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Abstract. The study aims to devise means of obtaining polyhedral linkages for homothetic 

deployment of polyhedral shapes by embedding planar link groups in faces of the polyhedral 

shape of interest. The questions of which polyhedral shapes may be suitable for such a pur-

pose and what are the compatibility conditions for spatially assembling planar link groups are 

addressed. Homohedral and tangential polyhedral shapes are found to be suitable for the task 

and some examples of linkages are worked out.  
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1 Introduction 

Polyhedral linkages with invariant faces and variable angles were of interest in the first 

half of the 20
th

 century [1, 2, 3]. However in the last few decades researchers started to work 

on polyhedral linkages with variable faces, invariant dihedral and planar angles. Due to invar-

iant angles these linkages will be called conformal polyhedral linkages. 

An assembly with such a conformal transformation is first discovered by Buckminster 

Fuller [4]. Fuller named the motion as the Jitterbug motion [5]. Many Jitterbug-like linkages, 

were discovered later on. Verheyen [6] presented a list of regular Jitterbug-like linkages. 

Wohlhart discovered several Jitterbug-like linkages [7, 8, 9]. Röschel used planar equiform 

motions reflected on different planes to construct Jitterbug-like linkages [10, 11, 12]. In [11] 

Röschel applied his methods to tangential octahedra (octahedra with an inscribed sphere). 

Kiper and Söylemez generalized Röschel’s findings and presented some other methods to ob-

tain new Jitterbug-like linkages [13]. [13] specifically issues homothetic polyhedral linkages, 

for which the polyhedral volume inside the linkage remains scaled at all poses. 

Other than the Jitterbug-like linkages, Gosselin and Gagnon-Lachance [14] and Kiper, 

Söylemez and Kişisel [15, 16] obtained conformal polyhedral linkages by implementing a 

single degree-of-freedom (dof) link group in all faces of a polyhedron while Wohlhart [17, 18, 

19, 20, 21] and Kiper and Söylemez [22] used multi dof link groups on the faces. In all these 

linkages only revolute joints were used. In this study we aim to obtain homothetic polyhedral 

linkages with revolute joints only assembling appropriate link groups placed on the faces of 

polyhedra. 

 

2 Planar Link Groups 

Consider a polyhedral shape going through a homothety (non-rotating dilation). In prac-

tice, such a transformation of the polygonal faces can be realized by planar kinematic chains 

with n prismatic joints along the edges actuated at rates proportional to the respective edge 

lengths (Fig. 1). 



 

 

 

Fig. 1 Polygonal kinematic chain 

 

When the revolute joints at the edges connect to the so-called dihedral angle preserving 

(dap) links, the planar chains are assembled to form a polyhedral linkage (See [13]). A neces-

sary condition to be able to assemble such planar chains to obtain a polyhedral linkage is that 

the dap link connections of planar link groups in neighboring faces must be compatible. That 

is, adjacent planar link groups should be positioned at concurrent locations along the common 

edge at all times of motion. Such a condition necessitates special dimensioning both the poly-

hedral shape of interest and the links. Therefore the resulting linkages are overconstrained. 

Röschel [11, 12] and Kiper and Söylemez [13] have illustrated that this compatibility condi-

tion at the edges becomes possible when planar homothety centers of adjacent dilating face 

pairs are located such that the perpendiculars dropped from these centers to the edges meet 

each other. This condition is valid for the following two types of polyhedral geometry: tan-

gential polyhedra and homohedra with edge-symmetric faces (See [13]). 

Assume that we have a polyhedron for which one can pick a point on each face of a poly-

hedron such that the perpendiculars dropped from these points to the edges meet each other. 

These points shall be called planar homothety centers (PHCs). We need to assure that planar 

link groups (in the form of Fig. 1) keep the homothety centers invariant. To simplify things 

assume that in all planar linkages a link rotates about the corresponding homothety center, or 

keeps still with respect to this center. The links should be dimensioned and positioned such 

that the sides can uniformly dilate from the PHC. Especially using scissor-like link pairs and 

parallelograms are ideally suited for such a task. Three planar link chain examples are pre-

sented in Fig. 2. These chains can be classified according to how the distance of the PHCs to 

the sides is computed: variable + fixed distance (Ex. Fig. 2a: -|OA|cos(AB + ) as variable 

and |AB| as fixed distance), fixed + variable distance (Fig. 2b) and variable distance (Fig. 2c) 

from a PHC to the sides. 

For the link group in Fig. 2a, the central link rotates about PHC O and the other links 

have translatory motion such that one side of each link remains on a polygon side. Example in 

Fig. 2a is for triangular dilation, yet in general, a dilation of an n-gon can be obtained when n 

– 1 constraints in the following form are satisfied: 
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More links 



The construction in Fig. 2b is rather a simple one. Parallelogram loops are attached to a 

polygonal link which is in similar to the polygonal face of interest (quadrilateral in Fig. 2b, 

any polygon in general). The parallelogram loops can be attached anywhere on the sides of 

the polygonal link. Condition for a homothety is found as: 

 

 

 

 

 
1 1 1 1

2 2 2 2

OE OF OA AB cos OC CD cos

OE OF OA AB cos OC CD cos

     
  

     
 

                                             

OA OC

AB CD
 

   
       (2) 

 

The linkage in Fig. 2c has two identical polygonal links in the central region for which 

the sense of rotation is in opposite directions. This design can be considered to be derived 

from a Jitterbug-like linkage by addition of scissor pairs between the polygonal and dap links. 

It is possible to add more scissor pairs in series. The dilation ratio is 
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Fig. 2 a) variable + fixed length example b) fixed + variable length example, c) variable + 

variable length example 

 

In the following two sections we use these planar link groups in assembling homohedral 

and tangential polyhedral linkages. 

 

3 Homohedral Linkages 

A homohedron is a polyhedron with congruent faces [22]. The 5 regular Platonic solids, 

the 13 semi-regular Archimedean solids, the 13 Catalan solids, the 8 deltahedra are well 

known homohedra. Not necessarily, but for most of homohedra adjacent faces are symmetric 

with respect to the common edge, so they are suitable for our purposes. Since adjacent faces 

are mirror symmetric, mirror symmetric link groups can be embedded in the faces. The planar 

link group in Fig. 2a is used for a regular octahedron as a homohedral linkage example (Fig. 

3). 
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Fig. 3 Octahedral linkage in compact, deployed and further actuated forms 

 

Note that such an octahedral linkage exactly performs the Jitterbug motion. All Jitterbug-

like linkages can be modified in the same manner. There is no novelty in the kinematic struc-

ture in this example, however the dimensional design allows that the whole volumetric region 

inside the linkage is filled in the compact configuration. The links can be dimensioned in var-

ious ways (Fig. 4). 

 

      



 

 

Fig. 4 Octahedral linkage with different dimensioning in compact and deployed forms 

 

4 Tangential Polyhedral Linkages 

Consider a polyhedron with an inscribed sphere. The perpendiculars dropped to the edges 

from the points of tangencies on the faces meet at the edges and also that points of tangencies 

on adjacent faces are equidistant to the common edge. To see that this is the case we shall use 

Fig. 5. In Fig. 5, |OA| = |OB| which is equal to the radius of the insphere. The line of intersec-

tion of the adjacent faces that are necessarily tangent to the insphere meets the plane con-

structed by the lines OA and OB perpendicularly, hence the perpendiculars dropped from E to 

the intersection line meet at a point E. OAEB defines a kite, so |AE| = |EB|. See [13] for the 

details of the proof. 

  

 

Fig. 5 Adjacent faces of a tangential polyhedron 

 

If one can place planar link groups on the faces of such a tangential polyhedron such that 

the points of tangencies remain equidistant to the edge defined by the joints at the edges, pla-

nar dilation, hence polyhedral dilation is obtained. 

A tetrahedral (all tetrahedra have inspheres) and a hexahedral tangential linkage using the 

planar chains in Fig. 2b, c are given in Figs. 6-7. For the tetrahedral linkage in Fig. 6, the in-

stantaneous screw axes (ISAs) of the central links on the faces meet at the insphere center at 

all times, hence the ISAs remain still with respect to each other. This is proved in [13]. 
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Fig. 6 Tetrahedral linkage in compact and deployed forms 

 

    

Fig. 7 Hexahedral linkage in compact and deployed forms 

 

When the planar link groups used for the hexahedral linkage are used for more symmetric 

figures, ex. the cube, the surface of the polyhedral shape can be fully closed in the physically 

obtainable compact form (Fig. 8). 



 

 

  
 

Fig. 8 Cubic linkage in compact and deployed forms 

 

 

5 Conclusions 

Conformal polyhedral linkages with multi link planar chains on the faces are issued in 

this study. Planar link groups are designed such that the elements on the polygonal boundaries 

will comply when the spatial linkage is assembled. Homohedra and tangential polyhedra are 

used to obtain single dof linkages. Many other types of conformal polyhedral linkages can be 

found following similar steps in this paper. Discovery of other types of feasible polyhedral 

geometries remains as an open problem. 
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