
1 

 

Function Synthesis of Bennett 6R Mechanisms Using Chebyshev Approximation 

 

Rasim I. Alizade
a
, Gökhan Kiper

1,a
, Barış Bağdadioğlu

a
, M. İ. Can Dede

a 

 

a
Mechanical Engineering Department, İzmir Institute of Technology, 35430 İzmir, Turkey 

 

Abstract 

 

This study focuses on approximate function synthesis of the three types of overconstrained Bennett 6R mechanisms using 

Chebyshev approximation. The three mechanisms are the double-planar, double-spherical and the plano-spherical 6R 

linkages. The single-loop 6R mechanisms are dissected into two imaginary loops and function synthesis is performed for 

both loops. First, the link lengths are employed as construction parameters of the mechanism. Then extra construction 

parameters for the input or output joint variables are introduced in order to increase the design points and hence enhance the 

accuracy of approximation. The synthesis formulations are applied computationally as case studies. The case studies 

illustrate how a designer can compare the three types of Bennett 6R mechanisms for the same function. Also we present a 

comparison of the spherical four-bar with the double-spherical 6R mechanism and show that the accuracy is improved when 

the 6R linkage is used. 

 

Keywords: Function synthesis, Bennett 6R mechanisms, method of decomposition, Chebyshev approximation 

 

1. Introduction 

 

When manufactured precisely, overconstrained mechanisms prove themselves to have higher precision 

compared to simply constrained mechanisms. The motivation of this study is to investigate the 

approximate synthesis of an overconstrained mechanism which belongs to subspace  = 5. A  = 5 

mechanism means that the position and orientation of all links of the mechanism can be described with 

at most five independent parameters at any instant during the motion of the mechanism. Two obvious  

= 5 subspaces are the RRRPP and RRPPP subspaces, for which a translational or rotational degree-of-

freedom (dof) is constrained. 

The first example of a  = 5 mechanism is the Sarrus (1853) linkage. The Sarrus linkage is a spatial 6R 

linkage (a linkage with six revolute joints) obtained by assembling two planar dyads in perpendicular 

planes. Later, Bennett (1905) generalized the Sarrus linkage such that the angle between the planes of 

the dyads is arbitrary (Fig. 1a). For this linkage, no link has a rotational motion about the axis along the 

intersection of the planes of the dyads, so the linkage belongs to an RRPPP type of  = 5 subspace. The 

generalized Sarrus linkage can be considered as the combination of two planar slider-crank 

mechanisms in intersecting planes such that the fixed link and the slider link is common to both of the 

slider cranks. The sliding direction is along the intersection of the planes. In such an assembly, the 

linkage remains mobile with single dof even if the prismatic joint is removed. Hence a single loop, 6R 

linkage is obtained. The removed prismatic joint is defined as a passive joint (Selvi, 2012). 
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Fig. 1 a) Double-planar 6R (generalized Sarrus) linkage, (b) double-spherical 6R linkage, and (c) 

plano-spherical 6R linkage with their passive joints 

Along with the generalized Sarrus linkage, Bennett (1905) introduced two more  = 5 mechanisms. 

One of these mechanisms is the double-spherical 6R mechanism which is obtained by merging two 

spherical four-bar linkages with two common links and then removing the joint connecting the 

common links. The removed revolute joint is the passive joint of this linkage and its axis is along the 

line connecting the centers of the spherical four-bars (Fig. 1b). It seems not possible to classify this 

linkage in an RRPPP or an RRRPP type of  = 5 subspace. The other mechanism is the plano-spherical 

6R mechanism, which is obtained by merging a planar four-bar linkage and a spherical four-bar linkage 

with two common links. Once again, the revolute joint connecting the common links is removed to 

obtain the 6R linkage (Fig. 1c). The axis of this passive joint passes through the center of the spherical 

four-bar and it is in the same direction as all the axes of the planar four-bar. For this linkage, no link 

has a translational motion along the direction of axes of the planar four-bar, hence the linkage belongs 

to an RRRPP type of  = 5 subspace.

In this study, we investigate function synthesis of the double-planar (generalized Sarrus), the double 

spherical and the plano-spherical 6R linkages. Since these mechanisms have more construction 

parameters than simple single-loop mechanisms such as the planar four-bar, spherical four-bar and 

planar slider-crank mechanisms, we expect to attain more precise function synthesis. 

The synthesis of the single-loop planar linkages is vastly studied (Erdman, Sandor, 1997). Synthesis of 

spherical four-bar mechanism (SFBM) is also widely studied. Hartenberg and Denavit (1964) and 

Zimmerman (1967) have respectively presented the three- and four-precision-point function generation 

of the SFBM. Cervantes- Sánchez et al. (2009a) have worked on formulation of the function synthesis 

problem of the SFBM for three and four precision points and further presented formulations for five 

and six precision points (Cervantes- Sánchez et al., 2009b). Rao et al. (1973), Farhang et al. (1988, 

1999), Alizade et al. (1994, 2005) and Murray and McCarthy (1995) used polynomial approximation 

method for three, four and five precision points for the function synthesis of the SFBM. Suixian et al. 

(2009) worked on the optimal selection of precision points. Alizade and Gezgin (2011) have applied 

interpolation, least squares and Chebyshev approximation methods to solve the six-precision-point 

function synthesis of the SFBM. Maaroof and Dede (2013, 2014) have worked on the synthesis of the 

double-spherical 6R linkage using interpolation approximation. 

Recently, Alizade et al. (2013) investigated the derivation of the input/output (I/O) relationships of the 

three types of Bennett 6R linkages using the method of decomposition (Alizade et. al, 1980). In this 

study, we shall use the I/O equations obtained in that paper. 

In Section 2, we outline the Chebyshev approximation method for synthesis of mechanisms. In Section 

3, we derive the objective functions for the Bennett mechanisms and formulate equations necessary for 

the synthesis. In Section 4, we show how to relate the function to be generated to the mechanism joint 
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parameters. In Section 5, we present some case studies and the discussions section concludes the 

article. 

 

2. Chebyshev Approximation 

 

In this section we review the polynomial approximation methods first studied by Chebyshev in 1850s 

(Chebyshev, 1854, 1859). Let f(x) be a continuous function defined on x ∈  [a, b]. A polynomial Pn(x) 

of degree n is called the best approximation of f(x) if L = max|f(x) – P(x)| is minimum. The alternation 

theorem of Chebyshev states that for a given function f(x) and order n the best approximation is unique 

and the maxima L are attained n + 2 times on [a, b] alternately with opposite signs. Although this 

theorem guaranties the unique existence of the best approximation of a function, neither it, nor its proof 

leads to a method to find the best approximation. An iterative method is proposed by Remez (1932). 

The Remez algorithm is as follows (Temes, 1967): 

1. Select design points xi
0
 ∈  [a, b], i = 0, .., n + 1 (usually x0 = a, xn+1 = b) and linearly solve for 

the coefficients of an approximation polynomial Pn
0
(x) and L from the n + 2 equations     

Pn
0
(xi

0
) – f(xi

0
) = (–1)

i
L 

2. Find the n + 2 local extrema xi
1
 of E

0
(x) = Pn

0
(xi

0
) – f(xi

0
) in [a, b]. 

3. Repeat steps 1 and 2 by replacing xi
j
 by xi

j+1
 until the design points stabilize. 

Convergence is not guaranteed in this iterative algorithm. In function synthesis of mechanisms, we 

derive the input/output (I/O) relationship which is a function of the construction parameters of the 

mechanism and input and output variables. The I/O equation is written in a polynomial form 

   
n

n j j

j 1

P Pf


x x , called the objective function, where Pj are functions of the construction parameters 

and fj are the functions of the input and output variables represented by x. If the number of coefficients 

Pj (= n) is equal to the number of construction parameters, then given n + 1 many design points  
n 1

i 1


x , 

the coefficients  
n

j 1
P  and the Chebyshev error L are linearly solved from 

       
n

i 1

j j

j 1

Pf F 1 L




   i i
x x  for i = 1,...,n + 1        (1) 

Once  
n

j 1
P  are solved, the construction parameters are determined from  

n

j 1
P . If the number of 

coefficients Pj (= n) is greater than the number of construction parameters, it means that the coefficients 

Pj are interrelated. For illustration, consider the case where there are n – 1 construction parameters, but 

Pj = n. Then we choose a coefficient, say, Pn, which is expressible in terms of the others. Let Pn = , Pj 

= j jm   for j = 1,…,n – 1 and L m   .  Eq. (1) can be reformulated as 

             
n 1

i 1

j j j n

j 1

m f f F 1 m






        i i i
x x x  for i = 1,…,n      (2) 

The multipliers of  may be collected in Eq. (2): 

             
n 1 n 1

i 1 i 1

j j j j n

j 1 j 1

f F m f f 1 1 m
 

 

 

 
       

 
 i i i ix x x x , i = 1,…,n     (3) 
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Equating the coefficients of  and the remaining parts in Eq. (3) we obtain  

             
n 1 n 1

i i

j j j j n

j 1 j 1

f 1 F   and  m f 1 m f
 

 

      i i i i
x x x x , i = 1,…,n     (4) 

Eq. (4) is a set of 2n linear equations with unknowns  
n 1

j 1


,  

n 1

j 1
m


, ℓ and m. After the unknowns are 

determined, since there is a relationship between Pn =  and some other coefficients,  is solved from 

this relationship. i j jP m    for j = 1,…,n – 1 and L m    are determined. The n – 1 construction 

parameters are solved from  
n 1

j 1
P


. 

If there are n – 2 construction parameters for Pj = n, we let Pn-1 = 1, Pn = 2, j j j 1 j 2P m n      for j = 

1,...,n – 2 and 1 2L m n     . Pn-1 and Pn should be dependent on other coefficients. Eq. (1) becomes 

               
n 2

i 1

j j 1 j 2 j 1 n 1 2 n 1 2

j 1

m n f f f F 1 m n








             i i i i
x x x x  for i = 1,...,n – 1    (5) 

Equating the coefficients of  and the remaining parts in Eq. (5) we obtain  

                   
n 2 n 2 n 2

i i i

j j j j n 1 j j n

j 1 j 1 j 1

f 1 F , m f 1 m f  and n f 1 n f
  



  

          i i i i i i
x x x x x x , i = 1,...,n – 1(6) 

 
n 2

j 1


,  

n 2

j 1
m


,  

n 2

j 1
n


, , m and n are solved linearly from Eq. (6). Then 1 and 2 are solved from the 

relationship in between Pn-1, Pn and the other coefficients. j j j 1 j 2P m n      for j = 1,...,n – 2 and 

1 2L m n      are determined. The n – 2 construction parameters are solved from  
n 1

j 1
P


. 

 

3. The Objective Functions 

 

The I/O relationships of the Bennett 6R mechanisms are derived in (Alizade et al., 2013). We shall 

formulate the objective functions based on the I/O relationships. 

 

3.1 The Double-Planar 6R Mechanism with 6 Parameters 

 

Together with the passive prismatic joint, the double-planar 6R linkage may be considered to be 

composed of a pair of slider-crank mechanisms. Let  be the input angle,  be the output angle and s be 

the passive joint variable of the double-planar 6R mechanism shown in Fig. 2. For the time being, 

assume 0, s0 and 0 to be zero. The relationship between the input  and the output  does not change 

if the mechanism dimensions are scaled, so without loss of generality we may assume the fixed link 

length g = 1.
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Fig. 2 Kinematic representation of the double-planar 6R linkage 

 

For the double planar 6R mechanism the I/O equation for the imaginary loop ABC is given by (Alizade 

et al., 2013) 

    
2 22 2 2 2 2b acos s asin c a b c 2ascos 2acsin s           (7) 

This I/O relationship contains three construction parameters, namely a, b, c. Together with the 

Chebychev error L, there are four parameters to be determined. Therefore the function synthesis may 

be performed for four design points. Rewriting Eq. (7) in the polynomial form 

        
3

i 1

i j j

j 1

F Pf 1 L




    i i i
x x x  for i = 1,...,4 (8) 

where 

        2 2 2 2

1 1 2 2 i i 3 3 i iP a b c , f 1, P a, f 2s cos , P ac, f 2sin , F s          
i i i i

x x x x  (9) 

 i i,s 
i

x  represents the i
th

 design point and  i L 
i

x  is the error. The reason for selecting the 

objective function as   2F s
i

x  is that this function solely comprises the output s and the error  i i
x  

better represents the error in the output. Given the design points  i i,s 
i

x  for i = 1,...,4, P1, P2, P3 and 

L are determined via the Remez algorithm as explained in Section 2. Once P1, P2, P3 are determined, 

the construction parameters a, b and c are found from Eq. (9) as follows:  

 2 23
2 1

P
a P , c , b P a c

a
      (10) 

If any of a or c turns out to be negative, or if b is not real, the limits for i and/or si shall be altered.

For the imaginary loop DEF (Alizade et al., 2013) 

        
2 2 22 2 2 2e 1 s dcos f dsin d e f 1 s 2d 1 s cos 2df sin 0                  (11) 

Eq. (11), once again, contains three construction parameters: d, e, f. Note that Eq. (7) and Eq. (11) have 

similar form. Again, there are four parameters to be determined and hence four design points are 

required. The polynomial form in Eq. (8) can be used, but this time 
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2 2 2

2

1 1 2 2 i i 3 3 i i

d e f 1 1
P , f 1, P , f 1 s cos , P , f 1 s , F sin

2df f 2df

 
          

i i i i
x x x x  ;  i is , 

i
x (12) 

Given the design points  i is , 
i

x  for i = 1,...,4, P1, P2, P3 and L are solved via Remez algorithm. The 

construction parameters d, e and f are determined from Eq. (12) as follows:  

 2 2

1

2 3

1 1
f , d , e d f 2Pdf

P 2P f
      (13) 

 

3.2 The Double-Planar 6R Mechanism with 7, 8 and 9 Parameters 

 

When the input and output angles are not measured from the same reference (x-axis in Fig. 2), we can 

define extra construction parameters as the location of the reference geometry with respect to the fixed 

frame. In this sense the input angle may be measured from an initial angle 0. In this case, Eq. (7) can 

be modified as 

 2 2 2 2

0 0 0 0a b c 2ascos cos 2assin sin 2accos sin 2acsin cos s             (14) 

Rewriting Eq. (14) in polynomial form 

         
5

i 1

i j j

j 1

F Pf 1 L




    i i i
x x x  for i = 1,...,5       (15) 

where 

 
     

       

2 2 2

1 1 2 0 2 i 3 0 3 i i 4 0

2

4 i 5 0 5 i i i i

P a b c , f 1, P acos , f 2s cos , P asin , f 2s sin , P accos ,

f 2sin , P acsin , f 2cos , F s  and ,s

             

        

i i i

i i i i

x x x

x x x x
(16) 

P2, P3, P4 and P5 are dependent such that 

       P3P4 = P2P5         (17) 

Let P5 = , j j jP m   for j = 1,...,4 and L m  . After finding j and mj as explained in Section 2,  

is determined as follows: 

 

        

     

 

2

3 4 2 5 3 3 4 4 2 2 3 4 2 3 4 3 4 2 3 4

2

3 4 3 4 2 3 4 3 4 2 3 4 3 4 2

3 4 2

P P P P m m m m m m m m 0

m m m m m m 4m m

2

             

      




 (18) 

Note that  has two solutions. The designer can choose the solution which yields the less error in the 

end. After determining , j j jP m   for j = 1,...,4 and L m   are determined. Using Eq. (16) the 

construction parameters a, b, c and 0 in terms of Pj are found as follows: 

  
2 2

4 52 2 2 2

0 2 3 2 3 1

P P
atan2 P ,P , a P P , c , b P a c

a


         (19) 

Note that all the construction parameters are determined uniquely and the solution is guaranteed 

provided that P1 + a
2
 + c

2
  0. 
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Similarly, one can introduce s0 into Eq. (7): 

    
222 2 2 2 2 2

0 0 0 0b acos s s asin c a b c s 2acsin 2ascos 2s s 2as cos s               (20) 

Eq. (20) can be written in the polynomial form given in Eq. (15) where 

 
       

   

2 2 2 2

1 0 1 2 2 i 3 3 i i 4 0 4 i

2

5 0 5 i i

P a b c s , f 1, P ac, f 2sin , P a, f 2s cos , P s , f 2s ,

P as , f 2cos , F s

            

   

i i i i

i i

x x x x

x x
(21) 

Note that 

       P5 = P3P4         (22) 

Once again, let P5 = , j j jP m   for j = 1,...,4 and L m  . After finding j and mj as explained in 

Section 2,  is determined as follows: 

 

    

   

2

3 4 5 3 3 4 4 3 4 3 4 3 4 3 4

2

3 4 3 4 3 4 3 4 3 4 3 4

3 4

P P P m m m m 1 m m 0

m m 1 m m 1 4 m m

2

          

     


 (23) 

 has two solutions. Having found , j j jP m   for j = 1,...,4 and L m  . The construction 

parameters are solved uniquely from Eq. (21) as: 

 2 2 2

3 0 4 2 1 0a P , s P , c P a, b P a c s        (24) 

The solution is feasible if P2, P3, P4  0 and P1 + a
2
 + c

2
 + s0

2
  0. 

Similar to introducing 0, we can measure the output  from a different reference with an initial angle 

of 0 as shown in Fig. 2. Then Eq. (11) yields 

      
22 2 2

0 0 0 0d e f 1 s 2d 1 s cos cos 2d 1 s sin sin 2df sin cos 2df cos sin 0                (25) 

Eq. (25) can be written in the polynomial form given in Eq. (15) where 

 

         

       

2 2 2
2

1 1 2 2 i 3 3 i i

0 0

0
4 0 4 i 5 5 i i i

d e f 1 1
P , f 1, P , f 1 s , P , f 1 s cos ,

2df cos 2df cos f

tan
P tan , f cos , P , f 1 s sin , F sin

f

 
        

 


         

i i i

i i i

x x x

x x x

 (26) 

Again P5 = P3P4 and P5 =  can be solved using Eq. (23). j j jP m   for j = 1,...,4 and L m   are 

determined and the construction parameters are solved from Eq. (26) as: 

 1 2 2

0 4 0 1

3 2 0

1 1
tan P , f , d , e = d f 2df cos P

P 2P f cos

      


 (27) 

Also it is possible to consider inclusion of s0 to loop DEF. However, inclusion of s0 can be done to 

either of the loops, not both. The next step is to include of both 0 and s0 to loop ABC. In that case, Eq. 

(14) can be modified as 
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2 2 2 2

0 0 0 0

2

0 0 0 0 0 0

a b c s 2s s 2ascos cos 2assin sin

2a s cos csin cos 2a s sin ccos sin s

         

        
 (28) 

Eq. (28) can be written in polynomial form as 

         
6

i 1

i j j

j 1

F Pf 1 L




    i i i
x x x  for i = 1,...,6       (29) 

where 

 

     

     

     

2 2 2 2

1 0 1 2 0 2 i 3 0 3 i i

4 0 4 i i 5 0 0 0 5 i

2

6 0 0 0 6 i i

P a b c s , f 1, P s , f 2s , P acos , f 2s cos ,

P asin , f 2s sin , P a s cos csin , f 2cos ,

P a s sin ccos , f 2sin , F s

          

         

      

i i i

i i

i i

x x x

x x

x x

 (30) 

There are 5 construction parameters, but 6 polynomial coefficients. The dependency in between Pj is 

obtained by eliminating c from P5 = P2P3 + cP4 and P6 = P2P4 – cP3: 

  2 2

3 5 4 6 2 3 4P P P P P P P    (31) 

Let P2 = (any of P3, ..., P6 may also be selected as ), j j jP m   for j = 1, 3, .., 6 and 

L m  L m  . j  and mj can be solved linearly as explained in Section 2. Then, Eq. (31) is a 

cubic equation in terms of  and the three solutions for  can be found analytically. It is guaranteed that 

at least one of the solutions is real. In case of three real solutions, the designer can pick the solution 

which yields lesser error. 

As an alternative, it is possible to introduce s0 and 0 simultaneously to loop DEF. This case is similar 

to loop ABC and again it is necessary to solve a cubic equation.



3.3 The Double-Spherical 6R Mechanism with 8 Parameters 

 

A double-spherical 6R mechanism is shown in Fig. 3. The imaginary spherical 4-bar loops ABCD and 

AEFG share the common passive joint axis A, which is along the line connecting the spherical loop 

centers O1 and O2. The x-axis of the fixed coordinate system is chosen along O1O2 and the y axis is 

selected such that the O1B revolute joint axis remains on the xy-plane. ,  and  are the respective 

input, passive joint and output angle. O1D and O2E axes are in general skew with a twist angle of . The 

radii of the spheres do not affect the I/O relationship, so without loss of generality, assume both radii as 

1. Also, notice that the distance |O1O2| has no effect on the I/O relationship. For the time being assume 

0 =  = 0 = 0.  
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Fig. 3 Kinematic representation of the double-spherical 6R linkage 

 

For the imaginary loop ABCD the I/O equation reads (Alizade et al., 2013) 

 
1 2 4 3 1 2 4 1 2 4

1 2 4 2 4

cos cos cos cos sin sin cos cos sin cos sin cos

cos sin sin cos cos sin sin sin sin 0

             

         
 (32) 

Eq. (32) contains four construction parameters: , , , . Together with the Chebychev error L, 

there are five parameters to be determined. The function synthesis may be performed for five design 

points. Writing Eq. (32) in polynomial form: 

        
4

i 1

i j j

j 1

F Pf 1 L




    i i i
x x x  for  i = 1,...,5 (33) 

where 

 

   

     

3 1 2 4 2 2
1 1 2 2 i 3

1 2 4 4 1

2
3 i i 4 4 i i i

1

cos cos cos cos tan tan
P , f 1, P , f cos , P ,

sin cos sin tan tan

tan
f cos cos , P , f sin sin , F cos

sin

      
     

    


        



i i

i i i

x x

x x x

     (34) 

 i i,  
i

x  represents the i
th

 design point and  i i
x . Pj are solved linearly from Eq. (33) using the 

Remez algorithm and then the construction parameters are solved from Eq. (34) as follows: 

 
 

 

1 1 13 2
1 2 3 1 4

4 2

1

3 1 2 4 1 1 2 4

P tan
cos , tan P tan , tan ,

P P

cos cos cos cos P sin cos sin

  




      

        

     (35) 

Notice that the solution for the construction parameters is not unique. For example there are two 

alternative solutions for 1: cos
-1

(P3/P4) and –cos
-1

(P3/P4). In Eq. (35) three are 16 possible solutions. 

The solution/solutions which yield the desired function generation should be determined by either 

constructing a virtual/actual model of the mechanism or checking the input/output values. 
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For loop AEFG the I/O equation for  = 0 is given by (Alizade et al., 2013) 

 
5 7 8 6 5 7 8 5 7 8

5 7 5 7 8

cos cos cos cos sin cos sin cos sin sin cos cos cos

sin sin sin sin cos sin sin cos 0

              

        
 (36) 

Eq. (36) can be written in polynomial form given in Eq. (33) where 

 

     

     

6 5 7 8 5 5
1 1 2 2 i 3 3 i i

5 7 8 7 8

5
4 4 i i i i i

8

cos cos cos cos tan tan
P , f 1, P , f cos , P , f cos cos ,

cos sin sin tan tan

tan
P , f sin sin , F cos  and ,

sin

      
        

    


        



i i i

i i i

x x x

x x x

(37) 

For given 5 design points,  i i,  
i

x , Pj are solved linearly from Eq. (33) using the Remez algorithm 

and then, the construction parameters are solved from Eq. (37) as follows: 

 
 

 

1 1 13 5
8 5 3 8 7

4 2

1

6 5 7 8 1 5 7 8

P tan
cos , tan P tan , tan ,

P P

cos cos cos cos P cos sin sin

  



 
         

 

        

 (38) 

 

3.4 The Double-Spherical 6R Mechanism with 9, 10 and 11 Parameters 

 

When extra construction parameter is added into Eq. (32): 

1 2 4 3 1 2 4 0 1 2 4 0

1 2 4 1 2 4 0

1 2 4 0 2 4 0 2 4 0

cos cos cos cos sin sin cos cos cos sin sin cos sin sin

sin cos sin cos cos sin sin cos cos cos

cos sin sin sin sin cos sin sin sin cos sin sin sin cos sin sin 0

               

          

                

 (39) 

Eq. (39) can be written in polynomial form as 

        
7

i 1

i j j

j 1

F Pf 1 L




    i i i
x x x  for  i = 1,...,6 (40) 

where 

 

   

     

 

1 2 4 3 1 1
1 1 2 2 i 3

1 2 4 0 4 2 0

3 i 4 4 i i 5 5 i i

0 1

1
6 6 i

4 0

cos cos cos cos tan tan
P , f 1, P , f sin , P ,

cos sin sin sin tan tan sin

1 1
f cos , P , f cos cos , P , f cos sin ,

tan cos

tan
P , f cos , 

tan tan

      
     

      

         
 


  

 

i i

i i i

i

x x

x x x

x    7 7 i i i i

1 0

1
P , f sin sin , F sin cos

cos tan
      

 
i i

x x

 (41) 

There are five construction parameters, i.e. 1, 2, 3, 4 and 0, however there are seven Pj. Indeed, 

two of the Pj can be represented in terms of other as 

 P6 = –P2P4 and P7 = P4P5 (42) 

Let P6 = , P7 = 2, j j j 1 j 2P m n      for j = 1,...,5 and 1 2L m n     . j , mj and nj are found as 
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explained in Section 2. Writing Eq. (42) in terms of  and 2: 

 
     

     

2 2

2 4 6 2 4 1 2 4 2 2 4 2 4 1 2 2 4 2 4 1 2 4 2 4 2 2 4

2 2

4 5 7 4 5 1 4 5 2 4 5 4 5 1 2 4 5 4 5 1 4 5 4 5 2 4 5

P P P m m n n m n n m m m 1 n n 0

P P P m m n n m n n m m m 1 n n 0

                 

                 
 (43) 

As shown in (Alizade, Kilit, 2005), when 2 is eliminated from Eq. (43) to obtain a third order equation 

in terms of 1, which can be solved analytically. At this point, it should be emphasized that the Pj in Eq. 

(41) are selected as such on purpose so that Eq. (42) is obtained and hence, there are three solutions. 

For other cases, the fourth order term which appears after elimination in Eq. (43), does not vanish, thus 

analytical solution is not possible and it is possible that there are no real solutions.

After determining 1 and 2, j j j 1 j 2P m n      for j = 1,...,5 and 1 2L m n     are determined. From 

Eq. (41) the construction parameters 1, 2, 3, 4 and 0 are found as follows:  

 

1 1 1 11 1
0 1 2 4

4 5 3 0 2

1

3 1 2 4 1 1 2 4 0

tan tan1 1
tan , cos , tan , tan ,

P P P sin P

cos (cos cos cos P cos sin sin sin )

   



 
       



         

 (44) 

When the twist angle  in between O1D and O2E in Fig. 3 is taken into account Eq. (32) becomes 

1 2 4 3 1 2 4 1 2 4

1 2 4 1 2 4

1 2 4 2 4 2 4

cos cos cos cos sin sin cos cos sin cos sin cos cos

sin cos sin sin sin cos sin sin cos cos cos

cos sin sin sin cos sin sin sin sin sin cos sin sin cos sin sin 0

              

           

                

       (45) 

Eq. (45) can be written in polynomial form in Eq. (40) where 

 

     

     

1 2 4 3 1 1
1 1 2 2 i 3 3 i

1 2 4 4 2

1
4 4 i i 5 5 i i 6 6 i

1 2

cos cos cos cos tan tan
P , f 1, P , f cos , P , f sin ,

cos sin sin sin tan sin tan

tan1 1
P , f cos cos , P , f sin cos , P , f cos ,

tan cos tan tan

P

      
       

      


          

   

i i i

i i i

x x x

x x x

   7 7 i i i i

1

1
, f sin sin , F cos sin

cos tan
      

 
i ix x

(46) 

P6 and P7 depend on other Pj as 

 P6 = –P3P4 and P7 = P4P5 (47) 

which has the same form as in Eq. (42) and yield there solutions similar to the previous case. The 

construction parameters are obtained from Eq. (46) as follows:  

 

 

1 1 1 11 1
1 2 4

4 5 3 2

1

3 1 2 4 1 1 2 4

tan tan1 1
tan , cos , tan , tan ,

P P P P sin

cos cos cos cos P cos sin sin sin

   



 
      



         

 (48) 

The twist angle  can also be included in Eq. (36) to replace  by  + :

 

5 7 8 6 5 7 8 5 7 8

5 7 8 5 7 8

5 7 8 5 7 5 7

cos cos cos cos cos sin sin cos sin cos sin cos cos

sin cos sin sin sin sin sin cos cos cos cos

sin sin cos sin cos sin sin sin cos sin sin sin sin sin sin cos 0

              

           

                

 (49) 
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Writing Eq. (49) in polynomial form Eq. (40), the Pj are selected as

 

     

     

5 7 8 6 8
1 1 2 2 i 3 3 i i

5 7 8 7

8 8
4 4 i 5 5 i i 6 6 i

5 8 7

7

cos cos cos cos tan
P , f 1, P , f cos , P tan , f cos sin ,

sin sin cos cos tan

tan tan tan1
P , f cos , P , f sin sin , P , f sin ,

tan cos cos tan

ta
P

     
         

    

  
         

   



i i i

i i i

x x x

x x x

   7 i i i i

8

n
, f sin cos , F cos cos

cos


     


i ix x

    (50) 

P6 and P7 depend on other Pj as 

 P6 = –P2P3 and P7 = P3P5 (51) 

which has the same form as in Eq. (42) and yield three solutions. The construction parameters are 

obtained from Eq. (50) as follows:  

 

 

1 1 1 18 8
3 8 7 5

5 6 4

1

6 5 7 8 1 5 7 8

tan tan tan1
tan P , cos , tan , tan ,

P P P cos

cos cos cos cos P sin sin cos cos

   



   
          

         

 (52) 

Next, we can introduce the extra parameter 0 in order to replace  by 0 +  in Eq. (36): 

 

5 7 8 6 5 7 8 5 7 8 0

5 7 8 0 5 7 0 5 7 0

5 7 8 0 5 7 8 0

cos cos cos cos sin cos sin cos sin sin cos cos cos cos

sin sin cos sin sin cos sin sin cos sin sin sin sin sin cos sin

cos sin sin cos cos cos sin sin sin sin 0

               

                

          

 (53) 

Writing Eq. (53) in polynomial form Eq. (40), the Pj are selected as

 

   

     

 

5 7 8 6 8
1 1 2 2 i 3 0

5 7 8 0 7 0

8 8 0
3 i i 4 4 i i 5 5 i 6

8 5 5

6 i

cos cos cos cos tan
P , f 1, P , f cos , P tan ,

sin sin cos cos tan cos

tan tan tan1
f cos sin , P , f sin sin , P , f cos , P ,

cos tan tan

f sin , P

     
      

     

  
          

  

 

i i

i i i

i

x x

x x x

x    0
7 7 i i i i

8

tan
, f sin cos , F cos cos

cos


      


i ix x

    (54) 

P6 and P7 depend on other Pj as 

 P6 = –P3P5 and P7 = P3P4 (55) 

which has the same form as in Eq. (42) and yield three solutions. The construction parameters are 

obtained from Eq. (54) as follows:  

 

 

1 1 1 18 8
0 3 8 7 5

4 2 0 5

1

6 5 7 8 1 5 7 8 0

tan tan1
tan P , cos , tan , tan ,

P P cos P

cos cos cos cos P sin sin cos cos

   



 
       



         

 (56) 

It is also possible to include both of 0 and  in loop ABCD and both of  and 0 in loop AEFG. This 

case is already studied in (Alizade, Gezgin, 2011), where it is necessary to define six nonlinear 

parameters k for k = 1,...,6. The solution for k necessitates numerical solution.
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3.5 Plano-Spherical 6R Mechanism with 7 Parameters 

 

A plano-spherical 6R linkage is depicted in Fig. 4, where  is the input and  is the output, or vice 

versa. The link length definitions for the spherical and planar parts are the same as for the 

corresponding imaginary loops of the double-planar and double-spherical linkages. In general, there is 

a twist angle  in between O1D' and AE directions. The x-axis direction of the fixed coordinate system 

is selected to be parallel to the joint axis directions of the planar loop. The y-axis is selected such that 

the xy-plane includes the O1B axis of the spherical loop and the z-axis is along the common normal of 

O1B and G rotation axes. For the time being assume 0 =  = 0 = 0. 



 

Fig. 4 Kinematic representation of the plano-spherical 6R linkage  

 

The I/O relationship for the spherical loop is the same as for the first loop of double-spherical 6R 

linkage and is given by Eq. (32). All links of the planar loop move parallel to the yz-plane, so the x 

coordinates are irrelevant when analyzing this loop. Scaling all the link lengths of the planar four bar 

mechanism has no effect on the function synthesis task, so without loss of generality we will assume a5 

= 1. For  = 0, the I/O equation for the planar loop can be derived as (Alizade et al., 2013): 

  2 2 2

6 7 8 8 7 7 81 a a a 2a sin 2a cos 2a a sin 0          (57) 

This I/O relationship contains three construction parameters: a6, a7, a8. Together with the Chebychev 

error L, there are four parameters to be determined. Therefore, the function synthesis may be performed 

for four design points. Eq. (57) can be written in the polynomial form of Eq. (8), where 

          
2 2 2

6 7 8
1 1 2 2 i 3 3 i i i

7 8 7 8

1 a a a 1 1
P , f 1, P , f sin , P , f cos , F sin

2a a a a

  
          

i i i i
x x x x  (58) 

Pj are solved linearly from Eq. (8) using the Remez algorithm and then the construction parameters are 

solved from Eq. (58) as follows: 
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 2 2

7 8 6 7 8 1 7 8

2 3

1 1
a , a , a 1 a a 2Pa a

P P
       (59) 

 

3.6 Plano-Spherical 6R Mechanism with 8, 9 and 10 Parameters 

 

When we include the twist angle  to the planar loop Eq. (57) becomes 

 
 

 

2 2 2

6 7 8 8 8 7

7 7 8

1 a a a 2a cos sin 2a sin cos 2a cos cos

2a sin sin 2a a sin 0

         

     
 (60) 

Eq. (60) can be written in polynomial form in Eq. (15) where 

 

     

         

2 2 2

6 7 8
1 1 2 2 i 3 3 i 4

7 8 7 7 8

4 i i 5 5 i i i

8

1 a a a cos sin cos
P , f 1, P , f sin , P , f cos , P ,

2a a a a a

sin
f cos , P , f sin , F sin

a

     
        


        

i i i

i i i

x x x

x x x

 (61) 

The dependency in between Pj is the same as Eq. (17). We assign P5 = , j j jP m   for j = 1,...,4 and 

L m  . After finding j  and mj as explained in Section 2,  is determined as in Eq. (18). The 

construction parameters are determined as 

   2 2

2 3 7 8 6 7 8 1 7 8

2 4

cos cos
atan2 P ,P , a , a , a 1 a a P 2a a

P P

 
        (62) 

When we use 0 +  instead of  in Eq. (57), we obtain 

 
   2 2 2

6 7 8 8 7 0 7 0

7 8 0 7 8 0

1 a a a 2a sin 2a cos cos 2a sin sin

2a a sin cos 2a a cos sin 0

         

     
 (63) 

Eq. (60) can be written in polynomial form in Eq. (15) where 

 

     

         

2 2 2

6 7 8
1 1 2 2 i 3 0 3 i 4

7 8 0 7 0 8

0
4 i i 5 5 i i i

8

1 a a a 1 1
P , f 1, P , f sin , P tan , f cos , P ,

2a a cos a cos a

tan
f cos , P , f sin , F sin

a

  
         

 


        

i i i

i i i

x x x

x x x

 (64) 

The dependency in between Pj is the same as Eq. (22). We assign P5 = , j j jP m   for j = 1,...,4 and 

L m  . After finding j  and mj as explained in Section 2,  is determined as in Eq. (23). The 

construction parameters are determined as 

 

1

2 23 2

0 8 7 6 7 8 1 7 8 01

4 2 03 2

tan P if  P 0 1 1
, a , a , a 1 a a 2Pa a cos

P P costan P if  P 0





 
        

 
 (65) 

Finally we can add both of  and 0 to Eq. (57) to obtain 
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2 2 2

6 7 8 8 8 7 0

7 0 7 8 0 7 8 0

1 a a a 2a cos sin 2a sin cos 2a cos cos

2a sin sin 2a a sin cos 2a a cos sin 0

         

       
  (66) 

Eq. (66) can be written in polynomial form in Eq. (29) where 

 

     

 
 

   
 

     

2 2 2

6 7 8
1 1 2 2 i 3 0 3 i 4

7 8 0 7 0 7 0

0 0

4 i 5 5 i i 6 6 i i i

8 0 8 0

1 a a a cos sin
P , f 1, P , f sin , P tan , f cos , P ,

2a a cos a cos a cos

cos sin
f cos , P , f cos , P , f sin , F sin

a cos a cos

    
         

  

 
           

 

i i i

i i i i

x x x

x x x x

(67) 

There are five construction parameters, whereas there are six Pj. The relationship between Pj can be 

found to be 

  3 2 5 4 6 4 5 2 6P P P P P P P P P     (68) 

Let P6 = , j j jP m   for j = 1,...,5 and L m  . j  and mj can be solved linearly as explained in 

Section 2. Eq. (68) is a cubic equation in terms of  and can be solved analytically. The construction 

parameters are solved from Eq. (67) as

 
 01 2 2

0 2 0 4 0 7 8 6 7 8 1 7 8 0

2 0 5 0

coscos
tan P , atan2 P cos ,P cos , a , a , a 1 a a 2Pa a cos

P cos P cos






           

 
(69) 

 

4. The Function Synthesis Problem 

 

Let the function to be generated be z = f(x) for xmin  x  xmax and zmin  z  zmax. The independent 

variable x should be related to the mechanism input  and the dependent variable z should be related to 

the mechanism output . However, since we are making use of the method of decomposition, we have 

an intermediate joint variable  for the double-spherical and plano-spherical mechanisms and s for the 

double-planar mechanism. We shall introduce y = g(x) for ymin  y  ymax such that z = h(y) and hence 

f(x) = h(g(x)). Depending on the application some or all of z = f(x), xmin, xmax, zmin and zmax may be 

demanded by the specific task. However, the designer can freely select y = g(x), ymin and ymax. The 

design may be enhanced via different selection of the function g and also the boundaries of y. 

We shall linearly relate x to  y to  (or s) and z to  as

 min min min min min min

max min max min max min max min max min max min

x x y y z z
 ,  , 

x x y y z z

     
  

        
 (70) 

Then desired  and  values for given input  are found as follows:

        max min max min max min
min min min min min min

max min max min max min

x x  , g x y  , f x z
x x y y z z

     
        

  
 (71) 

and conversely

      max min max min max min
min min min min min min

max min max min max min

x x y y z z
x x  , y +y  , z= z

  
      
     

 (72) 
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We make use of Eq. (71) when determining the design points  
n

i 1
 ,  

n

i 1
  and  

n

i 1
  from  

n

i 1
x , 

    
nn

i i1 1
y g x  and     

nn

i i1 1
z f x . Selection of  

n

i 1
x  may be done with equal spacing, Chebyshev 

spacing, or any other type of spacing depending of the application. Our experience is that the Remez 

algorithm converges faster (in 3 or 4 iterations) when the initial spacing is selected as the Chebyshev 

spacing. 

We make use of Eq. (72) after the synthesis is done and we need to check the error in between the 

desired z = f(x) and the generated z with the mechanism. At this step, one shall determine the output 

values of the mechanism loops for several given input values, say 100 values, by solving the I/O 

relationship.  

 

5. Numerical examples 

 

We have implemented all the formulations in the previous sections in Microsoft Excel


 and performed 

several different function synthesis tasks. Here we present some of the results for illustration. 

First, we work on power functions of type z = x
a
. As an example, consider z = x

0.5
 for 1  x 5, which 

is decomposed as y = x
0.6

, z = y
5/6

. For 130°   50° input range and 210°   270° output range, 

we performed synthesis for all of the double-planar, double-spherical and plano-spherical 6-R linkages 

with no extra parameters 0, 0, etc. in order to compare the resultant error. The intermediate joint 

variable limits are chosen as 0.3  s 0.9 for the double-planar linkage and 110°   200° for the 

double-spherical and the plano-spherical linkages. The initial design points in between the limits are 

determined using Chebyshev spacing. The percentage error variation in the z values defined as

 desired mechanism

desired

z z
%Error 100

z


   (73) 

is given in Fig. 5. As seen from Fig. 5, the lowest percentage error values are obtained with the double-

spherical linkage. The maximum error magnitude is 0.123% for the double-spherical linkage, 0.291% 

for the plano-spherical linkage and 1.54% for the double-planar linkage. So, for z = x
0.5

 it seems like 

the double-spherical linkage provides the best approximation. Of course it is possible to change the 

intermediate function y = f(x) and the boundaries for the input, output and intermediate joint variables. 

For different selections, some other linkage may be better than the others. Similarly, the designer may 

test several different mechanisms for the same function in order to determine the best-suited 

mechanism for that specific function.  

 

Fig. 5 Percentage error variations for z = x
0.5
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- 1 

0 

1 

1 2 3 4 5 

Double-planar 

Double-spherical 

Plano-spherical 

x
 

% Error for z = x
0.5 
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It is important to note that not every function can be generated with all of the Bennett linkages for 

arbitrary selections of the joint variable limits. In the above example, we found a proper set of joint 

variable limits so that the synthesis can be performed for all of the three linkages. If one is to work on 

just one of the linkages for a specific function, it is possible to decrease the maximum error to the 

levels of 0.01%. For example, using a double-spherical 6R linkage, for the same function as above, i.e. 

for z = x
0.5

 for 1  x 5, if we select y(x) = x
0.8

, 126°   59°, 193°   260° and 94°   199°, 

the maximum absolute error is as low as 0.0074%. 

The second function we worked on is the sin(x) function for 45°  x 60°, which is decomposed as y =  

tan(x/2) and z = 2y/(1+y
2
). The reason we have such a short range for x is the constraint that we want 

to compare the three linkages for the same function and same joint variable limits. In this case, we 

employed the extra parameters 0 and 0 for the input and output angles, respectively. We used the 

same joint variable limits as above: 130°   50°, 210°   270°, 0.6  s 0.9 and 110°   200°. 

In this case, the error values for the three mechanisms are very low and we do not need to present the 

error variation graph. The maximum error magnitude is 9.310
-4

% for the double-spherical linkage, 

9.210
-3

% for the plano-spherical linkage and 0.042% for the double-planar linkage. As expected, as 

the number of design points increases, the accuracy of approximation increases. The construction 

parameters designed for the function generation of z = x
0.5

 and z = sin(x) are listed in Table 1. Note that 

some link lengths for the plano-spherical linkage turn out to be negative. This does not mean that the 

construction of the mechanism is not possible. Referring to Fig. 4, a8 is a directed dimension, so it can 

be negative, anyway. On the other hand, a7 being computed negative means that the angle of this link 

should not be measured from +y direction to GF direction as in Fig. 4, but in the opposite direction. 

Practically this does not cause any problems. One can simply extend this link and get the measurement 

from the extension.   

 

Table 1. Designed construction parameters for generation of z = x
0.5

 and z = sin(x) 

Linkage Function  0 Link lengths |%Error|max 

Double- 

planar 
z = x

0.5
 - - 

a = 0.45044, b = 0.6757, c = 0.65565, 

d = 0.32562, e = 0.575, f = 0.23706, g = 1 
1.54% 

Double- 

spherical 
z = x

0.5
 - - 

1 = 158.40°, 2 = 129.13°, 3 = 65.34°, 4 = 94.45°, 

5 = 150.67°, 6 = 82.36°, 7 = 93.03°, 8 = 159.25°
0.123% 

Plano-

spherical 
z = x

0.5
 - - 

1 = 158.40°, 2 = 129.13°, 3 = 65.34°, 4 = 94.45°, 

a5 = 1, a6 = 1.1770, a7 = –0.5488, a8 = –0.1790                                    
0.291% 

Double- 

spherical* 
z = x

0.5
 - - 

1 = 156.20°, 2 = 274.79°, 3 = 77.03°, 4 = 323.18°, 

5 = 351.84°, 6 = 93.15°, 7 = 279.21°, 8 = 172.37° 
0.0074% 

Double- 

planar 
z = sin(x) 90.96° –13.84° 

a = 0.3854, b = 1.4708, c = 1.0943, 

d = 0.0708, e = 4.0310, f = 3.9615, g = 1 
0.042% 

Double- 

spherical 
z = sin(x) 172.88° 43.25° 

1 = 194.54°, 2 = 62.24°, 3 = 126.61°, 4 = 51.52°, 

5 = 174.46°, 6 = 171.44°, 7 = 172.04°, 8 = 175.94°
9.310

-4
% 

Plano-

spherical 
z = sin(x) 172.88° 135.52° 

1 = 194.54°, 2 = 62.24°, 3 = 126.61°, 4 = 51.52°, 

a5 = 1, a6 = 1.3908, a7 = 0.4618, a8 =-0.0899                                    
9.210

-3
% 

*First three rows correspond to synthesis of different linkages for the same range of input/output variables for 

comparison reasons, whereas row 4 corresponds to synthesis of a double-spherical linkage for further minimized 

error by changing the input/output ranges. 



As a further case study, we worked on a function used in Alizade and Kilit (2005) for comparison. In 

the paper, the authors generate z = x
0.6

 for 1  x 5 by means of a spherical four-bar mechanism with 
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five construction parameters: the four link lengths , , ,  and the extra parameter 0 for the 

output angle. They used interpolation approximation with equally spaced five precision points and the 

limits are selected as 8°   80°, 5°   160° for the input and the output joint variables, 

respectively. The variation in the percentage error is depicted in Fig. 6. In this case, the maximum 

absolute percentage error is 2.229%. 



 

Fig. 6 Percentage error variation for z = x
0.6

 for spherical four-bar mechanism with interpolation 

approximation 

 

When we use Chebyshev approximation for the same function z = x
0.6

 for 1  x 5 with the spherical 

four-bar mechanism with same joint variable limits and five construction parameters, relatively lower 

error values are obtained as shown in Fig. 7. In this case, the maximum absolute error is 1.28%. 

 

 

Fig. 7 Percentage error variation for z = x
0.6

 for spherical four-bar mechanism with Chebyshev 

approximation 

 

When we apply the Chebyshev approximation with the double spherical mechanism for the same 

function with the same input-output joint limits and choose y = x
0.75

 and 75°   160°, the error 

variation in Fig. 8 is obtained. The maximum absolute error is 0.016%. 
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Fig. 8 Percentage error variation for z = x
0.6

 for double-spherical 6R mechanism with Chebyshev 

approximation 

 

The designed construction parameters for the spherical four-bar and double-spherical 6R linkages are 

listed in Table 2. 

 

Table 2. Designed construction parameters for generation of z = x
0.6

 

Linkage Approximation  0 Link lengths |%Error|max 

Spherical 4R Interpolation - 11.03° 1 = 10.75°, 2 = 294.90°, 3 = 30.46°, 4 = 270.47° 2.23% 

Spherical 4R Chebyshev - 9.96° 1 = 271.92°, 2 = 87.00°, 3 = 34.01°, 4 = 142.30° 1.28% 

Double- 

spherical 
Chebyshev 52° –4.91° 

1 = 10.75°,2 = 114.9°,3 = 28.34°,4 = 93.17°, 

5 = 337.74°,6 = 203.92°,7 = 355.24°,8 = 185.03°
0.016% 

 

As a final case study, we demonstrate design of the same type of linkage for three different types of 

functions: z = x
a
, z = a

x
 and z = sin(x). The worked-out functions are z = x

0.5
 for 1 ≤ x ≤ 5, z = 2

x
 for 

/4 ≤ x ≤ 2/3, and z = sin(x) for –1 ≤ x ≤ 1. The variations of these functions in their respective ranges 

are illustrated in Fig. 9 in order to demonstrate the behavior of the functions to be generated.  
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b)
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c)

0.7

0.8

0.9

1

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1

z = sin(x) for /4 ≤ x ≤ 2/3 

 

Fig. 9 a) z = x
0.5

 for 1 ≤ x ≤ 5, b) z = 2
x
 for –1 ≤ x ≤ 1 and c) z = sin(x) for /4 ≤ x ≤ 2/3 

 

A double-spherical 6R linkage with 8 construction parameters is designed for each of the three 

functions. For the function z = x
0.5

 for 1  x 5, we repeat the solution above with y(x) = x
0.8

, 126°  

 59°, 193°   260° and 94°   199°. The maximum absolute percentage error is as low as 

0.0074%. For the function z = 2
x
 for –1 ≤ x ≤ 1 we found a good design with y = e

x
, 30°   92°, 34° 

  82° and 210°   249°. In this case, the maximum absolute percentage error is about 0.65%. 

For the function z = sin(x) for /4 ≤ x ≤ 2/3 we chose y = tan(x/2), 81°   165°, 59°   86.26°, 

and 219°   339°. The maximum absolute percentage error is found as 1.4%. For all three functions 

we tried to minimize the maximum absolute percentage error. The results show that the performance of 

the function generator mechanism is highly dependent on the behavior of the function to be generated. 

The variation of the percentage errors in z for each of these functions are illustrated in Fig. 10. The 

designed construction parameters are given in Table 3. 

 

a)  

b)   
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c)  

Fig. 10 Percentage error variation for generation of a) z = x
0.5

, 1 ≤ x ≤ 5, b) z = 2
x
, –1 ≤ x ≤ 1 and c) z = 

sin(x), 45° ≤ x ≤ 120° 

 

Table 3. Designed construction parameters for generation of z = x
0.5

, z = 2
x
 and z = sin(x) 

Function Link lengths |%Error|max 

z = x
0.5

, 1 ≤ x ≤ 5
1 = 10.75°,2 = 114.9°,3 = 28.34°,4 = 93.17°, 

5 = 337.74°,6 = 203.92°,7 = 355.24°,8 = 185.03° 
0.0074% 

z = 2
x
, –1 ≤ x ≤ 1

1 = 150.51°,2 = 145.82°,3 = 127.57°,4 = 14.50°, 

5 = 81.62°,6 = 170.89°,7 = 75.02°,8 = 161.65°
0.65% 

z = sin(x), 45° ≤ x ≤ 120°
1 = 61.49°, 2 = 62.51°, 3 = 64.63°, 4 = 57.60°, 

5 = 178.82°, 6 = 76.03°, 7 = 77.34°, 8 = 2.21°
1.4% 

 

The construction parameter values in Tables 1-2-3 are used to construct virtual models of 6R linkages 

and these models are tested to satisfy the input/output joint values. 

 

6. Discussions and Conclusions 

 

The single-loop Bennett 6R mechanisms possess much more construction parameters than the single- 

loop planar four-bar, spherical four-bar or planar slider-crank mechanisms and hence, they may be used 

for function approximation purposes with a relatively better accuracy. The method of decomposition 

makes it possible for us to analytically formulate the function synthesis problem for mechanisms with 

so many construction parameters. The relatively easy computer implementation of the formulation 

enables the designer to quickly work on several alternative designs and come up with an accurate 

function generator mechanism. 

The case studies we presented in Section 5 illustrate how a designer can compare the three types of 

Bennett 6R mechanisms for the same function. Also the comparison of the spherical four-bar with the 

double-spherical 6R mechanism clearly shows that the accuracy is improved when the 6R linkage is 

used for generating the same function. The last case study shows how the performance of the same type 

of linkage may be affected for different functions to be generated. 
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