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ABSTRACT

CONVERGENCE ANALYSIS AND NUMERICAL SOLUTIONS OF THE
FISHER’'S AND BENJAMIN-BONO-MAHONY EQUATIONS BY
OPERATOR SPLITTING METHOD

This thesis is concerned with the operator splitting mefloodhe Fisher’s and
Benjamin-Bono-Mahony type equations. We show that theecbmonvergence rates i (R)
space for Lie- Trotter and Strang splitting method which@stained for these equations. In
the proofs, the new framework originally introduced in (Heh, Lubich, and Risebro, 2013)
is used.

Numerical quadratures and Peano Kernel theorem, whicligsvied by the differenti-
ation in Banach space are discussed In addition, we discesobolev spacH*(R) and give
several properties of this space. With the help of theseestd)jwe derive error bounds for
the first and second order splitting methods. Finally, we etally check the convergence

rates for the time steft.



OZET

FISHER VE BENJAMN-BONO-MAHONY DENKLEMLERININ
OPERATOR AYIRMA METODU ILE YAKINSAKLIK ANAL 1ZI VE
NUMERIK COZUMLERI

Bu tez Fisher ve Benjamin-Bono-Mahony tipindeki denklemaleygulanan operator
ayirma methoduyla ilgilidir. Bu denklemlere uygulanan{dietter ve Strang ayirma method-
lari icin H*(R) uzayinda yakinsakhk oranlarini gosterdik. Kanitlartiaplarak (Holden,
Lubich, and Risebro, 2013) de yapilan yeni yontem kultanil

Numerik kuadraturler, Peano Kernel teoremi ve Banaclylazada turev ele alindi.
Ayrica, H°(R) Sobolev uzaylarindan bahsettik ve birkag¢ 6zelligimdite. Bu konular yardi-
miyla birinci ve ikinci mertebeden ayirma methodlarinitehgnirlari elde edildi. Son olarak,
At zaman araliginda nimerik olarak yakinsaklik oranldeomtrol ettik.
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CHAPTER 1

INTRODUCTION

Partial differential equations have become staggeringtgassful as models of phys-
ical phenomena. With the rapid increase in computing poweecent years, such models
have permeated virtually every physical and engineeriogplpm. The phenomena modeled
by partial differential equations become increasingly pboated, and so do the partial dif-
ferential equations themselves. Often, one wishes a modwyiture different aspects of a
situation, for instance both convective transport andefisipe oscillations on a small scale.
These different aspects of the model are then reflected intialdifferential equation, which
may contain terms that are mathematically greatly diffeneraking these models hard to an-
alyze, both theoretically and numerically.

A computational scientist is therefore often faced with @@ complex equations for
which an efficient solution method must be developed. If ankicky, the equation is of a
well-known type, and it is quite easy to find efficient methdust are simple to implement.
In most cases, however, one is not so lucky; good methods mhbgial to find, and even good
methods may be hard to implement.

A strategy to deal with complicated problems is to "dividel@onquer”. In the con-
text of equations of evolution type, a rather successful@ggh in this spirit has bearperator
splitting.

The idea behind this type of approach is that the overaligiar operator is formally
written as a sum of evolution operators for each term in thdehdn other words, one splits
the model into a set of sub-equations, where each sub-equatof a type for which simpler
and more practical algorithms are available. The overatherical method is then formed
by picking an appropriate numerical scheme for each subtemuand piecing the schemes
together by operator splitting.

The main focus in this text is to apply the operator splitimgthod on two equations;
the Fisher’'s equation and the Benjamin-Bono-Mahony typeaggn, and we will study the
operator splitting method from an analytical and numerpmht of view. Before we start
with the mathematical treatment, we give a brief historikground for the two equations.

We consider the nonlinear Fisher’s reaction diffusion ¢igna

ou u
I — — > .
5%~ Y52 + pu(l —u) z € (—o0,00), t >0 (1.1)



wherea is the diffusion coefficient/ is the reactive factor; is the time,x is the distance
andu(zx,t) is the population density.The coefficientis a non-negative constant andis

a real parameter. The analytical properties and subseqoertutation for minimum wave
speed have been easily interpreted by removing the exghgéndence on coefficients and
a, B in (1.1) by a suitable recalling of andt¢. After recalling the timeg* = §t and space
r* = (B/a)'/?z, and dropping the asterisk notation, equation (1.1) besome

5 = 5o Tu(l—u) (1.2)

Equation (1.2) may be transformed into an ordinary diffaetrequation by substituting
u = u(z) = u(x — ct). Kolmogorov (Kolmogorov,Petrovskii and Piskunov, 193fpwed
that with appropriate initial and boundary conditions réhexists a travelling wave solution
to equation (1.2) of wave speedor everyc > 2.

Equation (1.2), energy released by non-linear term bataenergy consumed by dif-

fusion, resulting in traveling waves or fronts.Travelingwe fronts have important applica-
tions in chemistry, biology and medicine. Such wave fron&enfirst studied by Fisher in
1930s by studying the equation (1.2).
The Fisher’s equation (1.2) occurs in chemical kineticsragtron population in a nuclear re-
action. Moreover, the same equation also occurs in logistpulation growth models, flame
propagation, neurophysiology, autocatalytic chemicattiens, and branching Brownian mo-
tion processes.

In the past several decades, there has been great actidéyaloping numerical and
analytical methods for the Fisher's equation. One of thé fitsnerical solutions was de-
scribed by Gazdag and Canosa (Gazdag and Canosa, 1974)psit@o-spectral approach.
Ablowitz and Zepetella (Ablowitz and Zeppetella, 1979)addished an explicit solution of
Fisher’s equation for a special wave speed. Twizell et alviZ&ll, Wang and Price, 1990) and
Parekh and Puri (Parekh and Puri, 1990) demonstrated itrgolid explicit finite-differences
algorithms to discuss the numerical study of Fisher's egnatTang and Weber proposed
a Galerkin finite element method for solving Fisher’s equratiMickens (Mickens, 1994)
introduced a best finite difference scheme for Fisher’s ggia Mavoungou and Cherru-
ault (Mavoungou and Cherruault, 1994) depicted a numesicaly of Fisher’s equation by
Adomian’s method. Qiu and Sloan (Qiu and Sloan, 1998) usedang mesh method for
numerical solution of Fisher’s equation. Al-Khaled (Kh&l2001) proposed the sinc col-
location method for Fisher’'s equation. Zhao and Wei (Zhao ¥fei, 2003) presented a
comparison of the discrete singular convolution and thteercnumerical schemes for solv-
ing Fisher's equation. Wazwaz and Gorguis (Wazwaz and Gar@004) gave the exact
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solutions to Fisher’s equation and to a nonlinear diffugqoation of the Fisher type by em-
ploying the Adomian decomposition method. Olmos and ShiZ@mos and Shizgal, 2006)
constructed the numerical solutions to Fisher's equatgingua pseudo-spectral approach.
Mittal and Kumar and El-Azab (El-Azab, 2007) contrived Fsh equation by applying the
wavelet Galerkin method. Recently, Sahin et al. (Sahin,Brad) Saka, 2008) applied the
Bspline Galerkin approach to find numerical solution of Ershequation. Cattani and Ku-
dreyko (Cattani and Kudreyko, 2008) developed multiscabdysis of the Fisher equation.
Mittal and Jiwari (Mittal and Jiwari, 2009) developed a nuioal study of Fisher’'s equation
by using differential quadrature method. Mittal and AroMit{al and Arora, 2010) presented
efficient numerical solution of Fisher’s equation by usingfBine collocation method. Mittal
and Jain (Mittal and Jain, 2013) constructed the numermaltisn of Fisher's equation by
using modified cubic B-spline collocation method.

We also study the Benjamin-Bona-Mahony type equations

1
w = (1= 8 P@)u+ S(1- 3270, (u”) (1.3)
This is a class of dispersive nonlinear wave equations a@nefuvarious important cases, e.g.,

P(&) = €, the BBM equation
P(&) = &3, the KdV-BBM equation

Benjamin, Bona and Mahoney (Benjamin,Bona and Mahoney2)18dvocated that
the PDE modeled the same physical phenomena equally wdileasdV equation, given the
same assumptions and approximations that were originatig by Korteweg and de Vries
(Korteweg and de Vries, 1985). This PDE of Benjamin et al.njBmin,Bona and Mahoney,
1972) is now often called the BBM equation.It is used as a@rm@éitive to the KdV equa-
tion which describes unidirectional propagation of wedétyg dispersive waves. As a model
that characterizes long waves in nonlinear dispersive apétle BBM equation, like KdV
equation, was formally derived to describe an approxinmatay surface water waves in a
uniform channel. The equation covers not only the surfaceewaf long wave-length in
liquids, but also hydromagnetic waves in cold plasma, atmwsaves in anharmonic crys-
tals, and acoustic gravity waves in compressible fluids. yW@searchers are attracted by
the wide applica- bility of the BBM equation.In (Khaled, 200 Khaled-Momani-Alawneh
implemented the Adomian’s decomposition method for oligiexplicit and numerical solu-
tions of the BBM equation. By applying the classical Lie nugthof infinitesimals Bruzon and



Gandarias (Bruzon and Gandarias, 2008) obtained, for ergkration of a family of BBM
equations, many exact solutions expressed by variousesangl combined nondegenerative
Jacobi elliptic functions. Tari and Ganji, (Tari and Garg07), have applied two meth-
ods for solving nonlinear differential equations known asational iteration and homotopy
perturbation methods in order to derive approximate ek@mutions for BBM. El-Wakil-
Abdou-Hendi (EI-Wakil, Abdou and Hendi, 2008) used the éxpetion method with the aid
of symbolic computational system to obtain the generalg@dary solutions and periodic
solutions.

A wide range of numerical methods have been employed to ctargmpproximate so-
lutions to dispersive wave equations of KdV-BBM type: fintdume methods
( Dutkyh,Katsaounis and Mitsotakis , 2013), finite diffecenschemes ( Bona, Pritchard,
and Scott, 1985), ( Wei,Kirby, Grilli, and Subramanya, 19%mnite element methods (
Bona,Dougalis, and Mitsotakis, 2007), (Mitsotakis, 2Q0Q8yilez-Valente and Seabra-Santos,
2009) and spectral methods (Ozkan-Haller and Kirby, 199P¢6lloni and Dougalis, 2001),
(Dutykh and Dias, 2007) , (Nguyen and Dias, 2008) .

We now describe each chapter of the thesis:

In Chapter 2, we give some basic concepts. This chapterstarighree main sections.
In the first section, we introduce the Sobolev space and gverlas of for instance
Banach-algebra property for the standard Sobolev spatéise second one, we inves-
tigate the differentiability of general operators in Bamapaces. Lastly, we present the
error term for one and two dimensional quadrature formulas.

e In Chapter 3, we introduce the operator splitting methodgwe proofs of the conver-
gence rates for the Fisrher’s and BBM type equations.

¢ In Chapter 4, we present numerical experiments with the seecoperator splitting
method and confirm the theoretical results.

e In the conclusion we summarize the main results in the thesis



CHAPTER 2

BASIC CONCEPTS

In this chapter, we investigate some concepts for the estmavhich follows the
convergence analysis of the operator splitting method. prbefs of lemmas in this chapter
is clearly given in Appendix A

2.1. Sobolev Spaces

We interested in the Sobolev spaces which forms a Hilbertespaiese spaces are
denoted ag7¢(R) = W*?(R), wheres is integer. The inner product and norm are defined as

(u,v)gs = Z/ Fu(x)dv(x)dr and ||ul|gs = v/ (u, u)gs. (2.1)
j=0 7R

We see that{*(R) contains all functions which has weak derivatives up to psda L*(R)

, and we remark that?(R) = H°(R). ConsiderH*(R) defined whenrs is a positive integer,
with inner product and norm as in (2.1). From the definitiorg @bserve that{"(R) is
continously imbedded itH*(R) for » > s, which results in that the respective norms are

comparable in the following way
[ull s < Cllullar, (2.2)
for win H"(R). We first show that7*(R) is imbedded inL>(R) for s > 1.

Lemma 2.1 If wisin H*(R) for s > 1, thenu is in L>*(R) . Moreover,

1

V2

[ulla < Clful

He, (2.3)

lufl e <

whereC, depends only oas.

Proof See Appendix A. O



Lemma 2.2 The space*(R) is a Banach algebra fos > 1. In particular, if u,v are in
H*(R) for s > 1, then

||UU| Hs S CSHU| Hs U| Hs,
where where”; depends only on.
Proof See Appendix A. O

Lemma 2.3 Letu, v € L*(R). Then||0,(1 — %) (uv)||zz < ||ul|zz||v|| p2-
Proof See (Stanislavova, 2005) O

Lemma 2.4 Letu,v € H*(R) Then||(1 — 92)7*0, (uv)|| s < K|l gs||v]| s
Proof See Appendix A. O

2.2. Fréchet Derivative

Recall the definition of derivative for real valued functson

o)t L) 1)

h—0 h

I

if the limit exists. Writing

we see that the definition of derivative implies thdt:) is a continuous function &, while
it is clearly a continuous function elsewhere (as the diféiable functionf is continuous).
Moreover we have the equation

f(@+h) = f(x) + f'(x)h+ hip(h) (2.4)

We can now generalize this idea to obtain a more general tlefirof derivative. Notice that
we need that domain and range of f are normed vector spatesywise we can’'t add (if we
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don’t have a vector space) or talk about continuity (if we 'tlbave norms). The derivative
defined in this way, the usual definition on general vectocepais called Fréchet derivative.

Definition 2.1 Let X andY be normed vector spaces, abldC X open,f : U — Y . We
say f is differentiable at € U if there exists a bounded linear mdpf (z) € L(X,Y)! and
a continuous function) : V' — Y, whereV is an open neighbourhood of € X , with
¥ (0) = 0, such that

f(x+h) = f(x) + (Df()h+ [|hl[y(h)

forall h € V. (Note V must be chosensuchthat V =z +vjlv € V C U.)

We can also relate this to the original limit definition by the following lemma.

Lemma2.51f f: U — Y differentiable at x, then for alk € X we have

Df(z)h = lim flatth) - f(z)

t—0 t

)

wheret is chosen irR.

Proof See Appendix A. O

2.2.1. Higher Derivative

Let f € C(U,Y) be differentiable in the open sét C X and considerf’ : U —
L(X,Y)

Definition 2.2 Letu € U: f is twice (Fechet-) differentiable at. The second (Fchet)
differential of f at u is defined as

d*f(u) = df'(u). (2.5)

the space of linear continuous maps from X to Y



If fis twice differentiable at all points df we say thatf is twice differentiable i/
According to the above definitiod? f (u) is a linear continuous map frofd to L(x, Y):

d’f(u) € L(X, L(X,Y)). (2.6)

It is convenient to seé” f () as a bilinear map o . For this, letL,(X,Y') denote the space
of continuous bilinear maps froti x X — Y. ToanyA € L(X, L(X,Y')) we can associate
O, € Lo(X,Y) given by &4 (uy,us) = [A(uy)](uz). Conversely, givenb € Ly(X,Y)
andh € X,®(h,.) : k — ®(h,k) is a continuous linear map from X to Y; hence to any
® € Ly(X,Y) is associated the linear applicatigh— L(X,Y),

®:h— ®(h,.) € LX,Y) 2.7)

It is easy to see that in this way we define an isomorphism ketw¢ X, L(X,Y)) and
Ly(X,Y) . Actually, such an isomorphism is an isometry because testgts

1@l x,oixyy = “ilnlgl @) Lex,v) (2.8)
= sup sup [|®(h, k)| = [|®(h, k)| L, x,v) (2.9)
(IRI<T |F|I<1

In the following we will use the same symhéif (u) to denote the continuous bilinear
map obtained by the preceding isometry. The valué¢*¢f«) at a pair(h, k) will be denoted

by

a2 f(u)[h, K. (2.10)

If f is twice differentiable inJ, the second (Fréchet) derivative piis the mapf” :
U— Ly(X,Y),

" ou— & f(u). (2.11)

If f”is continuous froni/ to L,(X,Y") we say thatf € C*(U,Y).
To define(n + 1)—th derivatives(n > 2) we can proceed by induction. Giveh:



U — Y, let f ben times differentiable inU. Thenth differential at a point: € U will be
identified with a continuous-linear map fromX x X x X x ... x X (ntimes) toY (recall
that, as before , there is an isometry betwéén, ..., L(X,Y) and L, (X, Y)).

Let fW . U — L,(X,Y)

JARER T d" f(u).

The (n + 1)—th differential atu will be defined as the differential gf™, namely

A" f(u) = df"(u) € L(X, L,(X,Y)) = L,(X,Y).

We will say thatf € C™(U,Y) if f is n times (Fréchet) differentiable ity and thenth
derivative /" is continuous frontU to L,,(X,Y’). The value ofd" f (u) at (hy, ..., h,) Will be
denoted by

d" f(w)[hy, ..., hy).

If h = hy = ... = h, we will write for shortd” f (u)[h]".

2.2.2. Taylor's Formula

Let f € C™(Q,Y) and letu, u+ v € @ be such that the interval, v +v| C Q. Then,
Taylor’s formula for Fréchet differentiable maps is that

Flu+v) = flu)+df(W)v] + ... + /0 (1 — )1 d™ f(u + tv)dt[v]".

(n—1)!

The last integral can be written as



(n—1)! /o (1 —t)"d™ fu+ to)dtfo]" = %d(n)f(u)[v]” + e(u,v)[v]"

where

! /1<1 — )" d" f(u+ tv) — d" f(u)]dt — 0 as v — 0.

2.3. Numerical Quadrature

Quadrature refers to any method for numerically approxmgahe value of the defi-
nite integrals

/abf(x)dx and /ab /cdf(a:,y)dydx,

The main focus in this section is the error term for one anddwaeensional quadrature for-
mulas, and we start with a treatment of former. We use Peameektheorem to find error
formulas for two one dimensional quadrature formulas asd @le find a error formula for a

two dimensional quadrature formula.

2.3.1. One Dimensional Quadratures

The quadrature formula yield an approximation to the irdég@nd can in general be
given as

I(f) = wiof (zro) + > wirf (k1) + .. + Zn Wi f" (T, (2.12)
k=0 k=0 k=0
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wherewy; are the weights{m; }; C N, {xy; }x.; C [a,b] andf isin C"[a, b].The error function
for this quadrature rule is given as

— /b f(z)dz, (2.13)

and tells us of how good (2.12) approximates the integralef@ different forms for (2.13)
exist, and we focus on the Peano kernel form, which we prédsdatv.

2.3.1.1. The Peano Kernel Theorem

" flk) _
flay =y Lol L 5[ I e = pe) o), (244)

which is valid sincef is in C"*1([a, b]). The errorE is a linear operator, thus(f) = E(p, +
rn) = E(pn) + E(r,), whereE(p,) = 0 because (2.12) integrates aiin P,, exactly.Thus by
using (2.13),

E(f) = E(r) = I(r,)— / ()

_ / / FE @) (@ — b dtd

S T / O 6 (@ — 1) dd

where we have introduced

11



Using (2.12) forr,, gives

Pew = 105 [ o - o - 5 [ [ e

1 ’
= > o [ SO0 - oy

nl e “
1 — d ’ (n+1) n

o Zwm%[ S (@ — ) di] +

" k=0 @

S D [ 0y —

n! pre e a +

1 b b
- / / fO @) (v — ) dtdr

— 1) did

(2.15)

The integration and differentiation in the sums have to berainanged, to yield what we want.

Thus, the following needs a proof,

L[ e —onag = [ ol - o

(2.16)

for 1 <k < n. Fork < n this follows immediately sincer —t)’} isn — 1 times continuously

differentiable. In particular, fok = n — 1 we get

qr—1 n—1

[ 1 = o = [ )l - o

which by evaluating the differentiation on the right handesieads to

m—1 b b
Tl e = = [ = o

n! /x SOV (z — 1) dt.

(2.17)

(2.18)

(2.19)

The integral on the right hand side is differentiable as afion of z, because the integrand

is jointly continuous inz and¢. Thus, by the fundamental theorem of calculus,

12



d(i dfn i / FOR @)@ —td) = nlf" (@) (@ —2) +nl /:f"“(t)dt (2.20)
= 0+/ fn-l—l(t)%[(x_t)n]dt

= [ e - e

This proves that (2.16) holds far= n. We return to (2.15), and interchange the two opera-
tors,

From the continuity of the integranti" ) (¢)(z — t)", we interchange the integration order
of the double integral,

1 b b 1 b b
ﬁ/ / f("H)(t)(a:—t)ﬁdtda::g/ f(”“)(t)/ (z — t)" dxdt.

Thus,

E(’I’n) = / f(n+1 <Z wko(xko — t)i —+ Z W1 ddl‘ (SL’M — t)i

d" n 1 ’ n ’ n
++ZU}kn%(l’kn—t)+)dt— m f( Jrl)(t)/a (.I‘—t)er.Tdt
n! J,

Hence, the error of the one dimensional quadrature rule hbampact and elegant form. This
is the essential of the classic Peano kernel theorem, whichawve proven above.
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Theorem 2.1 (Peano Kernel theorem) If is in C"*!([a, b]) and | is a quadrature rule given
in (2.12) that integrates alh in IP,, exactly, then

B = 1) [ o= [ roR @ (2.21)

whereK (t) = E,((z — t)%) is the Peano kernel.

2.3.1.2. The Rectangle Rule

The simplest quadrature rule in one dimension is the (righher)rectangle rule,
which is given as

h
/ @)z ~ h.f(h) (2.22)
0
and the rule integrates aflin P, exactly. The error is
h
B(P) = h.sh) = [ fla)da,
0
and from Theorem (2.1) we get the Peano kernel for the relgaalg, which is given as
h h
Kt)=FE.((x—t)%) =h(h—1t)5 — / (x—t)%dx =h— / de =t (2.23)
0 t

where we have used the fact tat—¢), = h —t sinceh > t forall ¢ € [0, h]. Thus the error
for the rectangle rule can be written as

E(f) = /O (K (t)dt. (2.24)

In particular,K (t) does not change signs @h 1], so we can apply the mean value theorem
for integrals.
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Hence,

h
E() =110 [ Ko
0
for some¢ € [0, h]. Thus, we conclude that the error is

E(f) = f(§)h*/2

2.3.1.3. The Midpoint Rule

Another simple quadrature rule is the midpoint rule, whictegrates allf in IP; ex-
actly. Itis given as

/0 f(z)dz ~ h.f(h/2) (2.25)

Since (2.25) is exact for afl in P, , it is possible to obtain two Peano kernels. Similarly as

above, the first order Peano kernel is found as

h h
Kl(t):Ex((x—t)i):h(g—t)i—/o (a;—t)ida;:h—/t dr =t,

Kalt) = Eulla=00) =5~ = [ o= t)da

= h(=—1) —/t (x = t)da = h(5 —t) =~ (2.26)
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Hence, there exist two error formulas for the midpoint rule,

Ei(f) = /f KA (1 /K1
5 = [ Foma—r [ son

Thus, we conclude that the errors are,

Ei(f) = f'(E)h*/2
By(f) = —f"(&)h*/6,

2.3.2. Two Dimensional Quadratures

We derive a two dimensional midpoint rule for the double gmnéd

/a b / " fay)dyda,

The starting point is the two dimensional Taylor series asp@an. In one dimension, the
Taylor series expansion fdt(z) in C" ([0, 1]) is given as

B , F"(0) F(0) = F™t(¢)
F(1)=F(0)+ F'(0) + o Tt CESI (2.27)
for £ in [0, 1]. Define the parametrization éf as
F(t) = f(a+th,b+tk), (2.28)

for somef(z,y) andt in [0, 1]. We assume thaf(x, y) has continuous partial derivatives up
to ordern + 1 at all points in an open set containing the line segmentijgitie pointga, b)
and(a + h,b+ k) in its domain. For simplicity we will only derive the Taylsrformula for
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n = 1. The derivatives of’(¢) is given as

F'(t) = hf,(x+th,y+tk)+ kfy(z+thy+tk),
F'(t) = B2 foulx + th,y + th) 4+ 2khfuy(x + th,y + th) + k2 f,, (x + th,y + tk).

Thus by using (2.27 and (2.28), we obtain

F(1) = f(a,b)+hfe(z+h,y+Ek)+Ekfy(x+hy+k)
+%(h2fm(x + &,y + €K) + 2kh foy (x4 Eh,y + EK)
—l—kayy(:L’—i-fh,y—l—fk)) +

where the dots involves higher order derivatives fowhich not are of interests. Letting
h =z — aandk = y — b, we obtain the second order Taylor formula fdr:, ),

f(x,y) = f(a’ab)+(x_a)fx(aab)+(y_b)fy(aab)
L0 fonlat 6 — )b+ €y — D) + 2K f (a+ €@ — a).b+ E(y — )
R fyyfa+ €(0 — ), b+ £y — ) (2.29)

Returning to the double integral, we obtain using (2.29),

/Oh /0”3 f(z,y)dydx = /Oh /0m f(z,y)dydz + R(f), (2.30)

where

h T
R(f) = /L/«x—@ﬁmw>uy—wnmﬁmwm

= / / (R fre(a+&(x —a),b+E(y — b))
+2khfoy(a+&(x —a),b+&(y — b)) (2.31)
+k fyy(a+ E(x = a), b+ E(y — b)))dyda
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The integral on the right-hand-side in (2.30) is just theaaskintegration domain times the
function itself. Thus, an approximation for the double grtd is given as

h x 2
|| tamdvis = 5 en + RO, (2:32)

and the error is given as

B = [ [ ftedvdr =5 pla) = RO

which by (2.31) is bounded as

h T h T
BN < Il [ [ @ = oyl < mgx gl [ [ =iy

h2 h T
— ?mTax\me/o /0 (:L’—a)Qdydaz\

h T
st fol| [ [ (@~ o)y~ b)dydal
0 0

/{ZQ h T )
Smaxlfll [ [ - vPdyds
0 0

whereT = (z,y) : 0 < y < z < h. By evaluating all of the above integrals, we get

B < max|Fllsh* — S0+ max | Fl[TH — on
= %2 7z31><|ﬁm||ih4 — %ah?’ - %2h2|
+kh max |f$y||ih4 - %bh?’ - %h?’ + abh?| (2.33)
+%2 mTaX\fyyHih‘l - §h3 + §h2|

which is the error bound for the two dimensional midpoingerin (2.32).
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CHAPTER 3

OPERATOR SPLITTING

Operator splitting methods help us reduce the complexitg@Eystem and reduce the
computational time. It can be regarded as a time-discteiizanethod. We divide the time
interval |0, t.,.4] iINnto V equal parts. With splitting it is possible to solve each sabfem with
a suitable numerical method chosen to the correspondingmpdor a small time stepAt.

3.1. General Formulation

In this study, we use Lie-Trotter and Strang splitting meyoespectively, i.e.,

Uny1 = U2 (u,) = 5 o D4 (uy,), n=10,1,2,.... (3.1)

Ui = U (u,) = 477 0 08 0 047 (1), n=0,1,2,.. .. (3.2)

3.2. Statement of the Problem

With the general formulation in Section 3.1 in mind, we fotata the problem which
we shall delve into. Consider the initial value problem

uy = Au+ B(u) uli=g = uo (3.3)

wherez is in R andt is in the interval[0, 7] for a fixed time7" > 0 . We require that
andu(t) are in H*(R), where the ordes is specified in details later. Applying the operator
splitting method to (3.3), and splitting it into two subetjaas gives

vy = Av (3.4)
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and
u = B(u) (3.5)

whereA is an unbounded linear operator aBu) is a bounded nonlinear operator.
In this study, our focus is on the Fisher’s equation

u, = POPu+ au(l —u) (3.6)
= [P(0y)u+ au(l —u)

and Benjamin-Bona-Mahony type equation
= (1 — 02~ P(D,)u + %(1 _ )10, (u?) (3.7)

wherea, 5 are inR and P is a polynomial of degreé> 2. Thus, the polynomiaP is linear
with degred > 2 such that the corresponding Sobolev norm of the solutionadancrease.
The formal requirement and proof are given as follows

Lemma 3.1 Let P be a linear polynomial of degrele> 2 with constant coefficients, which
satisfies

ReP(i¢) <0 forall £eR (3.8)

In addition, let m be a integer such that > [, and assume, is in H™*(R) and the solution
' (vg) = v(t) of vy = P(0,)v, v|i=o = v isin H™(R) and satisfies

/(ai+l/2v)2 < o0,
R
forall j < m and!l even. The®(v,) has a non-increasing norm i (R), in particular

125 (vo) [z < [Jvoll s
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Proof Using the assumptiong) is given asP(z) = 251:2 a,x®, wherea, is in R for all
a. Thus (3.1) becomes

I -1 2
vy = @0,v + 110, v+ ... + ax0;v.

The time evolution ofb! () is given as
thH(I)t(’Uo)HHm = (v,v1)gm = Z/@J (w0 + a 105" + o+ ax0)vde. (3.9)

It is sufficient to estimate one general term in the above Say,

Z/@g;valﬁflvdx:alZ/ag;vag;Hvd:c. (3.10)
j=0 "% j=0 "%

By partial integration the above equation turns into

alZ/R@iv@iHvdx = alZ([(’?iv@iH_lv]iooo—/R@ylv@iﬂ_lvdx)
=0

Jj=0

m
= —CLzE /6;+1v8i+llvd:c
j=0 "R

where we have used that the derivatives on v of order up to mydexzero whenr —
+o00. Performing partial integration together with the decayparty for the derivatives aof
subsequently, we getifeven

alZ/aj 8]+lvdx—alz /8””2 2dx——a12/ 8]”/2

By the property given in (3.8), the coefficient al is such ti&t right-hand-side of the above
equation is negative, thatdig > 0. We write this for simplicity as

a Z/R@gvaiﬂvdx = — Z/R(ﬁiﬂ/Qv)de = —[|0Y2v] gym. (3.11)
j=0 Jj=0

21



If [ is odd, we obtain by partial integration

alZ/ﬁivaﬁlvd‘x = alZ(—l)l/6$(8£+(l_1)/221)2dx
j=0 /R j=0 R

= —a Y (03P 2de = 0 (3.12)
j=0

By using the estimates in (3.11) and (3.12), we get for (3.9),

Ld

10 (w0} B = —COE 2ol 3 < 0 (3.13)

whereC' is a constant. Solving the differential equation gives

125 (vo)llzm < [voll s

OJ

The upcoming analysis relies on a well- posedness theor{Bf8) in H°(R). For simplicity

ints for the refering, we list the well- posedness requinetméor (3.3) in addition with the
assumptions for.0 andu(t), as hypotheses for arbitrary order> 0 of H*(R), and specify
for which k they should hold in details for the Lie-Troter and Strangtspgs below.

Hypothesis 3.1 (Local well-posedness). For a fixed tirie there existd? > Osuch that for
all «° in H*(R) with |lug| < R, there exists a unique strong solutierin C([0, 7], H*) of
(3.3). In addition, for the initial data, there exists a constar{ (R, T') < oo, such that

[@(t) = w(®)]| e < K(R,T)||to — vol|
for two arbitrary solutions: and, corresponding to two different initial data, andw.

The requirement in (3.14) is the same as requeringuhat local Lipschitz continuous. The
last hypothesis requires that the solution and the inigd@re bounded in the Sobolev spaces.

Hypothesis 3.2 (Boundedness). The solutiaft) and the initial datau, of (3.3) are both in
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H*(R), and are bounded as
lu(®)||gr < R < p and ||| gx < C < o0, (3.14)

foro <t <T.

3.3. Convergence Analysis for the Fisher’'s Equation
3.3.1. Regularity results for Fisher’'s Equation

Here, we study on the regularization estimates. L@}, @(¢) be solutions of (1.2)
with initial conditionsuy, i for 0 < t < T interval, then,

t
u(t) = ey, +/ ey (5)(1 — u(s))ds.
0
and
2 t 2
a(t) = ey +/ e =20 (s) (1 — a(s))ds.
0
then subtracting implies
2 t 2
u(t) — a(t) = €% (uy — 1) +/ =90 (4 (1 — w) — (1 — @))ds. (3.15)
0
Taking H° norm

[u(t) = a)] < [luo — tol| + /0 e (u(1 = u) — a(1 - @))||ds.
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[u(t) = a(t)l|las < HuO—ﬁoHHer/O [(w(l = u) —a(l — )l gsds.

t
< Huo—ﬁOHHs—i—C'/ |(w —a)||||lu+ @ — 1| g=ds.
Ot
< ug — tol| g +C/ |(w — @)|| max{||u||gs, [|@] s, ||1] s }ds.
to
< Huo—ﬂOHHs—i—/O L||(u — a)||ds.

whereL = C max{||u|

1

e, || 8] ms, || 1| < - by Gronwall's lemma we obtain the bound

lu(t) = @(t)llm= < e™lluo — o

Lemma 3.2 If ||ug
0<t<tM).

ms < M then there exist§(M) > 0 such that||®p(ug)||zs < 2M for

Proof Since the linear flowe” preserves théf* norm, we only need to compare the non-
linear part. The nonlinear part thatis = w(1 — w) can be solved exactly ,it is

t

w(t) = ——— (3.16)

1 — ug + upet

The solution of the nonlinear part is a function of initialnctition. Hence we obtain the

inequality || ® g (uo) || gs < 2M. O

In the proofs of the convergence rates for (3.1) and (3.2) need to expan® s (ug)
using Taylor series expansions of first and second orders,Th(«,) needs to be continuous,
such that the expansions are valid. The following lemmasgsdkie sufficient continuity.

Lemma 3.3 If ||uo|lzs < M then there exist$ depending onV/ such that the solution of
Fisher’s equation with initial datau, w(t) = ®%;(ug) satisfies

w e C*([0,%), H*) and w € C3([0,1], H*). (3.17)
Proof Recall the Lemma 3.2, ifug||gzs < M then|w(t)||gs = ||Ps(uo)||ms < 2M for
t € [0,¢] and we can define

w(t) = ug + tB(ug) + /0 (t — s)dB(w(s))[B(w(s))]ds, (3.18)
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wheredB(w)[B(w)] = w(l — w)(1 — 2w). Sincewy, = dB(w)[B(w)] = B(w),, w,(0) =
B(ug) = w(0) andw(0) = uy = w(0), we havew = w. Now we have to show that
w € C2([0,1], H*). Start with

[@llms = NldB(w)[B(w)]llg: = [lw(l —w)(1 - 2w)] =
< wllgs (1 = w) g [ (1 = 2w) -
< Kilwllgs|[wlms[wl s (3.19)

Hence||wy || gs < Ki||w||3;, and Lemma 3.2 completes the proof.
For the second statement, define

w(t) = U0+tB(Uo)+%dB(“0)[B(u0)]
[ @Bt B, Bt
+dB(w(s)) [dB(w(s))[B(w(s))]])ds,

where > B(w)[B(w), B(w)] = w(l — w)(6w? — 6w + 1) and dB(w) [dB(w)[B(w)]] =
w(l—w)(1—2w)?. Sincewy(0) = d*B(w)[B(w), B(w)]+dB(w) [dB(w)[B(w)]], @ (0) =
dB(uo) [B(u)] = B(ug)y, W (0) = B(ug) = w;(0) andw(0) = uo = w(0), we havew = w.
Now we have to show that € C*([0, ], H*). Start with

[@raells = ||d*B(w)[B(w), B(w)] + dB(w) [dB(w)[B(w)] |-
< =20 (1 = w)’||as
< FollwlEs 11— w)lE
< Klwl|ly: (3.20)
Hencel||wy || s < K||w||3;. and Lemma 3.2 completes the proof. O
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3.3.2. Lie-Trotter Splitting

3.3.2.1. Stability in H*® space

Lemma 3.4 Let uq, u; be the Lie-Trotter splitting solutions satisfying Equati¢8.1) with
initial data ug, tg in H*. Then

Hu1 — 111HH5 S eLAtHuo — ITL()HHS, (321)

whereL = K max{||u]

|1 |

1

e}

Proof Sincee” preserves thél* norm, we only need to compare nonlinearities in splitting

Hs»y Hsy

solutions.
w(At) = d5', w'(At) = B(uy)
Hence,
uy = u(l —u)
gy = (1 — 1)
(up — 1) = (u(l —u) —a(l —a))
integrate from) to ¢

up — Uy = ug — Ug + /t(u(l —u)—u(l—a))ds (3.22)
0

Taking H° norm,

t
lur —allyy < mm—aﬂ;+[:wmr—m—aa—a»MAs
t
< mm—%fPHJ{/Hu—M@Wu+a+nw;w
0

t
< wwwmm+L/Wm—mmw
0
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where L = K max{||ui| gs, ||@1| s, |1||z=}. By using Gronwall's lemma,we obtain the

bound in equation 3.21 O

3.3.2.2. Local error in H® space

Lemma 3.5 Let s > 1 be an integer and assumption (3.14) holds foe= s + 2 for the
solutionu(t) = ®4* ;(uo) of (1.2). If the initial datau, is in H**2(R), then the local error of
the Lie-Trotter splitting (3.1) is bounded #*(R) by

U2 (ug) — @2 (ug) || s < C1AL, (3.23)

whereC' only depends ofjuy|

Hs+2.

Proof In the following proof, we follow similar way to (Lubich, 2@) and (Holden,
Lubich, and Risebro, 2013). Fisher’s equations are in tha fo

ur = Au+ B(u), (3.24)

whereAu = (0?)u andB(u) = u(1 —u). The exact solution ig(t) = ®*(u,), from variation
of constant formula, fof0, At] interval, it can be written as

At
u(At) = 2y + / e(At_S)AB(u(s))ds. (3.25)
0

This is similar to formulap(t) — ¢(0) = [, ¢(s)ds whenep(s) = eA1=)4y(s),

p(At) = u(At) p(0) = e ug
(p/(S> _ _Ae(Atfs)Au<S> + e(Atfs)A ’U/(S)
~—~—
Au+B(u)
Second part of the Equation (3.25) can be written with sinidemula by taking

©(p) = B(e®*"4u(p)), and then we have
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Writing s instead oft, we obtainB(u(s))
Bu(s) = B ) + [ dBE P u(o) e Blu(p)dp.
0
After inserting Equation (3.27) into Equation (3.25), wé ge
At
u(At) = ey + / B4 B(esug)ds + Ey

0

where
At s
Bi= [ [ e B () e Bl dpds
0 0
The Lie-Trotter splitting solution fol0, A¢] interval can be written as
uy = U (ug) = G (e uy),

We use the first-order Taylor expansion with integral rerdairterm inH ¢,

5 (v) = v+ AtB(v) + At /0 1(1 — 0)dB(®9 (v)[B(PI4 (v))]db.

This is justified forv = e®*4u, € H*.Therefore, we obtain

uy = ey + AtB(e® ) + Fy

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)
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with

1

By = AP / (1 = 0)dB(@IA (A1) [B(BIA (A, )] d6 (3.33)
0
Thus, the error becomes,
At
uy — u(At) = AtB(e2ug) — / e A=A B(es g )ds + (Ey — Fy) (3.34)
0

and hence the principal error term is the just the quadraros of rectangle rule applied to
the integral ovef0, At] of the function

h(s) = eAt=94B(e3y,) (3.35)

we express the quadrature error in first-order Peano form,

Ath(At) — / Ath(s)ds = AP / 1 K(O)R (OAL)dO (3.36)
0 0

wherex is bounded kernel. Herig(s) = —e(A=9)4[ A, B](e*4u,) with double Lie commuta-
tor

[A, Bl = dA(v)[B(v)] — dB(v)[Av] (3.37)

JAW)B()] = lim ALEIBW) = AQ)

t—0 t
(@) BW) — (@)
t—0 t

— (1 -0v)
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dB(v)[Av] = lim BWE A = B()

t—0 t

— lim (v+tAv)(1 — (v +tAv)) — B(v)
t—0 t

= Av(l —2v)

We need to find bound i ¢ for each of the terms. Lemma 2.2 will be helpfull to bound them

Now, start with the first term, then we get

[dA@)[BO)]II = 03(v(1 =)z
< (@ = 0))[lae+2
< Cillollfse

The other term follows in a similar way i.e.
ldB)[Av]| = [18%0(1 - 20)||-
< o(1 = 20) || gs+2

< Cyl|vl[Fese
Sinceet4 does not increase the Sobolev norms, it follows that
17 (s)]| < Clle* uq]

Frov2 < Cllug||Frove

Thus, the integral (3.36) is bounded as
1
A / KOV (OAD)A0 < Clluo|Zers AL
0

We continue with the error bound fd#; in (3.34).

At s
1B ]| < / / [eA= 4GB (=240 (p)) [P B(u(p))]|| m-dpds.
0 0

(3.38)

(3.39)
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dB(e* " u(p))[e* P B(u(p)] = e* 1 B(u(p))(1 — 267 u(p))

Inserting the result into the equation (3.39), we get

At ps
1B < [ [ ISl B () (1~ 2e () e dpds
0 0
At ps
< [ [ 1B - 2e 0 ulp)edpds
0 0

At s
< 0 [ [ 1Bl - 262l dpds
OAt Os
< c / / 1B(u(o)))l| - l[u(p) = dpds
0 0
At s
< c / / lu(p)|l-dpds
0 0
< CA#R?

and the bound foFE,

1
(P2 N /0 (1= O)|dB(®5 (™ uo) ) [B(PE (e uo))] | =¥

dB(P% (e o)) [B(PF (2 ug))] = (1 — 205 (e o)) B(F (€2 up))
Then, we can rewrite the norm &f, as follows,

1
Bl < At/( O)I(1 — 205 (e uo)) B(PE™ (€2 o)) | 110

S At C/ || ZCI)GAt AtAuo))|HS (@%At(eAtAuo)”Hsd@
< A2 / C B8 (A ) | e[| BRI (2 ) | -

0

1
< AP / B (2 ug) [ B4 (2 ) .6

0

(3.40)
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For a sufficiently smaliA¢, Lemma 3.2 ensures that

[ B4 o)l < [BE*(e>ug)|| s < R. Thus,

B < CAPR? (3.41)

Hence, combining the estimates in (3.38),(3.40) and (3wé)obtain the quadrature error is
O(A#?) in the H* norm forug € H**2, O

3.3.2.3. Global error in H* space

Theorem 3.1 Suppose that the exact solutiof, ) of Equation (1.2) is in/**2 for 0 < t <
T. Then Lie Trotter splitting solution,, given in Equation (3.1) has first order global error
for At < At andt,, = nAt < T,

i — u(-, ta)|le < GAR, (3.42)

whereG only depends ofjug|| gs+2, v and T

Proof The Lady Windermere’s fan is used in the proof. The stabagyimate is given
in Lemma 3.4 and local error is in Lemma 3.5. Let,) = & %24 (y(t,)) be the exact
solution of Equation (1.2) at timg, with initial dataw(¢,) at timet,. Lie-Trotter splitting

solutionu,, = U2*(u,,_,) is

u, = ®5" 0 ®4M(u,_1), n=1,2,.... (3.43)
Then we estimate
Up — U, t,) < 1:[ U (At)(ug — ulte)) + Z 1:[ P(At)d;
k=0 j=1 k=j
whered; = (V(At) — ®(At))u(t;—1)

< S0 WEDN(BA (1)) — ultrn)
k=1

< 3 U u(n)) - U(u(t))
k=1
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Taking H* norm,

n—1

me <) TR u(ty)) — U (ulty))]

k=0
-1

||Un _u(atn)| s

n

Z eL(n—k—l)AtH(I)At(u(tk)) _ \I/At(u(tkm

Z e C(a) At
k=0

ne T C(a)At?
T C(a)At (3.44)

IA

HS

IA

IN

IA

sinceel(n—k-1At < LT andnAt < T. This completes the proof. O

3.3.3. Strang Splitting

3.3.3.1. Stability in H* space

Lemma 3.6 Letuy, 4, be the Strang splitting solutions satisfying Equation Y3vizh initial
datawug, ug in H*. Then

Hu1 — 111|]Hs S eLAtHuo — aoHHs, (345)

whereL = K max{||u]

1

s}

Proof Sincee” preserves thél* norm, we only need to compare nonlinearities in splitting

Hs, |1~L1| Hs,

solutions.

w(At) = d5', w'(At) = B(uy)
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Hence,

integrate fron) to ¢
t
uy — Uy = ug — Up + / (u(l —u) —a(l —a))ds (3.46)
0
Taking H° norm,

Hs ds

|ur — |l < [luo — ol

Hs+/0 l(u(l - u) — a(1 - )|

t
0

he nonlinear term has Lipshitz constdnhiwhich is bounded by Lemma 3.2. Finally Gron-
wall’'s Lemma implies the bound in Equation (3.45).
O

3.3.3.2. Local error in H® space

Lemma 3.7 Let s > 1 be an integer and assumption (3.14) holds ko= s + 4 for the
solutionu(t) = ®4* 5 (ue) of (1.2). If the initial datau, is in £*™*(R), then the local error of
the Strang splitting (3.2) is bounded i°*(R) by

U2 (ug) — O (ug)|| e < CAL, (3.47)

whereC' only depends offug|| gs+4.
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Proof In the following proof, we follow similar way to (Lubich, 2@) and (Holden,
Lubich, and Risebro, 2013). Fisher’s equation is in the form

uy = Au+ B(u), (3.48)

whereAu = (0?)u andB(u) = u(1 —wu). The exact solution ig(t) = ®'(u,), from variation

of constant formula, fof0, At] interval, it can be written as
At
u(At) = Ay + / e(At’s)AB(u(s))ds. (3.49)
0

This is similar to formulap(t) — ¢(0) = [, ¢(s)ds whengp(s) = et=94u(s).
Second part of the Equation (3.49) can be written with sinidemula by taking
©(p) = B(e®*"4u(p)), and then we have

Bu(s) = B ) + [ dBE (o) e Bu(p)dp. (350)
0
After inserting Equation (3.50) into Equation (3.49), we ge
At
u(At) = eAuy + / A=A B (e ds + By (3.51)
0
where
At s
E, = / / eB944 BP0 (p)) e P B (u(p))|dpds. (3.52)
0 0
The Strang splitting solution fdf, At| interval can be written as

w = T (ug) = €72 B! (e ), (3.53)
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and Taylor series expansion can be used for nonlinear pentes.

BA(v) = v+ ALB) + %Atde(v)[B(v)]

a8 [ 30 07 B ) (B (0). BEF ()

+dB (P (0) [dB(P5 (v))[B(®E (v)]])d (3.54)

AtA

wherev = e~z ug. The simplified integral remainder term is
1
1
At? / 5(1 —0)*(d*B(B, B) + dBdBB)(®%% (v))d6. (3.55)
0

Hence the Strang solution is

AtA . AtA
u = eMug+ Ate™r B(e 2 ug)

tA tA tA

1
+§At26%d3(67u0)[3(67u0)]

+AL? /O 1 %(1 — 0)2¢°% (®B(B, B) + dBdBB)(®/2(v))df,  (3.56)
or it can be written as
uy = ey + At6¥B(6¥UQ) + Es. (3.57)
where

1
1 t
By = AP / 51— 0)2e°%" (*B(B, B) + dBdBB)(®%2! (v))dd
0

In order to calculate the local error we need to subtract BEgué3.51) from Equation (3.57).

But before subtracting, we need to make some arrangemelriis. dret

G(v) = Gyu(v) = dB(e= ) [~ B (v)], (3.58)
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Then the exact solution after one step is

u(At) = ey + /OAt (At=9)AB (e ds + /OAt /OS BN Gu(0)))dods
Using the integral formula, we obtain
G(u(o)) = G(e"ug) + /U dG(e*= (7)) [e® 4 B(u(T))]dr, (3.59)
and where the integrand is calculated as,

dG(v)[w] = d*B(e¥* ) [els= Ay, =B ()]
+dB(e*= )[4 B((v)[w]]. (3.60)

Then we obtain

/ ) / (=940 B(e* o) e~ B(e*ug) | dods
+/0At/0 /0 4G, o (e u () [ DA B(u(r))|drdods. (3.61)

Hence the local error is read as
At
w —u(At) = Ate'? Ble T ug) — / (BDAB (5 Ay ) ds
0

At
/ / (=941 B (A0 ) (e=DA B(e*ug) )dods

“2 (d*B(B, B) + dBdBB)(®%"(v))d6

/ ) / / dGy o (e (7)) [ 4 B(u(r))ldrdods. (3.62)

In order to show local error is i/* space, we rearrange the terms of Equation (3.62). The
difference of first two terms gives the quadrature error adpoint rule over0, At| interval
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and can be expressed in second order Peano form such as

Ath(%) _ /0 Y h)ds = AP /0 O (i = A /0 O (0ANdE  (3.63)

wherex is bounded kernel. Herk’(s) = e(A)4[A [A, B]](e*uq) with double Lie com-

mutator

[A,[A; Bll(v) = [A,dAB(v) = dB(v)A(v)](v)
= dA’B(v) — dAdB(v)A(v) — d*AB(v)A(v)
—dAdB(v)A(v) + d*B(A(v))* + dB(v)dAA(v)
= A*(B(v)) — 2A(dB(v)A(v)) + d*B(A(v))? + dB(v) A*(v)

sinced?’A = 0. We need to find bounds if/® for each of the terms. Lemma 2.2 will be
helpfull to bound them.
Now, start with the first term, then we get

1A% (B ()| 102)*)o (X = v) s

lo(1 =)

IA

Hs+4

IA

Kyf[vl

2
Hst4-

The other terms follow in a similar way, i.e.

[ A(dB()[A(0)]) |+ 105((1 = 2v)(37)v) |+

re+2]| (O70))|

< K|(1—20) I
S KQ”U’ ?;[s+4
|®B@)[A@)P e = || = 2(870)*| -

< Kl|v][Fee
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[dB)A2@)]z = (1~ 20)(8)]
< Kallolla 8]

< Kllo)en.

The difference of third and fourth terms of Equation (3.82hie quadrature error of a
first order two dimensional quadrature formula, which isrbed by

1 1.1 At 0 0
||§Atzg(§At, §At) —/0 /0 g(s,0)dods||gs < KAt?’(max||a—i| He +max||a—g| ),

where the maxima are taken over triangle, s) : 0 < o < s < At}. In order to estimate
derivatives we write
g(s,0) = A 1B(o(s))w(s, o),
and
v(s) = e ug
and
w(s, o) = e~ B(v(0)).

We need to calculate each of the derivative terms. Startteélirst derivative

% = e(At_S)A(—AdB(v(s))[w(s, o)) + d*B(v)[Av(s),w(s, )] + dB(v(s))[Aw(s, o)]).

Since the flow of A does not increasel/ift, we only evaluate the following terms
—AdB(v(s))[w(s, 0)] + d*B(v(s))[Av(s), w(s, 0)] + dB(v(s))[Aw(s, 0)]. i.e.
[AdB(v(s))[w(s, o)]| 167 ((1 = 2v(s))w(s, o))l s
11 = 2v(s))w(s, o)) ro+2
Killo(s)]
Kallv(s)]

HS

IA

IN

Hs+2

as+2||w(s, o)]

Yoa, (3.64)

IN
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ld*B(v(s))[Av(s), w(s, o)l = || = 20v(s)w(s, o)l

< Kill(v(s)||gs+2llw(s, o) || ms
< Ksl|v(s)||gs+z||w(s, o) || s+
< Ksl[o(s) |32, (3.65)
|dB(v(s))[Aw(s, 0)][lgs = [[(1 = 20(s))(02w(s, o))l s
< Ky||l1 = 2v(s) || gs||w(s, o) || gs+2
< Kyllv(s) a2 lv()]1 e 4o
< Kyllv(s)[[3es2 (3.66)
Using the bound of,
[0(s) || rs+2 = [l uo | H*T? < [|u| H*+?
Then,
0
520 < Clluol| H+2
For the second derivative term, we obtain
g—g = B944B(v(s))[e*"4(—=AB(v(s)) + dB(v(0))Av(o))], (3.67)
and each of the terms can be bounded as
|dB(v(s))[e® M AB(s)]llms = [[(1 = 2v(s))e® 42 (v(s)(1 = v(s))) |z
< Ks||1 = 2v(s)[lmst2llv(s) (1 — v(s)) | gs+2
< Kslv(s)|es2, (3.68)
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ldB(v(s))et*= P (dB(v(o) Av(o))]llz= = [[(1 = 2v(s))et* V(1 = 20(0)) (o) |+
< Kollo(s)[3ss- (3.69)

A

Then, we get by using bounds

1 1.1 At s
|]§Atzg(—At,§At)—/ / 9(s,0)dods||gs < C(AL)||ug|
0 0

5 2 ot2 (3.70)

We also have to bound fifth and the sixth terms of the localrdtuation (3.62). Itis
known from Equation (3.20) i.e.

AtA

le™=" (d®B(B, B) + dBdBB)(P™ (v)) | 1+ < K[| 95 (0) 37+ (3.71)

The bound for sixth term yields

1dG s 0 (0)[w)]|

e < BB )M, eI B ()|
+ [[dB(e M)l DA dB(w) w])] -

HS

where we have redefined

v = ey (r) andw = e B(u(r))

1dG o) [w]|lzrs < 1|12.€2 () w| s + ||(1 = 2671541 — 20)w)|| 7
< Klv(s)| (3.72)
This completes the proof. O
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3.3.3.3. Global error in H* space

Theorem 3.2 Suppose that the exact solutio(, t) of Equation (1.2) is in/*** for 0 <t <
T. Then Strang splitting solution, given in Equation (3.2) has second order global error
for At < Atandt, = nAt < T,

s < GAL, (3.73)

|wn — u(-, )]

whereG only depends offug|| grs+2a-4, « and 7.

Proof The Lady Windermere’s fan is used in the proof. The stab#gyimate is given
in Lemma 3.6 and local error is in Lemma 3.7. Let,) = & "4 (y(t,)) be the exact
solution of Equation (1.2) at tim, with initial datau(t,) at timet,. Strang splitting solution

U, = WA (u,_1)is

Uy, = O3 0 P (up_y), n=1,2,.... (3.74)
Then we estimate
Up —u(e,t,) < 1:[ U (At)(ug — ulty)) + Z 1:[ P(At)d;
k=0 j=1 k=j
whered; = (V(At) — ®(At))u(t;—1)

< S0 WEDN(BA (1)) — ultrn)
k=1

< 3 U u(n)) - U(u())
k=1

Taking H* norm,

[un = ulstn)llms - < i W R D3RR (b)) — W2 (ut)) o

k=0

IN

n—1
D MR @ u(ty)) — U (u(t)
k=0

IA

n—1

Z M C(a) A

k=0

ne’ T C(a)At?

T C(a)At (3.75)

IA

IA
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sinceel(n—k=1At < LT andnAt < T. This completes the proof

3.4. Convergence Analysis for the BBM Type Equations
3.4.1. Regularity results for BBM type Equations

Here, we study on the regularization estimates. @}, @(t) be solutions of (1.3)
with initial conditionsuyg, u, for 0 < t < T interval, then,

_ 1 [t _
u(t) = =07 POy 4 5 / e(s=DU=0D)7 PO (1 — 92)719, (u?(s))ds.
0
and
_ 1/t _
at) = 'O ag /0 el NI P00) (1 — 92719, (@(s))ds.

then subtracting implies

ut) —a(t) = TP (g — dig)
1 [t _
+5 / 0= P@2) (1 — 92)719, (u?(s) — @(s))ds.
0

Taking H° norm

t(l—ag)_lP(Bw)(

[u(t) — a(t)]

s < e

1 [ _
b [ el e - ), (i2(s) — ()|
0

uy — o) || g

Hst.
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Since the linear flow!1~%:)"'P(%) js preserved if{* space, we have

[u(t) = a()]n < Mm—quw /W! 0 (u?(s) — @*(s)) || m=ds.
< |[(uo — o) || ms
/Hl—82 )71 0:(u(s) — a(s)(u(s) + a(s)| meds
Then,
K t
[u(t) — a(t)]| & SHWWMMm+—/WWM—” ae || (u(s) + (s m-ds
< [[(uo — wo)|lu
—/ max [|u(s)| s, |@(s)|| g |[(u(s) — @(s)|| gsds
by Gronwall’'s lemma we obtain the bound
lu(t) — at)|] < e"[lug — ol
whereL = & max ||u(s)]| g, [|@(s)|| -
Lemma 3.8 If ||ug||gs < M then there exist§(M) > 0 such that||®s(ug)||gs < 2M for

0 <t <EM).
Proof  Since the linear flowe(1-%)~"(P(@%) preserves thél* Sobolev norm, we only need

to compare the nonlinear part. We find that) = ®%(u,) satisfies following equality (see
(Holden, Lubich, and Risebro, 2013), (Holden,Lubich,Reeand Tao, 2011))

d 1d

= gl = (00w

_ Z / 6§w6§(%(1—6§)_18x(w2))dx
§=0
s J
-y / Pl — ) 0,(3" (Z) Fuwdi—w)da
=0

k=0
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Forj < s, each of terms can be bounded by

7 .
| / & 19, ( (i)@fw&ikw)daz]
k=0

<@ wl| 2| (1 = 2)~10x( Z@ku@j k)| L2

< Kyl|lw]gs (1= 02)” 16$(w6;w + )l
< Klwll g llwll sl w]] s

< Kl|Jw||%s. (3.76)

Hence we obtain following inequality

< K|

Hs»

whose result follows by comparing with the differential atiany’ = 2.

y =cy® y(0)=M

then the solution,

T kMt

Thus,

y = [|®5(uo)|

e < 2M

0

In the proofs of the convergence rates for (3.1), we need pamk® 5 (ug) using
Taylor series expansions of first order. Thids;(ug) needs to be continuous, such that the
expansions are valid. The following lemma proves the sefficcontinuity.

Lemma 3.9 If |jug|lzs < M then there exist$ depending onV/ such that the solution of
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KdV-BBM type equation with initial datay, w(t) = ®%;(ug) satisfies

w € C*([0,1], H?). (3.77)
Proof Recall the Lemma 3.8, ifug||yzs < M then|w(t)||gs = ||Ps(uo)||ns < 2M for

t € [0,¢] and we can define
w(t) = ug + tB(ug) + /0 (t — s)dB(w(s))[B(w(s))]ds, (3.78)

wheredB(w)[B(w)] = $(1 — 82) 719, (w(1 — 92) 10, (w?)). Sincewy = dB(w)[B(w)] =
B(w)s, we(0) = B(uo) = wy(0) andw(0) = ug = w(
show thatw € C?([0, ], H*). Start with

0), we havew = w. Now we have to

- 1 _ _
vl = 1B (w)[B(w)]la- = 5101 - 0370, (w(1 - 52)79u(w?) [
K
< Sl (1 - 82)7 0?1
K
< 2wl ol (3.79)

Hence| @y || = < 52||w||%. and Lemma 3.8 completes the proof. O

3.4.2. Lie-Trotter Splitting

3.4.2.1. Stability in H* space

Lemma 3.10 Let uy, 4, be the Lie-Trotter splitting solutions satisfying Equati(i.3) with
initial data ug, 2y in H%. Then

e (3.80)

S eLAtHuO . 1~L0|

|11

whereL = £ max{||u|

Hs, U1|Hs}-
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Proof  Sincee®t1-9:)"'P(9:) preserves thél* norm, we only need to compare nonlineari-

ties in Lie-Trotter splitting solutions.

1
wt = (1= &)70u(u})

. 1 _ .
gt = 5(1 — 85) 181(14%)

Then
~ 1 2\—1 2 ~2
(= )y = 5(1 = 32) 10, — t})
integrating from) to ¢
1 t
(S ’&1 = Uy — ?10 + 5/ (1 — 8:%)*181(1“ — ﬂl)(ul + ﬁl)ds
0
Taking norm,

. N K [ N .
|ur — W llgs < [|uo — Tol|ms +§/ max{||u| g, ||| s}y 1) ||ds
0

|lur — g ||gs < |Juog — o

t
Hs +/ L||u1 —ﬂl)HdS
0

The nonlinear term has Lipshitz constdntvhich is bounded by Lemma 3.8. Finally Gron-

wall's Lemma implies the bound in Equation (3.80).

Hu1 — 111HH5 S €LAtHUQ — aoHHs (381)
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3.4.2.2. Local error in H® space

Lemma 3.11 Lets > 1 be an integer and assumption (3.14) holdsAoe s + d — 2 for the
solutionu(t) = ®4" ;(uo) of (1.3). If the initial datau, is in H**?(R), then the local error of
the Lie-Trotter splitting (3.1) is bounded #*(R) by

W3 (ug) — D2 (u) || s < CAL, (3.82)

whereC' only depends offug|| grs+a-2.

Proof In the following proof, we follow similar way to (Lubich, 2@) and (Holden,
Lubich, and Risebro, 2013). BBM type equations are in thefor

u = Au+ B(u), (3.83)

where Au = (1 — 82)'P(9,)u and B(u) = 3(1 — 82)7'9,(u?). The exact solution is
u(t) = ®'(ug), from variation of constant formula, f¢d, A¢] interval, it can be written as

At
u(At) = 2y + / e(At_S)AB(u(s))ds. (3.84)
0

This is similar to formulap(t) — ¢(0) = [, ¢(s)ds whenep(s) = et=4y(s).

P(A1) = &I (s) (0) = A,
(p/(S> _ _Ae(Atfs)Au<S> + e(Atfs)A ’U/(S)
—~—

Au+B(u)

Second part of the Equation (3.84) can be written with sinfidamula by takingy(p) =
B(el=P)4y(p)), and then we have

B(e* ™ u(t)) — B ug) = / AB(e P u(p)) [ P4 Blu(p))dp.  (3.85)
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Writing s instead oft, we obtainB(u(s))
Blu(s) = Ble*un) + [ " dB (P u(p)) [P Blu(p) ldp.

0

After inserting Equation (3.86) into Equation (3.84), we ge
At
u(At) = eA g + / A=A B(esug)ds + By
0
where
At s
Bi= [ [ OB () e P Bulp)dpds
0 0
The Lie-Trotter splitting solution fol0, A¢] interval can be written as
uy = U (ug) = G (e uy),

We use the first-order Taylor expansion with integral rerdarrterm inH?#,

d5'(v) = v + AtB(v) + Af? /01(1 — 0)dB (D% (v))[B(®% (v))]do.

This is justified forv = e**4u, € H*. Therefore, we obtain
up = g + AtB(eAtAuO) + Ey
with

E2 _ AtQ /01(1 B H)dB((I)%At(GAtAUO))[B(@eBAt(GAtAUQ))]dH

(3.86)

(3.87)

(3.88)

(3.89)

(3.90)

(3.91)

(3.92)
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Thus, the error becomes,

At
uy — u(At) = AtB(e? ) — / BN Bet g )ds + (Ey — Fy) (3.93)
0

and hence the principal error term is the just the quadratuos of the rectangular rule applied
to the integral ovef0, At] of the function

h(s) = A=Y B(e*4uy) (3.94)
we express the quadrature error in first-order Peano form,
At 1
Ath(At) — / h(s)ds = At? / k()W (OAL)dO (3.95)
0 0

wherex is bounded kernel. Herig(s) = —e(A=9)4[ A, B](e*4u,) with double Lie commuta-
tor

[A, Bl = dA(v)[B(v)] — dB(v)[Av] (3.96)
dAW)[B()] = 15% A(v + tB(:)) — A(v)
Q=) PO+ B) — (1- ) PO
t—0 t
= L0 PO - ) 0.07)

dB(o)[Av] = lim 2 1AV = B()

t—0 t
) I RO ) it T X
R t

= (1-07) " 0:(v(1 = 3;) " P(0u)v)
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We need to find in* for each of the terms. Lemma 2.3 and Lemma 2.4 will be helpéull
bound them. Now, start with the first term, then we get

[dA(w)[B(w)]]]

[dB(v)[Av]]]

IN

IN

VAN

IN

HS

50— 8 P@,)(1 — ) 0,(0?)
L= )70, (02)] e

Chll]

2
Hs+d72

11 = 02) " 0u(v(X = 37) " P(0)0) 1+
(1—07)7" P(0:)v|

|v]| s s

Coll o) rsacs

Sincee!4 does not increase the Sobolev norms, it follows that

1A ()]l < Clluol

2
Hs+d72

At s
1Bl < / / |4 B (P Ay (p) DA Blu(p)) |l edpds.  (3.97)
0 0

dB(e* ™ u(p) [P B(u(p)] = (1= 082)7'0u.(e** " u(p) B(u(p)))
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Inserting the result into the equation (3.97), we get

At s

Bl < [ [ 1o 20 (o) Blu(p)) s
0 0
At s

< / / He(At*S)A<1 _ ai)lax(e%sP)Au(p)%(l _ 8§)7lam(u(p)2))HHsdpds
0 0
At s

< [ 100 o) (- 02 0wl s

0 0

< c / / lu(p)(L — 82)" 0, (u()?)) |- dpds

At s

< c / / (o) [ dpds
0 0

< CAR?

and

1
E, < A /0 (1= O)|dB(®5 (™ uo) ) [B(PE (e uo))] =¥

AB(B (e 0) [ B (¢ ug))
= (1= 08) 10, (0 (g B@ (2 ug)))

Then, we can rewrite the norm &, as follows,

1
E, < AtQ/ (1= 0)||(1 = 0*) 10, (D42 (e g ) B(DY (2 ug))) || s db
0
1
< A / (1= O)[[(P5 (e ug) B(DG (€2 up))) | b
0
1
< Atz/ (1= 0)[[(@F (e uo) || 1+ ]|(1 — 82) "0 (PH (€2 ug)) ) || 11+ d6
0
< CA*R?
Hence the quadrature errorG¥ At?) in the H* norm foru, € H*+4-2, O

52



3.4.2.3. Global error in H* space

Theorem 3.3 Suppose that the exact solutiafy, ¢) of Equation (1.3) is indst4=2 for 0 <
t < T. Then Lie-Trotter splitting solution,, given in Equation (3.1) has second order global
error for At < At andt,, = nAt < T,

s < GAF, (3.98)

|wn — u(-, )]

whereG only depends offug|| grs+2a-4, « and 7.

Proof The Lady Windermere’s fan is used in the proof. The stabé#timate is given in
Lemma 3.10 and local error is in Lemma 3.11. h€t,) = ®™F2%(y(t,)) be the exact
solution of Equation (1.3) at timg, with initial dataw(¢,) at timet,. Lie-Trotter splitting

solutionu,, = U2 (u,,_,) is

u, = ®5" 0 ®4M(u, 1), n=1,2,.... (3.99)
Then we estimate
Uy = P50 @ (Up_y), n=1,2,.... (3.100)
Then we estimate
n—1 n n—1
wp —u(tn) < [ WA (o — ulte)) + O[] 2(At)d;
k=0 j=1 k=3
whered; = (U(At) — ®(AL))u(t;—1)
n—1
< N ERDAGA (y(ty)) — u(tysn)
k=1
n—1
< D UOTEDA@A (u(ty)) — U (ulty)))

k=1
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Taking H° norm,

n—1

me <) TR u(ty)) — U (ulty))]

k=0
-1

[tn —u(- 1))

n

Z eL(n—k—l)AtH(I)At(u(tk)) _ \I/At(u(tkm

Z e C(a) At
k=0

ne T C(a)At?
T O(a)At

IA

IA

IN

IA

sinceel(n—k-1At < LT andnAt < T. This completes the proof

HS

HS

(3.101)
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CHAPTER 4

NUMERICAL COMPUTATION

In this chapter, we numerically investigate the operattittsgy method of Lie Trotter
and Strang types, given in (3.1) and (3.2) respectivelyc&ime have derived theoretical re-
sults for these two splitting methods for the split step gizewe naturally have the numerical
convergence rates faxt as the main focus throughout this entire chapter. The thieatee-
sults are valid for several equations, but we only study tguedions in details; that is, we use
the Fisher’s equation (1.1) and the Benjamin-Bona-Mahgpg equations (1.3) equations as
test equations. All simulations are run by programs writtellatlab programming language.

4.1. The Fisher’s Equation

Our test problem is the following equation with initial coton :

’u
u = oo + Bu(l — u) (4.1)
u(z,0) = sech?(z) 4.2)
and boundary conditions are
tlir_n u(z,t) =0 and tlim u(z,t) =0 (4.3)

We performed a spacial discretization with lenght paraméate = 0.5 that is we divided
[—10, 10] into N = 40 parts of equal length. The spatial derivative is approx@datith the

finite difference scheme:

u(t, xip1) — 2u(t, ;) + u(t, x-1)
Az?

O2ult, ;) ~
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Recall that when we apply the operator splitting method oh)(#e obtain the two subequa-

tions

v = a@xz
v = Pu(l—v)

which are solved subsequently for small time steps usingTtatter and Strang splitting
methods. We calculated the error and orders of these methodsrically. Also, We solved
the full problem (4.1)-(4.3) with the fourth order Runget&umethod. This provides the

reference solution for our study.

Reference Solution

u(x,t)

Figure 4.1. Reference solution generated by fourth ordengBtKutta forz €
[—10,10] andt € [0, 1].

Figure 4.1 is showing the reference solution of (4.1)-(408)a = 0.1, 5 = 1 with
time stepAt = 0.01. At the very beginning , near = 0 u,, < 0 with a large absolute
value,but the reaction terma(1 — w)is quite small, that is, the effect of diffusion dominates

over the effect of reaction, so peak goes down and gets flatter

The contour plots of the numerical solutions at differemeit for « = 0.1, 5 = 1 are
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shown in Figures 4.2, 4.3 and 4.4. Figure 4.2 is showing thmamical solutions of: for

t = 0 to 1 with the step size\t = 0.01. Figure 4.3 is for a short period of time, showing
the results for = 0 to 0.2 with the step sizé\t = 0.05. Figure 4.4 is for the period of time,
showing the results far= 0 to 5 with the step sizé\t = 0.5.

Lie-Trotter Splitting Strang Splitting

u(xn,tn)

Figure 4.2. Numerical solutions of (4.1)-(4.3) for= 0.1, 5 = 1.
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Lie-Trotter Splitting Strang Splitting
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Figure 4.3. Approximate solutionsat 0 to ¢t = 0.2 with step sizeAt = 0.05.
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Figure 4.4. Approximate solutions at= 0 to ¢t = 5 with step sizeAt = 0.5.
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We obtain the following error tables using Lie-Troter anta8g splitting methods for

the different time steps and coefficients. Also, numericalvergence rates fah¢ for the

operator splitting solutions of Lie-Trotter and Strangeygre obtained.

Lie — T'rotter
time step | « 15} Ly Lo Lo
0.05 1 1 0.0176 0.0041 0.0013
0.01 1 1 0.0037 8.3194e — 004 | 2.5663e — 004
0.002 1 1 | 7.3911e — 004 | 1.6726e — 004 | 5.1509¢ — 005
0.0004 1 1 | 1.4808e — 004 | 3.3486e — 005 | 1.0309¢ — 005
0.05 1 0.1 0.0015 3.3484e — 004 | 1.0627e — 004
0.01 1 0.1 | 3.0797e¢ — 004 | 6.8867e — 005 | 2.2184e — 005
0.002 1 0.1 | 6.1914e — 005 | 1.3853e — 005 | 4.4754e — 006
0.0004 1 0.1 | 1.2395¢ — 005 | 2.7739¢ — 006 | 8.9664¢ — 007
0.05 1 10.01] 1.4705e — 004 | 3.3034e — 005 | 1.0708¢ — 005
0.01 1 10.01] 3.0094e — 005 | 6.7796e — 006 | 2.2163e — 006
0.002 1 10.01|6.0498e — 006 | 1.3641e — 006 | 4.4722¢ — 007
0.0004 1 10.01|1.2112e — 006 | 2.7315e — 007 | 8.9602e — 008
0.05 0.1 1 0.0065 0.0019 8.8893e — 004
0.01 0.1 1 0.0013 3.8520e — 004 | 1.7955e — 004
0.002 0.1 1 | 2.5501e — 004 | 7.7050e — 005 | 3.6052¢ — 005
0.0004 0.1 1 | 5.0978e — 005 | 1.5411e — 005 | 7.2161e — 006
0.05 0.0 1 19.0343e — 004 | 2.8595e — 004 | 1.4737e — 004
0.01 0.01 | 1 |1.6924e— 004 | 5.5897¢ — 005 | 2.8317¢ — 005
0.002 0.01 | 1 |3.3378 — 005 | 1.1229¢ — 005 | 5.8249¢ — 006
0.0004 [0.01|] 1 |6.6567e— 006 | 2.2486e — 006 | 1.1714e — 006
0.05 0.01 | 0.1 | 9.4244e — 005 | 3.9109¢ — 005 | 2.8664e — 005
0.01 0.01 | 0.1 | 1.8813e — 005 | 7.8003e — 006 | 5.6971e — 006
0.002 0.01 | 0.1 | 3.7611e — 006 | 1.5592¢ — 006 | 1.1380e — 006
0.0004 | 0.01 | 0.1 | 7.5217e — 007 | 3.1181e — 007 | 2.2755¢ — 007
0.05 0.1 [0.02 | 1.1933e — 004 | 4.4275e — 005 | 2.8879¢ — 005
0.01 0.1 | 0.02 | 2.3737e — 005 | 8.7628e — 006 | 5.6662¢ — 006
0.002 0.1 | 0.02 | 4.7425¢ — 006 | 1.7489¢ — 006 | 1.1289¢ — 006
0.0004 0.1 | 0.02 | 9.4829¢ — 007 | 3.4964e — 007 | 2.2561e — 007
0.05 0.1 | 0.01 | 5.9624e — 005 | 2.2157e — 005 | 1.4500e — 005
0.01 0.1 | 0.01 | 1.1859¢ — 005 | 4.3852e — 006 | 2.8454e — 006
0.002 0.1 | 0.01 | 2.3693e — 006 | 8.7522e¢ — 007 | 5.6694e — 007
0.0004 0.1 | 0.01 | 4.7375¢ — 007 | 1.7497e — 007 | 1.1330e — 007

Table 4.1. Estimated errors usihg, L, and L., horm att = 1.

Table 4.1 shows the errors of the Lie-Trotter splittinglin L, and L., norm for the

different time steps and the different 5 parameters. We can clearly see how the errors

changes when time steps are getting smaller.
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Lie — Trotter

time step | « 15} Ly L, L

0.05 1 1

0.01 1 1 10.9748 | 0.9843 | 0.9952
0.002 1 1 10.9945 | 0.9968 | 0.9978
0.0004 1 1 10.9989 | 0.9994 | 0.9996
0.05 1 0.1

0.01 1 0.1 | 0.9838 | 0.9826 | 0.9734
0.002 1 0.1 | 0.9968 | 0.9964 | 0.9946
0.0004 1 0.1 10.9994 | 0.9993 | 0.9989
0.05 1 10.01

0.01 1 10.01|0.9857 | 0.9840 | 0.9787
0.002 1 10.010.9968 | 0.9963 | 0.9945
0.0004 1 10.010.9994 | 0.9992 | 0.9989
0.05 0.1 1

0.01 0.1 1 | 1.0071| 1.006 | 0.9939
0.002 0.1 1 | 1.0014 | 0.9999 | 0.9976
0.0004 0.1 1 | 1.0003 | 1.0000 | 0.9995
0.05 0.0 1

0.01 0.01 1 1.0407 | 1.0142 | 1.0249
0.002 0.01 | 1 |1.0087 | 0.9973 | 0.9837
0.0004 |0.01| 1 |1.0018 [ 0.9992 | 0.9966
0.05 0.01] 0.1

0.01 0.01 | 0.1 |1.0012 | 1.0017 | 1.0039
0.002 0.01 | 0.1 | 1.0002 | 1.0003 | 1.0008
0.0004 | 0.01| 0.1 | 1.0000 | 1.0001 | 1.0002
0.05 0.1 |0.02

0.01 0.1 10.02 | 1.0034 | 1.0065 | 1.0119
0.002 0.1 ]0.02 | 1.0007 | 1.0013 | 1.0024
0.0004 0.1 | 0.02 | 1.0001 | 1.0003 | 1.0005
0.05 0.1 |0.01

0.01 0.1 1 0.01 | 1.0034 | 1.0065 | 1.0118
0.002 0.1 | 0.01 | 1.0007 | 1.0013 | 1.0023
0.0004 0.1 | 0.01 | 1.0001 | 1.0003 | 1.0005

Table 4.2. Numerical convergence rate fvt for the operator splitting solution of

Lie-Trotter type.

Table 4.2 shows that the expected order is confirmed, thatis-Trotter splitting

converges a®(At).

60



At.

Table 4.3 shows thé,, L, and L., errors of the Strang splitting at= 1 for various

Strang
time step | « 15} Ly Lo Lo
0.05 1 1 ]2.3201e — 004 | 5.5705e — 005 | 1.9483¢e — 005
0.01 1 1 ]9.5936e — 006 | 2.3018e — 006 | 8.0183e — 007
0.002 1 1 ] 3.8611e — 007 | 9.2644e — 008 | 3.2271e — 008
0.0004 1 1 ] 1.5463e — 008 | 3.7103e — 009 | 1.2925e — 009
0.05 1 0.1 | 3.6305e¢ — 005 | 1.0679¢ — 005 | 4.4861e — 006
0.01 1 0.1 | 1.4506e — 006 | 4.2760e — 007 | 1.8843e — 007
0.002 1 0.1 | 5.8022e — 008 | 1.7105e — 008 | 7.5495e — 009
0.0004 1 0.1 | 2.3210e — 009 | 6.8425¢ — 010 | 3.0201e — 010
0.05 1 10.01 | 3.6929¢ — 006 | 1.1398e — 006 | 4.8450e — 007
0.01 1 10.01 | 1.4705e — 007 | 4.3346e — 008 | 1.8818e — 008
0.002 1 ]0.01 | 5.8820e — 009 | 1.7354e — 009 | 7.6532¢ — 010
0.0004 1 ]0.01 | 2.3540e — 010 | 6.9460e — 011 | 3.0647e — 011
0.05 0.1 1 ] 3.4909e — 004 | 9.7902e — 005 | 3.9164e — 005
0.01 0.1 1 ] 1.4138e — 005 | 3.9735e — 006 | 1.6049e — 006
0.002 0.1 1 ]5.6692e — 007 | 1.5941e — 007 | 6.4509¢ — 008
0.0004 0.1 1 ]2.2690e — 008 | 6.3807e¢ — 009 | 2.5830e — 009
0.05 0.0 1 | 3.3454e — 004 | 9.9235e — 005 | 3.9989¢e — 005
0.01 0.01] 1 | 1.3568e — 005 | 4.0326e — 006 | 1.6422¢ — 006
0.002 0.01 | 1 |5.4425e— 007 | 1.6182¢ — 007 | 6.6034e — 008
0.0004 |0.01| 1 |2.1780e— 008 | 6.4766e — 009 | 2.6441e — 009
0.05 0.01 ] 0.1 | 2.6366e — 007 | 8.1582¢ — 008 | 3.5760e — 008
0.01 0.01 | 0.1 | 1.0559¢ — 008 | 3.2667¢ — 009 | 1.4337e — 009
0.002 0.01 | 0.1 | 4.2214e — 010 | 1.3056e — 010 | 5.7349¢ — 011
0.0004 | 0.01 | 0.1 | 1.5957e — 011 | 4.8439¢ — 012 | 2.1954e — 012
0.05 0.1 |0.02 ] 2.8135¢ — 007 | 1.1677e — 007 | 7.7835e — 008
0.01 0.1 |0.02 ] 1.1254e — 008 | 4.6821e — 009 | 3.1686e — 009
0.002 0.1 | 0.02 | 4.5013e — 010 | 1.8729¢ — 010 | 1.2684e — 010
0.0004 0.1 | 0.02 | 1.5923e — 011 | 6.7225e — 012 | 4.6355¢ — 012
0.05 0.1 |0.01 ] 1.4199¢ — 007 | 5.8583e — 008 | 3.8461e — 008
0.01 0.1 | 0.01 | 5.6796e — 009 | 2.3538e — 009 | 1.5910e — 009
0.002 0.1 | 0.01 | 2.2715e — 010 | 9.4159¢ — 011 | 6.3731e — 011
0.0004 0.1 | 0.01 | 7.0005e¢ — 012 | 2.9960e — 012 | 2.1060e — 012

Table 4.3. Estimated errors usiig, L, and L., horm att = 1.
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Strang
time step | « 15} Ly L, L

0.05 1 1

0.01 1 1 [ 1.9794 | 1.9798 | 1.9823
0.002 1 1 1.9962 | 1.9962 | 1.9962
0.0004 1 1 1.9992 | 1.9992 | 1.9992
0.05 1 0.1

0.01 1 0.1 | 2.0007 | 1.9993 | 1.9697
0.002 1 0.1 | 2.0000 | 1.9990 | 1.9990
0.0004 1 0.1 | 2.0000 | 2.0000 | 1.9999
0.05 1 {0.01

0.01 1 0.01 | 2.0028 | 2.0314 | 2.0183
0.002 1 10.01|2.0000 | 1.9994 | 1.9897
0.0004 1 10.01|1.9997 | 1.9996 | 1.9993
0.05 0.1 1

0.01 0.1 1 | 1.9923 | 1.9910 | 1.9850
0.002 0.1 1 | 1.9984 | 1.9982 | 1.9970
0.0004 0.1 1 ] 1.9996 | 1.9996 | 1.9994
0.05 0.0 1

0.01 0.01 1 1.9914 | 1.9902 | 1.9837
0.002 0.01 | 1 |1.9983 | 1.9980 | 1.9967
0.0004 | 0.01| 1 |1.9997 | 1.9996 | 1.9994
0.05 0.01 | 0.1

0.01 0.01 | 0.1 | 1.9993 | 1.9994 | 1.9986
0.002 0.01 | 0.1 | 2.0003 | 2.0005 | 2.0000
0.0004 | 0.01 | 0.1 |2.0351 | 2.0467 | 2.0273
0.05 0.1 ]0.02

0.01 0.1 | 0.02 | 2.0000 | 1.9985 | 1.9891
0.002 0.1 | 0.02 | 2.0001 | 2.0000 | 1.9995
0.0004 0.1 | 0.02 | 2.0764 | 2.0673 | 2.0561
0.05 0.1 {0.01

0.01 0.1 | 0.01 | 2.0000 | 1.9972 | 1.9791
0.002 0.1 |1 0.01 | 2.0001 | 1.9991 | 1.9991
0.0004 0.1 | 0.01|2.1620 | 2.1422 | 2.1187

Table 4.4. Numerical convergence rate fvt for the operator splitting solution of

Strang type.

Table 4.4 indicate that the convergence rate of the Stralijrgp solution. We can

see that the Strang splitting convergesaa\t?).
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Figure 4.5. Order of the splitting methods for the Fisheggation.

4.2. The Benjamin-Bona-Mahony Equation

As a last study we consider here a numerical solution of BBM

Up — Uggpt — Upy + Ugp + Uy = 0 (4.4)
with the initial condition
1 1 .
u(z,0) = 511 sin(x); (4.5)

The numerical solution is obtained with the help of the feutransform. So, we choose
N = 256 andz € [0, 211].

Solving the full problem (4.4)-(4.5) with the fourth ordeuRye-Kutta method,we
obtain the reference solution for our study. We need to makeesarrangements to get this
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reference solution. Hence, we write the equation (4.4) as,

w = (1= )70 — (1= 92) 70— (1= 22)0u(5)

With Fourier transform

K2 4ik, K vik, k2 1k K21k 1k .
e 1+k? g = —e 1+ U e 1+k2 U
Iy 2(1 + k2)
. o K2k,
If we defineU = e 1+#2 "q,with
N K2tk k2 + 1k K2tk
Ut = e 1+k2 U+ e 1+k2 ﬁt
Iy
this becomes
N 1k k2 +ik
_ PR
Uy = 2(1 T /{:2)6 1+k2 "y

Working in Fourier space,we can discretize the problem énfoinm

N ok 24k K24k, A
U, = —'2(1: k—z)emtf (F (e T 0)))

(4.6)

4.7)

(4.8)

(4.9)

(4.10)

(4.11)

whereF is the Fourier transform operator. Then, we can apply thelicarder Runge-Kutta
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that is,

kl == f(xnayn)
h h
ky = f(xn+§ayn+§k1>
h h
ks = f(xn+§7yn+§k2>
ki = f(zn+ h,yn + his)
1
Ynil = yn+6h(/§1+2k2+2k3+k4) (4.12)

wherey’ = f(z,y).

Reference Solution

Figure 4.6. Reference solution generated by fourth ordeigRKutta forz € [0, 2I1]
andt € [0, 1].

Figure 4.6 shows the reference solution for the equation 4.4

The contour plots of the numerical solutions at differemtei for o = 0.1, 5 =1
are shown in Figures 4.7, 4.8 and 4.9. Figure 4.7 is showiagtimerical solutions af for
t = 0 to 1 with the step sizé\t = 0.01. Figure 4.8 is for a short period of time, showing the
results fort = 0 to 0.2 with the step sizé\t = 0.05.
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Lie-Trotter Splitting

Figure 4.7. Numerical solution of BBM equation ferc [0, 2I1] andt € [0, 1].

Lie-Trotter Splitting

0.75

u(x,t)

Figure 4.8. Approximate solution at= 0 to ¢t = 0.2 with step sizeAt = 0.05.
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Lie-Totter Splitting
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Figure 4.9. Approximate solution at= 0 to ¢t = 5 with step sizeAt = 0.5.

Figure 4.9 is for the period of time, showing the resultstfer 0 to 5 with the step
sizeAt = 0.5.
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Lie — Trotter
time step Ly Lo Lo

0.5000 0.0626 4.3463e — 003 | 3.9425¢ — 004
0.3333 0.0419 2.9076e — 003 | 2.6428¢ — 004
0.2000 0.0252 1.7505¢ — 003 | 1.5937¢ — 004
0.1250 0.0158 1.0964e — 003 | 9.992e — 005
0.0833 0.0105 7.3188¢ — 004 | 6.674e — 005
0.0556 7.0324e — 003 | 4.8835¢ — 004 | 4.455e¢ — 005
0.0370 4.6911e — 003 | 3.2576e — 004 | 2.972e — 005
0.0244 3.0905¢ — 003 | 2.1461e — 004 | 1.959¢ — 005
0.0161 2.0443e — 003 | 1.4196e — 004 | 1.296e — 005
0.0108 1.3631e — 003 | 9.4660e — 005 | 8.64e — 006

Table 4.5. Estimated errors usiig, L, and L., nhorm att = 1

In Table 4.5, we exhibite thé,, L, and L, errors of the Lie-Trotter splitting for the
various time steps.Table 4.2 shows that we confirm the eggeatder for the Lie-Trotter

splitting.
Lie — Trotter
time step Ly Lo Lo

0.5000

0.3333 0.9917 | 0.9915 | 0.9865
0.2000 0.9933 | 0.9934 | 0.9900
0.1250 0.9954 | 0.9954 | 0.9933
0.0833 0.9968 | 0.9969 | 0.9955
0.0556 0.9978 | 0.9978 | 0.9969
0.0370 0.9985 | 0.9985 | 0.9979
0.0244 0.9990 | 0.9990 | 0.9986
0.0161 0.9993 | 0.9993 | 0.9991
0.0108 0.9996 | 0.9996 | 0.9994

Table 4.6. Numerical convergence rate fvt for the operator splitting solution of
Lie-Trotter type.
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Figure 4.10. Order of the Lie-Trotter splitting for the BBMuation.
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In Figure 4.10 shows that the expected order was confirmethékie-Trotter split-
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CHAPTER 5

CONCLUSIONS

In this thesis, we considered the operator splitting metbfolde-Trotter and Strang
type for the Fisher's and Benjamin-Bona-Mahony equatioftse main focus was to inves-
tigate the numerical convergence rates far. We used the analytical approach presented
in (Holden, Lubich, and Risebro, 2013) . This approach deheavily on the differential
theory of operators in Banach space and the error terms ofandetwo dimensional nu-
merical quadratures.We adopted this idea to Fisher's and B&uations for the splitting of
Lie-Trotter and Strang types.

We tested how well operator splitting solved these equatiBor space discretization,
the Fisher’'s equation was discretized by the finite diffeeemethod and the BBM equation
was discretized by the Fourier transform. We presentedrtioeseof Lie-Trotter and Strang
splitting measured by, , L, and L., norms and investigated the numerical convergence rates
for At numerically.

It was found that Lie-Trotter splitting converged@$At) while Strang splitting con-
verged ag)(At?). We compared them with the theoretical results.Thus, tegiNe us ex-

pected order of the accuracy for the operator splitting washare confirmed.
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APPENDIX A

THE PROOFS FOR BASIC CONCEPTS

Proof (Lemma 2.1) The proof uses the Cauchy-Schwarz inequality;: < ||u||zz]|v|| Lz,
and the Young inequalityb < a?/2 + b?/2.
Letu be in H'(R). Then we get, using the above inequalities and the triamgiguiality

[u*(y)| = ]/ da:—/yoo %&E(u(az)Q)d:c’
— ’/ da:—/yoou(a:)u'(az)dx’
< [ oo+ / " u@) (2)|ds

>0 1 1
= / lu(@)d (z)|de < flullzllwfll e < Sllullze + 11lz2) = S llullmn

— 00

By taking the supremum and the square root, we get

el =

Ll
—||U 1
v

The last inequality follows from the definition of the Soboteorm, by adding thé.> norm of
the (weak) derivatives up to order O

Proof (Lemma 2.2) Since the Sobolev norm is a sum of (weak) devieatfu andv, it is

sufficient to show that for alt < s
10z (wv)|| 2 < Col[ull s ||wll s

Considerd’ (uv) and expand it using Leibniz rule

By the triangle inequality it is sufficient to look at one tenmthe above sum. Moreover, we
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need to be careful in the estimation of the term, since whermamg; ands we get different
orders of the derivatives om andv, which is not necessarily bounded H¥(R). However,
we getforr < sand0 < j <r

|0ud o2, = / (O30 0) e < ||0ul2e / (O 90)da

—00 —00

< Cullullisallo7vlize < Cullullfpsllvllz

sincej+1<r+4+1<sandr—j <s. Forr =sand0 < j < r we get, using same technique
as above

|2udi 0|22 < Cyllul . (A.1)

sl

we are left with one case; when= s = j,

o
107|172 =/ (07u)*(v)*dzx < [[vl|7 105l Z2 < CullullZslvlF-

[e.e]

By taking the square root of the above estimates, and sumupiadj the derivatives, we get

ns < Csllul

[uv] we|[V] s,

and the lemma is proven. O

Proof (Lemma 2.4) Lemma 2.4 is proved with the help of Lemma 2.3rti@gwith the
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left hand side of lemma and applyid§y norm yields

11

— 0;) "0 (uv) | -

IN

IN

IN

1(1—92)""9,(0;
(1 = 8%)710,(872 (uv)) || 12 + . .-
+(1 = 82) 70, (uv)]| 2

)
I -0070.3 (3 )oor ol

M

+HI(1 =070, (

T
[\ i)

Oy (uv))[[z2 + (1 = 87) 10205 (wv)) | 2

S_
( ; )afuagl%)”p

+H(1 =037 10.( (S ; 2) 8§u8§’2’kv)HLz + ...

ol

+||(1—5’2) (uv)]|z2

- (

(1= 82) 1, (S ) 1)ua;—1v "

b = ) )] e

11— )0, (w5 .

+(})10 - 200 0
o = )0, e
(1= ) 0, o)1

R IR CRT=E
+o A (1= 05) 71 0:(0 )2

+o (1 =)0, (uv)]| 12

S »

and applying Lemma 2.3, we obtain

)u@iv + (i) Opudi o +

o OJuv|| 2

+ 6;_1UUHL2

_ . s .
10 =) 0, wo)llwe < lullellEolle + (1) sl 5 oll e + ..

ozl ol
a5 o)

(7 ) leulafez o
bt 10 sl
bzl
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S
< lullzellolles + {  llullzelfollze-s + o+ llullgs ol 22
s—1
Hullzallollm— + () Jellmllvllme—z + o+ flull e ollz:
+ o [ullz2l[v] 2
Note that case = 0, i.e. H" = L?, implies Lemma 2.3. O

Proof (Lemma 2.5) Let us assume> 0 (for ¢ < 0 the argument is the same). By definition

of derivative we have fot small enough (soh € V')
f(@+th) = f(x) + (Df(x))(th) + [[th||lv(th),
or by rearranging and using linearity

(D(enh = LEXIZIE o)

Now we can take the limit as — 0 on both sides (as the left hand side is constant it has a
limit) to get the desired result (noten; o ||h||¢(th) = ||h||v(0h) = 0 asy is continuous.)]
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APPENDIX B

MAT-LAB CODES

B.1. Codes for Fisher’'s Equation

clear all

close all

h=0.5;

x1=-10;

x2=10;

N=(x2-x1)/h;

x=x1:h:x2;

t1=0;

t2=1,

a=1

b=1

for e=1:4

h1=0.01/(5"(e-2));

N1=(t2-t1)/h1;

t=t1:h1:t2;

Al=toeplitz([ -2 1 O zeros(1,N-4)],[-2 1 O zeros(1,N-4)]);
A=(1/(h)"2)  *Al;%%u_xX,

C=(1/(h)"2)  =[0;zeros(N-3,1);0];
g(:,1)=(sech(10 *X)."2)";

u(:,1)=g(2:N,1);

%%runge kutta 4th order%%
ex(:,1)=u(:,1);

s(:,1)=u(;,1);

for i=1:N1

k 1 = f(a,b,A,C,ex(:,i);

k 2 f(a,b,A,C,ex(;,i)+0.5 *hl+Kk_1);
k 3 = f(a,b,A,C,ex(:,i)+0.5 *hl*Kk_2);
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k 4 = f(a,b,A,C,ex(;,i)+k 3 *h1l);

ex(,,i+1) = ex(,i) + (1/6) *(k_1+2 »k_2+2+xk_3+k_4) =hl,

end

for |=1:N1 %lie
u(:,j+1)=expm(hl *a*xA)*u(:,));
v )=uj+l);

v(:,j+1)=v(:,)+h1/2 * (f3(a,b,A,C,u(:,)))
+f3(a,b,A,C,v(;,))+h1 * (f3(a,b,A,C,v(:.))));

u(:,j+1)=v(,j+1);

end

for j=1:N1 %strang

s(;,j+1)=expm(h1/2 *axA) *s(.,j);

s1(:,))=s(:,j+1);

s1(:,j+1)=s1(:,j)+h1/2 * (f3(a,b,A,C,s1(:,)))
+f3(a,b,A,C,s1(:,j)+h1 * (f3(a,b,A,C,s1(:,))));

s2(:,))=s1(:,j+1);

s2(:,j+1)=expm(h1/2 *ax A) *s2(:,));

s(:,j+1)=s2(:,j+1);

end

exact=[zeros(1,N1+1);ex;zeros(1,N1+1)];%exact soluti
K=[zeros(1,N1+1);u;zeros(1,N1+1)];%solution of lie
S=[zeros(1,N1+1);s;zeros(1,N1+1)];%solution of strang
errorST=abs(S-exact);

errorlie=abs(K-exact);

A=norm(errorlie(:,N1+1),1);

B=norm(errorlie(:,N1+1),2);
C=norm(errorlie(:,N1+1),inf);
Al=norm(errorST(:;,N1+1),1);
Bl=norm(errorST(:,N1+1),2);
Cl=norm(errorST(:,N1+1),inf);
disp(sprintf(h=%6.6f,h1=%6.6f,A1=%9.9f B1=%9.9f,C1
,h,h1,A1,B1,C1))
disp(sprintf(’h=%6.6f,h1=%6.6f,A=%6.6f,B=%6.6f,C=%6
,h,h1,A.B,C))

on

=%9.9f

.6f'

80



errorA(e)=norm(errorlie(:,N1+1),1);
errorB(e)=norm(errorlie(:,N1+1),2);
errorC(e)=norm(errorlie(:,N1+1),inf);
errorAl(e)=norm(errorST(;,N1+1),1);
errorB1(e)=norm(errorST(;,N1+1),2);
errorC1(e)=norm(errorST(:,N1+1),inf);
dt(e)=h1;

if e>1
orderA(e)=(log(errorA(e)/errorA(e-1)))/
(log(dt(e)/dt(e-1)));
orderB(e)=(log(errorB(e)/errorB(e-1)))/
(log(dt(e)/dt(e-1)));
orderC(e)=(log(errorC(e)/errorC(e-1)))/
(log(dt(e)/dt(e-1)));
orderAl(e)=(log(errorAl(e)/errorAl(e-1)))/
(log(dt(e)/dt(e-1)));
orderB1(e)=(log(errorB1(e)/errorB1(e-1)))/
(log(dt(e)/dt(e-1)));
orderC1(e)=(log(errorC1(e)/errorCl(e-1)))/
(log(dt(e)/dt(e-1)));

else

orderA(e)=0;

orderB(e)=0;

orderC(e)=0;

orderAl(e)=0;

orderB1(e)=0;

orderC1(e)=0;

end

disp(sprintf('h1=%5.4f, A=%8.8f,orderA=%"5.4f
,dt(e),errorA(e),orderA(e)));
disp(sprintf('h1=%"5.4f,B=%8.8f,orderB=%5.4f
,dt(e),errorB(e),orderB(e)));
disp(sprintf('’h1=%5.4f,C=%38.8f,orderC=%5.4f’
,dt(e),errorC(e),orderC(e)));

disp(sprintf('h1=%"5.4f,A1=%38.8f,orderA1=%"5.4f

Jdt(e),errorAl(e),orderAl(e)));

disp(sprintf('h1=%"5.4f,B1=%38.8f,orderB1=%"5.4f
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,dt(e),errorB1(e),orderB1(e)));
disp(sprintf('h1=%5.4f,C1=%38.8f,orderC1=%5.4f’
,dt(e),errorC1(e),orderC1(e)));

end

%% graph for the numerical solution.

[t,x]=meshgrid(t,x);

subplot(1,
subplot(1,

2,1); mesh(t,x,K)
2,2); mesh(t,x,S)

%%%%%%%% %% %%

function
|=diag(v);

j=f(a,b,A,C,v)

s=a* Axv+C+b=*| * (1-v);

J=s;

%%%%%%%%%% %%

function
I=diag(v);

i3=f3(a,b,A,C,v)

s3=b | * (1-v);

j3=s3;

B.2. Codes for BBM Equation

function mesh_bbm_split

%% Initial parameters

0

L
t
M
N

k

= 0; %lnitial time

f = 1; %Final time

= 100; % Time steps
= 256; % Fourier modes
= [0:N/2-1 N/2 -N/2+1:-1]; % Fourier modes

%%space grid with periodic boundary condition

dx

X

X
%%l nitial

= 2*pi/N;
0:dx:2 *pi-dx;

= X ,
Data

u0=1/2+1/4 =*sin(x);
uO=u0’;

alpha=1;
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beta=1;

a=[ 1]

b=[ 1 ],

%% Initialize variable
err = [I;

steps = [];

Uap = I

Uap = [Uap u07;
C = [k

dt = (t_f-t_0)/M;
NrSteps = round(t_f/dt);
t =t O:dt:it_f;
hvec = [0

%% Outer loop

U_now = u0;

h = dt;
hvec = [hvec h];
uex(:,1) = u0;

for j=1:NrSteps,
for s=1:length(a)
%B part (linear part)
U_now=fft(U_now);
U_now=exp((1./(1+k."2)). *(-alpha *k."2-1i *beta. *k). *b(s) *h)
.*U_now;
U_now=real(ifft(U_now));
%A part (Non-linear part)
if(a(s)™=0)
U_now=bbm_splitrk4(U_now,a(s) *h,a(s) *h/100,N,k);
end
end

U_now = real(U_now);

u = U _now;

Uap = [ Uap u |;
steps= [steps NrSteps];
end

%% graph for the numerical

solution.
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[t,X] = meshgrid(t,x);

figure(1)

mesh(t,x,Uap) ;

xlabel(’'t); ylabel(’x’) ; zlabel('u’)

Computing order,

function strFFF_split
%order check for BBM equation..
%% Initial parameters
t 0 = 0; %lnitial time
t f = 1; %Final time
M = 100; % Time steps
N = 256; % Fourier modes
k = [0:N/2-1 0 -N/2+1:-1]; % Fourier modes
%%  space grid with periodic boundary condition

dx = 2=xpi/N;
X = 0:dx:2 *pi-dx;
X =X

%% Initial Data

u0=1/2+1/4 =*sin(x);

uO=u0’;

alpha=1,;

beta=1;

Plotpoints=10;%For plotting errors at different number of
steps

%% Exact solution with integrating vector
[UEX]=bbm_specexact(alpha,beta,u0,t_0,t f,M,N,k);

a=[ 1 ]; b=[ 1]

cost = 1; %number of function evaluation of the operator A

%% Initialize variable
errL1 =
errL2 =
errLinf = I
steps
Uap = [I;
C = [k
NrSteps

1
—
 H—

I
=
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hvec = [
%% Outer loop
for m = 1:Plotpoints
%% current stepsize
NrSteps = round(NrSteps *1.5);

U _now = u0;
h = t_fINrSteps;
hvec = [hvec h];

%% ineer loop

for j=1:NrSteps,

for s=1:length(a)

%B part (linear part)
U_now=fft(U_now);

U_now=exp((1./(1+k.”2)). *(-alpha *k."2-1i *beta. *k) xb(s) *h)

.*U_now;
U_now=real(ifft(U_now));

%A part (Non-linear part)

if(a(s)™=0)

U_now = bbm_splitrk4(U_now,a(s) *h,a(s) =*h/100,N,Kk);
end

end

end

u = real( U_now);

Uap = [ Uap U [;

steps= [steps NrSteps];

C =Uap - UEX(:,ones(1,size(Uap’)));
errL2= sqrt(sum(abs(C)."2)); %L _2
errL1= (sum(abs(C))); %L _1

errLi= (max(abs(C))); %L_inf

if m>1
orderL1(m)=(log(errL1(m)/errL1(m-1)))/
(log(hvec(m)/hvec(m-1)));
orderL2(m)=(log(errL2(m)/errL2(m-1)))/
(log(hvec(m)/hvec(m-1)));
orderLi(m)=(log(errLi(m)/errLi(m-1)))/
(log(hvec(m)/hvec(m-1)));

else
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orderL1(m)=0;
orderL2(m)=0;
orderLi(m)=0;
end
disp(sprintf('h=%"5.4f, errorL1=%8.8f, orderL1=%5.4f,
hvec(m), errL1(m), orderL1(m)));
disp(sprintf('h=%5.4f, errorL2=%8.8f, orderL2=%"5.4f,
hvec(m), errL2(m), orderL2(m)));
disp(sprintf('h=%"5.4f, errorLi=%8.8f, orderLi=%5.4f",
hvec(m), errLi(m), orderLi(m)));
end
end
%%%%%%%%%%%
function [u]=bbm_splitrk4(u0,t_f,dt,N,k)
% Solve Nonlinear part with spectral RK4 metod
vw = fft(u0);
kk = [0:N/2-1 0 -N/2+1:-1];
nmax = round(t_f/dt);
for n = 1l:nmax

g = -(2i/2 *kk)./(1+k."2);

k1l = g. xfft(real(ifft(vv))."2);
k2 = g. fft(real(ifft(vv+k1 * dt/2)).”2);
k3 = g. *fft(real(ifft(vv+dt/2 *k2))."2); % RKA4
k4 = g. *fft(real(ifft(vv+dt *k3))."2);
v = vwv+dt *(k1+2 *k2+2 * k3+k4)/6;
end
u=real(ifft(vv));
end
%%%%%%%%%%%
function [u] = bbm_specexact(alpha,beta,u0,t 0,t f,M,N ,K)
dt = (t_ft 0)/M; %Time steps
u = u0;
v = fft(u); %fast fourier transform of initial data

k =k
k2 = k."2; %Coefficient of derivative in fourier domain
% Time stepping method for solving PDE
tmax =t f; % Final time
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nmax = round(tmax/dt); % Number of runge-kutta steps

k1 = [0:N/2-1 0 -N/2+1:-1]; % for odd derivative
for n = 1l.nmax
g = -.5i =*dt*kl./(1+k2);
E = exp(-.5 =dt=*(alpha *k2+beta =*1i *k1)./(1+k2));
E2 = E."2;
a = g. =fft(real( ifft( v ) )."2);
b = g. fft(real( ifft(E. * (v+al2)) ).”2);% 4th-order
c = g. *fft(real( ifft(E. *v + b/2) ).”2);% Runge-Kutta
d = g. *fft(real( ifft(E2. *V+E. xC) )."2);
v = E2. *v + (E2. *a + 2*E.*(b+c) + d)/6;
end
u = real(ifft(v));
end
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