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ABSTRACT 
 

VIBRATION ANALYSIS OF ROTATING CURVED BEAMS WITH 
VARIABLE CROSS-SECTION 

 

In this study, in-plane free vibration characteristics of rotating curved beams are 

investigated by Finite Difference Method and Finite Element Method since the 

mathematical model of the present problem is based on the differential eigenvalue 

problem with variable coefficients. A computer program regarding the titled problem is 

developed in Mathematica and this program is verified by using results available in the 

literature. The effects of taper parameters of the curved beam and rotation speed on 

natural frequencies are investigated. 
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ÖZET 
 

DEĞİŞKEN KESİTLİ DÖNEN EĞRİ ÇUBUKLARIN TİTREŞİM 
ANALİZİ 

 

Bu çalışmada, dönen eğri çubukların düzlem içi titreşimleri, problemin 

matematiksel modelinin değişken katsayılı diferansiyel özdeğer problemine dayalı 

olmasından dolayı, Sonlu Farklar ve Sonlu Elemanlar Yöntemleri ile araştırılmıştır. 

Başlıktaki problem ile ilgili bir bilgisayar programı Matematica’da geliştirilmiş 

ve literatüredeki sonuçlar ile doğrulanmıştır. Kalınlık değişim parametreleri ve dönüş 

hızının doğal frekanslara etkileri araştırılmıştır. 
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CHAPTER 1 

 

GENERAL INTRODUCTION 

 
Vibration analysis is one of the most important task which is used to avoid 

collapse of whole structure because of resonance, predict and control possible failures 

and also protect adjacent structures or machines. The another important issue is 

preventing machines from spending more energy than actual need therefore engineers 

and analyzers investigate vibrations of structural elements, structures, and machines. 

Curved beams are used in many engineering applications such as aerospace, 

machinery, and architectural applications. Also they are the very critical parts of 

machine members and they are found in such as C-clamps, crane hooks, frames of 

presses, riveters, punches, shears, boring machines, planers, wheels. Curved beams can 

be classified depending on their geometrical properties. A curved beam can be in the 

shape of a space curve or a plane curve, have variable curvature and cross-section. 

There are some certain differences between curved beams and straight beams. 

First of all, in straight beams the neutral axis of the section coincides with its centroidal 

axis and the stress distribution in the beam is linear, however in curved beams the 

neutral axis of is shifted towards the center of  the curvature of beam which causes a 

nonlinear which is hyperbolic distribution of stress. Also the neutral axis will always be 

present in curved beams and the neutral axis lies between the centroidal axis and the 

center of curvature (Borasi 2002). 

In a wide variety of engineering applications rotating components are used such 

as vehicular propulsion systems, flexible rotating space booms, turbo machinery, 

automotive cooling systems etc. Rotating beams are modeled in the form of a simple 

rotating beam because of the complexity of their dynamical behavior.  

Because of the wide usage of rotating beams, many investigators have studied 

rotating beams to investigate the effects of the rotational speed, setting angle, material 

properties, pre-twist amount, shear deformation and rotary inertia on the bending 

vibrations of a rotating beam. Some of these studies for rotating straight beam are 

investigated in the next paragraphs. 
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Some of the researchers have studied approximation methods to analyze the 

vibration characteristics of rotating straight beams. For example, Young and Lin (1998) 

studied stability of coupled bending, bending vibration of pretwisted, tapered beams 

which rotate at randomly varying speeds. They used stochastic averaging method to 

derive Ito's equation for an approximation solution and obtained expressions for 

stability boundaries of the system by the second-moment and sample stability criteria. 

Hashemi (1999) investigated a new Dynamic Finite Element (DFE) formulation for the 

vibration analysis of spinning beams. They used frequency dependent trigonometric 

shape functions to find a simple frequency dependent element stiffness matrix which 

has both mass and stiffness properties. Also, they used an appropriate bisection method, 

based on a Sturm sequence root counting technique and studied flexural natural 

frequencies of cantilevered beams, for a variety of configurations. They compared the 

results which found by the Dynamic Stiffness Matrix and the classical Finite Elements 

Method, using ‘Hermite’ beam elements. Banerjee (1999) derived the dynamic stiffness 

matrix of a uniform rotating Bernoulli-Euler beam by using the Frobenius method of 

solution in power series. He investigated the free-vibration characteristics of uniform 

and non-uniform (tapered) rotating beams with particular reference to the Wittrick-

Williams algorithm to demonstrate the application of the derived dynamic stiffness 

matrix. 

Exact solutions for the bending vibrations of rotating beams have also been 

obtained by several researchers, in addition to the approximation methods described 

above. Lin et al. (2004) investigated to the vibration of a rotating damped blade with an 

elastically restrained root shown in Figure 1.1. They considered the effects of viscous 

damping and the translational and rotational damping at the root of blade. They 

simulated the flow-induced force and moment between the tips of a blade by using the 

time-dependent boundary conditions. They divided the governing equation into two 

coupled real differential equations and two coupled equations were uncoupled into an 

eighth-order characteristic differential equation. The exact steady state solution was 

obtained by using Green’s function in terms of the eight homogenous solutions. Also 

they investigated the influence of the translational, rotational and viscous damping 

constants on the frequency response curves of a rotating beam. They discovered the 

opposite influence of the transverse viscous damping constant and the root damping 

constants on the frequency of resonance. Lee and Sheu (2007) developed an exact 

power series solution for free vibration of a rotating inclined Timoshenko beam. They 
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observed both the extensional deformation and the Coriolis force will have significant 

influence on the natural frequencies of the rotating beam when the dimensionless 

rotating extension parameter is large. They discovered several general qualitative 

relations among the inclination angle, the hub radius and the natural frequencies of the 

beam without numerical analysis. Also they studied and compared the influence of 

extensional deformation in the centrifugal stiffening force term on the natural 

frequencies evaluated by the Timoshenko and the Euler beam theories. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Geometry and coordinate system of non-uniform damped beam 
(Source: Lin et al. 2004) 

 

All of the studies which mentioned above considered the beam is perfectly 

straight. There are only a few studies about the vibration characteristics of rotating 

curved beams because of the complexity of rotating curved beam. Researchers which 

have investigated the vibration characteristics of rotating curved beams, Wang and 

Mahrenholtz (1975) investigated bending vibrations of a rotating curved cantilever 

beam with centroidal axis represented by a circular arc by using Galerkin’s method. 

They used Legendre polynomials to represent the shape functions. They computed and 

presented various rotating speeds, frequencies accounting for hub size, beam cross-

section orientation and curvature by curves. They observed that for rotating beams the 

frequency generally decreases as the curvature increases, and the reduction from the 

straight beam frequency increases as the rotating speed increases. It is observed that the 
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effect of the beam cross-section orientation is significant only for the fundamental 

frequencies. Park and Kim (1999) investigated the dynamic characteristics of a rotating 

curved beam with a tip mass shown in Figure 1.2. All dynamic effects such as Coriolis 

force, centrifugal force and acceleration were included for equation of motion. They 

calculated the time responses for accelerating motion and torque driven motion for 

dynamic analysis. Then the natural frequencies for curved beams of various radius of 

curvature were investigated while the rotating speed increases. They mainly focused on 

the effect of curvature that can change the characteristics of the beam and also studied 

the effects of tip mass on the dynamic response of the beam. Lee et al (2008) 

investigated the in-plane free vibration of a rotating curved beam with an elastically 

restrained root. They neglected the effects of shear deformation and the Coriolis force 

and derived governing differential equations for the coupled bending extensional 

vibration of the curved beam using Hamilton’s principle and a consistent linearization 

approach. They used explicit relations to describe the correlation between the axial and 

radial displacements of the beam. Then they used these relations to transform the 

coupled governing differential equations into a sixth-order ordinary differential equation 

expressed in terms of the radial displacement variable only. The respective effects of the 

arc angle, the rotational speed, the hub radius and the root spring constants on the 

natural frequencies and divergent instability characteristics of a curved rotating beam 

are examined and these results are compared with those observed for a straight 

cantilever beam. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. Model of the rotating curved beam with a tip mass 
(Source: Park and Kim 1999) 
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In this study, in plane free vibration characteristics of rotating curved beams are 

studied by Finite Difference Method and Finite Element Method since the mathematical 

model of the present problem is based on the differential eigenvalue problem with 

variable coefficients. 

A computer program is developed in Mathematica and this program is verified 

by using results available in the literature. The effects of taper parameters of the curved 

beam and rotation speed on natural frequencies are investigated. 
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CHAPTER 2  

 

THEORETICAL VIBRATION ANALYSIS 

 
2.1. Introduction 

 
In this chapter, first the selected taper geometry of the curved beam is detailed 

with mathematical formulations. Then, equation of motion of the rotating curved beam 

with taper is derived for in-plane vibrations. Since the present vibration problem based 

on Differential Eigenvalue Problem with variable coefficients is not solvable exactly, 

Finite Difference and Finite Element Methods are used to reduce it to Discrete 

Eigenvalue Problem. Finally, aforementioned numerical methods are presented. 

 

2.2. Geometry of Curved Beam 

 
A rotating curved beam with variable cross-section is shown in Figure 2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Curved beam with variable cross-section 
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A planar curved beam with variable cross section is also shown inFigure 2.2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. A planar curved beam with variable cross section 

 

The breadth and depth functions of the curved beam are selected as follows: 

 

sbbsb 10)( −=      (2.1) 

 

shhsh 10)( −=      (2.2) 

 

where b0 and h0 are breadth and depth of curved beam at s=0, respectively. Also, b1 and 

h1 are breadth and depth parameters. 

 

2.3. Derivation of the Equation of Motion 

 
The Hamilton’s principle is defined as follows (Meirovitch 1967): 

 

0)(
2

1

=−∫ dtVT
t

t

δ       (2.3) 

 

where T and V are the kinetic and strain energies, respectively. For the present problem, 

kinetic energy T is given as follows (Lee et al 2008); 
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θρ
θ

dvvART pp∫=
0

0
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where pvr  is the velocity of any point P located on the curved beam axis and written as 
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Potential energy V has two parts as elastic and geometric energies. They are expressed 

as 

 

ge VVV +=        (2.6) 

 

where Ve is elastic stiffness energy and written as 
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L

L
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and Vg is geometric stiffness energy and written as 

 

( ) dsvsNV
L
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0

2)(
2
1      (2.8) 

 

where Np is normal force due to the rotation and found as 

 

))]cos(1()cos
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0

0
2
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h
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By using Equation 2.4 and Equation 2.6 in Equation 2.3, the following governing 

equations are obtained: 
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    (2.10.b) 

 

with the boundary conditions at s=0 (fixed): 

 

0=u        (2.11.a) 

 

0=v        (2.11.b) 

 

0=′v        (2.11.c) 

 

and s=L (free): 

 

0=N        (2.12.a) 

 

0=Q        (2.12.b) 

 

0=M        (2.12.c) 

 

In Equations 2.10 to 2.12, N, Q, M represent the axial normal force, the shear force, and 

the bending moment, respectively, and are given by 

 

)/)(( RvusEAN +′=      (2.13) 

 

)/)(( RuvsEIQ ′′−′′′−=     (2.14) 

 

)/)(( RuvsEIM ′−′′=     (2.15) 
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2.4. Natural Frequencies by Finite Difference Method 

 
Differential Eigenvalue Problem can be written in the following equation: 

 

)]([)]([ 2 sVMsVL ω=      (2.16) 

 

where L[ ] and M[ ] are linear differential operators having derivatives with respect to s, 

ω2 is eigenvalues and V(s) is corresponding eigenfunctions. Equation 2.16 can be 

reduced to Discrete Eigenvalue Problem in the form of  

 

}{][}{][ 2 VMVK ω=       (2.17) 

 

by using the FDM (Hildebrand 1987). In Equation 2.17, [K] and [M] are stiffness and 

mass matrices; {V} is the displacement vector which is known as eigenvector. In the 

FDM, the derivatives of dependent variables in Equation 2.16 are replaced by the finite 

differences at mesh points shown in Figure 2.3. 

There are three types of finite differences: forward, backward, and central. 

However, the central difference approach provides more accurate results. Accuracy of 

the solution obtained by FDM is based on truncation error and grid spacing. Grid 

spacing is selected by testing the convergence of results. 

 

 

 

 

 

 

Figure 2.3. A curved domain divided into six sub domains. 
(Source: Cangar 2013) 

 

The central difference derivatives are listed in Table A.1. Solutions of the Equation 2.17 

can be obtained by mathematical software such as Matlab or Mathematica. 
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2.5. Natural Frequencies by Finite Element Method 

 
 The equation of motion of a continuous system is given by 

 

0)],([)],([ =+ tsvLtsvM &&      (2.18) 

 

where L[ ] and M[ ] are linear differential operators having derivatives with respect to s. 

By using the Finite Element Method (Petyt 2010), Equation 2.18 is reduced to multi-

degree-of-freedom system. Therefore equation of motion of the system is given by 

 

0)}(]){[]([)}(]{[ =++ txGKtxM &&     (2.21) 

 

where [M], [K] and [G] are mass, elastic stiffness and geometric matrices, respectively. 

{x(t)} is displacement vector. The above equation is reduced to the following 

generalized eigenvalue equation: 

 

}0{}]){[][]([ 2 =−+ ii uMGK ω     (2.22) 

 

where ωi is ith natural frequency and {ui} is the ith vibration mode shape vector. 
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CHAPTER 3 

 

NUMERICAL RESULTS AND DISCUSSION 

 
3.1. Introduction 

 
In this chapter, the following studies are presented: 

a) Non-rotating and rotating curved beams with constant cross-section, 

b) Non-rotating and rotating curved beams with variable cross-section, 

In the computer program, rotational effect terms that appeared in Equation 2.5 

are neglected. Also, Coriolis terms in Equation 2.10a and 2.10.b are not considered. 

The present numerical results obtained for a) are compared with the results 

available in the existing literature. Material properties for numerical studies are selected 

as: Young modulus E=200 GPa, material density ρ=7850 kg/m3. 

 

3.2. Validation of the Curved Beams Model 

 

3.2.1. Non-Rotating Curved Beams with Constant Cross-Section 

 
In plane vibration analysis of circular curved beams with constant cross-section 

can be solved analytically, but it is considered here to test the FDM algorithm and to 

show the accuracy and precision of the symbolic program developed in Mathematica. 

On the other hand, finite element model of the rotating curved beam with 

variable cross-section is generated in ANSYS by using APDL (ANSYS Parametric 

Design Language). BEAM44 which is 3-D Elastic Tapered Unsymmetric Beam is 

selected to model the curved beam with taper. Real constants of the tapered beam 

elements are calculated in the APDL code. Spin softening is included for the vibration 

analysis of the rotating curved beam. More detail about spin softining is available in 

ANSYS Documentations.  

A fixed-free curved beam with the parameters b0=bL=h0=hL=20 mm, R=160 mm, 

sL=251.3 mm is considered as geometric model. 
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Convergence of the natural frequencies of the geometric model based on FDM 

(Finite Difference Method) and FEM (Finite Element Method) are given in Table 3.1 

and Table 3.2, respectively. It is clear form Tables 3.1 and 3.2 that, the convergences of 

the natural frequencies are very good. 

 

Table 3.1. Convergence of natural frequencies based on FDM 

n f1 (Hz) f2 (Hz) s f3 (Hz) f4 (Hz) 

21 247.9 1183.6 3773.0 7711.1 

41 259.1 1240.5 3936.9 8061.2 

81 265.1 1273.0 4030.3 8249.5 

121 267.3 1284.6 4063.8 8316.0 

161 268.2 1290.5 4081.0 8350.1 

201 268.9 1294.2 4091.5 8370.9 

241 269.7 1296.7 4098.6 8394.9 

 

 

Table 3.2. Convergence of natural frequencies based on FEM 

N f1 (Hz) f2 (Hz) s f3 (Hz) f4 (Hz) 

5 274.3 1305.9 4001.1 6633.6 

10 271.9 1294.6 3961.9 6567.0 

15 271.4 1292.5 3955.4 6556.6 

20 271.2 1291.7 3953.1 6553.2 

25 271.2 1291.4 3952.1 6551.6 

30 271.1 1291.2 3951.6 6550.8 

35 271.1 1291.1 3951.2 6550.3 
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Convergence of first natural frequency based on Finite Difference Method is 

plotted in Figure 3.1. It is seen from Figure 3.1 that number of grid n =201 can be 

selected. 

Also, convergence of first natural frequency based on Finite Element Method is 

plotted in Figure 3.2. It is seen from Figure 3.2 that number of element N=30 can be 

selected. 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Convergence of first natural frequency by FDM 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Convergence of first natural frequency by FEM 
 

Comparisons of natural frequency parameters λ=ω2ρAR4/EI of fixed-fixed 

curved beams by FDM with analytical results of Archer (1960) can be done by using the 

results given in Table 3.3. It can be said that, the present results have good agreement in 

lower mode with the analytical results given by Archer (1960). 
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Table 3.3. Comparison of present natural frequency parameters of a curved 
beams with the analytical results of Archer (1960) 

Mode Opening Angle Present λ 
(n =201) λ (Archer 1960) 

1 18.3 19.22 

2 89.1 93.15 

3 307.7 321.5 

4 

 

π 

727.0 756.3 

1 1.833 1.946 

2 12.213 12.85 

3 47.309 49.58 

4 

 

3π/2 

123.033 126.6 

 

 

3.2.2. Rotating Curved Beams with Constant Cross-Section 

 
In this section, numerical applications are carried out for fixed-free curved 

beams with different rotation speed to see the effects of rotation on natural frequencies. 

The same numerical data used in Section 3.2.1 is also used here.  

 

Table 3.4. Natural frequencies for different Ω values 

 Ω=0 rad/s Ω=100 rad/s Ω=200 rad/s Ω=300 rad/s 

f1 (Hz) 268.9 269.1 270.1 271.5 

f2 (Hz) 1294.2 1294.4 1295.4 1296.9 

f3 (Hz) 4098.6 4091.8 4092.7 4094.2 

f4 (Hz) 8384.9 8371.2 8372.1 8373.6 
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 It can be seen from the Tables 3.4 that, when the rotation speed increases, 

natural frequency parameters also increases. 

 

3.3. Applications for Rotating Curved Beams 

 

3.3.1. Non-Rotating Curved Beams with Variable Cross-Section 

 
In this section, numerical applications are carried out for fixed-free non-rotating 

curved beams with variable cross-section. The main numerical data for the selected 

geometry are as follows: b0=20 mm, h0=20 mm, R=160 mm, and sL=251.3 mm. Other 

data are given in tables. The results are given in Table 3.5 and Figures 3.3 to 3.10. 

 

Table 3.5. Natural frequencies for different bL=hL at Ω=0 

 bL=hL =18 mm bL=hL =16 mm bL=hL =14 mm bL=hL =12 mm 

f1 (Hz) 281.0 294.6 311.0 330.3 

f2 (Hz) 1283.3 1272.4 1261.7 1251.4 

f3 (Hz) 3940.9 3786.3 3627.1 3462.9 

f4 (Hz) 7997.4 7614.3 7220 6812.3 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. First natural frequencies 
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Figure 3.4. Second natural frequencies 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Third natural frequencies 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. Fourth natural frequencies 
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Figure 3.7. First natural mode 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Second natural mode 
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Figure 3.9. Third natural mode 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. Fourth natural mode 
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3.3.2. Rotating Curved Beams with Variable Cross-Section 

 
Numerical applications regarding the title are carried out for different rotational 

speeds and the results are presented in Tables 3.6-3.8 and Figure 3.11-3.14. 

 

Table 3.6. Natural frequencies for different bL=hL at Ω=100 rad/s 

 bL=hL =18 mm bL=hL =16 mm bL=hL =14 mm bL=hL =12 mm 

f1 (Hz) 281.1 295.1 311.3 330.6 

f2 (Hz) 1283.6 1272.8 1262.1 1251.8 

f3 (Hz) 3941.2 3786.6 3627.4 3463.2 

f4 (Hz) 7997.8 7614.6 7220.3 6812.7 

 

 

Table 3.7. Natural frequencies for different bL=hL at Ω=200 rad/s 

 bL=hL =18 mm bL=hL =16 mm bL=hL =14 mm bL=hL =12 mm 

f1 (Hz) 281.9 295.8 312.2 331.6 

f2 (Hz) 1284.6 1273.8 1263.1 1252.9 

f3 (Hz) 3942.2 3787.6 3628.5 3464.3 

f4 (Hz) 7998.7 7615.6 7221.3 6813.8 

 

 

Table 3.8. Natural frequencies for different bL=hL at Ω=300 rad/s 

 bL=hL =18 mm bL=hL =16 mm bL=hL =14 mm bL=hL =12 mm 

f1 (Hz) 283.3 297.2 313.7 333.1 

f2 (Hz) 1286.2 1275.4 1264.9 1254.7 

f3 (Hz) 3943.7 3789.2 3630.2 3466.1 

f4 (Hz) 8000.3 7617.3 7223.1 6815.6 
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Figure 3.11. First natural frequencies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12. Second natural frequencies 
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Figure 3.13. Third natural frequencies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14. Fourth natural frequencies 
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It can be seen from Table 3.6 to Table 3.8 and Figure 3.11 to 3.14 that rotational 

speed in the considered range is only effective on first and second natural frequencies, 

but not on third and fourth ones. 

 It is very interesting that only first natural frequencies decrease when the taper of 

the curved beam decrease. 
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CHAPTER 4 

 

CONCLUSIONS 

 
In this study, in plane free vibration characteristics of rotating curved beams are 

studied by Finite Difference Method and Finite Element Method since the mathematical 

model of the present problem is based on the coupled differential eigenvalue problem 

with variable coefficients. 

A computer program is developed in Mathematica and this program is verified 

by using results available in the literature. The effects of taper parameters of the curved 

beam and rotation speed on natural frequencies are investigated. 

It is found that rotational speed in the considered range is only effective on first 

and second natural frequencies, but not on third and fourth ones. 

 It is very interesting that only first natural frequencies decrease when the taper of 

the curved beam decrease. 
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APPENDIX A 
 

CENTRAL DIFFERENCES 

 
Table A.1. Central differences approximations of O(h2) 

 
Term Central Difference Expressions 

ds
dw  

h
iwiw

2
)1()1( −−+  

2

2

ds
wd  2

)1()(2)1(
h

iwiwiw −+−+  

3

3

ds
wd  32

)2()1(2)1(2)2(
h

iwiwiwiw −−−++−+  

4

4

ds
wd  4

)2()1(4)(6)1(4)2(
h

iwiwiwiwiw −+−−++−+  

5

5

ds
wd  5

)3()2(4)1(5)1(5)2(4)3(
h

iwiwiwiwiwiw −−−+−−+++−+  

6

6

ds
wd  6

)3()2(6)1(15)(20)1(15)2(6)3(
h

iwiwiwiwiwiwiw −+−−−+−+++−+

 

 

 

 


