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Abstract. This study addresses the approximate function generation synthesis with an overconstrained 

two degrees-of-freedom double spherical 7R mechanism using least squares approximation with equal 

spacing of the design points on the input domain. The 7R mechanism is a constructed by combining a 

spherical 5R mechanism with a spherical 4R mechanism with distant centers and a common moving 

link and then removing the common link. This construction allows the analysis and synthesis of the re-

sulting single-loop mechanism by decomposing it into fictitious 5R and 4R loops. The two inputs to 

the mechanism are provided in the 5R loop and the output is in the 4R loop. The fictitious output of the 

5R loop is an input to the 4R loop this intermediate variable is used to also decompose the function to 

be generated. This decomposition provides the designer extra freedom in synthesis and enables de-

creasing the error of approximation. A case study is presented at the end of the study where the 7R de-

sign is compared with an equivalent spherical 5R mechanism; hence the advantage of the 7R mecha-

nism is demonstrated.  

 

Key words: Multi-input function generation, overconstrained mechanism, method of decomposition, 

least squares approximation. 

1 Introduction 

Due to constructional simplicity, low cost, ease of use and stiffness capabilities, 

kinematically deficient manipulators are becoming popular ([1] and as an example 

see [2]). Some researchers use the deficient term as a substitute to under-actuated, 

however what we mean by a deficient manipulator is a manipulator with less de-

grees-of-freedom (dof) than the task-space dimension. Although analytical synthe-

sis methods for single dof mechanisms are widely studied [3, 4], mostly optimiza-

tion methods are utilized for determining link length dimensions of multi-dof 
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mechanisms (ex. see [5]). An exceptional study is analytical motion synthesis of a 

3-RPS manipulator [6]. 

We have recently presented several studies on synthesis of 2-dof spherical and 

planar 5R mechanisms [7, 8, 9] as a case study of approximate analytical synthesis 

of multi-dof mechanisms. Specifically in [7] the function synthesis problem for a 

spherical 5R mechanism is addressed, where one of the fixed joints is an input, the 

mid-joint is the second input and the remaining fixed joint is the output. The rea-

son of choosing the mid-joint as an input instead of a joint adjacent to a fixed joint 

is that this selection leads to linear set of equations. We make use of such a spher-

ical 5R loop in this study, as well. 

Another tool to enhance the stiffness of a manipulator is overconstraint. Huang 

et al. [1] note that most of the lower-mobility (deficient) parallel manipulators are 

overconstrained mechanisms. Recently we worked on the Bennett 6R mechanisms 

[10, 11]. The Bennett 6R mechanisms are the single-loop double-planar, double-

spherical and plano-spherical linkages, which are respectively obtained by com-

bining two planar slider-crank mechanisms with intersecting planes, two spherical 

four bar linkages with distinct centers and a planar four-bar and a spherical four-

bar mechanisms, all with a common moving link connected to the common fixed 

link, and then removing the redundant joint connecting the two common links 

[12]. The removed joint is called a passive joint. Since the dof of these mecha-

nisms according to Grübler-Kutzbach mobility formula is equal to zero despite the 

single dof mobility of the mechanisms, the mechanisms are overconstrained with 

general constraint one [13]. In [10] we derived the input-output equations of the 

Bennett 6R mechanisms and in [11] we worked out the function synthesis of these 

linkages making use of the method of decomposition [14]. The method of decom-

position is based on the fact that the above-mentioned single loop 6R mechanisms 

may be decomposed into two imaginary loops. By taking the input and output 

joints as the fixed joints, the I/O equations for each imaginary loop are obtained. 

The passive joint is output for the first loop and input for the second loop. Besides 

being overconstrained, these linkages prove themselves useful in synthesis thanks 

to the large number of construction parameters (link lengths) [11]. 

In this study we combine a 2-dof 5R spherical mechanism with a single-dof 4R 

spherical mechanism with a common moving link and remove the redundant 

common joint to obtain a single-loop 2-dof overconstrained 7R spherical mecha-

nism. We address the problem of function synthesis of this mechanism for approx-

imate generation of a continuous function with two inputs and single output. For 

the synthesis method we use the least squares approximation method instead of the 

Chebyshev method used in [7]. 
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2 The Double-Spherical 7R Mechanism 

 

Fig. 1 Double-spherical 7R mechanism 

The double spherical 7R mechanism in Fig. 1 is constructed by combining the 

spherical 5-bar ABCDE and the spherical 4-bar AFGH and then removing the 

common joint A. The inputs of the mechanism are the angles  and  in the ficti-

tious 5-bar and the output is the angle  associated to link 8. In applying the 

method of decomposition, the output  of the 5-bar is treated as the input to the 4-

bar. Notice that since we are dealing with a function synthesis problem, without 

loss of generality the radii of the spheres can be taken as 1. The construction pa-

rameters are the spherical link lengths 1, …,9 and the twist angle . To simplify 

the formulation let us assume  = 0. See [11] for the general case.

We start by deriving the input/output (I/O) relationship for the loops. Coordi-

nates of B, C and E: 

          
1 2 5

1 2

1 2

1 2 1 2 5 5

2 5

1 c c s s c 1 c

C Z X Z 0 s c c s c , E X Z 0 s c

0 s s 0 s s

        
       

            
       
              

 (1) 

where X(.) and Z(.) are 33 rotation matrices about x- and z-axes, respectively,  

ck = cosk, sk = sink, c = cos, etc. Let CE   .  depends on 3, 4 and the 

joint variable  via the spherical cosine theorem for triangle CDE: 

 3 4 3 4c c s s c c     (2) 
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On the other hand the scalar product of C  and E  from Eq. (1) yields 

 
5 1 2 5 5 11 2 1 2 2 25 5C E c c c c s s c c s c s c c s s c c s s s s c             (3) 

Combining Eqs. (2)-(3) and rearranging 

 
1 2 2 15 3 4 3 4 1 2 5 5 1 522 5c c c c c s s c s s c c s s s s c s s c c s c s c 0          (4) 

Eq. (4) can be written in the following polynomial form 

    
m

j j

j 1

P f F 0


  x x  (5) 

where m = 5, x = {, , } and  

 

           

5 3 4 3 4 2 2

2 3 4 5

5

1 2 2

1

1 2 1 2 5 5 1 1

1 2 3 4 5

c c c c c s s t t t
,  P ,  P ,  P ,  P

s c s s c s t s t

,  c ,  

P

f 1 f f c ,  s s ,  cf f  and F c c



   


   

          x x x x x x

 (6) 

for tk = tank. Pj are determined using least squares approximation as explained 

in Section 3. After Pj are determined, the construction parameters of the mecha-

nism are determined from Eq. (6) as 

  1 1 15

1 2 4 1

4

5 4

3

2

3

P t A B A B
cos ,  tan  P s an   ,  ,,  

2
t

P P 2

  


          (7) 

where   1

2 1 5 1 2 1 5A cos c c c P P s s      ,   1

2 1 5 1 2 1 5B cos c c c P P s s      . 

Notice from Fig. 1 and Eq. (2) that interchanging 3 and 4 does not affect the I/O 

relationship. For the spherical 4-bar AFGH, the coordinates of joints F and G are 

          
8 9

6

6 8 9

6 8 9

6

9 8 8 9

8

1 c 1 c c s s c

F X Z 0 s c , G Z X Z 0 c s s c c

0 s s 0 s s

           
       

            
       
               

 (8) 

Evaluating the scalar product of F  and G  and manipulating: 

 6 7 6 6 8 98 9 8 9 6 6 8 98c c c c s c s c s s c c c s s s s c s s c 0         (9) 

Eq. (9) can be written in polynomial form of Eq. (5), but m = 4, x = {, } and 



Function Generation Synthesis with a 2-DoF Overconstrained Double-Spherical 7R …  5 

 

         

6 7 6 6 6

2 3 4

6 8 9 8 9 9

8 9

1

1 2 3 4

c c c c t t t
,  P ,  P ,  P ,

c s s t t s

,  c ,  c c ,  

P

f 1 f f f s s  d F can



   


  

    x x x x x

 (10) 

After Pj are determined as explained in Section 3, the construction parameters 

are determined from Eq. (10) as 

    1 1 1 13 6

9 6 4 9 8 7 86 6 8 99 1

4 2

P t
cos , tan P s , tan , cos P

P
c c s s

P
c c             (11) 

3 Function Generation Synthesis 

Let the function to be generated be z = f(x, y) for xmin  x  xmax and ymin  y  

ymax. The independent variables x and y should be related to the mechanism inputs 

 and  and the dependent variable z should be related to the mechanism output . 

Via method of decomposition the intermediate joint angle  should be related to 

an intermediate variable w such that w = g(x, y) and z = h(w) = f(x, y). , ,  and 

 can be chosen in arbitrary ranges min    max, min    max, min    

max, min    max. We shall linearly relate x, y, w and z to , ,  and  as 

 

min min min min

max min max min max min max min

min min min min

max min max min max min max min

x x y y
,  ,

x x y y

w w z z
 and 

w w z z

   
 

     

    
 

     

 (12) 

Then desired  and  values for given inputs  and  are found as follows:  

 

   

     

max min max min

min min min min

max min max min

max min max min

min min min

max min max min

x x ,  y y ,
x x y y

g x, y w  and f x z
w w z z

   
         

 

   
      

 

 (13) 

and conversely 
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   

   

min min

max min min max min min

max min max min

min min

max min min max min min

max min max min

x x x x ,  y y y y ,

w w w w  and z z z z

 
     
   

  
     
   

 (14) 

Eq. (13) is used for determining the design points i, i, i and i from xi, yi,  

wi = g(xi, yi) and zi = f(xi, yi). Selection of xi and yi may be done with equal spac-

ing, Chebyshev spacing, or any other type of spacing. 

In least squares approximation the number of design points, n, should be more 

than the number of construction parameters m (= 5 for the 5-bar and 4 for the 4-

bar mechanism) and the aim is to minimize the square sum of the errors at the de-

sign points xi for i = 1, …, n. Due to the generation error, Eq. (5) is not exactly 

satisfied, but there is an error i. In order to find the minimum of the square sum 

we differentiate the square sum with respect to coefficients Pj and equate to zero: 

    
2

n m

j j i i

i 1 j 1j

d
P f F 0 for j 1,...,m

dP  

   
    

   
  x x  (15) 

Eqs. (15) are linear in Pj, hence Pj can be determined uniquely. However there 

are some restrictions on Pj in order to obtain a mechanism. For instance, from Eq. 

(7) we see that |P5|  |P4| in order to be able to compute cos
-1

. 

The maximum percentage error is defined as 

 
desired generated

max

desired

z z
% E max 100

z

  
   

 
 (16) 

During the computations %|E|max is monitored and the freely chosen parameters 

that are associated with selection of the intermediate function w and the limits of 

the input/output joint variables are tuned in order to minimize the maximum error. 

4 Case Study 

As an example consider the function z = x
0.6

y
0.2

 for 5  x  10 and 14  y  17. 

We defined the intermediate variable as w = x
a
y

b
 such that z = w

c
, where c can be 

chosen freely, a = 0.6/c and b = 0.2/c. We employed 25 design points as equally 

spaced 5 by 5 grid for the inputs x and y. The limits of the inputs  and , the pas-

sive joint variable  and the output  of the mechanism are also free to choose. 

Therefore, there are 9 free parameters in this synthesis problem. After several tri-

als on the free parameters, a solution with relatively low error is determined for    
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c = 0.9, 145° ≤  ≤ 300°, 100° ≥  ≥ 80°, 105° ≤  ≤ 185° and 250° ≥  ≥ 185°. 

The maximum percentage error is found as 0.656%. The maximum percentage er-

ror can be further decreased; however the link length ratios get worse. Percentage 

error variation is depicted in Fig. 2. For comparison we also worked out the syn-

thesis with a spherical 5R mechanism for the same function and maximum per-

centage error is found as 0.834%. 

The construction parameters of the designed 7R mechanism are 1 = 126.13°, 

2 = 31.61°, 3 = 127.69°, 4 = 17.89°, 5 = 86.65°, 6 = 28.47°, 7 = 171.52°,  

8 = 35.52° and 9 = 166.74°. It is verified that the mechanism successfully gen-

erates the desired function by means of a CAD model which is given in Fig. 3. 
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Fig. 2 Percentage error variation for generation of z = x
0.6

y
0.2 

 

Fig. 3 CAD model of the designed 7R mechanism
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5 Conclusions 

This study focuses on formulation of function generation synthesis of an overcon-

strained 2-dof 7R mechanism using least squares approximation and making use 

of method of decomposition. The inputs of the mechanism are chosen such that 

the resulting synthesis equations are linear. Several case studies are performed and 

one of them is presented. The case study shows that the maximum error may be 

decreased by use of a 7R mechanism instead of a spherical 5R mechanism. Future 

studies involve applying other approximation methods for the 7R mechanism and 

comparing the results. 
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