DEVELOPMENT OF MOLECULAR
SPECTROSCOPIC MULTIVARIATE
CALIBRATION MODELS FOR THE
DETERMINATION OF FATTY ACID AND
TRIACHYL GLYCEROL COMPOSITIONS OF
OLIVE OILS

A Thesis Submitted to
the Graduate School of Engineering and Sciences of
Izmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Chemistry

by
Esra KUDAY

March 2014
IZMIiR



We approve the thesis of Esra KUDAY

Examining Committee Members:

Prof.Dr.Durmus OZDEMIR
Department of Chemistry, Izmir Institute of Technology

Assoc. Prof. Dr. Figen KOREL
Department of Food Engineering, [zmir Institute of Technology

Prof. Dr. Serife Hanom YALCIN
Department of Chemistry, Izmir Institute of Technology

17 March 2014

Prof. Dr. Durmus OZDEMIR
Supervisor, Department of Chemistry
Izmir Institute of Technology

Prof. Dr. Ahmet E. EROGLU Prof. Dr. R. Tugrul SENGER
Head of the Department of Chemistry Dean of the Graduate School of
Engineering and Sciences



ACKNOWNLEDGEMENT

| would like to express my gratitude to people who have been very helpful
during my thesis study.

Firstly I would like to thank my advisor, Prof Dr. Durmus OZDEMIR who gave
me information about chemometry and chemometric techniques, for all his support,
patience and guidance.

Next, | would like to acknowledge Dog¢.Dr. Harun DIRAMAN for providing
samples and data for the essential parts in my thesis.

Special thanks to Deniz CELIK and Duygu VURAL for their help, support and
constructive comments on this thesis and also for their friendship in three years period
of my IYTE life.

I also want to thank in particular Begiim AKARSU, Ozlem ECE and all my
laboratory mates for their friendship and emotional support.

Finally, this thesis could not have been written without the support of my lovely
family. 1 would like to express my special thanks to my mother Necla KUDAY, my
father Rabil KUDAY, my brother Harun KUDAY and my fiance Mehmet SONMEZ for

their endless love, motivation and prays all the time. | owe a lot to them.



ABSTRACT

DEVELOPMENT OF MOLECULAR SPECTROSCOPIC
MULTIVARIATE CALIBRATION MODELS FOR THE
DETERMINATION OF FATTY ACID AND TRIACHYLGLYCEROL
COMPOSITIONS OF OLIVE OILS

The determination of fatty acid methyl esters and triachyl glycerol compositions
of olive oils by chromatographic methods require not only sample pre treatment carried
out but also extend the time of the analysis. Also, chromatographic methods are
expensive. Therefore, there is a need for an alternative method.

In this study, it is aimed to develop molecular spectroscopic multivariate
calibration models for the determination of some of the fatty acid methyl esters and tri-
achyl glycerol compositions of olive oils. For this purpose, 79 olive oil samples from
different regions of Turkey (Manisa and Bursa) were collected and scanned with
Fourier Transform Infrared spectroscopy equipped with attenuated total reflectance
(FTIR-ATR) accessory, Fourier Transform Near Infrared spectroscopy (FTNIR) and
Gas Chromatography (GC), High Performance Liquid Chromatography (HPLC).
Chromatographic analyses of these samples were done by Olive Qil Research Institute
and spectroscopic analyses were done by our group. The data obtained from High
Performance Liquid Chromatography (HPLC) was chosen as a reference method for tri-
achyl glycerol compositions and also the data obtained from Gas Chromatography (GC)
was chosen as a reference method for fatty acid methyl esters. Also, Genetic inverse
least squares (GILS) and Partial least square methods (PLS) were used for multivariate
calibration.

In conclusion, NIR and FTIR combined with multivariate calibration models can
be more advantageous compare to chromatographic methods because of their simplicity
and speed. When investigating the results, relatively successful calibration models were
obtained from GILS method than PLS method.



OZET

ZEYTIN YAGLARININ YAG ASITLERI VE TRIACIL GLISEROL
KOMPOZIYONLARININ BELIRLENMESI ICIN MOLEKULER
SPEKTROSKOPIK COK DEGISKENLI KALIBRASYON
MODELLERININ GELISTIRILMESI

Zeytinyaglarinin yag asidi metil esterleri ve triagil gliserol kompozisyonlarinin
kromotografik yontemlerle belirlenmesi hem Ornegin  6n islem yapilmasim
gerektirmekte hem de analiz siiresinin uzun olmasina sebep olmaktadir. Ayrica
kromotografik yontemlerin pahali olmasi alternatif yontem arayisina yol agmaktadir.

Bu calismada zeytinyaglarinin bazi yag asidi metil esterleri ve triagil gliserol
kompozisyonlarini belirlemek i¢in molekiiler spektroskopik ¢ok degiskenli kalibrasyon
modellerinin gelistirilmesi amaclanmistir. Bu amacla, Tirkiye’nin farkli yorelerinden
(Manisa ve Bursa) 79 adet zeytinyagi 6rnegi toplanmis ve toplanan ornekler Fourier
Transform Infrared spektroskopisinde zayiflatilmis toplam reflektans aparati (FTIR-
ATR),Fourier Transform Yakin Infrared spektroskopisi (FTNIR) ve Gaz Kromatografisi
(GC) ayrica Yiiksek Performansli Sivi Kromatografisi (HPLC) ile taranmistir.BU
orneklerin kromatografik analizleri Zeytincilik Arastirma Enstitiisii tarafindan ve
spektroskopik  analizleri grubumuz tarafindan  yapilmistir.  Triagil  gliserol
kompozisyonlari i¢in Yiiksek performans likit kromatografisi (HPLC), yag asidi metil
esterleri kompozisyonlar1 i¢cin Gaz Kromotografisi (GC)’nden elde edilen veriler
kullanilip, referans yontem olarak alinmistir. Ayrica Genetik en kiiciik ters kareler
yontemi ve Kismi ters kareler yontemi ¢ok degiskenli kalibrasyon olarak kullanilmstir.

Sonug olarak, NIR ve FTIR spektroskopisiyle birlestirilmis ¢ok degiskenli
kalibrasyon modelleri kromatografik yontemlerle kiyaslandiginda basit olmasi ve hizi
yoniinden daha avantajli olabilmistir. Sonuglar incelendiginde, GILS methodundan elde

edilmis kalibrasyon modelleri PLS e gore nispeten daha iyi sonuglar vermistir.



TABLE OF CONTENTS

LIST OF FIGURES ... .ottt viii
LIST OF TABLES ... Xii
CHAPTER 1. INTRODUCTION ....cuiiiiiiiiiiit et 1
1.1 Definitions and Composition of Olive Oil..........ccccoeiiiiiiiiiiiiccee, 3

1.1.1. Definition of OliVe Oil........cccoiiiiiiiiiiiee e 3

1.1.2. Chemical Composition of Olive Oil ..........ccccccviiiiieiiiciecece, 4

CHAPTER 2. MULTIVARIATE ANALYSIS TECHNIQUES ..o 8
2.1 Calibration Methods...........ccooiiiiiiiiiee e 8

2. 1.1 OVEIVIBW....ouiiiiiieiete ettt bttt bbb 8

2.1.2 Classical Univariate Calibration ...........c.ccoovvieieieiincnenieeeee, 9

2.1.2.1 Inverse Univariate Calibration............cccoocviiiiniiiiccn, 10

2.1.3 Multivariate Calibration............c.cooviiiiiiieiese e 11

2.1.3.1 Classical Least SQuares (CLS).......ccooerrreneninenesiseeeeiene 14

2.1.3.2 Inverse Least Squares (ILS).......cccevvveeiveviiieceese e 15

2.1.3.3 Genetic Inverse Least Squares (GILS) ......c.cccceevveviiieveenenne, 16

2.1.3.3.2 INItialization .........cccceoveiiiieeiee e 17

2.1.3.3.2 Evaluate and Rank the Population ..............ccccceenneee. 18

2.1.3.3.3 Selection of Genes for Breeding ..........cccceevvevveennene, 18

2.1.3.3.4 Crossover and MUtation ............ccccceeereniniinisieennenne. 19

2.1.3.3.5 Replacing the Parent Genes by their Offspring ......... 20

2.1.3.3.6 Termination .......ccceveririiniiieiee e 20

2.1.3.4. The Eigenvector Quantitation Methods............c.ccocevvvirnnnnn. 21

2.1.3.5. Partial Least SQUArES.........cocoveririeieieiene e 23

Vi



CHAPTER 3. INSTRUMENTATION AND EXPERIMENTATION.......c.ccceeviiiennnn, 28

3.1 INStrUMENTALION ... 28

3.1.1. Fourier Transform Infrared (FTIR) Spectrometry .........c.ccocevvenene. 28

3.1.2. Near Infrared (NIR) SPectrometry........cccovveveiieveeresieseese s, 31

3.1.3. Advantages and Disadvantages of Spectroscopic Techniques....... 32

3.1.4. High Performance Liquid Chromatography (HPLC) ..................... 33

3.1.5. Gas Chromatography (GC) .......ccccevveiiiiieseeie e 35

3.2 EXPEriMENtAtiON .......ccveiieie e 36

3.2.1 Olive Oil SAMPIES ....ccveiiiiicieee e 36

3.2.2 MEENOGS. ... 45

3.2.2.1 Analyses of Fatty Acids COMPONeNts...........ccocevvrerereeieennen 45

3.2.2.2 Analysis of Triacylglycerol Components ..........c.ccccvvvvvvenenne. 47

3.3 SPECLroSCOPIC ANAIYSIS .....covviiieiiiiiieiie s 48

3.4 DAt ANAIYSIS ...ttt 49
CHAPTER 4. RESULT AND DISCUSSION ......ccoiiiiiiiiiiie et 50
4.1, GILS RESUIES .....ecuieiiiiieisiees e 50

4.1.1 Results of FAME COMPOSItIONS ........cccovveiieeieiic e 53

4.2. Results of Tri-achyl Gliserol (TAG) ComposSItions.............cccccevvevennen. 70

4.3, PLS RESUITS ...ttt 81
CHAPTER 5. CONCLUSION ....ooiiiiiiiiiiee et 90
REFERENGES ...ttt 91

vii



Figure
Figure 1.1.

Figure 2.1.

Figure 2.2.

Figure 2.3.

Figure 2.4.

LIST OF FIGURES

a) Main producing countries in 2005 b) Main consuming countries in

Difference between errors in a) classical and b) inverse calibration..........

(a) Spectra of a sample in different concentrations which has no
interference (b) univariate calibration curve; (c) spectra of a sample in

different concentrations which has interfering materials (d) univariate

CA TDIALION CUIVE. .ottt e e e e e e e eeee e e e e eeeeeeeeeeeeeees

General flow chart of genetic algorithm used in GILS ............ccoovviiennne.

PCA breaks the spectral data into most common spectral variations
(Factors, eigenvectors, loadings) and the corresponding scaling

COETTICIENTS (SCOMES) ..vvvviiiieiiicie ettt

Figure3.1. Types of molecular vibrations. + indicates motion from the page toward

Figure 3.2.

Figure 3.3.

Figure 3.4.
Figure 3.6.
Figure 3.7.

Figure 4.1.

Figure 4.2.

Figure 4.3.

thereader; - indicates the motion away from the reader...............ccccoocnee..

Optical diagram of Fourier Transform Infrared (FTIR) Spectrometer.......

Schematic representation of a system for high performance liquid

chromatography (HPLC). ....ooiiiiieieeeseeeee e
Schematic representation of a system for gas chromatography (GC) ......
Fatty acids in Gas Chromatogram ...........ccccveveveevieeiie s

Tri acyl glycerol components in HPLC chromatogram ............cccccceevvveaee.

FTIR spectra of olive oil samples measured in the range of a)4000-600
™1 ) 1800-600 cm-1 using ATR accessory attached diamond ZnSe

(017251 | S SSSSRRR

NIR spectra of olive oil samples measured in the range of 10000—

B0 ™ e,

(a) Reference Linolenic acid (LN) content vs. predicted values based
on FTIR-ATR spectra using GILS method(b) Reference Linolenic

Page

.34

.5l

.52

viii



acid (LN) content vs. predicted values based on NIR spectra using

GILS MENOM.. .

Figure 4.4. (a) Reference Linoleic acid (LO) content vs. predicted values based on
FTIR-ATR spectra using GILS method (b) Reference Linoleic acid
(LO) content vs. predicted values based on NIR spectra using GILS

MNEINOU. ...

Figure 4.5. (a) Reference OA acid content vs. predicted values based on FTIR-
ATR spectra using GILS method (b) Reference OA acid content vs.

predicted values based on NIR spectra using GILS method......................

Figure 4.6. (a) Reference Palmitic acid (PA) content vs. predicted values based on
FTIR-ATR spectra using GILS method (b) Reference Palmitic acid
(PA) content vs. predicted values based on NIR spectra using GILS

NEENOU. ... ettt e e e e e e e e et e e e e e e e e eeaeas

Figure 4.7. (a) Reference Palmitoleic acid (POA) content vs. predicted values
based on FTIR-ATR spectra using GILS method (b) Reference
Palmitoleic acid(POA) content vs. predicted values based on NIR

spectra using GILS mMethod...........ccoveiiieiieiceseee e

Figure 4. 8. (a) Reference Polyunsaturated fatty acid (PUFA) content vs. predicted
values based on FTIR-ATR spectra using GILS method (b) Reference
Polyunsaturated fatty acid(PUFA) content vs. predicted values based

on NIR spectra using GILS method ..o

Figure 4.9. (a) Reference Stearic acid (SA) content vs. predicted values based on
FTIR-ATR spectra using GILS method (b) Reference Stearic acid
(SA) content vs. predicted values based on NIR spectra using GILS

MEINOA. ..

Figure 4.10. Frequency distribution of GILS selected FTIR wavelengths for
FAME (a)Linolenic acid (LN) (b)Linoleic acid (LO) (c) Oleic
acid(OA) (d)Palmitic acid(PA) (e) Palmitoleic acid(POA)
(FHPolyunsaturated fatty acid (PUFA) (g) Stearic acid(SA) contents of

0live 01l SAMPIES ...



Figure 4.11. (a) Reference triolein (OOQ) content vs. predicted values based on
FTIR-ATR spectra using GILS method (b) Reference triolein (O0O0)

content vs. predicted values based on NIR spectra using GILS method

Figure 4.12. (a) Reference 1,2-dilinoleyl-3-oleylglycerol (OLL) content vs.
predicted values based on FTIR-ATR spectra using GILS method (b)
Reference 1,2- dilinoleyl-3-oleylglycerol (OLL) content vs. predicted
values based on NIR spectra using GILS method ...........cccoceveniiinnnnnns

Figure 4.13. a) Reference 1,2-dipalmitoyl-3-oleylglycerol (POP) content vs.
predicted values based on FTIR-ATR spectra using GILS method (b)
Reference 1,2-dipalmitoyl-3-oleylglycerol (POP) content vs. predicted
values based on FT-NIR spectra using GILS method ..............cccccoenee.

Figure 4.14. (a) Reference 2,3-dioleyl-1-stearoylglycerol (SOO) content vs.
predicted values based on FTIR-ATR spectra using GILS method (b)
Reference 2,3- dioleyl-1-stearoylglycerol (SOO) content vs. predicted
values based on FT-NIR spectra using GILS method ..............cccccoenee.

Figure 4.15. (a) Reference 1-palmitioleoyl,2,3-dioleoyl (PoOO) content vs.
predicted values based on FTIR-ATR spectra using GILS method (b)
Reference 1-palmitioleoyl,2,3-dioleoyl (PoOO) content vs. predicted
values based on FT-NIR spectra using GILS method ................cccvene.

Figure 4.16. Frequency distribution of GILS selected FTIR wavelengths for TAG
(@)OLL acid (b)OOO acid (c) PoOO (d)SOO (e) POP contents of

0live 01l SAMPIES ...

Figure 4.17. (a) Reference Linolenic acid (LN) content vs. predicted values based
on FTIR-ATR spectra using PLS method (b) Reference Linolenic acid
(LN) content vs. predicted values based on NIR spectra using PLS
method (c) Reference Linoleic acid (LO) content vs. predicted values
based on FTIR-ATR spectra using PLS method (d) Reference

Linoleic acid (LO) content vs. predicted values based on NIR spectra

USING PLS MELNOM ........eiiiiicicce e 83

Figure 4.18. (a) Reference Oleic acid (OA) content vs. predicted values based on
FTIR-ATR spectra using PLS method (b) Reference Oleic acid (OA)

content vs. predicted values based on NIR spectra using PLS method



(c) Reference Palmitic acid (PA) content vs. predicted values based on
FTIR-ATR spectra using PLS method (d) Reference Palmitic acid

(PA) content vs. predicted values based on NIR spectra using PLS

Figure 4.19. (a) Reference Palmitoleic acid (POA) content vs. predicted values
based on FTIR-ATR spectra using PLS method (b) Reference
Palmitoleic acid (POA) content vs. predicted values based on NIR
spectra using PLS method (d) Reference Polyunsaturated fatty acid
(PUFA)content vs. predicted values based on FTIR-ATR spectra
using PLS method (d) Reference Polyunsaturated fatty acid (PUFA)
content vs. predicted values based on NIR spectra using PLS method .......

Figure 4.20. t(a) Reference Stearic acid (SA) content vs. predicted values based on
FTIR-ATR spectra using PLS method (b) Reference Stearic acid (SA)

content vs. predicted values based on NIR spectra using PLS method .......

Figure 4.21. (a) Reference 1,2-dilinoleyl-3-oleylglycerol (OLL) content vs.
predicted values based on FTIR-ATR spectra using PLS method (b)
Reference 1,2-dilinoleyl-3-oleylglycerol (OLL) content vs. predicted
values based on NIR spectra using PLS method (c) Reference triolein
(O00) content vs.predicted values based on FTIR-ATR spectra using
PLS method (d) Reference triolein (OOO) content vs. predicted

values based on NIR spectra using PLS method ...........ccccooeiveiiciccieen,

Figure 4.22. (a) Reference 1-palmitioleoyl,2,3-dioleoyl (PoOO) content vs.
predicted values based on FTIR-ATR spectra using PLS method (b)
Reference 1-palmitioleoyl,2,3-dioleoyl (PoOO) content vs. predicted
values based on FT-NIR spectra using PLS method (c) Reference 1,2-
dipalmitoyl-3-oleylglycerol (POP) content vs. predicted values based
on FTIR-ATR spectra using PLS method (d) Reference 1,2-
dipalmitoyl-3-oleylglycerol (POP) content vs. predicted values based
on FT-NIRspectra using PLS method(e) Reference 2,3-dioleyl-1-
stearoylglycerol (SOO) content vs. predicted values based on FTIR-
ATR spectra using PLSmethod (f) Reference 2,3- dioleyl-1-
stearoylglycerol (SOO) content vs. predicted values based on FT-NIR
spectra using PLS Method..........cooiiiieiieiicc e



LIST OF TABLES

Table Page
Table 1.1. Chemical composition of 0live Oil...........ccooiiiiiiiiie, 5
Table 3.1 Regions and settlements, that collected olive oils of which harvest

GEMITK VALY, ©.eeuviiiieiieee ettt sre e 36
Table 3.2 FAME components of 0live Oil ...........ccccooeiieiiiii e 37
Table 3.3 TAG components of olive 0il SAMPIES .........cccoviiiiiiiiie 41
Table 3.4 Parameters 0f GC INStIUMENT...........ocoieiiiieiiee e 46
Table 4.1. Percentage content by mass of Linolenic Acid (LN) in oil samples of

CAlIDIAtION SBL.....eiiiieiiee e 53
Table 4.2. Percentage content by mass of Linolenic acid (LN) in oil samples of

ValIAAEION SEL.....viiiieiiee s 54
Table 4.3. Percentage content by mass of Linoleic acid (LO) in oil samples of

CAlIDIAtION SEL.....eeiieeee e e 55
Table 4.4. Percentage content by mass of Linoleic acid (LO) in oil samples of

1722 L0 A o] T USSP 56
Table 4.5. Percentage content by mass of Oleic acid (OA) in oil samples of

(o7 |11 o= (0 T T 58
Table 4.6. Percentage content by mass of Oleic acid (OA) in oil samples of

VAITAALION SBL......eviiiiiie e e ba e e eaaee e 58
Table 4.7. Percentage content by mass of Palmitic Acid (PA) in oil samples of

CAlIDIAtION SEL.....eeiieie e s 60
Table 4.8. Percentage content by mass of Palmitic Acid (PA) at oil samples of

ValIAALION SBL ...t e 60
Table 4.9. Percentage content by mass of Palmitoleic Acid (POA) in oil samples

OF CAlIDIAtION SEL.....eeiiiiceiiie e 62
Table 4.10. Percentage content by mass of Palmitoleic Acid (POA) in oil samples

(o) JAVZ= 11T F= 0] g ST TR 62

xii



Table 4.11. Percentage content by mass of Polyunsaturated fatty acid(PUFA)

in oil_samples of calibration Set ...

Table 4.12. Percentage content by mass of Polyunsaturated fatty acid(PUFA)

in oil_samples of validation Set.............cccocveveiieiicie e

Table 4.13. Percentage content by mass of Stearic acid (SA) in oil samples of

CATDIALION S ..ot e e e e e e e e e e eeeeeneees

Table 4.14. Percentage content by mass of Stearic acid (SA) in oil samples of

VaAlIAALION SBL ....ceviiiiiii e e e

Table 4.15. Percentage content by mass of triolein (OOQ) in oil samples of

(o 111 o= (0] =) T

Table 4.16. Percentage content by mass of triolein (OOO) in oil samples of

VAIIAALION SBL ....cvviiiiiiic e e e rae e

Table 4.17. Percentage content by mass of 1,2-dilinoleyl-3-oleylglycerol

(OLL) in oil_samples of calibration Set.............cccccevererenininininieee,

Table 4.18. Percentage content by mass of OLL (1,2-dilinoleyl-3-oleylglycerol)

at oil_samples of validation Set...........ccccccvieiieieiie s,

Table 4.19. Percentage content by mass of 1,2-dipalmitoyl-3-oleylglycerol

(POP) in oil_samples of calibration Set ...........c.cccevviveiieie e,

Table 4.20. Percentage content by mass of 1,2-dipalmitoyl-3-oleylglycerol

(POP) in oil_samples of validation Set............cccocuervrrriiiereereseese e

Table 4.21. Percentage content by mass of 2,3-dioleyl-1-stearoylglycerol

(SOO0) in oil samples of calibration Set...........cccccecveieiiiiiiiciciiececee,

Table 4.22. Percentage content by mass of 2,3-dioleyl-1-stearoylglycerol

(SOO) in oil samples of validation Set...........cccovveiieiiieriiciic e

Table 4.23. Percentage content by mass of 1-palmitioleoyl,2,3-dioleoyl

(PoOO) in oil samples of calibration Set...........ccccoecviviiiiiiicie e,

Table 4.24. Percentage content by mass of 1-palmitioleoyl,2,3-dioleoyl

(PoOO) in oil samples of validation Set............cccceveeiiieiic e

Xiil



CHAPTER 1

INTRODUCTION

Olive oil is an important vegetable oil in the world. A lot of countries, especially
Mediterranean countries such as Spain, Italy, Portugal, Tunisia, Turkey and Morocco
meet the vast majority of olive oil production (Figurel.a). The main consuming
Mediterranean countries are also the main olive oil producers. These countries represent
%77 of world consumption (Figurel.b). Although Turkey is in the Mediterranean
region, production and consuming of olive oil is highly low. In recent years, studies on
olive oil have increased. Besides, also worldwide, due to the rapid increase in
production and consumption of olive oil, scientists give importance and they study
intensively about this vegetable oil. Because it’s importance for health and it is used as

a cure for many diseases.
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Figure 1.1. a) Main producing countries in 2005 b) Main consuming countries in 2005
(Source: UNCTAD.org,2005 data from International Olive Oil Council
(1000))



Turkey is the fifth country in terms of the presence of the tree in olive producing
countries in the world and also is the fourth country in terms of production.

Seventy six percentage of the Aegean, 14% of the Mediterranean, 5.7% of
Marmara and 4%in South Eastand0.3% of Black Sea region produce olive oil in Turkey.
Aegean and Marmara region is dominated by the production of Gemlik olive varieties.
Fruits of Gemlik type are rich in fat. It is a quite common olive grown region. Total
olive oil produced in Turkey is divided into %70 for oil seed and % 30 for table. 70% of
table oil is consumed in domestic, % 15 of table oil is exported and the rest of it is
stocked. 45% of production of olive oil is used in domestic and 40% of olive oil is used
to export and 15% of it is stocked. (Giler et al 2010).

Olive oil constitutes various chemical components including triacylglycerols,
free fatty acids, phosphotides as the major components and also minor components such
as phenolic compounds, hydrocarbons etc. With increasing consumer demand for high
quality olive oil, oil was produced from olives of just one variety. The European Union
(EU) has established different categories of olive oil according to the production
process (Bertran et all, 1998). In order to ensure the quality within the different
categories, several analyses should be made. One of the important methods to determine
olive oil quality is the fatty acid content. For the determination of the fatty acid
composition, the TAGs are transesterified to give the methyl esters prior to analysis
because the esters are less polar than the corresponding fatty acids, and, thus, are more
compatible with the various chromatographic systems (Jennings, 1999).

Chromatographic methods have been generally prefered in classification and
adulteration studies. Although chromatographic methods supply high degree of
precision, there is an increasing demand for rapid, inexpensive and effective techniques
for determination of the authenticity of olive oils. Though these procedures have been
successfully used in various chemical analyses, they do suffer from the disadvantages of
being time, labor, and resources consuming. This can be avoided by using a
spectroscopic technique which offers the potential for rapid determination of large
numbers of samples by unskilled workers with minimal use and disposal of costly
solvents and chemicals. Most vegetable oil spectroscopic applications focus on
detecting adulteration (Lai, 1995), determining classification (Bewig, 1994), and
establishing geographical origins (Tsimidou, 1994). Also, a few quantitative
determinations have been done without any previous separation techniques. Thus,

Fourier transform infrared (FTIR) spectroscopy has become an alternative to these



techniques because of its simplicity in sample handling and unnecessary pretreatment.
The need to develop new simplified routine methods has resulted in little attention given
to the selection of samples and their calibration; however, this process is essential if
reliable predictions are desired. Thus, an overfitted calibration model may provide good
results for the calibration set but poor predictive ability for similar samples if sufficient
variability is not included in the calibration process. Therefore, proper development of
analytical methods requires careful use of multivariate calibration methods to obtain
reliable results.

The aim of this study is to develop multivariate calibration models to determine
of fatty acid methyl esters and triachyl glycerol compositions of olive oils using spectral
data. These spectral data were used to construct calibration models. Extra virgin olive
oil samples which are obtained from Gemlik variety harvested Marmara and Aegean
regions were used in this study. Spectroscopic and chromatographic analyses were done

simultaneously.

1.1 Definitions and Composition of Olive Oil

1.1.1. Definition of Olive Oil

According to the International Olive Oil Council (I00OC) the international
definition of olive oil is oil produced by extraction of the fruit of the olive tree
(OleaEuropaea Sativa Hoffman et Link) to the exclusion of oils obtained using solvents
or reesterification processes and of any mixture with oils of other kinds (Firestone
2005).There are two major clusters of olive oil. One of them is virgin olive oil, and the
other is olive pomace olive oil.

Virgin olive oil is the oil obtained from the fruit of the olive tree solely by
mechanical or other physical means under conditions, particularly thermal conditions,
that do not lead to alterations in the oil, and which has not undergone any treatment
other than washing, decantation, centrifugation, and filtration.

Virgin olive oil is designed as a natural oil and categorized four different sub

groups:



Extra virgin olive oil is the virgin olive oil that has an organoleptic rating of 6.5
or more as determined by the IOOC and a free acidity, expressed as oleic acid,
of not more than 1 g per 100g.

Fine virgin olive oil is the virgin olive oil that has an organoleptic rating of 5.5
or more and a free acidity, expressed as oleic acid, of not more than 1.5 g per
100g.

Ordinary virgin olive oil is the virgin olive oil that has an organoleptic rating of
3.5 or more and a free acidity, expressed as oleic acid, of not more than 3.3 g per
100g.

Lampante virgin olive oil is the virgin olive oil that has an organoleptic rating of
less than 3.5 or more and a free aciditiy, expressed as oleic acid, of more than
3.3 g per 100g

Olive-pomace oil is an oil obtained by solvent extraction of olive—pomace and

does not include any oil obtained by a reesterification procedure or any mixture with

other kinds of oils. Olive pomace oil has different various categories.

1.1.2.

Crude olive—pomace oil isolive—pomace oil intended for refining to produce a
refined olive pomace oil suitable for human consumption, or intended for
technical purposes.

Refined olive—-pomace oil is is the oil obtained from "olive pomace" by
extraction by means of solvents and made edible by means of refining methods
which do not lead to alteration in the initial glyceridic structure.

Olive—pomace oil is a blend of refined olive—pomace oil and virgin olive oil .In
no case may this be called ‘olive oil.” .These definitions about olive oil were all
taken from the source of IOOC. In this study extra virgin olive oil which has the

high quality was used.

Chemical Composition of Olive QOil

Olive oil has not a specific combination. Because, it depends on species of olive,

year of manufacture, the region of olive, and the method of squeeze of olives. Olive oil

is compositional so varies from year to year.

Generally olive oil is composed mainly of triacylglycerols (triglycerides or fats)

and contains small quantities of free fatty acids (FFA), glycerol, phosphatides,



pigments, flavor compounds, sterols, and microscopic bits of olive. The Table 1.1
shows the chemical composition and percentages of the components of olive oil.

Table 1.1. Chemical composition of olive oil

Composition Ratio (%)
Triglycerides % 99.8
Saturated fatty acids (SFA) %14
Palmitic acid(PA) %7.5-20
Stearic acid (SA) %0.5-5.0
Mono unsaturated fatty acids (MUFA) %72
Oleic acid(OA) %55-83
Palmitoleic acid(POA) %0.3-3.5
Poly unsaturated fatty acids (PUFA) %12
Linoleic acid(LO) %3.5-21
Linolenic acid(LN) %0.0-1.5
Non triglyceride compounds %0.2
Vitamin E 150mg/kg
Polyphenols 300mg/kg
Cholesterol 0

Triacylglycerols are the major energy reserve for plants and animals. These
molecules derived from the natural esterification of three fatty acid molecules with a
glycerol molecule. Most prevalent in olive oil is the oleic-oleic-oleic (OOO)
triacylglycerol, followed, in order of incidence, by palmitic-oleic-oleic (POO), then
oleic-oleic-linoleic (OOL), then palmitic-oleic-linoleic (POL) and stearic-oleic-oleic
(SO0).

Fatty acids are a class of compounds containing a long hydrocarbon chain and a
terminal carboxylate group (-COOH). They have the general structure
CH3(CH2)nCOOH. Fatty acids belong to a category of biological molecules called
lipids, which are generally water-insoluble but highly soluble in organic solvents. Fatty
acids can be either saturated or unsaturated, a distinction that has important

consequences for their chemical properties as well as the properties of other lipids with



fatty acid components:

Saturated fatty acids have no double bonds between the carbon atoms of the
fatty acid chain which are fully saturated with hydrogen atoms. The major saturated
fatty acids in olive oil are Palmitic acid (C16:0) is a saturated fatty acid that makes up
7.5 to 20% of olive oil. Stearic acid (C18:0) is a saturated fatty acid that makes up 0.5 to
5% of olive oil.

Unsaturated fatty acids have one or more double bonds between carbon atoms.
Monounsaturated fatty acids contain one double bond near the middle of the chain,
creating a "kink" in the chain. One of the carbon atoms, bonded to only one hydrogen
atom, forms a double bond with a neighboring carbon atom. Oleic acid and palmitoleic
acid can be given an example. Oleic acid (C18:1) is a monounsaturated omega-9 fatty
acid and it makes up 55 to 83% of olive oil. Palmitoleic acid (C16:1) is a
monounsaturated omega-7 fatty acid that makes up 0.3 to 3.5% of olive oil.

Polyunsaturated fatty acids contain more than one double bond. Linoleic and
linolenic acids can be given an example. Linoleic acid (C18:2) is a polyunsaturated
omega-6 fatty acid that makes up about 3.5 to 21% of olive oil. Linolenic acid (C18:3)
(especially a-linolenic acid) is a polyunsaturated omega-3 fatty acid that makes up 0 to
1.5% of olive oil.

Polyphenols in olive oil are natural antioxidants that contribute to a bitter taste,
astringency and resistance to oxidation. They have been shown to have a host of
beneficial effects from healing sunburn to lowering cholesterol, blood pressure, and risk
of coronary disease. This molecule makes up 300mg/kg of olive oil.

Tocopherols; olive oil contains the tocopherols a-, B-, y-, 6- (a- tocopherol
covers almost 88%). The tocopherol content of olive oil depends not only on the
presence of these compounds in olive fruit but also on several other factors, involved in
the transportation, sorage and olive fruit processing. According to Viola et al. (1997), 6
the ratio of vitamin-E to polyunsaturated fatty acids in olive oils is better than in other
edible oils.

Pigments; the colour of olive oil is mainly related to the presence of chlorophyll
and pheophytin. Carotenoids are also responsible for the colour of olive oil. The
presence of these constituents depends on several factors, such as cultivar, soil and
climate, and fruit maturation as well as applied conditions during olive oil processing.

Phenolic Compounds; olive fruit contains simple and complex phenolic



compounds. Most of these compounds pass into the oil increase its oxidative stability
and improve the taste. Hydrohtyrosol, tyrosol and some phenolic acids are mainly found
in olive oil (Kiritsakis, et al. 1998). The phenol content and the specific composition of
these phenols in olive oil depend on the altitude where olive trees are grown, on the
harvesting time and on the processing conditions (Cinquanta, et al. 1997; Kiritsakis, et
al. 1998).

Aroma Components; aroma and the taste of olive oil are its main sensory
characteristics. These characteristics are attributed to a group of aroma compounds.
Their formation occurs in olive fruit, via a series of enzymatic reactions (Kiritsakis, et
al. 1998).

Fatty acids and tri achyl glycerol compositions which are specified in the Table
1.1 and described in detail. OLL, PoOO, POP, OO0 and SOO are used in this study.



CHAPTER 2

MULTIVARIATE ANALYSIS TECHNIQUES

According to the International Chemometric Society (ICS), chemometry
chemical data and the implementation of mathematical and statistical techniques can be
defined as the assimilation of these data more useful information. The purpose of which
is accepted as a branch of analytical chemistry, chemometrics, chemometric methods to
integrate its various applications in the field of chemistry.

In recent years, computerized devices have improved due to technological
advances. The evaluation of a large number of data processing and statistical
information is needed in analytical chemistry. Chemometric techniques collect not only
quality data used in design of experiments, provide guidance on the optimization of
experimental parameters, calibration and signal processing. General information about
calibration techniques and detailed information about the genetic inverse least square

method are given in this chapter.

2.1 Calibration Methods

2.1.1 Overview

Calibration is a process a model is constructed to obtain a relation between the
output of an instrument and chemical or physical properties of samples. Prediction is a
process that the constructed model is used to estimate the properties of samples which
their instrument responses are given. The model is set up by measuring instrument
responses and concentration levels of certain chemical contents of the samples. Then,
this model is used to predict the concentration of an unknown content sample (Beebe, et
al. 1998).

Calibration is an important step in chemical analysis since a good accuracy and
precision can only be achieved with a good calibration model. Calibration techniques

are divided into two types: univariate and multivariate calibration. One response is



taken from an instrument and that response is related to the concentration of the
chemical component of a sample in many applications. This method is called univariate
calibration because the number of the instrumental response for each sample is just
one. If more than one device is performed to reduce data for more than one sample the
analyte is called multivariate calibration (Beebe, et al.1998).

Univariate calibration methods are defined as zero-order calibration and include
such as spectrophotometer measurements obtained the use of a certain wavelength for
determining the concentration of an analyte. In this method, absorption at a wavelength
or a peak area is taken and its relation to the concentration of a sample is then modelled.
This method is generally have been used for quantitative analysis in many spectroscopic
techniques such as UV-Vis, IR and NIR spectroscopy, where the relationship between
the concentration of an analyte and the instrumental response is expressed by Lambert
Beer’s law.

Univariate calibration methods are divided into two types: classical and inverse

calibration methods.

2.1.2 Classical Univariate Calibration

The classical univariate calibration method uses the statistical model, which
assumes Beer’s law. In this method, a series of experiments can be performed to relate
the concentration to a single spectroscopic wavelength or chromatographic peak area.

The formula of classical univariate calibration is:
a=c-S (2.1)

where, a is a vector of absorbance at one wavelength for a number of

samples. C is of the corresponding concentrations. The scalar S relates these parameters

and is determined by this equation:
s~(c'-c)-Cc'-a (2.2)

¢’ is the transpose of the concentration vector. After this step, the prediction
model for the unknown sample is constructed by this equation:



A~

é¢~als (2.3)

where the hat symbol of the scalar a and S refer to the prediction.

To increase the quality of the prediction models, errors or residuals are
calculated. Errors or residuals are the difference between the predicted and observed
concentration values. If the residuals are less, the model can be better. (Brereton, 2000).

e=c-¢ (2.4)

2.1.2.1 Inverse Univariate Calibration

Although classical univariate calibration is the most widely used method in
analytical chemistry, it is not always the most suitable approach in terms of two reasons.
Firstly, the overall objective is to estimate concentration from a spectrum or
chromatogram. The other reason depends on the error distributions. Generally, the error
in response depends on instrumental response. But today, devices are more reliable due
to the developments in the reproducibility of instruments. Because concentration values
are generally determined gravimetrically by weighing, dilutions, the source of error is
larger than instrumental error. It can be said that the source of error is due to the
concentration. Classical calibration constructs a model where all errors are in the
response (Figure 2.1.a). After the developments in instrumentation, the more suitable

assumption indicates that errors are in the measurement of concentration (Figure 2.1.b).
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Figure 2.1. Difference between errors in a) classical and b) inverse calibration

Inverse calibration can be modeled as:
c~ra.b (2.5)

b is scalar coefficient and is inverse of s. b is only approximately the inverse of
s (see above), because each model makes different assumptions about error

distributions. b can be determined by this formula.

b~ (at.a) ta’.c (2.6)

The prediction of an unknown sample can be performed by using b value
(Brereton, 2003).

&~ab @.7)

2.1.3 Multivariate Calibration

Mathematical methods applied to chemical analysis when multivariate
calibration methods contain more than one instrument for each sample. In spectroscopy,
generally multivariate calibration is related to data included instrument signals and
calculated multiple wavelengths for a sample containing multiple components.

Multivariate calibration methods find the solutions to problems in univariate calibration

11



methods. Due to lot of data are used to estimate the concentration of an analyte,
Multivariate calibration has some advantages over univariate calibration.

There has to be one measurement for each component by univariate method. So,

It takes a long time. In multivariate calibration method, there can be
measurement for one more components at the same time. So, spent time will be less.
(Beebe et al.1998)

Multivariate calibration has fault-detection capabilities. That means unknown
interferences in the sample can be sort out by multivariate calibration. The presence of
interferences may cause wrong prediction of concentration of analyte in univariate
calibration. To prevent this problem, physical separation of analyte from interfering
material or using selective measurements is needed and this means necessity of more
effort. Figure 2.2 demonstrates how calibration curve is affected by interferences.

By multivarite calibration, nonlinearities caused by the interferences can be
reduced by selecting more variables and chance of obtaining better calibration curve can
be increased. Therefore, time and effort spent to remove interferences physically is

respectably decreased. (Oztiirk, 2003).
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Figure 2.2. (a) Spectra of a sample in different concentrations which has no interference
(b) univariate calibration curve; (c) spectra of a sample in different
concentrations which has interfering materials (d) univariate calibration

curve. (Source:Karaman 2008)

During the last few years, advances in chemometrics, for the analysis of
complex chemical mixtures led to the development of a wide variety of calibration
methods. Some of the most widely used multivariate calibration methods are Classical
Least Squares (CLS), Inverse Least Squares (ILS), Partial Least Squares (PLS) and
Principle Component Regression (PCR).

In this study, Genetic Inverse Least Square (GILS) method is used. Before

wavelength

absorbance

A
—>
concentration
(b)
absorbance
A
®
®
—
(d) concentration

explain this method, an overview of ILS and CLS methods will be given.
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2.1.3.1 Classical Least Squares (CLS)

This method is based on Lambert Beer law and accepts absorbance values

depend on the concentration. Modeling is done with this equation.

A=K xC+E 2.8)

A\ is the matrix which consists of absorbance values at different wavelengths of
samples.

C: is the matrix which consists of concentration values of samples which have
multicomponent. If component analysis is done in sample, c is used as an vector..

K: is an absorptivity coefficient and also is the matrix multiplied by path length.

Each member of this matrix corresponds to absorptive coefficient of an absorption value

at a certain wavelength.

E: is the error matrix.

K matrix is calculated by the following formula.
K=(Cc-Cc)'-c"A (2.9)

In the prediction step, an unknown sample spectrum is measured. (a).Given a

and K, concentration can be predicted by using simple matrix algebra:
¢=a K- (K-K)? (2.10)

The notations of prediction elements are vector,because there are more than one
component and there are more than one absorbance value in one unknown sample. The
difference between the reference and predicted concentration values is residual.

Residual is calculated the following formula:
e=c-¢ (2.12)

CLS method can be applied to simple systems where all of the pure-component
spectra can be measured. The pure-component spectra are measured for each analyte in

the sample. These are utilized to form spectral matrix and the CLS model is then
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constructed. This calibration model is used to predict the concentrations of components
in unknown samples.

CLS method has some advantages and disadvantages. In a wide spectral,
absorbance measurements in a large number of wavelength can be used in calibration.
One of the advantages of this method is that calculations are fast and the selection of
wavelength is not required. Small number of samples is needed to construct the
calibration model. Since many variables are used, it is possible to overcome overlapping
problems (Beebe, et al. 1998). All the components in the sample must be known in this
calibration method. CLS calibration is not suitable for the analysis of mixtures
containing components that interact with each other.

2.1.3.2 Inverse Least Squares (ILS)

In some cases, CLS may not work because the system of interest is not simple or
it may not be possible to obtain the pure spectra of all the analyte in the unknown
samples. This need can be eliminated by using Inverse least squares (ILS) method. ILS
method involves the application of linear systems the reverse statement of Lambert Beer
law. Briefly, it is accepted that concentration varies depending on absorbance. Modeling

is:
C=AxP+E (2.12)

C is the concentration matrix, A is the absorbance matrix E is the error matrix.

P matrix contains the model coefficients and can be determined by:
P=(A-A)A-C (2.13)
A predicted concentration of a multi-component sample can be obtained by:
¢=a-P (2.14)

The residual is, as in the CLS model, the difference between the reference and

predicted concentration values.

e=c-¢ (2.15)
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In conclusion, ILS can be used to construct accurate calibrations when just
knowing the concentrations of analytes in the sample. That means there is no need to
know all of the components in the sample. To use ILS, one should be selected as many
variables as there are sources of variation in the system instead of using the full spectra.
The weaknesses of ILS are that it has limited outlier detection and there is no efficient
method for optimal wavelength selection for predictive models. Also collinearity
between the absorbance values causes problems the validation of the model because it
prevents stabilization of the predictions against noise in absorbances. So, it is very
important to select the best set of wavelengths to use in the construction of calibration
(Beebe, et al. 1998).

2.1.3.3 Genetic Inverse Least Squares (GILS)

GILS is a modified version of ILS. In this version genetic algorithms (GA) are
used as a tool for wavelength selection. GA is global search and optimization method
based on the principles of natural evolution and selection developed by Darwin (Wang,
et al.1991). According to the Darwin’s theory of evolution, individuals who fit better to
the environment are more likely survive and breed, thus are able to pass their genetic
information to their offspring. However, individuals who do not fit and unable to adapt
will eventually be eliminated from the population. This process progresses slowly over
a long period of time.

In early 1960’s the studies on GA is done by Holland for the first time. He
developed a genetic algorithm on adaptive systems in his research so, he was considered
as a father of this field (Gilbert, et al. 1997). Over the years, GA have attracted attention
and have been applied to various global optimization problems in many areas including
(Fontain 1992, Cong and Li 1994, Wienke, et al. 1993, Hibbert 1993, Lucasius and
Kateman 1991). In terms of calibration, there have been several applications of GA to
wavelength selection (Lucasius, et al. 1994, Lucasius and 19 Kateman 1992, Paradkar
and Williams 1997, Ozdemir, et al. 1998a, Ozdemir, et al. 1998b, Ozdemir and
Williams 1999).

Generally genetic algorithm consists of five basic steps. These steps have taken
their names from the biological foundation of the algorithm. The implementation of a

typical GA is shown in Figure 2.3.
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Figure 2.3. General flow chart of genetic algorithm used in GILS

2.1.3.3.1 Initialization

A gene is defined as a potential solution to a given problem which changes from
application to application and depends upon the problem being investigated. In the
GILS method, the term ‘gene’ is referred as the collection of instrumental response at
the wavelength range of the data set. Each gene finds a value between instrument signal
and components with concentration. Population is used to describe the collection of
individual genes in the current generation.

In the initialization step, in the initial gene pool, a gene consists of absorbance
values at randomly chosen wavelengths between predefined limit and upper limit.
Because the iteration time of algorithm varies from direct proportion to the number of

gene. So, this determines the operating time. An example gene is provided below:
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S = [Aga32A6895A5128]

Where S defines a gene and A is the absorbance measured at the indicated
wavelength. Each absorbance value is a vector of sample and these vectors forms the
new absorbance matrix. This matrix is also defined as a gene. the population is formed

according to the number of genes initially entered as an input of the software.

2.1.3.3.2 Evaluate and Rank the Population

In order to evaluate each gene’s success in the prediction of analyte
concentration, fitness function such as the reciprocal of standard error of calibration
(SEC) is used. SEC is calculated from the ILS model in which absorbance values from
the selected wavelengths are used to construct the model. SEC is calculated from the

following equation:

2
i (V)
SEC = (2.16)
m-—2

Where c; is the reference and & is the predicted concentration values of i
sample. m is the number of samples. The degree of freedom is m—2 because when a
linear model is assumed, there are only two parameters to be extracted which are the
slope of the actual vs. reference concentration plot and the intercept. In each step,

increase in the fitness value is targeted.

2.1.3.3.3 Selection of Genes for Breeding

The third step depends on the selection of the parent genes from the current
population for breeding. The selection is made by using a selection method according to
their fitness values. The goal of a selection method is to give higher chance to those
genes with higher fitness so that only the best performing members of the population

will survive in the long run and will be able to transfer their information to next
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generations. Here, it is expected that the genes better suited for the problem will
generate better off-springs. The genes with low fitness values will have lower chance to
breed and as a consequence most of them will be unable to survive (Wang, et al. 1991).
There are a variety of selection methods that can be used for parent (Wang, et al.
1991). The simplest selection method is the top down for parent selection. After genes
are ranked in the current gene pool, they are allowed to mate in a way that the first gene
mates with the second gene, third one with the forth one and so on. All the members of
the current gene are given a chance to breed. The roulette wheel selection method,
which is used in GILS, is the one where the chance of selecting gene is directly
proportional to its fitness. In this method, each slot in the roulette wheel represents a
gene. The gene with the highest fitness has the slot that has the largest area and the gene
with the lowest fitness has the slot that has the smallest area. Therefore, when the wheel
Is rotated, there is a higher chance of selection for a gene with high fitness than for a
gene with a low fitness. There will also be the genes which are selected multiple times

and some of the genes will not be selected at all.

2.1.3.3.4 Crossover and Mutation

The genetic algorithm does most of its work in the breeding/mating step. After
the selection of parent genes is completed, all of them mate to produce their offspring
by crossing over until there is no more rest. The step involves breaking the genes at
random points and cross-coupling them as illustrated in the following example:

Consider S1 and S2 are parent genes which are to breed; Ss and Sa are their
corresponding off-springs.

S1=[As135As4421 Ag217A4320]

S>=[As123Ag397Ag743A7832 # Ags22A0210]

S5=[As135A5442A8522A0210]

S4= [A9217A4320A5123A8397A9743A7832]

Here, the first part of Si is combined with the second part of S2 to give Sa.
Likewise the second part of S1 with the first part of S2to give Sa. This process is called
single point crossover and it is used in GILS. The symbol # is used to indicate the

separation of the genes and the place where crossover occurs. Singlepoint crossover will
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not provide different off-spring if both parent genes are identical, which may happen in
the roulette wheel selection, and broken at the same point. To avoid this problem, two
points crossover, where each gene is broken in two points and recombined, can be used.
Mutation, which introduces random deviations into the population, can be also
introduced into the algorithm during the mating step at a rate of 1% as is typical in GA.
Replacing one of the wavelengths in an existing gene with a randomly generated

new wavelength usually does this. However, in this study it is not used in GILS.

2.1.3.3.5 Replacing the Parent Genes by their Offspring

After crossover, the parent genes are replaced by their off-springs. The ranking
process based on their fitness values follows the evolution step. Then the selection for
breeding/mating starts again. This is repeated until a predefined number of iterations are
reached.

At the end, the gene with the lowest SEC (highest fitness) is selected for model
building. This model is used to predict the concentrations of component being analyzed
in the validation set. The success of the model in the prediction of the validation set is
evaluated using standard error of prediction (SEP) which is calculated as:

~ 2
?;1 (c; _Ci)
SEP = 2.17)

V m

m is the number of samples in validation sets.

2.1.3.3.6 Termination

The termination of the algorithm is done by setting the predefined iteration
number for the number of breeding/mating cycles. No extensive statistical test has been
done to optimize it, though it can also be optimized. Since the random processes are
heavily involved in the GILS, the program is set to run predefined number of times for

each component in a given multi-component mixture. The best run, i.e. the one
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generating the lowest SEC for the calibration set and at the same time obtained SEP for
the validation set that is in the same range with SEC, is subsequently selected for the
evaluation and further analysis.

GILS has some major advantages over the classical univariate and multivariate
calibration methods. First of all, it is quite simple in terms of the mathematics involved
in the model building and prediction steps, but at the same time it has the advantages of
the multivariate calibration methods with a reduced data set since it uses the full
spectrum to extract genes. By selecting a subset of instrument responses, it is able to

eliminate nonlinearities that might be present in the full spectral region.

2.1.3.4. The Eigenvector Quantitation Methods

In real samples, spectrum can be made by using different variables such as the
components of sample, inter-component interactions, instrument variations (i.e.,
detector noise), changing environmental conditions, differences in sampling handling.

When the spectral data are taking place, there should be finite number of these
variations even if with all these complex takes place. Hopefully the largest variations in
the calibration set would be the concentrations of the constituents of the mixtures in the
spectrum. If it was possible to calculate a set of “variation spectra” that represented the
changes in the absorbances at all the wavelengths in the spectra, then this data could be
used instead of the raw spectral data for building the calibration model. The “variation
spectra” could be used to rebuild the spectrum of sample by multiplying each one by a
different constant scaling factor and adding the results together until the new spectrum
closely matches the unknown spectrum. Because of the difference between all the
concentrations of constituent, each spectrum in the calibration set would have a
different set of scaling constants for each variation. Therefore, the fraction of each
spectrum that must be added to construct the unknown data should be related to the
concentration of the constituents. The “variation spectra” are often called eigenvectors
or spectral loadings or loading vectors or principle components or factors. The scaling
constants used to reconstruct the spectra are generally known as scores.

The eigenvectors must relate to the concentrations of the constituents that make

up the samples, since they came from the original calibration data.

21



The calculated scores are unique to each separate principle component and
training spectrum, and can be used in place of absorbances. Since the representation of
the mixture spectrum is reduced from many wavelengths to a few scores as shown in
Figure 2.4. This method is combining both the CLS and ILS methods together in the
same calculation. Since it is better than the classical models in the meaning of accuracy
and robustness.

n h n
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Figure 2.4. PCA breaks the spectral data into most common spectral variations (Factors,

eigenvectors, loadings) and the corresponding scaling coefficients (scores)

The trick in using these models comes from the calculation of the eigenvectors.
These models are based on the concentration predictions and changes in the data, not
the absolute absorbance measurements that are used in all classical models.

In order to calculate the PCA model, the spectral data must change in some way.
To accomplish this it is the best way to vary the concentration of the constituent. Since
there can be problem with colinearity. For example, if the concentrations of the two
constituents present always in same ratio, the model will detect only one constituent not
two. Also not only the concentration of the constituents if the absorbance peak of the A
increase or decrease when constituent B also increases or decreases, only one variation
will be detected and this is the changes in the mixture of A and B. Therefore, it is very

important to have randomly concentration ratios in the mixtures.
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2.1.3.5. Partial Least Squares

Partial Least Squares (PLS) is another method that also calculates the variations
in the spectra. It is soft modeling techniques in which the data are decomposed into new
variables that are linear combinations of the original data. This new variable is named as
principal components or factors and therefore, PLS is often called factor methods. The
way in which the new variables are created can be visualized for a two dimensional
system. If the instrument responses for a set of m samples at two wavelengths (n=2) are
plotted against each other, a new axis is formed in the direction that represents
maximum variability of the data. This new axis is called first principle component or
first eigenvector. If all the samples fall on this new axis, then all of the variations can be
described using only one eigenvector (Hartnett, 1997). Otherwise a second eigenvector
can be found that is perpendicular or orthogonal to the first eigenvector. The second one
describes the maximum amount of residuals, not fit by the first one, in the data set and
so on. If more than two wavelengths are included in instrument response matrix, the
plotting space becomes multidimensional and several eigenvector can be found, each
one successfully accounting for the maximum possible amount of remaining variability
and each orthogonal to others. In general, the number of principle component or factor
that can be generated is less than or equal to the number of sample (Haaland, et al
2002).

PLS is full spectrum method so it retains the full spectrum advantages of CLS.
However, all of the component concentrations need to be known because, both the PLS
can perform the analysis one component at a time while avoiding the ILS wavelength
selection problems. PLS and PCR differ in the way the matrix of the spectra
decomposed into two smaller matrices. In the PCR, decomposition is performed
independently of analyte concentration whereas in the PLS, the concentration
information is used to extract factors. Therefore, the PLS method is expected to provide
better calibration models and prediction (Mark,1986). The model for either the PLS is

described as:
A=TB+Ejx (2.18)

where A is the same before, B is a hxn matrix of basis vectors or loading

spectra. T is an mxh matrix of intensities or scores in the new coordinate system defined
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by the h loading vectors. Ea is now the mxn matrix if spectral residuals not fit by the
model. The difference between CLS and these factor methods is that the loading vectors
in B are not pure component spectra but they are linear combinations of the original
calibration spectra. Also the intensities in the new coordinate system are no logger
constrained to the concentrations as were in CLS, but modeling can be done to relate the
scores in T to the component concentrations. The number of basis vectors, h, to
represent original calibration spectra is determined by an algorithm during the
calibration step.

The spectral intensities in the new coordinate system can be related to the
concentrations of the analyte with an ILS model given by:

c=Tv+ec (2.19)

where ¢ is the mx| vector of component concentrations, v is the hxl vector of
coefficients which relate spectral intensities to the component concentration and e is
the mx| vector of errors in reference values of the component that is being analyzed.
However, since the columns of the T matrix are orthogonal, inversion of the diagonal

(TT T) matrix is trivial. The estimate of v vector is given as:
Dp=(T'T)" T'c (2.20)

where vy, is the least-squares estimate of v. The T and B matrices are calculated
in a stepwise manner (one vector at a time) until the desired model has been obtained.
As mentioned earlier, PLS and PCR differ in the way they generate T and B matrices. In
the PCR model, NIPALS (nonlinear iterative partial least squares) algorithm developed
by Wold (Wold, 1966) is used. The NIPALS algorithm extracts the full spectrum
loading vectors without using concentration information in the decomposition of
spectral matrix A. Therefore; the prediction of component concentrations is expected to
be poorer that the results obtained by PLS which applies a modified version of NIPALS
algorithm (Haaland, et al, 2002). This modified version of the algorithm uses
concentration information in the process of obtaining loading vectors thereby resulting
in a generator predictive ability.

There are two PLS methods that are available today in the analysis of complex
chemical mixtures. These are called PLS1 and PLS2 methods. In the PLS1 method, the

analysis performed one component at a time and other component concentrations not

24



included in the model building step. This is the most commonly used form the PLS
method and it is reported that the predictions obtained with PLS1 are better that those
obtained PLS2. It is suggested that PLS2 algorithm should be used for qualitative
application.

Before applying the factor based methods to the data, it is common practice to
do some sort of data pretreatment such as mean centering and scaling (Kowalski, et al,
1986).The mean centering is usually applied to both calibration spectra and
corresponding analyte concentrations in which the average concentrations for the
component of interest are subtracted from each spectrum and from given component
concentrations, respectively. After the data pretreatment, a CLS calibration model is
selected for the analysis of one component at a time. Then the PLS1 algorithm starts
with the calculation of the estimated first weighed loading vector, wy, , by setting h to 1.

This is done with the method of least squares and is given by:
w, =ATc(c"c)?! (2.21)

where wy, is an nxl vector representing the first order approximation of the pure
component spectra for the component that is being analyzed. This weighted loading
vector is then used to form the score vector ¢, , with an ILS prediction model. The
method of least squares is used to regression of A on wj which produces the first

estimated £, vector as given:
th =A Wh (222)

With a linear least-squares regression, this score vector can be related to the

component concentrations. The scalar regression coefficient, vy, , is estimated by:

N

Vo=t c@hi,)?! (2.23)

The least-square estimated regression coefficient is later used to obtain
concentration residuals. In order to eliminate collinearty problems, the PLS loading

vector, by, , is now calculated with a new model for A. Once again the method of least

squares is used to find estimated b vector by:

b,=tF A (T ,)" (2.24)
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whered,, is an nx1 vector. It is now possible to calculate the first PLS
approximation to the calibration spectra by multiplying the score vector (£,) with
transpose of PLS loading vector (b}). The first residual matrix is calculated by
subtracting the PLS approximation matrix from A matrix. The residuals in
concentration vector calculated in a similar manner where scalar regression coefficient
(D) is multiplied with score vector and this product is subtracted from original

concentration vector. The following equations provide residuals in both A and c.
Ea=A-t,bh (2.25)
€.=C- Vpty (226)

This is the end of the first iteration in the calibration step. This is the process is
repeated for a desired number of loading vectors by incrementing h, substituting E for
A and e; for concentration in the first CLS calibration model at the beginning of the
algorithm.

The prediction step of PLS1 algorithm involves the calculation of final
calibration coefficients, bf, which have the dimension of an original spectrum. Once the
bf is calculated, it is possible to calculate the concentration of a new sample using the
average concentration of the analyte and its spectra. The following equations show the

prediction step in PLS1.
bi=W (BWT)'¢ (2.27)

where W and B contains individual W, and b, vectors, respectively and v~ is
formed from individual regression coefficients (¥,) The final prediction equation is then

given as:
¢=a' bf+c, (2.28)

where ¢ is the predicted unknown sample c, a is the spectrum of that sample and
Co Is the average concentration of calibration samples.

The process of determining the optimal number of PLS factors may vary from
algorithm. The cross-validation approach is one of the methods for this (Malinowski,

1977). For m calibration spectra, the PLS1 algorithm is performed on m-1 spectra and
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the left out spectrum is used to validate the model. This process is repeated until each
spectrum is left out once in the calibration set. The predicted concentration for each left
out sample is then compared with their original values and the prediction error sum of
the squares (PRESS) is calculated for each added factor. The PRESS is a measure of
how well a particular model fits the calibration data and given by:

PRESS=Y",(¢ — ¢;)? (2.29)

where c; is the reference (known) concentration of the i™ sample and
concentration is the predicted concentration of the i sample for m calibration standard.

It is not the minimum PRESS value, however, that is used for the selection of
optimal number of PLS factors since this may lead to over fitting resulting in a poorer
prediction. Therefore a comparison needs to be done between two models that contain h
and h+1 factor. Here, the better model is the one with smaller number of factors where
the difference between the two PRESS values is determined by the F test to be
significant.

27



CHAPTER 3

INSTRUMENTATION AND EXPERIMENTATION

3.1 Instrumentation

3.1.1. Fourier Transform Infrared (FTIR) Spectrometry

In infrared spectroscopy, IR radiation is passed through a sample. Some of the
infrared radiation is absorbed by the sample and some of it is passed through
(transmitted). The resulting spectrum represents the molecular absorption and
transmission, creating a molecular fingerprint of the sample. Like a fingerprint no two
unique molecular structures produce the same infrared spectrum. This makes infrared
spectroscopy useful for several types of analysis.

It can used ;

* identify unknown materials,

* determine the quality or consistency of a sample,

* determine the amount of components in a mixture.

Molecules are flexible, moving collections of atoms. The atoms in a molecule
are constantly oscillating around average positions. Bond lengths and bond angles are
continuously changing due to this vibration. A molecule absorbs infrared radiation
when the vibration of the atoms in the molecule produces an oscillating electric field
with the same frequency as the frequency of incident IR "light".

All of the motions can be described in terms of two types of molecular
vibrations. One type of vibration, a stretch, produces a change of bond length. A stretch
is a rhythmic movement along the line between the atoms so that the interatomic
distance is either increasing or decreasing.

The second type of vibration, a bend, results in a change in bond angle. These
are also sometimes called scissoring, rocking, or "wig wag" motions. Each of these two
main types of vibration can have variations. A stretch can be symmetric or asymmetric.
Bending can occur in the plane of the molecule or out of plane; it can be scissoring, like

blades of a pair of scissors, or rocking, where two atoms move in the same direction.
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(Thermo Nicolet, Introduction to FTIR, 2012).

[ IN PLANE STRETCHING MOVEMENTS |

N N

ASYMMETRIC SYMMETRIC
[ IN PLANE BENDING MOVEMENTS |
SCISSORING ROCKING
| _OUT OF PLANE BENDING MOVEMENTS |
TWISTING WAGGING

Figure 3.1.Types of molecular vibrations. + indicates motion from the page toward

thereader; - indicates the motion away from the reader (Source: Skoog, et al.1998)

The normal instrumental process is as follows:

1. The Source: Infrared energy is emitted from a glowing black-body source.
This beam passes through an aperture which controls the amount of energy presented to
the sample (and, ultimately, to the detector).

2. The Interferometer: The beam enters the interferometer where the “spectral
encoding” takes place. The resulting interferogram signal then exits the interferometer.

3. The Sample: The beam enters the sample compartment where it is transmitted
through or reflected off of the surface of the sample, depending on the type of analysis
being accomplished. This is where specific frequencies of energy, which are uniquely
characteristic of the sample, are absorbed.

4. The Detector: The beam finally passes to the detector for final measurement.
The detectors used are specially designed to measure the special interferogram signal.

5. The Computer: The measured signal is digitized and sent to the computer
where the Fourier transformation takes place. The final infrared spectrum is then

presented to the user for interpretation and any further manipulation.
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Figure 3.2. Optical diagram of Fourier Transform Infrared (FTIR) Spectrometer
(Source: Thermo Nicolet, 2012)

Some of the major advantages of FT-IR over the dispersive technique include:

» Speed: Because all of the frequencies are measured simultaneously, most
measurements by FT-IR are made in a matter of seconds rather than several minutes.
This is sometimes referred to as the Felgett Advantage.

* Sensitivity: Sensitivity is dramatically improved with FT-IR for many reasons.
The detectors employed are much more sensitive, the optical throughput is much higher
which results in much lower noise levels, and the fast scans enable the coaddition of
several scans in order to reduce the random measurement noise to any desired level.

* Mechanical Simplicity: The moving mirror in the interferometer is the only
continuously moving part in the instrument. Thus, there is very little possibility of
mechanical breakdown.

* Internally Calibrated: These instruments employ a HeNe laser as an internal
wavelength calibration standard. These instruments are self-calibrating and never need
to be calibrated by the user.

These advantages, along with several others, make measurements made by FT-
IR extremely accurate and reproducible. Thus, it a very reliable technique for positive
identification of virtually any sample. The sensitivity benefits enable identification of
even the smallest of contaminants. This makes FT-IR an invaluable tool for quality
control or quality assurance applications whether it is batch-to-batch comparisons to
quality standards or analysis of an unknown contaminant. In addition,the sensitivity and
accuracy of FT-IR detectors, along with a wide variety of software algorithms, have

dramatically increased the practical use of infrared for quantitative analysis.
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Quantitative method can be easily developed and calibrated and can be incorporated

into simple procedures for routine analysis.

3.1.2. Near Infrared (NIR) Spectrometry

Infrared energy is the electromagnetic energy of molecular vibration. The
energy band is defined for convenience as the near infrared (0.78 to 2.50 microns); the
infrared (or mid-infrared) 2.50 to 40.0 microns; and the far infrared (40.0 to 1000
microns). However, even though official standards, textbooks, and the scientific
literature generally state that the NIR spectral region extends from 780-2500
nanometers (12821 - 4000 cm-1), a simple set of liquid phase hydrocarbon spectra
demonstrates that the vibrational information characterized by the harmonic vibrations
of the C-H stretch fundamental and their corresponding combination bands occurs from
approximately 690 to 3000 nm. The predominant near-infrared spectral features
include: the methyl C-H stretching vibrations, methylene C-H stretching vibrations,
aromatic C-H stretching vibrations, and O-H stretching vibrations. Minor but still
important spectral features include: methoxy C-H stretching, carbonyl associated C-H
stretching; N-H from primary amides, secondary amides (both alkyl, and aryl group
associations), N-H from primary, secondary, and tertiary amines, and N-H from amine
salts.

The advantages touted for NIR measurements over other vibration techniques
have proven themselves true throughout the 1980s up until today, they include:

1) C-H associated vibrational information is repeated 8 times from 690 nm to
3000 nm;

2) Simple harmonics may be selected or more information rich combination
regions;

3) Low cost instruments with high signal-to-noise (SNR) are simple to make and
typically exhibit signal-to-noise ratios (SNR) of 25000-100000:1;

4) High NIR throughput is possible, even when employing low cost fiber optics;

5) Variable path lengths for industrial use are possible, typically 1 mm to 10 cm
or more using different NIR spectral regions;

6) NIR Light penetrates plant and animal tissue easily for biomedical

applications (when using 900 nm and longer).
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Qualitative and quantitative near infrared (NIR) spectroscopic methods typically
require the application of multivariate calibration algorithms and statistical methods
(i.e. chemometrics) to model NIR spectral response to chemical or physical properties
of the samples used for calibration. The NIR method relies on the spectra-structure
correlations existing between a measured spectral response caused by harmonics of the
fundamental vibrations occurring at infrared frequencies. These harmonic vibrations
occur at unique frequencies depending upon the quantity of absorber (analyte), type of
absorbing molecules present within the sample, and the sample thickness.

Quantitative methods are possible where changes in the response of the near
infrared spectrometer are proportional to changes in the concentration of chemical
components, or in the physical characteristics (scattering/absorptive properties) of
samples undergoing analysis. Recent refinements of the NIR measurement technique
include the emergence of chemometrics and the diminishing distinction between near
infrared, and infrared as measurement techniques. Rather the techniques are
complementary, with each spectral region providing unique advantages for the analyst.
For a wide range of NIR applications, particular attention is given to the appearance of
methyl, methylene, methoxy, carbonyl, and aromatic C-H groups; hydroxy O-H; and N-
H from amides, amines, and amine salts.

Near infrared spectroscopy is used where multicomponent molecular vibrational
analysis is required in the presence of interfering substances. The near infrared spectra
consist of overtones and combination bands of the fundamental molecular absorptions
found in the mid infrared region. Near infrared spectra consist of generally overlapping
vibrational bands that may appear non-specific and poorly resolved. The use of
chemometric mathematical data processing and multiple harmonics can be used to
calibrate for qualitative of quantitative analysis despite these apparent spectroscopic
limitations.(Howard and Campbell,2008)

3.1.3. Advantages and Disadvantages of Spectroscopic Techniques

The biggest advantage of spectroscopic techniques is little or no sample
preparation, and real-time data. Unlike most conventional analytical methods, NIRS is
rapid, non-destructive, does not use chemicals, or generate chemical wastes requiring

disposal, simultaneously determines numerous constituents or parameters, and can be
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transported to nearly any environment, or true portable for field work. NIR
instrumentation is simple to operate by non-chemists, and operates without fume hoods,
drains, or other installations. NIR is not a stand-alone technology. Its accuracy is
dependent upon the accuracy of the reference method used for training; however, the
data from the NIR method has better reproducibility than the primary method.

Another advantage of spectroscopy is ‘thermal' noise. All internal electronic
components are a source of thermal noise in the Mid-IR and Far-IR. However, internal
sources of IR are either insignificant to NIR detectors or can be made insignificant by
minor shielding.

Spectroscopy is not a stand-alone technology. Separate calibrations are required
for each constituent or parameter and a portion of unknown samples must periodically
be analyzed by the reference method to ensure that calibrations remain reliable. It may
be necessary to update calibrations several times during the initial phases of use to
incorporate "outlying"” samples, until the calibration is acceptable. Despite the intuitive
disadvantage of broad and overlapping absorption bands, sophisticated chemometric
techniques can extract meaningful information from the complex NIR spectra. The
information about samples in the NIR spectra could not easily be accessed until the
advent of sufficiently powerful computers that allowed the development of complex
statistical relationships between the spectral data and constituents or parameters (e.g.
functional properties) determined by conventional techniques. These statistical
relationships between the spectral data and data from reference analyses are called
calibration models (Howard and Campbell, 2008).

3.1.4. High Performance Liquid Chromatography (HPLC)

High performance liquid chromatography (HPLC) is a chemistry tool for
quantifiying and analyzing mixtures of chemical compounds which is used to find the
amount of a chemical compounds within a mixture of other chemicals. High performance
liquid chromatography (HPLC) has the ability to separate, identify and quantitate the

compounds that are present in any sample that can be dissolved in a liquid.
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Figure 3.3. Schematic representation of a system for high performance liquid

chromatography (HPLC).( Source: Boomer.org,2013)

HPLC is a separation technique that involves the injection of a small volume of
liquid sample into a tube packed with tiny particles (3 to 5 micron (um) in diameter
called the stationary phase) where individual components of the sample are moved
down the packed tube (column) with a liquid (mobile phase) forced through the column
by high pressure delivered by a pump. These components are separated from one
another by the column packing that involves various chemical and/or physical
interactions between their molecules and the packing particles. These separated
components are detected at the exit of this tube (column) by a flow-through device
(detector) that measures their amount. An output from this detector is called a “liquid
chromatogram” (Agilent Technologies, 2013).

High performance liquid chromatography (HPLC) and combined chromatographic
methods has a great emphasis in olive oil analysis techniques. Several minor components of
olive oil such as sterols, phenolic compounds, pigments, tocopherols and triacylglycerols
can be identified and quantitated with this technique. Reversed-phase high performance
liquid chromatography (RP-HPLC) currently is the most popular and reliable technique for
the determination of triacylglycerols. Numerous mobile phases have been employed with
different modifiers, which include methanol, acetonitrile or tetrahydrofuran (Ryan, et al.
1999). Percentage determination of the various triglycerides present in virgin olive oil or
high performance liquid chromatography offers a way of detecting possible adulterations
with oils which, while having a similar fatty acid composition to olive oil, have a different

triglyceride composition.
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3.1.5. Gas Chromatography (GC)

Gas chromatography (GC) is a powerful and widely used tool for the separation,
identification and quantitation of components in a mixture. In this technique, a sample is
converted to the vapor state and a flowing stream of carrier gas (often helium or nitrogen)
sweeps the sample into a thermally-controlled column. In the case of gas liquid
chromatography, the column is usually packed with solid particles that are coated with a
non-volatile liquid, referred to as the stationary phase. As the sample mixture moves
through the column, sample components that interact strongly with the stationary phase
spend more time in the stationary phase vs. the moving gas phase and thus require more
time to move through the column. Retention time is defined as the time from injection of
the sample to the time a specific sample component is detected. Components with
higher volatility (lower boiling points) tend to spend more time in the moving gas phase
and therefore tend to have shorter retention times. After exiting the column the
separated components are detected and a detector response is recorded (Figure 3.4).

The most application field of Gas Chromatography (GC) in olive oil analysis is
the determination of methyl esters of fatty acids. The aim of this determination is to
establish the percentage composition of fatty acids in olive oil, more commonly known
as fatty acid composition, which is influenced by the olive variety, production zone,
climate and stage of maturity of the drupes when they are collected. Determination of
fatty acid composition of olive oil is not only a quality indicator but also is used for
characterization of the oils.

Figure 3.4. Schematic representation of a system for gas chromatography (GC)
(Source: Oliveoil, 2012)
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3.2 Experimentation

3.2.1 Olive Oil Samples

In this study, Gemlik variety of olive oil samples are used harvest for the year
2011.Marmara and Manisa region samples are provided by the Olive Research Institute.
Also at two locations within the Olive Research Institute (Bornova and Kemalpasa)
trees in the Gemlik variety, samples are produced a three-phase continuous system.
Data of these samples will be used as reference. The samples were stored in dark brown
bottles in deep freezer until they were analyzed. Details about the region of samples are
given in Table 3.1. Also all FAME and TAG components, are shown in Table 3.2 and
Table 3.3. The components used in this study are marked in bold.

Table 3.1 : Regions and settlements, that collected olive oils of which harvest Gemlik

variety.

Olive Research Institute:1)Olive Oil Research Institute Garden/Bornova 2)

Olive Oil Research Institute Garden Garden/ Kemalpasa

Manisa region (Akhisar and Salihli): 1)Derekoy, Ballica, Zeytinliova,
Mecidiye, Beyoba, Kayalioglu/Akhisar 2) Dombayli, Kestelli, Gorece, Pazarkoy,
Borlu/Salihli

Marmara Region: 1)Mudanya, Gemlik,iznik, Orhangazi/Bursa 2)Marmara
Birlik 3)Erdek,Edincik/Balikesir 4)Miirefte/Tekirdag
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Table 3.2. : FAME components of olive oil
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Table 3.2. (cont.)
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Table 3.2. (cont.)
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Table 3.3. : TAG components of olive oil samples
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3.2.2 Methods

Examples of natural oil varieties of Gemlik, were filtered by dehydrated sodium
sulfate of which placed over Whatman - No. 42 filter paper. Oil samples were used on
tri-achyl glycerol (TAG) analyses. Besides, with fatty acid esterification process, fatty
acids were converted into methyl esters and FAME analyses were applied. To be
esterification by oil samples, it was used cold methylation method (IUPAC Method
2.301) which certificated from International Olive Oil Council (Anonymous, 1979).

Implementation of the method is as follows:

o approximate 200 mg (few drops) oil samples were weighed in vial
o It was added over 10 ml hexane that be chromatographic purity, then shaked by
hand.

o And then, it was added 500 ul from 2M methanolic KOH solution, and since
clear solution, it was shaked with hand for twice.
o It was injected from upper side clear phase to chromatography after dividing

phase of glycerol.

3.2.2.1 Analyses of Fatty Acids Components

Fatty acids that belong to fatty samples converted to the methyl esters were
analyzed by gas chromatography GC HP 6890 model.

Flame ionization detector (FID) and the capillary column (DB -23, bonded 50%
cyanopropyl, 30 m X 0.25 mm ID x 0.250 micro M, J & W Scientific, Folsom, CA,

USA) were used. The device operating parameters are shown below Table 3.2.
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Table 3.4 : Parameters of GC instrument

The detector temperature

250°C

Injector temperature

250°C

Injection Split model 1/100
Carrier gases : Helium flow rate 0.5 ml/min
Hydrogen flow rate 30ml/min
Air flow rate 300ml/min
Make up gases: Nitrogen flow rate 24 ml/min

Oven temperature program

Programmed between 170 — 210 °C
On analyses, between 170 °C” - 210 °C
Oven Program is to be
implementedincrementally20°C/min and
analysis will be completed with samples will
be waited 10 minutes at 210°C

Fatty acids used in the analysis were myristic acid (C14:0), palmitic acid
(C16:0), palmitoleic acid (C16:1), margaric acid (C17:0), margoleic acid (C17:1),
stearic acid (C18:0), elaidic acid (C18:1 trans), oleic acid (C18:1), linoelaidic acid
(C18:2 trans), linoleic acid (C18:2), trans linolenic acid (C18:3 trans), linolenic acid
(C18:3), arachidic acid (C20:0), gadoleic acid (C20:1), behenic acid (C22:0), lignoseric
acid (C24:0). Each sample was analyzed at least two times. 16 main fatty acids in olive
oil samples were determined by retention time of each one according to the reference of
standard fatty acids. The area of the each peak which belonged to these fatty acids was
integrated by using Chem-station software. The integrated area of each fatty acid was
converted to the % concentration by dividing the calculated area of each acid to total
area content of all related fatty acids existed in olive oil. These fatty acids are shown in

Figure3.5.
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Figure 3.6. Fatty acids in Gas chromatogram

In this study, as a result of analyzing the fatty acids; palmitic acid, palmitoleic
acid, stearic acid, oleic acid, linoleic acid and linolenic acid were preferred due to
amount of mass percentages were more. The chromatographic analysis results for fatty
acid methyl esters were used as the reference method. In addition, spectroscopic
measurements of fatty acid methyl esters are made simultaneously chromatographic

measurements, spectra are recorded.

3.2.2.2 Analysis of Triacylglycerol Components

Analyses of triacyl glycerol components of natural olive oil samples
(triglyceride (TAG)) were determined by HPLC Agilent 1200 device, according to
international standards(IUPAC 2324) that is recommended by EC 2568-91 directive of
the European Union and based on the principle HPLC that is adopted by 100C.
Refractive index detector as a detector (RID), as column Superspher 100 RP-18 column
(244 x 4 mm ID x 4 m) were used. TAG was analyzed at 350°C temperature, up to 200
bar maximum pressure and 1.2 mL / min mobile phase flow rate. Mobile phase is
Acetone + 63.6% 36.4% acetonitrile and injection volume is 500 pl. Tri acyl glycerol

components are shown in Figure 3.6
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Figure 3.7. Tri acyl glycerol components in HPLC chromatogram

In this study PoOO, OLL, OOO, POP and SOO which were the main
components of olive oil triacyl glycerol, of the chromatographic and spectroscopic

measurements were evaluated.

3.3 Spectroscopic Analysis

In parallel with the chromatographic analysis, simultaneously two different
molecular spectroscopic methods have been used for spectroscopic analysis. These
spectroscopic methods are Fourier transform infrared spectroscopy and near infrared
spectroscopy.

Fourier transform infrared spectroscopic analyses were performed by Perkin
Elmer Spectrum 100 model equipped with diamond-ZnSe ATR accesory. The working
range was set 600-4000 cm™ wavenumber with 4 cm™ resolution by averaging 64 scan
numbers. Absorbance spectrums were collected at room temperature. Background
spectrum was obtained empty and dry ATR cell. Before and after each sample analyses
background was collected to reduce the contaminations that were come from the ATR
crystal. ATR crystal was cleaned with pure ethanol and allowed to dry.

Near-infrared spectroscopic analyses were performed at room temperature with
FTS-3000 NIR spectrometer (Bio-Rad, Excalibur, Cambridge, MA) and the working
range was set 4500 -10000 cmwavenumber with 8 cm™ resolution by averaging 64
scan numbers. Sample spectra were collected in absorbance method. Before and after

each sample analyses background was collected to reduce the contaminations that might
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come from sample cuvette. Quartz cuvette was cleaned with pure acetone and allowed

to dry.

3.4 Data Analysis

The collected spectra were transferred in ASCII file format and were combined
with Microsoft Excel program. Then, for multivariate analyses data files (calibration
and validation) were prepared as text files. Genetic algorithm based calibration method
was written in MATLAB programming language Version 7.0 (MathWorks Inc., Natick,
MA).Partial Least Square was also applied in Minitab programme and data files were
collected ASCII file format.
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CHAPTER 4

RESULT AND DISCUSSION

4.1. GILS Results

Spectrum 100 (Perkin Elmer, Waltham, MA, USA) Fourier Transform Infrared
(FTIR) spectrometer system coupled to attenuated total reflectance (ATR) accessory
was used to measure the olive oil samples. Both blank and sample spectra were
collected in absorbance method. FTIR was used to develop of multivariate calibration
methods for the determination of olive oil compositions. This calibration technique was
used to determine for both the FAME and the TAG compositions of olive oil samples.

The collected spectra are shown in Figure 5.1.
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Figure 4.1. FTIR spectra of olive oil samples measured in the range of a)4000-600 cm”

Absorbance

! b) 1800-600 cm™ using ATR accessory attached diamond ZnSe crystal.

Figure 4.1 shows the spectrum of olive oil samples which are scanned between
4000 and 600 cm™. Maximum absorbance wave number that obtained from spectrum is
1746cm™. The band seen in 3470 cm™ is the overtone of the glyceride ester carbonyl
absorption. At 3009 cm™ band are corresponded to CH stretching of = CH. 2960 cm™
value band is shown symmetric and asymmetric vibration of aliphaticCH3 groups.
Band at 2925 cm™ is corresponded asymmetric stretching of aliphatic CH, groups and
the band at 2854 cm™ is also corresponded symmetric stretching of aliphatic
CHagroups.Stretching of ester carbonyl functional group of triglycerides (C=0) are
seen at 1745 cm™. The band seen as a shoulder in 1710 cm™ is the acid group of free
fatty acids. The peak illustrated in 1655 cm™ is C=C stretching vibration of olefins. It is
shown that the band at1460 cm™is bending vibration of CH, and CHs aliphatic groups
and rocking vibration of CH bonds of cis-disubstituted olefins is seen at 1418 cm™.The
peak between 1241 and 1033 cm™ is stretching vibration of C-O ester and the peak can
be seen at 950 cm™ is bending vibration of out of plane of trans-disubstituted olefinic
groups. Finally the band at 723 cm™ is methylene rocking vibration and out-of —plane
bending vibration of cis-disubstituted olefins. (Guillén and Cabo 1997, Vlachos, et al.
2006)

Near infrared spectra of the olive oil samples were collected with FTS-3000

NIR spectrometer (Bio-Rad, Excalibur, Cambridge, MA) and spectrums were collected

51



between 4500 and 10000 cm™at room temperature. The sample spectra were collected
in absorbance method. Before and after each sample analyses background was
collected to reduce the contaminations. Pure ethanol was used to clean the instrument.
NIR was also used to develop of spectroscopic multivariate calibration methods for the
determination of olive oil compositions. This spectroscopic technique was used for
both FAME and TAG compositions of olive oil samples. The collected spectra are

shown in Figure 4.2.
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Figure 4.2. NIR spectra of olive oil samples measured in the range of 10000— 4500°™*.

Figure 4.2 shows the spectrum of olive oil samples which are scanned between
4500 and 10000 cm™. As can be seen band at 4590 cm™(1) belongs to-CH=CH- and
corresponds asymmetric stretching of C-H, and asymmetric stretching of C=C. The
band at 4656 cm™ (h) also belongs to-CH=CH- group and shows stretching =C-H and
C=C. Maximum absorbance wave number that obtained from spectrum is 5794 cm™ (e)
.This maxima shows C-H stretching first overtone of CH3 groups, The shoulder peak
at 5675 cm™ (f) C-H stretching first overtone of -CH, groups . At 7170 cm™ (c) weak
band corresponds 2C-H stretching of CH3 group and at 7074 cm™1(d) band shows 2C-H
stretching of-CH, group. At 8560 cm™ (a) weak and broad band second overtone of -
CHagroups, peak at 8240 cm™ (b) corresponds second overtone of- C-H of CH, group.
(Ozaki, et al. 2004).

After spectroscopic analysis, data are collected and calibration models are
separately modeled both FAME and TAG compositions. First results will be given for

FAME components.
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4.1.1 Results of FAME Compositions

In order to construct FTIR multivariate calibration models for fatty acid methyl
ester compositions, firstly interested fatty acid was chosen. Percentage values of olive
oil samples for linolenic acid (LN) that is reference oil acid content are given in the
following tables. The sets of measurement consist of two parts: calibration and
validation sets. 53 olive oil samples were included in calibration set. On the other hand
26 samples were also assigned as validation set (Table 4.1 and Table 4.2). Likewise
calibration and validation sets were created for NIR measurements. 53 olive oil samples
were included in calibration and 26 samples were also assigned as validation set. For
each set of samples absorbance matrices included spectral answers were created.
Calibration models are constructed separately for each component by GILS method and
tested. GILS is a wavelength selection based method, so when working with GILS, the
program set to 30 genes, 40 iteration numbers, and 100 runs. These parameters are used
for each calibration models for all TAG and FAME compositions.

Table 4.1. Percentage content by mass of Linolenic Acid (LN) in oil samples of

calibration set

LN acid

sample no | LN acid (w/w%) | sample no | LNacid(w/w%) | sample no (W/w%)
1 0.64 19 0.89 37 0.64
2 0.87 20 0.79 38 0.78
3 0.69 21 0.62 39 0.72
4 0.92 22 0.68 40 0.56
5 0.68 23 0.72 41 0.75
6 0.8 24 0.75 42 114
7 0.71 25 1.03 43 0.99
8 0.79 26 0.57 44 0.62
9 0.74 27 1.05 45 1.03
10 0.75 28 1.03 46 0.61
11 0.62 29 0.99 47 0.76
12 1.02 30 0.95 48 1.13
13 0.78 31 0.71 49 1.08
14 0.68 32 1.02 50 1.12
15 1.02 33 0.77 51 0.56
16 0.8 34 0.74 52 1.2
17 0.92 35 0.66 53 1.15
18 0.8 36 0.9
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Table 4.2. Percentage content by mass of Linolenic acid (LN) in oil samples of

validation set

sample no LN acid (w/w%o) sample no LN acid (w/w%)
1 0.96 14 0.77
2 0.88 15 0.67
3 0.75 16 0.85
4 0.78 17 0.94
5 0.82 18 0.66
6 0.66 19 0.83
7 0.66 20 0.69
8 0.64 21 0.98
9 0.67 22 0.67
10 0.81 23 0.78
11 0.86 24 0.97
12 0.74 25 0.93
13 0.69 26 0.94
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Figure 4.3. (a) Reference Linolenic acid (LN) content vs. predicted values based on
FTIR-ATR spectra using GILS method(b) Reference Linolenic acid (LN)

content vs. predicted values based on NIR spectra using GILS method
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Reference linolenic acid contents versus predicted values based on FTIR and
NIR spectra using GILS method are shown in Figure 4.3. Calibration models based on
FTIR spectra for linolenic acid content determination gave standard error of calibration
(SEC) and standard error of prediction (SEP) values as 0.0486%(w/w) and
0.1147%(w/w) for calibration and prediction sets. On the other hand calibration models
based on NIR spectra for linolenic acid content determination, the SEC and SEP values
were 0.0789%(w/w) and 0.1398%(w/w) for calibration and prediction sets, respectively.
The R?value of regression lines was 0.9682 for FTIR and that for linolenic acid content
was 0.939 for NIR spectra. When compare the results of two device, it can be said that
calibration model of FTIR showed a more uniform distribution than calibration model
of NIR looking at R?values.

Percentage values of olive oil samples for linoleic acid (LO) that is reference oil

acid content are given in the Table 4.3 and Table 4.4.

Table 4.3. Percentage content by mass of Linoleic acid (LO) in oil samples of

calibration set

LO acid LO acid sample

sample no (W/w9%) sample no (W/w9%) no LO acid (w/w%o)
1 8.46 19 9.25 37 7.7
2 8.03 20 9.15 38 8.9
3 9.55 21 12.29 39 5.9
4 6.71 22 8.49 40 12.8
5 9.96 23 7.57 41 12.97
6 7.83 24 6.74 42 11.92
7 9.1 25 10.44 43 6.63
8 8.7 26 9.07 44 10.52
9 10.45 27 9.27 45 12.26
10 12.55 28 7.56 46 8.19
11 9.32 29 11.02 47 11.42
12 8.19 30 9.92 48 135
13 6.91 31 10.36 49 13.8
14 6.49 32 8.32 50 9.12
15 10.62 33 10.6 51 7.64
16 6.47 34 10.57 52 13.87
17 6.77 35 5.26 53 5.26
18 9.55 36 10.69
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Table 4.4. Percentage content by mass of Linoleic acid (LO) in oil samples of

validation set

sample no LO acid (w/w%) sample no LO acid (w/w%)
1 8.62 14 8.01
2 9.09 15 8.62
3 8.39 16 9.98
4 12.05 17 8.05
5 9.37 18 7.50
6 10.17 19 8.20
7 9.81 20 7.76
8 9.00 21 10.57
9 10.22 22 10.54
10 7.62 23 12.14
11 941 24 9.70
12 10.50 25 5.74
13 8.90 26 7.64

53 olive oil samples were included in calibration and 26 samples were also
assigned as validation set. For each set of samples absorbance matrices included
spectral answers were created. Calibration models are constructed separately for each

component by GILS method and tested.
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Figure 4.4. (a) Reference Linoleic acid (LO) content vs. predicted values based on
FTIR-ATR spectra using GILS method (b) Reference Linoleic acid (LO)

content vs. predicted values based on NIR spectra using GILS method

Looking at the Figure 4.4 in the SEC, SEP, and R? values, Calibration models
based on FTIR spectra for linoleic acid content determination gave standard error of
calibration (SEC) and standard error of prediction (SEP) values as 0.2525%(w/w) and
0.2699 % (w/w) for calibration and prediction sets. On the other hand calibration
models based on NIR spectra for linoleic acid content determination, the SEC and SEP
values were 0.9280 %(w/w) and 1.5198%(w/w) for calibration and prediction sets,
respectively.FTIR spectrum of the calibration model can be seen in a better model was
established. When SEC and SEP values are examined in the first model, it is seen that
the agreement between these values are better than the NIR based model. On the other
hand, the R? of calibration lines of NIR model were now lower than FTIR based model.
In conclusion, linearity is provided between reference and predicted values in
calibration model based on FTIR spectrum. By using GILS method and spectroscopic
methods, calibration models are constructed and necessary and useful information can

be easily obtained from the spectrum.
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Oleic acid (OA) is the most abundant poly unsaturated fatty acid in olive oil.
Percentage values of olive oil samples for oleic acid (OA) that is reference oil acid

content are given in the Table 4.5 and Table 4.6 and calibration models are constructed.

Table 4.5. Percentage content by mass of Oleic acid (OA) in oil samples of calibration

set
sample no OA(W/w%) | sample no | OA(w/w%) | sample no OA(wW/w%)

1 65.39 19 69.38 37 66.94
2 65.63 20 65.52 38 73.29
3 65.21 21 66.12 39 68.47
4 72.20 22 66.45 40 66.58
5 71.70 23 71.95 41 70.42
6 67.97 24 67.15 42 72.22
7 67.78 25 73.76 43 66.46
8 69.49 26 69.41 44 74.61
9 73.31 27 66.78 45 65.74
10 67.14 28 65.64 46 72.22
11 71.04 29 65.34 47 69.47
12 73.03 30 65.77 48 62.07
13 65.84 31 65.36 49 67.19
14 65.69 32 67.16 50 74.11
15 73.33 33 66.75 51 62.61
16 67.36 34 69.03 52 75.65
17 69.24 35 71.94 53 74.66
18 70.32 36 73.41

Table 4.6. Percentage content by mass of Oleic acid (OA) in oil samples of validation

set
sample no OA(W/w%) sample no OA(W/w%)
1 72.31 14 71.93
2 68.45 15 67.15
3 67.01 16 72.58
4 67.41 17 71.56
5 69.08 18 69.11
6 65.95 19 68.34
7 66.74 20 67.82
8 67.33 21 69.59
9 70.42 22 65.51
10 66.68 23 67.15
11 67.08 24 71.73
12 66.63 25 66.73
13 70.34 26 67.95
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Figure 4.5. (a) Reference OA acid content vs. predicted values based on FTIR-ATR
spectra using GILS method (b) Reference OA acid content vs. predicted

values based on NIR spectra using GILS method

Reference extractives and OA content versus predicted values based on NIR and
FTIR-ATR spectra using GILS method are shown in Figure 4.4.Looking at the figures
created and modeled for oleic acid, calibration models for OA content determination
gave standard error of calibration (SEC) and standard error of prediction (SEP) values
as 0.4942% (w/w) and 0.4486% (w/w) for FTIR results. Besides SEC and SEP values of
NIR spectrum results were 1.6843% (w/w) and 2.3737 % (w/w). When these SEC and
SEP values for NIR are examined, it is seen that the values are higher than the FTIR
values. The R? value of regression lines for FTIR-ATR based model was 0.978 and that
for NIR based model was 0.9342. When compare two methods, FTIR based model was
more successful than NIR based calibration model.
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Table 4.7. Percentage content by mass of Palmitic Acid (PA) in oil samples of

calibration set

sample no PA(W/w%0) sample no PA(W/w%) | sampleno | PA(w/w%)

1 13.82 19 11.94 37 12.13
2 14.98 20 15.37 38 15.37
3 12.77 21 12.32 39 15.59
4 12.95 22 15.05 40 15.66
5 14.33 23 12.26 41 11.77
6 14.14 24 14.48 42 11.99
7 14.86 25 14.86 43 11.89
8 13.43 26 13.92 44 14.44
9 14.62 27 14.19 45 11.86
10 13.19 28 12.85 46 13.26
11 14.79 29 14.68 47 15.53
12 12.83 30 14.87 48 16.11
13 14.39 31 15.24 49 12.64
14 13.79 32 15.46 50 15.92
15 13.39 33 12.43 51 10.41
16 14.13 34 13.05 52 12.46
17 12.03 35 11.54 53 15.92
18 13.48 36 14.31

Table 4.8. Percentage content by mass of Palmitic Acid (PA) at oil samples of

validation set

sample no PA(w/w%) sample no PA(W/w%)
1 13.17 14 13.86
2 14.45 15 14.82
3 12.54 16 12.47
4 13.35 17 14.24
5 13.79 18 13.25
6 14.34 19 14.57
7 13.82 20 12.87
8 12.71 21 14.37
9 14.94 22 13.54
10 12.87 23 13.59
11 13.62 24 14.51
12 12.25 25 12.11
13 14.86 26 14.36
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Figure 4.6. (a) Reference Palmitic acid (PA) content vs. predicted values based on
FTIR-ATR spectra using GILS method (b) Reference Palmitic acid (PA)
content vs. predicted values based on NIR spectra using GILS method

Table 4.7 and Table 4.8 were percentage content by mass of PA values for
calibration and validation sets. Reference PA content versus predicted values based on
NIR and FTIR spectra using GILS method are shown in Figure 4.6. When compare
calibration models based on two instruments, it is seen that better calibration model is
obtained from the results of FTIR-ATR. Reference values and predicted values showed
good linearity in this method. Calibration models based on FTIR spectra for palmitic
acid content determination gave standard error of calibration (SEC) and standard error
of prediction (SEP) values as 0.4604%(w/w) and 0.4287%(w/w) for calibration and
prediction sets.SEC and SEP values of FTIR based model are close to each other. But
the plot of Figure 4.6.b, SEP value (1.3725%) is two times the value of SEC (0.7028%).
The R? value of regression lines for FTIR based model was 0.9681 and R?value for NIR
based model 0.9449.
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Table 4.9. Percentage content by mass of Palmitoleic Acid (POA) in oil samples of

calibration set

sample no POA(W/wW%) | sample no | POA(w/w%) | sample no POA(W/w%)

1 1.42 19 1.37 37 1.63
2 1.25 20 1.38 38 1.67
3 1.09 21 1.64 39 1.38
4 1.57 22 1.49 40 1.08
5 1.56 23 1.01 41 1.36
6 1.57 24 1.64 42 1.74
7 1.03 25 1.15 43 1.07
8 1.49 26 1.47 44 1.58
9 1.08 27 1.11 45 0.97
10 1.11 28 1.55 46 0.94
11 1.43 29 1.21 47 1.02
12 1.47 30 1.24 48 1.78
13 1.54 31 1.34 49 1.66
14 1.45 32 1.75 50 0.68
15 1.33 33 1.34 51 1.84
16 1.75 34 1.53 52 1.98
17 1.24 35 1.74 53 1.02
18 1.64 36 1.19

Table 4.10. Percentage content by mass of Palmitoleic Acid (POA) in oil samples of
validation set

sample no POA(W/w%) sample no POA(W/w%)
1 1.36 14 1.22
2 1.65 15 1.27
3 1.29 16 1.17
4 1.25 17 1.24
5 1.23 18 1.53
6 1.67 19 1.67
7 1.45 20 1.26
8 1.52 21 1.76
9 1.26 22 1.38
10 1.48 23 1.29
11 1.25 24 1.57
12 1.58 25 1.54
13 1.39 26 1.38
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Figure 4.7. (a) Reference Palmitoleic acid (POA) content vs. predicted values based on
FTIR-ATR spectra using GILS method (b) Reference Palmitoleic
acid(POA) content vs. predicted values based on NIR spectra using GILS
method

Table 4.9 and 4.10 and Figure 4.7 belong to palmitoleic acid which is the type of
fatty acid. 53 olive oil samples were included in calibration and 26 samples were also
assigned as validation set. When Figure 4.7 examined, calibration model based on FT-
IR measurements gave the better results with calibration model based on FT-NIR data.
Calibration models based on FT-NIR spectra for palmitoleic acid content determination
gave standard error of calibration (SEC) and standard error of prediction (SEP) values
as 0.158%(w/w) and 0.189%(w/w) for calibration and prediction sets. SEC
(0.0817%w/w) and SEP (0.174%w/w) values of FTIR based models are narrower. Also
predicted values and reference values have good linearity. When compared with the FT-
NIR and FTIR-ATR results, SEC and SEP values became higher and thus regression
became smaller. One possible explanation of this improvement could be attributed to
increased number of calibration and prediction samples. The R? value of regression lines
for FTIR was 0.9628 and that for NIR was 0.8699.
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Table 4.11. Percentage content by mass of Polyunsaturated fatty acid(PUFA) in oil

samples of calibration set

sample no PUFA(W/w%) sample no | PUFA(w/w%) | sample no | PUFA(w/w%)

1 8.32 19 8.72 37 11.52
2 10.34 20 7.37 38 11.26
3 7.18 21 8.77 39 14.82
4 13.54 22 11.35 40 8.81
5 10.62 23 9.14 41 11.31
6 10.57 24 8.93 42 13.01
7 9.44 25 8.98 43 11.36
8 11.33 26 9.69 44 9.82
9 8.28 27 10.72 45 11.06
10 10.56 28 6.57 46 10.35
11 10.51 29 11.88 47 7.19
12 8.75 30 13.77 48 9.88
13 13.28 31 11.35 49 8.42
14 10.35 32 8.24 50 5.88
15 9.53 33 12.69 51 14.44
16 7.24 34 8.39 52 14.65
17 8.43 35 13.87 53 6.06
18 9.87 36 12.22

Table 4.12. Percentage content by mass of Polyunsaturated fatty acid(PUFA) in oil

samples of validation set

sample no PUFA(w/w%) sample no PUFA(w/w%)
1 11.56 14 10.18
2 11.62 15 9.64
3 9.91 16 10.37
4 10.11 17 11.25
5 11.11 18 10.21
6 11.42 19 7.47
7 12.97 20 11.48
8 9.51 21 9.08
9 8.81 22 7.31
10 8.19 23 7.41
11 8.82 24 6.59
12 9.43 25 9.62
13 9.28 26 13.12
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Figure 4. 8. (a) Reference Polyunsaturated fatty acid (PUFA) content vs. predicted
values based on FTIR-ATR spectra using GILS method (b) Reference
Polyunsaturated fatty acid(PUFA) content vs. predicted values based on
NIR spectra using GILS method

Table 4.11 and Table 4.12 were percentage content by mass of PUFA values for
calibration and validation sets. Reference PUFA content versus predicted values based
on NIR spectra using GILS method are shown in Figure 4.8.When Figure 4.8 was
examined, linearity of both models is observed that more than 90%.

When compare calibration models based on two instruments, it is seen that
better calibration model is obtained from the results of FTIR-ATR. Reference values
and predicted values showed good linearity in this method.
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Table 4.13. Percentage content by mass of Stearic acid (SA) in oil samples of
calibration set

sample no SA(W/w%) | sample no | SA(w/w%) sample no SA(W/w%)

1 2.59 19 2.93 37 2.12
2 2.85 20 2.62 38 2.86
3 2.36 21 2.24 39 2.69
4 3.08 22 3.32 40 3.05
5 2.66 23 2.46 41 3.27
6 2.41 24 2.47 42 2.07
7 2.27 25 2.47 43 2.62
8 2.56 26 2.29 44 2.42
9 3.02 27 2.38 45 2.25
10 2.28 28 2.89 46 2.01
11 2.84 29 3.14 47 3.09
12 2.34 30 2.04 48 3.39
13 2.33 31 2.69 49 3.09
14 3.07 32 2.59 50 3.06
15 2.36 33 3.06 51 1.83
16 2.58 34 2.29 52 3.18
17 2.64 35 3.26 53 1.95
18 2.28 36 2.35

Table 4.14. Percentage content by mass of Stearic acid (SA) in oil samples of validation

set
sample no SA(W/w%) sample no SA(W/wW%)
1 2.67 14 2.65
2 2.65 15 3.04
3 2.96 16 2.66
4 2.61 17 2.94
5 2.81 18 3.17
6 2.39 19 2.47
7 2.36 20 2.67
8 2.67 21 2.32
9 2.45 22 2.41
10 2.52 23 2.36
11 251 24 241
12 2.55 25 2.14
13 2.48 26 2.32
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Figure 4.9. (a) Reference Stearic acid (SA) content vs. predicted values based on FTIR-
ATR spectra using GILS method (b) Reference Stearic acid (SA) content
vs. predicted values based on NIR spectra using GILS method

Reference extractives and SA content versus predicted values based on NIR and
FTIR-ATR spectra using GILS method are shown in Figure 4.9.Looking at the figures
created and modeled for stearic acid, Calibration models for SA content determination
gave standard error of calibration (SEC) and standard error of prediction(SEP) values as
0.1811% (w/w) and 0.2824 % (w/w) for NIR results. Besides SEC and SEP values of
FTIR spectrum results were %0.0696 (w/w) and %0.2512 (w/w). When these SEC and
SEP values are examined, it is seen that the values are smaller than the FT-NIR values.
The R? value of regression lines for FTIR-ATR based model was 0.9618 and that for
NIR based model was 0.9454. When compare two methods, FTIR based model was
more successful than FT-NIR based calibration model.

Because GILS is a wavelength selection based method, it is interesting to
observe the distribution of selected wavelengths in multiple runs over the entire full
spectral region. Figure 4.10 illustrates the frequency distribution of selected

wavelengths in 100 runs with 40 genes and 30 iterations for FAME of olive oil samples.
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Figure 4.10. Frequency distribution of GILS selected FTIR wavelengths for FAME
(@)Linolenic acid (LN) (b)Linoleic acid (LO) (c) Oleic acid(OA)
(d)Palmitic acid(PA) (e) Palmitoleic acid(POA) (f)Polyunsaturated fatty
acid (PUFA) (g) Stearic acid(SA) contents of olive oil samples

As can be seen from Figure 4.10 there are a number of regions where selection
frequencies are very high compared to the rest of the spectrum. The wavelength region
around 1240 and 3000 cm™ for LN acid, around 900 and 3000 cm™ for LO acid, around
1100 and 3000 cm™ for OA acid, around 1105 and 3000 cm™ for PA, around 1085 and
760 cm™ for POA acid, around 1100 and 3020 cm™ for PUFA indicates a strong
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tendency for GILS method to select while for SA, around 1470 and 1470 cm™ is the

most frequently selected region.

4.2. Results of Tri-achyl Glycerol (TAG) Compositions

Triachylglycerol (TAG) compositions are important components in olive oil.
Results from HPLC chromatography were used to reference in model. Also
measurements were taken from FTIR and NIR instruments. Finally these methods were
evaluated in success of prediction. First, results of oleic-oleic-oleic (OOO) component

are given.

Table 4.15. Percentage content by mass of triolein (OOQ) in oil samples of calibration

set
sample no 0O00(w/w%) | sampleno | OOO(w/w%) | sampleno | OOO(%w/w)

1 34.02 19 41.79 37 41.47
2 32.99 20 33.72 38 32.12
3 34.25 21 27.61 39 33.12
4 31.36 22 39.96 40 34.03
5 32.45 23 32.86 41 41.94
6 42.73 24 36.38 42 33.58
7 33.85 25 40.90 43 45.77
8 37.56 26 36.43 44 41.41
9 39.97 27 31.91 45 32.32
10 35.83 28 41.78 46 31.32
11 33.25 29 34.24 47 31.14
12 35.35 30 35.91 48 43.78
13 34.77 31 33.77 49 36.17
14 33.59 32 32.74 50 36.76
15 31.61 33 38.79 51 31.99
16 39.81 34 32.05 52 30.13
17 33.51 35 43.18

18 32.16 36 38.24
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Table 4.16. Percentage content by mass of triolein (OOQ) in oil samples of validation

set
sample no O00(w/wb) sample no 0O00O(w/w%)
1 31.66 14 33.18
2 32.37 15 37.04
3 32.26 16 42.12
4 39.48 17 35.78
5 36.24 18 32.97
6 41.19 19 37.54
7 43.97 20 31.92
8 30.19 21 42.48
9 34.97 22 33.51
10 28.13 23 34.32
11 34.07 24 40.53
12 33.86 25 42.75
13 37.71 26 35.86
50 50
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Figure 4.11. (a) Reference triolein (OOQ) content vs. predicted values based on FTIR-
ATR spectra using GILS method (b) Reference triolein (OOOQ) content vs.

predicted values based on NIR spectra using GILS method

Reference triolein contents versus predicted values based on FTIR and NIR

spectra using GILS method are shown in Figure 4.11. Calibration models based on



FTIR spectra for triolein content determination gave standard error of calibration (SEC)
and standard error of prediction (SEP) values as 1.14%(w/w) and 1.40 %(w/w) for
calibration and prediction sets. The other hand calibration models based on NIR spectra
for triolein content determination, the SEC and SEP values were 2.11%(w/w) and
3.23%(w/w) for calibration and prediction sets, respectively. When these SEC and SEP
values of FTIR based calibration model are examined, it is seen that these values are
compatible with each other, which illustrates a good prediction. The R? value of
regression lines was 0.9649 for FTIR and that for triolein content was 0.9371 for NIR
spectra. When compare results of two devices, the calibration model of FTIR showed

uniform distribution when looking at R? values.

Table 4.17. Percentage content by mass of 1,2-dilinoleyl-3-oleylglycerol (OLL) in oil
samples of calibration set

sample no OLL(w/w%) sample no OLL(w/w9%) | sampleno | OLL(w/w%)

1 1.32 19 3.08 37 1.79
2 2.71 20 2.96 38 1.84
3 3.74 21 1.80 39 3.32
4 2.01 22 2.63 40 2.10
5 3.44 23 2.66 41 4.28
6 3.42 24 1.93 42 2.18
I 2.75 25 4.31 43 3.10
8 1.63 26 2.35 44 2.67
9 2.59 27 2.32 45 1.69
10 2.95 28 2.13 46 2.35
11 3.82 29 2.03 47 0.87
12 2.03 30 4.11 48 2.02
13 3.69 31 2.13 49 3.12
14 1.92 32 2.57 50 2.29
15 1.96 33 2.38 51 2.09
16 1.47 34 1.65 52 3.85
17 151 35 2.43

18 2.30 36 1.93
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Table 4.18. Percentage content by mass of OLL (1,2-dilinoleyl-3-oleylglycerol) at oil
samples of validation set

sample no OLL(w/w%) sample no OLL (w/w%)
1 1.40 14 1.01
2 4.57 15 1.44
3 1.35 16 3.66
4 2.70 17 2.66
5 1.60 18 2.98
6 2.61 19 1.21
7 3.50 20 1.32
8 2.22 21 2.59
9 2.43 22 2.38
10 0.97 23 2.36
11 2.27 24 1.88
12 2.11 25 1.39
13 3.75 26 1.82
5 5
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Figure 4.12. (a) Reference 1,2-dilinoleyl-3-oleylglycerol (OLL) content vs. predicted
values based on FTIR-ATR spectra using GILS method (b) Reference 1,2-
dilinoleyl-3-oleylglycerol (OLL) content vs. predicted values based on

NIR spectra using GILS method
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Table 4.17 illustrates that percentage content of OLL in calibration, Table 4.18
also illustrates that percentage content of OLL in validation sets. 52 olive oil samples
were used in calibration, 26 olive oil samples were also used in validation model.
Calibration models based on FTIR spectra for OLL content determination gave SEC
and SEP values as 0.2688%(w/w) and 0.2598%(w/w) for calibration and prediction sets.
The other hand calibration models based on NIR spectra for OLL content determination,
the SEC and SEP values were 0.3504%(w/w) and 0.5966%(w/w) for calibration and
prediction sets, respectively. When compared with FTIR and NIR results, SEC and SEP
values became higher and thus regression became smaller, but NIR based model gave a
compatible agreement with reference and predicted values. The models based on FTIR
and NIR spectrum results, NIR results gave good linearity with reference values. The
R2valueof regression line is 0.9606 for NIR, so NIR based model is better than the

model based on FTIR results.

Table 4.19. Percentage content by mass of 1,2-dipalmitoyl-3-oleylglycerol(POP) in oil

samples of calibration set

sample no POP(w/w%) sample no | POP(%w/w) | sample no POP (%w/w)

1 3.25 19 3.26 37 3.99
2 4.36 20 3.33 38 3.11
3 4.36 21 3.26 39 4.81
4 3.65 22 2.82 40 4.31
5 3.88 23 2.68 41 5.52
6 3.73 24 3.68 42 3.29
7 4.09 25 4.02 43 3.05
8 4.06 26 3.41 44 2.57
9 4.21 27 3.97 45 4.14
10 4.63 28 5.43 46 3.78
11 4.63 29 3.74 47 3.15
12 4.53 30 2.81 48 4.46
13 3.42 31 4.89 49 3.72
14 4.18 32 4.49 50 4.82
15 3.41 33 3.15 51 5.97
16 3.07 34 3.64 52 5.02
17 5.12 35 4.67

18 4.87 36 2.78
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Table 4.20. Percentage content by mass of 1,2-dipalmitoyl-3-oleylglycerol(POP) in oil

samples of validation set

sample no POP(%w/w) sample no POP(%w/w)
1 2.74 14 4.72
2 4,07 15 3.92
3 4.72 16 3.29
4 3.05 17 2.83
5 2.92 18 3.66
6 4.17 19 3.26
7 3.97 20 3.04
8 4.56 21 4.37
9 3.89 22 3.58
10 421 23 3.86
11 4.86 24 471
12 4.26 25 3.72
13 4.38 26 5.12
6 6.5
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Figure 4.13. a) Reference 1,2-dipalmitoyl-3-oleylglycerol (POP) content vs. predicted
values based on FTIR-ATR spectra using GILS method (b) Reference 1,2-

dipalmitoyl-3-oleylglycerol (POP) content vs. predicted values based on
FT-NIR spectra using GILS method
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Reference POP (1,2-dipalmitoyl-3-oleylglycerol) contents versus predicted
values based on FTIR and NIR spectra using GILS method are shown in Figure 4.13.
Calibration models based on FTIR spectra for POP (1,2-dipalmitoyl-3-
oleylglycerol)content determination gave standard error of calibration (SEC) and
standard error of prediction (SEP) values as 0.39%(w/w) and 0.45 %(w/w) for
calibration and prediction sets. The other hand calibration models based on NIR spectra
for content determination, the SEC and SEP values were 0.60%(w/w) and 0.56%(w/w)
for calibration and prediction sets, respectively. The R? value of regression lines was
0.87 for FTIR and that for POP (1,2-dipalmitoyl-3-oleylglycerol) content was 0.7818
for NIR spectra. It can be said that the calibration model of FTIR instrument has a good
distribution than the model of FT-NIR.R? values of FTIR showed this result.

Table 4.21. Percentage content by mass of 2,3-dioleyl-1-stearoylglycerol (SOO) in oil
samples of calibration set

sample no SOO(W/w%) sample no SOO(w/w%) sample no | SOO(w/w%o)

1 5.46 19 6.25 37 5.47
2 4.18 20 5.51 38 4.02
3 4.19 21 3.59 39 3.45
4 3.91 22 3.78 40 5.18
5 4.84 23 3.76 41 3.88
6 3.84 24 4.96 42 2.83
7 491 25 4.39 43 5.55
8 3.89 26 4.84 44 4.55
9 5.86 27 4.34 45 5.77
10 4,75 28 4.32 46 4.01
11 4.63 29 3.95 47 5.88
12 3.76 30 5.62 48 6.39
13 3.64 31 4.73 49 3.15
14 3.67 32 3.78 50 4.48
15 421 33 4.27 51 4.04
16 4.47 34 4.88 52 2.88
17 4.31 35 3.47

18 4.26 36 4.35
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Table 4.22. Percentage content by mass of 2,3-dioleyl-1-stearoylglycerol (SOQ) in oil

samples of validation set

sample no SOO(w/iw%) sample no SOO(w/w%)
1 3.16 14 2.75
2 4.35 15 4.23
3 4,94 16 4.48
4 4,04 17 4,09
S5 3.52 18 4.38
6 3.76 19 3.96
7 411 20 4.08
8 4.09 21 5.62
9 3.26 22 4.14
10 5.71 23 3.76
11 5.35 24 5.98
12 450 25 4.62
13 3.84 26 5.16
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Figure 4.14. (a) Reference 2,3-dioleyl-1-stearoylglycerol (SOO) content vs. predicted
values based on FTIR-ATR spectra using GILS method (b) Reference 2,3-

dioleyl-1-stearoylglycerol (SOO) content vs. predicted values based on

FT-NIR spectra using GILS method
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The Table 4.21 and 4.22 and figure4.14 belongs to triachyl glycerol SOO (2,3-
dioleyl-1-stearoylglycerol) type triachyl glycerol. 52 olive oil samples were included in
calibration and 26 samples were also assigned as validation set. When Figure 4.14
examined, calibration model based on FT-NIR measurements gave approximately the
same results with calibration model based on FTIR-ATR data. When compared with the
NIR and FTIR-ATR results, SEC and SEP values became higher and thus regression
became smaller. Lastly the calibration model based on FT-NIR gave the better result
than the model based on NIR.

Table 4.23. Percentage content by mass of 1-palmitioleoyl,2,3-dioleoyl (PoOO) in oil

samples of calibration set

sample no PoOO(w/w%) | sample no | PoOO(w/w%) | sample no | PoOO(w/w%)

1 1.66 19 1.43 37 2.44
2 1.37 20 1.41 38 1.21
3 1.43 21 1.49 39 1.63
4 1.42 22 1.15 40 2.14
5 1.61 23 1.11 41 2.75
6 1.57 24 1.95 42 1.13
7 1.55 25 1.85 43 1.41
8 1.22 26 1.93 44 0.93
9 1.39 27 1.69 45 1.78
10 1.68 28 1.54 46 2.66
11 1.84 29 0.97 47 2.46
12 1.54 30 1.48 48 0.73
13 1.32 31 2.06 49 2.95
14 1.31 32 1.51 50 2.78
15 2.47 33 1.62 51 3.54
16 2.32 34 1.18 52 3.65
17 1.86 35 1.38

18 111 36 1.41
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Table 4.24. Percentage content by mass of 1-palmitioleoyl,2,3-dioleoyl (PoOO) in oil
samples of validation set

sample no PoOO(w/w%b) sample no PoOO(w/w%)
1 2.18 14 2.02
2 2.06 15 1.56
3 1.75 16 1.83
4 1.66 17 1.48
S 1.82 18 1.82
6 1.43 19 1.71
7 1.86 20 1.66
8 2.36 21 2.26
9 1.88 22 1.28
10 1.92 23 1.94
11 2.07 24 1.14
12 1.48 25 1.89
13 1.64 26 1.34
3 3
y = 0.5192x + 0.832 y = 0.5086x + 0.8704 ¢
R2=10.845 R?=10.861
2.5 1 2.5 08619
5 2 S 2
S =
L) c
c 2
315 5 -
: 2
3 o
[a o
= 11 a1 -
3 -
o i)
5 S
()
S:'O'S | o Calibration ?'5 | o Calibration
= m Validation @x m Validation
o Z
0 T T T O T T T
0 1 2 3 4 0 1 2 3 4
Reference PoOO content(w/w%) Reference PoOO content(w/w%)
(a) (b)

Figure 4.15. (a) Reference 1-palmitioleoyl,2,3-dioleoyl (PoOO) content vs. predicted
values based on FTIR-ATR spectra using GILS method (b) Reference 1-
palmitioleoyl,2,3-dioleoyl (PoOO) content vs. predicted values based on
FT-NIR spectra using GILS method



Table 4.23 and Table 4.24 are percentage content of calibration and validation
sets of PoOO values. Looking at Figure 4.15, the linearity of both models is observed
that more than 85%.The results are very comparable but NIR results seem to have
somewhat better R?values for calibration models. Reference and predicted values have
good linearity and so it can be said the model of NIR is better than the model of FTIR.
In conclusion, predicted values based on both two instrument using GILS method shows
the success of calibration model. Figure 4.16 illustrates the frequency distribution of

selected wavelengths in 100 runs with 40 genes and 30 iterations for TAG of olive oil

samples.
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Figure 4.16. Frequency distribution of GILS selected FTIR wavelengths for TAG
(@)OLL acid (b)OOO acid (c) PoOO (d)SOO (e) POP contents of olive oil

samples

As can be seen from Figure 4.16 there are a number of regions where selection
frequencies are very high compared to the rest of the spectrum. The wavelength region
around 1500 and 3000 cm™ for OLL acid, around 950 and 2400 cm™ for OO0 acid,
around 2000 and 3000 cm™ for PoOO acid, around 1300 and 2850 cm™ for SOO,
around 3300 and 1300 cm™ for POP acid indicates a strong tendency for GILS method

to select which is the most frequently selected region.

4.3. PLS Results

PLS is a kind of factor based methods that combines ILS approach using factor
data. PLS assumes that the error can be derived from both absorbance readings and
from the measurement of component concentration. Like ILS, PLS does not require the

user to prepare a calibration standard where all of the interfering species are known.
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Also, it tries to find the factors which have the greatest relevance for prediction. The
PLS calibration models for each components were first calculated using cross—
validation. And all data was mean—centered not scaled. There are two main advantages
of cross—validation methods. The first is estimation of the performance of the model.
Since the predicted samples are not same as the samples used build the model. The
second benefit of cross—validation is better outlier detection since each sample is left out
of the models during the cross—validation process. On the other hand, it is a very time—
consuming process. Mean centering translates the collection of data to the origin of
multivariate space where analysis will be performed. It also removes the need for an
intercept from the regression model. Since fewer terms in the regression model may
need to be estimated and estimated analyte concentrations may be more precise
following mean centering of the data. More of the information content of a data set can
usually be described with a simpler model if the data is mean centered. The major effect
of mean—centering is removing the broad sloping background from the data collection.
Also PLS-1 algorithm (one component at a time) was used here.

In this study, PLS was performed for both sets of FAME and TAG using the
data from the FTIR and NIR spectra. The aim is to provide the most successful model
for the prediction of concentrations. From Figure 4.17 to Figure 20 illustrates PLS
results for the set of FAME compositions. According to between Figure 4.17. to Figure
4.20 , the models for FAME components have low prediction ability of concentrations
with low regression coefficients. The models are also suffering from high collinearity
and cannot be trusted for producing a high calibration quality and for making prediction
of concentrations in the validation samples.

Generally, as can be seen Figure 4.17.,Figure 4.18, Figure 4.19 and Figure 4.20
reference versus predicted values are not compatible with each other. When overall
calibration performance models examine, it is possible to state that PLS is not best
calibration method; since all FAME components have worst regression coefficient when

comparing GILS method.
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Figure 4.17. (a) Reference Linolenic acid (LN) content vs. predicted values based on
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content vs. predicted values based on NIR spectra using PLS method (c)
Reference Linoleic acid (LO) content vs. predicted values based on FTIR-
ATR spectra using PLS method (d) Reference Linoleic acid (LO) content
vs. predicted values based on NIR spectra using PLS method
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Figure 4.18. (a) Reference Oleic acid (OA) content vs. predicted values based on FTIR-
ATR spectra using PLS method (b) Reference Oleic acid (OA) content vs.

predicted values based on NIR spectra using PLS method (c) Reference
Palmitic acid (PA) content vs. predicted values based on FTIR-ATR
spectra using PLS method (d) Reference Palmitic acid (PA) content vs.

predicted values based on NIR spectra using PLS method
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Figure 4.19. (a) Reference Palmitoleic acid (POA) content vs. predicted values based on
FTIR-ATR spectra using PLS method (b) Reference Palmitoleic acid
(POA) content vs. predicted values based on NIR spectra using PLS
method (d) Reference Polyunsaturated fatty acid (PUFA)content vs.
predicted values based on FTIR-ATR spectra using PLS method (d)
Reference Polyunsaturated fatty acid (PUFA) content vs. predicted values
based on NIR spectra using PLS method
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Figure 4.20. t(a) Reference Stearic acid (SA) content vs. predicted values based on
FTIR-ATR spectra using PLS method (b) Reference Stearic acid (SA)
content vs. predicted values based on NIR spectra using PLS method

According to Figure 4.21. to Figure 4.22 , the models for TAG components have
low prediction ability of concentrations with low regression coefficients. And also the
models are suffering from high collinearity and cannot be trusted for producing a high
calibration quality and for making prediction of concentrations in the validation
samples.

Generally, as can be seen Figure 4.21., and Figure 4.22 reference versus
predicted values are not compatible with each other. When overall calibration
performance models examine, it is possible to state that PLS is not best calibration
method; since all FAME components have worst regression coefficient when comparing
GILS method
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Figure 4.21. (a) Reference 1,2-dilinoleyl-3-oleylglycerol (OLL) content vs. predicted
values based on FTIR-ATR spectra using PLS method (b) Reference 1,2-
dilinoleyl-3-oleylglycerol (OLL) content vs. predicted values based on
NIR spectra using PLS method (c) Reference triolein (OOO) content
vs.predicted values based on FTIR-ATR spectra using PLS method (d)
Reference triolein (OOQO) content vs. predicted values based on NIR

spectra using PLS method
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Figure 4.22. (a) Reference 1-palmitioleoyl,2,3-dioleoyl (PoOO) content vs. predicted

values based on FTIR-ATR spectra using PLS method (b) Reference 1-
palmitioleoyl,2,3-dioleoyl (PoOO) content vs. predicted values based on
FT-NIR spectra using PLS method (c) Reference 1,2-dipalmitoyl-3-
oleylglycerol (POP) content vs. predicted values based on FTIR-ATR
spectra using PLS method (d) Reference 1,2- dipalmitoyl-3-oleylglycerol
(POP) content vs. predicted values based on FT-NIRspectra using PLS
method(e) Reference 2,3-dioleyl-1-stearoylglycerol (SOQ) content vs.
predicted values based on FTIR-ATR spectra using PLSmethod (f)
Reference 2,3- dioleyl-1-stearoylglycerol (SOO) content vs. predicted
values based on FT-NIR spectra using PLS method
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CHAPTER S

CONCLUSION

In this thesis, it is aimed to develop molecular spectroscopic multivariate
calibration models for the determination some of fatty acid methyl esters and triachyl
glycerol compositions of Gemlik type olive oils provided by Olive oil Research
Institute. The data obtained from High Performance Liquid Spectroscopy (HPLC) was
chosen reference method for tri-achyl glycerol compositions and also the data obtained
from Gas Chromatography (GC) was chosen reference method for fatty acid methyl
esters. Analyzes were done by Olive Oil Research Institute. Samples were also
measured by spectroscopic techniques. These spectroscopic techniques are Fourier
Transform Infra red spectroscopy (FTIR) and Near Infra Red spectroscopy (NIR). Data
were obtained by both two instruments for TAG and FAME compositions. GILS
(Genetic inverse least square) chemometric method which is multivariate calibration
model based on genetic algorithm was used to construct calibration models for both
compositions. Reliability of the calibration models was determined by SEC and SEP
values as well as with the R? values from the reference vs. predicted content plots.

In conclusion, the models based on FTIR instrument data for both FAME
compositions and TAG compositions gave successful results by using GILS method.
From the results, it is seen that successful calibration models can be constructed by
using the methods mentioned to provide fast and non-destructive determination of
FAME and TAG compositions. This might give rise to improvements in the olive oil
industry in economical manner. In addition, by wavelength selection feature of GILS
method, the wavelengths which carry information of FAME and TAG could be
determined in order to develop case specific analysis models. NIR and FTIR combined
with multivariate calibration models could be more advantageous compare to

chromatographic methods because of their simplicity and speed.
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