
 

1 

Derivation of Input/Output Relationships for 

the Bennett 6R Linkages Based on the Method 

of Decomposition 

R. I. Alizade
1
, G. Kiper

2
, M. İ. C. Dede

3
 and E. Uzunoğlu

4
 

1
İzmir Institute of Technology, Turkey, e-mail: alizada_rasim@hotmail.com 

2
İzmir Institute of Technology, Turkey, e-mail: gokhankiper@iyte.edu.tr 

3
İzmir Institute of Technology, Turkey, e-mail: candede@iyte.edu.tr 

4
İzmir Institute of Technology, Turkey, e-mail: elmoremre@gmail.com 

 

Abstract. The Bennett overconstrained 6R linkages are the double-planar, the double-spherical and the 

plano-spherical 6R linkages. These mechanisms are obtained by combining simple planar and/or spher-

ical mechanisms and then removing one of the common links. This paper presents the derivation of the 

input/output relationships for these mechanisms using the decomposition method. This method is based 

on writing the input/output equations for the two imaginary loops comprising the 6R mechanism and 

then eliminating the imaginary joint variable. It is found that the resulting input/output equations con-

tain up to 4th power of trigonometric terms, such as cos4 
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1 Introduction 

The first reported overconstrained mechanism is due to Sarrus in 1853 [1]. The 

Sarrus linkage is a spatial 6R linkage obtained by assembling two planar dyads in 

perpendicular planes and it can be interpreted as two slider crank mechanisms 

with a common slider, axis of which is along the intersection of the perpendicular 

planes. The angle between the intersecting planes is arbitrary and the two triplets 

of parallel joint axes may be positioned arbitrarily and the linkage will be still mo-

bile. We will call such a generalized Sarrus linkage as the double-planar 6R link-

age (Fig. 1a). As far as the authors know, such a form of the general Sarrus link-

age as shown in Fig. 1a is presented nowhere else. The relative motion between 

the links with nonparallel joint axes is linear translation and hence a prismatic 

joint can be inserted between the two. Such a joint is called a passive joint [2]. 
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Fig. 1 a) Double-planar (generalized Sarrus) linkage, (b) double-spherical linkage, and (c) plano-

spherical linkage together with their passive joints (adapted from [4]) 

In 1905 Bennett worked on the Sarrus linkage and proposed two new families 

of overconstrained linkages known as the double-spherical and the plano-spherical 

6R linkages [3]. The double-spherical linkage is obtained by merging two spheri-

cal four-bar mechanisms with two common links (Fig. 1b) and the plano-spherical 

linkage is obtained by merging a planar four-bar mechanism and a spherical four-

bar mechanism with two common links (Fig. 1c). Both of these linkages have a 

passive revolute joint. For the double-spherical linkage, the passive joint axis is 

through the line connecting the sphere centers O1 and O2. For the plano-spherical 

linkage the passive joint axis is normal to the plane and passes through the sphere 

intersecting the plane. The plano-spherical linkage and the double-planar linkage 

can be obtained from the double-spherical linkage by sending one or both of the 

sphere centers to infinity [4].  The Bennett 6R linkages are examples of linkages 

obtained from intersections of Euclidean subspaces [2]. 

A special case of the double-spherical 6R linkage is the well known double-

Hooke’s-joint linkage for which the twist angles are 90°, 90°, 0°, 90°, 90° and ar-

bitrary angle between the fixed joints. Baker [5] derived the input/output (I/O) re-

lationship for the double-spherical 6R linkage starting from the double-Hooke’s-

joint linkage. In this paper we present an alternative formulation based on the 

method of decomposition [6]. 

The method of decomposition originates from a simple idea: since the above-

mentioned mechanisms are obtained as merging two simple loop mechanisms and 

then removing the passive joint, the original single loop may be decomposed into 

two imaginary loops. By taking the input and output joints as the fixed joints, the 

I/O equations for each imaginary loop are obtained. The passive joint is output for 

a) b) 

c) 
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the first loop and input for the second loop. Eliminating the passive joint variable 

from the two I/O equations, the I/O equation for the 6R mechanism is obtained. 

Also, these linkages prove useful in function synthesis when the method of de-

composition is applied. The synthesis methods are left for future studies. 

2 The double-planar 6R linkage 

Together with the passive prismatic joint, the double-planar 6R linkage may be 

considered to be composed of a pair of slider-crank mechanisms. The sliding di-

rection in both slider-cranks is common and intuitively it can be verified that the 

angle between the planes of motion of the two planar mechanisms does not affect 

the I/O relationship. The planes of motion have to be nonparallel, but, there is no 

harm in considering the two slider-crank mechanisms in the same plane as long as 

the prismatic joint is included. Let  be the input ange,  be the output angle and s 

be the passive joint variable of the double-planar 6R mechanism shown in Fig. 2.

 

 

Fig. 2 Double-planar 6R linkage 

Loop closure equation for loop ABC: 

 
acos s bcos

AB AC CB      
asin c bsin

  
  

  
 (1) 

Eliminating  from Eq. (1): 

    
2 22 2 2 2 2b acos s asin c s 2acos s a b c 2acsin             (2) 

Loop closure equation for loop DEF: 

 
ecos g s dcos

DE DF FE      
esin f dsin

   
  

  
 (3) 
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Eliminating  from Eq. (3): 

 
   

 

2 22

2 2 2 2 2

e g s dcos f dsin

s 2 g dcos s d e f g 2dgcos 2df sin

       

          
 (4) 

Equating the right hand sides of Eqs. (2, 4): 

 
 

2 2 2 2 2 2 2a b c d e f g 2acsin 2dgcos 2df sin
s

2 acos dcos g

         


 
 (5) 

Substituting s from Eq. (5) into Eq. (2): 

 
    

  

2 2
A 2acsin 2dgcos 2df sin 4 B 2acsin acos dcos g

4acos A 2acsin 2dgcos 2df sin acos dcos g 0

        

        
 (6) 

where 2 2 2 2 2 2 2A a b c d e f g        and 2 2 2B a b c   . Eq. (6) is the implicit 

I/O relation of the double-planar 6R linkage, which contains up to 3
rd

 power of 

trigonometric terms, such as cos
3
. 

3 The double-spherical 6R linkage 

Let ,  and  be the respective input, passive joint and output angle of the dou-

ble-spherical 6R mechanism shown in Fig. 3. O1D and O2E are skew with a twist 

angle of . The radii of the spheres do not affect the I/O relationship, so without 

loss of generality assume both radii as 1. Also notice that the distance |O1O2| has 

no effect on the I/O relationships. 

 

Fig. 3 Double-spherical 6R linkage 
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Coordinates of B, C, D can be found as follows: 

 

     

     

x 1 x 4

y 1 1 y 4 4

z z 4

x 1 2 1 2

y 1 2 1 2 1 2

z 2

B 1 c D 1 c

B Z 0 s    ,   D X Z 0 s c    ,

B 0 0 D 0 s s

C 1 c c s s c

C Z X Z 0 s c c s c

C 0 s s

           
           

       
           
                     

      
     

      
     
         

 (7) 

where X[.] and Z[.] represent rotation matrices about x and z axes, respectively 

and ci = cosi, si = sini for i = 1, 2, 3, 4 and other c and s are short for cosine and 

sine, respectively. The angle between O1C and O1D is 3, so 

 
1 1 3 1 2 4 3 1 2 4 1 2 4 1 2 4 2 4O C O D c c c c c s s c c s c s c c s s c c s s s s 0            (8) 

Eq. (8) gives the I/O equation for the first loop. For the second loop the coordi-

nates of E, F and G with respect to O2 can be calculated as follows: 

 

   

       

x 5

y 5 5 5

z 5 5

x 7 8 7 8 x

y 8 7 7 8 7 8 y 8

z 7 z

E 1 c

E X Z 0 s c c s s s    ,

E 0 s c s s s c

F 1 c c s s c G 1

F Z X Z 0 c s s c c    ,   G Z 0

F 0 s s G 0

     
     

       
     
            

           
        

        
        
               

8

8

c

s

0

 
  

  
   

 (9) 

The angle between O2E and O2F is 6, so 

 2 2 6 5 7 8 6 5 7 8 5 7 8 5 7 8

5 7 8 5 7 8 5 7 5 7

O E O F c c c c c c s s c s c s c c s c s s s

s s c c c c s s c s c s s s c s s s s s s c 0

         

            
 (10) 

 is to be eliminated from Eq. (8) and Eq. (10). Notice that Eq. (8) and Eq. (10) 

are linear in terms of c and s. Writing these equations in matrix form: 

 
1 1 1

2 2 2

P Q Rc

P Q Rs

    
    

    
 (11) 

where the coefficients are functions of link parameters i, , input angle  and 

output angle  only: 1 1 2 1 2P s c c s c   , 1 2Q s s  ,  1 1 2 4 3 1 2 4 4R c c c c s s c c s     , 
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2 7 8 7 8 7P c s c s c c c s s s      , 
1 7 8 7 8 7Q c s s s c s c s c s       and 

 2 5 7 8 6 5 7 8 5R c c c c c s s c s     . The linear set Eq. (11) can be solved using 

Cramer’s rule and put into s
2
 + c

2
 = 1 to get 

      

1 1 1 1

2 2 22 2 2 2

1 2 2 1 1 2 2 1 1 2 2 1

1 1 1 1

2 2 2 2

R Q P R

R Q P R
c , s   R Q R Q PR P R PQ P Q

P Q P Q

P Q P Q

         (12) 

Eq. (12) is the implicit I/O relation of the double-spherical 6R linkage and it 

contains up to 4
th

 power of trigonometric terms, such as cos
4
. 

 

4 The plano-spherical 6R linkage 

 

Fig. 4 Plano-spherical 6R linkage 

Fig. 4 illustrates a plano-spherical 6R linkage.  is the input and  is the output, or 

vice versa. The I/O relationship for the spherical loop is the same as for the dou-

ble-spherical 6R linkage and is given by Eq. (8). The planar loop moves parallel to 

the yz-plane, so the x coordinates are irrelevant. The y, z coordinates for the joints 

E and F of the planar four-bar loop are found as 

  
 

 
  7y y5 75

8 8 7z z5

0 a cE Fa aa c
X    ,   X

a a a sE F0 0a s

           
                 

            
 (13) 

The distance between E and F is a6, so 
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2 22 2 2

y y z z 5 7 5 8 7 6

2 2 2 2

5 6 7 8 7 8 5 7 5 8

2 2 2 2

5 7 8 5 7 8 5 6 7 8 7 8

E F E F a c a c a s a a s a

a a a a 2a a s 2a a c 2a a s 0

2a a c a s c 2a a s a c s a a a a 2a a s

                  

         

                   

(14) 

Eqs. (8) and (14) constitute a linear set of equations in terms of c and s as in 

Eq. (11), but this time  2 5 7 8P 2a a c a s      ,  2 5 7 8Q 2a a s a c      , and 

2 2 2 2

2 5 6 7 8 7 8R a a a a 2a a s      . c and s are linearly solved and  is eliminated 

as in Section 3 to obtain the I/O relation of the plano-spherical 6R linkage and 

once again it contains up to 4
th
 power of trigonometric terms in terms of  and , 

such as cos
4
. 

5 Conclusions and Discussions 

The Bennett 6R mechanisms are special overconstrained 6R mechanisms in that 

they can be dissected into planar slider crank or planar four bar or spherical four 

bar loops once the imaginary joint is inserted in between the loops. This allows us 

to formulate the I/O equations for the loops separately and then eliminate the pas-

sive joint variable to obtain the I/O relation for the 6R mechanism without con-

ducting spatial kinematics calculations. The method of decomposition is applied to 

Bennett 6R mechanisms for the first time. This method is not only useful in analy-

sis, but also it has numerous advantages in synthesis. Synthesis methods based on 

the formulations in this paper will be the scope of further studies. 
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