

AN EXACT APPROACH WITH MINIMUM SIDE-

EFFECTS FOR ASSOCIATION RULE HIDING

A Thesis Submitted to

the Graduate School of Engineering and Sciences of

Izmir Institute of Technology

in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Engineering

by

Engin LELOĞLU

March 2014

ĠZMĠR

We approve the thesis of Engin LELOĞLU

Examining Committee Members:

Asst. Prof. Dr. Tolga AYAV

Computer Engineering Department, Izmir Institute of Technology

Asst. Prof. Dr. Belgin ERGENÇ
Computer Engineering Department, Izmir Institute of Technology

Prof. Dr. Oğuz DĠKENELLĠ
Computer Engineering Department, Ege University

20 March 2014

Asst. Prof. Dr. Tolga AYAV

Supervisor, Computer Engineering Department

Izmir Institute of Technology

Prof. Dr. Sıtkı AYTAÇ Prof. Dr. R. Tuğrul SENGER

Head of the Department of Dean of the Graduate School of

Computer Engineering Engineering and Sciences

 iii

ACKNOWLEDGMENTS

I would like to thank my thesis adviser Asst. Prof. Tolga Ayav, PhD., for his

supervision, his respect to my individual views all along the work. I appreciate his

sincerity, patience, maturity, and attentive style.

I also owe special thanks to Asst. Prof. Belgin Ergenç, PhD., for his valuable

contribution during my undergraduate and graduate studies, for his guidance and

support.

I would also like to thank the people of the Department of Computer

Engineering of İzmir Institute of Technology whose friendship and support made my

return to academic world after all those years, possible.

Finally, I thank my family and friends for their love and patience.

UNİ-COPY
Rectangle

 iv

ABSTRACT

AN EXACT APPROACH WITH MINIMUM SIDE-EFFECTS FOR

ASSOCIATION RULE HIDING

Concealing sensitive relationships before sharing a database is of utmost

importance in many circumstances. This implies to hide the frequent itemsets

corresponding to sensitive association rules by removing some items of the database.

Research efforts generally aim at finding out more effective methods in terms of

convenience, execution time and side-effect. This paper presents a practical approach

for hiding sensitive patterns while allowing as much nonsensitive patterns as possible in

the sanitized database. We model the itemset hiding problem as integer programming

whereas the objective coefficients allow finding out a solution with minimum loss of

nonsensitive itemsets. We evaluate our method using three real datasets from FIMI

repository and compared the results with previous exact solution and the heuristic study

whose procedures are imposed by new approach. The results show that information loss

is dramatically minimized without sacrificing so many modifications on databases.

 v

ÖZET

İLİŞKİSEL KURAL GİZLEME İÇİN EN AZ YAN ETKİLİ BİR TAM

YAKLAŞIM

Mahrem bilgilerin dahil oldukları veri tabanlarının bir başka şahıs ya da kurumla

paylaşılmadan önce gizlenmesi işlemi, birçok iş alanı için büyük önem arz eder. Bu

işlem, ilgili veri tabanı üzerinden bir miktar öğenin silinmesi neticesinde mahrem

ilişkisel kurallara karşılık gelen sık rastlanan öğe setlerinin gizlenmesiyle sonuçlanır.

Araştırma eğilimi, genelde bu konu dahilindeki uygulanabilirlik, yürütüm süresi ve yan

etki terimleri için daha efektif metotlar bulmayı amaçlar. Bu çalışma mahrem verilerin

gizlendiği sırada mahrem olmayan diğer verilere mümkün olduğunca zarar

verilmemesine dayalı pratik bir uygulama içerir. Biz bu çalışmada öğe setlerini gizleme

problemini modellerken, ürettiğimiz objective katsayıların integer programlamada

kullanılmasıyla, mahrem olmayan verilerin varlığını mümkün olduğunca korumaktayız.

Oluşturduğumuz metodu, FIMI ambarından aldığımız üç gerçek veri seti üzerinde

deneyip sonuçları, çalışırken referans aldığımız diğer exact ve heuristic çalışma ile

karşılaştırmaktayız. Sonuçlar gösteriyor ki, veri tabanı üzerinde çok büyük değişiklere

neden olmadan, veri kaybı önemli derecede minimize edilmiştir.

 vi

TABLE OF CONTENTS

LIST OF FIGURES………………………………………………………….…...……viii

LIST OF TABLES ... ix

CHAPTER 1. INTRODUCTION ... 10

CHAPTER 2. BACKGROUND .. 12

 Problem Formulation .. 12 2.1.

 Literature Review .. 14 2.2.

2.2.1. Data Mining ... 14

2.2.1.1. What Kinds of Data Can Be Mined? 17

2.2.1.1.1. Transactional Data ... 17

2.2.1.2. Mining Frequent Patterns and Associations 18

2.2.1.2.1. Apriori Algorithm ... 19

2.2.2. Data Utility ... 22

2.2.2. Privacy Preserving Data Mining .. 24

2.2.4. A Motivating Example ... 24

2.2.5. Association Rule Hiding .. 25

2.2.5.1. Classes of Association Rule Hiding Algorithms 26

2.2.5.1.1. Heuristic Approaches.. 26

2.2.5.1.2. Border-Based Approaches 32

2.2.5.1.3. Exact Approaches ... 32

CHAPTER 3. COEFFICIENT-BASED ITEMSET HIDING SOLUTION FOR

ASSOCIATION RULE HIDING ... 35

3.1. The Approach of Menon et al. Implementation 36

3.2. Coefficient-Based Itemset Hiding ... 37

3.2.1. Coefficient Computation .. 37

3.2.2. Integer Programming Solution ... 38

3.2.3. Heuristic Sanitization ... 39

 vii

CHAPTER 4. PERFORMANCE EVALUATION ... 42

4.1. The Datasets ... 42

4.2. Evaluation Methodology .. 43

4.3. Experimental Results .. 44

CHAPTER 5. CONCLUSION ... 52

REFERENCES ... 54

 viii

LIST OF FIGURES

Figure Page

Figure 2. 1. Data mining—searching for knowledge (interesting patterns)

in data [10]. .. 15

Figure 2. 2. Data mining as a step in the process of knowledge discovery [10] 16

Figure 2. 3. Fragment of an example transactional database for sales. 17

Figure 2. 4. Generation of the candidate itemsets and frequent itemsets [10]. 20

Figure 2.5. Generation and pruning of candidate 3-itemsets, C3, from L2 [10]. 21

Figure 2.6. Item Grouping Algorithm [21]. .. 29

Figure 2.7. Finding victim transactions of our example in IGA. 30

Figure 3.1. Coefficient Computation Algorithm. ... 37

Figure 3.2. Intelligent Sanitization [8]. ... 40

Figure 4.1. Calculation of similarity of transactions in a database. 43

Figure 4.2. Results categorized in terms of type of approach used in experiments. 49

 ix

LIST OF TABLES

Table Page

Table 2. 1. Example Database D ... 13

Table 2. 2. Frequent (Nonsingleton) Itemsets for at 13

Table 2. 3. Apriori Training Database .. 20

Table 2. 4. Grouping sensitive itemsets of our example in IGA. 31

Table 2. 5. Solving overlapped itemset problem of our example in IGA. 31

Table 2. 6. All required information is prepared to use in sanitization for our

example in IGA. ... 31

Table 4.1. Characteristics of the Real Datasets .. 43

Table 4. 2. Comparison between approaches in terms of accuracy 46

Table 4. 3. Comparison between approaches in terms of total time cost. 47

Table 4.4. Comparison between approaches in terms of distance. 47

Table 4.5. Comparison between approaches in terms of information loss. 48

Table 4.6. Comparison of Menon Approach and Coefficient-based Approach. 51

 10

CHAPTER 1

INTRODUCTION

Progresses in the technology give an opportunity to establish transactional

databases that can reserve large volumes of data. Analyzing data and extracting

meaningful information from these huge piles of data come up as a result of these

advances. Data mining field has efficient techniques for this knowledge discovery

process. However, improper use of these techniques caused a rise of privacy concerns.

Unauthorized access to not only sensitive personal information that is stored or inferred

from the data, but also commercial information that provides remarkable benefit over

rivals induces privacy issues. That is why comprehensive sanitization on databases is

required when the information or data from these databases is shared or published.

Sharing databases allows researchers and policy-makers to examine the data and

gain significant information benefiting the society as a whole, such as the strength of a

medicine or treatment, social-economic inferences that can be the guide on the road to

efficient public policies, and the factors that cause vital diseases. In other words,

publishing databases eventuates in utility gain for the society as a whole [1]. However,

due to privacy concerns, a privacy preserving method is needed to be applied on the

databases. These methods make data imprecise and/or distorted so that no sensitive

knowledge is disclosed. But, this distortion causes unwanted information loss and losses

in potential utility gain.

Frequent itemset hiding is one of the important and widely used methods of

privacy preserving data mining field. There are several frequent itemset hiding

algorithms whose methodology can be classified such as heuristic [2], border-based [3

and 4] and exact [5, 6, 7 and 8]. They aim to impose small deviation in the original

database to expose no sensitive itemsets. This deviation is tried to be minimized by

various techniques with different quality metrics as a common feature of these

algorithms. One determines the relative frequency of remaining itemsets [3] as a quality

parameter while another approach uses the term of accuracy [8] that shows the impact

of sanitization on transactions of the database. In addition to this, the information loss

which is to conceal nonsensitive itemsets on the original database while hiding sensitive

 11

knowledge is another critical point of the hiding process [3]. Studies generally

concentrate on achieving the result database which has no sensitive knowledge with

small deviation and minimum information loss.

Exact approaches produce more accurate solution than other types of approaches

in frequent itemset hiding. However, they are impractical when the number of itemsets

and length of itemsets increase. In addition to this, they mostly focus on minimizing

deviation in terms of accuracy or distance. To our knowledge there is no practical

solution providing frequent itemset hiding with the objective of minimum information

loss and accuracy. In this paper, we propose an exact approach for frequent itemset

hiding where all sensitive patterns are concealed. Our approach is based on the

combination of integer programming and heuristic sanitization. While it prevents

revealing sensitive information on published database, minimum information loss and

maximum accuracy are also provided.

Our approach proposes the use of coefficients in the objective function of integer

programming to minimize information loss. These coefficients reminding the

approaches used by utility-based mining algorithms [9] are pre-computed such that they

give a measure of information loss. Integer programming allows finding the optimum

solution deciding about the transactions to be sanitized. Then, heuristic sanitization

algorithm is executed to remove the sensitive itemsets. The experiments with real

datasets demonstrate the efficacy of our approach and give useful insight into the efforts

of minimizing nonsensitive information loss.

The following sections are organized as follows: Chapter 1 includes an

introduction. The way of organizing our study and main concepts of this study are

described briefly. Chapter 2 gives the background of the problem with the problem

formulation and the literature of review. Section 2.1 includes the problem formulation

with terms, concepts and tables that have information about the example database is

used in Chapter 3. Section 2.2 mentions basis of data mining, association rule mining

and privacy preserving data mining. In addition, the section contains an overview of the

leading studies about association rule hiding which is one of the important field for

privacy preserving data mining. Chapter 3 presents our approach in detail. Chapter 4

shows the results and evaluations of all experiments to prove the effectiveness of the

technique the thesis presents. Finally, we conclude in Chapter 5.

 12

CHAPTER 2

BACKGROUND

 Problem Formulation 2.1.

Let be a set of items. An itemset is a subset of and any transaction defined

over is tuple , where is the transaction id and is the itemset. A

transaction is said to contain an itemset iff . A database is a set

of transactions. Given a database , the support of an itemset in the database is

denoted as the support . can be represented simply as for

notational convenience. For a given threshold , is said to be frequent if

 . The set of frequent itemsets at minimum support level

is the set of all itemsets with a minimum support of .

 is a group of restrictive patterns that the owner of the data

would like to conceal while publishing. A transaction that supports any of these patterns

is said to be sanitized if any alteration is made on it in such a way that it no longer

supports any itemset in . This sanitization implies reducing the support for

every below and concealing itemset .

In the process of transforming a database to a sanitized , we have the

following considerations:

1) Suppose that be the set of frequent itemsets in the sanitized .

Any in should not be in . In other words, it is aimed that no

sensitive knowledge is involved in the sanitized database.

2) The accuracy, which is the ratio of the number of transactions that are not

sanitized and the total number of transactions in the database , should be maximized

by keeping the number of sanitized transactions at minimum.

3) Suppose that be the set of non-sensitive frequent itemsets

determined by
 in database | | should be

minimized to avoid overconcealing nonsensitive frequent itemsets and keeping the

information loss at minimum.

 13

Table 2. 1. Example Database D

Id Items

 1 2 3 7 8 10

 3 9 10

 4 5 6

 1 2 3 6 7 8 9

 1 2 3 6 7

 10

 4

 3 6 7 8 9

 3 8 9

 5 6 7

Table 2. 2. Frequent (Nonsingleton) Itemsets for at

Itemsets Itemsets Itemsets Itemsets

5, 6

1, 2

1, 8

1, 6

1, 7

1, 3

2, 8

2, 6

2, 7

2, 3

10, 3

 8, 9

8, 6

8, 7

 8, 3

2

3

2

2

3

3

2

2

3

3

2

3

2

3

4

9, 6

9, 7

9, 3

 6, 7

6, 3

7, 3

1, 2, 8

1, 2, 6

1, 2, 7

 1, 2, 3

1, 8, 7

1, 8, 3

1, 6, 7

1, 6, 3

1, 7, 3

2

2

4

4

3

4

2

2

3

3

2

2

2

2

3

2, 8, 7

2, 8, 3

2, 6, 7

2, 6, 3

2, 7, 3

8, 9, 6

8, 9, 7

8, 9, 3

8, 6, 7

8, 6, 3

8, 7, 3

9, 6, 7

9, 6, 3

9, 7, 3

6, 7, 3

2

2

2

2

3

2

2

3

2

2

3

2

2

2

3

1, 2, 8, 7

1, 2, 8, 3

1, 2, 6, 7

1, 2, 6, 3

1, 2, 7, 3

1, 8, 7, 3

1, 6, 7, 3

2, 8, 7, 3

2, 6, 7, 3

8, 9, 6, 7

8, 9, 6, 3

8, 9, 7, 3

8, 6, 7, 3

9, 6, 7, 3

1, 2, 8, 7, 3

1, 2, 6, 7, 3

8, 9, 6, 7, 3

2

2

2

2

3

2

2

2

2

2

2

2

2

2

2

2

2

 For example, we assume that the sensitive patterns are {8, 9}, {8, 3}, {6, 7}, {1,

2, 3} that are bold and represented such as , , and . Although, it is possible to

define different support thresholds for each sensitive pattern, we assume that the support

threshold 2 for all patterns, which is practical and common in many

circumstances. At the end of the process, we expect that 28 nonsensitive frequent

itemsets that are supersets of the sensitive ones would also get concealed as the process

of hiding the sensitive itemsets. The question is how to transform into the sanitized

database in an effective way such that aforementioned considerations 1, 2 and 3 are

maintained.

 14

Depending on the consideration 1, support values of our sensitive patterns in the

database should be dropped below 2, that is minimum support value. For example,

the support value of is 4 and to satisfy the consideration 1, transactions that include

should be found and at least one of two items in should be deleted from as many

transactions as needed. The proper selection of transactions to be sanitized and the items

to be removed is of paramount importance, since the number of sanitized transactions

and/or the number of items to be removed should be kept minimum. Moreover,

nonsensitive itemsets that contain one of items, 8 or 3, are in danger of being concealed

while the support value of is decreased. According to consideration 3, the number of

nonsensitive itemsets that are concealed should be minimum.

 Literature Review 2.2.

2.2.1. Data Mining

It is no surprise that data mining, as a truly interdisciplinary subject, can be

defined in many different ways. Even the term data mining does not really present all

the major components in the picture. To refer to the mining of gold fromrocks or sand,

we say gold mining instead of rock or sand mining. Analogously, data mining should

have been more appropriately named ―knowledge mining from data,‖ which is

unfortunately somewhat long. However, the shorter term, knowledge mining may not

reflect the emphasis on mining from large amounts of data. Nevertheless, mining is a

vivid term characterizing the process that finds a small set of precious nuggets from a

great deal of raw material (Figure 2. 1). Thus, such a misnomer carrying both ―data‖ and

―mining‖ became a popular choice. In addition, many other terms have a similar

meaning to data mining—for example, knowledge mining from data, knowledge

extraction, data/pattern analysis, data archaeology, and data dredging.

Many people treat data mining as a synonym for another popularly used term,

knowledge discovery from data, or KDD, while others view data mining as merely an

essential step in the process of knowledge discovery. The knowledge discovery process

is shown in Figure 2. 2 as an iterative sequence of the following steps:

 15

Figure 2. 1. Data mining—searching for knowledge (interesting patterns) in data [10].

1. Data cleaning (to remove noise and inconsistent data)

2. Data integration (where multiple data sources may be combined)

3. Data selection (where data relevant to the analysis task are retrieved from the

database)

4. Data transformation (where data are transformed and consolidated into forms

appropriate for mining by performing summary or aggregation operations)

5. Data mining (an essential process where intelligent methods are applied to

extract data patterns)

6. Pattern evaluation (to identify the truly interesting patterns representing

knowledge based on interestingness measures)

7. Knowledge presentation (where visualization and knowledge representation

techniques are used to present mined knowledge to users)

Steps 1 through 4 are different forms of data preprocessing, where data are

prepared for mining. The data mining step may interact with the user or a knowledge

base. The interesting patterns are presented to the user and may be stored as new

knowledge in the knowledge base.

 16

Figure 2. 2. Data mining as a step in the process of knowledge discovery [10]

The preceding view shows data mining as one step in the knowledge discovery

process, albeit an essential one because it uncovers hidden patterns for evaluation.

However, in industry, in media, and in the research milieu, the term data mining is often

used to refer to the entire knowledge discovery process (perhaps because the term is

shorter than knowledge discovery from data). Therefore, we adopt a broad view of data

mining functionality: Data mining is the process of discovering interesting patterns and

knowledge from large amounts of data. The data sources can include databases, data

warehouses, the Web, other information repositories, or data that are streamed into the

system dynamically.

 17

2.2.1.1. What Kinds of Data Can Be Mined?

As a general technology, data mining can be applied to any kind of data as long

as the data are meaningful for a target application. The most basic forms of data for

mining applications are database data, data warehouse data, and transactional data

(Section 2.2.1.1.1). Data mining can also be applied to other forms of data (e.g., data

streams, ordered/sequence data, graph or networked data, spatial data, text data,

multimedia data, and the WWW). Transactional data is focused on this thesis.

Experiments are made on this type of datasets.

2.2.1.1.1. Transactional Data

In general, each record in a transactional database captures a transaction, such as

a customer‘s purchase, a flight booking, or a user‘s clicks on a web page. A transaction

typically includes a unique transaction identity number (trans ID) and a list of the items

making up the transaction, such as the items purchased in the transaction. A

transactional database may have additional tables, which contain other information

related to the transactions.

Figure 2. 3. Fragment of an example transactional database for sales.

Example 2.1. Transactions can be stored in a table, with one record per

transaction. A fragment of an example transactional database is shown in Figure 2. 3.

From the relational database point of view, the table in the figure is a nested relation

because the attribute list of item IDs contains a set of items. Because most relational

database systems do not support nested relational structures, the transactional database

is usually either stored in a flat file in a format similar to the table in Figure 2. 3.

 18

As an analyst of the example transactional database, you may ask,―Which items

sold well together?‖ This kind of market basket data analysis would enable you to

bundle groups of items together as a strategy for boosting sales. For example, given the

knowledge that printers are commonly purchased together with computers, you could

offer certain printers at a steep discount (or even for free) to customers buying selected

computers, in the hopes of selling more computers (which are often more expensive

than printers). A traditional database system is not able to perform market basket data

analysis. Fortunately, data mining on transactional data can do so by mining frequent

itemsets, that is, sets of items that are frequently sold together.

2.2.1.2. Mining Frequent Patterns and Associations

Frequent patterns, as the name suggests, are patterns that occur frequently in

data. There are many kinds of frequent patterns, including frequent itemsets, frequent

subsequences (also known as sequential patterns), and frequent substructures. A

frequent itemset typically refers to a set of items that often appear together in a

transactional data set—for example, milk and bread, which are frequently bought

together in grocery stores by many customers. A frequently occurring subsequence,

such as the pattern that customers, tend to purchase first a laptop, followed by a digital

camera, and then a memory card, is a (frequent) sequential pattern. A substructure can

refer to different structural forms (e.g., graphs, trees, or lattices) that may be combined

with itemsets or subsequences. If a substructure occurs frequently, it is called a

(frequent) structured pattern. Mining frequent patterns leads to the discovery of

interesting associations within data.

Example 2.2 - Association analysis. Suppose that, as a marketing manager, you

want to know which items are frequently purchased together (i.e., within the same

transaction). An example of such a rule, mined from the example transactional database,

is buys (X, ―computer‖) buys (X, ―software‖) [support = 1%], where X is a variable

representing a customer. A 1% support means that 1% of all the transactions under

analysis show that computer and software are purchased together. Typically, association

rules are discarded as uninteresting if they do not satisfy both a minimum support

threshold.

 19

To gain association rules of transactional database systems, Apriori, which is a

kind of frequent itemsets finding algorithm, can be used to mine frequent itemsets.

2.2.1.2.1. Apriori Algorithm

Apriori is a seminal algorithm proposed by R. Agrawal and R. Srikant [11] in

1994 for mining frequent itemsets for Boolean association rules. Apriori employs an

iterative approach known as a level-wise search, where k-itemsets are used to explore

(k+1)-itemsets. First, the set of frequent 1-itemsets is found by scanning the database to

accumulate the count for each item, and collecting those items that satisfy minimum

support. The resulting set is denoted by . Next, is used to find , the set of

frequent 2-itemsets, which is used to find , and so on, until no more frequent k-

itemsets can be found. The finding of each requires one full scan of the database.

To improve the efficiency of the level-wise generation of frequent itemsets, an

important property called the Apriori property is used to reduce the search space.

Apriori property: All nonempty subsets of a frequent itemset must also be

frequent [10].

The Apriori property is based on the following observation. By definition, if an

itemset I does not satisfy the minimum support threshold, min_sup, then I is not

frequent, that is, P(I) < min_sup. If an item A is added to the itemset I, then the resulting

itemset (i.e., I A) cannot occur more frequently than I. Therefore, I A is not frequent

either, that is, P(I A) < min_sup.

This property belongs to a special category of properties called antimonotonicity

in the sense that if a set cannot pass a test, all of its supersets will fail the same test as

well. It is called antimonotonicity because the property is monotonic in the context of

failing a test.

Let‘s look at a concrete example, based on the Apriori Training Database, D, of

Table 2. 3. There are nine transactions in this database, that is, |D| = 9. We use Figure 2.

3 to illustrate the Apriori algorithm for finding frequent itemsets in D.

1. In the first iteration of the algorithm, each item is a member of the set of

candidate 1-itemsets, . The algorithm simply scans all of the transactions to count the

number of occurrences of each item. candidate 1-itemsets, . The algorithm simply

scans all of the transactions to count the number of occurrences of each item.

 20

Table 2. 3. Apriori Training Database

Id Items

 I1, I2, I5

 I2, I4

 I2, I3

 I1, I2, I4

 I1, I3

 I2, I3

 I1, I3

 I1, I2, I3, I5

 I1, I2, I3

2. Suppose that the minimum support count required is 2, that is, min_sup = 2.

(Here, we are referring to absolute support because we are using a support count. The

corresponding relative support is 2/9 = 22%.) The set of frequent 1-itemsets, , can

then be determined. It consists of the candidate 1-itemsets satisfying minimum support.

Figure 2. 4. Generation of the candidate itemsets and frequent itemsets [10].

 21

In our example, all of the candidates in satisfy minimum support.

3. To discover the set of frequent 2-itemsets, , the algorithm uses the join

 to generate a candidate set of 2-itemsets, . consists of (

) 2-itemsets.

Note that no candidates are removed from during the prune step because each subset

of the candidates is also frequent.

4. Next, the transactions in D are scanned and the support count of each

candidate itemset in is accumulated, as shown in the middle table of the second row

in Figure 2. 4.

5. The set of frequent 2-itemsets, , is then determined, consisting of those

candidate 2-itemsets in having minimum support.

6. The generation of the set of the candidate 3-itemsets, , is detailed in Figure

2.5. From the join step, we first get {{I1, I2, I3}, {I1, I2, I5}, {I1, I3,

I5}, {I2, I3, I4}, {I2, I3, I5}, {I2, I4, I5}}. Based on the Apriori property that all subsets

of a frequent itemset must also be frequent, we can determine that the four latter

candidates cannot possibly be frequent. We therefore remove them from , thereby

saving the effort of unnecessarily obtaining their counts during the subsequent scan of

D to determine .

Figure 2.5. Generation and pruning of candidate 3-itemsets, C3, from L2 [10].

 22

Note that when given a candidate k-itemset, we only need to check if its (k-1)-subsets

are frequent since the Apriori algorithm uses a level-wise search strategy. The resulting

pruned version of is shown in the first table of the bottom row of Figure 2.4.

7. The transactions in D are scanned to determine , consisting of those

candidate 3-itemsets in having minimum support (Figure 2.4).

8. The algorithm uses to generate a candidate set of 4-itemsets, .

Although the join results in {{I1, I2, I3, I5}}, itemset {I1, I2, I3, I5} is pruned because

its subset {I2, I3, I5} is not frequent. Thus, , and the algorithm terminates,

having found all of the frequent itemsets.

2.2.2. Data Utility

Publishing database enables researchers and policy-makers to analyze the data

and learn important information benefiting the society as a whole, such as the factors

causing certain diseases, effectiveness of a medicine or treatment, and social-economic

patterns that can guide the formulation of effective public policies. In other words,

publishing database results in utility gain for the society as a whole. However, as the

database contains specific information about individuals, a household, or an

organization, publishing database could also results in privacy loss for them. Hence

before the database can be made public, one must ensure that the privacy loss is limited

to an acceptable level. This is typically done via anonymization, which modifies the

database to improve the privacy. Because anonymization makes data in the database

modified, it also causes losses in potential utility gain, when compared with the case of

disclosing the original database.

The challenges include [12]:

Utility measure: One key issue in the utility-based privacy preservation is how

to model the data utility in different applications. A good utility measure should capture

the intrinsic factors that affect the quality of data for the specific application.

Balance between utility and privacy: In some situation, preserving utility and

privacy are not conflicting. But more often than not, hiding the privacy information may

have to sacrifice some utility. How do we trade off between the two goals?

Efficiency and scalability: The traditional privacy preservation is already

computational challenging. For example, even simple restriction of optimized k-

 23

anonymity is NP-hard [13]. How do we develop efficient algorithms if utility is

involved? Moreover, real databases often contains millions of high dimensional tuples,

highly scalable algorithms are needed.

Ability to deal with different types of attributes: Real life data often involve

different types of attributes, such as numerical, categorical, binary or mixtures of these

data types. The utility-based privacy preserving methods should be able to deal with

attributes of different types.

The beginning of the research in utility-based privacy preservation is not so old.

Loukides and Shao [14] proposed a method that attempts to optimise the trade-off

between utility and protection. They introduce a measure that captures both utility and

protection, and an algorithm that exploits this measure using a combination of clustering

and partitioning techniques. In a paper that appeared in KDD 2008, Brickell and

Shmatikov [15] applied another solution to the tradeoff between privacy and utility.

They define privacy loss of the published data as certain kinds of information learned by

the adversary from the dataset and utility gain of the published data is defined as the

same kinds of information learned by the researchers. Since both the adversary and the

researchers see the same dataset and try to learn the same kinds of information, Brickell

and Shmatikov claim that their knowledge gains are the same. Hence any utility gain by

the anonymized data must be offset by the same amount of privacy loss. Finally, they

reached an intriguing conclusion ―even modest privacy gains require almost complete

destruction of the data-mining utility.‖ However, Tiancheng Li and Ninghui Li [1]

criticized this study that it is inappropriate to directly compare privacy with utility,

because of several reasons, including both technical and philosophical ones. The most

important reason of this idea is presented that privacy is an individual concept, and

utility is an aggregate concept. The anonymized dataset is safe to be published only

when privacy for each individual is protected; on the other hand, utility gain adds up

when multiple pieces of knowledge are learned. Secondly, they claims that even if the

adversary and the researcher learn exactly the same information, one cannot conclude

that privacy loss equals utility gain.

 24

2.2.2. Privacy Preserving Data Mining

Privacy preserving data mining is a relatively new research area in the data

mining community, counting approximately a decade of existence. It investigates the

side-effects of data mining methods that originate from the penetration into the privacy

of individuals and organizations. Since the pioneering work of Agrawal & Srikant [16]

and Lindell & Pinkas [17] in the beginning of 2000s, several approaches have been

proposed in the research literature for the offering of privacy in data mining. The

majority of the proposed approaches can be classified along two principal research

directions: (i) data hiding approaches and (ii) knowledge hiding approaches.

The first direction collects methodologies that investigate how the privacy of

raw data, or information, can be maintained before the course of mining the data. The

approaches of this category aim at the removal of confidential or private information

from the original data prior to its disclosure and operate by applying techniques such as

perturbation, sampling, generalization or suppression, transformation, etc. to generate a

sanitized counterpart of the original dataset. Their ultimate goal is to enable the data

holder receive accurate data mining results when is not provided with the real data or

adhere to specific regulations pertaining to microdata publication (e.g., as is the case of

publishing patient-specific data).

The second direction of approaches involves methodologies that aim to protect

the sensitive data mining results (i.e., the extracted knowledge patterns) rather than the

raw data itself, which were produced by the application of data mining tools on the

original database. This direction of approaches mainly deals with distortion and

blocking techniques that prohibit the leakage of sensitive knowledge patterns in the

disclosed data, as well as with techniques for downgrading the effectiveness of

classifiers in classification tasks, such that the produced classifiers do not reveal any

sensitive knowledge [18].

2.2.4. A Motivating Example

The following example scenario, borrowed from the work of Verykios et al.

[19], complements the real world examples we presented earlier and motivates the

necessity of applying association rule hiding algorithms to protect sensitive association

 25

rules against disclosure. Let us suppose that we are negotiating with Dedtrees Paper

Company, as purchasing directors of BigMart, a large supermarket chain. They offer

their products in reduced prices, provided that we agree to give them access to our

database of customer purchases. We accept the deal and Dedtrees starts mining our data.

By using an association rule mining tool, they find that people who purchase skim milk

also purchase Green Paper. Dedtrees now runs a coupon marketing campaign offering a

50 cents discount on skim milk with every purchase of a Dedtrees product. The

campaign cuts heavily into the sales of Green Paper, which increases the prices to us,

based on the lower sales. During our next negotiation with Dedtrees, we find out that

with reduced competition they are unwilling to offer to us a low price. Finally, we start

losing business to our competitors, who were able to negotiate a better deal with Green

Paper. In other words, the aforementioned scenario indicates that BigMart should

sanitize competitive information (and other important corporate secrets of course)

before delivering their database to Dedtrees, so that Dedtrees does not monopolize the

paper market.

2.2.5. Association Rule Hiding

We focus on the knowledge hiding thread of privacy preserving data mining and

study a specific class of approaches which are collectively known as frequent itemset

and association rule hiding approaches. Other classes of approaches under the

knowledge hiding thread include classification rule hiding, clustering model hiding,

sequence hiding, and so on and so forth.

Association rules are implications that hold in a transactional database under

certain user-specified parameters that account for their significance. Significant

association rules provide knowledge to the data miner as they effectively summarize the

data, while uncovering any hidden relations (among items) that hold in the data. The

term ―association rule hiding‖ has been mentioned for the first time in 1999 by Atallah

et al. [20] in a workshop paper on knowledge and data engineering. The authors of this

work studied the problem of modifying the original database in a way that certain

(termed as ―sensitive‖) association rules disappear without, however, seriously affecting

the original data and the nonsensitive rules. They proposed a number of solutions like

fuzification of the original database, limiting access to the original data, as well as

 26

releasing samples instead of the entire database. Due to the combinatorial nature of the

problem, all of the solutions that the authors proposed, as well as the vast majority of

solutions that have been proposed since then, were based on heuristics. Heuristic

solutions, although computationally efficient and scalable, suffer from local optima

issues as they require optimizing a specific function in each step of the algorithm, which

however does not guarantee finding an optimal hiding solution to the whole problem.

More recently, a new direction of exact approaches to association rule hiding has been

proposed. These approaches have increased time and memory requirements but in return

they offer quality guarantees on the identified solution [18].

2.2.5.1. Classes of Association Rule Hiding Algorithms

Association rule hiding algorithms can be divided into three classes, namely

heuristic approaches, border-based approaches and exact approaches.

2.2.5.1.1. Heuristic Approaches

The first class of approaches involves efficient, fast algorithms that selectively

sanitize a set of transactions from the original database to hide the sensitive association

rules. Due to their efficiency and scalability, heuristic approaches have been the focus

of attention for the majority of researchers in the data mining area. However, there are

several circumstances in which these algorithms suffer from undesirable side-effects

that lead them to identify approximate hiding solutions. This is due to fact that

heuristics always aim at taking locally best decisions with respect to the hiding of the

sensitive knowledge which, however, are not necessarily also globally best. As a result,

heuristics fail to provide guarantees with respect to the quality of the identified hiding

solution. Some of the most interesting heuristic methodologies for association rule

hiding are presented in the next part of the book.

One of the earlier studies, which propose an algorithm for the hiding of sensitive

association rules through the reduction in the support of their generating itemsets,

belongs to Atallah et al. [20]. One of the most significant contributions of this work is

the proof that the authors provide regarding the NP-hardness of finding an optimal

 27

sanitization of a dataset. On the negative side, the proposed approach does not take into

consideration the extend of loss in support for the large itemsets, as long as they remain

frequent in the sanitized database.

Dasseni et al. [2] generalize the hiding problem in the sense that they consider

the hiding of both sensitive frequent itemsets and sensitive association rules. The

authors propose three single rule heuristic hiding algorithms that are based on the

reduction of either the support or the confidence of the sensitive rules, but not both. In

all three approaches, the goal is to hide the sensitive rules while minimally affecting the

support of the nonsensitive itemsets. In order to achieve this, transactions are modified

by removing some items, or inserting new items depending on the hiding strategy. A

basic drawback of the proposed methodologies is the strong assumption that all the

items appearing in a sensitive association rule do not appear in any other sensitive rule.

Under this assumption, hiding of the sensitive rules one at a time or altogether makes no

difference. Moreover, the proposed methodologies fail to avoid undesired side-effects,

such as lost rules and ghost rules.

Verykios et al. [19] extend the previous work of Dasseni et al. [2] by improving

and evaluating the association rule hiding algorithms of [2] for their performance under

different sizes of input datasets and different sets of sensitive rules. In addition to that,

the authors propose two novel heuristic algorithms that incorporate the third strategy

presented above. The first of these algorithms protects the sensitive knowledge by

hiding the item having the maximum support from the minimum length transaction (i.e.,

the one with the least supporting items). The hiding of the generating itemsets of the

sensitive rules is performed in a decreasing order of size and support and in a one-by-

one fashion. Similarly to the first algorithm, the second algorithm first sorts the

generating itemsets with respect to their size and support, and then hides them in a

round-robin fashion as follows. First, for each generating itemset, a random ordering of

its items and of its supporting transactions is attained. Then, the algorithm proceeds to

remove the items from the corresponding transactions in a round-robin fashion, until the

support of the sensitive itemset drops below the minimum support threshold, thus the

itemset is hidden. The intuition behind hiding in a round-robin fashion is fairness and

the proposed algorithm, although rather naïve, serves as a baseline for conducting a

series of experiments.

Oliveira and Zaïane [21] contribute to this area with four heuristic algorithms.

They identify transactions to sanitize based on the number of sensitive item sets

 28

supported by a transaction. Their naïve algorithm removes all the items in a sensitive

item set supported by the transaction, retaining only the item with the highest frequency

in cases where all the items in the transaction are removed. Their minimum frequency

item algorithm removes the item with the smallest support in a sensitive item set

supported by the transaction, while their maximum frequency item algorithm removes

the item with the greatest support. Their item grouping algorithm (IGA) relies on

grouping sensitive patterns based on item sets sharing the same set of items. All four

approaches allow for some sensitive item sets not to be hidden, and this may not be

appropriate in many situations.

Amiri [22] presents three data sanitization heuristics that demonstrate high data

utility at the expense of computational speed. The first heuristic reduces the support of

the sensitive item sets by deleting a set of supporting transactions. The second approach

modifies, instead of deleting, the supporting transactions by removing some items until

the sensitive item sets are protected. The third algorithm aggregates the previous two by

using the first approach to identify the sensitive transactions and the second one to

remove items from these transactions, until the sensitive knowledge is hidden. Although

the algorithms by Amiri are similar in philosophy to the previous approaches, the three

proposed methodologies do a better job in modeling the overall objective of a rule

hiding algorithm.

We examine Item Grouping Algorithm (IGA) algorithm, which the heuristic part

of our new approach is derived from, in detail to compare it with our approach.

2.2.5.1.1.1. The Item Grouping Algorithm (IGA)

The main idea behind the Item Grouping Algorithm, denoted by IGA, is to

group sensitive patterns in groups of itemsets sharing the same itemsets. If two sensitive

patterns intersect, by sanitizing the conflicting sensitive transactions containing both

sensitive patterns, one would take care of hiding these two sensitive patterns at once and

consequently reduce the impact on the released database. However, clustering the

sensitive patterns based on the intersections between patterns leads to groups that

overlap since the intersection of itemsets is not transitive. By solving the overlap

between clusters and thus isolating the groups, a representative of the itemset linking

related to the patterns in the group, all sensitive patterns in the group will be hidden in

one step. This again will minimize the impact on the database and reduce the potential

 29

accidental hiding of legitimate patterns. The sketch of the Item Algorithm is given as

follows in Figure 2.6.

Figure 2.6. Item Grouping Algorithm [21].

We implement IGA on the database whose transactions and items are shown in

Table 2. 1. Initially, we eliminate transactions that does not have any sensitive itemsets

and give them ids in a way of beginning with ‗0‘ (‗a‘ part in Figure 2.7). Then, we map

sensitive itemsets with sensitive transactions which support related sensitive itemsets

(‗b‘ part in Figure 2.7). Degree-of-conflict, which is the number of restrictive patterns

that can be mined from the sensitive transaction, of these transactions are calculated and

sensitive transactions that have relevant sensitive transaction are sorted descendingly

(‗a‘ and ‗c‘ part in Figure 2.7). Then, based on the support value of sensitive itemsets in

the dataset, we find the number of transactions to sanitize and get the support value of

sensitive itemsets decreased below minimum support threshold (‗d‘ part in Figure 2.7).

Transactions that will be sanitized are identified from sorted list based on this founded

number.

 30

a)

Example Database D

Id Transactions
Degree-of-

conflict

0 1 2 3 7 8 10 2

 3 9 10

 4 5 6

1 1 2 3 6 7 8 9 4

2 1 2 3 6 7 2

 10

 4

3 3 6 7 8 9 3

4 3 8 9 2

5 5 6 7 1

b)

{8 9} -> 1, 3, 4

{8 3} -> 0, 1, 3, 4

{6 7} -> 1, 2, 3, 5

{1 2 3} -> 0, 1, 2

c)

{8 9} -> 1, 3, 4

 -> 1, 3, 4

{8 3} -> 0, 1, 3, 4

 -> 1, 3, 0, 4

{6 7} -> 1, 2, 3, 5

 -> 1, 3, 2, 5

{1 2 3} -> 0, 1, 2

 -> 1, 0, 2

d)

Sensitive

Itemset

Transaction

ids

Reqired

number of

transaction

s

{8 9} 1, 3 2

{8 3} 1, 3, 0 3

{6 7} 1, 3, 2 3

{1 2 3} 1, 0 2

Figure 2.7. Finding victim transactions of our example in IGA.

After some preprocess to find transactions that will sanitize to hide each

sensitive itemsets, we group sensitive itemsets based on shared itemsets that sensitive

itemsets have. We give a label, that is the least supported item of shared itemset by all

transactions in the dataset, to each group. Sensitive itemsets, that does not have any

shared itemsets, are accepted as a singleton group. The least supported item of this kind

of sensitive itemset is chosen as a label to the singleton group (Table 2. 4). Then, groups

are sorted descendingly based on the size of groups. In our example, there is no change,

since groups are already lined up descendingly. Then, we try to solve overlapped

itemsets problems. If there is a sensitive itemset that is in more than one group, there

are two considerations. If the number of elements in groups of the sensitive itemset are

different, overlapped sensitive itemsets are removed from the group that has less

 31

number of elements. If the size of groups is the same, the sensitive itemset is removed

from the group which has the least support value of label – item (Table 2. 5).

Table 2. 4. Grouping sensitive itemsets of our example in IGA.

Group Id Group Label Sensitive Itemsets

0 8 {8 9}, {8 3}

1 3 {8 3}, {1 2 3}

2 6 {6 7}

Table 2. 5. Solving overlapped itemset problem of our example in IGA.

Group Label
Support Value of

Label (%)
Group Elements

8 40 {8 9}, {8 3}

3 60 {8 3}, {1 2 3}

6 {6 7}

After finding transactions that will be sanitized and grouping sensitive itemsets

based on shared itemsets, sanitization is made based on these information (Table 2. 6).

By removing the victim item (label) from the sensitive transactions related to the

sensitive itemsets in the group, all sensitive itemsets in the group are hidden in one step.

When all transaction are put in sanitization process, the sanitized dataset is generated

with the number of modifications on the dataset "D" is 8. 4 sensitive transactions are

sanitized after all process and 7 nonsensitive itemsets were previously frequent still are

frequent whereas 23 nonsensitive itemsets were frequent are no longer frequent.

Table 2. 6. All required information is prepared to use in sanitization for our example in

IGA.

Sensitive Itemset
Victim

Transactions
Group Label

{8 9} 1, 3 8

{8 3} 1, 3, 0 3

{6 7} 1, 3, 2 6

{1 2 3} 1, 0 3

 32

2.2.5.1.2. Border-Based Approaches

The second class of approaches considers association rule hiding through the

modification of the borders in the lattice of the frequent and the infrequent itemsets of

the original database. Borders [23] capture those itemsets of a lattice that control the

position of the borderline separating the frequent itemsets from their infrequent

counterparts. Data modification, applied to the original database to facilitate sensitive

knowledge hiding, has an immediate effect on the support of the various itemsets and,

subsequently, on the borders of the sanitized database. Border-based algorithms achieve

to hide the sensitive association rules by tracking the border of the nonsensitive frequent

itemsets and greedily applying the data modifications that have minimal impact on the

quality of the border to accommodate the hiding of the sensitive rules. The algorithms in

this class differ in the methodology they follow to enforce the new, revised borders, in

the sanitized database.

Sun & Yu [3 and 4] proposed the first frequent itemset hiding methodology in

2005. Their methodology is based on the notion of the border constructed by the non-

sensitive frequent itemsets in an attempt to track the impact of altering transactions.

Instead of considering each non-sensitive itemset individually, their algorithm focuses

on preserving the quality of the resulting border.

Gkoulalas-Divanis and Verykios used this border concept in their works [5, 6

and 7] to minimize overconcealing nonsensitive itemsets. They capture the itemsets

hiding process as a border revision operation and they presented a set of algorithms

which enable the computation of the revised borders that pertain to an exact hiding

solution.

2.2.5.1.3. Exact Approaches

The third class of approaches contains non-heuristic algorithms which conceive

the hiding process as a constraints satisfaction problem (CSP) that is a kind of

optimization problem and is solved by using integer programming. The main difference

of these approaches, when compared to those of the two previous classes, is the fact that

the sanitization process is capable of offering quality guarantees for the computed

 33

hiding solution. The modeling of the hiding problem as an optimization problem

enables the algorithms of this category to identify optimal hiding solutions that

minimally distort the original database as well as introduce no side-effects to the hiding

process. Exact hiding approaches can be considered as the descendant of borderbased

methodologies. They operate by first applying border revision to compute a small

portion of itemsets from the original database whose status (i.e., frequent vs. infrequent)

in the sanitized database plays a crucial role to the quality of the hiding solution. Having

computed those itemsets, the exact methodologies incorporate unknowns to the original

database and generate inequalities that control the status of selected itemsets of the

border. These inequalities along with an optimization criterion that requires minimal

modification of the original database to facilitate sensitive knowledge hiding, formulate

an optimization problem whose solution (if exists) is guaranteed to lead to optimal

hiding. It is important to mention that unlike the two previous classes of approaches that

operate in a heuristic manner, exact hiding methodologies achieve to model the hiding

problem in a way that allows them to simultaneously hide all the sensitive knowledge as

an atomic operation (from the viewpoint of the hiding process). On the negative side,

these these approaches are usually several orders of magnitude slower than the heuristic

ones, especially due to the time that is taken by the integer programming solver to solve

the optimization problem.

The paper by Menon et al. [8] propose an interesting approach to the problem of

privacy preserving data mining. They were the first to present an integer programming

optimization method that consisted of an exact and a heuristic part to hide frequent

itemsets. The exact part of the method uses the database to formulate an integer

program trying to obtain the minimum number of transactions that have to be sanitized.

The optimization process of solving the CSP is driven by a criterion function that is

inspired from the measure of accuracy [24], essentially penalizing the hiding algorithm

based on the number of transactions that are sanitized from the original database to

accommodate the hiding of the sensitive itemsets. The constraints imposed in the

integer programming formulation aim to capture the transactions of the database that

need to be sanitized for the hiding of each sensitive itemset. An integer programming

solver is then used to find the solution of the CSP that optimizes the objective function

and to derive the value of the objective. In turn, the heuristic algorithm uses this

information to perform the actual sanitization of the database. Using integer

programming and heuristic together gives evaluated impact on the result data than

 34

border-based approaches give. However, it causes failing to notice side-effect of

information loss.

The study of Gkoulalas-Divanis and Verykios [5] includes the inline algorithm

that has been proposed which does not rely on any heuristics to secure the sensitive

knowledge derived by association rule mining. Similarly to the algorithm of Menon et

al. [8], the algorithm in [5] aims to hide the sensitive frequent itemsets of the original

database that can lead to the production of sensitive association rules. They introduce

the notion of distance between two databases along with a measure for quantifying it.

The quantification of distance provides us with important knowledge regarding the

minimum data modification that is necessary to be induced to the original database to

facilitate the hiding of the sensitive itemsets, while minimally affecting the nonsensitive

ones. By trying to minimize the distance between the original database and its sanitized

counterpart, the inline algorithm formulates the hiding process as an optimization

problem in which distance is the optimization criterion. The attained solution is such

that the distance measure is minimized.

Gkoulalas-Divanis and Verykios present a two–phase iterative algorithm in the

study [6] that extends the functionality of the inline algorithm of [5] to allow for the

identification of exact hiding solutions for a wider spectrum of problem instances. In

their another study [7], they introduce very interesting exact methodology that includes

hybrid database generation. This approach extends the regular process of data

sanitization by applying an extension to the original database instead of either

modifying existing transactions. Although a framework for decomposition and

parallelization of exact hiding approaches has been recently proposed in [25], lack of

solutions that can be used in all circumstances for the complexity problems of exact

methods and lack of practical approaches that have proposed up to present in this area

are the reasons of researching for better solution in privacy preserving data mining.

 35

CHAPTER 3

COEFFICIENT-BASED ITEMSET HIDING SOLUTION

FOR ASSOCIATION RULE HIDING

In this section, we introduce a novel method for the itemset hiding problem. We

first define the problem using integer programming and then simply augment the

objective function with coefficients in order to reduce the information loss. To clarify

this new method and the approach of Menon et al. which is the starting point of our

study, we implement both on the database whose transactions and items are shown in

Table 2. 1.

Modeling the itemset hiding problem with integer programming can be done in

several ways. We follow the way of Menon et al. [8] such that the objective achieves the

maximum accuracy. Our method alters the objective function such that the binary

variables indicating whether a transaction is chosen or not are multiplied by some pre-

computed coefficients that reflect the amount of information loss. We compute the

coefficients of transactions that support sensitive patterns only.

Based on the example database presented on Table 2. 1 and Table 2. 2 in Section

2.1, we start with creating the constraint matrix by eliminating transactions, which do

not support sensitive itemsets, from consideration as shown below:

(

)

 (1)

6 columns represents respectively:

 While supports sensitive itemsets and , contains only one

sensitive itemset that is .

 36

3.1. The Approach of Menon et al. Implementation

In this section, we implement the approach that is presented in the study of

Menon et al. [8] which models the itemset hiding problem with integer programming as

we do in our new method. Initally, give a binary value. Be 1 if transaction

supports itemset . Otherwise, the value of is 0. For the variable , it

will be set to 1 if transaction is sanitized. Otherwise, the value of is 0.

represents the current support for itemset . For the approach of Menon et al.,

the frequent item set formulation is :

 ∑ D (2)

 ∑ D (3)

 { } D (4)

When the formulation is arranged based on the constraint matrix that is created

in previous section, the integer programming formulation is generated as:

 { }

When this integer program is solved, the result in the optimal solution shows

 with the other variables being 0. The accuracy of the resulting

sanitized database is 0.60.

We choose transaction that is represented in the constraint matrix by to

explain the intelligent sanitization approach [8]. supports two sensitive itemsets -

and . First, the item appearing in the most number of sensitive patterns supported by

that transaction is selected from all items in (Items 1, 2, 3, 8). For the example,

―3‖ is selected, because it appears twice while each one of the others appears once.

Delete ―3‖ and remove all sensitive itemsets that contain selected item. This action

 37

eliminates and at the same time. If sensitive item sets remain supported by ,

repeat the procedure. For our example, there is no sensitive item set left. The sanitized

transaction is {1, 2, 7, 8, 10}. When all transaction are put in process, the sanitized

database is generated with the number of modifications on the database D is 8. After the

sanitization, 8 nonsensitive itemsets were previously frequent still are frequent whereas

22 nonsensitive itemsets were frequent are no longer frequent.

3.2. Coefficient-Based Itemset Hiding

Our new method consists of three essential parts: Coefficient Computation,

Integer Programming Solution and Heuristic Sanitization.

3.2.1. Coefficient Computation

To minimize the impact on nonsensitive frequent itemsets, coefficient

computation is made for each transaction which supports sensitive patterns as the first

step. A coefficient of the transaction gives the information about a risk of

overconcealing nonsensitive frequent itemsets on this transaction. If the value of

coefficient is high, it means that the number of concealed nonsensitive itemsets included

in the transaction would be high after the sanitization.

1: for transactions such that is to be sanitized

2: identify all sensitive frequent item sets
 supported by

3: identify all nonsensitive frequent item sets
 supported

by
4: while

5: calculate {
 } items in

6: calculate { }

7: calculate {
 } items in

8: update coefficient

9: update

 {
 }

10: end while

11: end for

Figure 3.1. Coefficient Computation Algorithm.

 38

This coefficient computation is typically organized by taking into account that

initial utility worth of each nonsensitive itemsets on studied database is the same.

Calculating a risk of overconcealing nonsensitive frequent itemsets is made based on

this assumption. If some information on the database has different worth of utility based

on the area where the shared database is utilized, relevant coefficients can be computed

independently of Coefficient Computation Algorithm thereby paying regard to

requirements of the area.

A coefficient, which is represented by the Coefficient Computation Algorithm in

Figure 3.1 as ― ‖, is calculated for each transaction that is included in the constraint

matrix. For example, we may choose transaction to explain this calculation (on line

1). First, sensitive frequent itemsets and nonsensitive frequent itemsets are identified for

transaction (on line 2 and 3). The item appearing in the most number of sensitive

patterns supported by that transaction is selected from all items in (Items 1, 2, 3,

8) (on line 5 and 6). The item ―3‖ is selected. Record the number of appearances of the

item ―3‖ in the non-sensitive frequent itemsets supported by the transaction (on line 7).

For our example, there are 6 appearances of item ―3‖ in the non-sensitive frequent

itemsets such as {1, 3}, {2, 3}, {10, 3}, {7, 3}, {1, 7, 3}, {2, 7, 3}. Remove all sensitive

itemsets supported by the transaction contain the selected item ―3‖ (on line 9). If

sensitive itemsets remain supported by , repeat the procedure (on line 4) and sum the

appearances of new selected item in the non-sensitive frequent itemsets supported by

the transaction with recorded value (on line 8). There is no sensitive itemset left in our

example. Hence, the total summation for transaction is 6. After, all transactions

which are included in the constraint matrix are taken in consideration based on this

procedure, a coefficient for each transaction is found such as 6, 29, 14,

 6, 0, 1.

3.2.2. Integer Programming Solution

In this section we describe the integer programming formulation which is similar

to the solution of Menon et al. [8] to solve Coefficient-Based Itemset Hiding problem.

Initally, give a binary value. Be 1 if transaction supports itemset

 . Otherwise, the value of is 0. For the variable , it will be set to 1 if

transaction is sanitized. Otherwise, the value of is 0. represents the current

 39

support for itemset . Recall that is the coefficient that is calculated in

Coefficient Computation for transaction , which contains at least one sensitive

itemset.

In the light of this information, the formulation is generated as below:

 ∑ D (5)

 ∑ D (6)

 { } D (7)

Equation (5) represents the objective function minimizes the number of

transactions sanitized. Equation (6) includes the constraint that more than

transactions supporting each sensitive itemset have to be sanitized, that‘s why this line

is generated for each sensitive itemset. Equation (7) imposes that has only binary

value. The integer programming formulation is reorganized based on the constraint

matrix (Eq.1) and coefficients that are gained by Coefficient Computation in the

previous section as:

 { }

Solving this integer program results in optimal solution

 with the other variables being 0. The accuracy of the resulting sanitized database

is 0.50.

3.2.3. Heuristic Sanitization

Sanitization is a kind of process that includes removing items from a transaction;

thereby the sanitized version of the transaction supports no itemset in . There

are various sanitization approaches in the privacy preserving data mining literature. For

 40

instance, Verykios et al. offered two sanitization techniques in their study [19]. These

are generally based on hiding itemsets that are already sorted with respect to their size

and support, in a different fashion such as one-by-one and round-robin. Amiri [22]

presented the Aggregate Algorithm based on removing the most sensitive and the least

nonsensitive itemsets in selected transaction. The process is repeated until all the

sensitive itemsets are hidden. Furthermore, three item restriction-based algorithms [21]

that are known as Minimum Frequency Item Algorithm (MinFIA), Maximum

Frequency Item Algorithm (MaxFIA) and Item Grouping Algorithm (IGA) selectively

remove items from transactions that support the sensitive sensitive itemsets. Intelligent

sanitization in the paper [8] is the variant of their IGA.

We do not focus on the development of the sanitization techniques. Since we

compare our new method with the study of Menon et al. [8], we prefer to use one of

heuristics in their study. One is blanket sanitization where only one item is retained

from the original transaction. The sanitization occurs by eliminating support for every

nonsingleton itemset supported by the transaction. The other is intelligent sanitization,

where an attempt is made to remove the fewest number of items from the transaction

that would result in eliminating the support for every itemset in .

It is shown that the intelligent sanitization produces less distortion on

nonsensitive itemsets thereby removing less number of items when this is compared

with the blanket sanitization. So we prefer to use the intelligent sanitization to hide

itemsets of transactions that are identified by the method described in the previous

section. In order to be self-contained, intelligent sanitization algorithm is given in

Figure 3.2.

1: for transactions such that is to be sanitized

2: identify all sensitive frequent item sets
 supported by

3: while

4: calculate {
 } items in

5: remove item { }

6: update

 {
 }

7: end while

8: end for

Figure 3.2. Intelligent Sanitization [8].

 41

Let us explain this, we choose transaction that is represented in the constraint

matrix by to exemplify this approach (on line 1). supports two sensitive itemsets -

 and (on line 2). First, the item appearing in the most number of sensitive patterns

supported by that transaction is selected from all items in (Items 1, 2, 3, 8). For

the example, ―3‖ is selected, because it appears twice while each one of the others

appears once. Delete ―3‖ (on line 4 and 5) and remove all sensitive itemsets that contain

selected item (on line 6). This action eliminates and at the same time. If sensitive

itemsets remain supported by , repeat the procedure (on line 3). For our example,

there is no sensitive itemset left. The sanitized transaction is {1, 2, 7, 8, 10}. When all

transaction are put in process, the sanitized database is generated with the number of

modifications on the database is 7. After the entire process, 17 nonsensitive itemsets

were previously frequent still are frequent, although 13 nonsensitive itemsets that were

frequent are no longer frequent.

 42

CHAPTER 4

PERFORMANCE EVALUATION

We performed Coefficient-Based Itemset Hiding, the study of Menon et al. [8]

and Item Grouping Algorithm [21] on real datasets using different parameters such as

number of sensitive itemsets and minimum support value. Our code was implemented in

Java on a Windows 7 - PC with Intel Core i5, 2.67 GHz processor. We performed exact

parts of the experiments by using GNU GLPK [26]. In this section, features of datasets,

selected parameters and results are explained in detail.

4.1. The Datasets

All datasets we use in our experiments are available through Frequent Itemset

Mining Implementations Repository – FIMI. We chose the datasets which wu use in

experiments in different level of on sparsity and density. Sparsity and density are terms

used to describe the percentage of cells in a database table that are not populated and

populated, respectively. The sum of the sparsity and density should equal 100%.

A table that is 10% dense has 10% of its cells populated with non-zero values. It

is therefore 90% sparse – meaning that 90% of its cells are either not filled with data or

are zeros.

Similarity of transactions in databases is an important speciality for our

experiment. To measure this value, some different approach can be developed. We

developed the algorithm in Figure 4.1.

The kosarak dataset which is provided by Ferenc Bodon [27] is a very large

dataset containing 990,002 sequences of click-stream data from a Hungarian on-line

news portal. The level of density for the kosarak is 0.02%. The retail dataset is a dataset

that was reported in Brijs et al. 1999 [28]. It includes the retail market basket data from

an anonymous Belgian retail store. The density for the retail is approximately 0.06%

that signifies medium sparsity. The mushroom, which was generated by Roberto

Bayardo from the UCI datasets and PUMSB [29], has transactions which are formed of

similar items. It is a 19.33%. Furthermore, these datasets have different characteristics

 43

such as the number of transactions, varieties of items and the number of frequent

itemsets for different minimum support threshold.

1: for transactions

2: for transactions such that
3: for items
4: increment counter if is contained by
5: end for

6: end for

7: add counter / (number of transactions – 1) to the list
8: end for

9: for values
10: calculate

11: end for

12: calculate size of) average length of transactions

Figure 4.1. Calculation of similarity of transactions in a database.

These variations contribute to our experiment and give a chance to measure the

efficacy of our study. Table 4.1 includes summary information about these datasets.

Table 4.1. Characteristics of the Real Datasets

Database

name

Number of

transactions

Number

of items

Avg.

transansation.

lenght

Number of

nonsingleton

frequent itemsets

Similarity of

transactions

kosarak 990,002 41,270 8.10 1,462 0.05090

retail 88,162 16,470 10.30
5,472

0.03322
15,316

mushroom 8,124 119 23.00 53,540 0.46160

4.2. Evaluation Methodology

We compare our approach with the approach of Menon et al. [8] and Item

Grouping Algorithm [21] in terms of the ratio of the number of transactions that are not

sanitized and the total number of transactions in the database (accuracy), the percentage

of items that are lost from the database (distance [5]), the percentage of of nonsensitive

frequent itemsets that are lost (information loss) and the number of seconds (time) that

is spent to complete whole process.

 44

Execution times for coefficient computation (C), integer programming (IP) and

heuristic sanitization (H) are separately recorded to maintain the total time for

Coefficient-Based Itemset Hiding. Because the complexity is one of main problems for

the privacy preserving data mining, the time is illustrated in detail in our experiments.

With our original sensitive itemsets, supersets of them are become hidden in the

databases since any itemsets that contains sensitive itemsets should also be hidden.

Original sensitive itemsets are specified with various lengths such as 10, 20 and 50. In

addition, we use two different minimum support thresholds for the retail dataset to

evaluate the impact of threshold.

4.3. Experimental Results

Results are categorized in terms of metric used in experiments such as accuracy,

distance, time and information loss in tables 4.2, 4.3, 4.4 and 4.5 as well as in terms of

approach such as Item Grouping Algorithm [21], Menon et al. [8] and Coefficient-

Based Itemset Hiding in tables of Figure 4.2. Since our new approach have some

characteristics, that are the same with the study of Menon et al. has, such as an integer

programming modelling and intelligent sanitization, Table 4.6 is prepared for the close

look of result comparison of these two solutions. For Table 4.6, negative values

represent the sacrifices of our approach for gains on other metrics, while positive values

show outclass performance of our new method over the approach of Menon et al.

When the tables are examined well, it is deduced that the performance of IGA

falls behind the performance of exact algorithms in experiments. Although, there are

some good performances on accuracy and distance, worst results on the information loss

are belonged to IGA in every comparison.

Our new method – Coefficient-based Itemset Hiding makes progress with

different fluctuations based on the characteristics of databases used in experiments.

Firstly, it can be noticed that the proposed method decreased the number of lost

nonsensitive frequent itemsets successfully for all kinds of databases in the experiments.

It is obviously seen that our approach works more powerfully on databases whose the

similarity of transactions are not so high such as Retail and Kosarak. Also, minimum

support level used in experiments may be another critical point. Because decreasing the

support value of itemsets below very low support level needs sacrificing more utility

 45

gain, specifying low support level for itemset hiding reduces the coefficient benefit for

information loss as Retail performance result at the support level – 44 (0.05%). On the

other hand, the best performance in all experiments is attained for Retail database at the

level of support - 88 (0.10%). Moreover, low minimum support threshold means high

number of frequent itemsets. It causes higher time cost on our solution than caused on

the results of other solutions in the experiments.

The performance result of Kosarak database shows that new approach works

well with databases which have high number of transactions. It has up to 80% gain on

information loss while there is not above 2% accuracy loss on Table 4.6. On other hand,

since Kosarak is a very large database, total time cost is a general problem for integer

programming solutions. Despite this, it is also remarkable that in case of 50 sensitive

itemsets in Kosarak, our method is approximately six times better in execution time than

the closest result that Menon approach performs. This is quite reasonable since

coefficients help branch and cut algorithms of integer programming [30] by allowing

more cuts.

When the result of Mushroom database in Table 4.5. is examined, it is deduced

that although our new approach is the best solution in terms of the information loss, the

performance is not very powerful as been in the results of experiments on other

databases. As being similar with the experiment at the support level – 44 (0.05%) on

Retail, low support level – 1,625 (20%) is used in the database whose the similarity of

transactions is high. Lots of frequent itemsets are generated by the reason of this support

level. Hence, our new approach sacrifices more utility gain and information loss to

decrease the support value of itemsets below such a low support threshold. Also, the

accuracy performance is dramatically decreased, but the distance value is not so high

when we compare with the results of the study of Menon et al. It means that although

the number of sanitized transaction is high, the dissimilarity between original and

sanitized databases is not so high to be accepted as insufficient performance. This is the

result of working on the database whose the similarity of transactions is very high. Not

to lose nonsensitive frequent itemsets, the approach removes minimum number of items

from each victim transaction. Hence, lots of sanitized transactions are used to hide all

sensitive itemsets. High value of total time cost is another remarkable point of

experiments on Mushroom. In consequence of Coffiecient-based Solution experiment

results, it is obvious that completing coefficient calculation takes too long with specified

minimum support threshold (20%), which generates large amounts of frequent itemsets,

 46

on Mushroom. Hence, process on these frequent itemsets raises total time cost. As a

result, our new approach has difficulty on some experiments, that is made with low

minimum support threshold, and on some databases, whose the similarity of

transactions is high. such as Mushroom. In spite of this, the approach gives successful

results on most experiments.

Table 4. 2. Comparison between approaches in terms of accuracy

DB name

(Ϭmin)

Sensitive

itemsets

(with

supersets)

Accuracy (%)

IGA Menon
Coefficient-

based

kosarak

(4,950)

10 (18) 99.54 99.59 99.27

20 (31) 99.05 99.23 98.5

50 (65) 98.57 98.95 97

 retail (88)

10 (10) 99.84 99.83 99.8

20 (20) 99.58 99.6 99.42

50 (65) 98.98 99.05 98.43

 retail (44)

10 (15) 99.38 99.37 99.34

20 (32) 98.8 98.77 98.54

50 (97) 97.49 97.46 96.62

mushroom

(1,625)

10 (2336) 93.4 93.4 93.4

20 (2395) 88.57 93.16 84.94

50 (5341) 90.65 92.32 79.47

 47

Table 4. 3. Comparison between approaches in terms of total time cost.

DB name

(Ϭmin)

Sensitive

itemsets

(with

supersets)

Total Time (sec)

IGA Menon
Coefficient-

based

kosarak

(4,950)

10 (18) 115 140.5 206.3

20 (31) 146 153.7 324.7

50 (65) 233 36,091 7,023

 retail (88)

10 (10) 8 7 9.1

20 (20) 9 8.1 9.1

50 (65) 10 8.1 11.3

 retail (44)

10 (15) 9 7.1 9.1

20 (32) 9 8.1 12.1

50 (97) 10 8.2 16.3

mushroom

(1,625)

10 (2336) 1 1.1 90.1

20 (2395) 1 1.2 115.5

50 (5341) 8 1.3 142.8

Table 4.4. Comparison between approaches in terms of distance.

DB name

(Ϭmin)

Sensitive

itemsets

(with

supersets)

Distance (%)

IGA Menon
Coefficient-

based

kosarak

(4,950)

10 (18) 0.077 0.069 0.093

20 (31) 0.15 0.133 0.19

50 (65) 0.3 0.221 0.391

 retail (88)

10 (10) 0.016 0.017 0.019

20 (20) 0.045 0.039 0.056

50 (65) 0.154 0.109 0.154

 retail (44)

10 (15) 0.062 0.062 0.065

20 (32) 0.126 0.12 0.142

50 (97) 0.346 0.265 0.335

mushroom

(1,625)

10 (2336) 0.7 0.441 0.441

20 (2395) 1.527 0.797 0.762

50 (5341) 1.184 1.16 1.52

 48

Table 4.5. Comparison between approaches in terms of information loss.

DB name

(Ϭmin)

Sensitive

itemsets

(with

supersets)

Information loss (%)

IGA Menon
Coefficient-

based

kosarak

(4,950)

10 (18) 13.504 6.787 1.316

20 (31) 25.297 12.718 3.983

50 (65) 34.789 22.19 4.152

 retail (88)

10 (10) 0.732 0.183 0.037

20 (20) 2.128 1.119 0.183

50 (65) 5.437 1.813 0.481

 retail (44)

10 (15) 2.163 0.556 0.281

20 (32) 4.874 2.192 1.282

50 (97) 11.197 4.363 2.392

mushroom

(1,625)

10 (2336) 63.312 39.028 38.247

20 (2395) 73.401 64.618 52.382

50 (5341) 76.101 74.34 64.626

 49

A)

DB name

(Ϭmin)

Sensitive

itemsets

(with

supersets)

Solution by IGA

(%) Time (sec) (%) (%)

Accuracy Total Distance Info. Loss

kosarak

(4,950)

10 (18) 99.54 115 0.077 13.504

20 (31) 99.05 146 0.15 25.297

50 (65) 98.57 233 0.3 34.789

retail (88)

10 (10) 99.84 8 0.016 0.732

20 (20) 99.58 9 0.045 2.128

50 (65) 98.98 10 0.154 5.437

retail (44)

10 (15) 99.38 9 0.062 2.163

20 (32) 98.8 9 0.126 4.874

50 (97) 97.49 10 0.346 11.197

mushroom

(1,625)

10 (2336) 93.4 1 0.7 63.312

20 (2395) 88.57 1 1.527 73.401

50 (5341) 90.65 8 1.184 76.101

B)

DB name

(Ϭmin)

Sensitive

itemsets

(with

supersets)

Solution by Menon et al.

(%) Time (sec) (%) (%)

Accuracy IP H Total Distance Info. Loss

kosarak

(4,950)

10 (18) 99.59 11.5 129 140.5 0.069 6.787

20 (31) 99.23 27.7 126 153.7 0.133 12.718

50 (65) 98.95 35,976.1 115 36,091 0.221 22.19

retail (88)

10 (10) 99.83 0 7 7 0.017 0.183

20 (20) 99.6 0.1 8 8.1 0.039 1.119

50 (65) 99.05 0.1 8 8.1 0.109 1.813

retail (44)

10 (15) 99.37 0.1 7 7.1 0.062 0.556

20 (32) 98.77 0.1 8 8.1 0.12 2.192

50 (97) 97.46 0.2 8 8.2 0.265 4.363

mushroom

(1,625)

10 (2336) 93.4 0.1 1 1.1 0.441 39.028

20 (2395) 93.16 0.2 1 1.2 0.797 64.618

50 (5341) 92.32 0.3 1 1.3 1.16 74.34

Figure 4.2. Results categorized in terms of type of approach used in experiments.

(cont. on next page)

 50

C)

DB name

(Ϭmin)

Sensitive

itemsets

(with

supersets)

Coefficient-Based Solution

(%) Time (sec) (%) (%)

Accuracy C IP H Total Distance Info. Loss

kosarak

(4,950)

10 (18) 99.27 71 11.3 124 206.3 0.093 1.316

20 (31) 98.5 141 67.7 116 324.7 0.19 3.983

50 (65) 97 360 6,543 120 7,023 0.391 4.152

retail (88)

10 (10) 99.8 1 0.1 8 9.1 0.019 0.037

20 (20) 99.42 1 0.1 8 9.1 0.056 0.183

50 (65) 98.43 3 0.3 8 11.3 0.154 0.481

retail (44)

10 (15) 99.34 2 0.1 7 9.1 0.065 0.281

20 (32) 98.54 4 0.1 8 12.1 0.142 1.282

50 (97) 96.62 8 0.3 8 16.3 0.335 2.392

mushroom

(1,625)

10 (2336) 93.4 89 0.1 1 90.1 0.441 38.247

20 (2395) 84.94 114 0.5 1 115.5 0.762 52.382

50 (5341) 79.47 141 0.8 1 142.8 1.52 64.626

Figure 4.2. Results categorized in terms of type of approach used in experiments.

 51

Table 4.6. Comparison of Menon Approach and Coefficient-based Approach.

DB name

(Ϭmin)

Sensitive

itemsets

(with

supersets)

Perc. (%)

Accuracy Total Time Distance Info. Loss

kosarak

(4,950)

10 (18) -0.32% -46.83% -34.70% 80.61%

20 (31) -0.74% -111.26% -42.88% 68.68%

50 (65) -1.97% 80.54% -76.64% 81.29%

 retail (88)

10 (10) -0.03% -30.00% -16.00% 80.00%

20 (20) -0.18% -12.35% -43.94% 83.61%

50 (65) -0.63% -39.51% -41.56% 73.47%

 retail (44)

10 (15) -0.03% -28.17% -4.83% 49.41%

20 (32) -0.23% -49.38% -18.53% 41.49%

50 (97) -0.86% -98.78% -26.24% 45.18%

mushroom

(1,625)

10 (2336) 0.00% -8090.91% 0.00% 2.00%

20 (2395) -8.82% -9525.00% 4.43% 18.94%

50 (5341) -13.92% -10884.62% -30.54% 13.07%

 52

CHAPTER 5

CONCLUSION

The serious privacy concerns that are raised due to the sharing of large

transactional databases with untrusted third parties for association rule mining purposes,

soon brought into existence the area of association rule hiding, a very popular subarea

of privacy preserving data mining. Association rule hiding focuses on the privacy

implications originating from the application of association rule mining to shared

databases and aims to provide sophisticated techniques that effectively block access to

sensitive association rules that would otherwise be revealed when mining the data. The

research in this area has progressed mainly along three principal directions: (i) heuristic-

based approaches, (ii) border-based approaches, and (iii) exact hiding approaches. The

technique of approach that presented in the thesis consists in exact hiding approaches,

since they comprise the most recent direction, offering increased quality guarantees in

terms of side-effects and minimal alterations on a disclosed database introduced by the

hiding process.

In this study, an efficient exact approach is presented to minimize side-effects in

itemset hiding problem. The degree of side-effect is represented with coefficients that

are placed into the objective function of integer programming. Experiments with real

datasets show that our approach minimizes the number of concealed nonsensitive

association rules successfully.

Association rule hiding is still an active research area, since there are several

open problems that need to be addressed as well as a lot of room for improvement of the

the hiding methodology. Although studies to date have presented various proposals in

the area of exact frequent itemsets hiding, there is not a unifying approach to provide

the best solution in all circumstances. The emergence of sophisticated exact hiding

approaches of high complexity, especially for very large databases, causes the

consideration of efficient parallel approaches to be employed for improving the runtime

of these algorithms. Parallel approaches allow for decomposition of the constraints

satisfaction problem into numerous components that can be solved independently. The

overall solution is then attained as a function of the objectives of the individual

 53

solutions. Although a framework for decomposition and parallelization of exact hiding

approaches has been recently proposed in [25], there is not any solution to meet all

requirements of each database in different circumstances.

In addition, Coefficient Computation Algorithm can be specialized based on the

area where the published database is utilized. In this sense, coefficients in the objective

function of the integer programming may be used in a more efficient way. Moreover,

different optimization techniques can be achieved by exploiting the inherent

characteristics of the constraints and objective function that are involved in the integer

programming formulation, in a more advanced way.

 54

REFERENCES

[1] Li, T., Li, N.: ―On the Tradeoff between Privacy and Utility in Data Publishing‖,

Proceedings of the ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pp. 517-525, 2009.

[2] Dasseni, E., Verykios, V. S., Elmagarmid, A. K., Bertino, E.: ―Hiding

Association Rules by Using Confidence and Support‖, Proceedings of the 4th

International Workshop on Information Hiding, pp. 369–383, 2001.

[3] Sun, X., Yu, P. S.: ―A Border-Based Approach for Hiding Sensitive Frequent

Itemsets‖, Proceedings of the Fifth IEEE International Conference on Data

Mining (ICDM ‘05), pp. 426–433, 2005.

[4] Sun, X., Yu, P. S.: ―Hiding Sensitive Frequent Itemsets by a Border–Based

Approach‖, Computing Science and Engineering, Volume 1, Issue 1, pp. 74–94,

September 2007.

[5] Gkoulalas-Divanis, A., Verykios, V. S.: ―An Integer Programming Approach for

Frequent Itemset Hiding.‖, Proceedings of the ACM Conference on Information

and Knowledge Management (CIKM ‘06), pp. 748-757, November 2006.

[6] Gkoulalas-Divanis, A., Verykios, V. S.: ―Hiding sensitive knowledge without

side effects‖, Knowledge and Information Systems, Volume 20, Issue 3, pp.

263-299, August 2009.

[7] Gkoulalas-Divanis, A., Verykios, V. S.: ―Exact Knowledge Hiding through

Database Extension‖, IEEE Transactions on Knowledge and Data Engineering,

Volume 21, Issue 5, pp. 699-713, May 2009.

[8] Menon, S., Sarkar, S., Mukherjee, S.: ―Maximizing Accuracy of Shared

Databases when Concealing Sensitive Patterns‖, Information Systems Research,

Volume 16, Issue 3, pp. 256–270, September 2005.

 55

[9] Yeh, J. S., Hsu, P. C.: ―HHUIF and MSICF: Novel Algorithms for Privacy

Preserving Utility Mining‖, Expert Systems with Applications, Volume 37,

Issue 7, pp. 4779-4786, 2010.

[10] Han, J., Kamber M., Pei, J.: ―Data Mining, Concepts and Techniques‖,

Amsterdam: Elsevier/Morgan Kaufmann, Internet resource, 2012.

[11] Agrawal, R., Srikant, R.: ―Fast Algorithms for Mining Association Rules‖,

Proceedings of the 20th VLDB Conference Santiago, Chile.

[12] Hua, M., Pei, J.: ―A Survey of Utility-based Privacy-Preserving Data

Transformation Methods‖, Privacy-Preserving Data Mining Advances in

Database Systems, Volume 34, pp. 207-237, 2008.

[13] Bayardo, R. J., Agrawal R.: ―Data Privacy Through Optimal K-Anonymization‖,

Proceedings of the 21st International Conference on Data Engineering

(ICDE‘05), pp. 217 – 228, 2005.

[14] Loukides, G., Shao, J.: ―Data Utility and Privacy Protection Trade-Off in K-

Anonymisation‖ ACM International Conference Proceeding Series, Volume

331, pp. 36-45, 2008.

[15] Brickell, J., Shmatikov, V.: ―The Cost of Privacy: Destruction of Data-Mining

Utility in Anonymized Data Publishing‖ Proceedings of the ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pp. 70-78,

2008.

[16] Agrawal, R., Srikant, R.: ―Privacy Preserving Data Mining‖, ACM SIGMOD

Record Homepage, Volume 29, Issue 2, pp. 439-450, June 2000.

[17] Lindell, Y., Pinkas, B.: ―Privacy Preserving Data Mining‖, Journal of

Cryptology, Volume 15, Issue 3, pp. 36–54, 2002.

[18] Gkoulalas-Divanis, A., Verykios, V. S.: ―Association Rule Hiding for Data

Mining‖, New York: Springer, Internet resource, 2010.

 56

[19] Verykios, V., Elmagarmid, A., Bertino, E., Saygin, Y., Dasseni, E.: ―Association

Rule Hiding‖. IEEE Transactions on Knowledge and Data Engineering, Volume

16, Issue 4, pp. 434-447, April 2004.

[20] Atallah, M., Elmagarmid, A., Ibrahim, M., Bertino, E.,Verykios, V.: ―Disclosure

Limitation of Sensitive Rules‖, Proceedings of the 1999 Workshop on

Knowledge and Data Engineering Exchange (KDEX ‘99), pp. 45-52, 1999.

[21] Oliveira, S. R. M., Zaïane, O. R.: ―Privacy Preserving Frequent Itemset

Mining‖, Proceedings of the IEEE ICDM Workshop Privacy, Security Data

Mining, pp. 43–54, Australian Computer Society, 2002.

[22] Amiri, A.: ―Dare to Share: Protecting Sensitive Knowledge with Data

Sanitization―, Decision Support Systems, Volume 43, Issue 1, pp. 181-191,

2007.

[23] Mannila, H., Toivonen, H.: ―Levelwise Search and Borders of Theories in

Knowledge Discovery‖. Data Mining and Knowledge Discovery, Volume 1,

Issue 3, pp. 241–258, 1997.

[24] Reddy, M., Wang, R. Y.: ―Estimating Data Accuracy in a Federated Database

Environment‖, Proceedings of 6th International Conference on Information

Systems and Management of Data (CISMOD), pp. 115–134, 1995.

[25] Gkoulalas-Divanis, A., Verykios, V. S.: ―A Parallelization Framework for Exact

Knowledge Hiding in Transactional Databases‖, Proceedings of The IFIP TC-11

23rd International Information Security Conference, IFIP 20th World Computer

Congress, IFIP SEC 2008, Volume 278, pp. 349-363, Springer, September 2008.

[26] GLPK, GNU GLPK 4.32 User‘s Manual, Free Software Foundation Inc, Boston,

MA, Internet resource, 2008.

[27] Bodon, F.: ―A fast APRIORI implementation‖, Proceedings of Workshop

Frequent Itemset Mining Implementations (FIMI‘03), Volume 90,

CEURWS.org, CEURWorkshop Proceedings, 2003.

 57

[28] Brijs, T., Swinnen, G., Vanhoof, K., Wets, G.:. ―Using Association Rules for

Product Assortment Decisions: A Case Study‖, Proceeding of the 5th ACM

SIGKDD Internat. Conf. Knowledge Discovery Data Mining, ACM Press, 1999.

[29] Bayardo, R.: ―Efficiently Mining Long Patterns from Databases‖, Proceedings

of the ACM SIGMOD, 1998.

[30] Jünger, M., Liebling, T. M., Naddef, D., Nemhauser, G. L., Pulleyblank, W. R.,

Reinelt, G., Rinaldi, G., Wolsey, L. A.: ―50 Years of Integer Programming

1958-2008 From the Early Years to the State-of-the-Art‖, Springer, 2010.

