d = 1464 mm
WSR = 160
bcf = 240 mm
Iyc/Iy  = 0.29
d = 1464 mm
WSR = 160
bcf = 270 mm
Iyc/Iy  = 0.39
d = 1464 mm
WSR = 160

6116

53866917 8563 6380 5704

12985 9402 8328

7317

5663

7829 10171 7353 6515

5319

10925 8178

8178 7242 6792 8880 640711325

5981 8076 5697 5001 468310376

7657 5636 5015 47319801 7229 6443 6068

7279 6393

5693

7353 6920

8852 6430

10600 9427 8877 11246 8259

9320 7002 6278

14409

4190

5941

4454

11974 9027 8103 7666

5356 6914 5021

12848 9427 8365

7229

5792 54476992 8982 6535

53126842 8319 6265 5616

7878 10016 7346 6522 6137

10675 8066

8390 744111512

7576 5657 5055 47719701 7254 6493 6143

2Qideal 3Qideal 4Qideal

Fbr-edge (N) Fbr-side (N)

5Qideal 2Qideal 3Qideal 4Qideal 5Qideal

15
SS-160# 39

10

15
SS-160# 29

10

15
SS-160# 19

10

Section 
Designation

Section 
Properties L/d

15
SS-100# 39

10

15
SS-100# 29

10

15
SS-100# 19

10

 
 

According to the results in the Table 5.1 to Table 5.6; providing twice the ideal 

stiffness results in relatively large normalized mid-span twist ratio with respect to three, 

four and five times the ideal stiffness. For twice the ideal stiffness; in Table 5.1 sections 

with span to depth ratio of 30 resulted with a mid-span twist ratio almost six. Increasing 

the diaphragm stiffness to three times the ideal stiffness (a 50% increase in brace 

stiffness with respect to twice the ideal stiffness), decreased the mid-span twist ratio of 

the same sections by approximately 40%, 28%, and 29% for stocky, slender doubly 

symmetric and slender singly symmetric sections, respectively. However, twist ratio 

still exceeds three. Following that, increasing the diaphragm stiffness to four times the 

ideal stiffness (a 33% increase in brace stiffness with respect to three times the ideal 
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stiffness); decreased the mid-span twist ratio of the same sections by approximately 

17%, 13%, 13%. In case of five times the ideal stiffness, mid-span twist ratio results are 

decreased by at least 8% with respect to four times the ideal stiffness. It was concluded 

in the study of Akbaba (2015) that providing four times the ideal stiffness was sufficient 

to control the deformations. Further increasing the stiffness to five times the ideal value 

(a 25% increase in brace stiffness with respect to four times the ideal stiffness) 

decreased the rotations by only 8%. 

According to Table 5.2, Table 5.4 and Table 5.6 above; analyses with larger 

diaphragm stiffness resulted with lower brace force values. On the other hand, 

increasing the span to depth ratio resulted in larger brace force values, which implies an 

increase of the required diaphragm stiffness. It can also be observed in the tables that 

side-lap connections are more critical than edge connections. The side-lap fastener 

forces are higher than the edge fastener connections and the capacity of side-lap 

connections is smaller than that of the edge fastener connections. In addition; among the 

three section types, the highest brace forces develop in doubly-symmetric slender 

sections since these sections could sustain higher moments, therefore higher 

compression forces, due to larger moment of inertias. 

Increasing the diaphragm stiffness to three times the ideal stiffness (a 50% 

increase in brace stiffness with respect to twice the ideal stiffness) resulted in a decrease 

in edge and side-lap fastener brace forces with equal amounts of 35%, 26%, and 26% 

for stocky, slender doubly symmetric and slender singly symmetric sections, 

respectively. Increasing the diaphragm stiffness to four times the ideal value, further 

decreased edge and side-lap fastener brace forces for an equal amount of 14%, 11% and 

11% with respect to three times the ideal stiffness. In case of five times the ideal 

stiffness (a 25% increase in brace forces with respect to four times the ideal stiffness), 

edge and side-lap fastener brace forces decreased an additional amount of 

approximately 6% with respect to four times the ideal stiffness. It was reported that 

increasing the diaphragm stiffness to six times the ideal stiffness reduced the brace 

forces 4%. Similar to the results of mid-span twist ratio, providing a diaphragm stiffness 

of four times the ideal value was sufficient to control the brace forces.  

According to the results on both twists and brace forces, a diaphragm stiffness 

equal to four times the ideal value was recommended to control deformations and brace 

forces for shear diaphragms bracing steel I-beams. 
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CHAPTER 6 

 

CALCULATED STRENGTH REQUIREMENTS 

 
6.1. Introduction 

 

This chapter presents finite element analysis results that are used to develop 

strength requirements for stocky and slender steel I-beams that are braced by shear 

diaphragms. Past studies (Luttrell, 1981; Davies & Bryans, 1982) on strength and 

stiffness of shear diaphragms showed that the shear strength of a diaphragm is generally 

controlled by either the shear strength of the longitudinal edge connections (sheet to 

structural member connection along the edges) or shear strength at interior connections 

between panels (sheet to sheet connections along side-laps). Hence, strength 

requirements for shear diaphragms should address both edge and side-lap fasteners. In 

order to investigate the strength requirements a numerical study that involves large 

displacement analyses is conducted. Noting that global directions are clearly available 

in Figure 4.4 and Figure 4.5. Results of the large displacement analyses related to 

strength requirements mainly consist of the following data: 

 Fastener brace forces in the deck-girder connection through global z-

axis, 

 Fastener brace forces in the deck-girder connection through global x-

axis, 

 Fastener brace forces in side-lap (deck  to deck) connections through 

global z axis, 

Upon completion of analysis, the data output was stored in an Excel data sheet and 

Matlab (2012) was used for processing the data. 

In order to make generalizations about the behavior and compare the results of 

various analyses on the same basis, deck brace forces were normalized. Through 

normalization process brace force requirements for both deck to girder connection 

fasteners and sheet to sheet connection fasteners were obtained. Brace force 

requirements for different deck configurations were also sought. Prior to the 

normalization process, brace force distributions through the girder are plotted on the 
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following pages for both edge and side-lap connections. Consecutively, normalized 

brace force distribution plots are given. 

As indicated in Chapter 5.2, figures in this Chapter were also plotted according 

to the standard twin girder-shear diaphragm system analyzes. As previously explained 

the standard twin girder-shear diaphragm system consists of a deck system with a 

stiffness of four times the ideal stiffness, 1.52 mm (16 gauge) thick decks, 4 edge 

fasteners on both sides connecting each deck sheet to the girder, and 5 side-lap fasteners 

on each sheet-to-sheet connection. 

Table 6.1 presents the properties of the sections utilized in the study. 

 

Table 6.1. Section properties 
 

 SECTION
DESIGNATION

λweb
d

(mm)
Imajor

(mm^4)
M210 MPa

(kNm)
Stocky#1 58.0 366 101381976 116.34

Stocky#2 58.0 732 1622111616 930.72

Slender-100#1 100.0 1464 11097305304 3183.65

Slender-160#1 160.0 1464 9848060190 2825.26

Slender-100#2 100.0 1830 20584007133 4724.20

Slender-160#2 159.9 1830 17446895083 4004.21

SS-100# 19 100.0 1464 8981140031 2308.88

SS-100# 29 100.0 1464 9655128756 2566.65

SS-100# 39 100.0 1464 10363586836 2857.93

SS-160# 19 160.1 1464 7626892659 1895.27

SS-160# 29 160.0 1464 8352439423 2169.96

SS-160# 39 160.1 1464 9096758487 2479.72  
 

6.2. A Closer Look to a Deck Sheet 
 

 In this part the displacement and brace force results in the fasteners of a 

single deck sheet is presented to clarify the force distribution in a single deck.  Figure 

6.1 presents the total displacement contour plot of Slender-100#2 section with an L/d 

ratio of 10. The single deck location which is investigated here is indicated with a 

thunder mark on the figure. 
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Figure 6.1. Total displacement contour plot of Slender-100#2 section with L/d 10 
 

Figure 6.2 demonstrates the single deck sheet with finite element identification 

numbers representing each fastener on the left hand side and the fastener brace forces on 

the right hand side. Table 6.2 presents the displacement and the brace force results of 

the fastener elements. 
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Figure 6.2. Fastener brace forces in a single deck 
 

Table 6.2. Displacement and brace force values of fasteners in a single deck 
 

 

i j i j Δj-i i j Δj-i i j i j

1959 2853 7499 0.61142 0.46076 -0.1507 6.1954 5.8794 -0.316 -10429.0 10429.0

1960 2891 7500 0.49433 0.33019 -0.1641 5.7257 5.6347 -0.091 -3002.3 3002.3

1961 2929 7501 0.38375 0.23551 -0.1482 5.2615 5.3688 0.1073 3542.2 -3542.2

1962 2967 7502 0.2799 0.28004 0.00014 4.7999 5.1254 0.3255 10742.0 -10742.0

2439 2853 7499 0.61142 0.46076 -0.1507 6.1954 5.8794 -0.316 -4971.0 4971.0

2440 2891 7500 0.49433 0.33019 -0.1641 5.7257 5.6347 -0.091 -5416.0 5416.0

2441 2929 7501 0.38375 0.23551 -0.1482 5.2615 5.3688 0.1073 -4891.0 4891.0

2442 2967 7502 0.2799 0.28004 0.00014 4.7999 5.1254 0.3255 4.6 -4.6

2603 7498 7619 0.61157 0.99454 0.38297 6.523 5.8791 -0.6439 -6.4 6.4 -46019.0 46019.0

2604 7502 7623 0.28004 0.68484 0.4048 5.1254 4.5029 -0.6225 -6.6 6.6 -44495.0 44495.0

2079 6292 7619 0.99467 0.99454 -0.0001 6.1965 5.8791 -0.3174 -10471.0 10471.0

2080 6330 7620 0.88548 1.0359 0.15042 5.7269 5.6345 -0.0924 -3049.0 3049.0

2081 6368 7621 0.78219 0.94633 0.16414 5.2627 5.3686 0.1059 3494.8 -3494.8

2082 6406 7622 0.68497 0.83343 0.14846 4.8011 5.1252 0.3241 10696.0 -10696.0

2559 6292 7619 0.99467 0.99454 -0.0001 6.1965 5.8791 -0.3174 -4.6 4.6

2560 6330 7620 0.88548 1.0359 0.15042 5.7269 5.6345 -0.0924 4964.5 -4964.5

2561 6368 7621 0.78219 0.94633 0.16414 5.2627 5.3686 0.1059 5416.2 -5416.2

2562 6406 7622 0.68497 0.83343 0.14846 4.8011 5.1252 0.3241 4898.6 -4898.6

Element #
Node # Fx (N)

X

X

Ux (mm) Uz (mm)

X

X

Fz (N)
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First column in Table 6.2 identifies fastener element identification numbers in 

the finite element model. These numbers are associated with the actual locations in 

Figure 6.2. Table 6.2 consists of eight dimensionless spring elements in the south girder 

– element # 1959:1962 in z direction and element # 2439:2442 in x direction-; two axial 

elements, element # 2603-2604 which represents the connection to the adjacent sheets 

on both sides; eight dimensionless springs in the north girder- element # 2079:2082 in z 

direction and element # 2559:2562 in x direction-. Following two columns on the table 

displays first and last node of each element. Following columns display the 

displacement of the first and the last node of the each element, the difference of the 

nodal displacements respectively for both directions. Last columns are the fastener 

brace forces in global directions. These values are the brace forces generated in the 

deck-girder connections due to the shear displacement of the deck. Note that the values 

related to side-lap forces are the total of 5 side-lap fasteners. Consequently equilibrium 

of the forces and the moment with respect to deck mid is calculated as follows: 

 

ΣFy=46019+10429+3002+10471+3049-3542-10742-44495-3494-10696=0 → OK 

ΣFx= 4964+5416+4899+4.6-4971-5416-4891-4.6=0 → OK 

ΣMdeck-mid= 46019*0.61/2+44495*0.61/2+10429*0.61/2+3002*0.61/6+3542*0.61/6 

+10742*0.61/2+10471*0.61/2+3049*0.61/6+3494*0.61/6+10696*0.61/2-

(4971+5416+4891-4.6)*2.74/2-(4964+5416+4899-4.6)*2.74/2=0 → OK 

 

6.3. Results on Stocky Sections 
 

6.3.1. Fastener Force Distribution 
 

Figure 6.3 presents the edge fastener resultant force distribution of stocky 

sections. Only the results of Stocky#1 L/d 30 and Stocky#2 L/d 30 configurations were 

plotted to present a clear picture. In Figure 6.3 horizontal axis represents the fastener 

locations through the girder. Vertical axis represents the resultant brace forces of z and 

x directions. In the figure Stocky#1 section is represented with asterisk. Circle markers 

indicate the Stocky#2 section. In the figure each deck is represented with a continuous 

line with 4 markers, since each deck and girder connection was provided with 4 

fasteners. 
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Figure 6.3. Stocky sections edge fastener resultant brace force distribution 
 

In Figure 6.3 horizontal axis is limited to the half-span since the distribution of 

brace forces is symmetrical with respect to mid-span. According to the Figure 6.3, the 

maximum brace force of the edge fasteners in a single deck generates within the 1st and 

the last fasteners. Figure 6.3 also validates the edge fastener force distribution as 

aforementioned in Figure 3.9. It is notable that considerably higher brace forces develop 

in Stocky#2 section as compared to those that develop in Stocky#1 section, as 

previously indicated in Chapter 5.  

Figure 6.4 presents the side-lap fastener brace force distribution of stocky 

sections. In this figure results of remaining configurations, which were not shown in 

Figure 6.3, are also added to the L/d 30 results. Horizontal axis represents the side-lap 

fastener locations through the girder in Figure 6.4. Markers located at x=0 indicates the 

brace force value that develop in deck to diaphragm fasteners, which were represented 

by additional spring elements that connect the girder mid-points at the support to end of 

the transverse diagonal truss element of the shear diaphragm FEA model. As previously 

mentioned in Chapter 3 the ends of the girders at the supports are generally connected to 

each other by transverse diaphragms. At the supports metal deck forms are generally 

connected to these diaphragms. Vertical axis represents the brace force of a single side-

lap fastener in z direction. 
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Figure 6.4. Stocky sections side-lap fastener brace force distribution 
 

According to Figure 6.3 and Figure 6.4; brace forces tend to increase with 

increasing girder span length. It can also be seen in both figures that along the length of 

the beam maximum brace forces occur around quarter span, where the shear 

deformations are maximum. 

 

6.3.2. Normalized Fastener Force Distribution 
 

Fastener brace force distribution in Figure 6.3 and Figure 6.4 can be used to 

estimate the maximum fastener brace force value in diaphragm systems that brace steel 

I-girders. Many parameters affect the bracing behavior of the diaphragm in steel girder- 

diaphragm systems. Helwig & Yura (2008-II) used span-to-depth ratio, girder moment 

of inertia in bending and the cross sectional depth to normalize the brace forces. In this 

part brace forces are normalized in the same practice with Helwig & Yura (2008-II). 

Normalization is demonstrated step by step in the following figures. 

Before the normalization process; Figure 6.3 is enlarged to Figure 6.5. As 

distinct from Figure 6.3, Figure 6.5 involves all the stocky section analysis results with 

the standard deck fastener configuration. Since it is obvious that maximum resultant 

brace force occurs within the first edge fastener in a deck sheet; each deck is 

represented only with the first edge fastener result in Figure 6.5. 
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Figure 6.5 Edge fastener resultant brace force ratio distribution 
 

In Figure 6.5 horizontal axis represents the fastener locations through the girder.  

Horizontal axis covers the full span since the distribution slightly differs with respect to 

mid-span. Vertical axis represents the resultant brace forces of z and x-directions.  

Same as in Figure 6.3 and Figure 6.4; brace forces are separated mainly 

according to the girder type in Figure 6.5. In addition, each brace force distribution 

group is also sub-divided by the span-to-depth ratio. According to that observation, 

resultant brace forces in Figure 6.5 and side-lap fastener brace forces in Figure 6.4 are 

normalized by the maximum applied beam moment, MU in Figure 6.6 and Figure 6.7. 
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Figure 6.6 Stocky sections edge fastener normalized resultant brace force ratio 
distribution-Step 1 
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Figure 6.7 Stocky sections side-lap fastener normalized brace force ratio distribution-
Step 1 

 

In Figure 6.6 vertical axis represents the normalized resultant brace forces of z 

and x-directions. Resultant brace forces were normalized by the maximum applied 

beam moment, MU. Figure 6.7 presents the normalized side-lap fastener brace forces 

with respect to Figure 6.4. Similar to the Figure 6.6, all the stocky section analysis 
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results with the standard configuration are demonstrated in Figure 6.7. Horizontal axis 

covers the full span since the distribution slightly differs with respect to mid-span. 

Horizontal axis represents the side-lap fastener locations through the girder. Vertical 

axis represents the brace force of a single side-lap fastener in z-direction that 

normalized by the maximum applied beam moment, MU. Markers located at x=0 

indicates the normalized brace force value of a single fastener on sheet and the girder 

connection located transversely to twin girder-diaphragm system at both ends. Its 

noticed in Figure 6.6 and Figure 6.7 that normalizing the brace forces approached the 

brace force distribution of Stocky#1 and Stocky#2 but the distributions are still 

dominated by L/d ratio. According to that, normalized brace forces in Figure 6.6 and 

Figure 6.7 are normalized again by the span-to-depth ratio, L/d in Figure 6.8 and Figure 

6.9. 
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Figure 6.8 Stocky sections edge fastener normalized resultant brace force ratio 
distribution-Step 2 
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Figure 6.9 Stocky sections side-lap fastener normalized brace force ratio distribution-
Step 2 

 

Its noticed in Figure 6.8 and Figure 6.9 that normalizing the brace forces 

approached the brace force distribution of different L/d ratio but the distributions are 

still dominated by section type. According to that, normalized brace forces in Figure 6.8 

and Figure 6.9 are further normalized with girder cross sectional depth, d in Figure 6.10 

and Figure 6.11. 
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Figure 6.10. Stocky sections edge fastener normalized resultant brace force ratio 
distribution-Step 3 
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Figure 6.11. Stocky sections side-lap fastener normalized brace force ratio distribution-
Step 3 

 

It is noticed in both Figure 6.10 and Figure 6.11 that normalized force 

distribution curves for L/d ratios of 20, 25 and 30 coincide with each other. It is clear 

that in both figures normalized brace force value maximizes around the 20% portion of 

the girder end. Maximum normalized force ratio values are 0.00025 and 0.00020 for 

edge and side-lap fasteners, respectively. For L/d ratio of 10 these values tend to 

increase by approximately 20% for both graphs. 

 

6.4. Results on Slender Doubly Symmetric Sections 
 

In this part results are presented for slender doubly symmetric sections. Figures 

presented in this part consider the same trend with the figures on stocky sections. 

 

6.4.1. Fastener Force Distribution 
 

In Figure 6.12 edge fastener resultant brace force distribution of slender doubly 

symmetric sections is presented. Only the results of Slender-100#1 L/d 15 and Slender-

160#2 L/d 15 configurations were plotted. In the figure, Slender-100#1 L/d 15 section is 
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represented with asterisk. Circle markers represent the Slender-160#2 L/d 15 section 

series.  

Figure 6.12 indicates that Slender-160#2 L/d 15 section with overall section 

depth of 1830 mm analyses resulted with higher brace forces with respect to Slender-

100#1 L/d 15 with overall section depth of 1464 mm. 
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Figure 6.12. Slender doubly symmetric sections edge fastener resultant brace force 
distribution 

 

Figure 6.13 presents the side-lap fastener brace force distribution of slender 

doubly symmetric sections. Only the results of Slender-100#1 L/d 15 and Slender-

160#2 L/d 15 configurations were plotted in order to provide continuity with Figure 

6.12. Similar to the previous figure, Figure 6.13 indicates that Slender-160#2 section 

with L/d of 15 results with higher brace forces with respect to Slender-160#2 section 

with L/d of 15. 
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Figure 6.13. Slender doubly symmetric sections side-lap fastener brace force 
distribution 

 
6.4.2. Normalized Fastener Force Distribution 

 

Figure 6.14, Figure 6.15 demonstrates the edge fastener normalized resultant 

brace force ratio distribution and the normalized side-lap fastener brace force ratio 

distribution of slender doubly symmetric sections respectively. 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-0.0005

-0.0004

-0.0003

-0.0002

-0.0001

      0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

x/L

F br
-r

es
d2 /M

UL

 

 
Slender 100#1 L/d10
Slender 100#1 L/d15
Slender 160#1 L/d10
Slender 160#1 L/d15
Slender 100#2 L/d10
Slender 100#2 L/d15
Slender 160#2 L/d10
Slender 160#2 L/d15

 
 

Figure 6.14. Slender doubly symmetric sections edge fastener normalized resultant 
brace force ratio distribution 
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Figure 6.15. Slender doubly symmetric sections side-lap fastener normalized brace 
force ratio distribution 

 
In Figure 6.14 and Figure 6.15, analyses with L/d ratio of 10 and 15 are 

indicated with square and triangle markers respectively. It can be seen in both figures 

that analyses with lower L/d ratio result with higher normalized brace force ratios. 

Another observation that can be made from both figures is that cross sectional depth 

makes a clear distinction on the normalized brace force ratio results. Sections with 

higher depth have higher brace forces. 

Analyses with web slenderness ratio of 100 and 160 are illustrated with 

continuous and dashed lines, respectively, in Figure 6.14 and Figure 6.15. It can be seen 

in both figures that analyses with lower web slenderness ratio results with higher 

normalized brace force ratios.  

For L/d ratio of 15 the maximum normalized brace force ratio values are 

0.00040 and 0.00030 for edge and side-lap fasteners, respectively. For L/d ratio of 10, 

these values tend to increase by approximately 27% for both graphs. 

 

6.5. Results on Slender Singly Symmetric Sections 
 

In this part results are presented for slender singly symmetric sections. Figures 

presented in this part show the same trend with the previous figures on stocky and 

slender doubly symmetric sections. 
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6.5.1. Fastener Force Distribution 
 

In Figure 6.16 edge fastener resultant brace force distribution of slender singly 

symmetric sections is presented. Only the results of SS-100#19 L/d 15 and SS-100#39 

L/d 15 configurations were plotted. In the figure SS-100#19 L/d 15 is illustrated with 

asterisk markers. Circle markers represent the SS-100#39 L/d 15 section series. 
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Figure 6.16. Slender singly symmetric sections edge fastener resultant brace force 
distribution 

 
Figure 6.17 presents the side-lap fastener brace force distribution of slender 

singly symmetric sections. Only the results of SS-100#19 L/d 15 and SS-100#39 L/d 15 

configurations were plotted in order to provide continuity with Figure 6.16. In the figure 

SS-100#19 L/d 15 is represented with asterisk. Circle markers represent the SS-100#39 

L/d 15 series. 

Similar to Figure 6.16, Figure 6.17 indicates that the brace forces in section SS-

100#39 with an L/d of 15 are higher than those of section SS-100#19 L/d 15. 
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Figure 6.17. Slender singly symmetric sections side-lap fastener brace force distribution 
 

 

6.5.2. Normalized Fastener Force Distribution 
 

Figure 6.18 and Figure 6.19 demonstrate the edge fastener normalized resultant 

brace force ratio distribution and the side-lap fastener normalized brace force ratio 

distribution of slender singly symmetric sections, respectively. 
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Figure 6.18. Slender singly symmetric sections edge fastener normalized resultant brace 
force ratio distribution 
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In Figure 6.18 and Figure 6.19, analyses with L/d ratio of 10 and 15 are 

represented with normal and filled markers respectively. Similar to the slender doubly 

symmetric sections results, it is seen in both figures that L/d ratio separates results in a 

major way. Analyses with lower L/d ratio results with higher normalized brace force 

ratios.  

Analyses with web slenderness ratio of 100 and 160 are represented with 

continuous and dashed lines respectively in Figure 6.18 and Figure 6.19. It is figured 

out from both figures that analyses with lower web slenderness ratio results with higher 

normalized brace force ratios.  

It is also noticed in both Figure 6.18 and Figure 6.19 that normalized force ratio 

distribution curves related to each analysis tend to coincide on each other for L/d ratio 

of 10 and 15. It is clear that in both figures normalized brace force value maximizes 

around the last 20% portion of the girder. Maximum normalized brace force ratio values 

are 0.00035 and 0.00030 for edge and side-lap fasteners respectively. For L/d ratio of 10 

these values tend to increase by approximately 34% for both graphs. 
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Figure 6.19. Slender singly symmetric sections side-lap fastener normalized brace force 
ratio distribution 
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6.6. Effect of Deck Thickness on Brace Forces 
 

Figure 6.20 and Figure 6.21 demonstrates the edge fastener brace force 

distribution and the side-lap fastener brace force distribution of Slender-100#1 section 

L/d 15 analyses with 16, 18 and 20 gauge thick decks. 

On both Figure 6.20 and Figure 6.21, analysis with 16-gauge thick deck is 

represented with asterisk marker series. 18 and 20-gauge deck analysis are represented 

with cross and circle markers respectively. 

Figure 6.20 and Figure 6.21 presents large displacement analysis results with 

three different deck thicknesses with an equal amount of deck shear rigidity, 12507 

kN/rad. Major difference between the three large displacement analyses is the amount 

of diagonal truss element area that corresponds to an equal deck shear rigidity. Diagonal 

truss element area was calculated according to the test frame analyses with different 

deck thicknesses. The difference in test frame analyses between different deck 

thicknesses is the appropriate stiffness of edge and side-lap fasteners. 
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Figure 6.20. Deck thickness effect on edge fastener resultant brace force distribution 
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Figure 6.21. Deck thickness effect on side-lap fastener brace force distribution 
 

According to the figures above, deck thickness does not have a major effect on 

brace forces as long as equal deck stiffness is provided. 

 

6.7. Effect of Deck Width on Brace Forces 
 

Figure 6.22 and Figure 6.23 demonstrate the edge fastener brace force 

distribution and side-lap fastener brace force distribution of Slender-100#1 section L/d 

15 analyses with 610 mm wide and 1220 mm wide decks. 
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Figure 6.22. Deck width effect on edge fastener resultant brace force distribution. 
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On both Figure 6.22 and Figure 6.23, analysis with 610 mm wide deck is 

represented with asterisk marker series. Analysis with 1220 mm wide deck is 

represented with circle markers. 

Figure 6.22 and Figure 6.23 presents large displacement analyses results with 

two different deck widths with an equal amount of deck shear rigidity, 12507 kN/rad. 

Diagonal truss element area values that provide the specified deck shear rigidity were 

calculated according to the test frame analysis with corresponding deck widths. 

According to the Figure 6.22, edge fastener brace forces increase by about 25% 

with a 1220 mm deck. On the other hand, deck width did not have a major effect on 

side-lap fastener brace forces according to the brace force distribution curves which are 

almost coincident in Figure 6.23. 
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Figure 6.23. Deck width effect on side-lap fastener brace force distribution 
 

6.8. Effect of Number of Edge Fasteners on Brace Forces 
 

Figure 6.24 and Figure 6.25 demonstrate the edge fastener resultant brace force 

distribution and side-lap fastener brace force distribution for Slender-100#1 section L/d 

15 analyses with 3, 4 and 5 edge fasteners on sheet and girder connection. 
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Figure 6.24. Number of edge fastener effect on edge fastener resultant brace force 
distribution 

 
On both Figure 6.24 and Figure 6.25, analysis with deck sheet-girder connection 

by 3 edge fasteners is represented with cross marker series. Analysis with 4 and 5 edge 

fasteners are represented with asterisk and circle markers, respectively. 
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Figure 6.25. Number of edge fastener effect on side-lap fastener brace force distribution 
 

Figure 6.24 and Figure 6.25 presents large displacement analyses results with 

three different deck sheet-girder connection configurations with an equal amount of 

deck shear rigidity, 12507 kN/rad. Similar to the deck thickness and deck width effect 
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investigations, diagonal truss element area values that provide the specified deck shear 

rigidity were calculated according to the test frame analysis with corresponding deck 

configurations. 

According to the figures above, an increase in the number of edge fasteners does 

not affect the brace forces generated in the side-lap fasteners. On the other hand the 

increase in the number of edge fasteners decreases the brace force level in each edge 

fastener in case of equal deck stiffness. According to the Figure 6.24, providing 3 

fasteners in deck sheet-girder connection resulted with a resultant brace force of 11100 

N. in each fastener. Further increasing the amount of fasteners decreased the resultant 

force level to 9805 N., 9194 N. for 4 and 5 fasteners respectively. 

 

6.9. Effect of Number of Side-Lap Fasteners on Brace Forces 
 

Figure 6.26 and Figure 6.27 demonstrate the edge fastener resultant brace force 

distribution and the side-lap fastener brace force distribution of Slender-100#1 section 

L/d 15 analysis with 4, 5 and 6 fasteners on sheet to sheet connections. 
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Figure 6.26. Number of side-lap fastener effect on edge fastener resultant brace force 
distribution 

 
On both Figure 6.26 and Figure 6.27, analysis with sheet to sheet connections by 

4 side-lap fasteners is represented with cross marker series. Analysis with 5 and 6 side-

lap fasteners are represented with asterisk and circle markers respectively. 
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Figure 6.26 and Figure 6.27 presents large displacement analyses results with 

three different sheet to sheet connection configurations with an equal amount of deck 

shear rigidity, 12507 kN/rad. Similar to the deck thickness and deck width effect 

investigations, diagonal truss element area values that provide the specified deck shear 

rigidity were calculated according to the test frame analysis with corresponding deck 

configurations. 

According to the Figure 6.26 and Figure 6.27, an increase in the number of side-

lap fasteners decreases the brace forces generated in a single side-lap fastener. On the 

other hand an increase in the number of side-lap fasteners decreases the brace force 

level in each edge fastener in case of equal deck stiffness. 
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Figure 6.27. Number of side-lap fastener effect on side-lap fastener brace force 
distribution 

 
According to the Figure 6.26, providing 4 fasteners in sheet to sheet connections 

resulted with a resultant brace force of 11030 N. in each deck sheet-girder connection 

fastener. Further increasing the amount of fasteners decreases the resultant brace force 

level to 9805 N., 8886 N. for 5 and 6 fasteners respectively. 

According to the Figure 6.27 providing 4 fasteners in sheet to sheet connections 

resulted with a brace force of 8817 N. in each side-lap fastener. Further increasing the 

amount of fasteners decreases the side-lap fastener brace force level to 7641 N. and to 

6740 N. for 5 and 6 fasteners respectively. 
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6.10. Comparison of the Results with Previous Studies 
 

Figure 6.28 presents the deck brace moment, Mbr comparison of section 

Stocky#2 with the Section#3 of Helwig (2008-II) with various span-to-depth ratios 

under 345 MPa bending stress level. Section#3 is an I-shaped steel girder section with a 

web height of 762 mm and a 12.7 mm web thickness. In Figure 6.28 horizontal axis 

represents mid point location of each deck through the girder. Vertical axis represents 

the deck brace moment.  

In the figure Stocky#2 section is represented with standard markers. Filled 

markers represent the Section#3 results. In Figure 6.28 horizontal axis is limited to the 

half-span according to the data from Helwig (2008-II). 

Deck moments were calculated according to the Section 6.2. According to 

Figure 6.28 results are satisfactorily close to the results by Helwig (2008-II). 
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Figure 6.28. Moment calculation and comparison with a previous study 
 

6.11. Strength Requirements 
 

Normalized brace force ratio graphs for stocky, slender doubly symmetric and 

slender singly symmetric sections in the preceding pages demonstrated the distribution 

of the normalized brace force ratios. It was observed in these figures that most of the 

curves representing several large displacement analysis coincided on each other for both 
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edge and side-lap fastener results. In addition it was also observed that some curves for 

specific L/d ratios coincided on each other but diverged from the majority. 

Vertical axis of the graphs can be named as normalization factor Xbr that 

corresponds to the ratio of, 











2

210

1

d
LM

F
X

bu

br
br . By using this ratio, brace forces can 

be obtained by Equation 7.1. 

 

 





  2210 **

d
LMXF b

ubrbr  (7.1) 

 

where, 

Fbr = Fastener brace force level; 

Xbr = Normalization factor; 

Mu-210 = Mid-span moment of steel girder or beam under 210 MPa flexural 

stress; 

Lb = Unbraced length of the steel girder or beam; 

d = Depth of the beam. 

 

Normalized brace force ratio distribution in the figures is like a sine wave. Peak 

points of these curves indicate the maximum brace force that occurred in the analyses. 

Different peak points were observed from the normalization figures for stocky, slender 

doubly symmetric and slender singly symmetric sections. Consecutive values for edge 

and side-lap fasteners are demonstrated in Table 6.3. 
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Table 6.3 Normalization factors for fastener brace forces 

 

Cross Section
Type

Cross Section 
properties

Edge Fastener 
Resultant Force

Side-Lap 
Fastener Force

λw≤ 60
L/d ≤ 15

0.00030 0.00020

λw≤ 60
L/d>15

0.00025 0.00020

λw>60
L/d ≤10

0.00050 0.00040

λw>60
L/d >10 0.00040 0.00030

λw>60
L/d ≤10

0.00045 0.00035

λw>60
L/d >10 0.00035 0.00030SI

N
G

LY
 

SY
M

.
D

O
U

BL
Y

 
SY

M
.

Xbr

NORMALIZATION FACTOR

4 EDGE, 5 SIDE-LAP FASTENER
4Qi / 210 MPa
wd=610 mm 

 
 

Note that Xbr values in the Table 6.3 are obtained directly from the peak values 

of the brace force normalization graphs. Since those graphs are the results of large 

displacement analyses with standard configurations, normalization factor values are 

directly applicable to the systems with standard configurations as indicated in the upper 

left cell in Table 6.3. 

Standard deck-girder configuration implies to the systems with: 

 Maximum flexural stress level of 210 MPa at the extreme fiber of the 

girder cross-section, 

 4 times the ideal deck stiffness, 

 610 mm deck sheet width, 

 4 fasteners in the deck sheet and girder connection, 5 fasteners in the 

adjacent sheet over laps. 

For systems with different configurations a correction factor, can be proposed 

according to the brace force distribution graphs in Section 6.6 to Section 6.9. Correction 

factor, Cbr is simply the ratio between the peak values of standard configuration and 

shifted configurations. Correction factors are listed in Table 6.4. Note that Table 6.4 can 

be directly used for configurations with 18 or 20-gauge thick decks as long as the 

necessary deck stiffness is provided. 
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Table 6.4. Correction factors for fastener brace forces 
 

Configuration type For 
Edge Fasteners

For 
Side-lap 

Fasteners
3 edge fastener 1.15 1.00
4 edge fastener 1.00 1.00
5 edge fastener 0.95 1.00

4 side-lap fastener 1.13 1.15
5 side-lap fastener 1.00 1.00
6 side-lap fastener 0.90 0.90

wd = 610 1.00 1.00
wd = 1220 1.25 1.00

Cbr
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CHAPTER 7 

 

CONCLUSIONS 

 
7.1. Summary and Conclusions 

 

In this study strength requirements of shear diaphragms used for stability 

bracing of steel I-beams and girders is investigated with a parallel companion study on 

the stiffness requirements of the shear diaphragms as well. Three-dimensional finite 

element analysis program ANSYS Mechanical APDL (2007) was used in order to 

perform parametrical studies. Parametrical studies were conducted on a twin girder-

shear diaphragm system finite element model. Finite element model was verified 

according to a full-scale twin-girder shear diaphragm buckling test conducted by 

Egilmez et al. (2005). Shear displacement analyses were conducted on a test frame 

model in order to perform large displacement analyses on the twin girder-shear 

diaphragm system with adequate stiffness values. Afterwards large displacement 

analyses were conducted on twin girder-shear diaphragm systems with various 

configurations. Distribution of the brace forces through the girders is illustrated for both 

edge and side-lap fasteners according to the large displacement analyses. In order to 

capture a general response for girders with several cross sections, brace forces were 

normalized according to the girder characteristic dimensions. 

 

According to the brace force graphs the findings are as follows; 

 

 Along the length of the beam maximum brace forces occur around 

quarter span, where the shear deformations are maximum. 

 Higher brace forces develop in sections which could sustain higher 

flexural moments, therefore higher compression forces, due to larger 

moment of inertias. 

 Increasing the span to depth ratio resulted with larger brace force values. 

 Maximum brace force of the edge fasteners in a single deck generates 

within the first and the last fasteners. 
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 The side-lap fastener forces are higher than the edge fastener connections 

and the capacity of side-lap connections is smaller than that of the edge 

fastener connections, 

 

According to the normalized brace force graphs the findings are as follows; 

 

 For the stocky sections; normalized force distribution curves for L/d 

ratios of 20, 25 and 30 coincide with each other. Curves for L/d of 10 

again coincided on each other but diverged from the majority. 

 For the slender sections, curves were coincident depending on the L/d 

ratio. Lower L/d ratio lead to higher normalized brace force ratios. In 

addition, lower web slenderness ratio resulted to lower ratios. For the 

slender singly symmetric sections, curves were coincident depending on 

the L/d ratio as well. Lower L/d ratio lead to higher normalized brace 

force ratios. In addition, lower web slenderness ratio resulted to lower 

ratios. 

 

The findings are as follows according to different deck configurations rather 

than the standard; 

 

 Deck thickness does not have a major effect on brace forces as long as 

equal deck stiffness is provided. 

 Edge fastener brace forces increased with a wider deck. On the other 

hand, deck width did not have a major effect on side-lap fastener brace 

forces. 

 Increasing the number of edge fasteners did not affect the brace forces 

generated in the side-lap fasteners. On the other hand, the increase in the 

number of edge fasteners decreased the brace force level in each edge 

fastener in case of equal deck stiffness. 

 Increasing the number of side-lap fasteners decreased the brace forces 

generated in a single side-lap fastener. On the other hand, an increase in 

the number of side-lap fasteners decreased the brace force level in each 

edge fastener in case of equal deck stiffness. 
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In conclusion, according to the normalization process an equation is proposed to 

estimate the fastener brace forces for various types of deck and girder configurations in 

the design phase of steel decks bracing steel girders. Proposed equation is scaled with a 

correction factor that serves for different systems rather than standard deck and girder 

configurations.
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APPENDIX A 

 

TABLES 

 
 

Table A.1. Cross sectional properties with finite element ratios 
 

 
SECTION

DESIGNATION

Web 
aspect 
ratio

Top flange 
aspect 
ratio

Bottom 
flange 
aspect 
ratio

Stocky#1 2.34 2.90 2.90

Stocky#2 1.17 1.45 1.45

Slender-100#1 1.74 1.36 1.36

Slender-160#1 1.74 1.36 1.36

Slender-100#2 2.19 1.36 1.36

Slender-160#2 2.19 1.36 1.36

SS-100# 19 1.75 1.94 1.36

SS-100# 29 1.74 1.69 1.36

SS-100# 39 1.74 1.51 1.36

SS-160# 19 1.75 1.94 1.36

SS-160# 29 1.74 1.69 1.36

SS-160# 39 1.74 1.51 1.36  
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Table A.2. A List of conducted finite element analyses 
 

 SECTION
DESIGNATION

# of edge 
fasteners L/d

# of 
side-lap 
fasteners

σ
(MPa)

nQi

Deck
thickness

(Ga)

wd

(mm)

15
20
25
30
15
20
25
30
15
20
25
10
15

3-5 15 5 210 4 16 610
4 15 4-6 210 4 16 610
4 15 5 210 4 16 1220
4 15 5 210 4 18-20 610

10 2-3-4-5-6
15 2-3-4-5
10
15
10 2-3-4-5
15 2-3-4-5-6
10
15
10
15
10
15
10
15
10
15
10
15

4 5 210

610162-3-4-5

16 610

Stocky#1 4

2-3-4-5

345 4

210

16 6105

210

16 6102-3-4-55

4 5 210

Stocky#2 4

4 5 210

Slender-100#1

Slender-160#1

16 6102-3-4-5

Slender-160#2 4 5 210 16 610

Slender-100#2

4

SS-160#39

SS-160#29

SS-160#19

SS-100#39

SS-100#29

SS-100#19

2-3-4-5 16 6105 210
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APPENDIX B 

 

DESIGN EXAMPLE 

 
 

Girder Properties: 

 Stocky #2 girder 

 n, Number of girders: 4 

 td, Deck thickness: 20 cm 

 sg, Girder spacing: 3.50 m 

 Lb, Unbraced length = 14.64 m 

 A, Cross sectional area: 18432 mm2 

 Sx-x: 4431999 mm3 

 

1. Design Load calculation: 

 Steel girder self weight: 

m
kN

mm
N

mm
Nmm 41.141.1106518.718432 3

52    

 Concrete slab: 

m
kNmm

m
kN 52.1620.05.36.23 3   

 Construction live load 














22 9052.140

m
kN

ft
lb  

m
kNm

m
kN 67.65.39052.1 2   

Design load:
m
kNw 60.2467.652.1641.1   

Design moment: kNmLwM b 659
8

2




  

Use a Load Factor=1.3 for the construction condition; 

Maximum bending stress: MPa
S
M

xx

1933.1σ 

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2. Check girder buckling capacity: 

 

According to the AISC (2010) limit state of lateral torsional buckling is can be 

checked according to the limiting laterally unbraced length, Lr which is defined below 

within the Equation B.1. Capacity of a girder alone can be checked with Equation 2.3 as 

well. 

 

22

00

7.0
76.6

7.0
**95.1 



















 E
F

hS
Jc

hS
Jc

F
ErL y

xxxxy
tsr  (B.1) 

 

where, 

 

Lr = Limiting laterally unbraced length for the limit state of inelastic lateral-

torsional buckling, mm 

rts = Effective radius of gyration 89.72
x

wy

S

CI
 mm; 

E = Modulus of elasticity of steel, 200 000 MPa; 

Fy = Specified minimum yield stress, 345 MPa; 

J = Torsional constant, 1489536 mm4; 

c = coefficient, 1 for doubly symmetric I-shapes; 

Sx = Elastic section modulus taken about the x-axis, 4431999 mm3; 

h0 = Distance between the flange centroids, 714 mm; 

Iy = Moment of inertia about the principal axis, 65956224 mm4; 

Cw = Warping constant, 8406035382639 mm6; 

 

Limiting laterally unbraced length, Lr is calculated as 7107 mm. Lb>Lr. Limit 

state of lateral-torsional buckling applies. Lateral torsional buckling capacity of a girder 

alone is not sufficient enough to resist a 210 MPa bending stress level. Brace is needed. 

3. Determine diaphragm properties: 

According to the Chapter 5, a deck with four times the ideal stiffness has to be 

chosen. Ideal deck stiffness can be obtained by an eigenvalue buckling analyses. In this 

design example Equation 2.15 is used for ideal deck stiffness calculation. 
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According to the Equation 2.2 Mcr is calculated as 349.98 kNm.  

Coefficient “m” is picked as 0.5 from Table 2.1 for top flange loading without 

an intermediate brace. Cb
*  is  0.80. Mu  for 210 MPa bending stress is 930.72 kNm.  

According to the data above, Qreq, Qi  is 1777.96 kn/rad. A total deck stiffness of 

7111.84 kN/rad is needed. Applying Equation 2.7 

625.250.3*
4
3*1







 

 gd s
n

ns  m. 

2709
625.2

84.7111'' 
ds

QG  kN/m/rad. 

A suitable diaphragm can be selected by using Luthrell (2004). 

 

4. Calculate brace forces according to the Equation 7.1: 

20
d
Lb  and 6058λ w . 

00018.0
00022.0








sidebr

edgebr

X
X

 

Cbr is 1.0 for a standard deck configuration. 

According to the data; 

kNF

kNF

sidebr

edgebr

32.40.1
732.0

64.1472.93000017.0

65.50.1
732.0

64.1472.93000022.0

2

2




















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