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ABSTRACT 

 

ANALYSIS OF OLFACTORY EVOKED POTENTIALS 

 
With the growing opportunities of laboratories and measurement techniques, 

cognitive science attracts many researchers interest from other branches of science. In the 

literature, lack of studies related to the brain's responsiveness against the olfactory stimuli 

has been the main source of motivation for our work on this issue. 

In this thesis, it is examined by means of time-dependent wavelet entropy of 

Electroencephalographic (EEG) signals which is collected from individuals that how 

olfactory and trigeminal effective odor stimuli affects responsiveness of the brain. 

Significance and meaningfulness of the results are shown with statistical tests of average 

entropy in the discrete time windows. 

Due to its nature of small amplitude in comparison with ongoing EEG activity, 

it’s hard to observe the components of olfactory evoked potentials and trigeminal evoked 

potentials. In order to separate these components from ongoing EEG, different signal 

processing techniques have been employed in this thesis. And, findings from these 

techniques have been conveyed to statistical tests to determine the most suitable technique 

for that purpose.  

Additionally, a novel smell performance identification metric have been offered 

for clinical studies that is not affected by basal activity of brain and subjective review, for 

objective assessment of smell performance. Statistical test result have shown that, results 

of this technique which is performed on 19 participants, and their TDI scores obtained 

from Sniffin’ Stick test battery, are in a strong correlation. 
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ÖZET 

 

OLFAKTÖR UYARILMIŞ POTANSİYELLERİN ANALİZİ 

 
Günümüz teknolojisi ile birlikte gelişim gösteren laboratuvar ve ölçümleme 

olanakları, beyin araştırmalarını çeşitli bilim dallarının ilgi odağı haline getirmiştir. 

Literatürde, beynin koku uyaranına karşı göstermiş olduğu yanıtlılığının incelenmesi ile 

ilgili yapılan çalışmaların azlığı, bu konu üzerinde çalışmamız için ana motivasyon 

kaynağı olmuştur. Yapılan bu tezde, olfaktör ve trigeminal etkili koku uyaranların, beyin 

yanıtlılığını nasıl etkilediği, kişilerden toplanan Elektroensefalogram (EEG) işaretlerinin 

zamana bağlı dalgacık entropisi ile incelenmiş ve ayrık zaman pencereleri ile ortalama 

entropinin anlamlılık derecesi istatistiksel testler ile gösterilmiştir. 

Koku performansının klinik olarak değerlendirilmesi esnasında önemli 

öznitelikler olan olfaktör uyarılmış potansiyeller ve trigeminal uyarılmış potensiyellerin 

bileşenleri, EEG işaretine kıyasla düşük genliklidir. Bu potansiyellerin EEG 

işaretlerinden ayrıştırılması için farklı sinyal işleme teknikleri denenmiş ve en uygun 

teknik çeşitli istatistiksel kıyaslamalar ile belirlenmiştir. Bütün bunların yanı sıra, klinik 

çalışmalara katkı sağlayacak, kişinin bazal aktivitesinden etkilenmeyen ve sübjektif 

yorumlara kapalı bir koku performans metriği önerilmiştir. 19 hasta üzerinde uygulanan 

bu metriğin sübjektif koku performans testleri ile ilintili olduğu istatistiksel testler ile 

gösterilmiştir.  
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CHAPTER 1 

 

INTRODUCTION 

 

Did you ever measure a smell? 

Can you tell me one smell is just twice strong as another? 

It’s very obvious that we have very many different kinds of smell, all the way from odor of violets 

and roses to asafetida. 

But until you measure the likeness and differences, you can have no science of odor. 

If you are ambitious to find a new science, measure the smell. 

Alexander Graham Bell, 1914 

 

In comparison with the other senses such as somatosensory (i.e. tactile sensation), 

visual or auditory, olfaction or namely sense of smell is the most disregarded perception. 

This is because, olfaction is the least required sense in human’s daily life and it is hard to 

evaluate the performance of olfaction in clinical conditions due to its subjectivity. It is 

noticed that, unlike in other sensory modalities, there is an unclear relation between 

stimulus and perception. This implies that there is an unclear sensory information 

processing in olfactory system. The subjective parameters of affecting the performance 

of sense of smell are hormonal cycle, subject’s vigilance, sensitivity to odors, gender, 

substance usage, eating disruption, congenital or acquired disease, pregnancy, 

mood…etc. The external factors are relative humidity of ambient, molecular shape of 

odorant molecules, temperature and concentration of odors…etc. However, recently, it is  

recognized that olfaction is the one of the vital sensations in humans and animals [1].  

Especially in animals, sense of smell gives a lot of information about their 

surroundings and also shapes the behavioral patterns such as identification of foods, 

territorial defense, awareness of dangers, kinship recognition and sexual attitude [2]. Also 

in humans, role of olfaction starts in neonatal life and takes an active role in throughout 

the life. Mate selection, emotional responses, social options are in strong correlation with 

sense of smell.  

It is reported that olfaction is the oldest sensory modality in phylogenetic history 

in mammals and also, the similarity of parts of olfaction system between wide apart 

species such as rodents, insects and fruit fly points out the common evolutionary 

ancestry [3]. 
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Nobody knew that EEG is the fundamental tool that demonstrates the memory 

building and integrative brain function until the slogan ‘The EEG is quasi-deterministic 

response or represents chaotic behavior of brain, shouldn’t be considered as background 

noise’ came up. That was the renaissance of brain electrophysiology. A theory which 

follows Newton’s, Einstein’s and Galilee’s pathway, states that brain waves are the 

language of brain and oscillations in different frequency tones creates the words and 

super-synergy between neuronal structures are the sentences of this language [4]. 

Pioneer of study of neuroscience is Hans Berger who had discovered the EEG in 

humans [5]. In his first study, he worked with string galvanometer. After that, he started 

to use Siemens double coil galvanometer which is a more powerful tool for analyzing 

brain rhythms. He published his first paper in 1929 that involves three minutes EEG 

recording on photographic paper.  In that study, he claimed that alpha activity of brain 

rhythms is the major component of EEG.   

There were no study found to examine the effect of olfactory stimulation on 

livings central nervous system. A study was done by Fleischl von Marxow in 1883 

showing that he was the first discoverer of the relation between odor and brain oscillations 

in livings. He realized the fact that ammonia produced electrical fluctuations in rabbit’s 

brain. 

In humans, this relation was first described by Moncrieff in 1962. In his 

experiment, he recorded subjects’ brain electrical activity while presenting different odors 

such as floral perfumes, oils, butanol and fresh chives. He realized that several odors can 

reduce the alpha activity. 

First quantitative EEG changes upon odor stimulation for adults was published by 

Van Toller [6].  

Discovery of olfactory evoked potentials (and olfactory event-related potentials) 

has attracted deserved interest of scientific or clinical community. Briefly, ERP and EP 

are EEG derived polyphasic deflections due to electromagnetic field of activated cortical 

neurons. 

In 1966, Finkenzeller was the first discoverer of olfactory evoked potentials 

(OEP) by using blast olfactometer [7]. After that, in 1967 Allison and Geoff did the same 

experiment with constant flow olfactometer which is an improved version of blast 

olfactometer. These studies are milestones in this research area [8].  

In early years, blast olfactometers were the most popular devices. As a short 

description, olfactometer is an instrument that can create and deliver rectangular shaped 
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odorant pulses to subject’s nose in a controlled fashion for advanced clinical researches. 

Blast olfactometer creates a pressurized odorized air puffs and sends it through the 

subject’s nostrils. However, the main drawback of using such an olfactometer is, it creates 

tactile stimuli by activating mechano-receptors due to air puffs in subject’s nostril and 

evokes trigeminal afferents which lies in nasal cavity for transmission of tactile 

stimulation to second somatosensory cortex. This causes several problems that odorant 

which have no trigeminal effect, can generate trigeminal evoked potentials (TEP) in 

human brain. Using such a device causes some recordable evoked potential on the scalp 

on people who don’t have ability to detect odorized air. To overcome this problem, an 

olfactometer, capable of creating odorized air stimulation under constant air flow by 

switching vacuum line, developed by Kobal and Plattig [9], has allowed researchers to 

interest in various problems in how brain processes olfactory information [8].  

Before the chemosensory event related potentials and evoked potentials became 

popular in clinical manner, there wasn’t any international standardized olfactory 

performance test. Even though these smell tests are easy to implement and validated by 

some clinics, there are many drawbacks. Outcomes of such tests are easily affected by 

subject’s response bias [10].  This means that, it is hard to identify malingering and 

impaired subjects [11].  

Sniffin’ Stick test is a performance evaluation tool that measures subject’s 

olfaction ability under definite procedures [12]. In the first stage of this test, olfactory 

threshold (T) value is determined by presentation of n-butanol by stepwise increasing 

dilution with sixteen felt-tip pens. The lowest concentration that subject can detect, is the 

threshold score of the subject. As a second step, the subject need to perform a triple 

forced-choice task by using sixteen triplet of odorant. Target pen contains different type 

of odorant than other remaining two pens. Discrimination score (D) of subject is assessed 

in this step and finally identification (I) performance is tested by selection of sixteen 

odorant names from a forced-choice list. All the results are summed to obtain subject’s 

TDI score. For TDI score with smaller than 16.5, patient is functionally anosmic. For TDI 

score greater than 30.5, patient is called normosmic and otherwise patient is said to be 

hyposmic or anosmic. Anosmia is defined as the inability to perceive the odors or it can 

be said that lack of olfactory functioning. Hyposmia is known as degradation of smell 

performance due to various reasons. Normosmic people show normal smell performance 

[13].  
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Another commonly used technique is the UPSIT (University of Pennsylvania 

Smell Identification Test) [14]. UPSIT was developed by Doty and colleagues in USA in 

1984. In this test, odorants are presented via pen-like sticks to the participants. About 40 

different odors are used and subjects are requested to choose one of the four odorant name 

from forced-choice list. Numbers of correctly identified odors are the score of the 

subject’s performance. 

SOIT (Scandinavian Odor Identification Test) was developed by Nordin in 1998 

with the basis of north Europe cultural pedestals. In this test, liquid odors are injected to 

stype in order for saturation.  About 16 different type of odors (anasone, vanilla, apple, 

clove, almond…etc.) are able to activate and test trigeminal and olfactory afferents 

separately. Same as UPSIT, participants are requested to choose one of the best-matched 

odor name from a forced choice list [15]. 

Olfactory event-related potentials (OERP) and olfactory evoked potentials (OEP) 

have proven to be a good tool for assessment of olfaction performance and diagnosis of 

some neurodegenerative diseases due to its direct correlation with neuronal activation. 

However, there are some disadvantages such as; 

 It can be affected by motor and movement artifacts. 

 Vigilance decreases and olfactory fatigue can be seen with repeated stimuli. 

 It is hard to observe pure OERP due to background EEG activity. 

These drawbacks bring the main question about the probability of recording an OERP.  

In study [16], functional relation between TDI score and probability of observing the 

OERP is given as, 

 

𝑝 =
1

1 + (
𝑇𝐷𝐼
𝛼 )

−𝛽
  

(1.1) 

 

where 𝑝 is the probability of observing OERP when psychophysical score is 𝑇𝐷𝐼.  

Parameters α and β are turning point of probability function and steepness of function 

respectively. With the help of logistic regression, the turning point of TDI is found about 

22.6 for men that observation of OERP is more than chance. This score is almost 0.8 

times lower for women participants. It is pointed out in this study that occurrence of 

OERP is a fingerprint of olfactory ability but vice versa is not correct.  
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Congenital anosmia, (i.e. Kalmann Syndrome), known to be the absence of 

olfactory function due to several congenital or subsequent reasons such as 

dysgenesis/agenesis of receptor cells and/or olfactory bulb. In study [17], olfactory event-

related potentials were recorded for 9 anosmic and age matched 9 control subjects. 

Assessment of olfactory performance was evaluated by using P1, N1, P2, N2 potentials. 

Isoamyl acetate was used as olfactory and chloracetyl phenone as trigeminal stimulant. 

For congenital anosmic subject, no reproducible components were recorded in isoamyl 

acetate stimulation and there were no significant differences found anosmic and control 

group for chloracetyl phenone stimulation.  

Post-infectious olfactory loss is defined as an unannounced impairment of 

olfactory functioning due to upper respiratory tract infection (URTI) mainly due to toxic 

attack or virus spread of olfactory pathways. As a brief information, such a dysfunction 

can be seen in %11 of whole population [18].  By utilizing the power of OERP, recovery 

from this deficit can be estimated. In [18], 27 patients suffering from URTI were included. 

All psychophysical and electrophysiological tests evaluated twice at distinct times. 

Subjects who elicit recordable OERP in the first meeting, show improved (i.e. recovered) 

olfactory functioning. Vital finding from this study is that, a participant who elicits OERP 

when suffering from an olfactory dysfunction, has more chance to recover from such a 

disease. 

Studies about interaction between trigeminal and olfactory systems mainly utilize 

the subjects with olfactory dysfunction such as acquired anosmia (AA) who displays 

larger peripheral responses and smaller cerebral response amplitudes. In [19], a total 

number of 123 subjects that 73 of them suffers from AA, attended in this study. Negative 

mucosal potential (NMP) results of acquired anosmic patients demonstrate higher NMP 

activity than healthy group. However, examining the TERP results, AA subjects elicit 

smaller P2 and N1/P2 amplitudes. It was inferred by the authors that, olfactory system is 

in a close interaction with trigeminal system and changes in central nervous system (CNS) 

due to olfactory loss results in attenuated trigeminal responsiveness. In this line of sight, 

it is hypothesized from this study; such a result is greatly due to impairment of excitatory 

cells in olfactory bulb. 

Alzheimer, the most encountered form of dementia [20], is a kind of 

neurodegenerative disease that shows itself by decrease in cognitive functions and also, 

some neuropsychiatric changes can be seen in time courses. One of the early symptoms 

of Alzheimer disease is reduction in the sense of smell. This is because, regions are 
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involved in olfaction, also demonstrates some deterioration in Alzheimer disease [21]. 

Additionally, according to Braak and his colleague, the initial suffered limbic structure is 

transentorhinal cortex, which is associated with memory, emotion and olfaction. As an 

important outcome referred in [22] that volume of olfactory bulb decreases dramatically 

in Alzheimer Disease (AD) patients in comparison with age-matched controls. This study 

shows the ability of olfactory event-related potentials that helps diagnosis of Alzheimer 

disease in clinical context. 12 AD and 12 age-matched controls were attended in that 

study. Two type of stimulus modality were handled. In olfactory stimulations, AD 

patients elicit significantly prolonged P3 latency. AD patients also show longer latencies 

of N1, P2 and N2 than control subjects. As a consequence, dementia status is highly 

correlated with OERP latencies.  

Loss of olfactory performance in Parkinsonism has been well documented by 

several authors. It is stated that about %95 of Parkinson patient suffers from olfactory 

loss [23]. Prior to motor symptoms, Parkinson demonstrates itself with degradation of 

sense of smell with 4-6 months earlier than clinical motor impairments [24]. A general 

characteristic of people who suffer from idiopathic Parkinson disease is delayed or absent 

OERP. Apart from psychophysical tests, OERP can be utilized to investigate smell 

performance [25]. But functional neuro-imaging studies reveal that both ERP detected 

(ERP+) and non-detected (ERP-) participants elicit central activation during odorant 

stimuli. In [26], both electrophysiological and FMRI responses were discussed for 24 

subjects. ERP+ participant showed higher TDI scores than ERP-. Both groups elicit in 

left and right superior temporal gyrus but additionally, ERP+ group display activation in 

orbitofrontal region and inferior frontal gyrus. And also, ERP+ participants demonstrate 

higher activation in left and right inferior temporal gyrus for both sided stimulations. Such 

a discrepancy might be due to neuro-degeneration of olfactory related areas occurring 

dramatically in ERP- group. As a consequence presence of OERP is prognostic sign for 

activation of several brain areas and it may be a fingerprint of recovery of the olfactory 

function [18, 26]. 

Aging is an important factor that causes degradation in smell performance. 

Entorhinal cortex, hippocampus, amygdala and temporal lobe are the most affected 

olfactory regions from aging progress. In 1983, Murphy pointed out that older subject 

demonstrates higher threshold values than younger subjects [27]. In [28], totally 16 

participant divided into three groups by considering their age. Youngest group comprises 

15-34 year-old subjects, middle aged group involve 35-54 and final group consist of 55-
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74 year-old people.  N1/P2, N1, P2 amplitudes and latencies were handled in order for 

assessment of the effect of aging. For elderly people, N1/P2 interpeak amplitude 

significantly smaller in comparison with other two groups for olfactory stimulation with 

H2S. P2 amplitude demonstrates a dramatical decrease for both olfactory and trigeminal 

stimulations with aging. Besides them, prolongation of N1 peak increases for both 

trigeminal and olfactory test with increasing age. Along with this study, study done by 

Charlie D. Morgan et.al. participated 8 male and 8 female [29]. Being consistent with 

other age-related studies, younger participants elicit larger amplitude and shorter latency 

for all different electrode site and different ISI conditions. Furthermore, most interesting 

finding is that, the older males elicit more attenuated OERP amplitude in comparison with 

older females. This can be due to greater brain atrophy occurs in elderly men than age-

matched females. 

Besides aging, gender effect [30] is another important factor that affects the 

olfactory performance. In [31], in addition to gender and aging, effect of side of 

stimulation and concentration of odor is also discussed. For both women and men, aging 

causes linear decrease of olfactory ability and propensity for olfactory adaptation. 

Psychophysical test result shows the factor ‘gender’ is significant in lateralization task 

that women demonstrates higher scores for trigeminal stimulation than men. For olfactory 

function, aging shows itself by elevation of olfactory threshold that young and middle 

aged participants outperform the psychophysical discrimination task in Sniffin’ Stick test 

battery. Electrophysiological results point the degradation in P2 amplitudes and 

increment of N1 latency with advancing age for olfactory stimulation. Besides, gender 

related differences show that women elicit larger P2 and shorter N1 latency than men. 

Electrophysiological outcomes are in strong correlation with psychophysical findings that 

odor threshold and odor discrimination scores are in strong correlation with P2 amplitude 

while odor identification has a strong correlation with latency of P2. For trigeminal 

function, higher lateralization task scores are also associated with shorter peak amplitude 

and shorter latencies. Stimulation through right or left nostril doesn’t give any novel result 

except that women give larger P2 amplitude to right-sided olfactory stimulation. It is 

underlined in this study is that such a result might be raised from hemispheric olfactory 

information processing differences between men and women. 

Study [32] examines the effect of gender by utilizing chemosensory perception 

scores and evaluation of chemosensory event-related potentials (CSERP). Pyridine, 

known to be dual olfactory/trigeminal stimulant is used for both psychophysical and 
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electrophysiological sessions. Psychophysical tests consist of nasal intensity, 

pleasantness and sensory irritation tests. Electrophysiological test consist of measurement 

of CSERP’s. Results demonstrate for both psychophysical and electrophysiological 

outcomes, women scores higher than men. Identifiability of P1, N1 and P2/P3 complex 

is greater in women. It can be inferred that women display higher signal-to-noise (SNR) 

ratio than men. Study [33] examines the intranasal trigeminal sensitivity and potentials 

hemispheric in the sense of gender difference. Significant differences found in latencies 

that women elicit shorter in left-hemispheric recordings and mean amplitude, especially 

in cognitive P3 component, in greater in women for both hemi-sphere recordings. 

It is well-known that, late latency (P3) component has strong correlation with 

cognitive functions and dominates the delta band response [34]. It arises when stimulus 

has a novelty or contains a cognitive task. A study done by Morgan & Murphy [35], 

demonstrates the OERP P3 changes for young, middle and older age groups in 

active/passive task conditions. As a comparison, they utilized a visual stimulus with both 

active and passive conditions. Results display that older participants elicits longer latency 

values than younger participants in both olfactory and visual stimuli and for both task 

conditions. While in active visual stimuli shows shorter P3 latency than passive task, 

olfactory P3 doesn’t display any significant change. As a significant finding, older 

participants show the longest latency in passive task for olfactory modality.  As a 

consequence, younger participants’ shows reduced P3 latency for both stimulus 

modalities. According to Karayanidis and coworkers, these prolonged latencies and 

attenuated amplitudes with aging, are due to reduced information filtering for older 

subjects that neural system has to process irrelevant information besides important ones.  

Many studies demonstrate the hypersensitivity in women during pregnancy. In 

pregnancy, there exists a hedonic shift of odors from pleasant to unpleasant. Olofsson 

et.al. utilized CSERPs in response to olfactory and trigeminal stimuli to represent the 

hypersensitivity while in pregnancy [36]. In comparison with non-pregnant women, 

pregnant women elicit larger amplitude and shorter latency for P3 component rather than 

early sensory components such as N1, P1. It is outlined that, this hypersensitivity comes 

from neural basis of cognitive processing of odorant information that serves a protection 

mother and embryo from certain foods such as coffee, alcohol, protein-rich foods which 

they originates toxic effect. 

There are many factors affecting signal-to-noise ratio of CSEP/CSERP such as, 

subject’s vigilance, basal activity, adaptation/habituation, hormonal cycle, gender, 
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smoking and psychological state. Classical way to enhance the signal-to-noise ratio 

(SNR) of CSEP/CSERP is conventional time domain averaging. In general, event-related-

potentials (ERP) and evoked potentials (EP) are assumed to be the time-locked brain’s 

stationary response under same stimuli conditions. Besides, ongoing EEG oscillations, 

whose amplitude is bigger than ERP/EP, can obscure them. By utilizing the EEG’s non-

stationary property, averaging across many trials can attenuate the ongoing EEG 

oscillations and enhance the SNR of event-related potentials. In [37], the question how 

many single trials are needed to obtain the optimal event-related response is discussed. It 

is found that, for trigeminal ERP, there is no further improvement beyond averaging 60 

single trials and for olfactory ERP, obtaining optimal SNR ratio requires averaging about 

80 single trials. Further averaging for both responses of subsystems, attenuation of N1P2 

inter-peak can be seen due to temporal jitter. Temporal jitter can be considered as brain’s 

variable reaction time to stimuli. It causes deterioration of the ERP so that it becomes 

unpredictable. Intracellular transduction, trial by trial variation, changing cortical 

dynamics, fatigue and loss of vigilance are the well-known jitter sources.  

It has been demonstrated that, there is an interrelation between effect of aging and 

stimulus intensity. Intensity of odor affects the generation time (latency) and amplitude 

of OERP components. Increasing concentration demonstrates increase in amplitude and 

decrease in latency. The study [38] was carried out with 14 young and 14 normal older 

adults. Results are consistent with previous studies that younger participants demonstrate 

shorter latency and larger amplitude in comparison with older participants. Decrease in 

concentration shows itself by prolongation of latency variables. These findings are 

consistent across all age groups. 

In 1978, Cain demonstrated that there is a functional relationship between odorant 

concentration and perceived magnitude [39]. He manifested this relation by the formula, 

 

𝜓 = 𝑘𝜑𝛽 (1.2) 

 

where 𝜓 is the perceived magnitude, 𝜑 represents the concentration and β is the steepness 

of the function. When examining the equation (1.2) it can be easily seen that, increase in 

concentration results in an enhancement the perceived magnitude in olfactory system. A 

study [40] deals with the correlation between physiological and psychological outcomes 

in variation of intensity of odor. Isoamyl acetate known to be pure olfactory stimulant is 

represented to subjects via Lorig design continuous flow olfactometer [41]. Psychological 
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responses obtained from the subjects that they were requested to press a button to each 

perceived stimuli. Electrophysiological responses are the recorded OERP amplitudes. 

Results show that decrease in interstimulus interval (ISI) elicits smaller OERP amplitudes 

due to adaptation/habituation. Besides, increase in stimulus intensity lead to an increment 

in OERP amplitude. As a psychological result, subjects become unable to detect the odors 

with shorter ISI’s. As a consequence for this study, with higher intensities, both 

physiological and psychological results demonstrates significant correlation with lower 

stimulus frequency that does not cause adaptation/habituation in olfactory pathway and/or 

higher order brain centers.  

Interstimulus interval (ISI) is an important factor for evaluation of OERP and 

TERP in clinical context. Short ISI can causes adaptation in olfactory receptor cells and 

also habituation in neuronal structures. Wetter et.al. proposed a paradigm for measuring 

OERP efficiently by 10 minute-ISI and fewer trial [11]. OERP amplitudes and latencies 

were recorded three times for each 10 participant with 10 min ISI paradigm. Results show 

that none of OERP amplitude and latency demonstrates dramatic increase or drop in three 

sessions. To conclude, by utilizing 10-min ISI, stable OERP recordings can be obtained 

without any habituation and/or adaptation. On the contrary, utilization of longer ISI might 

cause boost in alpha activity which is associated with variability of ERPs and such activity 

enhancement can interfere with stimulus evoked potentials. Mental task load is known to 

be a attenuator of alpha rhythms in indirect way [42]. Nordin et.al. employed visuomotor 

tracking task to analyze the effects of mental task versus eyes open/close conditions on 

olfactory induced potentials in young and older subjects. However there weren’t any 

significant difference in sense of amplitude but in P2 latency. In consistent with other 

studies related with aging, young subjects produce larger amplitude in entire conditions 

than older ones. Latencies of N1 and P2 are smaller in younger participants. The only task 

related differences was seen in P2 latency that tracking task produces shorter latencies 

than others. All these differences are known to relate with aging, it can be stated that, type 

of the task does not influence the OERP components significantly. 

Usage of different stimulant can also affect latency and amplitude of OEP. Study 

[43] uses skatole which is a flowery smell and amyl-acetate as olfactory stimulant. New 

stimulation technique is employed which combines led light pulse and odorant stimuli. 

According to findings, usage of different odors changes the latency values. 

OERP gives us a chance to assess the neuronal resource allocation for information 

processing in the brain. It is hypothesized in [44] that amplitude of CSERP shows amount 
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of neuronal resources. In attended (active) condition subjects required some additional 

effort such as estimation of stimulus strength, button pressing, counting the less frequent 

stimuli. Ignore (passive) condition does not load any extra task to participant. In [45], 

totally 26 participant were included to study. Participants, who passed the series of 

psychophysiological tests, were conveyed to electrophysiological session. Amyl acetate 

and ammonia were presented for excitation of olfactory and trigeminal afferent 

respectively. It is found in attended condition that, latencies of exogenous (N1) 

component and endogenous (P3) component were shorter than ignored stimuli condition 

for both olfactory and trigeminal stimuli. Amplitudes, A-N1/P2 and A-P3 were higher in 

attended condition. All these finding suggest that extra workload like in attended 

condition, demands more neuronal resources than ignored condition.  

Like in wakefulness, chemosensory stimuli activate neuronal resources during 

different sleep stages. Study [46] analyzed the alteration of chemosensory ERP potentials 

in different sleep stages such as light sleep, slow wave sleep and REM sleep with 15 

female participants for both olfactory and trigeminal stimuli. Averaged P1N1 and N1P2 

amplitudes and latency of N1 and P2 components were observed.  Number of subjects 

that demonstrated recordable olfactory and trigeminal event-related potentials as in Table 

1, 

 

Table 1. Number of subjects demonstrates recordable ERP 

 
 
Light Sleep 

Slow Wave 
Sleep (SWS) 

 
REM-sleep 

Olfactory (H2S) 6 8 1 

Trigeminal (CO2) 2 3 4 

 

In olfactory stimulation, N1 component elicited longest latency during light sleep and 

latency of P2 component were reach its largest value during slow wave sleep. By 

comparing with other sleep stages, N1/P2 amplitude reaches its maximum value during 

slow wave sleep. In trigeminal stimuli, the longest latencies were seen in light sleep cycle. 

Amplitudes were smaller in slow wave sleep and REM-sleep compared to the baseline 

values. During the sleep, in despite of more neuronal resources are available to process 

the information, it remains unclear that, the reason why such longer latencies and smaller 

amplitudes have been observed. As a consequence, brain continues the exogenous 

information processing during sleep. 
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All these aforementioned studies requires time domain averaging of olfactory 

responses over many trials due to the signal-to-noise ratio of single trials. However, this 

conventional method incorporate many drawbacks. First of all, averaging enhances event-

related potentials (ERP), but it attenuates event-related synchronization (ERS) and event-

related desynchronisation (ERD). Second, requirement of many trials require longer 

experiment time. Exposure of odorant so long causes olfactory fatigue, decrease of 

vigilance, adaptation and habituation. In this respect, working with single trial responses 

becomes important owing to the aforementioned shortcomings.  

Due to nonstationary property of EEG signals, wavelet transform has attracted 

deserved interest in neuroscience and biomedical engineering [47]. In [48], C. Huart et.al. 

utilized continuous wavelet transform in their study and compare the performance with 

classical time domain averaging. Time domain features were amplitude and latency 

values of N1 and P2 were for both olfactory and trigeminal responses. Time-frequency 

representations of both olfactory and trigeminal responses were handled in order for 

selection of reliable distinct features. A comparison was done in the sense of sensitivity 

and selectivity of the features. For trigeminal response, selected all of three time-

frequency domain features were able to classify the presence or absence of olfactory 

function in participants. Somehow, only one time-frequency feature of olfactory response 

were reached significant sensitivity and selectivity level. In both case no reliable time 

domain feature was found except for trigeminal P2 (TRI-P2). As a consequence, time-

frequency domain features are good indicator tools for olfactory functioning and also 

time-frequency representation enables the determination of phase locked and non-phase 

locked responses and also it enhances the signal-to-noise ratio of elicited response. It is 

proven that CWT is suitable tool for clinical OERP researches [2].   

Extraction of P300 response from ongoing EEG is mostly done by task based 

selection method. However, Demiralp et.al. proposed a new method utilizing wavelet 

decomposition with B-Spline wavelet functions to extract more suitable features in order 

for extraction of P300 wave [34]. P300 wave is mostly correlated with fourth delta band 

coefficient after the stimulus onset. By using this method authors found enhanced and 

clearer averaged response of P300 obtained in comparison with task based selection 

method. 

Owing to the fact that ERPs are small amplitude signals in comparison with 

ongoing EEG, extraction of such signal requires advanced signal processing techniques. 

Wavelet denoising which is utilized in a part of our study is a successful method that 
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provides an estimation of amplitudes and latencies of ERPs. R. Quian Quiroga et.al. 

employed Wiener filter and wavelet denoising in [49] to extract simulated ERP with 

different signal-to-noise ratio.  After that, both algorithms were applied to visual and 

auditory event-related potentials. Results show that, for all 3 dataset, wavelet denoising 

gives good estimation of ERP than Wiener filter.   

Manual selection of ERP/EP related wavelet coefficients can be time consuming 

and requires huge number of analysis due to subject-to-subject variability. An automatic 

denoising algorithm which is improved version of the algorithm [50] was demonstrated 

in  [51] gives better performance in the sense of resulting ERP.  

An alternative approach for estimation of single-trial responses was given in [52]. 

In addition to wavelet denoising, Woody filter was employed for latency correction [53]. 

In this study, algorithm was applied to synthetic data with contaminated white and iso-

spectral noise. Findings from this study shows that, time adaptive denoising algorithm 

gives satisfactory result than other filtering techniques. 

Independent component analysis is a kind of blind source separation technique 

that is developed for seeking statistically independent sources from their observations. In 

[54], a comparison was done between wavelet denoising proposed by Donoho and an 

iterative algorithm iterative ICA (iICA). Outcomes of two methods show that, iICA 

method extracts individual components clearly, but wavelet denoising elicits smoother 

approximation of single trial response.  

Empirical mode decomposition (EMD), proposed by Huang et.al. is a data-driven 

nonlinear time series analysis tool that decomposes signal into intrinsic mode functions 

(IMF’s)  [55]. Study [56] utilized the power of EMD to observe the inter-trial variations 

of OERP. Subject-specific frequency band and spatial template was determined to obtain 

stimulus related IMF’s. Candidate IMF’s are classified by using K-means clustering and 

reconstructed by summating all the related IMFs. Such an algorithm is useful for rejection 

of stimulus unrelated brain oscillations and analysis of inter-trial variability between 

single-trials.  

Entropy has proven to be a useful analysis technique for demonstration of degree 

of disorder. The conventional approach to determine the degree of disorder of EEG was 

Fourier spectral entropy (FSE). However, the main drawback is that, Fourier spectral 

entropy requires stationary data. To overcome this, orthogonal discrete wavelet transform 

is proposed by Daubechies [57]. In [58, 59], wavelet Shannon entropy was employed for 

analysis of auditory event-related potentials. Results show that major entropy decrease 
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occurs at short after the stimulus onset and it indicates that stimulus forces the brain to 

enter more ordered microstates. In [60], again discrete wavelet transform and Shannon 

entropy is employed for detection of changes in brain dynamics in pre-ictal, ictal and 

post-ictal stages. In the ictal stage, structures create rhythmic oscillations in order to 

synchronous neuronal discharge. Wavelet entropy analysis demonstrates that the lowest 

entropy values can be seen in ictal seizures because of synchronization in specified 

frequencies. As a consequence wavelet entropy elicits reliable quantities about system’s 

complexity.  

Both continuous and discrete time wavelet entropy was employed in [61] for 

analysis of auditory evoked potentials for both target and non-target stimulations. As 

entropy measures, Shannon [62] and Tsallis [63] entropies are employed to demonstrate 

degree of disorder with time evolution. While continuous time wavelet entropy can elicit 

more detailed entropy changes with time, discrete time wavelet entropy represents the 

bulk evolution. Findings are consistent with previous studies that major entropy decrease 

occurs in post-stimulus time period.  

Like audition, visual stimulation also evokes some oscillation in human brain.  As 

so in aforementioned studies, [64] utilizes the wavelet entropy as time-varying 

measurement tools of order of brain oscillations. According to the resonance hypothesis 

that was put forward by Erol Basar, which is referred in [65], that ERP is emerged from 

EEG due to coherent oscillations of neuronal pattern generators upon any endogenous or 

exogenous stimulation. In this study, visual evoked potentials were quantified by wavelet 

Shannon entropy as in previously mentioned studies. Time evolution of wavelet Shannon 

entropy clearly specified the entropy decrease due to visual stimulation. 

Remainder of this thesis is organized as follows. In chapter 2, initially, definition 

of odor is given. Human and insects olfactory system is reviewed and brief information 

and literature survey about electronic nose which is a device that mimicks insects 

olfactory system is given. Also, brief information about brain rhythms, evoked/event-

related potentials is given. At the end of chapter 2, the procedure of obtaining CSEP have 

been described. Chapter 3 provides some information about time-frequency analysis 

methods and denoising scheme by using time-frequency components is described. 

Chapter 4 gives some basic information about Wiener filters and usage of Wiener filters 

for obtaining CSEP. Chapter 5 describes Empirical Mode Decomposition and how to 

utilize the EMD method for single trial EP extraction is detailed. In chapter 6, we have 

proposed a metric, which is called “Enhancement Factor” for obtaining subjects’ smell 



15 
 

performance. Chapter 7 provides a conclusion for studied techniques and also, some 

future works for this study is given. 
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CHAPTER 2 

 

BACKGROUND 

 

2.1. Definition of Odor 

 

Odor is the emotion that can be solved and diluted in ambient air and generates a 

perception in sensation part of olfaction system. Detection of odors depend not only the 

concentration in ambient air but also depends on the molecular shape of the odor. 

Assessment of the odors can be done in many quantitative ways such as, 

 Concentration measurement 

 Intensity  

 Hedonic tone assessment 

 Character 

 Dispersion modeling 

Among these measurements, intensity and hedonic tone assessment are the best known 

and most used quantities. Intensity can be defined as the strength of odor. In most clinical 

study, subjects are asked to quantify odor intensity by verbal description. A numerical 

value can be assigned to odor by the subject. The most common used intensity scale in 

many rhinology clinic is; 

0- No odor 

1- Very weak 

2- Weak 

3- Distinct 

4- Strong 

5- Very Strong 

6- Intolerable 

Hedonic tone assessment is the scoring of odors from unpleasant to pleasant scale. Main 

drawback of this procedure is odor perception can change between subjects and 

perception of one odor can change from pleasant to unpleasant with increasing 

concentration.  
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Researchers still tries to find a way to describe the relation between physico-

chemical features of the molecules and perception of odors. The complexity of physico-

chemical space is well documented in many studies, however, several studies proposed 

some metric features to describe the perceptual differences that points the variations in 

neuro-physiological data in humans. In addition to molecular complexity of odors, 

Kermen et.al. concluded that besides other derived features, molecular length and weight  

also contribute confusion to pleasantness and perceptive differences [66]. 

 

2.2. Olfaction in Insects 

 

Olfaction in insects and vertebrates starts in olfactory receptor neurons (ORN). 

ORN’s are located in dendrites of olfactory receptor cells inside sensilla that they are in 

charge for odorant detection from the environment. It is reported that, in insects, they 

have approximately 50,000-300,000 ORNs to capture different kinds of odorants 

molecules. It is important to note that identification and quantification of an odor in a 

short time is the fascinating features of insect’s olfaction system [67]. 

Drosophila’s olfaction system has been a basis for study of olfaction and also it 

has attracted much interest from scientists. By looking closer at the insect’s olfactory 

system it consist of three main part, 

 Antenna 

 Antennal Lobe 

 Mushroom Body 

 



18 
 

 

Figure 1. Block diagram of insect’s olfactory system [67] 

 

Antenna comprises immense number of olfactory receptors which appear in 

chemosensory sensilla. They are responsible for binding the odorant molecules. Short 

after the onset of binding process, olfactory receptors create electrical impulses to activate 

the higher order structures. 

Antennal lobe (AL) is said to be the biggest neuropil of the insects’ higher order 

nervous system (see Figure 2) [67]. Main purpose of this structure is to converts the 

olfactory code which is generated by olfactory receptor neurons to spatio-temporal code. 

Consistent with this finding, it is pointed out in [68] that, there is a nonlinear signal 

transformation in AL.  

AL is structured by local neurons (LN), projection neurons (PN) and glomeruli 

[69]. Projection neurons and local neurons elicit strong interaction in AL. Projection 

neuron responses are the input of the local neurons. After the reciprocal information 

processing, processed information conveyed to mushroom body via projection neurons. 

In this structure glomeruli acts as an interface between antenna and projection/local 

neurons. In the above block diagram, it can be seen that, every projection neuron is in 

collaboration with a glomeruli. Odorant information which is received from antenna is 

converted to spatio-temporal code by excitatory and inhibitory processes in antennal lobe. 

Analysis of AL demonstrates that odorant information is projected to lower dimensional 

feature space with lower variability between same types of odors. As a consequence 

antennal lobe reduces within class scatter and increases the inter-class scatter working as 

a non-linear filter. 
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Figure 2. Schematic view of Antennal Lobe with its glomerular structure [70] 

 

Settling time of ORN lasts hundreds of milliseconds but pattern recognition 

process is completed in 30-40 milliseconds. This fact displays that pattern recognition 

uses transient response of ORNs. 

In [71], It is stated that antennal lobe is the analogous of the vertebrates olfactory 

bulb. Muezzinoglu & Vergara et.al. modelled the insects’ antennal lobe by means of 

projection and local neurons.   
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𝐼  𝑆𝑖

𝐼(𝑡)) − 𝑦𝑖(𝑡) + 𝜇𝑖
𝐼(𝑡) 

 

(2.2) 

 

In equations (2.1) and (2.2), 𝐸 and 𝐼 stands for excitatory (projection) and 

inhibitory (local) neurons respectively. Synaptic connection weight 𝑤𝐸𝐼 represents the 

connection from a projection neuron to local neuron and 𝑤𝐼𝐸 represents the connection 

from local neuron to projection neuron and μ is the noise that is infected from ambient air 

and other factors. 𝑆𝑎
𝐵  represents the input from 𝑎𝑡ℎ glomeruli and 𝜃(. ) is the Heaviside 

function. 
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The network topology is formed by using Bernoulli process such as 

 

𝑤𝑎,𝑏
𝐴𝐵 = {

1, 𝑤𝑖𝑡ℎ 𝑝𝐴𝐵

0, 𝑤𝑖𝑡ℎ 1 − 𝑝𝐴𝐵
 

 

(2.3) 

 

Mushroom body is responsible for learning and memory processes. It is analogous 

to mammalian cerebral cortex. In some other kind of insects, mushroom body governs 

the associative memory and motor control. 

 

2.3. Human Olfaction 

 

The vital requirement for sensing the odorant is the arrival of the odorized air to 

the olfactory epithelium (regio olfactoria) which is located at the roof of the nasal cavity. 

Olfactory epithelium consists of 4 different cell types. These are; 

 Support cells 

 Microvillus cells 

 Stem cells 

 Olfactory receptor cells 

Among these, there are also four types of olfactory receptor subgroups that can be found 

in distinct locations within olfactory neuroepithelium in humans. In these subgroups, 

approximately 900 billion of receptor variations are assumed to be found. In mammals, 

sub genome of olfactory receptors are occupied the one percentile of gene families and 

number of functional OR types varies from 600 to 1400 in vertebrates [3]. 

These OR cells are located in different sides of the olfactory mucosa. In this 

region, odorants are encoded with activation of different kinds of olfactory receptors. 

Response of the olfactory receptors to any odorant stimulus is known to be encoded by 

combinational way. It can be also stated that activation of specific receptors are the vital 

part of the odorant encoding as demonstrated in Figure 3.  

 



21 
 

 

Figure 3. Illustration of process of encoding for any odorant molecule 

 

Olfactory cell is a kind of a nerve cell that can be found about a number of 50 

million in humans.  An olfactory receptor consists of cilia carrying dendrites and axons 

that connect directly to CN-1 olfactory nerve. Many of these olfactory receptors constitute 

the nerve bundles and passes through the cribriform plate and directed to the olfactory 

bulbs (bulbus olfactoria).  

Olfactory receptor cells are known to be a candidate of large subfamily G-Protein 

[72]. In olfactory mucosa, odorant molecules are captured by means of binding process 

and transmitted to olfactory receptor, causes fracture of a sub-unit α (see Figure 4). This 

sub-unit activates the adenylate cyclase and activation of this matter causes convertion of 

ATP (adenosine triphosphate) to cAMP (cyclic adenosine monophosphate). As a final 

step, cAMP opens the cyclic nucleotide bodied sodium-potassium channel of the 

olfactory receptor. Activated olfactory receptor causes a signal running to olfactory bulb 

in the brain [73]. Thus, transported information by an odor molecule is transferred to 

neural domain. 
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Figure 4. Sensory transduction [74] 

 

2.3.1. Olfactory Pathway 

 

Olfactory receptor neurons are the first neuron of the olfactory pathway that 

locates within olfactory neuroepithelium (regio olfactoria). These neurons are bipolar 

type nerve cells. Only one dendrite stem from its apical pole, and then it constitutes an 

extension region. From that point, 5-20 cilias directed to olfactory mucosa in order for 

swaying unrestrainedly. Basal pole of the olfactory receptor neuron is directed to the 

olfactory bulb to transmit the odorant information to higher order brain centers. Axons of 

these neurons projects synapse with specialized cells of olfactory bulb (OB) by passing 

through the cribriform plate. Any fracture in cribriform plate due to head trauma causes 

damage of these nerves which results with complete or partial acquired anosmia. 

In the central domain, OB is of great importance in processing of information that 

comes from periphery. It can be seen in Figure 5 that OB is located in the anterior cranial 

fossa, above the cribriform plate and under the frontal lobe [75]. Odorant information is 

encoded in OB. Within the OB, glomerulus has great importance in olfaction. Axons of 

ORNs are made synapse with glomeruli and also with periglomerular sub-neurons which 

surround the glomerular layer. 

Clustering of many glomeruli produces glomerular sheets. Glomerular sheet is 

found for 2-dimensional representation of multidimensional odor space [69]. First study 

was done by Adrian in 1953 that he discovered the spatial representation of odors in the 

related structures. Also it is believed that first neural processing of odors is handled by 

glomerular layer. Anatomical and physiological evidences and energy demand of these 
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activated interconnections shows that glomerulus has a great importance in chemosensory 

signal processing. 

Axons of mitral and tufted cells which are the outputs of olfactory bulbs are 

coalesced and directed to olfactory cortex by forming the olfactory tract (tractus olfactus) 

[75].  

 

 

Figure 5. Schematic view of the olfactory regions [76] 

 

From the olfactory cortex, olfactory information is sent by means of mediodorsal 

nucleus of the thalamus to the insular and orbitofrontal cortex (see Figure 6). Not only 

olfactory information but also gustatory signals are received to that area. It is a common 

belief that insular cortex is a special region in brain that meets olfactory and gustatory 

information together and integration of these signals produces the term ‘flavor’.   

Medial olfactory region ends in anterior and superior regions of the hypothalamus. 

This region consists of septum pellicidum, gyrus suballocus, olfactory trigon, medial lobe 

of anterior perforated substance, lateral lobe of anterior perforated substance, uncus and 

amygdaloidal nucleus [77].  

Fibers which are the outputs of medial and lateral side of olfactory region are 

directed to the region of hippocampus, hypothalamus and brain stem. 
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Amygdala is known to be a large nuclear structure which is responsible for, 

 Control of emotion  

 Control of sexual behavior 

 Control of water and food intake 

For this sense, amygdala has an important role on olfactory information 

processing. Pleasantness and unpleasantness of odors are decided in this region [78]. 

 

 

Figure 6. Olfactory Pathway [79] 

 

Plasticity of human olfactory system is still under discussion. Many studies were 

done with in vivo and in vitro animals that highlight the two main neurogenesis processes. 

The first type of neurogenesis that occurs in olfactory neuroepithelium that contains 

proliferating cells. Such cells are capable of reproducing olfactory receptor neurons 

throughout the life. Second observation of neurogenesis is seen in supraventricular zone 

(SVZ) of lateral ventricle. Within this area, stem cells causes generation of neuroblasts. 

These neuroblasts form a chain-like structure and tend to pass away to olfactory bulbs by 

using migration corridor (RMS). In OB, these neurons are believed to involve in 

sophisticated functions such as olfactory memory, social interactions [80].  

Another rough idea for neurogenesis process is self-plasticity of OB that carries 

its own progenitor cells. Many MRI studies states the plasticity of OB that volume of OB 

varies as a function of gender, age and disorders. In [81], authors observed the decline in 
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bulb volume and number of mitral cells with advancing age. More interestingly, some 

researchers claim that there is a linear relationship between bulbar volume and TDI score 

of Sniffin’ Stick test [75]. 

 

2.3.2. Trigeminal Pathway 

 

The term common chemical sense stands for trigeminal sensing system that is 

specialized for chemical irritant recognition. 

The name ‘Trigeminal’ is the type of nerve that contains three major nerve 

branches. Ophthalmic nerve (V1), Maxillary nerve (V2), Mandibular nerve (V3). 

Trigeminal afferents innervates the nasal cavity with ophthalmic and maxillary 

branches.  There are two major fiber types. The first one is the C-fibers that are stand for 

sense of burning and the second one is Adelta-fibers which are specialized for stinging 

sensation. It’s important to note that, C-fibers and Adelta-fibers responses are different for 

repeated stimuli. For C-fibers, summation of the response could be observed for repeated 

stimuli whereas no summation occurs for Adelta-fibers [73]. 

Trigeminal information is relayed from caudal solitary tract by lateral 

parabranchial complex and transmitted to amygdala which is locate within temporal lobe 

of medial nuclei of hypothalamus. 

It is noteworthy that, electrophysiological techniques indicate the anterior third 

septum is the area that shows an elevated activation during trigeminal chemosensory 

activation in both nostrils. Projections of the ventral posterior medial nucleus terminated 

in primary somatosensory cortex which is known to involved pain perception [73].  

Repeated stimuli with odors show a reduction in stimulus intensity rating in case 

of a longer interstimulus interval. 

In trigeminal stimulations, shorter ISI causes enhancement of rating of stimulus 

intensity. This phenomenon is called sensitization. Researches with capsaicin [82] 

highlights that, ISI with shorter than one minute causes enhanced burning sensation in 

nostrils.  

On the other hand, ISI with larger value causes degradation of intensity of 

stimulus rating called desensitization. [83] underlines the effect of larger ISI that repeated 

stimuli with about 3-4 minutes causes desensitization. 
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2.4. Electronic Nose 

 

An electronic nose is a device that is developed for mimicking the sense of smell 

of humans. These devices have ability to detect and distinguish odors in a complex 

environment precisely [84]. As in Figure 7, such systems contain three main part, 

 Data acquisition and Signal Conditioning (Sensing Layer) 

 Signal Processing and feature extraction (Pattern Recognition) 

 Odor Prediction (Decision) 

 

 

Figure 7. Simple block diagram of E-nose 

 

Electronic noses have wide usage areas.  

 Military industry 

 Food quality control 

 Environmental check 

 Chemical analysis 

 Medical industry  

Inspection of these devices, in the sensing layer, odor information is gathered and sampled 

via gas sensors and conveyed to signal processing and feature extraction stage. In this 

stage, dimensionality is reduced and useful information from the signal, which comes 

from sensing layer, is extracted. Independent component analysis (ICA), Principal 

component analysis (PCA), Canonical discriminant analysis (CDA) are the most 

preferred dimensionality reduction techniques in an e-nose structure. In the final stage, a 

classifier like K-Means Clustering, Support Vector Machine (SVM) and Artificial Neural 

Network (ANN) is employed for making decision.  

Heart of such an electronic nose system is the gas sensor arrays. Sensor array are 

used to collect the information from environment and convert it to spatial pattern such as 

conductance, frequency change, voltage, current, resistance, etc… [67]. A typical gas 
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sensor array contains 6-30 gas sensors. In this structure every gas sensor is covered with 

different active film layer. There are five types of sensors that are frequently used in e-

nose,  

 MOS (metal oxide semiconductor) gas sensors 

 QCM (Quartz crystal microbalance) gas sensors 

 SAW (Surface acoustic wave) gas sensor 

 IDT (Inter digital transducer) gas sensors 

 Optical Sensors 

Among these, MOS and QCM are the famous and mostly used gas sensor types. Metal 

Oxide gas sensors are made up of tin oxide and or zinc oxide. One of the models that 

describe the gas reaction mechanism with MOS sensor is Ionosorption model. In this 

model gas reacts with ionosorbed oxygen. The conductivity of sensitive layer changes 

when concentration of absorbed oxygen changes. As a result, due to this concentration 

change, resistance of MOS sensor changes (see Figure 8 and Figure 9) [85]. 
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Figure 8. Electrical conductivity of an MOS sensor 

 

 

Figure 9. Basic configuration of tin dioxide gas sensor [86] 

 

The working principle of QCM gas sensors are based on change on oscillating 

frequency with exposure of active layer to odorant molecules like in Figure 10, 

 

∆𝑓 =
𝐶𝑓 𝑓0

2

𝐴
∆𝑚 

 

(2.4) 

 

where 𝐶𝑓 is the mass sensitivity constant, 𝑓0 is the fundamental oscillation frequency, 𝐴 

is the area of active layer and Δ𝑚 is the mass change on active layer. 
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Figure 10. Frequency change with time due to gas exposure [87] 

 

There are some challenges for sensor arrays. First one is about measurements 

speed of the sensors, which lasts about 80-100 seconds to reach steady-state. Second 

problem is about robustness of the sensors. In an e-nose system, sensors should be robust 

to the noise, humidity and temperature change. Life time, recovery time, sensor 

poisoning, drifting are more or less important drawbacks that might be confront of 

researchers.  

 

2.4.1. E-Nose in Literature 

 

Since 1982 Persaud and Dodd came with an idea that odor sensing technology 

with a pattern recognition algorithm and e-nose prototype in Warwick University 

Olfaction Research Group in 1987 had been pioneering, there are various studies can be 

found. In [88], instead of time domain representation, a new representation space was 

demonstrated called Similarity Space. In that space, odor samples were represented by a 

similarity measure between them. 

Nimsuk & Nakamoto employed short-time Fourier transform and stepwise 

discriminant analysis for feature extraction [89]. As a classifier, Learning Vector 

Quantization (LVQ) was used in this study. Robustness of this algorithm was in satisfying 

level though the odorant concentration was changing with time.  

In [90], classifier which is called Inhibitory Support Vector Machine that is 

inspired from animal’s neural system was utilized to overcome varying temperature wind 
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speed, concentration and measurement distance. Odor classification results showed that 

temperature and measurement distance were the major factors that affect the classification 

performance.  

As mentioned above, humidity is a significant external factor that causes 

performance degradation for odor sensation for e-noses. Study [91] comprises a 

compensation technique by using artificial neural network without any humidity 

monitoring system or any compensation module. As feature dimension reduction, 

Principal Component Analysis and as a classifier Feed-Forward neural network was used. 

By using ANN, classification error due to humidity is reduced to levels of %1.15. 

Noise is always known to be a performance degrader factor in a system. But in 

non-linear systems, noise can enhance information transmission, detection performance 

or system response. In [92], the phenomenon Stochastic Resonance was utilized to 

recognize bacteria types which causes infectious disease. Single threshold device was 

inserted to obtain a cross correlation between bacteria classes.  

Study [93] utilized orthogonal discrete wavelet transform and Support Vector 

Regression to predict odor mixture responses. Odor recorder is a device that blends two 

or more fragrance at a desired level. Performance of the system was measured by 

closeness of estimated and real sensory responses. 

In [94], it is demonstrated that outliers are the kind of source that causes 

classification error such as drift effect of sensors. Ekachai Phaisangittisagul proposed an 

algorithm that rejects the outliers by discarding the responses that lies outside of the 

maximum and minimum threshold value. After the exclusion, classification performance 

of system increased significantly. 

One of the most industries that employ e-nose is the food industry. In recent years, 

observation of quality of foods, drinks, beverages is done by e-nose. In the recent past, 

quality of wines has been scored by experts. Acevedo et.al. studied on classification of 

wines in the sense of their qualities [95]. As a classifier, Probabilistic Support Vector 

Machine (PSVM) was used. 

Classification speed of an e-nose system is another challenging problem. 

Exponential moving average, which is borrowed from economics discipline, helps to 

extract transient features from sensor response to reduce classification time. Extraction 

of different features by changing the parameter α displays that, transient features carries 

more useful information than steady-state features [96]. 
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In [97], an electronic nose is mounted on a mobile robot. Aim of this study is to 

identify odors in a turbulent condition from their transient sensory responses. Attenuation 

of noise effect is achieved by three type of manipulation. These are differential, relative 

and fractional manipulations. Features are obtained by using DFT, DWT and curve fitting 

approximation. After the normalization of features, Relevance Vector Machine (RVM) is 

employed as a decision part. In comparison with SVM, RVM gives slightly lower 

classification scores. 

In order to reduce the required time for classification, Phaisangittisagul applied 

DWT to obtain transient features. As feature extractor, Haar, Daubechies, Biorthogonal 

wavelets were employed. Extracted features were conveyed to the K-means Clustering, 

Radial Basis Function Network and Back Propagation Neural Network. 5th order 

Daubechies wavelet gives the best classification result for all classifiers [98]. 

In [99], feature extraction with short-time Fourier transform is adopted. STFT is 

applied to all sensor signals to obtain Fourier spectra with high temporal and spatial 

resolution. Energy, up to 2 Hz is summed and is divided all other sensor energies. These 

extracted features are conveyed both SVM and Maximum Likelihood Estimation.  

 

2.4.2. CNN based E-nose 

 

The paradigm Cellular Neural Network (CNN) was firstly introduced by Chua 

and Yang in 1988 [100]. CNN realizes a network that accommodate locally 

interconnected analog processors, which can be realized with linear and nonlinear circuit 

elements such as capacitors, resistors, linear and nonlinear controlled sources and 

independent sources, to perform parallel processing and given computational tasks in real 

time. Any cell in CNN can be considered as multi-input single output nonlinear subsystem 

and also it fair to say that each cell communicate each other directly or indirectly. An 

illustration of a two dimensional cellular neural network is given in Figure 11.  

In an 𝑀𝑥𝑁 CNN structure, any cell denoted by 𝐶𝑖,𝑗 where 𝑖 ∈  {1,2, … ,𝑀} and 

𝑗 ∈  {1, 2, … ,𝑁}  is a part of the structure and it is locally interconnected to neighbor cells 

which lies within sphere of influence which is denoted by 𝑆𝑖(𝑟) of radius r [101]. 

 

𝑆𝑖,𝑗(𝑟) = {𝐶𝑖,𝑗: max(|𝑘 − 𝑖|, |𝑙 − 𝑗|) ≤ 𝑟        1 ≤ 𝑘 ≤ 𝑀; 1 ≤ 𝑙 ≤ 𝑁  𝑘 ≠ 𝑖, 𝑙 ≠ 𝑗} (2.5) 
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Figure 11. A demonstration of 2-D CNN 

 

where r is a positive integer. In Figure 12, demonstration of a single cell (neuron) with 

circuit elements is given. Applying Kirchhoff’s voltage and current laws, we will obtain 

the following dynamic representation of the cell. State of a single processor 𝐶𝑖,𝑗 can be 

obtained as, 

 

𝐶
𝑑𝑣𝑋𝑖,𝑗(𝑡)

𝑑𝑡
= −

1

𝑅𝑥
𝑣𝑋𝑖,𝑗(𝑡) + ∑ 𝐴(𝑖, 𝑗; 𝑘, 𝑙) 𝑣𝑌𝑘,𝑙(𝑡)

𝐶(𝑘,𝑙)∈𝑆𝑖,𝑗(𝑟)

+ ∑ 𝐵(𝑖, 𝑗; 𝑘, 𝑙) 𝑣𝑈𝑘,𝑙(𝑡)

𝐶(𝑘,𝑙)∈𝑆𝑖,𝑗(𝑟)

+ 𝐼 
(2.6) 

 

where 𝑣𝑋𝑖,𝑗 demonstrates the state of the corresponding cell 𝐶𝑖,𝑗, 𝐼 is the independent 

current source connected to that cell. In that circuit, input of the cell 𝑣𝑈𝑖,𝑗 is modeled as 

independent voltage source 𝐸𝑖,𝑗 and output 𝑣𝑌𝑖,𝑗(𝑡) is equal to a output of piece-wise 

linear function of state of the cell, 

 

𝑣𝑌𝑖,𝑗(𝑡) =
1

2
 (|𝑣𝑋𝑖,𝑗(𝑡) + 1| − |𝑣𝑋𝑖,𝑗(𝑡) − 1|) (2.7) 

 

It can be easily seen in given equations, the network dynamics holds both output feedback 

and input control mechanism. 
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Figure 12. Circuit implementation of one single cell in CNN 

 

Cellular Neural Network (CNN) based artificial olfactory system studies aims to 

mimic the olfaction system of Drosophila’s and vertebrates. However, unlike the 

regularity of CNN biological information processing structure antennal lobe in insects 

and olfactory bulb in mammals contains some random connections between their neurons. 

This reality can be observed in many other biological systems. This phenomenon is called 

‘Small World’.  

The term ‘Small-world’ was came up in 1960’s. But there were no idea about 

whether it could be applicable to networks. Wattz and Strogatz were the first people that 

they adapted the Small-world phenomenon to wide variety networks [67].  

Briefly, in networks, small world phenomenon ruins the regularity of connection 

template in network by inserting random connection between cells which are not in their 

neighborhood. 

Like other electronic nose models found in literature, e-nose systems with CNN 

also consists of three major parts such as, 

1. Sensing layer  

2. Feature extraction   

3. Decision and classification 

In studies [67, 102], Cellular Neural Network, which was inspired from the 

structure of human retina, was employed to extract the relevant features to reach 

satisfactory classification rates which was used in [71]. Anticipated advantage of using 

CNN is to speed up the classification progress with utilizing transient features of sensor 

array responses.  

By looking under the hood, inspired from studies on Drosophila’s antennal lobe, 

CNN behaves as an artificial antennal lobe in those studies.  
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There are 2 kinds of neuronal population is found in CNN based antennal lobe 

model. The first one is called excitatory cell population and second one is called inhibitory 

cell population. These excitatory and inhibitory cell populations are inspired from 

Wilson-Cowan population model. Mathematical description of both one layer and two 

layer structure can display the dynamics of CNN structure. 

One-dimensional neural population model is given for excitatory population as, 

 

𝛽
𝑑𝑥𝑖,𝑗(𝑡)

𝑑𝑡
= 𝐾Θ(− ∑ ∑ 𝐴𝑘,𝑙 𝐶𝑖+𝑘,𝑗+𝑙(𝑡) + 𝑔𝑖,𝑗𝑆𝑖,𝑗

𝑟

𝑘=−𝑟

𝑟

𝑙=−𝑟

) − 𝑥𝑖,𝑗(𝑡) + 𝜇𝑖,𝑗 (2.8) 

 

In above equation 𝑥𝑖,𝑗 stands for an excitatory processor in one layer network 

located in ith row, jth column. 𝐴 is the matrix that demonstrates the connection template 

with radius r. Template 𝐴 with r=1 can be demonstrated as follows, 

 

𝐴 = [

𝐴−1,−1 𝐴−1,0 𝐴−1,1
𝐴0,−1 𝐴0,0 𝐴0,1
𝐴1,−1 𝐴1,0 𝐴1,1

] (2.9) 

 

and for the inhibitory population is given as, 

 

𝛽
𝑑𝑦𝑖,𝑗(𝑡)

𝑑𝑡
= 𝐾Θ(− ∑ ∑ 𝐴𝑘,𝑙 𝐶𝑖+𝑘,𝑗+𝑙(𝑡) + 𝑔𝑖,𝑗𝑆𝑖,𝑗

𝑟

𝑘=−𝑟

𝑟

𝑙=−𝑟

) − 𝑦𝑖,𝑗(𝑡) + 𝜇𝑖,𝑗(𝑡) (2.10) 

 

In equations (2.8) and (2.10), 𝐶𝑖+𝑘,𝑗+𝑙 represents the inhibitory cells and excitatory cells 

respectively. If neighboring cells are same with considered cell, there is no connections 

available, which means that  𝐴𝑘,𝑙 = 0. Connection weights between cell and sensor were 

demonstrated with 𝑔𝑖,𝑗 and 𝑆𝑖,𝑗 represented the sensory inputs to considered cell and 𝜇𝑖,𝑗 

is the additive zero mean white noise with variance 0.5, Θ is defined as unit ramp function. 

For the two layer network, population models are given in eq. (2.11) for excitatory and, 

for inhibitory in eq. (2.12). 
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𝛽𝑖,𝑗
𝐸
𝑑𝑥𝑖,𝑗(𝑡)

𝑑𝑡
= 𝐾𝑖,𝑗Θ(− ∑ ∑ 𝐴̂𝑘,𝑙 𝑦𝑖+𝑘,𝑗+𝑙(𝑡)

𝑟

𝑙=−𝑟

+ 𝑔𝑖𝑛𝑝𝑆𝑖,𝑗

𝑟

𝑘=−𝑟

)

− 𝑥𝑖,𝑗(𝑡) + 𝜇𝑖,𝑗(𝑡) 

(2.11) 

 

𝛽𝑖,𝑗
𝐼
𝑑𝑦𝑖,𝑗(𝑡)

𝑑𝑡
= 𝐾𝑖,𝑗Θ(∑ ∑ 𝐴̂𝑘,𝑙 𝑥𝑖+𝑘,𝑗+𝑙(𝑡) + 𝑔𝑖𝑛𝑝𝑆𝑖,𝑗

𝑟

𝑙=−𝑟

𝑟

𝑘=−𝑟

) − 𝑦𝑖,𝑗(𝑡)

+ 𝜇𝑖,𝑗(𝑡) 

(2.12) 

 

where 𝑥𝑖,𝑗(𝑡) and 𝑦𝑖,𝑗(𝑡) stands for state of a neuron at time 𝑡 located at ith row and jth 

column of excitatory and inhibitory neural populations, 𝛽 and 𝐾 are the denoted as time 

constant and gain respectively. Again, 𝐴̂𝑘,𝑙 is the connection template. As in one layer 

structure, connection of two neurons in the same population was not allowed. 

In that thesis, they aimed to achieve better classification performance with 

transient response of sensor array by utilizing CNN based model than other proposed e-

nose models in literature.  

For sensing array, sixteen metal oxide gas sensors was used and, for decision part, 

public available LibSVM (A library for Support Vector Machines) and PCA (Principal 

Component Analysis) was employed.  

Test of proposed models comprises two sections. The first part involves three 

kinds of gaseous such as pure toluene, pure acetaldehyde and mixture of them with 

different concentrations. Performance of one-layer and two-layer CNN models are tested. 

As a classifier PCA [103] and SVM [104] was adopted. Feature vectors are created in a 

way that all the neurons which belongs to excitatory population are saving in a vector for 

every time instant (i.e. 𝑡 = 1,2,3, …). Then all the feature vectors are conveyed to PCA. 

For the PCA analysis, results shows that classes become separable nearly at 𝑡 = 25.  In 

Figure 13, results of the both one layer and two layer CNN model can be seen at 𝑡 = 100. 

It can be inferred that, two layer CNN is more successful at discrimination of the classes 

than one layered structure. 
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Figure 13. Results with 1-Layer and 2-Layer CNN [67] 

 

As a second part of first session, SVM is employed for classification of the output of the 

excitatory processors for each feature vector that was obtained from time instants of the 

excitatory cells again. Totally 80 feature vectors are labeled were used for every odorant 

classes. For the training of the SVM, linear kernel and LOOCV (leave one out cross 

validation) technique was preferred. For each classes, one individual sample is used for 

testing and remaining 79 samples are used in training in memoryless case (see Figure 14). 

 

 

Figure 14. Schematic demonstration of SVM with individual samples [67] 
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Performance calculation of the classification is formulated as follows, 

 

%𝑃𝑒𝑟𝑓 = 100 𝑥 
# 𝑠𝑢𝑐𝑐𝑒𝑠𝑠

20
%  (2.13) 

 

and in case of system with memory, whole time vectors (snapshots) were taken into 

consideration. Captured time vectors from 𝑡 = 0 to 𝑡 = 𝑇 − 1 were conveyed to training 

and, vector captured at 𝑡 = 𝑇 was used for classification test. 

 

 

Figure 15. Schematic view of SVM in case of with memory [67] 

 

Results shows that, classification performance of system with memory which is 

demonstrated in Figure 15, reaches higher classification rates than memoryless case. And 

it’s notably that, in early responses of the sensor array, as in memoryless case, two layer 

CNN model gives higher classification rates that is nearly %80. 

Small-world CNN model was tested in second session. They aimed to observe the 

effects of random connections on the performance of classification. For that purpose, 4x4 

two layer SWCNN model with r=1 was built. In this part, dataset was comprised of 5 

different gaseous namely acetone, butane, ethylene, ethane and acetaldehyde. For each 

scent, fifteen successful measurements were recorded. 
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Figure 16. 2-Layer CNN with both inhibitory and excitatory layer [102] 

 

In this session, only SVM was used to see success rate of classification of the 

SWCNN model. Random connections were created randomly between cells that they are 

not within their neighborhood  𝑟. A number 𝑝 is defined as number of neurons that makes 

random connection among whole neural population in both excitatory and inhibitory 

layer. Starting from  𝑝 = 0, analysis was done with increasing the number 𝑝 by one in 

every step to see the effect of number of random connections on classification 

performance. By looking at Figure 16, CNN was built with pure regular connections (𝑝 =

0), performance rate increases up to %80 (see Figure 17). 
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Figure 17. Performance of 2-Layer CNN with regular connections [102] 

 

In Figure 18, it can be seen that, increasing the number of irregular (random) connections 

(p=1, 2, 3 …) gives at a rate of %85-90 classification performance which is slightly higher 

than regular connected CNN model. 

 

 

Figure 18. Performance of 2-Layer SWCNN with random connections as increasing 

 number p [67] 

 

It was briefly discussed by the authors, usage of two layer SWCNN increases the 

classification performance but this elevation does not reach the significant level in 
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comparison with regular model. However, fault tolerance of SWCNN is much better than 

regular two layer CNN.  

 

2.5. EEG and Brain Rhythms   

 

EEG is said to be the measurement of voltage fluctuations of neuronal ensembles. 

This voltage fluctuation is mainly caused by synchronized firing of large number of 

neurons and also, due to synaptic current passes through in different pyramidal neurons 

locates in cerebral cortex. This oscillatory activity is the indicator of the functional and 

physiological changes in the brain with high temporal resolution. It is stated that the first 

EEG measurement was done by simple galvanometer by Richard Caton in 1875. 

Discovery of human EEG was achieved by Hans Berger in 1929. Toennies (1902-1970) 

was the inventor of the first biological amplifier in 1932. After that, the first differential 

amplifier was developed by the help of Rockefeller foundation.  

EEG signals contain many different frequency tones up to 300 hertz and order of 

microvolt but informative oscillations are restricted up to 100 hertz. But many recent 

study have found many high frequency informative oscillations between neuronal 

structures [105].  

 In computerized measurement system, received oscillations are passed to analog-

digital converter (ADC). In such a system, EEG signals are digitalized with a sampling 

frequency up to 10000 samples/second. However, in most clinics 1000 sample/sec is 

preferred. After the digitalizing process, signal is conveyed to a bandpass filter with low 

cut-off frequency 0.5 Hz and 50-70 Hz high cut-off frequency to reject artifacts like motor 

artifacts, eye movements, electrocardiographic oscillations (ECG), chest movement due 

to breathing cycle, sweating. Additionally, a 50/60 Hz Notch filter is employed to discard 

the bus-bar (power-line) effect. 

In general, EEG measurement is done by multiple electrodes by placing each of 

them on the different sides of scalp called multichannel EEG recording. The aim of the 

multichannel measurement is to detect the correlation (cross-frequency phase 

synchronization and cross-frequency amplitude envelope correlation) between distal 

cortical regions during different conditions such as ERP/EP.  

With the development of multichannel EEG hardware recording systems many 

topographic and tomographic signal source localization methods have been raised. The 
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most used electrode positioning system is International 10-20 positioning system shown 

in Figure 20 [106]. 

Measurement of EEG is achieved by two types of recording namely differential 

and referential. In differential mode, two inputs are selected and conveyed directly to 

differential amplifier. However in referential mode, at least one reference electrode is 

selected. In 10-20 positioning system, most used reference electrodes are vertex Cz, link 

earls, link mastoids, ipsilateral ear and C7.    

The 10-10 international positioning system with 64 electrodes is shown in Figure 

19. It was first proposed by Chandrian in 1985, is an extended version of international 

10-20 with more electrode density.  

 

 

Figure 19 . International 10-10 positioning system 
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Figure 20. 10-20 positioning system with 21 electrode [107] 

 

As described in many studies, EEG consists of five major oscillatory frequencies 

as given in Table 2. These are; 

 Delta (0.5-4 Hz) 

 Theta (4-8 Hz) 

 Alpha (8-13 Hz) 

 Beta (13-32 Hz) 

 Gamma (32-100 Hz) 

Delta (δ) oscillations can be seen while deep sleep and state of anesthesia. They 

are the slowest oscillations but their amplitude is the highest when compared with other 

frequency bands. In comparison with males, females demonstrate higher amplitude delta 

waves.  According to [4], delta waves are enhanced while in oddball paradigm. 

A range of 4-8 Hertz signals belongs to theta (Ɵ) band. It is stated in [108] that 

theta waves are bearded vital roles in childhood and infancy. Larger amplitudes of theta 

waves are the indication of abnormalities.  

We can observe the alpha (α) oscillations in the posterior half of head and occipital 

region of the brain. Researches demonstrate that alpha oscillations are in strong 

correlation with memory and long-term memory engrams. Sinusoidal shape signals in 
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visual cortex neurons demonstrate a strong correlation with alpha band oscillatory 

activities. Results of observation in [4] demonstrates that alpha wave oscillations provides 

functional and communicative interaction between distant structures. Alpha oscillations 

show a reduction while eyes are open, sleepiness and deep sleep.   

Frequency between 13-32 Hertz oscillations are related as beta (β) wave 

oscillations. Beta waves are known to be the waking oscillations such as thinking 

attention and focus. 

Gamma waves can be found in a range of 32-100 Hertz. Gamma wave sources are 

localized in fronto-central region of brain. According to Erol Basar [109], gamma 

responses are vital for building blocks of electrical activity of brain which is related to 

multiple functions. Gamma waves create interaction between distant structures and shows 

phase-locking, time-locking or weak time locking. In accordance with [4], gamma 

oscillations show a universal communication code in central nervous system.  

 

Table 2. The Brain Rhythms and their Specifications 

Wave Name Frequency 

Range 

Source Location 

Delta (δ) Up to 4 Hz. Frontally in adults 

posterior in children 

Theta (Ɵ) 4-8 Hz. Founds in location 

not related to task at 

hand 

Alpha (α) 8-13 Hz. Posterior region of 

head, central sides 

(C3,C4) at rest  

Beta (β) 13-32 Hz. Both side, 

symmetrical 

distribution 

Gamma (γ) 32-100 Hz. Somatosensory 

cortex 
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 2.5.1. Evoked Potentials and Event-Related Potentials 

 

Evoked potentials are electrical response of central nervous system to external 

stimuli. This stimulus can be in modality of somatosensory, auditory, gustatory, visual or 

olfactory. They are defined as EEG-derived polyphasic signals that can be used in 

diagnosis of wide variety of neurological diseases. They provide stable monitorization of 

sensory system, peripheral and central nervous system functioning in clinical context. It 

can also help to define anatomic distribution of disease and deficiency status over time 

[110]. 

Event-related potentials are said to be the electrophysiological response of brain 

to time- locked to sensory, motor or cognitive events. This electrical activity occurs within 

a large number of pyramidal cortical neurons that they are oriented similarly.  Also, nearly 

all endogenous or exogenous stimulations creates such an activity in brain, few of them 

can be detected through the skull. ERP are needed to satisfy some criterions to be 

detectable [111], 

 Stimulation must fire enough number of cortical neurons and these cortical 

neurons have to elicit relatively strong electrical field. 

 Activated neurons must oscillate in coherent way. If not, the response will be 

diluted over time and potential becomes undetectable. 

 Arrangement of activated neuronal assemblies must be an open-filed structure. 

Unless, the net field at the outside of the structure will be zero.  

 Because of the fact that skull interface acts as low-pass filter, ERP must consist 

of low frequency components.  

Common approach for demonstration of ERP and EP components is the usage of 

polarity and latency value such as P300, N200.  In this demonstration type ‘P’, or ‘N’ 

displays the polarity is positive of negative. Numbers 200, 300 appearance time in 

milliseconds after the stimulus onset. Another demonstration type is uses first argument 

like P or N but it uses the sequence number like N1, P1 and P2. For chemosensory evoked 

potentials, the occurrence time and order of the peaks is given as follows, 

 The first positive peak P1 which is generally not seen, occurs at 200-310ms. 

 N1 peak is the first negative peak, occurs at 320-450ms. 

 Second positive peak P2 is seen at time interval of 530-800ms. 
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Occurrence of these peaks is inferred as the results of chemosensory information 

processing in the pyramidal cortical neurons. The main reason of such a lagging in 

comparison with other modalities is described as the sensory transduction (i.e. utilization 

time of receptors) and also might be a reason of complex olfactory information processing 

in brain. In Figure 21, illustration of evoked potentials is given.  

 

 

Figure 21. Demonstration of evoked potentials 

 

Chemosensory evoked and event-related potentials are also the brain responses to 

odorant stimulation giving them into the subject’s nostrils. In many clinical studies, H2S 

(hydrogen sulfide), PEA (phenyl ethyl alcohol) are the most preferred odorants for 

excitation of olfactory receptor cells and CO2, which is known to be a pure trigeminal 

activator stimulant. 

CSEP/CSERP shows itself on all over the scalp. However, they demonstrate itself 

clearly at the Cz channel which is located on the vertex with the highest amplitudes and 

minimum latencies [112].  

Characteristics of OERP can be affected by many factors. The main external 

factors are [112],  

 Stimulus Intensity [113] 

 Stimulus duration [110] 

 Airflow  

 Quality of odor [78] 

 Inter-stimulus interval [37]. 
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The internal factors can be sorted as, 

 Subjects’ age [29] 

 Gender [32] 

 Vigilance [45] 

 Hormonal cycle 

 Pregnancy [36] 

 Etc. 

 

2.5.2. Obtaining CSEP in Clinical Context 

 

The data which we have used in this thesis, were acquired from Dokuz Eylul 

University Brain Biophysics Lab. Om2b (Burghart, Germany) was used as olfactometer. 

In Figure 22, picture of Om2b olfactometer has been given. This olfactometer has two 

outputs. One output carries the humidified air with odorant molecules and the other output 

just carries humidified clean air. This olfactometer has ability to switch from non-odorous 

air to odorant air in just 20ms. In this system, it is possible to obtain stimuli with different 

odorant concentrations. Humidity and temperature of the air which is sent to the subject’s 

nostrils are maintained at constant rates so that humidity is about %80 and temperature 

stabilized to 36oC to avoid nasal pungency. Airflow is adjusted  to 8 liter/min as in [112]. 

Odors are applied to subject’s nostril by means of a Teflon tube with a vacuum line. 

Vacuum line is preferred to prevent the formation of mechanical vibration on trigeminal 

nerves. 
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Figure 22. Om2b-computer controlled olfactometer 

 

In this study, 2 different types of odorants were used. For olfactory stimulations 

phenyl ethyl alcohol (PEA) is known to be a pure olfactory stimulator and CO2 is used 

for trigeminal stimulations. Interstimulus interval has been selected randomly between 

15-17 seconds. 
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Figure 23. Dokuz Eylul University Brain Biophysics lab. 

 

EEG signals are collected by using 10-10 International positioning system with 

64 electrodes. But, for the further analysis, CZ channel has been utilized. In order to mask 

the switching clicks of olfactometer from non-odorous step to odorant step, or vice versa, 

60 dB white noise is binaurally given to headphones to subject’s ears. 

EEG measurements are digitalized at 1 kHz sampling frequency and filtered with 

a bandpass filter with low cutoff frequency 0.5 Hz and high cutoff frequency 48 Hz. 

Additionally, 50 Hz Notch filter has been applied to attenuate the power line effects in 

recordings. EEG epochs are started from -1000ms before stimulus and lasts until 2000ms 

after stimulus. 

Electro ocular activity was recorded by placing electrodes at outer canthus of left 

and right eye. Trials, in which ocular activity which exceeds 50µV, were discarded. 
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CHAPTER 3 

 

TIME-FREQUENCY ANALYSIS 

 

3.1. Fourier Transform 

 

There are many different ways to analyze certain characteristics of the signals. 

Frequency analysis is the most powerful technique that can represent or characterize the 

signal by its frequency content.  

Fourier transform is a popular technique for analysis of frequency content of given 

signal 𝑥(𝑡) by utilizing correlation with sine and cosine function together with specified 

oscillating frequencies. It was first described by Jean Baptiste Fourier (1768-1830); 

 

𝑋(𝜔) = ∫ 𝑥(𝑡)𝑒−𝑗𝜔𝑡 𝑑𝑡
∞

−∞

 
 

(3.1) 

 

𝑥(𝑡) =
1

2𝜋
∫ 𝑋(𝜔)𝑒𝑗𝜔𝑡 𝑑𝜔
∞

−∞

 
 

(3.2) 

 

Equation (3.1) is the analysis and equation (3.2) is the synthesis equations. In above 

equation, the term ‘ω’ denotes the angular frequency.   

Discretized version of the Fourier transform for an N-sample discrete signal 

𝑥[𝑛] = (𝑥0, 𝑥1, … , 𝑥𝑁−1) is given as, 

 

𝑋[𝑘] = ∑ 𝑥[𝑛] 𝑒−𝑗2𝜋𝑘𝑛/𝑁
𝑁−1

𝑛=0

 
 

(3.3) 

 

where k=0, 1… N-1 and the inverse discrete Fourier transform is defined as, 

 

𝑥[𝑛] =
1

𝑁
∑ 𝑋[𝑘] 𝑒𝑗2𝜋𝑘𝑛/𝑁
𝑁−1

𝑘=0

 
 

(3.4) 
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And also, discrete frequencies can be obtained as, 

 

𝑓𝑘 =
𝑘

𝑁 ∆
 

 

(3.5) 

 

where N is the total number of samples and ∆ is the sampling period. It is important to 

highlight that, maximum detectable frequency 𝑓𝑁 is called Nyquist frequency which is 

the half of the sampling frequency 𝑓𝑠 and the relationship is given as follows, 

 

𝑓𝑠 ≥ 2𝑓𝑁 

 

(3.6) 

 

3.2. Short-Time Fourier Transform 

 

Short-time Fourier Transform is a method to observe the time evolution of 

frequency content. It was introduced by Gabor in 1946. His aim was to divide the signal 

into pieces with means of a sliding window and taking the Fourier transform of each 

signal which falls within that window. Representation of short time Fourier Transform of 

function  𝑓(𝑡) is defined as follows, 

 

𝑆𝑓(𝑢, 𝜉) = 〈𝑓, 𝑔𝑢,𝜉〉 = ∫ 𝑓(𝑡) 𝑔(𝑡 − 𝑢) 𝑒𝑗𝜉𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
∞

−∞

 𝑑𝑡 
 

(3.7) 

 

Where the window 𝑔 ∈ ℒ2(ℝ) is real and symmetric and ‖𝑔‖ = 1 also ‖𝑔𝑢,𝜉‖ = 1. 

 𝑠  denotes the complex conjugate of the s. Different types of window can be used in this 

transform. The most popular windows are given in Table 3. 
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Table 3. Different types of window functions [114, 115] 

Name g(t) 𝝙ω 
Hamming 0.54+0.46cos(2πt) 1.36 

Hanning 𝑐𝑜𝑠2(𝜋𝑡) 1.44 

Blackman 0.42+0.5cos(2𝜋𝑡) + 0.08cos (4𝜋𝑡) 1.68 

Rectangle 1 0.89 

 

where Δ𝜔 is the frequency radius of the corresponding function (see eq. (3.13)).  

Gabor transform is a special case for Short-time Fourier transform that window 

function 𝑔𝛼 is selected as Gaussian [116],  

 

𝑔𝛼(𝑡) =
1

2√𝜋𝛼
 𝑒
−𝑡2

4𝛼  
 

(3.8) 

 

And also, Spectrogram is defined as the squared magnitude of the windowed 

Fourier transform of signal 𝑥(𝑡), 

 

|𝑆𝑥(𝑢, 𝜉)|
2 = |∫ 𝑥(𝑡) 𝑔(𝑡 − 𝑢) 𝑒−𝑗𝜉𝑡

∞

−∞

 𝑑𝑡|

2

 
 

(3.9) 

 

Its graphical interpretation in time-frequency plane demonstrates the evolution of energy 

localization. 

The window localized at the time instant 𝑢𝛾 , 

 

𝑢𝛾 = ∫ 𝑡 |𝑔𝑢,𝜉(𝑡)|
2

∞

−∞

 𝑑𝑡 
 

(3.10) 

 

Spread around time instant 𝑢𝛾 is, 

 

∆𝑡 = 𝜎𝑡
2 = ∫ (𝑡 − 𝑢𝜉)

2
∞

−∞

 |𝑔𝑢,𝜉(𝑡)|
2
 𝑑𝑡 

 

(3.11) 

 

Window localized at the frequency 𝜉𝛾 is given as, 

 

𝜉𝛾 =
1

2𝜋
∫ 𝜔 |𝑔̂𝑢,𝜉(𝜔)|

2
∞

−∞

𝑑𝜔 
 

(3.12) 
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Spread around frequency is given as 𝜎𝜔
2  in equation (3.13), 

 

∆𝜔 = 𝜎𝜔
2 =

1

2𝜋
∫ (𝜔 − 𝜉𝛾)

2 |𝑔̂𝑢,𝜉(𝜔)|
2

∞

−∞

 𝑑𝜔 
 

(3.13) 

 

Where 𝑔̂𝑢,𝜉(𝑤) = 𝑔̂(𝜔 − 𝜉) 𝑒
(−𝑗𝑢(𝜔−𝜉)).  With the help of the parameters Δt and Δω, the 

area of the window can be found easily, 

 

𝑎𝑟𝑒𝑎 = 2∆𝑡 2∆𝜔 = 4ΔtΔω (3.14) 

 

According to the Heisenberg uncertainty principle the area of the time-frequency 

window must be greater than 0.5 in which the relation is given in equation (3.15) as, 

 

ΔtΔ𝜔 ≥
1

2
 

 

(3.15) 

 

For the Gabor transform, this time-frequency window area is, 

 

∆𝑡∆𝜔 =
1

2
 

 

(3.16) 

 

For the short-time Fourier transform, it is discussed in [115]  the area of the time-

frequency windows unchanged as in Figure 24. 

 

 

Figure 24. Heisenberg box of two time-frequency atoms [115] 
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3.3. Wavelet Transform  

 

With the help of Fourier transform, frequency content of signal 𝑓(𝑡) can be 

obtained. However it does not give any time evolution of these elicited components. In 

short-time Fourier transform this drawback has been partially overcame. But due to the 

fixed time-frequency windows (tiles), time and frequency resolution is still a problem.  

Wavelets and wavelet transform is appropriate tool to overcome this limitations. 

Wavelets are small wave-shaped and localized functions 𝜓 ∈ ℒ2(ℝ) with zero mean 

[115] and graphical demonstration of a wavelet is given in Figure 25, 

 

∫ 𝜓(𝑡)𝑑𝑡
∞

−∞

= 0 
 

(3.17) 

 

They are also normalized and centered at t=0. A function can be called a mother wavelet 

if it can satisfy some mathematical criteria [117], 

1. Admissibility constant of selected wavelet must be smaller than infinity. 

 

𝐶𝜓 = ∫
|𝜓̂(𝜔)|

2

𝜔

∞

0

 𝑑𝜔 < ∞ 
 

(3.18) 

 

2. Transported energy in wavelet function must be finite. 

 

𝐸 = ∫ |𝜓(𝑡)|2 𝑑𝑡
∞

−∞

< ∞ 
 

(3.19) 

 

3. Fourier transform of the candidate wavelet function must be real and zero for 

negative frequency components. 
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3.3.1. Continuous Wavelet Transform 

 

The continuous wavelet transform of signal 𝑓(𝑡)  is defined as [57], 

 

𝑊𝑓(𝑢, 𝑠) = ∫ 𝑓(𝑡) 𝜓𝑢,𝑠
∗

∞

−∞

(𝑡) 𝑑𝑡 
 

(3.20) 

 

where the parameters 𝑢 and 𝑠 denotes the translation and dilation respectively and * 

denotes the complex conjugate. In the above equation, 

 

𝜓𝑢,𝑠(𝑡) =
1

√𝑠
𝜓 (
𝑡 − 𝑢

𝑠
) 

 

(3.21) 

  

 

 

Figure 25. Evolution of the three frequency based methods with time [116] 
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Recovery of a signal from its wavelet transform can be achieved by integrating 

over all scales and locations 𝑢 and 𝑠, 

 

𝑓(𝑡) =
1

𝐶𝜓
∫ ∫ 𝑊𝑓(𝑢, 𝑠) 𝜓𝑢,𝑠(𝑡)

∞

−∞

∞

0

 𝑑𝑢 
𝑑𝑠

𝑠2
 

 

(3.22) 

 

By confining the integration scale in a finite range, filtering of the original signal is 

achieved. 

The wavelet transform demonstrates the localized energy of the signal 𝑓(𝑡) in the 

time-frequency window called Scalogram [115], 

 

𝑃𝑓𝑊(𝑢, 𝑠) ≜ |𝑊𝑓(𝑢, 𝑠)|
2
 (3.23) 

 

The total energy of signal 𝑓(𝑡) in time domain is equal to total energy of the signal 

contain in wavelet domain. Such an conservation of the energy is described by the 

Plancharel’s formula [118] is given as, 

 

𝐸 ≜ ∫ |𝑓(𝑡)|2
∞

−∞

 𝑑𝑡 =  
1

𝐶𝜓
∫ ∫ |𝑊𝑓(𝑢, 𝑠)|

2
 
𝑑𝑠

𝑠
𝑑𝑢

∞

0

∞

−∞

 

 

 

(3.24) 

 

 3.3.2. Discrete Wavelet Transform 

 

Discrete wavelet transform (DWT) performs multiresolution analysis by using 

different types of wavelet filters. 

Wavelet filters are employed to separate the original signal into several different 

frequency bands. A high pass filter and a low pass filter separates the frequency content 

of the signal into equal width but the output of the filter is in same size with original 

signal. Down sampling by a factor two is essential to prevent the doubling the amount of 

data (see Figure 26). 

Synthesis filters are used to reconstruct the original signal from sub-band 

coefficients. Up sampling by a factor two is required to obtain original size of the signal. 

  



56 
 

 

Figure 26. Two channel filter bank 

 

For a perfect reconstruction, selected filter bank should be Biorthogonal and some 

design criteria should be met, 

 

𝐺0(𝑧) = 𝐻1(−𝑧) 

    𝐺1(𝑧) = −𝐻0(−𝑧) 

 

(3.25) 

 

where 𝐻0 and 𝐺0 are the low pass filters, 𝐻1 and 𝐺1 are the high pass filters of synthesis 

and analysis section respectively. 

Any square integrable function 𝑓(𝑥) ∈ ℒ2(ℝ) can be represented by scaling 

function 𝜑(𝑥) and wavelet function 𝜓(𝑥). Scaled and dilated version of the scaling 

function and wavelet function can be represented as, 

 

𝜑𝑗,𝑘 = 2
𝑗
2⁄  𝜑(2𝑗𝑥 − 𝑘)  (3.26) 

 

𝜓𝑗,𝑘 = 2
𝑗/2 𝜓(2𝑗𝑥 − 𝑘) (3.27) 

 

𝑓[𝑛] =
1

√𝑀
∑𝑊𝜑(𝑗0, 𝑘) 𝜑𝑗0,𝑘[𝑛]

𝑘

+ 
1

√𝑀
∑∑𝑊𝜓(𝑗, 𝑘) 𝜓𝑗,𝑘[𝑛]

𝑘

∞

𝑗=𝑗0

 
 

(3.28) 

 

where 𝑓[𝑛] is the discretized version of square integrable function 𝑓(𝑥). Equation (3.28) 

denotes the inverse discrete wavelet transform of function  𝑓[𝑛]. Terms 𝑊𝜑 and 𝑊𝜓 

represents the scaling and wavelet coefficients respectively. 
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𝑊𝜑(𝑗0, 𝑘) =
1

√𝑀
 ∑𝑓[𝑛] 𝜑𝑗0,𝑘[𝑛]

𝑛

  

(3.29) 

 

𝑊𝝍(𝑗, 𝑘) =
1

√𝑀
 ∑𝑓[𝑛] 𝜓𝑗,𝑘[𝑛] 

𝑛

  

(3.30) 

 

By putting equation (3.27) into equation (3.30), it yields 

 

𝑊𝜓(𝑗, 𝑘) =
1

√𝑀
 ∑𝑠[𝑛] 2𝑗/2 𝜓(2𝑗𝑛 − 𝑘)

𝑛

  

(3.31) 

 

where 𝜓(𝑛) can be demonstrated as scaling function  𝜑(𝑛), 

 

𝜓(𝑛) =∑ℎ𝜓(𝑝)√2

𝑝

 𝜑(2𝑛 − 𝑝)  

(3.32) 

 

Scaled and dilated version of equation (3.32) can be written as, 

 

𝜓(2𝑗𝑛 − 𝑘) =∑ℎ𝜓(𝑝) √2 

𝑝

𝜑(2(2𝑗𝑛 − 𝑘) − 𝑝)  

(3.33) 

 

By using the equality  𝑝 = 𝑚 − 2𝑘, 

 

𝜓(2𝑗𝑛 − 𝑘) =∑ℎ𝜓(𝑚 − 2𝑘) √2 𝜑(2
𝑗+1𝑛 −𝑚)  

(3.34) 

 

Putting the equation (3.34) into (3.30) we could obtain, 

 

𝑊𝜓(𝑗, 𝑘) =
1

√𝑀
 ∑𝑠[𝑛] 2𝑗/2  [∑ℎ𝜓(𝑚 − 2𝑘)√2

𝑚

 𝜑(2𝑗+1𝑛 −𝑚)]

𝑛

 
 

(3.35) 

 

Interchanging the order of summation in eq. (3.35) yields 

 

𝑊𝜓(𝑗, 𝑘) =∑ℎ𝜓(𝑚 − 2𝑘) [
1

√𝑀
 ∑𝑠[𝑛]

𝑛

 2(𝑗+1)/2 𝜑(2𝑗+1𝑛 −𝑚)]

𝑚

 
 

(3.36) 
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As a result, equation (3.36) gives a convolution operation as described below eq. (3.37), 

 

𝑊𝜓(𝑗, 𝑘) =∑ℎ𝜓(𝑚 − 2𝑘) 𝑊𝜑(𝑗 + 1, 𝑘)

𝑚

 
 

(3.37) 

 

Same as equation (3.37), equation (3.38) displays the scaling coefficients  

 

𝑊𝜑(𝑗, 𝑘) =∑ℎ𝜑(𝑚 − 2𝑘) 𝑊𝜑(𝑗 + 1, 𝑘)

𝑚

  

(3.38) 

 

Graphical demonstration of the discrete wavelet transform is given in Figure 27, 28 as, 

 

 

Figure 27. Discrete wavelet analysis filter bank 

 

 

Figure 28. Block diagram of discrete wavelet transform with low pass and high-pass 

 wavelet filters 

 

In p-level decomposition, the highest frequency seen in pth approximation coefficient is, 

 

𝑓𝑎𝑝−𝑝 =
𝑓𝑠
2𝑝+1

 
 

(3.39) 
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3.4. Relative Wavelet Energy and Wavelet Entropy 

 

The relative energy can be obtained as sum of all Scalogram [115] in wavelet 

domain in specific frequency band of a signal x(t) is given as, 

 

𝐸[𝑓𝑗 𝑓𝑗+1] = ∑ ∑|𝑊𝑥(𝑡𝑛, 𝑓𝑗 +𝑚 Δ𝑓)|
2

𝑁−1

𝑛=0

(𝑓𝑗+1−𝑓𝑗)/Δ𝑓

𝑚=0

 
 

(3.40) 

 

where Δ𝑓 is the step size of the frequency. Total wavelet energy can be determined by 

the sum of all relative wavelet energies over all frequency bands [47, 61]. Total wavelet 

energy at time 𝑡𝑛 is defined as, 

 

𝐸𝑡𝑜𝑡𝑎𝑙(𝑡𝑛) =∑ ∑ ∑ |𝑊𝑥(𝑡𝑛 −
𝑤

2
+ 𝑘𝑇𝑠, 𝑓𝑗 +𝑚 ∆𝑓)|

2
𝑤/𝑇𝑠

𝑘=0

(𝑓𝑗+1−𝑓𝑗)/∆𝑓

𝑚=0𝑗

 
 

(3.41) 

 

In the above equation, 𝑤 denotes the window size, ∆𝑓 is the step size of frequency. The 

probability of signal’s having a component at a specific frequency band at time instant 𝑡𝑛 

is defined as, 

 

𝑝𝑗(𝑡𝑛) =
𝐸𝑗(𝑡𝑛)

𝐸𝑡𝑜𝑡𝑎𝑙(𝑡𝑛)
 

 

(3.42) 

 

In information theory, entropy is a measure of degree of disorder of the signal. Shannon 

entropy [62] and Tsallis entropy [63] have been proven to be a good tool of demonstration 

of the complexity of signal. Shannon entropy is defined as, 

 

𝑊𝐸𝑆ℎ𝑎𝑛𝑛𝑜𝑛 = −∑𝑝𝑗  ln 𝑝𝑗
𝑗

  

(3.43) 

 

And Tsallis entropy is defined as,  

 

𝑊𝐸𝑇𝑠𝑎𝑙𝑙𝑖𝑠
𝑞 =

1

𝑞 − 1
∑(𝑝𝑗 − 𝑝𝑗

𝑞)

𝑗

 
 

(3.44) 
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where q is called as ‘entropic index’.  

 

3.5. Wavelet Denoising  

 

Averaging of many trials to extract the ERP or EP from ongoing EEG many not 

be a proper solution. Temporal jitter is a major source of low signal-to-noise ratio. In 

addition to time domain averaging, wavelet denoising is utilized in this thesis [49]. Due 

to their spatial adaptivity wavelet denoising (shrinkage) is mostly preferred function 

estimator [119]. Standard wavelet based tools consider the wavelet coefficients 

individually with soft or hard thresholding function. Besides them, Donoho and Johnstone 

proposed a universal threshold value 𝜏 = 𝜎√2 log 𝑛. However individual consideration 

of each wavelet coefficient gave not satisfactory results in many applications. To 

overcome this drawback, Neighcoeff and Neighblock approaches have been 

demonstrated in [119].  Algorithm step of Neighblock method is given as, 

 Transformation of data into wavelet domain via Orthogonal Discrete Wavelet 

transform 

 

Θ̃ = 𝑊. 𝑌 (3.45) 

 

 In each scale 𝑗 wavelet coefficients should be grouped 𝑏𝑖
𝑗
 with non-

overlapping window with length  𝐿0 = log 𝑛 /2.  

 Extension of each separated blocks with a length of   𝐿1 = max (1, [𝐿0/2]) in 

both direction to form overlapping blocks 𝐵𝑖
𝑗
 with length 𝐿 = 𝐿0 + 2𝐿1 

 Estimation of the thresholding level can be estimated by shrinkage rule 

 

𝜃𝑗,𝑘 = 𝛽𝑖
𝑗
𝜃̃𝑗,𝑘 (3.46) 

 

where 𝛽𝑖
𝑗
 is called shrinkage factor and is defined as, 

 

𝛽𝑖
𝑗
= (1 − 𝜆∗𝐿𝜎

2/ ∑ 𝜃̃𝑗,𝑘
2

𝑖,𝑗 𝜖𝐵
𝑖
𝑗

)  

(3.47) 
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In this thesis, we have utilized Neighcoeff method which has same procedure as 

Neighblock method except for 𝐿0 = 𝐿1 = 1 and  𝜆 =
2

3
log 𝑛. The sum of all squared 

wavelet coefficients in the sliding window must be equal or greater than squared universal 

threshold value is given as, 

 

𝜏2 = 2𝜎2 log 𝑛 (3.48) 

 

The algorithm steps which we adopted to use is as follows, 

I. Decompose the grand/subject average OEP into wavelet domain by utilizing 

Discrete Wavelet Transform. 

II. Calculate the standard deviation for each scale before the stimulus onset time 

instants as, 

 

𝜎𝑗 = 𝑀𝑒𝑑𝑖𝑎𝑛(|𝑤𝑗,1 − 𝑤𝑗̅̅ ̅|, |𝑤𝑗,2 − 𝑤𝑗̅̅ ̅|, … , |𝑤𝑗,𝑚 − 𝑤𝑗̅̅ ̅|)/0.6745 (3.45) 

 

Where 𝑤𝑎,𝑏 denotes the wavelet coefficient of ath scale and bth time instant and also 

𝑤𝑥̅̅̅̅   represents the mean of the coefficients at xth scale before the stimulus onset. 

 

III. For each frequency band (scale) there must be a specific threshold value 𝑇𝑗. 

Threshold value for each frequency level j can be calculated as , 

 

𝑇𝑗 = 𝜎𝑗√2 ln𝐾 (3.46) 

 

Where parameter 𝐾 represents the total number of wavelet coefficients in each scale and 

ln is the natural logarithm. 

 

IV. Instead of using Donoho’s individual denoising scheme, we took into 

consideration of immediate neighbor coefficients [119] due to the fact that the 

energy cannot be carried by immediate coefficients. The thresholding criterion 

is as given [51], 

 

𝑤𝑑𝑒𝑛(𝑗, 𝑘) = {
𝑤(𝑗, 𝑘), 𝑤𝑗,𝑘−1

2 + 𝑤𝑗,𝑘
2 + 𝑤𝑗,𝑘+1

2 > 𝑇𝑗
2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

(3.47) 
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V. After all procedure completed, zero-tree denoising was applied onto 

remaining coefficients. In that process, main intention is to discard the 

insignificant coefficients. Coefficients which are locate at higher 

decomposition level are called ‘parent’ coefficients and coefficient that stay 

in lower levels called children coefficients. Zero-tree denoising sets all 

children coefficient zero if the parent coefficient is discarded in step IV.  

 

3.6. Results 

 

In this section, wavelet entropy and wavelet denoising results will be 

demonstrated for average and single trial responses.   

 

3.6.1. Continuous Time Wavelet Entropy for Olfactory Evoked 

Potentials 

 

We have utilized continuous time wavelet entropy to observe more detailed 

entropy results in this study. However, many studies [59, 120] utilized discrete time 

wavelet entropy to observe how brain processes sensory information. In this study, we 

have analyzed totally 23 response of 20 subjects in this section. Among them, 4 of them 

are single trial responses of both CO2 and PEA stimulations of two subjects. As single 

subject responses, 10 averaged response were collected for CO2 response analysis and 9 

for PEA response analysis. As mother wavelet, we have selected Complex Morlet 

Wavelet as aforesaid in [2]. However, we have considered different types of wavelets 

such as Shannon, Frequency B-Spline and Gaussian wavelets with different center 

frequencies and bandwidths. In Table 4, correlation coefficients between grand average 

and different wavelets with different center frequency and bandwidth values have been 

given. 

  



63 
 

Table 4. Correlation coefficients of different types of wavelets and grand average 

Wavelet 1-0.5 1-1 1.5-1.5 N=4 N=5 N=8 
CMOR 0.8363 0.8062 0.6355 - - - 

F.B.Spline 0.7807 0.7833 0.6461 - - - 

Shannon 0.7836 0.8308 0.7483 - - - 

Gaussian - - - 0.6268 0.6874 0.7615 

 

We have applied all wavelet types given in table 4. Although it has lesser 

correlation value, the most successful results have been obtained with complex Morlet 

wavelet with 1.5 Hz center frequency and 1.5 Hz bandwidth. For the relative energy and 

wavelet entropy calculations, we used 32 ms rectangular overlapping time window. Since 

the magnitude of wavelet energy is quite low for gamma band, it was not demonstrated 

in relative energy figures. 

For clearance, we calculate the mean entropy value for numerical demonstration 

of three distinct time intervals. Time window-1 (TW-1) involves the time instants 

between -1000ms to -600ms before stimulus. Time window-2 (TW-2) comprises time 

instants 500-900ms after stimulus that is the time interval which mostly contains 

chemosensory evoked potential responses. The final time (TW-3) window starts from 

1400ms to 1800ms. In TW-3, there are no evoked potentials can be seen. Our main 

purpose is to demonstrate how brain goes from disordered (i.e. more chaotic state) to 

more ordered state with respect to given olfactory and trigeminal stimuli in graphical and 

in numerical results. Table-5 demonstrates the mean Shannon entropy values for 

aforementioned time windows. After finding the mean entropy values for all time 

windows, we have applied statistical test to demonstrate relationship between them. 

 

3.6.1.1. Single Trial Entropy Results 

 

In this section, we demonstrate two subjects’ wavelet entropy results for olfactory 

(PEA) and trigeminal (CO2) stimuli. In Figure 29, Figure 30 and Figure 31, recorded 

single trial, relative energy and wavelet entropy results of subject-1 to PEA stimuli are 

given respectively.  
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Figure 29. Single trial PEA response of Subject-AP1 and computed Scalogram 

 

 

Figure 30. Time evolution of relative energies for Subject-AP1 
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Figure 31. Time evolution of normalized wavelet entropy of Subject-AP1 for PEA stimuli 

 

 

Figure 32. Single trial CO2 response of Subject-AC1 and computed Scalogram 

 

-1 -0.5 0 0.5 1 1.5 2
0.2

0.4

0.6

0.8

1

1.2

Time (sec)

E
n
tr

o
p
y
 V

a
lu

e

Wavelet Shannon Entropy

-1 -0.5 0 0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

1.2

Time (sec)

E
n
tr

o
p
y
 V

a
lu

e

Wavelet Tsallis Entropy

-1 -0.5 0 0.5 1 1.5 2
-5

0

5

Time (sec)

A
m

p
lit

u
d
e
 (


V
)

Channel Cz

Time (sec)

F
re

q
u
e
n
c
y
 (

H
z
)

Scalogram

-1 -0.5 0 0.5 1 1.5 2

2

4

6

8

10



66 
 

 

Figure 33. Time evolution of relative energies of Subject-AC1  

 

 

Figure 34. Time evolution of normalized wavelet entropies for Subject-AC1 
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Figure 35. Single trial CO2 response of Subject-AC2 and computed Scalogram 

 

 

Figure 36. Time evolution of relative energies of Subject-AC2 
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Figure 37. Time evolution of normalized wavelet entropies for Subject-AC2 

 

 

Figure 38. Single trial PEA response of Subject-AP2 and computed Scalogram 
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Figure 39. Time evolution of relative energies of Subject-AP2 

 

 

Figure 40. Time evolution of normalized wavelet entropies for Subject-AP2  

 

-1 -0.5 0 0.5 1 1.5 2
0

1

2

3

4

5

6

7
x 10

-8

Time (sec)

E
n
e
rg

ie
s

Relative Energy

 

 

Delta

Theta

Alpha

Beta

-1 -0.5 0 0.5 1 1.5 2
0.4

0.6

0.8

1

1.2

Time (sec)

E
n
tr

o
p
y
 V

a
lu

e

Wavelet Shannon Entropy

-1 -0.5 0 0.5 1 1.5 2

0.4

0.6

0.8

1

1.2

Time (sec)

E
n
tr

o
p
y
 V

a
lu

e

Wavelet Tsallis Entropy



70 
 

In Figure 32- 34, EEG signal, relative energy and wavelet entropy for subject-1 

CO2 stimuli is given and in Figure 35-37 and also in Figure 38-40 subject-2 CO2 and PEA 

stimuli single trials, relative energies and wavelet entropy results are given respectively.  

By looking at the relative energies which is depicted in Figures 30, 33, 36 and 39, 

energy of delta band increases dramatically with respect to given stimuli, in post stimulus 

time interval. In these figures, delta band reaches its maximum value at nearly t=0.5 

seconds and also there is a significant energy decrease in other frequency bands at the 

same time instants. Both of these energy changes in frequency bands poses an entropy 

decrease due to chemosensory stimuli.  At the same time, it is depicted in [34] that evoked 

potentials reaches its maximum value against external stimuli.  

This is the main reason why wavelet entropies reaches their minimum value at the 

same time that is shown in Figures 29, 32, 35, 38. Since entropy has been a measure of 

degree of disorder, it can be inferred that, brain goes to an ordered state through the 

instrument of given olfactory or trigeminal stimuli. 

In Table 5, both single trial and averaged responses have been given. By looking 

at the single trial results in Table 5, mean entropy in TW-2 is the lowest among other time 

windows. In graphical results, as expected, entropy decrease occurs mainly at the time 

interval 0.5-1 second. In comparison with studies of other sensory modalities, for example 

in auditory, entropy decrease occurs at time interval of 50-200 ms [61]. Such a delay in 

decrement of entropy can be due to complex chemosensory stimulus and also due to a 

delay of stimulus transmission to receptors in chemosensory stimulations (i.e. sensory 

transduction) [112]. In this study, we employed most popular entropy tools Shannon and 

Tsallis entropies. Both of them are successful at demonstration of complexity of the 

system. Tsallis entropy with entropic index q=1.25 gives the more detailed results to 

results found with Shannon entropy. Increasing q results in more coarse results which is 

analyzed in detail in [61]. In the next section analysis results of averaged responses will 

be given. 

 

3.6.1.2. Entropy Results of Averaged Trials 

 

In this section we have analyzed single subject responses to chemosensory stimuli. 

For each subject totally 22-25 single trial responses have been collected and averaged. In 
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Figures 41-58, original averaged responses, relative energies and entropy evolutions is 

given respectively. For CO2 stimulations, 

 

 

Figure 41. Subject-C1 averaged CO2 response and computed Scalogram 

 

 

Figure 42. Time evolution of relative energies for Subject-C1 
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Figure 43. Time evolution of normalized wavelet entropies of Subject-C1 

 

 

Figure 44. Subject-C2 averaged CO2 response and computed Scalogram 
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Figure 45. Time evolution of relative energy of Subject-C2 

 

 

Figure 46. Time evolution of normalized wavelet entropies of Subject-C2 
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Figure 47. Subject-C4 averaged CO2 response and computed Scalogram 

 

 

Figure 48. Time evolution of relative energies of Subject-C4  
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Figure 49. Time evolution of normalized wavelet entropies of Subject-C4 

 

For the PEA stimulations,  

 

 

Figure 50. Averaged PEA responses of Subject-P4 and computed Scalogram 
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Figure 51. Time evolution of relative energies of Subject-P4 

 

 

Figure 52. Time evolution of normalized wavelet entropies of Subject-P4 
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Figure 53. Averaged PEA response of Subject-P2 and computed Scalogram 

 

 

Figure 54. Time evolution of relative energies of Subject-P2  
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Figure 55. Time evolution of normalized wavelet entropies of Subject-P2 

 

 

Figure 56. Averaged PEA response of Subject-P3 and computed Scalogram 

-1 -0.5 0 0.5 1 1.5 2

0.4

0.6

0.8

1

1.2

Time (sec)

E
n
tr

o
p
y
 V

a
lu

e

Wavelet Shannon Entropy

-1 -0.5 0 0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

1.2

Time (sec)

E
n
tr

o
p
y
 V

a
lu

e

Wavelet Tsallis Entropy

-1 -0.5 0 0.5 1 1.5 2
-10

-5

0

5

10

Time (sec)

A
m

p
lit

u
d
e
 (


V
)

Channel Cz

Time (sec)

F
re

q
u
e
n
c
y
 (

H
z
)

Scalogram

-1 -0.5 0 0.5 1 1.5 2

2

4

6

8

10



79 
 

 

Figure 57. Time evolution of relative energies of Subject-P3  

 

 

Figure 58. Time evolution of normalized wavelet entropies of Subject-P3  
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Table 5. Mean wavelet Shannon entropy values for different time windows 

   Single Trial 
Time 

Window-1 

Time 

Window-2 

Time 

Window-3 
Subject-A(P1) 0.9757 0.7438 0.8179 

Subject-A(C1) 0.9504 0.5542 0.9668 

Subject-A(P2) 0.9697 0.8068 0.9277 

Subject-A(C2) 0.9778 0.8161 0.9706 

Single Subject (CO2)    
Subject-C1 0.9729 0.7519 0.8215 

Subject-C2 0.9725 0.7474 0.9507 

Subject-C3 0.9385 0.8416 0.9611 

Subject-C4 0.9633 0.8841 0.9386 

Subject-C5 0.9216 0.7299 0.9142 

Subject-C6 0.9374 0.6706 0.7205 

Subject-C7 0.4957 0.3940 0.8313 

Subject-C8 0.8645 0.5873 0.7792 

Subject-C9 0.8452 0.5506 0.8850 

Subject-C10 0.7748 0.6270 0.8953 

Single Subject (PEA)    
Subject-P1 0.9748 0.9120 0.9580 

Subject-P2 0.9606 0.6868 0.9230 

Subject-P3 0.9239 0.6833 0.9822 

Subject-P4 0.9617 0.4173 0.9795 

Subject-P5 0.9157 0.7246 0.7707 

Subject-P6 0.6957 0.4963 0.9168 

Subject-P7 0.8680 0.8261 0.9817 

Subject-P8 0.9948 0.9865 0.9741 

Subject-P9 0.9640 0.9622 0.9223 

 

Like in section 3.6.1.1, relative energy, Scalogram and wavelet entropy results 

have been given for averaged responses in this section. Calculation of relative energy and 

wavelet entropy was same in previous section. Results show that, wavelet entropy reaches 

its minimum value in time interval 0.5-1 seconds. The reason why entropy reaches its 

minimum value is the same which has detailed in results section of single trial entropy 

analysis. However, for Subject-P2, relative energy of delta band reaches maximum value 

at nearly t=1 sec. by looking at computed Scalogram, it is clearly seen that red area which 

denotes the higher energy, is mainly located at delta band and time interval [0 1.2] 

seconds. For this reason, entropy reaches its minimum value nearly at [0 1.2] sec.       

Results in Table 5 were conveyed to statistical analysis. We utilized non 

parametric K-related sample test (Friedman test) which is able to demonstrate the 

meaningful alterations (i.e. variance) within TW-1, 2 and 3. Results of this test is given 
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in Table 6. Briefly, Friedman test is a non-parametric test that measures the analysis of 

variance between two or more variables which are assumed to be fully or partially related. 

Statistical analyses for PEA stimuli confirmed that, wavelet Shannon entropy 

values are changing between three time windows and this change is statistically 

significant and also meaningful.  

 

Table 6. Friedman test for PEA results 

Test Statistics 

N 9 

Chi-Square 8,667 

df 2 

Asymp. Sig. ,013 

 

 

After finding the significance rate as 0.013 from Friedman test for PEA, we have 

analyzed pairwise meaningfulness of time windows to present the significance of the 

change of wavelet entropy with Wilcoxon signed rank test. Results of pairwise Wilcoxon 

test for PEA is demonstrated in Table 7. 

 

Table 7. Wilcoxon test results for PEA 

Ranks 

 N Mean Rank Sum of Ranks 

TW3 – TW1 Negative Ranks 5a 4,20 21,00 

Positive Ranks 4b 6,00 24,00 

Ties 0c   

Total 9   

TW2 – TW1 Negative Ranks 9d 5,00 45,00 

Positive Ranks 0e ,00 ,00 

Ties 0f   

Total 9   

TW3 – TW2 Negative Ranks 2g 1,50 3,00 

Positive Ranks 7h 6,00 42,00 

Ties 0i   

Total 9   
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Test Statistics 

 TW3 – TW1 TW2 – TW1 TW3 – TW2 

Z -,178b -2,666c -2,310b 

Asymp. Sig. (2-tailed) ,859 ,008 ,021 

 

According to the outcomes of statistical test result, Wilcoxon test has found a 

significant meaningfulness between TW-2 and TW-3, and also TW-1 and TW-2. 

However, there hasn’t been any meaningful correlation for mean entropy values found in 

between TW-1 and TW-3 for PEA stimuli. According to these findings, the time interval, 

where evoked potentials reaches their maximum peak value, wavelet Shannon entropy 

shrinks as expected. And this shrinkage is statistical meaningful according to statistical 

tests. Such a decrement in entropy can be the result of state transition of neuronal activity 

from disordered to more ordered as previously depicted in single trial entropy results. 

Same statistical tests have been applied to CO2 results. In Table 8, Friedman test 

results is given for CO2 responses.  

 

Table 8. Friedman test results for CO2 

Test Statisticsa 

 N 
 10 

Chi-Square 15,200 

 df 2 

Asymp. Sig. ,001 

a. Friedman Test 

 

After that, pairwise correlation of mean entropy in time windows has been analyzed with 

Wilcoxon test. Table 9 demonstrates the Wilcoxon test results for pairwise correlation of 

CO2 of two distinct time windows. As a short information, Wilcoxon test is an alternative 

method to measured t-test, and it demonstrates the meaningfulness of the source of 

variation of entropy between two distinct time windows for each participant.  
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Table 9. Wilcoxon test results for CO2 

Ranks 

 N Mean Rank Sum of Ranks 

TW2 – TW1 Negative Ranks 10a 5,50 55,00 

 Positive Ranks 0b ,00 ,00 

   Ties 0c   

Total 10   

TW3 – TW1 Negative Ranks 6d 5,00 30,00 

Positive Ranks 4e 6,25 25,00 

 Ties 0f   

Total 10   

TW3 – TW2 Negative Ranks 0g ,00 ,00 

Positive Ranks 10h 5,50 55,00 

Ties 0i   

Total 10   

 

Test Statisticsa 

 TW2- TW1 TW3- TW1 TW3- TW2 

Z -2,803b -,255b -2,803c 

Asymp. Sig. (2-tailed) ,005 ,799 ,005 

a. Wilcoxon Signed Ranks Test 

b. Based on positive ranks. 

c. Based on negative ranks. 

 

As expected, there is a meaningful relationship between TW-2 and TW-3 and also 

TW-1 and TW-2, however, results shows there is not a meaningful relationship between 

mean entropy values found in TW-1 and TW-3. Statistical results display that the decrease 

of wavelet entropy is significant while transition from window-1 to window-2 where 

transition from a disordered state to a more ordered state and also, there is a significant 

entropy increase while transition from TW-2 to TW-3. Demonstration of relative energies 

for each averaged and single trial response suggest that, the state transition is governed 

by energy enhancement in delta band. Unlike the information depicted in [116], 

chemosensory evoked responses is shaped by means of delta oscillations in our findings.  

It can be inferred that, decrease in complexity in brain functions might be the 

result of frequency stabilization through the instrument of given stimulus. Frequency 

stabilization or frequency tuning means that neural ensembles which participates in 

generation of evoked potentials, begin to oscillate in coherent way [116].  
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3.6.2. Wavelet Denoising Results 

 

The fact that single trial activities contain both ongoing EEG oscillations and 

stimulus related activities together, it’s hard to observe olfactory/trigeminal stimulus 

related potentials due to ongoing EEG oscillations. For this purpose, a common approach, 

conventional time domain averaging is applied to observe the modality dependent 

ERP/EP. However, averaging of many trials may not be a proper solution to acquire 

stimulus-specific oscillatory activities due to temporal jitter and many other reasons such 

as motor artifacts. In this sense, wavelet denoising (shrinkage) has been applied to 

averaged and single trial responses to obtain stimulus specific oscillations.  

As a first step, we have obtained subject average responses for both olfactory 

(PEA) stimulations and trigeminal (CO2) stimulations for denoising single trial responses. 

Denoising the average responses by using technique given in [119] also reveals the 

wavelet coefficients which carries stimulus related information  in single trials responses. 

Our findings suggest that, stimulus related wavelet coefficients mostly locates in time 

interval 0-1.2 sec and 0-4 Hz. frequency band which corresponds to delta band. By using 

this set of wavelet coefficients helps to extract stimulus related oscillatory activity from 

single trial responses. For our analysis, we have adopted the automatic denoising 

technique given in [51, 119] to obtain stimulus related activity in single trial responses. 

In second step, we tried to denoise subject average responses with the same 

technique detailed in [119]. We have employed biorthogonal spline 5.5 as recommended 

in [121] for wavelet denoising operation in both single trial and average responses. After 

the selection of mother wavelet, we have applied the algorithm which has been discussed 

in section 3.5. In sections 3.6.2.1 and 3.6.2.2, wavelet denoising results of both single trial 

and averaged activities will be given. 

And finally, performance test of the wavelet denoising will be discussed by means 

of Spearman rank order correlation test.  

In the final section, we have employed two subjects who are assumed to be 

hyposmic/anosmic due to their low TDI scores obtained from Sniffin’ Stick test. Our aim 

is to demonstrate the robustness of the wavelet denoising for both EP+ and EP- case. 
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3.6.2.1. Single Trial Wavelet Denoising Results 

 

 

Figure 59. Original and Wavelet Denoised single trial-1 TEP of Subject-A 

 

For single trial denoising, we have used totally 17 single trials for trigeminal and 

14 single trials for olfactory responses. In Figures 59-62, 2 trigeminal and 2 olfactory 

original and denoised signals of Subject-A have been displayed. Graphical results shows 

that, wavelet denoising achieves to extract stimulus related activity with minimum 

amplitude degeneration. However in Figure 59, there is a small activity observed in 

prestimulus region for single trial-1. Such an activity might be due to movement artifact 

that exceeds the threshold level in denoising operation.  
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Figure 60. Original and Wavelet Denoised single trial-3 TEP of Subject-A 

 

 

Figure 61. Original and Wavelet Denoised single trial-1 OEP of Subject-A 
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Figure 62. Original and Wavelet Denoised single trial-12 OEP of Subject-A 

 

3.6.2.2. Wavelet Denoising Results of Averaged TEP/OEP 

 

Besides the single trial, wavelet denoising is applicable to the averaged EP/ERP 

responses for both olfactory and trigeminal stimuli. Totally 24 participants average 

responses were used. For olfactory/trigeminal responses 12 subjects’ average responses 

were collected. For each subject, with an average of 15 single trials have been recorded. 

Average of single trials have been demonstrated at upper side of figures.  

In Figures 63-70, original and denoised responses has been given together to 

observe the alterations in signal after the denoising operation.  At the end of this section, 

we have given the RMS values of time interval [0 1.2] seconds for original and resulting 

signal (see Table 10). And as a final step, to demonstrate the reliability of wavelet 

denoising, we have evaluated the denoising algorithm on two anosmic subjects’ average 

PEA responses who don’t have any ability to sense the smells. 
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Figure 63. Original and Wavelet Denoised average TEP of Subject-1 

 

 

Figure 64. Original and Wavelet Denoised average TEP of Subject-11 
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Figure 65. Original and Wavelet Denoised average TEP of Subject-2 

 

 

Figure 66. Original and Wavelet Denoised average TEP of Subject-7 
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For the averaged OEP, denoising results are given as follows, 

 

 

Figure 67. Original and Wavelet Denoised average OEP of Subject-13 

 

 

Figure 68. Original and Wavelet Denoised average OEP of Subject-16 
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Figure 69. Original and Wavelet Denoised average OEP of Subject-17 

 

 

Figure 70. Original and Wavelet Denoised average OEP of Subject-15 
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Table 10. RMS values of original and wavelet denoised responses in time interval [0 1.2] 

Subject name Original RMS [0 1.2] De-noised RMS [0 1.2] 

Subject-A   

Average of RMS values of 

17 single trials for CO2 

response 

5.3623 4.3690 

Average of RMS values of 

14 single trials for PEA 

response 

5,0958 4.1807 

Single Subject (CO2)   

Subject-1 7.1915 5.7916 

Subject-2 4.6576 3.1948 

Subject-3 7.2328 6.4706 

Subject-4 4.1226 2.3246 

Subject-5 5.3681 1.9256 

Subject-6 3.4068 2.2641 

Subject-7 3.8270 2.3249 

Subject-8 6.4893 5.3788 

Subject-9 4.3037 3.0570 

Subject-10 5.7642 3.1648 

Subject-11 4.3308 3.4537 

Subject-12 4.0132 2.9822 

 Average=5.0590 Average=3.5280 

SINGLE SUBJECT (PEA)   

Subject-13 4.8394 2.9350 

Subject-14 3.6007 2.3527 

Subject-15 5.8693 5.0898 

Subject-16 5.1713 4.0904 

Subject-17 3.6971 1.6666 

Subject-18 6.3455 2.3527 

Subject-19 7.0072 6.008 

Subject-20 4.5985 3.1177 

Subject-21 7.1465 6.0998 

Subject-22 8.0462 6.2693 

Subject-23 4.9371 3.2048 

Subject-24 5.4672 4.8595 

 Average=5.5605 Average=4.0028 

 

For detailed analysis, calculated RMS values in time interval 0-1.2 sec in original 

and wavelet denoised signals have been analyzed by means of nonparametric Spearman 

rank order correlation test for both CO2 and PEA stimulants separately. The reason of 

choosing the time interval 0-1.2 sec is, there will not be any stimulus related potentials 

found in posterior time instants. In Table 11 and Table 12, spearman rank order 
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correlation coefficient test results is given for PEA and CO2 respectively. According to 

the PEA results, there is a very strong correlation have been found between RMS values 

of original and wavelet denoised signals for PEA stimuli (p<0.01, r=.813).  

By looking at CO2 results, Spearman rank order correlation test found  quite strong 

correlation about .741 and also this correlation is nearly same as correlation found in PEA 

(p<0.01, r=.741).  As a consequence, wavelet denoising is reasonably successful at both 

estimation of subject’s PEA and CO2
 response. 

 

Table 11. Spearman rank order correlation test result for PEA stimuli 

Correlations 

 Original RMS Denoised RMS 

Spearman's rho Original RMS Correlation Coefficient 1,000 ,813** 

Sig. (1-tailed) . ,000 

N 12 12 

Denoised RMS Correlation Coefficient ,813** 1,000 

Sig. (1-tailed) ,001 . 

N 12 12 

**. Correlation is significant at the 0.01 level (1-tailed). 
 

Table 12. Spearman rank order correlation test results for CO2 stimuli 

Correlations 

 

Original 

RMS Denoised RMS 

Spearman's rho Original RMS Correlation Coefficient 1,000 ,741** 

Sig. (1-tailed) . ,000 

N 12 12 

Denoised RMS Correlation Coefficient ,741** 1,000 

Sig. (1-tailed) ,003 . 

N 12 112 

**. Correlation is significant at the 0.01 level (1-tailed). 
 

 

In the light of these results, it is fair to infer that, wavelet denoising is able to filter 

out the noisy component from signal with a minimum level of degeneration in amplitude 

and shape. By considering the property of time variant estimation of wavelet denoising, 

makes it a useful tool for stationary and nonstationary time series estimation. 
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To demonstrate the reliability of wavelet denoising, we employed two anosmic 

subjects who couldn’t exactly sense the given n-butanol in Sniffin’ Stick tests. Applying 

wavelet denoising to their averaged PEA response elicited no significant chemosensory 

evoked potentials.  

 

 

Figure 71. Original and Wavelet Denoised average OEP of Subject-K1 
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Figure 72. Time evolution of wavelet Shannon entropy result of Subject-K1 

 

By looking at the Figure 71, there is an extremely small activity observed in the 

time interval between 0-1.2 seconds. And also, we have applied wavelet Shannon entropy 

to observe the degree of disorder between regions of prestimulus, stimulus onset and post 

stimulus. There is a significant entropy decrease in prestimulus region in Figure 72. We 

are ensure that, such a decrease is not related with chemosensory stimuli. Looking at the 

post stimulus region, no significant entropy decrease have been found for Subject-K1. 
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Figure 73. Original and Wavelet Denoised average OEP of Subject-K2 

 

In Figure 73 and Figure 74, averaged and denoised PEA response and wavelet 

entropy result of Subject-K2 is given respectively. Same as the findings obtained from 

Subject-K1, there is no significant evoked potentials and no meaningful entropy decrease 

have been obtained through the instrument of wavelet denoising. Like in Figure 71, 

Figure 73 displays a small activity observed in Subject-K2 in time interval 0-1.2 seconds.  

Wavelet entropy results displays that there is no significant power enhancement 

in any frequency band and/or there is no frequency stabilization between neural 

structures. In the light of these findings, it can be inferred that, both of two subjects might 

be suffers from an olfactory dysfunction or sino-nasal pathologies.  
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Figure 74. Time evolution of wavelet Shannon entropy result of Subject-k2 

 

In the next chapter, we will demonstrate how wiener filter extracts evoked 

potentials from averaged and single trial EEG responses and success rate will be discussed 

by means of comparing the findings with wavelet denoising. 
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CHAPTER 4 

 

WIENER FILTER 

 

Wiener filters are known as class of optimum linear filters which is developed by 

Norbert Wiener in 1949 [122]. Wiener filters can be used in noise filtering, channel 

equalization, joint process estimation, and smoothing and echo cancelation.  

In theory, Wiener filters regard the corresponding input signal as Wide Sense 

Stationary (WSS) process. A useful approach for optimal filter design is minimization of 

mean square error signal that is defined as the difference between target response and 

actual response of the filter. In particular, two main restrictions have been placed so far, 

1. Assuming the filter is linear, however, it makes easier to analyze with 

mathematical operations. 

2. Operation of the filter is in discrete time. It is possible to realize it using digital 

hardware and software.  

 

4.1. Minimum Mean Square Error Estimation 

 

Filter coefficients are represented by 𝑤 that takes input signal 𝑢(𝑛) and estimates 

the output signal 𝑦(𝑛) . 

 

 

Figure 75. Block diagram of linear discrete time filter [123] 

 

In Figure 75, 𝑦(𝑛) is actual output and 𝑑(𝑛) is target response of the filter. Input-output 

relation for an FIR filter is given in eq. (4.1), 



99 
 

𝑦(𝑛) = ∑ 𝑤𝑘
∗ 𝑢(𝑛 − 𝑘)

𝑀−1

𝑘=0

 
 

(4.1) 

 

where 𝑦(𝑛) ∈ ℝ𝑁 is the actual output, 𝑤𝑘’s are the filter coefficients and * denotes the 

complex conjugate. Equation (4.1) can be written in more compact form, 

 

𝑌 = 𝑤𝑇𝑈 (4.2) 

 

In equation (4.2), 𝑌 and 𝑈 represents the vectorial demonstration of output  𝑦(𝑛) and   

delayed input 𝑢(𝑛 − 𝑘), 𝑤𝑇 is the filter coefficients. Main purpose is to minimize the 

estimation error as much as possible. In this manner, error signal 𝑒(𝑛) is defined as 

follows, 

 

𝑒(𝑛) ≜ 𝑑(𝑛) − 𝑦(𝑛) 

                                      = 𝑑(𝑛) − 𝑤𝑇𝑈 

 

(4.3) 

 

Equation (4.3) can be written in a more detailed form in order to demonstrate the 

relation between error signals and filter coefficients, 

 

(

 
 

𝑒(0)
𝑒(1)
𝑒(2)
⋮

𝑒(𝑁 − 1))

 
 
=

(

 
 

𝑑(0)
𝑑(1)
𝑑(2)
⋮

𝑑(𝑁 − 1))

 
 
−(

𝑢(0)
𝑢(1)

…
…

𝑢(1 − 𝑃)
𝑢(2 − 𝑃)

⋮ … ⋮
𝑢(𝑁 − 1) … 𝑢(𝑁 − 𝑃)

)(

𝑤0
𝑤1
⋮

𝑤𝑃−1

) 

 

(4.4) 

 

In equation (4.3), 𝑑(𝑛) is defined as the desired (target) response. Equation (4.4) 

gives the matrix representation of equation (4.3). In here, number of signal samples and 

number of filter coefficients are demonstrated with N and P. If N=P, we have a square 

signal matrix and there exists unique solution with zero estimation error  𝑒(𝑛), if  𝑁 < 𝑃, 

there exists infinite number of solutions with zero estimation error and such an equation 

is said to be underdetermined. In case of over-determined, number of samples N is greater 

than number of filter coefficients P (N>P). 

Optimization of the filter coefficients is achieved by minimum mean square value 

estimation of error signal. Selection of the criterion function is thought as, 
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𝐽 = 𝐸[𝑒(𝑛) 𝑒∗(𝑛)] (4.5) 

 

where 𝐸{. } denotes the expected value. Thus, problem is converted to search of 

conditions by which the cost function 𝐽 reaches its minimum value. Let the filter 

coefficients are consist of real and imaginary part as follows, 

 

𝑤𝑘 = 𝑎𝑘 + 𝑗𝑏𝑘                    𝑘 = 0,1,2, … (4.6) 

 

Utilizing the gradient operator, we can obtain the stationary points of the cost 

function. At these specific points, real and imaginary components of gradient vector ∇𝐽 

is equal to zero. 

 

∇𝑘𝐽 =
𝜕𝐽

𝜕𝑎𝑘
+ 𝑗

𝜕𝐽

𝜕𝑏𝑘
= 0      𝑓𝑜𝑟 𝑘 = 0,1,2, … (4.7) 

 

Under such condition, the filter is said to be optimal in sense of mean square error [124]. 

By substituting (4.5) into (4.7) we get, 

 

∇𝑘𝐽 = 𝐸 [
𝜕𝑒(𝑛)

𝜕𝑎𝑘
𝑒∗(𝑛) +

𝜕𝑒∗(𝑛)

𝜕𝑎𝑘
𝑒(𝑛) + 𝑗

𝜕𝑒(𝑛)

𝜕𝑏𝑘
𝑒∗(𝑛) + 𝑗

𝜕𝑒∗(𝑛)

𝜕𝑏𝑘
𝑒(𝑛)] (4.8) 

 

After performing the partial derivatives with respect to filter parameters 𝑎𝑘 

and 𝑏𝑘, equation (4.8) becomes, 

 

∇𝑘𝐽 = −2𝐸[𝑢(𝑛 − 𝑘) 𝑒
∗(𝑛)] (4.9) 

 

The equation (4.9) is obtained in the following form by using the optimum error 

signal that can be obtained by when the filter operates at optimal conditions and is denoted 

by, 

 

∇𝑘𝐽 = 𝐸[𝑢(𝑛 − 𝑘) 𝑒𝑜
∗(𝑛)] = 0 (4.10) 

 

In other words, for the requirement of optimality, the error signal should be 

orthogonal to filter input described by  𝑢(𝑛). This constitutes the principle of 
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orthogonality for the conditions of optimal filtering. Equation (4.10) can be rearranged 

as, 

 

𝐸 [∑𝑤𝑘
∗ 𝑢(𝑛 − 𝑘)𝑒𝑜

∗(𝑛)

∞

𝑘=0

] = 𝐸[𝑦(𝑛) 𝑒𝑜
∗(𝑛)] (4.11) 

 

and as a natural result of (4.11), the following equation can be obtained by using the  

linearity property of expected value operator, we will obtain, 

 

𝐸[𝑦(𝑛) 𝑒𝑜
∗(𝑛)] = 0 (4.12) 

 

By looking at equations (4.11) and (4.12), it can be easily seen that, the optimal error 

signal 𝑒𝑜(𝑛) is also orthogonal to actual response of the filter 𝑦(𝑛) as filter input 𝑢(𝑛) 

given in equation (4.10). 

 

4.2. Wiener-Hopf Equations 

 

In the section 4.1, the sufficient and necessary conditions for optimal filtering. By 

utilizing the eq. (4.1) and (4.3) into (4.10) we obtain, 

 

𝐸 [𝑢(𝑛 − 𝑘)(𝑑∗(𝑛) − ∑ 𝑤0𝑚 𝑢
∗(𝑛 − 𝑚)

∞

𝑚=0

)] = 0 (4.13) 

 

Reorganization of equation (4.13) yields 

 

∑𝑤𝑜𝑚 𝐸[𝑢(𝑛 − 𝑘) 𝑢
∗(𝑛 − 𝑚)] = 𝐸[𝑢(𝑛 − 𝑘) 𝑑∗(𝑛)]

∞

𝑚=0

 (4.14) 

 

The above equation is rearranged as follows by using the autocorrelation function of 

delayed input with a lag of 𝑘 − 𝑚, 𝐸[𝑢(𝑛 − 𝑘) 𝑢∗(𝑛 − 𝑚)] in the left hand-side and the 

cross correlation function of the filter input and target output in the right hand-side, the 

Wiener-Hopf equation is given as, 
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∑ 𝑤𝑜𝑚 𝑅𝑢𝑢(𝑘 − 𝑚) = 𝑅𝑢𝑑(−𝑘)

∞

𝑚=0

 (4.15) 

 

Vector notation of Wiener-Hopf equation is given as, 

 

𝑅𝑢𝑢𝑤𝑜 = 𝑅𝑢𝑑 (4.16) 

 

where 𝑅𝑢𝑢 ∈ ℝ
𝑀𝑥𝑀 is the autocorrelation matrix of input of the filter and it is 

demonstrated as, 

 

𝑅𝑢𝑢 = [

𝑟𝑢𝑢(0) 𝑟𝑢𝑢(1) … 𝑟𝑢𝑢(𝑀 − 1)
𝑟𝑢𝑢(−1) 𝑟𝑢𝑢(0) … 𝑟𝑢𝑢(𝑀 − 2)

⋮ ⋮ … ⋮
𝑟𝑢𝑢(1 − 𝑀) 𝑟𝑢𝑢(2 −𝑀) … 𝑟𝑢𝑢(0)

] (4.17) 

 

And 𝑅𝑢𝑑 ∈ ℝ
𝑀 is the vector of the cross-correlation between filter input and desired 

response, 

 

𝑅𝑢𝑑 = [𝑟𝑢𝑑(0), 𝑟𝑢𝑑(−1),… , 𝑟𝑢𝑑(1 − 𝑀)]
𝑇 (4.18) 

 

Finally 𝑤𝑜 is the optimal filter weight vector can be obtained by solving the equation 

(4.16), 

 

𝑤𝑜 = 𝑅𝑢𝑢
−1 𝑅𝑢𝑑 (4.19) 

 

4.3. Error-Performance Surface 

 

Estimation error for the FIR case that is given in eq. (4.3), 

 

𝑒(𝑛) = 𝑑(𝑛) − ∑ 𝑤𝑘
∗ 𝑢(𝑛 − 𝑘)

𝑀−1

𝑘=0

 (4.20) 

 

Putting the eq. (4.20) into (4.5), it yields, 
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𝐽 = 𝐸[|𝑑(𝑛)|2] − ∑ 𝑤𝑘
∗ 𝐸[𝑢(𝑛 − 𝑘) 𝑑∗(𝑛)]

𝑀−1

𝑘=0

− ∑ 𝑤𝑘

𝑀−1

𝑘=0

𝐸[𝑢∗(𝑛 − 𝑘) 𝑑(𝑛)]

+ ∑ ∑ 𝑤𝑘
∗ 𝑤𝑖 𝐸[𝑢(𝑛 − 𝑘)𝑢

∗(𝑛 − 𝑖)]

𝑀−1

𝑖=0

𝑀−1

𝑘=0

 

(4.21) 

 

By considering the equivalent form of expectation values in (4.21), we can reorganize 

this equation as, 

 

𝐽 = 𝜎𝑑
2 − ∑ 𝑤𝑘

∗ 𝑅𝑢𝑑(−𝑘) − ∑ 𝑤𝑘
∗ 𝑅𝑢𝑑

∗ (−𝑘)

𝑀−1

𝑘=0

𝑀−1

𝑘=0

+ ∑ ∑𝑤𝑘
∗ 𝑤𝑖 𝑅𝑢𝑢(𝑖 − 𝑘)

𝑀−1

𝑖=0

𝑀−1

𝑘=0

 (4.22) 

 

where 𝜎𝑑 denotes the variance of desired response whose mean value equals to zero. For 

the minimum point of the error performance surface, the cost function 𝐽 takes its 

minimum value which is denoted by  𝐽𝑚𝑖𝑛. At this specific point, the gradient of the cost 

function equals to zero, 

 

∇𝑘𝐽 = 0         𝑓𝑜𝑟 𝑘 = 0,1,2, … (4.23) 

 

By inserting the equation (4.22) into (4.23), we can obtain, 

 

∇𝑘𝐽 = −2𝑅𝑢𝑑(−𝑘) + 2∑ 𝑤𝑖 𝑅𝑢𝑢(𝑖 − 𝑘) = 0

𝑀−1

𝑖=0

 (4.24) 

 

𝑅𝑢𝑑(−𝑘) = ∑ 𝑤𝑖 𝑅𝑢𝑢(𝑖 − 𝑘) 

𝑀−1

𝑖=0

 (4.25) 

 

Finally, taking into consideration of the optimal filtering requirements, we can denote the 

transversal filter with optimum weights, 

 

∑𝑤𝑜𝑖 𝑅𝑢𝑢(𝑖 − 𝑘) = 𝑅𝑢𝑑(−𝑘)

𝑀−1

𝑖=0

 (4.26) 
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Figure 76. Error-Performance Surface of two dimensional filter [123] 

 

4.4. Formulation of Wiener Filters in Frequency Domain 

 

Consider a situation where 𝑦(𝑛) is the summation of target output 𝑥(𝑛) and 

noise  Γ(𝑛). 

 

𝑦(𝑛) = 𝑥(𝑛) + Γ(𝑛) (4.27) 

 

In frequency domain, relation between the filter’s actual output 𝑥̂(𝑛) and 

observation 𝑦(𝑛) can be represented as [123], 

 

𝑋̂(𝑓) = 𝑊(𝑓)𝑌(𝑓) (4.28) 

 

where 𝑊(𝑓) denotes the filter transfer function in frequency domain. The estimation error 

in frequency domain 𝐸(𝑓) is the difference between frequency domain representations of 

target response 𝑋(𝑓) and actual response  𝑋̂(𝑓). 

 

𝐸(𝑓) = 𝑋(𝑓) − 𝑋̂(𝑓) (4.29) 

 

𝐸(𝑓) = 𝑋(𝑓) −𝑊(𝑓)𝑌(𝑓) (4.30) 

 



105 
 

And also, mean square error is defined in frequency domain is as follows, 

 

𝐸[|𝐸(𝑓)|2] = 𝐸[(𝑋(𝑓) −𝑊(𝑓)𝑌(𝑓))∗(𝑋(𝑓) −𝑊(𝑓)𝑌(𝑓))] (4.31) 

 

Attainment of the least square error achieved by differentiation of the mean square error 

with respect to  𝑊(𝑓), 

 

𝜕𝐸[|𝐸(𝑓)|2]

𝜕𝑊(𝑓)
= 2𝑊(𝑓)𝑆𝑦𝑦(𝑓) − 2𝑆𝑥𝑦(𝑓) (4.32) 

 

In equation (4.32), 𝑆𝑦𝑦(𝑓) and 𝑆𝑥𝑦(𝑓) are spectral and cross-power spectrum of 𝑋(𝑓) and 

𝑌(𝑓)  respectively. At the minimum point, partial derivative is equal to zero. 

 

2(𝑊(𝑓)𝑆𝑦𝑦(𝑓) − 𝑆𝑥𝑦(𝑓)) = 0 (4.33) 

 

By rearranging the equation (4.33) we can obtain the filter transfer function as follows, 

 

𝑊(𝑓) =
𝑆𝑥𝑦(𝑓)

𝑆𝑦𝑦(𝑓)
 (4.34) 

 

Since noise and the signal are assumed to be uncorrelated (i.e.𝑅𝑥Γ(𝑛) = 0 and  𝑅𝑥𝑦 =

𝑅𝑥𝑥), we can obtain, 

 

𝑅𝑦𝑦(𝑛) = 𝑅𝑥𝑥(𝑛) + 𝑅ΓΓ(𝑛) (4.35) 

 

Thus, filter transfer function becomes 

 

𝑊(𝑓) =
𝑆𝑥𝑥(𝑓)

𝑆𝑥𝑥(𝑓) + 𝑆ΓΓ(𝑓)
 (4.36) 
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4.5. Results  

 

In this section, we have utilized wiener filters to obtain stimulus related oscillatory 

activities which is embedded in ongoing EEG. For this purpose, we have considered 

grand average as target response for both single trial and single subject (i.e. averaged) 

analysis.  

 

4.5.1. Single Trial OEP/TEP Extraction by Using Wiener Filters 

 

 

Figure 77. Original and Wiener filtering result of single trial-1 TEP of Subject-A 
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Figure 78. Original and Wiener filtering result of single trial-3 TEP of Subject-A 

 

 

Figure 79. Original and Wiener filtering result of single trial-1 OEP of Subject-A 
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Figure 80. Original and Wiener filtering result of single trial-12 OEP of Subject-A 

 

In order to extract single trial responses of subjects, we have utilized grand 

average of responses as desired (i.e. target) response. Briefly, grand average is the average 

of all subjects’ average responses. In Figures 77-80, original and filtering results can be 

seen together and it can be seen in Table 13, average of 17 CO2 single trial RMS values 

between 0-1.2 second is 5.3623 and wiener filtered signals RMS value is 0.7938. It can 

be fair to say that Wiener filter eliminates the huge amount of signal power. And for the 

PEA case, average RMS value of 14 single trial between 0-1.2 second is 5.0958 and 

filtered single trial RMS value is 0.9614 which is slightly higher than CO2 case. To sum 

up, it can be inferred that, Wiener filter is more successful at filtering of brain’s PEA 

responsiveness than CO2. But when considering the RMS results of both PEA and CO2 

case, there is a dramatic power loss when eliminating the noise (i.e. stimulus unrelated 

activity). In the literature, there is not any recent study that have utilized Wiener filters so 

that we couldn’t have any chance to compare our findings. In the next section, we have 

tried to filter subjects’ averaged TEP/OEP responses. 
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4.5.2. Extraction of Average OEP/TEP by Using Wiener Filters 

 

 

Figure 81. Original and Wiener filtering result of average TEP of Subject-1 

 

 

Figure 82. Original and Wiener filtering result of average TEP of Subject-2 
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Figure 83. Original and Wiener filtering result of average TEP of Subject-7 

 

 

Figure 84. Original and Wiener filtering result of average TEP of Subject-11 
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Figure 85. Original and Wiener filtering result of average OEP of Subject-13 

 

 

Figure 86. Original and Wiener filtering result of average OEP of Subject-15 
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Figure 87. Original and Wiener filtering result of average OEP of Subject-16 

 

 

Figure 88. Original and Wiener filtering result of average OEP of Subject-17 
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Table 13. Original and Wiener Filtered RMS values of Subject's in time interval [0 1.2] 

Single Trial Original RMS RMS of Filter Output 

Average of 17 single trial 

RMS values for CO2 

5.3623 0.7938 

Average of 14 single trial 

RMS values for PEA 

5.0958 0.9614 

Single Subject CO2   

Subject-1 7.1915 1.4572 

Subject-2 4.6576 1.4464 

Subject-3 7.2328 1.0566 

Subject-4 4.1226 1.3067 

Subject-5 5.3681 1.1720 

Subject-6 3.4068 0.5824 

Subject-7 3.8270 0.7467 

Subject-8 6.4893 1.4318 

Subject-9 4.3037 0.6468 

Subject-10 5.7642 1.3124 

Subject-11 4.3308 1.2349 

Subject-12 4.0132 1.0234 

 Average=5.0590 Average=1.1181 

Single Subject PEA   

Subject-13 4.8394 0.7779 

Subject-14 3.6007 0.9252 

Subject-15 5.8693 0.8372 

Subject-16 5.1713 0.9702 

Subject-17 3.6971 0.3104 

Subject-18 6.3455 0.6211 

Subject-19 7.0072 0.9255 

Subject-20 4.5985 1.3093 

Subject-21 7.1465 0.3210 

Subject-22 8.0642 0.9538 

Subject-23 4.9371 1.1860 

Subject-24 5.4672 1.2194 

 Average= 5.5605 Average=0.8630 

 

As in previous chapter, we have conveyed the RMS values of signals, calculated in time 

interval of 0-1.2sec, into nonparametric Spearman rank order correlation test. By looking 

at the results of PEA in Table 14, there is a strong correlation between original RMS value 

and RMS value of filtered signal (p=0.021, r=.648), but in CO2 results, not any 

meaningful correlation has been found (see Table 15) (p>0.05, r=.336).  
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Table 14. Spearman rank order correlation test results of PEA responses 

Correlations 

 Original Wiener Filter  

Spearman's rho Original Correlation Coefficient 1,000 ,648* 

Sig. (1-tailed) . ,021 

N 12 12 

Wiener Filter Correlation Coefficient ,648* 1,000 

Sig. (1-tailed) ,021 . 

N 12 12 

*. Correlation is significant at the 0.05 level (1-tailed). 

 

In the light of correlation results, Wiener filtering technique is able to denoise the 

averaged (i.e. single subject) PEA response with a reasonable performance but it is not as 

successful as wavelet denoising (see Table 11). However, for the CO2 responses, Wiener 

filter is not a suitable choice. It can be seen in Table 13, Wiener filter didn’t show any 

satisfactory performance at saving the signal power and characteristics.  

 

Table 15. Spearman rank order correlation results for CO2 responses 

Correlations 

 Original Wiener Filter 

Spearman's rho Original Correlation Coefficient 1,000 ,336 

Sig. (1-tailed) . ,156 

N 12 12 

Wiener Filter Correlation Coefficient ,336 1,000 

Sig. (1-tailed) ,156 . 

N 12 12 

 

Although correlation test gives satisfactory result for PEA responses, there is a 

huge amount of amplitude decrease can be seen in Figures 77-88 for both single trial and 

average responses. Such a decrement makes Wiener filter non-utilizable for extraction of 

chemosensory stimulus related activity. Besides them, for all graphical results, there is an 

activity has been observed before stimulus onset. In such a case, it is fair to say that, 

wavelet denoising outperforms for all single trial and average responses than Wiener 

filters. To sum up, Wiener filtering is not an appropriate choice for SNR (signal to noise 

ratio) enhancement of both single subject and single trial chemosensory responsiveness. 
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CHAPTER 5 

 

EMPIRICAL MODE DECOMPOSITION 

 

The Hilbert-Huang transform was proposed by Huang et.al. in 1998 that is a 

method which can decompose a data or signal into limited and small number of Intrinsic 

Mode Functions (IMF) [55]. It was well designed for nonlinear and nonstationary data 

analysis. The fundamental part of this transformation is Empirical Mode Decomposition 

(EMD). Unlike wavelet decomposition, EMD is fully data driven tool. This method have 

the principle that analyzing and decomposing the signal into IMF’s that they have to 

satisfy two important conditions as well [55, 125].  

 In the whole dataset, the number of local extremes (maxima and minima) and 

number of zero-crossing must be equal or at most differ by one. 

 At any point, mean value of the envelope that is defined by local maxima and 

local minima is zero. 

This means that an IMF should represent one simple oscillatory function. But it is not 

very general and frequent condition. In general, instead of constant amplitude and 

frequency in an oscillatory content, an IMF should be demonstrated by varying amplitude 

and frequency. 

By looking at condition described above, the first condition looks like narrow 

band requirement of a stationary Gaussian process and second criteria is the modified 

version of global requirement that converges to local one.  

 

5.1. Sifting Process 

 

Our aim is to construct a representation to given observation  𝑥(𝑡).  

 

𝑥(𝑡) = ∑𝑎𝑘(𝑡) 𝜑𝑘(𝑡)

𝐾

𝑘=1

 
 

(5.1) 

 

Where 𝑎𝑘(𝑡) is the amplitude modulation and 𝜑𝑘(𝑡) is the oscillations.  The main idea is 

that the fast oscillations superimposed to slow oscillations and there is a procedure that it 
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can be decomposed in to limited number of oscillatory components (see Figure 89) (i.e. 

IMF’s). 

 

 

Figure 89. Fast oscillating and slow oscillating components of signal 

 

The procedure to find and extract the so-called IMF’s is the sifting process. Initial step of 

sifting process is the construction of upper and lower envelope by using local maxima 

and local minima’s. 

 

 

Figure 90. Upper and lower envelopes of the signal x (t) 
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In a signal, local maxima’s and minima’s can be detected by utilizing second derivative 

test. The test states that, 

 If 𝑥̇(𝑡) = 0  and  𝑥̈(𝑡) < 0, then 𝑥 has local maximum at time 𝑡. 

 If 𝑥̇(𝑡) = 0  and  𝑥̈(𝑡) > 0, then 𝑥 has local minimum at time 𝑡. 

 If 𝑥̈(𝑡) = 0 then test is inconclusive. 

In Figure 90, blue line represents the upper envelope and red line displays the lower 

envelope. These envelopes are obtained by finding the local maxima and minima points 

of signal and interpolating them with cubic spline. Mean of these envelopes are, 

 

𝑚1(𝑡) =
𝑒𝑢𝑝𝑝𝑒𝑟(𝑡) + 𝑒𝑙𝑜𝑤𝑒𝑟(𝑡)

2
 

 

(5.2) 

  

By subtracting the mean of envelopes from original signal we could obtain, 

 

ℎ1(𝑡) = 𝑥(𝑡) − 𝑚1(𝑡) (5.3) 

 

If ℎ1(𝑡) does not satisfy aforementioned IMF conditions, equation (5.2) and (5.3) has to 

be repeated. Instead of  𝑥(𝑡), ℎ1(𝑡) has to be considered for further progress. 

 

ℎ11(𝑡) = ℎ1(𝑡) − 𝑚11(𝑡) (5.4) 

 

Where 𝑚11(𝑡) is the mean value of upper and lower envelope of the ℎ1(𝑡). This procedure 

should be repeated 𝑘 times until ℎ1𝑘(𝑡) satisfies the IMF conditions [56, 126]. 

 

ℎ1𝑘(𝑡) = ℎ1(𝑘−1)(𝑡) − 𝑚1𝑘(𝑡) (5.5) 

 

𝑐1(𝑡) = ℎ1𝑘(𝑡) (5.6) 

 

where 𝑐1(𝑡) is the first IMF extracted from observation. For further investigation residual 

signal should be considered as main signal and above processes must be evaluated step 

by step. The residual signal  𝑟1(𝑡), 

 

𝑟1(𝑡) = 𝑥(𝑡) − 𝑐1(𝑡) (5.7) 
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After extraction 𝑛 IMF, residual function 𝑟𝑛(𝑡) becomes monotonic means that no further 

information can be extracted. As a result, we can represent the initial signal  𝑥(𝑡) by 

means of summation of extracted IMF’s and residual  𝑟𝑛(𝑡) (see Figure 91), 

 

𝑥(𝑡) = 𝑟𝑛(𝑡) +∑𝑐𝑗(𝑡)

𝑛

𝑗=1

 
 

(5.8) 

 

 

Figure 91. Set of IMF’s and residual of the multi component signal x (t). 

(Source: Patrick Flandrin Lecture Notes for EMD) 
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5.2. Single Trial Estimation with EMD-Based Approach 

 

Since EMD has come up as a fully data-driven time series analysis tool, we have 

evaluated the algorithm which is given in [56] to extract chemosensory stimulus related 

oscillations. In order to achieve this, first, we have calculated the frequency spectra of the 

average of single trial EP, recorded from CZ channel. Discrete Fourier transform has been 

applied to averaged EP to detect the OEP/TEP laden frequency band. Frequency 

components, which carry the power greater than mean plus two times of standard 

deviation of averaged response, constitutes the EP Laden frequency band. After that, each 

single trial decomposed into their IMFs. IMFs, whose mean frequency which is depicted 

in equation (5.9), falls inside of the laden frequency band, has been summed to reconstruct 

the stimulus related single trial response as described in equation (5.10).  

 

𝑓𝑚𝑒𝑎𝑛 =
∑ 𝐼𝑖. 𝑓𝑖
𝑁
𝑖=1

∑ 𝐼𝑖
𝑁
𝑖=1

 
 

(5.9) 

 

𝑥𝑟𝑒𝑐𝑜𝑛 =∑𝑐𝑗
𝑗

  

(5.10) 

 

For this study, we have utilized 17 single trials for trigeminal stimuli and 14 single 

trials for olfactory stimuli of only one subject. Average of 17 single trials for CO2 stimuli 

of subject-1 can be seen in below Figure 92. After averaging all CO2 single trials, we have 

found the subject-specific trigeminal EP laden frequency band by utilizing DFT of 

averaged response that power greater than mean plus two times standard deviation 

through average TEP spectrum (see Figure 93). Consequently, we have found the 

trigeminal laden frequency band between 0.3827-9.521 Hz.  

After that, all CO2 single trials have been decomposed into their IMF’s. IMF’s of 

second single trial is demonstrated in Figure 94 and Figure 95. Totally nine IMF have 

been obtained from this single trial. In single trial-2, IMFs, whose mean frequency satisfy 

the laden frequency band criterion are IMF-5, 6 and 7. These IMFs were summed to 

obtain stimulus related activity. In Figure 96 and Figure 97, original and reconstructed 

second and eighth single trials are given respectively.  
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Figure 92. Average of all single trials of subject-1 for CO2 stimuli 

 

 

Figure 93. Power Spectrum of averaged CO2 response 
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Figure 94. IMF1-5 for single trial-2 of CO2 stimuli 
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Figure 95. IMF6-9 for single trial-2 for CO2 stimuli 
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Figure 96. Original and reconstructed single trial-2 for CO2 stimuli 

 

 

Figure 97. Original and reconstructed single trial-8 for CO2 stimuli 
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After completing the stimulus related activity extraction of  CO2, same procedure 

has been applied to single trials of olfactory (PEA) stimulation. We have found the OEP 

laden frequency band from average 14 single trials (see Figure 98). IMFs of single trials 

were selected by considering the laden frequency band. In Figure 99, power spectrum of 

PEA response is given. 

 

 

Figure 98. Average of all single trials for olfactory stimuli of Subject-1 

 

In Figure 98, average of 14 single trials is given. By squaring all the spectral 

components by which has been obtained with means of DFT, we have obtained the power 
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And all PEA single trials decomposed into their IMFs with EMD process. After selection 
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In Figure 102 and 103, original and reconstructed single trials of 5 and 8 have 

been given respectively. By analyzing these figures, it is clearly seen that, reconstructed 

single trials shows some differences. Since EP is assumed to be stationary under constant 

stimulus conditions, olfactory fatigue loss of attention and many different reasons ruins 

this stationarity. By using EMD-Based technique, we are able to see this variability. As a 

consequence, it is fair to say that, this technique enables to observe the variation between 

single trials as previously pointed out in [56]. Since conventional averaging may abolish 

the important activities (i.e. ERD and ERS) which are not time-locked to stimulus onset, 

this approach can elicit the amplitude and latency changes between individual trials. 

 

 

Figure 99. Power Spectrum of averaged PEA response 
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Figure 100. IMF 1-4 for single trial-5 of olfactory stimuli 
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Figure 101. IMF 5-8 for single trial-5 of olfactory stimuli 
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Figure 102. Original and reconstructed single trial-5 for PEA stimuli 

 

 

Figure 103. Original and reconstructed single trial-8 for PEA stimuli 
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After completing the stimulus related activity extraction with EMD-Based 

approach, we have compared the findings with wavelet denoising and wiener filter results. 

For trigeminal and olfactory EP extraction, we have compared the RMS of time interval 

0-1.2sec. It can be seen from the Figure 104 and Figure 105, in comparison with other 

techniques, EMD based approach has given closer results in most trials to the original 

single trial for both olfactory and trigeminal stimuli in the sense of RMS calculated in 

corresponding time interval. 

 

 

Figure 104. RMS values between 0-1.2 second for CO2 single trials 

 

 

Figure 105. RMS values between 0-1.2 second for PEA single trials 
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Table 16. RMS amplitudes of PEA single trials 

# Single Trial 
EMD-Based 
(µV) 

Wavelet 
Denoising 
(µV) 

Wiener 
Filter (µV) 

Original 
RMS (µV) 

Single Trial-1 3,30 3,15 1,01 3,86 

Single Trial-2 2,67 3,40 0,83 4,33 

Single Trial-3 6,93 6,69 0,96 7,38 

Single Trial-4 4,64 4,51 0,76 5,34 

Single Trial-5 3,40 3,96 1,14 4,60 

Single Trial-6 3,72 4,23 1,27 5,04 

Single Trial-7 2,73 3,14 0,62 4,06 

Single Trial-8 3,52 3,47 0,91 4,80 

Single Trial-9 4,39 4,82 1,06 5,27 

Single Trial-10 1,37 3,29 1,06 4,29 

Single Trial-11 4,34 3,95 1,11 5,19 

Single Trial-12 3,80 5,49 1,21 6,03 

Single Trial-13 2,93 2,71 0,61 4,39 

Single Trial-14 4,86 5,74 0,92 6,77 

 

Table 17.RMS amplitudes of CO2 single trials 

 
# Single Trial EMD-

Based (µV) 

Wavelet 
Denoising 
(µV) 

Wiener 
Filter (µV) 

 
Original 
RMS (µV) 

Single Trial-1 6,63 6,19 1,36 7.21 

Single Trial-2 6,87 6,03 1,34 7.35 

Single Trial-3 6,55 6,54 1,15 7.28 

Single Trial-4 7,11 6,67 1,10 7,37 

Single Trial-5 3,45 3,75 0,56 4,66 

Single Trial-6 4,10 4,30 0,68 5,28 

Single Trial-7 3,95 4,81 1,04 6,06 

Single Trial-8 4,51 3,80 0,48 4,89 

Single Trial-9 2,40 2,72 0,59 3,91 

Single Trial-10 3,53 3,54 0,55 4.40 

Single Trial-11 4,29 3,81 0,75 4,86 

Single Trial-12 4,24 5,30 1,25 5,97 

Single Trial-13 3,16 3,78 0,60 4,71 

Single Trial-14 5,71 5,13 0,41 5,90 

Single Trial-15 3,38 3,24 0,63 4,38 

Single Trial-16 3,39 3,10 0,65 3,85 

Single Trial-17 2,08 1,56 0,35 3,07 
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After their RMS amplitudes had been observed with 3 different approach, 

similarity between extracted activities and subject’s average was examined by utilizing 

their cross correlations. The reason why we compared with subject’s averaged response 

is, averaging of many trials elicits the stationary brain’s chemosensory responsiveness. It 

is thought that, under same stimulus conditions, responsiveness of the brain remains 

constant in the sense of amplitude and latency.  

 

Table 18. Cross correlation between averaged CO2 response and single trials obtained by 

different approaches 

 Wavelet 

Denoising 
Wiener Filter EMD- Based 

Single Trial-1 0,83 0,76 0,87 

Single Trial-2 0,77 0,76 0,86 

Single Trial-3 0,77 0,62 0,84 

Single Trial-4 0,74 0,66 0,88 

Single Trial-5 0,66 0,55 0,69 

Single Trial-6 0,56 0,54 0,71 

Single Trial-7 0,62 0,52 0,58 

Single Trial-8 0,59 0,39 0,72 

Single Trial-9 0,52 0,61 0,47 

Single Trial-10 0,57 0,57 0,80 

Single Trial-11 0,65 0,45 0,66 

Single Trial-12 0,69 0,72 0,67 

Single Trial-13 0,50 0,55 0,76 

Single Trial-14 0,65 0,53 0,63 

Single Trial-15 0,53 0,59 0,73 

Single Trial-16 0,46 0,61 0,79 

Single Trial-17 0,40 0,38 0,52 

 

It can be seen from Table 18 and Table 19, for both CO2 and PEA responses, 

EMD-based single trial extraction method is able to extract the most correlative signal 

among all utilized techniques within the frame of this thesis. Collaboration of two results 

which have obtained from comparison of RMS and cross correlation values, EMD-Based 

technique gives satisfactory results in estimation of chemosensory stimulus related 

activity. In Figure 106 and Figure 107, original and extracted single trial for CO2 and 

PEA with 3 different techniques is given. It is clear that, in both stimuli type (i.e. PEA 

and CO2 responses), highest amplitude and maximum similarity while extracting stimulus 

related activity has been obtained by EMD-Based extraction technique.  
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Table 19. Cross correlation between averaged PEA response and single trials obtained by 

different approaches 

# Single Trial Wavelet 

Denoising 
Wiener Filter EMD-Based 

Single Trial-1 0,66 0,65 0,69 

Single Trial-2 0,63 0,53 0,69 

Single Trial-3 0,78 0,59 0,88 

Single Trial-4 0,77 0,67 0,83 

Single Trial-5 0,69 0,70 0,79 

Single Trial-6 0,73 0,73 0,70 

Single Trial-7 0,64 0,49 0,68 

Single Trial-8 0,55 0,62 0,77 

Single Trial-9 0,75 0,60 0,72 

Single Trial-10 0,55 0,63 0,27 

Single Trial-11 0,57 0,53 0,65 

Single Trial-12 0,79 0,72 0,62 

Single Trial-13 0,54 0,48 0,73 

Single Trial-14 0,69 0,60 0,84 

 

But there is a critical point we should consider. For all considered 

estimation/extraction (or SNR enhancement) techniques used in this thesis, our main 

intention is to extract only the brain activity, which is related to only chemosensory 

stimuli. By looking at the Figure 106 and Figure 107, outcomes of EMD-based and 

Wiener filter display some oscillatory activity before the stimulus onset which is not 

related to given external stimuli. It’s the fact that, while brain processes the chemosensory 

information, ongoing cognitive, memory and other external/internal stimulus/information 

processing also continues in brain and also, as a natural result, these processes can 

enhance/deplete the power of related/unrelated frequency band/bands. In line with our 

request, we want to consider only chemosensory stimulus related activity. As can be seen 

from Figures 106 and 107, unlike EMD-Based method and Wiener filtering technique, 

wavelet denoising eliminates most of stimulus unrelated activity before the stimulus onset 

(i.e. t=0) and after t=1.2 seconds. Besides this, wavelet denoising has gave satisfactory 

result at cross-correlation and RMS results (see Table 16-19). For these reasons, wavelet 

denoising can be thought as the best choice in light of our intention. Despite the pre-

stimulus activity observed in EMD-based technique, this approach can be used as an 

alternative tool for SNR enhancement of chemosensory stimulus related brain activity 

due to our findings.  
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Figure 106. Original and all extracted single trial-3 for CO2 stimuli 

 

 

Figure 107.Original and all extracted single trial-1 for PEA stimuli 
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CHAPTER 6 

 

ENHANCEMENT FACTOR APPROACH 

 

In clinical conditions, recordings of CSEP and CSERP components (such as N1, 

P2) does not fully indicate the subject’s olfactory performance accurately. They can be 

easily affected by subject’s daily health state, vigilance, hormonal cycle, noise 

interference and etc. For this purpose, we have proposed a new approach called 

‘Enhancement Factor’ for demonstration of the subject’s olfactory performance 

independent from the basal activity of subject’s, motor artifacts and noise interference 

from ambient.  

In this approach, we intended to take into account the signal’s root mean square 

(RMS) values of pre-stimulus and post-stimulus regions (see Figure 108).  

 

 

Figure 108. Subject's recorded EEG on CZ channel. 
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Then, Enhancement Factor (EF) can be calculated as, 

 

𝐸𝐹 =
𝑃𝑜𝑠𝑡𝑆𝑡𝑖𝑚𝑢𝑙𝑢𝑠 𝑅𝑀𝑆 − 𝑃𝑟𝑒𝑆𝑡𝑖𝑚𝑢𝑙𝑢𝑠 𝑅𝑀𝑆

𝑃𝑜𝑠𝑡𝑆𝑡𝑖𝑚𝑢𝑙𝑢𝑠 𝑅𝑀𝑆 + 𝑃𝑟𝑒𝑆𝑡𝑖𝑚𝑢𝑙𝑢𝑠 𝑅𝑀𝑆
 

 

(6.1) 

 

Where RMS is defined as the root mean square root of the corresponding region of the 

signal 𝑓  and is denoted as,  

 

𝑓𝑅𝑀𝑆 = √
1

𝑇2 − 𝑇1
∫|𝑓(𝑡)|2 𝑑𝑡

𝑇2

𝑇1

 
 

(6.2) 

 

In order to investigate the subject’s objective smell performance, we have 

examined the correlations between TDI score of Sniffin’ Stick test results and 

Enhancement Factor results. In this context, we have employed nineteen subjects to this 

process. In Table 20, totally 19 subjects’ TDI scores and EF results are given. 

 

Table 20. Subjects with EF and TDI scores 

Subject 
no. 

EF TDI  
Subject 

no 
EF TDI 

1 0,0149 20,5 11 0,1496 0 

2 0,3668 31,5 12 0,5898 25,5 

3 0,093 20,75 13 0,492 36,5 

4 0,0632 27,75 14 0,5168 34,5 

5 0,0997 26,75 15 0,4613 31,5 

6 0,1834 24.5 16 0,4138 26,5 

7 0,2473 24.5 17 0,2643 26 

8 0,2354 30.25 18 0,2641 35,25 

9 0,1974 5 19 0,2189 24,5 

10 0,0855 2   

 

All these calculated EF results and TDI scores have been conveyed to non-parametric 

Shapiro-Wilk normality test [127] by using SPSS predictive analytics software [128].   

Shapiro-Wilk test is a way to see how data deviates from a comparable normal 

distribution. It compares the scores in the sample normally distributed with same mean 

and standard deviation. If the result is non-significant (p>0.05) it tells that data 

distribution is not far from normal distribution, however, if the test reaches significant 
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level (p<0.05) data’s distribution is away from normal distribution. The test procedure is 

as follows; 

 Obtain the values 𝑥(𝑖) for 𝑖 = 1,2, … , 𝑛 that they came from normally 

distributed population. 

 Calculate the 𝑎𝑖 values for which is given as 

 

(𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛) =
𝑚𝑇𝑉−1

(𝑚𝑇𝑉−1𝑉−1𝑚𝑇)2
 

 

(6.3) 

 

Where 𝑚 = (𝑚1, 𝑚2, … ,𝑚𝑛)
𝑇  expected values for normally distributed samples 

and 𝑉 denotes the covariance matrix. 

 Finally the test statistics is calculated as 

 

𝑊 =
(∑ 𝑎𝑖𝑥(𝑖)

𝑛
𝑖=1 )2

∑ (𝑥(𝑖) − 𝑥̅)2𝑛
𝑖=1

 
 

(6.4) 

 

 If  𝑊𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 < 𝑊𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 distribution is away from normal distribution. 

 

In Table 21, it is found that EF scores converged to normal distribution but TDI score 

didn’t.  

 

Table 21. Normality test results 

Tests of Normality 

 

Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

EF ,176 19 ,125 ,943 19 ,299 

TDI ,260 19 ,001 ,834 19 ,004 

a. Lilliefors Significance Correction 

 

After these findings, EF values and TDI score were conveyed to Spearman Rank Order 

Correlation test. Spearman Rank Order Correlation is used to calculate the strength of the 

relationship between 2 variables. Spearman Rank Order Correlation Coefficient (rho) is 

calculated as, 

𝜌 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑖

√∑ (𝑥𝑖 − 𝑥̅)2∑ (𝑦𝑖 − 𝑦̅)2𝑖𝑖

 
 

(6.5) 
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In Table 22, Spearman rank order correlation coefficient are given. The correlation 

coefficient between TDI scores and EF values is 0.617 (r=.617, n=19, p<0.005).  

According to these findings, these approach may be helpful for obtaining 

normative values and diagnosis of anosmia/hyposmia and normosmia symptoms for 

CSEP/CSERP. And also, with the help of the EF, it is possible to observe the status of 

subjects smell performance in different period of time. 

 

Table 22. Spearman rank order correlation test results 

Correlations 

 EF TDI 

Spearman's rho EF Correlation Coefficient 1,000 ,617** 

Sig. (1-tailed) . ,002 

N 19 19 

TDI Correlation Coefficient ,617** 1,000 

Sig. (1-tailed) ,002 . 

N 19 19 

**. Correlation is significant at the 0.01 level (1-tailed). 
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CHAPTER 7 

 

CONCLUSIONS  

 

In this thesis, first of all, we reviewed the literature about insects and human 

olfactory system. How olfactory system interact with odorant molecules in periphery and 

how odorant information transferred to neural domain and also, how odorant information 

is processed in brain has been discussed in this thesis. After that, electronic nose, a device 

that imitates insects’ olfactory system was reviewed briefly. In literature, there are many 

different approaches have been found. An interesting approach, CNN based e-nose 

structure has been investigated thoughtfully.  

In the second part of this thesis, we have analyzed and reviewed the relationship 

between EEG and CSEP/CSERP which is denoted as responsiveness of the brain to 

chemosensory stimuli.  

Wavelet entropy that is a measure that demonstrates complexity of signal, has 

been utilized to display the state transition in the neuronal structures in the brain to given 

chemosensory stimuli. We have found a significant entropy decrease occurs at nearly 0.5 

seconds after the stimulus onset. It is thought that decrease in entropy concludes brain 

goes from disordered state to more ordered state upon information processing of 

chemosensory stimuli. After the obtaining the time dependent wavelet entropy, we have 

selected three distinct time windows from time evaluation of Shannon entropy. To 

demonstrate the meaningfulness of these entropy variations for all subjects, Friedman and 

Wilcoxon statistical test has been employed. Friedman test has found a meaningful 

increase and decrease of wavelet entropy within these chosen time windows for all 

subjects with an asymptotic significance 0.013 for PEA and 0.01 for CO2. After those 

findings we have searched for the main source of these significance ratings. By utilizing 

the Wilcoxon test, we have observed that entropy decrease while transition from TW-1 

to TW-2 and entropy increase while transition from TW-2 to TW-3 is of prime importance 

of these significance obtained from Friedman test. It can be stated that, through the 

instrument of chemosensory stimuli, complexity of brain decreases due to information 

processing of chemosensory stimuli within pyramidal cortical neurons in the brain. 
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After the wavelet entropy, we have used some signal processing techniques to 

obtain chemosensory related brain activity from ongoing EEG recordings. Wavelet 

denoising, Wiener Filter and EMD-Based techniques have been employed respectively 

for single trial and single subject responses. For single subject responses, we have 

employed Wavelet denoising and Wiener filtering techniques. By looking at the outcomes 

of Spearman rank order correlation tests, signal shapes and RMS values obtained from 0-

1.2 seconds, Wavelet denoising can be thought as best choice for enhancing of SNR of 

the CSEP signals. And for single trial responses, we have evaluated all of these 

aforementioned techniques. Again, cross-correlation results, RMS values and signal 

shapes have been considered for performance analysis and the outcomes of these criteria 

displayed that EMD-Based techniques is most suitable techniques among them. But out 

main purpose was to relieve only chemosensory related activity from ongoing EEG 

activity. By considering the results in both single trial and single subject extracted CSEP, 

Wavelet denoising has become most successful technique among all others in the sense 

of SNR enhancement (i.e. extraction of CSEP). 

In the final section of the thesis, our aim was to propose a metric for identification 

of smell performance that does not affected by daily basal activity of brain of subjects 

and away from subjective comments of expert. We have called this approach as 

“Enhancement Factor”. According to the statistical test done with nineteen subjects, we 

have found a significant correlation between Sniffin’ Stick Test scores and EF results. 

This might be indicate that EF approach could be used for diagnosis of some olfactory 

dysfunction and it can be a reliable tool for evaluation of the smell performance of 

subject’s in different time courses.  

Main aim of this thesis is to open a new perspective in the light of popular signal 

processing techniques to brain’s responsiveness to chemosensory stimuli. In the literature 

there are many studies in which chemosensory responsiveness of brain has been 

investigated with electrophysiological techniques, however, there only very few studies 

utilized from time-frequency tools and filtering techniques and also, there are only one 

study that has employed EMD-Based technique for extraction of chemosensory related 

activity from EEG oscillations. In chapter 5, we have utilized the spectral criteria of this 

EMD-based technique to demonstrate the usefulness of this approach for chemosensory 

researches. 
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Briefly, this thesis contains some signal processing techniques which are new to 

chemosensory research, and some new approaches for development of a diagnostic 

approach for chemosensory studies. 

For the future work, development of EF in the sense of correlation with TDI score 

can be vital for clinical and forensic case studies. And also, separation and estimation of 

the OEP/TEP in different types of odorant stimulus might be very helpful for clinical 

research area and it might be a key study for shortening the analysis time for a reliable 

results. 

To best our knowledge, in the light of advanced signal processing studies 

especially in high frequency oscillatory activities might give very informative results. 

And also, with the help of improved denoising/filtering approaches, extraction of pure 

stimulus specific oscillatory activities without distorting the responsiveness, may be 

possible for future studies and it might help the exact evaluation of smell performance. 

Besides them, instead of common CNN structure which is described in chapter 2, 

utilizing the memory property of memristor in CNN based e-nose system, which has been 

detailed in this thesis, might be a novel and interesting study for odor classification and 

odorant mixture separation. 
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