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ABSTRACT 

AN EXACT APPROACH WITH MINIMUM SIDE-EFFECTS FOR 

ASSOCIATION RULE HIDING 

Concealing sensitive relationships before sharing a database is of utmost 

importance in many circumstances. This implies to hide the frequent itemsets 

corresponding to sensitive association rules by removing some items of the database. 

Research efforts generally aim at finding out more effective methods in terms of 

convenience, execution time and side-effect. This paper presents a practical approach 

for hiding sensitive patterns while allowing as much nonsensitive patterns as possible in 

the sanitized database. We model the itemset hiding problem as integer programming 

whereas the objective coefficients allow finding out a solution with minimum loss of 

nonsensitive itemsets. We evaluate our method using three real datasets from FIMI 

repository and compared the results with previous exact solution and the heuristic study 

whose procedures are imposed by new approach. The results show that information loss 

is dramatically minimized without sacrificing so many modifications on databases.  
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ÖZET 

İLİŞKİSEL KURAL GİZLEME İÇİN EN AZ YAN ETKİLİ BİR TAM 

YAKLAŞIM 

Mahrem bilgilerin dahil oldukları veri tabanlarının bir başka şahıs ya da kurumla 

paylaşılmadan önce gizlenmesi işlemi, birçok iş alanı için büyük önem arz eder. Bu 

işlem, ilgili veri tabanı üzerinden bir miktar öğenin silinmesi neticesinde mahrem 

ilişkisel kurallara karşılık gelen sık rastlanan öğe setlerinin gizlenmesiyle sonuçlanır. 

Araştırma eğilimi, genelde bu konu dahilindeki uygulanabilirlik, yürütüm süresi ve yan 

etki terimleri için daha efektif metotlar bulmayı amaçlar. Bu çalışma mahrem verilerin 

gizlendiği sırada mahrem olmayan diğer verilere mümkün olduğunca zarar 

verilmemesine dayalı pratik bir uygulama içerir. Biz bu çalışmada öğe setlerini gizleme 

problemini modellerken, ürettiğimiz objective katsayıların integer programlamada 

kullanılmasıyla, mahrem olmayan verilerin varlığını mümkün olduğunca korumaktayız. 

Oluşturduğumuz metodu, FIMI ambarından aldığımız üç gerçek veri seti üzerinde 

deneyip sonuçları, çalışırken referans aldığımız diğer exact ve heuristic çalışma ile 

karşılaştırmaktayız. Sonuçlar gösteriyor ki, veri tabanı üzerinde çok büyük değişiklere 

neden olmadan, veri kaybı önemli derecede minimize edilmiştir.   
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CHAPTER 1 

INTRODUCTION 

Progresses in the technology give an opportunity to establish transactional 

databases that can reserve large volumes of data. Analyzing data and extracting 

meaningful information from these huge piles of data come up as a result of these 

advances. Data mining field has efficient techniques for this knowledge discovery 

process. However, improper use of these techniques caused a rise of privacy concerns. 

Unauthorized access to not only sensitive personal information that is stored or inferred 

from the data, but also commercial information that provides remarkable benefit over 

rivals induces privacy issues. That is why comprehensive sanitization on databases is 

required when the information or data from these databases is shared or published.  

Sharing databases allows researchers and policy-makers to examine the data and 

gain significant information benefiting the society as a whole, such as the strength of a 

medicine or treatment, social-economic inferences that can be the guide on the road to 

efficient public policies, and the factors that cause vital diseases. In other words, 

publishing databases eventuates in utility gain for the society as a whole [1]. However, 

due to privacy concerns, a privacy preserving method is needed to be applied on the 

databases. These methods make data imprecise and/or distorted so that no sensitive 

knowledge is disclosed. But, this distortion causes unwanted information loss and losses 

in potential utility gain. 

Frequent itemset hiding is one of the important and widely used methods of 

privacy preserving data mining field. There are several frequent itemset hiding 

algorithms whose methodology can be classified such as heuristic [2], border-based [3 

and 4] and exact [5, 6, 7 and 8]. They aim to impose small deviation in the original 

database to expose no sensitive itemsets. This deviation is tried to be minimized by 

various techniques with different quality metrics as a common feature of these 

algorithms. One determines the relative frequency of remaining itemsets [3] as a quality 

parameter while another approach uses the term of accuracy [8] that shows the impact 

of sanitization on transactions of the database. In addition to this, the information loss 

which is to conceal nonsensitive itemsets on the original database while hiding sensitive 
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knowledge is another critical point of the hiding process [3]. Studies generally 

concentrate on achieving the result database which has no sensitive knowledge with 

small deviation and minimum information loss. 

Exact approaches produce more accurate solution than other types of approaches 

in frequent itemset hiding. However, they are impractical when the number of itemsets 

and length of itemsets increase. In addition to this, they mostly focus on minimizing 

deviation in terms of accuracy or distance. To our knowledge there is no practical 

solution providing frequent itemset hiding with the objective of minimum information 

loss and accuracy. In this paper, we propose an exact approach for frequent itemset 

hiding where all sensitive patterns are concealed. Our approach is based on the 

combination of integer programming and heuristic sanitization. While it prevents 

revealing sensitive information on published database, minimum information loss and 

maximum accuracy are also provided.   

Our approach proposes the use of coefficients in the objective function of integer 

programming to minimize information loss. These coefficients reminding the 

approaches used by utility-based mining algorithms [9] are pre-computed such that they 

give a measure of information loss. Integer programming allows finding the optimum 

solution deciding about the transactions to be sanitized. Then, heuristic sanitization 

algorithm is executed to remove the sensitive itemsets. The experiments with real 

datasets demonstrate the efficacy of our approach and give useful insight into the efforts 

of minimizing nonsensitive information loss. 

The following sections are organized as follows: Chapter 1 includes an 

introduction. The way of organizing our study and main concepts of this study are 

described briefly. Chapter 2 gives the background of the problem with the problem 

formulation and the literature of review. Section 2.1 includes the problem formulation 

with terms, concepts and tables that have information about the example database is 

used in Chapter 3. Section 2.2 mentions basis of data mining, association rule mining 

and privacy preserving data mining. In addition, the section contains an overview of the 

leading studies about association rule hiding which is one of the important field for 

privacy preserving data mining. Chapter 3 presents our approach in detail. Chapter 4 

shows the results and evaluations of all experiments to prove the effectiveness of the 

technique the thesis presents. Finally, we conclude in Chapter 5. 
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CHAPTER 2 

BACKGROUND 

 Problem Formulation 2.1.

Let    be a set of items. An itemset is a subset of    and any transaction defined 

over   is tuple       , where   is the transaction id and    is the itemset. A 

transaction        is said to contain an itemset   iff     . A database   is a set 

of transactions. Given a database  , the support of an itemset    in the database   is 

denoted as the support         .          can be represented simply as    for 

notational convenience. For a given threshold     ,    is said to be frequent if 

             . The set of frequent itemsets          at minimum support level      

is the set of all itemsets with a minimum support of     . 

                  is a group of restrictive patterns that the owner of the data 

would like to conceal while publishing. A transaction that supports any of these patterns 

is said to be sanitized if any alteration is made on it in such a way that it no longer 

supports any itemset in          . This sanitization implies reducing the support for 

every              below      and concealing itemset  . 

In the process of transforming a database   to a sanitized   , we have the 

following considerations: 

1) Suppose that           be the set of frequent itemsets in the sanitized   . 

Any             in   should not be in          . In other words, it is aimed that no 

sensitive knowledge is involved in the sanitized database. 

2) The accuracy, which is the ratio of the number of transactions that are not 

sanitized and the total number of transactions in the database  , should be maximized 

by keeping the number of sanitized transactions at minimum. 

3) Suppose that           be the set of non-sensitive frequent itemsets 

determined by          
         in database    |                   | should be 

minimized to avoid overconcealing nonsensitive frequent itemsets and keeping the 

information loss at minimum. 
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Table 2. 1. Example Database D 

Id Items 

   1 2 3 7 8 10 

   3 9 10 

   4 5 6 

   1 2 3 6 7 8 9 

   1 2 3 6 7 

   10 

   4 

   3 6 7 8 9 

   3 8 9 

    5 6 7 

Table 2. 2. Frequent (Nonsingleton) Itemsets for   at        

Itemsets    Itemsets    Itemsets    Itemsets    

5, 6 

1, 2 

1, 8 

1, 6 

1, 7 

1, 3 

2, 8 

2, 6 

2, 7 

2, 3 

10, 3 

   8, 9 

8, 6 

8, 7 

   8, 3 

2 

3 

2 

2 

3 

3 

2 

2 

3 

3 

2 

3 

2 

3 

4 

9, 6 

9, 7 

9, 3 

   6, 7 

6, 3 

7, 3 

1, 2, 8 

1, 2, 6 

1, 2, 7 

   1, 2, 3 

1, 8, 7 

1, 8, 3 

1, 6, 7 

1, 6, 3 

1, 7, 3 

2 

2 

4 

4 

3 

4 

2 

2 

3 

3 

2 

2 

2 

2 

3 

2, 8, 7 

2, 8, 3 

2, 6, 7 

2, 6, 3 

2, 7, 3 

8, 9, 6 

8, 9, 7 

8, 9, 3 

8, 6, 7 

8, 6, 3 

8, 7, 3 

9, 6, 7 

9, 6, 3 

9, 7, 3 

6, 7, 3 

2 

2 

2 

2 

3 

2 

2 

3 

2 

2 

3 

2 

2 

2 

3 

1, 2, 8, 7 

1, 2, 8, 3 

1, 2, 6, 7 

1, 2, 6, 3 

1, 2, 7, 3 

1, 8, 7, 3 

1, 6, 7, 3 

2, 8, 7, 3 

2, 6, 7, 3 

8, 9, 6, 7 

8, 9, 6, 3 

8, 9, 7, 3 

8, 6, 7, 3 

9, 6, 7, 3 

1, 2, 8, 7, 3 

1, 2, 6, 7, 3 

8, 9, 6, 7, 3 

2 

2 

2 

2 

3 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

 

 For example, we assume that the sensitive patterns are {8, 9}, {8, 3}, {6, 7}, {1, 

2, 3} that are bold and represented such as   ,   ,    and   . Although, it is possible to 

define different support thresholds for each sensitive pattern, we assume that the support 

threshold       2 for all patterns, which is practical and common in many 

circumstances. At the end of the process, we expect that 28 nonsensitive frequent 

itemsets that are supersets of the sensitive ones would also get concealed as the process 

of hiding the sensitive itemsets. The question is how to transform   into the sanitized 

database     in an effective way such that aforementioned considerations 1, 2 and 3 are 

maintained. 
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Depending on the consideration 1, support values of our sensitive patterns in the 

database   should be dropped below 2, that is minimum support value. For example, 

the support value of    is 4 and to satisfy the consideration 1, transactions that include    

should be found and at least one of two items in    should be deleted from as many 

transactions as needed. The proper selection of transactions to be sanitized and the items 

to be removed is of paramount importance, since the number of sanitized transactions 

and/or the number of items to be removed should be kept minimum. Moreover, 

nonsensitive itemsets that contain one of items, 8 or 3, are in danger of being concealed 

while the support value of    is decreased. According to consideration 3, the number of 

nonsensitive itemsets that are concealed should be minimum. 

 Literature Review 2.2.

2.2.1. Data Mining 

It is no surprise that data mining, as a truly interdisciplinary subject, can be 

defined in many different ways. Even the term data mining does not really present all 

the major components in the picture. To refer to the mining of gold fromrocks or sand, 

we say gold mining instead of rock or sand mining. Analogously, data mining should 

have been more appropriately named ―knowledge mining from data,‖ which is 

unfortunately somewhat long. However, the shorter term, knowledge mining may not 

reflect the emphasis on mining from large amounts of data. Nevertheless, mining is a 

vivid term characterizing the process that finds a small set of precious nuggets from a 

great deal of raw material (Figure 2. 1). Thus, such a misnomer carrying both ―data‖ and 

―mining‖ became a popular choice. In addition, many other terms have a similar 

meaning to data mining—for example, knowledge mining from data, knowledge 

extraction, data/pattern analysis, data archaeology, and data dredging. 

Many people treat data mining as a synonym for another popularly used term, 

knowledge discovery from data, or KDD, while others view data mining as merely an 

essential step in the process of knowledge discovery. The knowledge discovery process 

is shown in Figure 2. 2 as an iterative sequence of the following steps: 
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Figure 2. 1. Data mining—searching for knowledge (interesting patterns) in data [10]. 

1. Data cleaning (to remove noise and inconsistent data) 

2. Data integration (where multiple data sources may be combined) 

3. Data selection (where data relevant to the analysis task are retrieved from the 

database) 

4. Data transformation (where data are transformed and consolidated into forms 

appropriate for mining by performing summary or aggregation operations) 

5. Data mining (an essential process where intelligent methods are applied to 

extract data patterns) 

6. Pattern evaluation (to identify the truly interesting patterns representing 

knowledge based on interestingness measures) 

7. Knowledge presentation (where visualization and knowledge representation 

techniques are used to present mined knowledge to users) 

Steps 1 through 4 are different forms of data preprocessing, where data are 

prepared for mining. The data mining step may interact with the user or a knowledge 

base. The interesting patterns are presented to the user and may be stored as new 

knowledge in the knowledge base. 
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Figure 2. 2. Data mining as a step in the process of knowledge discovery [10] 

The preceding view shows data mining as one step in the knowledge discovery 

process, albeit an essential one because it uncovers hidden patterns for evaluation. 

However, in industry, in media, and in the research milieu, the term data mining is often 

used to refer to the entire knowledge discovery process (perhaps because the term is 

shorter than knowledge discovery from data). Therefore, we adopt a broad view of data 

mining functionality: Data mining is the process of discovering interesting patterns and 

knowledge from large amounts of data. The data sources can include databases, data 

warehouses, the Web, other information repositories, or data that are streamed into the 

system dynamically.  
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2.2.1.1. What Kinds of Data Can Be Mined? 

As a general technology, data mining can be applied to any kind of data as long 

as the data are meaningful for a target application. The most basic forms of data for 

mining applications are database data, data warehouse data, and transactional data 

(Section 2.2.1.1.1). Data mining can also be applied to other forms of data (e.g., data 

streams, ordered/sequence data, graph or networked data, spatial data, text data, 

multimedia data, and the WWW). Transactional data is focused on this thesis. 

Experiments are made on this type of datasets. 

2.2.1.1.1. Transactional Data  

In general, each record in a transactional database captures a transaction, such as 

a customer‘s purchase, a flight booking, or a user‘s clicks on a web page. A transaction 

typically includes a unique transaction identity number (trans ID) and a list of the items 

making up the transaction, such as the items purchased in the transaction. A 

transactional database may have additional tables, which contain other information 

related to the transactions. 

 

Figure 2. 3. Fragment of an example transactional database for sales. 

Example 2.1. Transactions can be stored in a table, with one record per 

transaction. A fragment of an example transactional database is shown in Figure 2. 3. 

From the relational database point of view, the table in the figure is a nested relation 

because the attribute list of item IDs contains a set of items. Because most relational 

database systems do not support nested relational structures, the transactional database 

is usually either stored in a flat file in a format similar to the table in Figure 2. 3. 
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As an analyst of the example transactional database, you may ask,―Which items 

sold well together?‖ This kind of market basket data analysis would enable you to 

bundle groups of items together as a strategy for boosting sales. For example, given the 

knowledge that printers are commonly purchased together with computers, you could 

offer certain printers at a steep discount (or even for free) to customers buying selected 

computers, in the hopes of selling more computers (which are often more expensive 

than printers). A traditional database system is not able to perform market basket data 

analysis. Fortunately, data mining on transactional data can do so by mining frequent 

itemsets, that is, sets of items that are frequently sold together. 

2.2.1.2. Mining Frequent Patterns and Associations 

Frequent patterns, as the name suggests, are patterns that occur frequently in 

data. There are many kinds of frequent patterns, including frequent itemsets, frequent 

subsequences (also known as sequential patterns), and frequent substructures. A 

frequent itemset typically refers to a set of items that often appear together in a 

transactional data set—for example, milk and bread, which are frequently bought 

together in grocery stores by many customers. A frequently occurring subsequence, 

such as the pattern that customers, tend to purchase first a laptop, followed by a digital 

camera, and then a memory card, is a (frequent) sequential pattern. A substructure can 

refer to different structural forms (e.g., graphs, trees, or lattices) that may be combined 

with itemsets or subsequences. If a substructure occurs frequently, it is called a 

(frequent) structured pattern. Mining frequent patterns leads to the discovery of 

interesting associations within data. 

Example 2.2 - Association analysis. Suppose that, as a marketing manager, you 

want to know which items are frequently purchased together (i.e., within the same 

transaction). An example of such a rule, mined from the example transactional database, 

is buys (X, ―computer‖)   buys (X, ―software‖) [support = 1%], where X is a variable 

representing a customer. A 1% support means that 1% of all the transactions under 

analysis show that computer and software are purchased together. Typically, association 

rules are discarded as uninteresting if they do not satisfy both a minimum support 

threshold.  
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To gain association rules of transactional database systems, Apriori, which is a 

kind of frequent itemsets finding algorithm, can be used to mine frequent itemsets. 

2.2.1.2.1. Apriori Algorithm 

Apriori is a seminal algorithm proposed by R. Agrawal and R. Srikant [11] in 

1994 for mining frequent itemsets for Boolean association rules. Apriori employs an 

iterative approach known as a level-wise search, where k-itemsets are used to explore 

(k+1)-itemsets. First, the set of frequent 1-itemsets is found by scanning the database to 

accumulate the count for each item, and collecting those items that satisfy minimum 

support. The resulting set is denoted by   . Next,    is used to find   , the set of 

frequent 2-itemsets, which is used to find   , and so on, until no more frequent k-

itemsets can be found. The finding of each    requires one full scan of the database. 

To improve the efficiency of the level-wise generation of frequent itemsets, an 

important property called the Apriori property is used to reduce the search space. 

Apriori property: All nonempty subsets of a frequent itemset must also be 

frequent [10]. 

The Apriori property is based on the following observation. By definition, if an 

itemset I does not satisfy the minimum support threshold, min_sup, then I is not 

frequent, that is, P(I) < min_sup. If an item A is added to the itemset I, then the resulting 

itemset (i.e., I   A) cannot occur more frequently than I. Therefore, I   A is not frequent 

either, that is, P(I   A) < min_sup. 

This property belongs to a special category of properties called antimonotonicity 

in the sense that if a set cannot pass a test, all of its supersets will fail the same test as 

well. It is called antimonotonicity because the property is monotonic in the context of 

failing a test. 

Let‘s look at a concrete example, based on the Apriori Training Database, D, of 

Table 2. 3. There are nine transactions in this database, that is, |D| = 9. We use Figure 2. 

3 to illustrate the Apriori algorithm for finding frequent itemsets in D. 

1. In the first iteration of the algorithm, each item is a member of the set of 

candidate 1-itemsets,   . The algorithm simply scans all of the transactions to count the 

number of occurrences of each item. candidate 1-itemsets,   . The algorithm simply 

scans all of the transactions to count the number of occurrences of each item. 
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Table 2. 3. Apriori Training Database 

Id Items 

     I1, I2, I5 

     I2, I4 

     I2, I3 

     I1, I2, I4 

     I1, I3 

     I2, I3 

     I1, I3 

     I1, I2, I3, I5 

     I1, I2, I3 

 

2. Suppose that the minimum support count required is 2, that is, min_sup = 2. 

(Here, we are referring to absolute support because we are using a support count. The 

corresponding relative support is 2/9 = 22%.) The set of frequent 1-itemsets,   , can 

then be determined. It consists of the candidate 1-itemsets satisfying minimum support. 

 

Figure 2. 4. Generation of the candidate itemsets and frequent itemsets [10].  
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In our example, all of the candidates in    satisfy minimum support. 

3. To discover the set of frequent 2-itemsets,   , the algorithm uses the join 

        to generate a candidate set of 2-itemsets,   .    consists of (    
 
) 2-itemsets. 

Note that no candidates are removed from    during the prune step because each subset 

of the candidates is also frequent. 

4. Next, the transactions in D are scanned and the support count of each 

candidate itemset in    is accumulated, as shown in the middle table of the second row 

in Figure 2. 4. 

5. The set of frequent 2-itemsets,   , is then determined, consisting of those 

candidate 2-itemsets in    having minimum support. 

6. The generation of the set of the candidate 3-itemsets,   , is detailed in Figure 

2.5. From the join step, we first get             {{I1, I2, I3}, {I1, I2, I5}, {I1, I3, 

I5}, {I2, I3, I4}, {I2, I3, I5}, {I2, I4, I5}}. Based on the Apriori property that all subsets 

of a frequent itemset must also be frequent, we can determine that the four latter 

candidates cannot possibly be frequent. We therefore remove them from   , thereby 

saving the effort of unnecessarily obtaining their counts during the subsequent scan of  

D to determine   . 

 

Figure 2.5. Generation and pruning of candidate 3-itemsets, C3, from L2  [10]. 
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Note that when given a candidate k-itemset, we only need to check if its (k-1)-subsets 

are frequent since the Apriori algorithm uses a level-wise search strategy. The resulting 

pruned version of    is shown in the first table of the bottom row of Figure 2.4. 

7. The transactions in D are scanned to determine   , consisting of those 

candidate 3-itemsets in    having minimum support (Figure 2.4). 

8. The algorithm uses         to generate a candidate set of 4-itemsets,   . 

Although the join results in {{I1, I2, I3, I5}}, itemset {I1, I2, I3, I5} is pruned because 

its subset {I2, I3, I5} is not frequent. Thus,     , and the algorithm terminates, 

having found all of the frequent itemsets. 

2.2.2. Data Utility 

Publishing database enables researchers and policy-makers to analyze the data 

and learn important information benefiting the society as a whole, such as the factors 

causing certain diseases, effectiveness of a medicine or treatment, and social-economic 

patterns that can guide the formulation of effective public policies. In other words, 

publishing database results in utility gain for the society as a whole. However, as the 

database contains specific information about individuals, a household, or an 

organization, publishing database could also results in privacy loss for them. Hence 

before the database can be made public, one must ensure that the privacy loss is limited 

to an acceptable level. This is typically done via anonymization, which modifies the 

database to improve the privacy. Because anonymization makes data in the database 

modified, it also causes losses in potential utility gain, when compared with the case of 

disclosing the original database. 

The challenges include [12]: 

Utility measure: One key issue in the utility-based privacy preservation is how 

to model the data utility in different applications. A good utility measure should capture 

the intrinsic factors that affect the quality of data for the specific application. 

Balance between utility and privacy: In some situation, preserving utility and 

privacy are not conflicting. But more often than not, hiding the privacy information may 

have to sacrifice some utility. How do we trade off between the two goals? 

Efficiency and scalability: The traditional privacy preservation is already 

computational challenging. For example, even simple restriction of optimized k-
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anonymity is NP-hard [13]. How do we develop efficient algorithms if utility is 

involved? Moreover, real databases often contains millions of high dimensional tuples, 

highly scalable algorithms are needed. 

Ability to deal with different types of attributes: Real life data often involve 

different types of attributes, such as numerical, categorical, binary or mixtures of these 

data types. The utility-based privacy preserving methods should be able to deal with 

attributes of different types. 

The beginning of the research in utility-based privacy preservation is not so old. 

Loukides and Shao [14] proposed a method that attempts to optimise the trade-off 

between utility and protection. They introduce a measure that captures both utility and 

protection, and an algorithm that exploits this measure using a combination of clustering 

and partitioning techniques. In a paper that appeared in KDD 2008, Brickell and 

Shmatikov [15] applied another solution to the tradeoff between privacy and utility. 

They define privacy loss of the published data as certain kinds of information learned by 

the adversary from the dataset and utility gain of the published data is defined as the 

same kinds of information learned by the researchers. Since both the adversary and the 

researchers see the same dataset and try to learn the same kinds of information, Brickell 

and Shmatikov claim that their knowledge gains are the same. Hence any utility gain by 

the anonymized data must be offset by the same amount of privacy loss. Finally, they 

reached an intriguing conclusion ―even modest privacy gains require almost complete 

destruction of the data-mining utility.‖ However, Tiancheng Li and Ninghui Li [1] 

criticized this study that it is inappropriate to directly compare privacy with utility, 

because of several reasons, including both technical and philosophical ones. The most 

important reason of this idea is presented that privacy is an individual concept, and 

utility is an aggregate concept. The anonymized dataset is safe to be published only 

when privacy for each individual is protected; on the other hand, utility gain adds up 

when multiple pieces of knowledge are learned. Secondly, they claims that even if the 

adversary and the researcher learn exactly the same information, one cannot conclude 

that privacy loss equals utility gain. 
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2.2.2. Privacy Preserving Data Mining 

Privacy preserving data mining is a relatively new research area in the data 

mining community, counting approximately a decade of existence. It investigates the 

side-effects of data mining methods that originate from the penetration into the privacy 

of individuals and organizations. Since the pioneering work of Agrawal & Srikant [16] 

and Lindell & Pinkas [17] in the beginning of 2000s, several approaches have been 

proposed in the research literature for the offering of privacy in data mining. The 

majority of the proposed approaches can be classified along two principal research 

directions: (i) data hiding approaches and (ii) knowledge hiding approaches. 

The first direction collects methodologies that investigate how the privacy of 

raw data, or information, can be maintained before the course of mining the data. The 

approaches of this category aim at the removal of confidential or private information 

from the original data prior to its disclosure and operate by applying techniques such as 

perturbation, sampling, generalization or suppression, transformation, etc. to generate a 

sanitized counterpart of the original dataset. Their ultimate goal is to enable the data 

holder receive accurate data mining results when is not provided with the real data or 

adhere to specific regulations pertaining to microdata publication (e.g., as is the case of 

publishing patient-specific data). 

The second direction of approaches involves methodologies that aim to protect 

the sensitive data mining results (i.e., the extracted knowledge patterns) rather than the 

raw data itself, which were produced by the application of data mining tools on the 

original database. This direction of approaches mainly deals with distortion and 

blocking techniques that prohibit the leakage of sensitive knowledge patterns in the 

disclosed data, as well as with techniques for downgrading the effectiveness of 

classifiers in classification tasks, such that the produced classifiers do not reveal any 

sensitive knowledge [18]. 

2.2.4. A Motivating Example 

The following example scenario, borrowed from the work of Verykios et al. 

[19], complements the real world examples we presented earlier and motivates the 

necessity of applying association rule hiding algorithms to protect sensitive association 
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rules against disclosure. Let us suppose that we are negotiating with Dedtrees Paper 

Company, as purchasing directors of BigMart, a large supermarket chain. They offer 

their products in reduced prices, provided that we agree to give them access to our 

database of customer purchases. We accept the deal and Dedtrees starts mining our data. 

By using an association rule mining tool, they find that people who purchase skim milk 

also purchase Green Paper. Dedtrees now runs a coupon marketing campaign offering a 

50 cents discount on skim milk with every purchase of a Dedtrees product. The 

campaign cuts heavily into the sales of Green Paper, which increases the prices to us, 

based on the lower sales. During our next negotiation with Dedtrees, we find out that 

with reduced competition they are unwilling to offer to us a low price. Finally, we start 

losing business to our competitors, who were able to negotiate a better deal with Green 

Paper. In other words, the aforementioned scenario indicates that BigMart should 

sanitize competitive information (and other important corporate secrets of course) 

before delivering their database to Dedtrees, so that Dedtrees does not monopolize the 

paper market. 

2.2.5. Association Rule Hiding 

We focus on the knowledge hiding thread of privacy preserving data mining and 

study a specific class of approaches which are collectively known as frequent itemset 

and association rule hiding approaches. Other classes of approaches under the 

knowledge hiding thread include classification rule hiding, clustering model hiding, 

sequence hiding, and so on and so forth.  

Association rules are implications that hold in a transactional database under 

certain user-specified parameters that account for their significance. Significant 

association rules provide knowledge to the data miner as they effectively summarize the 

data, while uncovering any hidden relations (among items) that hold in the data. The 

term ―association rule hiding‖ has been mentioned for the first time in 1999 by Atallah 

et al. [20] in a workshop paper on knowledge and data engineering. The authors of this 

work studied the problem of modifying the original database in a way that certain 

(termed as ―sensitive‖) association rules disappear without, however, seriously affecting 

the original data and the nonsensitive rules. They proposed a number of solutions like 

fuzification of the original database, limiting access to the original data, as well as 
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releasing samples instead of the entire database. Due to the combinatorial nature of the 

problem, all of the solutions that the authors proposed, as well as the vast majority of 

solutions that have been proposed since then, were based on heuristics. Heuristic 

solutions, although computationally efficient and scalable, suffer from local optima 

issues as they require optimizing a specific function in each step of the algorithm, which 

however does not guarantee finding an optimal hiding solution to the whole problem. 

More recently, a new direction of exact approaches to association rule hiding has been 

proposed. These approaches have increased time and memory requirements but in return 

they offer quality guarantees on the identified solution [18]. 

2.2.5.1. Classes of Association Rule Hiding Algorithms 

Association rule hiding algorithms can be divided into three classes, namely 

heuristic approaches, border-based approaches and exact approaches.  

2.2.5.1.1. Heuristic Approaches 

The first class of approaches involves efficient, fast algorithms that selectively 

sanitize a set of transactions from the original database to hide the sensitive association 

rules. Due to their efficiency and scalability, heuristic approaches have been the focus 

of attention for the majority of researchers in the data mining area. However, there are 

several circumstances in which these algorithms suffer from undesirable side-effects 

that lead them to identify approximate hiding solutions. This is due to fact that 

heuristics always aim at taking locally best decisions with respect to the hiding of the 

sensitive knowledge which, however, are not necessarily also globally best. As a result, 

heuristics fail to provide guarantees with respect to the quality of the identified hiding 

solution. Some of the most interesting heuristic methodologies for association rule 

hiding are presented in the next part of the book. 

One of the earlier studies, which propose an algorithm for the hiding of sensitive 

association rules through the reduction in the support of their generating itemsets, 

belongs to Atallah et al. [20]. One of the most significant contributions of this work is 

the proof that the authors provide regarding the NP-hardness of finding an optimal 
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sanitization of a dataset. On the negative side, the proposed approach does not take into 

consideration the extend of loss in support for the large itemsets, as long as they remain 

frequent in the sanitized database. 

Dasseni et al. [2] generalize the hiding problem in the sense that they consider 

the hiding of both sensitive frequent itemsets and sensitive association rules. The 

authors propose three single rule heuristic hiding algorithms that are based on the 

reduction of either the support or the confidence of the sensitive rules, but not both. In 

all three approaches, the goal is to hide the sensitive rules while minimally affecting the 

support of the nonsensitive itemsets. In order to achieve this, transactions are modified 

by removing some items, or inserting new items depending on the hiding strategy. A 

basic drawback of the proposed methodologies is the strong assumption that all the 

items appearing in a sensitive association rule do not appear in any other sensitive rule. 

Under this assumption, hiding of the sensitive rules one at a time or altogether makes no 

difference. Moreover, the proposed methodologies fail to avoid undesired side-effects, 

such as lost rules and ghost rules. 

Verykios et al. [19] extend the previous work of Dasseni et al. [2] by improving 

and evaluating the association rule hiding algorithms of [2] for their performance under 

different sizes of input datasets and different sets of sensitive rules. In addition to that, 

the authors propose two novel heuristic algorithms that incorporate the third strategy 

presented above. The first of these algorithms protects the sensitive knowledge by 

hiding the item having the maximum support from the minimum length transaction (i.e., 

the one with the least supporting items). The hiding of the generating itemsets of the 

sensitive rules is performed in a decreasing order of size and support and in a one-by-

one fashion. Similarly to the first algorithm, the second algorithm first sorts the 

generating itemsets with respect to their size and support, and then hides them in a 

round-robin fashion as follows. First, for each generating itemset, a random ordering of 

its items and of its supporting transactions is attained. Then, the algorithm proceeds to 

remove the items from the corresponding transactions in a round-robin fashion, until the 

support of the sensitive itemset drops below the minimum support threshold, thus the 

itemset is hidden. The intuition behind hiding in a round-robin fashion is fairness and 

the proposed algorithm, although rather naïve, serves as a baseline for conducting a 

series of experiments. 

Oliveira and Zaïane [21] contribute to this area with four heuristic algorithms. 

They identify transactions to sanitize based on the number of sensitive item sets 
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supported by a transaction. Their naïve algorithm removes all the items in a sensitive 

item set supported by the transaction, retaining only the item with the highest frequency 

in cases where all the items in the transaction are removed. Their minimum frequency 

item algorithm removes the item with the smallest support in a sensitive item set 

supported by the transaction, while their maximum frequency item algorithm removes 

the item with the greatest support. Their item grouping algorithm (IGA) relies on 

grouping sensitive patterns based on item sets sharing the same set of items. All four 

approaches allow for some sensitive item sets not to be hidden, and this may not be 

appropriate in many situations. 

Amiri [22] presents three data sanitization heuristics that demonstrate high data 

utility at the expense of computational speed. The first heuristic reduces the support of 

the sensitive item sets by deleting a set of supporting transactions. The second approach 

modifies, instead of deleting, the supporting transactions by removing some items until 

the sensitive item sets are protected. The third algorithm aggregates the previous two by 

using the first approach to identify the sensitive transactions and the second one to 

remove items from these transactions, until the sensitive knowledge is hidden. Although 

the algorithms by Amiri are similar in philosophy to the previous approaches, the three 

proposed methodologies do a better job in modeling the overall objective of a rule 

hiding algorithm. 

We examine Item Grouping Algorithm (IGA) algorithm, which the heuristic part 

of our new approach is derived from, in detail to compare it with our approach. 

2.2.5.1.1.1. The Item Grouping Algorithm (IGA) 

The main idea behind the Item Grouping Algorithm, denoted by IGA, is to 

group sensitive patterns in groups of itemsets sharing the same itemsets. If two sensitive 

patterns intersect, by sanitizing the conflicting sensitive transactions containing both 

sensitive patterns, one would take care of hiding these two sensitive patterns at once and 

consequently reduce the impact on the released database. However, clustering the 

sensitive patterns based on the intersections between patterns leads to groups that 

overlap since the intersection of itemsets is not transitive. By solving the overlap 

between clusters and thus isolating the groups, a representative of the itemset linking 

related to the patterns in the group, all sensitive patterns in the group will be hidden in 

one step. This again will minimize the impact on the database and reduce the potential 
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accidental hiding of legitimate patterns. The sketch of the Item Algorithm is given as 

follows in Figure 2.6. 

 

Figure 2.6. Item Grouping Algorithm [21]. 

We implement IGA on the database whose transactions and items are shown in 

Table 2. 1. Initially, we eliminate transactions that does not have any sensitive itemsets 

and give them ids in a way of beginning with ‗0‘ (‗a‘ part in Figure 2.7). Then, we map 

sensitive itemsets with sensitive transactions which support related sensitive itemsets 

(‗b‘ part in Figure 2.7). Degree-of-conflict, which is the number of restrictive patterns 

that can be mined from the sensitive transaction, of these transactions are calculated and 

sensitive transactions that have relevant sensitive transaction are sorted descendingly 

(‗a‘ and ‗c‘ part in Figure 2.7). Then, based on the support value of sensitive itemsets in 

the dataset, we find the number of transactions to sanitize and get the support value of 

sensitive itemsets decreased below minimum support threshold (‗d‘ part in Figure 2.7). 

Transactions that will be sanitized are identified from sorted list based on this founded 

number. 
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a) 
 

Example Database D 

Id Transactions 
Degree-of-

conflict 

0 1 2 3 7 8 10 2 

 3 9 10  

 4 5 6  

1 1 2 3 6 7 8 9 4 

2 1 2 3 6 7 2 

 10  

  4  

3 3 6 7 8 9 3 

4 3 8 9 2 

5 5 6 7 1 

b)  

 

{8 9}     -> 1, 3, 4 

{8 3}     -> 0, 1, 3, 4 

{6 7}     -> 1, 2, 3, 5 

{1 2 3}  -> 0, 1, 2 

 

c)  

 

{8 9}    -> 1, 3, 4 

             -> 1, 3, 4 

{8 3}    -> 0, 1, 3, 4 

             -> 1, 3, 0, 4 

{6 7}    -> 1, 2, 3, 5 

             -> 1, 3, 2, 5 

{1 2 3} -> 0, 1, 2 

             -> 1, 0, 2 

 

d) 

Sensitive 

Itemset 

Transaction 

ids 

Reqired 

number of 

transaction

s 

{8 9} 1, 3 2 

{8 3} 1, 3, 0 3 

{6 7} 1, 3, 2 3 

{1 2 3} 1, 0 2 

Figure 2.7. Finding victim transactions of our example in IGA. 

After some preprocess to find transactions that will sanitize to hide each 

sensitive itemsets, we group sensitive itemsets based on shared itemsets that sensitive 

itemsets have. We give a label, that is the least supported item of shared itemset by all 

transactions in the dataset, to each group. Sensitive itemsets, that does not have any 

shared itemsets, are accepted as a singleton group. The least supported item of this kind 

of sensitive itemset is chosen as a label to the singleton group (Table 2. 4). Then, groups 

are sorted descendingly based on the size of groups. In our example, there is no change, 

since groups are already lined up descendingly. Then, we try to solve overlapped 

itemsets problems.  If there is a sensitive itemset that is in more than one group, there 

are two considerations. If the number of elements in groups of the sensitive itemset are 

different, overlapped sensitive itemsets are removed from the group that has less 
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number of elements. If the size of groups is the same, the sensitive itemset is removed 

from the group which has the least support value of label – item (Table 2. 5). 

Table 2. 4. Grouping sensitive itemsets of our example in IGA.  

Group Id Group Label Sensitive Itemsets 

0 8 {8 9}, {8 3} 

1 3 {8 3}, {1 2 3} 

2 6 {6 7} 

Table 2. 5. Solving overlapped itemset problem of our example in IGA. 

Group Label 
Support Value of 

Label (%) 
Group Elements 

8 40 {8 9}, {8 3} 

3 60 {8 3}, {1 2 3} 

6  {6 7} 

 

After finding transactions that will be sanitized and grouping sensitive itemsets 

based on shared itemsets, sanitization is made based on these information (Table 2. 6). 

By removing the victim item (label) from the sensitive transactions related to the 

sensitive itemsets in the group, all sensitive itemsets in the group are hidden in one step. 

When all transaction are put in sanitization process, the sanitized dataset is generated 

with the number of modifications on the dataset "D"  is 8. 4 sensitive transactions are 

sanitized after all process and 7 nonsensitive itemsets were previously frequent still are 

frequent whereas 23 nonsensitive itemsets were frequent are no longer frequent.  

Table 2. 6. All required information is prepared to use in sanitization for our example in 

IGA. 

Sensitive Itemset 
Victim 

Transactions 
Group Label 

{8 9} 1, 3 8 

{8 3} 1, 3, 0 3 

{6 7} 1, 3, 2 6 

{1 2 3} 1, 0 3 
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2.2.5.1.2. Border-Based Approaches 

The second class of approaches considers association rule hiding through the 

modification of the borders in the lattice of the frequent and the infrequent itemsets of 

the original database. Borders [23] capture those itemsets of a lattice that control the 

position of the borderline separating the frequent itemsets from their infrequent 

counterparts. Data modification, applied to the original database to facilitate sensitive 

knowledge hiding, has an immediate effect on the support of the various itemsets and, 

subsequently, on the borders of the sanitized database. Border-based algorithms achieve 

to hide the sensitive association rules by tracking the border of the nonsensitive frequent 

itemsets and greedily applying the data modifications that have minimal impact on the 

quality of the border to accommodate the hiding of the sensitive rules. The algorithms in 

this class differ in the methodology they follow to enforce the new, revised borders, in 

the sanitized database.  

Sun & Yu [3 and 4] proposed the first frequent itemset hiding methodology in 

2005. Their methodology is based on the notion of the border constructed by the non-

sensitive frequent itemsets in an attempt to track the impact of altering transactions. 

Instead of considering each non-sensitive itemset individually, their algorithm focuses 

on preserving the quality of the resulting border. 

Gkoulalas-Divanis and Verykios used this border concept in their works [5, 6 

and 7] to minimize overconcealing nonsensitive itemsets. They capture the itemsets 

hiding process as a border revision operation and they presented a set of algorithms 

which enable the computation of the revised borders that pertain to an exact hiding 

solution. 

 

2.2.5.1.3. Exact Approaches 

The third class of approaches contains non-heuristic algorithms which conceive 

the hiding process as a constraints satisfaction problem (CSP) that is a kind of 

optimization problem and is solved by using integer programming. The main difference 

of these approaches, when compared to those of the two previous classes, is the fact that 

the sanitization process is capable of offering quality guarantees for the computed 
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hiding solution. The modeling of the hiding problem as an optimization problem 

enables the algorithms of this category to identify optimal hiding solutions that 

minimally distort the original database as well as introduce no side-effects to the hiding 

process. Exact hiding approaches can be considered as the descendant of borderbased 

methodologies. They operate by first applying border revision to compute a small 

portion of itemsets from the original database whose status (i.e., frequent vs. infrequent) 

in the sanitized database plays a crucial role to the quality of the hiding solution. Having 

computed those itemsets, the exact methodologies incorporate unknowns to the original 

database and generate inequalities that control the status of selected itemsets of the 

border. These inequalities along with an optimization criterion that requires minimal 

modification of the original database to facilitate sensitive knowledge hiding, formulate 

an optimization problem whose solution (if exists) is guaranteed to lead to optimal 

hiding. It is important to mention that unlike the two previous classes of approaches that 

operate in a heuristic manner, exact hiding methodologies achieve to model the hiding 

problem in a way that allows them to simultaneously hide all the sensitive knowledge as 

an atomic operation (from the viewpoint of the hiding process). On the negative side, 

these these approaches are usually several orders of magnitude slower than the heuristic 

ones, especially due to the time that is taken by the integer programming solver to solve 

the optimization problem. 

The paper by Menon et al. [8] propose an interesting approach to the problem of 

privacy preserving data mining. They were the first to present an integer programming 

optimization method that consisted of an exact and a heuristic part to hide frequent 

itemsets. The exact part of the method uses the database to formulate an integer 

program trying to obtain the minimum number of transactions that have to be sanitized. 

The optimization process of solving the CSP is driven by a criterion function that is 

inspired from the measure of accuracy [24], essentially penalizing the hiding algorithm 

based on the number of transactions that are sanitized from the original database to 

accommodate the hiding of the sensitive itemsets. The constraints imposed in the 

integer programming formulation aim to capture the transactions of the database that 

need to be sanitized for the hiding of each sensitive itemset. An integer programming 

solver is then used to find the solution of the CSP that optimizes the objective function 

and to derive the value of the objective. In turn, the heuristic algorithm uses this 

information to perform the actual sanitization of the database. Using integer 

programming and heuristic together gives evaluated impact on the result data than 
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border-based approaches give. However, it causes failing to notice side-effect of 

information loss. 

The study of Gkoulalas-Divanis and Verykios [5] includes the inline algorithm 

that has been proposed which does not rely on any heuristics to secure the sensitive 

knowledge derived by association rule mining. Similarly to the algorithm of Menon et 

al. [8], the algorithm in [5] aims to hide the sensitive frequent itemsets of the original 

database that can lead to the production of sensitive association rules. They introduce 

the notion of distance between two databases along with a measure for quantifying it. 

The quantification of distance provides us with important knowledge regarding the 

minimum data modification that is necessary to be induced to the original database to 

facilitate the hiding of the sensitive itemsets, while minimally affecting the nonsensitive 

ones. By trying to minimize the distance between the original database and its sanitized 

counterpart, the inline algorithm formulates the hiding process as an optimization 

problem in which distance is the optimization criterion. The attained solution is such 

that the distance measure is minimized. 

Gkoulalas-Divanis and Verykios present a two–phase iterative algorithm in the 

study [6] that extends the functionality of the inline algorithm of [5] to allow for the 

identification of exact hiding solutions for a wider spectrum of problem instances. In 

their another study [7], they introduce very interesting exact methodology that includes 

hybrid database generation. This approach extends the regular process of data 

sanitization by applying an extension to the original database instead of either 

modifying existing transactions. Although a framework for decomposition and 

parallelization of exact hiding approaches has been recently proposed in [25], lack of 

solutions that can be used in all circumstances for the complexity problems of exact 

methods and lack of practical approaches that have proposed up to present in this area 

are the reasons of researching for better solution in privacy preserving data mining. 
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CHAPTER 3 

COEFFICIENT-BASED ITEMSET HIDING SOLUTION 

FOR ASSOCIATION RULE HIDING 

In this section, we introduce a novel method for the itemset hiding problem. We 

first define the problem using integer programming and then simply augment the 

objective function with coefficients in order to reduce the information loss. To clarify 

this new method and the approach of Menon et al. which is the starting point of our 

study, we implement both on the database whose transactions and items are shown in 

Table 2. 1. 

Modeling the itemset hiding problem with integer programming can be done in 

several ways. We follow the way of Menon et al. [8] such that the objective achieves the 

maximum accuracy. Our method alters the objective function such that the binary 

variables indicating whether a transaction is chosen or not are multiplied by some pre-

computed coefficients that reflect the amount of information loss. We compute the 

coefficients of transactions that support sensitive patterns only. 

Based on the example database presented on Table 2. 1 and Table 2. 2 in Section 

2.1, we start with creating the constraint matrix by eliminating transactions, which do 

not support sensitive itemsets, from consideration as shown below: 

 

(

 
 

            
        
        
        
        )

 
 

        (1) 

 

6 columns represents respectively:                            

           While    supports sensitive itemsets    and   ,    contains only one 

sensitive itemset that is   .  
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3.1. The Approach of Menon et al. Implementation 

In this section, we implement the approach that is presented in the study of 

Menon et al. [8] which models the itemset hiding problem with integer programming as 

we do in our new method.  Initally, give     a binary value. Be 1 if transaction     

supports itemset            . Otherwise, the value of     is 0. For the variable   , it 

will be set to 1 if transaction     is sanitized. Otherwise, the value of    is 0.    

represents the current support for itemset          . For the approach of Menon et al., 

the frequent item set formulation is : 

 

    ∑     D                                                    (2) 

      ∑      D                                                      (3) 

    {   }       D                                             (4) 

 

When the formulation is arranged based on the constraint matrix that is created 

in previous section, the integer programming formulation is generated as: 

 

                       

                                                                       

                                                                   

                                                                   

                                                                          

                   {   }  

 

When this integer program is solved, the result in the optimal solution shows 

              with the other variables being 0. The accuracy of the resulting 

sanitized database is 0.60. 

We choose transaction    that is represented in the constraint matrix by    to 

explain the intelligent sanitization approach [8].    supports two sensitive itemsets -    

and   . First, the item appearing in the most number of sensitive patterns supported by 

that transaction is selected from all items in       (Items 1, 2, 3, 8). For the example, 

―3‖ is selected, because it appears twice while each one of the others appears once. 

Delete ―3‖ and remove all sensitive itemsets that contain selected item. This action 
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eliminates    and    at the same time. If sensitive item sets remain supported by   , 

repeat the procedure. For our example, there is no sensitive item set left. The sanitized 

transaction is {1, 2, 7, 8, 10}. When all transaction are put in process, the sanitized 

database is generated with the number of modifications on the database D is 8. After the 

sanitization, 8 nonsensitive itemsets were previously frequent still are frequent whereas 

22 nonsensitive itemsets were frequent are no longer frequent. 

3.2. Coefficient-Based Itemset Hiding 

Our new method consists of three essential parts: Coefficient Computation, 

Integer Programming Solution and Heuristic Sanitization. 

3.2.1. Coefficient Computation 

To minimize the impact on nonsensitive frequent itemsets, coefficient 

computation is made for each transaction which supports sensitive patterns as the first 

step. A coefficient of the transaction gives the information about a risk of 

overconcealing nonsensitive frequent itemsets on this transaction. If the value of 

coefficient is high, it means that the number of concealed nonsensitive itemsets included 

in the transaction would be high after the sanitization. 

 

1:     for transactions      such that   is to be sanitized 

2:          identify all sensitive frequent item sets    
             supported by   

3:          identify all nonsensitive frequent item sets    
             supported 

by   
4:          while    

     

5:               calculate     {     
        }                         items   in   

6:               calculate           {  }  

7:               calculate     {     
         }                      items   in   

8:               update coefficient          

9:               update    
      

   {     
       } 

10:         end while 

11:    end for 

Figure 3.1. Coefficient Computation Algorithm. 
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This coefficient computation is typically organized by taking into account that 

initial utility worth of each nonsensitive itemsets on studied database is the same. 

Calculating a risk of overconcealing nonsensitive frequent itemsets is made based on 

this assumption. If some information on the database has different worth of utility based 

on the area where the shared database is utilized, relevant coefficients can be computed 

independently of Coefficient Computation Algorithm thereby paying regard to 

requirements of the area. 

A coefficient, which is represented by the Coefficient Computation Algorithm in 

Figure 3.1 as ―  ‖, is calculated for each transaction that is included in the constraint 

matrix. For example, we may choose transaction    to explain this calculation (on line 

1). First, sensitive frequent itemsets and nonsensitive frequent itemsets are identified for 

transaction    (on line 2 and 3). The item appearing in the most number of sensitive 

patterns supported by that transaction is selected from all items in       (Items 1, 2, 3, 

8) (on line 5 and 6). The item ―3‖ is selected. Record the number of appearances of the 

item ―3‖ in the non-sensitive frequent itemsets supported by the transaction (on line 7). 

For our example, there are 6 appearances of item ―3‖ in the non-sensitive frequent 

itemsets such as {1, 3}, {2, 3}, {10, 3}, {7, 3}, {1, 7, 3}, {2, 7, 3}. Remove all sensitive 

itemsets supported by the transaction contain the selected item ―3‖ (on line 9). If 

sensitive itemsets remain supported by   , repeat the procedure (on line 4) and sum the 

appearances of new selected item in the non-sensitive frequent itemsets supported by 

the transaction with recorded value (on line 8). There is no sensitive itemset left in our 

example. Hence, the total summation for transaction    is 6. After, all transactions 

which are included in the constraint matrix are taken in consideration based on this 

procedure, a coefficient for each transaction is found such as     6,    29,    14, 

   6,    0,     1. 

3.2.2. Integer Programming Solution 

In this section we describe the integer programming formulation which is similar 

to the solution of Menon et al. [8] to solve Coefficient-Based Itemset Hiding problem. 

Initally, give     a binary value. Be 1 if transaction     supports itemset   

         . Otherwise, the value of     is 0. For the variable   , it will be set to 1 if 

transaction     is sanitized. Otherwise, the value of    is 0.    represents the current 
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support for itemset          . Recall that    is the coefficient that is calculated in 

Coefficient Computation for transaction    , which contains at least one sensitive 

itemset. 

In the light of this information, the formulation is generated as below: 

 

    ∑       D                                                        (5) 

      ∑      D                                                           (6)  

              {   }       D                                                   (7) 

 

Equation (5) represents the objective function minimizes the number of 

transactions sanitized. Equation (6) includes the constraint that more than            

transactions supporting each sensitive itemset have to be sanitized, that‘s why this line 

is generated for each sensitive itemset. Equation (7) imposes that    has only binary 

value. The integer programming formulation is reorganized based on the constraint 

matrix (Eq.1) and coefficients that are gained by Coefficient Computation in the 

previous section as: 

 

                                                             

                                                                                    

                                                                               

                                                                               

                                                                                      

                               {   }  

 

Solving this integer program results in optimal solution             

     with the other variables being 0. The accuracy of the resulting sanitized database 

is 0.50. 

3.2.3. Heuristic Sanitization 

Sanitization is a kind of process that includes removing items from a transaction; 

thereby the sanitized version of the transaction supports no itemset in          . There 

are various sanitization approaches in the privacy preserving data mining literature. For 
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instance, Verykios et al. offered two sanitization techniques in their study [19]. These 

are generally based on hiding itemsets that are already sorted with respect to their size 

and support, in a different fashion such as one-by-one and round-robin. Amiri [22] 

presented the Aggregate Algorithm based on removing the most sensitive and the least 

nonsensitive itemsets in selected transaction. The process is repeated until all the 

sensitive itemsets are hidden. Furthermore, three item restriction-based algorithms [21] 

that are known as Minimum Frequency Item Algorithm (MinFIA), Maximum 

Frequency Item Algorithm (MaxFIA) and Item Grouping Algorithm (IGA) selectively 

remove items from transactions that support the sensitive sensitive itemsets. Intelligent 

sanitization in the paper [8] is the variant of their IGA. 

We do not focus on the development of the sanitization techniques. Since we 

compare our new method with the study of Menon et al. [8], we prefer to use one of 

heuristics in their study. One is blanket sanitization where only one item is retained 

from the original transaction. The sanitization occurs by eliminating support for every 

nonsingleton itemset supported by the transaction. The other is intelligent sanitization, 

where an attempt is made to remove the fewest number of items from the transaction 

that would result in eliminating the support for every itemset in          .  

It is shown that the intelligent sanitization produces less distortion on 

nonsensitive itemsets thereby removing less number of items when this is compared 

with the blanket sanitization. So we prefer to use the intelligent sanitization to hide 

itemsets of transactions that are identified by the method described in the previous 

section. In order to be self-contained, intelligent sanitization algorithm is given in 

Figure 3.2. 

 

1:     for transactions     such that   is to be sanitized 

2:          identify all sensitive frequent item sets    
             supported by   

3:          while    
     

4:               calculate     {     
        }                         items   in   

5:               remove item           {  }     

6:               update    
      

   {     
       } 

7:          end while 

8:     end for 

Figure 3.2. Intelligent Sanitization [8]. 
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Let us explain this, we choose transaction    that is represented in the constraint 

matrix by    to exemplify this approach (on line 1).    supports two sensitive itemsets - 

   and    (on line 2). First, the item appearing in the most number of sensitive patterns 

supported by that transaction is selected from all items in       (Items 1, 2, 3, 8). For 

the example, ―3‖ is selected, because it appears twice while each one of the others 

appears once. Delete ―3‖ (on line 4 and 5) and remove all sensitive itemsets that contain 

selected item (on line 6). This action eliminates    and    at the same time. If sensitive 

itemsets remain supported by   , repeat the procedure (on line 3). For our example, 

there is no sensitive itemset left. The sanitized transaction is {1, 2, 7, 8, 10}. When all 

transaction are put in process, the sanitized database is generated with the number of 

modifications on the database   is 7. After the entire process, 17 nonsensitive itemsets 

were previously frequent still are frequent, although 13 nonsensitive itemsets that were 

frequent are no longer frequent. 
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CHAPTER 4 

PERFORMANCE EVALUATION 

We performed Coefficient-Based Itemset Hiding, the study of Menon et al. [8] 

and Item Grouping Algorithm [21] on real datasets using different parameters such as 

number of sensitive itemsets and minimum support value. Our code was implemented in 

Java on a Windows 7 - PC with Intel Core i5, 2.67 GHz processor. We performed exact 

parts of the experiments by using GNU GLPK [26]. In this section, features of datasets, 

selected parameters and results are explained in detail. 

4.1.  The Datasets 

All datasets we use in our experiments are available through Frequent Itemset 

Mining Implementations Repository – FIMI. We chose the datasets which wu use in 

experiments in different level of on sparsity and density. Sparsity and density are terms 

used to describe the percentage of cells in a database table that are not populated and 

populated, respectively. The sum of the sparsity and density should equal 100%. 

A table that is 10% dense has 10% of its cells populated with non-zero values. It 

is therefore 90% sparse – meaning that 90% of its cells are either not filled with data or 

are zeros. 

Similarity of transactions in databases is an important speciality for our 

experiment.  To measure this value, some different approach can be developed. We 

developed the algorithm in Figure 4.1.  

The kosarak dataset which is provided by Ferenc Bodon [27] is a very large 

dataset containing 990,002 sequences of click-stream data from a Hungarian on-line 

news portal.  The level of density for the kosarak is 0.02%. The retail dataset is a dataset 

that was reported in Brijs et al. 1999 [28]. It includes the retail market basket data from 

an anonymous Belgian retail store. The density for the retail is approximately 0.06% 

that signifies medium sparsity. The mushroom, which was generated by Roberto 

Bayardo from the UCI datasets and PUMSB [29], has transactions which are formed of 

similar items. It is a 19.33%. Furthermore, these datasets have different characteristics 
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such as the number of transactions, varieties of items and the number of frequent 

itemsets for different minimum support threshold. 

 

1:     for transactions     

2:          for transactions     such that     
3:               for items      
4:                     increment counter if    is contained by   
5:               end for 

6:          end for 

7:          add counter / (number of transactions – 1) to the list   
8:     end for 

9:    for values     
10:         calculate                  

11:   end for 

12:   calculate                   size of   )  average length of transactions 

    

Figure 4.1. Calculation of similarity of transactions in a database. 

These variations contribute to our experiment and give a chance to measure the 

efficacy of our study. Table 4.1 includes summary information about these datasets. 

Table 4.1. Characteristics of the Real Datasets  

Database 

name 

Number of 

transactions 

Number 

of items 

Avg. 

transansation. 

lenght 

Number of 

nonsingleton 

frequent itemsets 

Similarity of 

transactions 

kosarak 990,002 41,270 8.10 1,462 0.05090 

retail 88,162 16,470 10.30 
5,472 

0.03322 
15,316 

mushroom  8,124 119 23.00 53,540  0.46160 

4.2.  Evaluation Methodology 

We compare our approach with the approach of Menon et al. [8] and Item 

Grouping Algorithm [21] in terms of the ratio of the number of transactions that are not 

sanitized and the total number of transactions in the database (accuracy), the percentage 

of items that are lost from the database (distance [5]), the percentage of of nonsensitive 

frequent itemsets that are lost (information loss) and the number of seconds (time) that 

is spent to complete whole process. 
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Execution times for coefficient computation (C), integer programming (IP) and 

heuristic sanitization (H) are separately recorded to maintain the total time for 

Coefficient-Based Itemset Hiding. Because the complexity is one of main problems for 

the privacy preserving data mining, the time is illustrated in detail in our experiments. 

With our original sensitive itemsets, supersets of them are become hidden in the 

databases since any itemsets that contains sensitive itemsets should also be hidden. 

Original sensitive itemsets are specified with various lengths such as 10, 20 and 50. In 

addition, we use two different minimum support thresholds for the retail dataset to 

evaluate the impact of threshold. 

4.3.  Experimental Results 

Results are categorized in terms of metric used in experiments such as accuracy, 

distance, time and information loss in tables 4.2, 4.3, 4.4 and 4.5 as well as in terms of 

approach such as Item Grouping Algorithm [21], Menon et al. [8] and Coefficient-

Based Itemset Hiding in tables of Figure 4.2. Since our new approach have some 

characteristics, that are the same with the study of Menon et al. has, such as an integer 

programming modelling and intelligent sanitization, Table 4.6 is prepared for the close 

look of result comparison of these two solutions. For Table 4.6, negative values 

represent the sacrifices of our approach for gains on other metrics, while positive values 

show outclass performance of our new method over the approach of Menon et al. 

When the tables are examined well, it is deduced that the performance of IGA 

falls behind the performance of exact algorithms in experiments. Although, there are 

some good performances on accuracy and distance, worst results on the information loss 

are belonged to IGA in every comparison. 

Our new method – Coefficient-based Itemset Hiding makes progress with 

different fluctuations based on the characteristics of databases used in experiments. 

Firstly, it can be noticed that the proposed method decreased the number of lost 

nonsensitive frequent itemsets successfully for all kinds of databases in the experiments. 

It is obviously seen that our approach works more powerfully on databases whose the 

similarity of transactions are not so high such as Retail and Kosarak. Also, minimum 

support level used in experiments may be another critical point. Because decreasing the 

support value of itemsets below very low support level needs sacrificing more utility 
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gain, specifying low support level for itemset hiding reduces the coefficient benefit for 

information loss as Retail performance result at the support level – 44 (0.05%). On the 

other hand, the best performance in all experiments is attained for Retail database at the 

level of support - 88 (0.10%). Moreover, low minimum support threshold means high 

number of frequent itemsets. It causes higher time cost on our solution than caused on 

the results of other solutions in the experiments.  

The performance result of Kosarak database shows that new approach works 

well with databases which have high number of transactions. It has up to 80% gain on 

information loss while there is not above 2% accuracy loss on Table 4.6. On other hand, 

since Kosarak is a very large database, total time cost is a general problem for integer 

programming solutions. Despite this, it is also remarkable that in case of 50 sensitive 

itemsets in Kosarak, our method is approximately six times better in execution time than 

the closest result that Menon approach performs. This is quite reasonable since 

coefficients help branch and cut algorithms of integer programming [30] by allowing 

more cuts. 

When the result of Mushroom database in Table 4.5. is examined, it is deduced 

that although our new approach is the best solution in terms of the information loss, the 

performance is not very powerful as been in the results of experiments on other 

databases. As being similar with the experiment at the support level – 44 (0.05%) on 

Retail, low support level – 1,625 (20%)  is used in the database whose the similarity of 

transactions is high. Lots of frequent itemsets are generated by the reason of this support 

level. Hence, our new approach sacrifices more utility gain and information loss to 

decrease the support value of itemsets below such a low support threshold. Also, the 

accuracy performance is dramatically decreased, but the distance value is not so high 

when we compare with the results of the study of Menon et al. It means that although 

the number of sanitized transaction is high, the dissimilarity between original and 

sanitized databases is not so high to be accepted as insufficient performance. This is the 

result of working on the database whose the similarity of transactions is very high. Not 

to lose nonsensitive frequent itemsets, the approach removes minimum number of items 

from each victim transaction. Hence, lots of sanitized transactions are used to hide all 

sensitive itemsets. High value of total time cost is another remarkable point of 

experiments on Mushroom. In consequence of Coffiecient-based Solution experiment 

results, it is obvious that completing coefficient calculation takes too long with specified 

minimum support threshold (20%), which generates large amounts of frequent itemsets, 
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on Mushroom. Hence, process on these frequent itemsets raises total time cost.  As a 

result, our new approach has difficulty on some experiments, that is made with low 

minimum support threshold, and on some databases, whose the similarity of 

transactions is high. such as Mushroom. In spite of this, the approach gives successful 

results on most experiments. 

Table 4. 2. Comparison between approaches in terms of accuracy 

DB name 

(Ϭmin) 

Sensitive 

itemsets 

(with 

supersets) 

Accuracy (%) 

IGA Menon 
Coefficient-

based 

kosarak 

(4,950) 

10 (18) 99.54 99.59 99.27 

20 (31) 99.05 99.23 98.5 

50 (65) 98.57 98.95 97 

      

 retail (88) 

10 (10) 99.84 99.83 99.8 

20 (20) 99.58 99.6 99.42 

50 (65) 98.98 99.05 98.43 

     

 retail (44) 

10 (15) 99.38 99.37 99.34 

20 (32) 98.8 98.77 98.54 

50 (97) 97.49 97.46 96.62 

     

mushroom 

(1,625) 

10 (2336) 93.4 93.4 93.4 

20 (2395) 88.57 93.16 84.94 

50 (5341) 90.65 92.32 79.47 
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Table 4. 3. Comparison between approaches in terms of total time cost. 

DB name 

(Ϭmin) 

Sensitive 

itemsets 

(with 

supersets) 

Total Time (sec) 

IGA Menon 
Coefficient-

based 

kosarak 

(4,950) 

10 (18) 115 140.5 206.3 

20 (31) 146 153.7 324.7 

50 (65) 233 36,091 7,023 

      

 retail (88) 

10 (10) 8 7 9.1 

20 (20) 9 8.1 9.1 

50 (65) 10 8.1 11.3 

     

 retail (44) 

10 (15) 9 7.1 9.1 

20 (32) 9 8.1 12.1 

50 (97) 10 8.2 16.3 

     

mushroom 

(1,625) 

10 (2336) 1 1.1 90.1 

20 (2395) 1 1.2 115.5 

50 (5341) 8 1.3 142.8 

Table 4.4. Comparison between approaches in terms of distance. 

DB name 

(Ϭmin) 

Sensitive 

itemsets 

(with 

supersets) 

Distance (%) 

IGA Menon 
Coefficient-

based 

kosarak 

(4,950) 

10 (18) 0.077 0.069 0.093 

20 (31) 0.15 0.133 0.19 

50 (65) 0.3 0.221 0.391 

      

 retail (88) 

10 (10) 0.016 0.017 0.019 

20 (20) 0.045 0.039 0.056 

50 (65) 0.154 0.109 0.154 

     

 retail (44) 

10 (15) 0.062 0.062 0.065 

20 (32) 0.126 0.12 0.142 

50 (97) 0.346 0.265 0.335 

     

mushroom 

(1,625) 

10 (2336) 0.7 0.441 0.441 

20 (2395) 1.527 0.797 0.762 

50 (5341) 1.184 1.16 1.52 
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Table 4.5. Comparison between approaches in terms of information loss. 

DB name 

(Ϭmin) 

Sensitive 

itemsets 

(with 

supersets) 

Information loss (%) 

IGA Menon 
Coefficient-

based 

kosarak 

(4,950) 

10 (18) 13.504 6.787 1.316 

20 (31) 25.297 12.718 3.983 

50 (65) 34.789 22.19 4.152 

      

 retail (88) 

10 (10) 0.732 0.183 0.037 

20 (20) 2.128 1.119 0.183 

50 (65) 5.437 1.813 0.481 

     

 retail (44) 

10 (15) 2.163 0.556 0.281 

20 (32) 4.874 2.192 1.282 

50 (97) 11.197 4.363 2.392 

     

mushroom 

(1,625) 

10 (2336) 63.312 39.028 38.247 

20 (2395) 73.401 64.618 52.382 

50 (5341) 76.101 74.34 64.626 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



     49 

 

A) 

DB name 

(Ϭmin) 

Sensitive 

itemsets 

(with 

supersets) 

Solution by IGA 

(%) Time (sec) (%) (%) 

Accuracy Total Distance Info. Loss 

kosarak 

(4,950) 

10 (18) 99.54 115 0.077 13.504 

20 (31) 99.05 146 0.15 25.297 

50 (65) 98.57 233 0.3 34.789 

 

retail (88) 

10 (10) 99.84 8 0.016 0.732 

20 (20) 99.58 9 0.045 2.128 

50 (65) 98.98 10 0.154 5.437 

 

retail (44) 

10 (15) 99.38 9 0.062 2.163 

20 (32) 98.8 9 0.126 4.874 

50 (97) 97.49 10 0.346 11.197 

 

mushroom 

(1,625) 

10 (2336) 93.4 1 0.7 63.312 

20 (2395) 88.57 1 1.527 73.401 

50 (5341) 90.65 8 1.184 76.101 

 

B) 

DB name 

(Ϭmin) 

Sensitive 

itemsets 

(with 

supersets) 

Solution by Menon et al. 

(%) Time (sec) (%) (%) 

Accuracy IP H Total Distance Info. Loss 

kosarak 

(4,950) 

10 (18) 99.59 11.5 129 140.5 0.069 6.787 

20 (31) 99.23 27.7 126 153.7 0.133 12.718 

50 (65) 98.95 35,976.1 115 36,091 0.221 22.19 

 

retail (88) 

10 (10) 99.83 0 7 7 0.017 0.183 

20 (20) 99.6 0.1 8 8.1 0.039 1.119 

50 (65) 99.05 0.1 8 8.1 0.109 1.813 

 

retail (44) 

10 (15) 99.37 0.1 7 7.1 0.062 0.556 

20 (32) 98.77 0.1 8 8.1 0.12 2.192 

50 (97) 97.46 0.2 8 8.2 0.265 4.363 

 

mushroom 

(1,625) 

10 (2336) 93.4 0.1 1 1.1 0.441 39.028 

20 (2395) 93.16 0.2 1 1.2 0.797 64.618 

50 (5341) 92.32 0.3 1 1.3 1.16 74.34 

Figure 4.2. Results categorized in terms of type of approach used in experiments.           

(cont. on next page) 
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C) 

DB name 

(Ϭmin) 

Sensitive 

itemsets 

(with 

supersets) 

Coefficient-Based Solution 

(%) Time (sec) (%) (%) 

Accuracy C IP H Total Distance Info. Loss 

kosarak 

(4,950) 

10 (18) 99.27 71 11.3 124 206.3 0.093 1.316 

20 (31) 98.5 141 67.7 116 324.7 0.19 3.983 

50 (65) 97 360 6,543 120 7,023 0.391 4.152 

  

retail (88) 

10 (10) 99.8 1 0.1 8 9.1 0.019 0.037 

20 (20) 99.42 1 0.1 8 9.1 0.056 0.183 

50 (65) 98.43 3 0.3 8 11.3 0.154 0.481 

 

retail (44) 

10 (15) 99.34 2 0.1 7 9.1 0.065 0.281 

20 (32) 98.54 4 0.1 8 12.1 0.142 1.282 

50 (97) 96.62 8 0.3 8 16.3 0.335 2.392 

 

mushroom 

(1,625) 

10 (2336) 93.4 89 0.1 1 90.1 0.441 38.247 

20 (2395) 84.94 114 0.5 1 115.5 0.762 52.382 

50 (5341) 79.47 141 0.8 1 142.8 1.52 64.626 

 

Figure 4.2. Results categorized in terms of type of approach used in experiments. 
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Table 4.6. Comparison of Menon Approach and Coefficient-based Approach. 

DB name 

(Ϭmin) 

Sensitive 

itemsets 

(with 

supersets) 

Perc. (%) 

Accuracy Total Time Distance Info. Loss 

kosarak 

(4,950) 

10 (18) -0.32% -46.83% -34.70% 80.61% 

20 (31) -0.74% -111.26% -42.88% 68.68% 

50 (65) -1.97% 80.54% -76.64% 81.29% 

         

 retail (88) 

10 (10) -0.03% -30.00% -16.00% 80.00% 

20 (20) -0.18% -12.35% -43.94% 83.61% 

50 (65) -0.63% -39.51% -41.56% 73.47% 

         

 retail (44) 

10 (15) -0.03% -28.17% -4.83% 49.41% 

20 (32) -0.23% -49.38% -18.53% 41.49% 

50 (97) -0.86% -98.78% -26.24% 45.18% 

         

mushroom 

(1,625) 

10 (2336) 0.00% -8090.91% 0.00% 2.00% 

20 (2395) -8.82% -9525.00% 4.43% 18.94% 

50 (5341) -13.92% -10884.62% -30.54% 13.07% 
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CHAPTER 5 

CONCLUSION 

The serious privacy concerns that are raised due to the sharing of large 

transactional databases with untrusted third parties for association rule mining purposes, 

soon brought into existence the area of association rule hiding, a very popular subarea 

of privacy preserving data mining. Association rule hiding focuses on the privacy 

implications originating from the application of association rule mining to shared 

databases and aims to provide sophisticated techniques that effectively block access to 

sensitive association rules that would otherwise be revealed when mining the data. The 

research in this area has progressed mainly along three principal directions: (i) heuristic-

based approaches, (ii) border-based approaches, and (iii) exact hiding approaches. The 

technique of approach that presented in the thesis consists in exact hiding approaches, 

since they comprise the most recent direction, offering increased quality guarantees in 

terms of side-effects and minimal alterations on a disclosed database introduced by the 

hiding process. 

In this study, an efficient exact approach is presented to minimize side-effects in 

itemset hiding problem. The degree of side-effect is represented with coefficients that 

are placed into the objective function of integer programming. Experiments with real 

datasets show that our approach minimizes the number of concealed nonsensitive 

association rules successfully. 

Association rule hiding is still an active research area, since there are several 

open problems that need to be addressed as well as a lot of room for improvement of the 

the hiding methodology. Although studies to date have presented various proposals in 

the area of exact frequent itemsets hiding, there is not a unifying approach to provide 

the best solution in all circumstances. The emergence of sophisticated exact hiding 

approaches of high complexity, especially for very large databases, causes the 

consideration of efficient parallel approaches to be employed for improving the runtime 

of these algorithms. Parallel approaches allow for decomposition of the constraints 

satisfaction problem into numerous components that can be solved independently. The 

overall solution is then attained as a function of the objectives of the individual 
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solutions. Although a framework for decomposition and parallelization of exact hiding 

approaches has been recently proposed in [25], there is not any solution to meet all 

requirements of each database in different circumstances.  

In addition, Coefficient Computation Algorithm can be specialized based on the 

area where the published database is utilized. In this sense, coefficients in the objective 

function of the integer programming may be used in a more efficient way. Moreover, 

different optimization techniques can be achieved by exploiting the inherent 

characteristics of the constraints and objective function that are involved in the integer 

programming formulation, in a more advanced way.  
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