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ABSTRACT 
 

EXPERIMENTAL AND NUMERICAL ANALYSIS OF HEAT 

TRANSFER PERFORMANCE OF OFF-SET STRIP FINS 

 

The aim of this study is to computationally and experimentally investigate the 

heat transfer and pressure drop characteristics of an offset-strip fin. In the present study, 

experiments are conducted at the range of Reynolds number from 150 to 3500 and a 3-

D numerical domain, which is investigated as a conjugate problem, is created for finite 

volume computations. The computations are conducted by assuming that the flow in the 

offset-strip fin channels is steady and laminar at the range of Reynolds numbers from 

200 to 5000.  In this thesis, the effects of the flow behaviors in the offset strip fin 

channels on Colbourn j factor, which is the non-dimensional form of heat transfer 

coefficient, and fanning friction f factor, which is the non-dimensional form of pressure 

drop, are investigated. Also, the heat transfer boundary conditions and the Prandtl 

numbers of the fluids are kept different for these fins in order to see the effect of those. 

The effect of Prandtl number is investigated by using air, 0.707 < Pr < 0.71 and water, 2 

< Pr < 4.35 and ethylene glycol, 94 < Pr < 138. The effect of the thermal boundary 

conditions is investigated by using constant heat flux and uniform temperature. 

Moreover, all results are compared with Kays and London’s experiments (1964) and 

also the results of Manglik and Bergles’s correlations (1995). The results show a very 

good agreement between the results of Kays and London (1964) and of Manglik and 

Bergles’s correlations (1995). It is also observed that results obtained from the two 

alternatives for the thermal boundary condition are very close to each other. According 

to obtained results, it is concluded that our computational results from laminar flow 

assumption and experiments are reliable at almost all the range of Reynolds numbers 

studied.
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ÖZET 
 

OFF-SET STRIP T�P�NDEK� KANATÇIKLARIN ISI TRANSFER� 

PERFORMANSININ DENEYSEL VE SAYISAL OLARAK �NCELENMES� 

 

Bu çalı�ma, bir offset-strip tip kanatçı�ın ısı transferi ve basınç dü�üm 

karakteristiklerinin deneysel ve sayısal olarak incelenmesini içermektedir. Deneyler, 

Reynolds sayısı 150 ile 3500 arasında gerçekle�tirilmi� ve ta�ınım ile iletimi bir arada 

içeren bu problem, üç boyutlu bir sayısal model kullanılarak çözülmü�tür. Sayısal 

analizler için sonlu hacim metodu kullanılmı�tır. Offset-strip tip kanatçı�ın içerisindeki 

akı�, Reynolds sayısı 200 ile 5000 arasında, laminer ve zamandan ba�ımsız olarak kabul 

edilmi� ve bu kabuller ı�ı�ında sayısal analizler gerçekle�tirilmi�tir. Offset-strip tip 

kanatçık içerisindeki akı�ın ısı transferine ve basınç dü�ümüne etkileri, bu 

parametrelerin birimsiz büyüklü�ü olan Colbourn-j faktör ve Fanning friction f faktör 

cinsinden incelenmi�tir. Ayrıca iki farklı termal sınır ko�ulu tanımlanarak (sabit sıcaklık 

ve sabit ısı akısı) ısı transferine ve basınç dü�ümüne etkileri incelenmi�tir. Buna ek 

olarak hava, su ve etilen-glikol gibi üç farklı akı�kan kullanılarak, Prandtl sayısının 

etkileri ara�tırılmı�tır. Olu�turulan modelin sayısal analiz sonuçları ve elde edilen 

deneysel sonuçlar, Kays ve London’ın (1964) deneysel sonuçları ve Manglik ve 

Bergles’in korelasyonlarından elde edilen sonuçlar ile kar�ıla�tırılmı�tır. Elde edilen 

sonuçlar ile bu ara�tırmacıların sonuçları kar�ıla�tırıldı�ında birbirleri ile çok iyi 

örtü�tü�ü görülmektedir. �ki farklı ısıl sınır ko�ulu kullanılarak elde edilen sonuçlar, bu 

iki sınır ko�ulu arasında önemli bir fark olmadı�ını göstermi�tir. Elde edilen tüm 

sonuçlar irdelendi�i zaman, çalı�mada kullanılmı� olan sayısal modelin ve yapılmı� olan 

deneylerin Reynolds sayısı 200 ile 5000 arsında oldukça güvenilir oldu�u sonucuna 

varılmı�tır. 
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CHAPTER 1 
 

 

CHAPTER 1. INTRODUCTION 
 

 

Fundamental of heat exchanger principle is to facilitate an efficient heat flow 

from hot fluid to cold fluid. This heat flow is a direct function of the temperature 

difference between the two fluids, the area where heat is transferred, and the 

conductive/convective properties of the fluid and the flow state. This relation was 

formulated by Newton and called Newton’s law of cooling, which is given in Equation 

1.1. 

                                                               (1.1) 

  

Where h is the heat transfer coefficient [W/m2K], where fluid’s 

conductive/convective properties and the flow state comes in the picture, A is the heat 

transfer area [m2], and 	T is the temperature difference [K]. 

 In order to increase the heat transfer in a basic heat exchanger mechanism 

shown below in Figure 1.1, assuming that the heat transfer coefficient can not be 

changed, the area or the temperature differences have to be increased. 

 

 
 

Figure 1.1. Basic heat exchanger mechanism 

 

TA h Q ∆=
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In practice, the best solution is that the heat transfer surface area is extended 

although increasing the temperature difference is logical, too. In reality, it may not be 

much meaningful to increase the temperature difference because either a hotter fluid 

should be supplied to mechanism or the heat should be transferred to a colder fluid 

where neither of them usually available. For both cases the system requires much more 

extra work. Furthermore increasing the temperature difference more than enough will 

cause unwanted thermal stresses on the metal surfaces between two fluids. The situation 

usually results in deformation and also decreases of life span of those materials. As a 

result of these facts, increasing the heat transfer surface area generally is the best 

engineering approach. One of the most widely used method is to employ extended metal 

interface surfaces between two fluids in order to extend the heat transfer surface area. 

These extended metal interfaces are usually called Fins, as shown in Figure1.2. 

 

 
 

Figure 1.2. Basic heat exchanger mechanism with fins 

 

Although there are so many methods which are applied for heat transfer 

enhancement such as using fins, swirl flow devices, coiled tubes, using plate or tube fins 

are the most commonly employed methods in heat exchangers. These types of 

exchangers are called as “Extended Surface Heat Exchangers or Compact Heat 

Exchangers”. These types of heat exchangers including plate fins have been used in so 

many applications such as: automobile radiators, air-conditioning systems, condensers, 

electronic cooling devices, and regenerators, and cryogenic exchangers. Since the 

compact heat exchangers are lightweight and also have much smaller footprint, they are 

highly desirable in many applications. 
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Compact heat exchangers are categorized according to the amount of extended 

surface area per volume. There are many kinds of fins which are adopted in heat 

exchangers to increase the heat transfer rate. Among those, plate fins are known to be 

attractive for their simplicity of manufacture and potentials for enhanced thermal-

hydraulic performance. Therefore they are preferred by many heat exchanger designers. 

Various different forms of plate fins may be found in application such as plain fins, 

offset strip fins, wavy fins, perforated fins, and pin fins, as shown in Figure1.3. 

 

 

 
 

Figure 1.3. Types of plate fins. 
(Source: Shah and Sekulic 2003) 

 

The offset strips fins (OSF) are the most widely applied methods in order to 

achieve the required the heat transfer enhancement because of their excellent 

geometrical properties. The OSFs behave as short thin flat plates aligned with the flow 

direction. The flow passages of the OSF are periodically interrupted along the stream-

wise direction. These interruptions in the geometry result in an initiation of the velocity 

and temperature boundary layers which in turn result in a higher heat transfer 
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coefficients and therefore more homogeneous temperature distributions. This 

enhancement is of course accompanied by an increase in pressure drop. 

There are many published researches is available on extended surfaces and 

particularly on OSFs. Among those researches, the numerical methods have become 

increasingly popular recently because of the fact that detailed information about all 

kinds of heat transfer problems may be obtained by computational models. Moreover, 

computations can be more economical than experimental analysis. On the other hand, 

experimental analyses are always performed in order to confirm numerical results. Also 

experiments can be the only solution for problems where no numerical models are 

available and where geometry is too complicated or very big in size. 

Working fluids, the required heat flow rate and/or mass flow rates are usually 

known in most heat exchanger problems. If certain correlations between geometry and 

fin performance are established, then the problem can be greatly simplified. For that 

purpose two correlation factors called fanning friction factor f and Colbourn j factor 

have been developed by investigators.  

 

 

1.1. Thesis Objective 
 

 

The main aim of the present study is to experimentally and numerical analyze 

the OSFs. We tried to focus on issues that are not particularly studied much in the 

literature. The general geometrical parameters and a photo of OSF are illustrated below 

in Figure 1.4.  

In this thesis, one of the OSFs used in analyses has a code number, 1/8-16.00(D) 

that was only experimentally performed by Kays and London (1964). The geometrical 

parameters of it are tabulated in Table 1.1.  

The OSF with code number 1/8-16.00(D) will be performed for only numerical 

analyses. Since one of the aims of this thesis is achieving a numerical model which 

confirms the results obtained from experimental analyses. For that purpose the 

numerical model for OSF with code number 1/8-16.00(D) will be used as a guide for 

modeling of these types of OSFs. 
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In this thesis, the geometrical parameters of another OSF used in analyses are 

given in Table 1.2. The OSF will be analyzed for both numerical and experimental 

analyses. Because the fin has not been analyzed up to now, and no result exists in 

literature.    

 

 
 

Figure 1.4. General geometrical parameters of OFS. 

 

 

Table 1.1. Geometrical parameters of OSF with code name1/8-16.00(D). 

 

 

 

 

 

 

  

 

 

 

Geometrical Parameters Dimensions (mm) 

Fin Length (Lf) 3.175 

Fin Height (h) 3.006 

Fin thickness (t) 0.152 

Fin Size  (s) 1.434 

Channel Length (Lc) 93.25 
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Table 1.2. Geometrical parameters of second OSF.  

 

 

 

 

 

 

 

 

 

 

These studied issues are shortly are; 

Firstly, working fluid in the reviewed literature was taken mostly as air and its 

thermo-physical properties were assumed to be constant, especially for numerical 

analyses. Although, these assumptions may be acceptable for most of the applications of 

air whose Prandtl number is less than one. On the other hand; for water or another 

working fluids whose Prandtl numbers are greater than one this situation differs where 

the thermal properties of the fluid considerably change with temperature. Therefore, the 

thermo-physical properties are taken as temperature dependent in this study and its 

effects are discussed.  

 Secondly, the numerical studies in the literature generally were usually 

performed for two dimensional cases. However, it is noticed that three dimensional 

effects are important particularly in short and interrupted fins. Therefore, numerical 

analysis is conducted in this thesis show a close agreement with the experimental results 

also points out that 3-D effects are not to be left out in the analysis of this type of 

exchangers. 

Moreover, existed experimental studies in this area are usually assumed that the 

heat source/sink thermal boundary condition of the heat transfer surfaces as of uniform 

temperature type.  Although, especially in the electronic cooling applications constant 

heat flux plays an important role and therefore our numerical and experimental studies 

points out some important differences in heat transfer due to this different boundary 

condition.   

 

Geometrical 

Parameters 

Dimensions 

(mm) 

    Fin Length (Lf) 1.5 

    Fin Height (h) 3.8 

    Fin thickness (t)     0.2 

    Fin Size  (s)    2.6 

    Channel Length (Lc)     200 
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Above mentioned goals are planned to be achieved by the following 

measurements; 

• Determining the average heat transfer coefficient and pressure drop in OSF at different 

Reynolds numbers, 

• Determining the effect of Prandtl number on the heat transfer rate and pressure drop, 

• Determining the effects of the two thermal boundary conditions on heat transfer and 

pressure drop, 
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CHAPTER 2 
 

 

CHAPTER 2. LITERATURE SURVEY 
 

 

Over the past few decades a large amount of study has been conducted to 

analyze the heat transfer and pressure drop characteristics of compact heat exchangers. 

Although various types of interrupted fin surfaces have been performed in the past, this 

study focuses on the offset-strip fin (OSF) type compact heat exchanger. Various 

similar studies about this type of fin are available in the literature and they will be 

summarized in this chapter. 

Patankar and Prakash (1981) presented a two dimensional numerical analysis for 

the flow and heat transfer in an interrupted plate passage, which is an idealization of the 

OSF heat exchanger. The main aim of the study is investigating on effect of plate 

thickness as a non dimensional form t/H on heat transfer and pressure drop in OSF 

channels because the impingement region resulting from thick plate on the leading edge 

and recirculating region behind the trailing edge are absent if the plate thickness is 

neglected. Their calculation method was based on the periodically fully developed flow 

through one periodic module because the flow in OSF channels attains a periodic fully-

developed behavior after a short entrance region, which may extend to about 5 (at the 

most 10) ranks of plates (Sparrow, et al. 1977). In the periodic regime the flow repeats 

itself in an identical manner for successive geometrical modules. The existence of this 

fully developed periodic regime was first identified in the study of Sparrow, et al. 

(1977). They assumed the flow as steady and laminar in the Reynolds number ranges 

from 100 to 2000. Patankar and Prakash (1981), in this range of Reynolds number the 

real flow is expected to be mostly laminar, although it is possible that transition to 

turbulence may occur somewhat before the Reynolds number is almost 2000 especially 

for the higher values of t/H. they also used a constant heat flow boundary condition with 

additional specification that each row of fins were at a fixed temperature. They made 

some analysis for different fin thickness ratios t/H= 0, 0.1, 0.2, 0.3 at the same fin 

length given by L/H=1, and also they fixed the Prandtl number of fluid as 0.7. They also 

compared their numerical results with available experimental results of Kays and 
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London (1964). Their numerical results showed that by increasing the non dimensional 

form of fin thickness at same Reynolds number based on the hydraulic diameter, the 

flow pattern changes resulting in increasing overall heat transfer also pressure drop. For 

the lower Reynolds number such as 100 and 500, they observed an impingement flow 

on the leading edge of the fin and a small recirculation zone behind the trailing edge for 

the higher Reynolds numbers such as 1000 and 2000, they also observed the 

recirculating flow fills the space between the trailing edge of one plate and the leading 

edge of next plate, and the impingement flow disappears. As a result of their 

investigation it was concluded that the thick plate situation leads to significantly higher 

pressure drop while the heat transfer does not sufficiently improve despite the increased 

surface area and increased mean velocity. 

Joshi and Webb (1987) developed elaborate analytical models to predict the heat 

transfer coefficient and the friction factor of the OSF heat exchanger surface geometry. 

In order to identify the transition from laminar to turbulent flow an equation based on 

the conditions in the wake was developed by conducting flow visualization experiments. 

 

 
Figure 2.1. Typical j and f characteristics. 

 (Source: Joshi and Webb 1987) 

 

The condition predicted by transition equation corresponds to onset of 

oscillating velocities in the fin wakes. Thus they easily defined the laminar, turbulent, 

and transition regions. They also modified the correlations of Wieting (1975). There are 

some differences between the correlations. These correlations are based on hydraulic 
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diameter than that used in the correlations of Wieting (1975) because the area of the fin 

ends has been included in the study. Using flow visualization four different flow 

regimes could be identified by Joshi and Webb (1987). In the first regime, the flow was 

laminar and steady. In the second regime, the oscillating flow structures appeared in the 

transverse direction. In the third regime, the flow oscillated in the wake region between 

two successive fins. In the fourth regime, the vortex shedding started to become 

important. The laminar flow correlation of Joshi and Webb started to under predict the j 

and f at the second regime. Thus, they assumed the Reynolds number at that point as the 

critical Reynolds number to identify the transition between laminar and turbulent. 

 

 
 

Figure 2.2. Laminar flow on the fins and in the wakes. 
 (Source: Joshi and Webb 1987) 

 

Kalkar and Patankar (1990) numerically analyzed the fluid flow and heat 

transfer for a tube with staggered and in-line fins as three dimensional. They observed 

that the flow shows three-dimensional parabolic behavior because of the repetitive 

nature of geometry of both staggered and in-line fins in axial direction, so the flow 

shows periodically repeating behavior after some initial development length. The effects 

of Prandtl number on the heat transfer and the fluid flow were also investigated. The 

Prandtl numbers were 0.7 and 5. Their results showed that for Prandtl number of 0.7, a 

tube with staggered fins supplies less heat transfer enhancement than a tube with in-line 

fins produces much heat transfer enhancement than tubes with either continuous or 

staggered fins and also with less pressure drop. 
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Figure 2.3. Laminar flow on the fins and oscillating flow in the wakes. 
 (Source: Joshi and Webb 1987) 

 

Maughan and Incropera (1990a) (1990b) studied on mixed convection heat 

transfer with longitudinal fins in a horizontal parallel plate channel. They presented two 

papers about the study. In the first paper (Maughan and Incropera 1990a) the numerical 

results of it was presented although the second study (Maughan and Incropera 1990b) 

was about experimental results. They made the numerical calculations for laminar 

region and they assumed that the flow was fully developed. They used two different 

thermal boundary conditions. The first one was an isothermally heated bottom plate 

with isothermally cooled top plate. The second one was a uniform heat flux at the 

bottom surface of plate with adiabatic upper surface of it. The reason of using the 

different two boundary conditions was that they wanted to analyze the effect of 

secondary flows on the heat transfer enhancement. Maughan and Incropera emphasized 

that “traditionally, extended surfaces like fins and ribs have been used to augment heat 

transfer by adding additional surface area and encouraging mixing; however, mixed 

convection and buoyancy-driven secondary flows also enhance heat transfer above 

forced convection levels”. The results of the two boundary conditions showed that the 

secondary flow in the form of longitudinal vortices caused by buoyancy forces 

increased the heat transfer.  

Tinaut, et al. (1992) developed two correlations including heat transfer and flow 

friction coefficients for OSF and plane parallel plates. He used water for analyzing 

plane parallel plates and engine oil for OSFs as working fluids in experiments. He got 

the correlations using standard correlations of Dittus and Boelter, and some expressions 
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of Sieder and Tale and also Kays and Crawford. In order to check the validation of the 

correlations proposed in the study the correlations were compared to correlations of 

Wieting (1975) and also Focke. Generally the expressions done by Tinaut et al. have 

been found to be acceptable upon comparing the results to data obtained from 

correlations of other researchers, although there were some differences between them. 

According to Tinaut the reason of the situation was that “the working fluid used by 

Wieting was air and that of the present study is engine oil, and the discrepancy could be 

due to different values of Prandtl number for air and oil.” 

Manglik and Bergles (1995) reported a most needed comprehensive review of 

experimental research on OSFs. They studied with eighteen different OSFs an 

investigated the effects fin geometries as non-dimensional forms of them on heat 

transfer and pressure drop. After analyzing the effects, they arrived upon two 

correlations, one for heat transfer and another for pressure drop including all three 

regions. They also reanalyzed the expressions done by other researchers and described 

the asymptotic behavior of the data obtained from the correlations in the deep laminar 

and fully turbulent regimes. These correlations can be acceptable when comparing the 

results of the expressions to experimental data obtained by Kays and London (1964).  

Hu and Herold (1995a) (1995b) presented two papers about the effect of Prandtl 

number on heat transfer and pressure drop in OSF array. In the first paper Hu and 

Herold (1995b) experimentally studied on this effect. For that purpose they used seven 

OSFs having different geometries, and three working fluids having different Prandtl 

numbers. Also the effect of changing the Prandtl number of fluid with temperature was 

investigated. In the second paper Hu and Herold (1995a) studied on developing laminar 

models to predict the heat transfer and pressure drop performance of liquid-cooled 

OSFs. Thus they studied in the range of Reynolds numbers from 10 to 2000 in both two 

papers. The result of these two studies showed that the Prandtl number effect has a 

significant influence on heat transfer in OSF channel. Although it does not have any 

effect on pressure drop upon comparing the Colbourn J factors and f fanning friction 

factors. 

Zhang, et al. (1997) investigated on the heat transfer enhancement mechanisms 

for parallel plate fin heat exchangers including inline and staggered array of OSFs. The 

effect of finite fin thickness was also studied. The study was numerically analyzed as 

two dimensional. They took into account the time-dependent flow behavior due to 

vortex shedding by solving unsteady momentum and energy equations. The effect of 
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vortices, which they are generated at leading edge of the fins and travel downstream 

along the fin surface, was also researched. Their results showed that only the surface 

interruption increases the heat transfer because the surface interruptions cause to 

periodically restart the boundary layers on fin surfaces and bound growing of them so 

the thermal resistance to heat transfer between fin surfaces and fluid is reduced. On the 

other hand after a critical Reynolds number the flow becomes unsteady. In this regime 

vortices play an important role to increase the heat transfer by bringing fresh fluid from 

the main stream to fin surface. But the swirling flow generated by the vortices near the 

fin surface increases the skin friction on it thus, pressure drop improves. 

Dejong, et al. (1998) presented a complementary experimental and numerical 

study for flow and heat transfer in OSFs. In the study the surface-average heat transfer 

and heat transfer and pressure drop, local Nusselt number and skin friction coefficients 

on fin surface, instantaneous flow structures, and local time-averaged velocity profiles 

in OSF channel were investigated. In order to explain the instantaneous flow structures 

flow visualization method were used and they were compared with numerical results, 

and also they compared their experimental and numerical results with experimental 

results obtained by Dejong and Jaccobi (1997) and unsteady numerical simulation of 

Zhang, et al. (1997). Their results showed that the three-dimensional flow becomes 

significant when the Reynolds numbers are greater than about 1300, and the thermal 

boundary conditions are significant when the Reynolds numbers become lower than 

1000. Thus they implied that” the results indicate that boundary layer development, 

flow separation and reattachment, wake formation, and vortex shedding are all 

important in this complex geometry”.  

Saidi and Sudden (2001) investigated on numerical analysis of the instantaneous 

flow and heat transfer for OSF geometries in self-sustained time-dependent oscillatory 

flow. The effect of vortices over the fin surfaces on heat transfer was also studied at 

intermediate Reynolds numbers where the flow remains laminar, but unsteadiness and 

vortex shedding tend to dominate. The obtained numerical results were compared with 

previous numerical and experimental data done by Dejong, et al. (1998). 

Comini, et al. (2004) worked on the illustration of modeling procedures for 

wavy channel, ribbed channel and offset strip channel. The geometries were made up of 

the repetition of identical modules. Because of the geometries of channels after a short 

distance from the entrance, flow and thermal fields repeated themselves from module to 

module attaining a fully developed character.  In this context, Comini et al. made an 
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assumption that the repeatitive fields allowed the limitation of the analysis to a single 

module so, he defined periodic boundary condition. Assuming the thermo-physical 

properties of the fluid to be constant and the flow to be laminar, the governing equations 

were the standard Navier-Stokes and continuity equations. In the absence of volumetric 

heating and neglecting the effects of viscous dissipation, the energy equation was 

solved. His results showed that the surface interruptions bound the growth of boundary 

layers and cause periodical restarts. At low Reynolds numbers, the flow is regular and 

steady such as in flat channels. However, in this study, he got substantial increases in 

both the pressure drop and heat transfer rate with respect to flat channels, because of the 

restarting of boundary layers. And high Reynolds numbers the flow became unsteady 

because of transverse vortices, generated at the leading edges; these vortices bring fresh 

fluid from the main stream to the surface and, consequently, further enhance the local 

heat transfer coefficients. 

It is easy to get information about the effects of OSFs on heat transfer and 

pressure drop studied by a few researchers such as Patankar and Prakash (1981), Kays 

and London (1964). But the researchers did not take account the manufacturing 

irregularities such as burred edges, bonding imperfection, separating plate roughness 

which is also influence on the heat transfer and flow, and material and brazing having 

the direct effect on the manufacturing irregularities. So, Dong, et al. (2007) thought that 

making experiments and analysis again had been necessary to get better thermal 

hydraulic performance of the OSFs. Thus, the aim of this paper was reanalyzing of the 

OSF heat exchangers. Sixteen types of OSFs and flat tube heat exchangers were used to 

make the experimental studies on the heat transfer and pressure drop characteristics. A 

lot of tests were made by changing fin parameters including fin space s, fin height h, fin 

thickness t, fin length l and flow length d. And these tests were conducted in specific 

region of air-side Reynolds number 500–7500, and at a constant water flow rate. The 

thermal performance data were analyzed using the effectiveness- Number of Transfer 

Units Method (NTU) in order to obtain the heat transfer coefficient. The heat transfer 

coefficients and pressure drop data, which were analyzed with different fin space, fin 

height, and fin length, were related with the inlet air velocity. The general correlations 

for Colburn j-factor and Fanning fraction f-factor were derived by using regression 

analysis and F-test. Geometry parameters of all OSFs were converted as non-

dimensional format to be able to compare the experimental and analytical results easily. 

All tested OSFs were checked before brazing. As a result, the heat transfer coefficient 
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and pressure drop with different fin spaces, fin heights and fin length are the functions 

of the velocity while other geometrical parameters are same. Heat transfer coefficient 

and pressure drop reduce with enlarging fin space, fin height and fin length. Because of 

the fact that the air velocity increases in smaller fin passage which makes the boundary 

layer thickness smaller. At the same time, the effect of the finite fin thickness becomes 

obvious, which means that the eddy and vortex shedding start. 

OSF heat exchangers are used in a variety of applications and these exchangers 

are usually operated at low Reynolds numbers because increasing Reynolds number 

causes the pressure drop to improve. However most of the studies were performed at 

low Reynolds numbers to avoid the pressure drops, a research was operated at higher 

Reynolds numbers, where the heat transfer rate increases due to the vortex shedding and 

turbulent flow, by Michna, et al. (2005) The study was conducted at Reynolds numbers 

between 5000 and 120 000. As expected, both the pressure drop and the heat transfer 

coefficient increased with improving Reynolds number because of growing of the 

vortex shedding and eddy at turbulent regime. Operation of the OSF heat exchangers 

under these Reynolds numbers may be useful in such systems that minimizing heat 

exchanger size or maximizing the heat transfer coefficient is more important than 

minimizing the pressure drop. 

Muzychka and Yovanovich (2001a) (2001b) presented two comprehensive 

studies on OSFs. Also the researchers first attempted to separate the OSF studies into 

two categories according to fluid flow orientations, one study was about the Low 

Pressure Direction (LPD) where the fluid flows parallel to the fin surfaces like previous 

studies done by other researchers; another study was about High Pressure Direction 

(HPD) type where the fluid impinges on the fin surfaces as shown in Figure 1. 

 

 
 

Figure 2.4. Flow orientation definition for OSFs. 
(Source: Guo et al. 2007) 
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In the first study on LPD type OSFs (Muzychka and Yovanovich 2001a), they 

performed to develop analytic models in order to predict the thermal hydraulic 

characteristics of OSF arrays. The analytical models were based on Wieting (1975) and 

Joshi and Webb (1987), but much simpler than them. They also compared the results 

obtained from the correlations with the experimental data obtained by Kays and London 

(1964), and with their own experimental data, and also the data obtained from the 

correlations of Manglik and Bergles (1995). As a result of the study it is concluded that 

the models developed by Muzychka and Yovanovich were in correlation with the 

experimental data and also the data presented by Kays and London (1964) at the all 

range of Reynolds numbers although there are some differences between the data 

obtained from the correlations of Manglik and Bergles (1965). In the second study 

including HPD type OSFs (2001b) they created new analytical models to get the 

thermal hydraulic performances of transverse flow through on HPD type OSF arrays. 

They made new experimental analysis for ten OSF configurations to compare the 

experimental results with the data obtained from new correlations. Their results showed 

that the model predictions almost found to be in correlation with experimental data. It is 

also worthwhile to emphasize that the HPD type OSFs supply much greater heat 

transfer and friction loss than LPD type OSFs. The main possible reason may be that the 

staggered surfaces of the HPD type OSFs interrupt flow and thermal boundary layers 

much more strenuously than the LPD type ones. 

Guo, et al. (2007) (2008) presented two papers including the HPD type OSFs. In 

the first study (Guo, et al. 2008) he developed empirical correlations for the HPD type 

OSFs. He used thirty-six OSFs having different geometries to get the expressions. The 

material of OSFs were steel although Muzychka and Yovanovich (2001a) (2001b) who 

first attempted to identify the correlations for HPD type fins used brass and aluminum 

OSFs in their experiments. Thus, these two studies presented by different researchers 

can be important for understanding the thermal behaviors of the flow upon taking into 

consideration the material differences. He examined the effects of geometrical factors of 

HPD type OSF on heat transfer and pressure loss. He compared the data obtained from 

correlations with his experimental results and also the data obtained from the 

correlations of Muzychka and Yovanovich (2001a) (2001b). His results showed that 

their correlations agree with the experimental data but not agree with the data obtained 

from the correlations of Muzychka and Yovanovich when the Colbourn j factor was 

taken into consideration. The reason may be the materials having different thermal 
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conductivity. In the second paper Guo, et al. (2007) wanted to supply comprehensive 

study on HPD type steel OSFs. In this study the effects of mould wear and also the 

geometrical irregulaties resulted from manufacturing differences on thermal hydraulic 

performance were investigated. He explained the reason as that “ however, as a result of 

manufacturing difference between the ‘soft’ materials of aluminum or brass and ‘hard’ 

material of steel, it is not practical to get the general heat transfer and flow friction 

models applied to all OSFs made of different materials, even made of the same material 

but different manufacturing technologies”. Manglik and Bergles (1995) emphasized the 

same situation that manufacturing irregulaties such as burred edges, bonding 

imperfections and separating plate roughness affect the flow behavior on heat transfer in 

actual heat exchanger cores.  

Of above mentioned there are too many correlations for heat transfer and 

pressure drop characteristics obtained by lots of researchers. The reason of developing 

the predictive equations is that generally in most heat exchanger problems the working 

fluid, the heat flow rate and mass flow rate are usually known. If certain correlations 

between geometry and fin performance is also known, then the problem can be greatly 

simplified. For that purpose developing the two correlation factors called fanning 

friction factor f and Colbourn j factor are important for heat exchanger designers. Some 

of The correlations and their investigators are given in Table1. Generally the 

correlations include three distinct non-dimensional ratios depending on OSF geometry. 

These are the ratio of free flow area ( hs /====αααα ), the ratio of heat transfer area ( �/t====δδδδ ), 

and the ratio of fin density ( st /====γγγγ ).  The correlations depending on these non-

dimensional ratios are tabulated in the Table 2.1.  

In this thesis the correlations of Manglik and Bergles (1995) will be used to 

compare with the numerical and also experimental results of the considered problem.  
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Table 2.1. Chronological listing of the correlations for OSF channels. 
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CHAPTER 3 
 

 

CHAPTER 3. NUMERICAL ANALYSIS 
 

 

3.1. Introduction to Computational Fluid Dynamics  

 

 
Computational Fluid Dynamics (CFD) means predicting fluid flows and heat 

transfer using computational methods. CFD is based on various disciplines of science 

such as mathematics, computer engineering and physics to provide meaningful 

modeling of fluid flows. CFD is primarily concerned with numerical solutions of 

differential equations such as conservation of mass, momentum, and energy in moving 

and deforming fluids. 

CFD is used in an extremely wide range of industries. Any industrial process 

that involves fluid flow and/or heat transfer can benefit from it. For example, such list 

of industrial and/or academic areas is; 

• Aerospace: Aerodynamics, wing design, missiles, passenger cabin 

• Automotive: Internal combustion, underbody, passenger comfort 

• Biology: Study of insect and bird flight 

• Building: Clean rooms, ventilation, heating and cooling 

• Civil Engineering: Design of bridges, building exteriors large structures 

• Chemical Process: Static mixing, separation, reactions 

• Electrical: Equipment cooling 

• Environmental: Pollutant and effluent control, fire management, shore protection 

• Marine: Wind and wave loading, sloshing, propulsion 

• Mechanical: Pumps, fans, heat exchangers 

• Meteorology: Weather prediction 

• Oceanography: Flows in rivers, estuaries, oceans 

• Sports Equipment: Cycling helmets, swimming goggles, golf balls 

• Turbomachinery: Turbines, blade cooling, compressors, torque convertors 
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A variety of reasons can be cited for the increased importance that simulation 

techniques have achieved in recent years (Löhner 2008); 

� The need to forecast performance. The inability to forecast accurately the 

performance of a new product can have a devastating effect on companies. The only 

way to minimize the risk of unexpected performance is through insight information. 

Simulation techniques such as CFD can provide this information. 

� Cost of experiments. Experiments, the only other alternative to simulations, 

are very costly. 

� Impossibility of experiments. In some instances, experiments are impossible 

to conduct. Examples are atmospheric nuclear explosions or biomedical situations that 

would endanger the patient’s life. 

� Insight. Most large-scale simulations offer more insight than experiments. A 

mesh of 1 × 106 grid points is equivalent to an experiment with 1 × 106 probes or 

measuring devices. Moreover, many derived properties (e.g. vorticity, shear, residence 

time, etc.) can easily be obtained in a simulation, but may be unobtainable in 

experiments. 

� Computer speed and memory. Computer speed and memory capacity 

continue to double every 18 months. At the same time, algorithm development 

continues to improve accuracy and performance. So, more realistic simulations can be 

performed. 

CFD codes are structured around the numerical algorithms that can deal with the 

fluid flow problems.  The CFD codes contain essentially three main stages; 

1. Pre-processor: Pre-processing means creating a representative model of flow 

problem before numerical solution process. This part also consists of some necessary 

inputs of the flow problem given by the analyzer and these inputs are transformed to the 

solver. At the pre-processor stage, the following activities are performed by the analyzer 

(Versteeg and Malalasekera 1995); 

� Definition of the geometry of the region of interest: the computational domain. 

� Grid-generation – the subdivision of the domain into a number of smaller, non-

overlapping sub-domains: a grid (or mesh) of cells (or control volumes or elements). 

� Selection of the physical and chemical phenomena that need to be modeled. 

� Definition of fluid properties. 

� Specification of appropriate boundary conditions at cells which coincide with or 

touch the domain boundary. 
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In the pre-processor part the number of elements or cells in a domain play 

important roll for the accuracy of the CFD solution of the fluid problem. The accuracy 

of a CFD solution is governed by the number of cells in the grid. In general, the larger 

number of cells the better solution accuracy. However, more cells also cause longer 

computational time and need more powerful computer hardware. Thus, the cells in a 

grid should be created at optimum level to obtain physically realistic results in a 

meaningful time. 

2. Solver: There are three different streams of numerical solution techniques. 

These are finite difference or finite volume method (FVM) which is another special 

form of finite difference, finite element and spectral methods. The problem under 

consideration was solved by using FVM solution techniques. In a general manner the 

numerical methods that form the basis of the solver perform the following steps 

(Versteeg and Malalasekera 1995): 

� Approximation of unknown flow variables by means of simple functions. 

� Discretisation by substitution of the approximations into the governing flow 

equations and subsequent mathematical manipulations. 

� Solution of the algebraic equations. 

Briefly the main differences between the three methods are associated with the 

way in which flow variables such as velocity, pressure etc. are approximated and with 

the discretisation of governing equations including continuity, momentum and energy 

equations. 

3. Post-processor: This is the final step in CFD analysis, and it involves the 

organization and interpretation of the predicted flow data and production of CFD 

images and animations. At the post-processor stage, the CFD images obtained from 

predicted flow data can include (Versteeg and Malalasekera 1995); 

� Domain geometry and grid display. 

� Vector plots. 

� Line and shaded contour plots. 

� Particle tracking. 

� View manipulations (translation, rotation, scaling etc.) 

� Color postscript output. 
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3.2. Description of the Problem and Geometry 
 

 
In the present thesis, a cold plate type heat exchanger including offset-strip fin 

(OSF) is investigated numerically and also experimentally. Numerical part of this 

study is performed due to the fact that detailed information about the heat transfer 

may be obtained provided that the computational model is accurate. On the other 

hand, experimental analyses are used to ensure the accuracy of numerical results. As a 

result of these facts, if the results of the experimental analysis are confirmed by the 

numerical ones, then a heat exchanger can safely be analyzed by using the numerical 

model created in the present thesis. The cold plate type heat exchanger used for the 

experimental analysis is illustrated in Figure 3.2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. View of the cold plate type heat exchanger under analysis. 

 

As it can be seen from Figure 3.1, the working fluid enters the heat exchanger, 

and flows through the OSF channels. The flowing fluid absorbs the heat from the fin 

walls where heat sources are at bottom and top side of cold plate. The cold plate heat 

exchanger is used also for experimental analysis consists of 5 modules in the spanwise 

direction and 134 modules along the flow direction. The OSF used in the heat 

exchanger is illustrated in Figure 3.2.  
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Figure 3.2. The offset-strip fin used in the heat exchanger. 

 

For the considered heat exchanger problem (including an OSF) some 

assumptions and simplifications for geometry are performed in order to ease 

computational burden.  Otherwise, the capability of computer hardware such as CPU, 

RAM etc. could not be enough to handle such a complicated geometry.  First 

simplification is that the one module, which is the middle row in span-wise direction, 

of OSF along to flow direction is isolated for computational analysis since it is 

representative enough for the whole geometry because of the symmetrical nature of all 

heat exchangers as shown in Figure 3.3.   
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Figure 3.3. The first geometrical assumption of the heat exchanger problem. 

 

Secondly, the 30 rows along the flow direction are found to be enough to 

numerically analyze the OSF because it is seen in the literature that the flow in OSF 

channels attains fully-developed behavior after a short distance from entrance region, 

which may extend to about 5 (at the most 10) rows of plates (Patankar and Prakash 

1981, Dejong and Jacobi 1998).  For that purpose 30-row-OSF channel is chosen in 

order to decrease the effects of the entrance region or hydro-dynamically developing 

region.  

Thirdly, the OSF fin has trapezoidal shape and had radiuses at top and bottom 

corners. The fin shape and radiuses increase the mesh numbers and also computational 

time. So in this thesis one more assumption is made that the fins could be assumed as 

rectangular shape if the fin size is equal to average of fin sizes of bottom and top sides 

of the fin as shown in Figure 3.4.  
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Figure 3.4. Making rectangular OSF 

 

The fins and the cold plate heat exchanger are made of 6061-T6 alloy of 

aluminum because of its good thermal conductivity and excellent brazebility. Assuming 

that the thermal resistance between the contacting walls of heat source and the fins are 

very low because of high brazing quality, and the fin thickness of OSF walls is very 

thin, 0.2 mm, then, the fin walls touching with the bottom and top side of the OSF 

channels can be negligible in order to simply the numerical geometry. The OSF with 

and without ignoring top and bottom walls are illustrated in Figure 3.5. 
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Figure 3.5. The OSF with and without ignoring fin walls.  

 

The physical behavior of fluid in OSF channels and their geometry allow us to 

divide the domain into two parts by using symmetry plane at the middle of the 

considered cold plate heat exchanger and it is parallel to top and bottom walls of the 

OSF channels as shown in Figure 3.6.  

 

 

 

 

 

 

 

 

 



���

�

 

 
 

Figure 3.6 Half part of the problem.  

 

Another simplification of the geometry is that the dividing the half part of the 

heat exchanger is also separated into two pieces by using another symmetry plane at the 

middle of the considered heat exchanger and it is perpendicular to previous symmetry 

plane as shown in Figure 3.7.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. Quarter part of the problem. 
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In this thesis the last two geometries of considered problem of cold plate heat 

exchanger with OSF are both used in numerical analysis. The half part domain is used 

for unsteady analysis because the flow in OSF channels shows unsteady flow motion 

after a critical Reynolds number. The oscillating flow structures resulting from unsteady 

flow appear in the transverse direction and the oscillation flow does not show 

symmetrical behavior. Quarter part of the considered problem is used for steady–state 

problem because the physical behavior of the mean flow and geometry are symmetrical 

according to the perpendicular plane as shown above in Figure 3.7.   

  

 

3.3. Material Properties  
 

 

3.3.1. Thermo-physical Properties of Aluminum 
 

 

The materials of OSF channels and also the cold plate heat exchanger are 6061-

alloy of aluminum because of its good thermo-physical characteristics and small density 

and relatively low price. Following constant thermo-physical properties of aluminum 

are used in the numerical calculations (Shah and Sekulic 2003); 

 

                                                                                     (3.1) 

 

                                                                                  (3.2) 

 

                                                                                           (3.3) 
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3.3.2. Thermo-physical Properties of Working Fluids  
 

 

One of the important steps in the set up of the numerical model is the definition 

of the physical properties of materials. Since for the solid materials only conduction 

equations are solved for the steady state problem, therefore only the thermal 

conductivity value is required as a property of the medium.  On the other hand, for the 

fluid domains, properties including density, viscosity, thermal conductivity and specific 

heat capacity are required for the calculation purposes. The physical properties can be 

assumed as dependent or independent of temperature. When there is a large temperature 

difference between the fluid and the surface the assumption of constant thermo-physical 

fluid properties may cause some errors, because in reality the thermo-physical 

properties of the most of the fluids vary with temperature.  It is also important to note 

that the Prandtl number of liquids also varies with temperature, similar to that of 

viscosity. These property variations, of course, will affect the velocity and the 

temperature profile of fluid in the channel. Since we aimed to show a comparison of 

numerical data with experimentally analysis, the thermo-physical properties of working 

fluids are assumed as temperature dependent throughout this thesis.  

 There are three working fluids used in this thesis. Those are air, water, and 

ethylene-glycol. Since variation of the temperature along the channel is considered to be 

influencing the thermo-physical properties, algebraic equations are derived as a function 

of temperature by the method of curve fitting from the data obtained from references 

within a certain temperature range. The simple form of the polynomial functions is in 

the following form 

 

f (T) = A1 + A2T + A3T2 + …                                      (3.4) 

 

where f is a thermo-physical property and T is in Kelvin’s. 

 The equations obtained for a temperature range of 273.15 – 373.15 K are given 

below in Equations 3.5 to 3.16 and graphs are provided in Figures 3.8-3.10 (Çengel and 

Cimbala 2006). 
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� For Air 

 

• Thermal Conductivity [W/mK]  

 

k (T) = -5e-08T2 + 10731.5e-08T - 148254.6125e-08                  (3.5) 

 

• Density [kg/m3] 

           

 � (T) = 0.00001T2 – 0.009963T + 3.277                            (3.6) 

 

• Dynamic Viscosity [kg/ms]  

          

  
 (T) = -4e-11T2 + 7085.2e-11T + 86421.31e-11                     (3.7) 

• Specific Heat Capacity [ j/kgK ]   

         

 Cp (T) = 0.0004T2 – 0.20222T + 1031                             (3.8) 

 

 

  

  
 

Figure 3.8. Variation of thermo-physical properties of air.  
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� For Water 

 

• Thermal Conductivity [W/mK]  

  

k (T) = -7e-06T2 + 5.6241e-03T – 0.44215                          (3.9) 

 

• Density [kg/m3]  

         

� (T) = 6e-06T3 – 942e-06T2 + 3.755T - 554.91                    (3.10) 

 

• Dynamic Viscosity [kg/ms]  

         

 
 (T) = -2e-09T3 + 0.0211e-04T2 – 7.4514e-04T + 885.82e-04             (3.11) 

 

• Specific Heat Capacity [j/kgK] 

   

  Cp (T) = 3e-06T4 – 3.978e-03T3 + 1.9825T2 – 440.1033T + 40776.983    (3.12) 

                                                                                                                             

 

  

  
 

Figure 3.9. Variation of thermo-physical properties of water.  
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� For Ethylene – Glycol 

 

• Thermal Conductivity [W/mK]  

 

k (T) = -2e-06T2 + 0.0017T – 0.0781                               (3.13) 

 

• Density [kg/m3]  

 

 � (T) = 0.002T2 – 0.80866T + 1335.3295                           (3.14) 

 

• Dynamic Viscosity [kg/ms]  

        

  
 (T) = -4e-08T3 + 43.778e-06T2 – 1602.27e-05T + 1.964           (3.15) 

 

• Specific Heat Capacity [j/kgK] 

     

 Cp (T) = 4.4183T + 1092.3                                   (3.16)                                                                                                                            

 

  
 

  

 

Figure 3.10. Variation of thermo-physical properties of ethylene-glycol.  
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3.4. Boundary Conditions  
 

 

In order to solve the numerical problem, some boundary conditions depending 

on the physical model under investigation should be given. It is important to emphasize 

that these conditions must be defined carefully so that they are meaningful physically, 

because the calculation starts from those boundary nodes. The unknown interior node 

values of the computational domain are solved using the boundary conditions by an 

iterative manner.  

As a result, the computational model of the cold plate heat exchanger consist of 

one fin volume with half fin thickness, one plate volume and one fluid volume. The 

schematic view of models of the cold plate heat exchanger under consideration is 

illustrated in Figure 3.11.    

 

 
 

Figure 3.11. Schematic view of the cold plate heat exchanger 

 

 

3.4.1. Inlet Boundary Condition 
 

 

Velocity is defined as inlet boundary condition for the surface which is shown in 

Figure 3.12 as (1).  The uniform velocity value is calculated from Reynolds number 

based on hydraulic diameter of OSF cannel and the viscosity at constant temperature of 
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300 K. Note that the viscosity of the working fluids is temperature dependent; therefore 

only an approximate Reynolds number is known at the beginning. Hence the first 

calculated velocity value is only used as initial guess value. ui is the tensor notation of 

velocity vector of the fluid and it has three components for Cartesian coordinate, one 

in x direction (u1=u), one in y direction (u2=v) and one in z direction (u3=w). So ui can 

also be written as; 

kwjviuui

���

++=                        

The boundary conditions for this inlet surface can be listed as;  

   u = 0, w = 0, v = defined value (m/s)  (3.17) 

 

  T|inlet = 300 K                                                    (3.18) 

 

for turbulent flow, extra two boundary conditions should be given as; 

 

k |inlet = 1 [m2/s2], �|inlet = 1 [m2/s2]                                 (3.19) 

 

 
 

Figure 3.12. Inlet boundary condition surface. 
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3.4.2. Outlet Boundary Condition 

  

 

Static Pressure is defined as an outlet boundary condition for the surface which 

is shown in Figure 3.13 as (2). Since inlet pressure will be calculated at each iteration, 

the outlet pressure simplify kept at a constant value. Static pressure value at the outlet 

surface is kept as zero at all analysis.  

                          Py| outlet= 0 (Pa)                                                (3.20) 

for turbulent flow 

                                 0=
∂
∂

y
k

 and 0=
∂
∂

y
ε

                                            (3.21) 

 

 
 

Figure 3.13. Outlet boundary condition surface. 

 

 

3.4.3. Symmetry Boundary Condition 

 

 

Symmetry boundary conditions are used when the physical geometry of interest, 

and the expected pattern of the solution, has symmetry. This condition means that there 

must be zero flux of all quantities across that boundary. There is no convective flux 

across a symmetry plane, so the normal velocity component at symmetry plane is zero. 
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There is also no diffusion flux across symmetry plane, therefore the normal gradients of 

all flow variables are zero at symmetry plane (Versteeg and Malalasekera 1995). 

 

 
 

Figure 3.14. Symmetry boundary condition surfaces. 

   

Symmetry boundary conditions are defined for the left and right surfaces 

indicated as (4), and bottom surface indicated as (3) in Figure 3.14 of the computational. 

For the surface (3), whose normal is at z direction, the symmetry conditions are 

computationally defined as; 
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                                                   (3.22) 

 

 0=w                                     (3.23) 
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for turbulent flow 

 

0=
∂
∂

z
k

 and 0=
∂
∂

z
ε

                                            (3.26) 

 

For the surfaces (4), whose normal is at x direction, the symmetry conditions are 

computationally defined as; 

 

 0=
∂
∂

x
T

                                             (3.27) 

 

 0=u                                           (3.28) 

 

 0=
∂
∂
x
v

                                                (3.29) 

 

 0=
∂
∂

x
w

                                            (3.30) 

for turbulent flow 

 

0=
∂
∂

x
k

 and 0=
∂
∂

x
ε

                                            (3.31) 

 

 

3.4.4. Wall Boundary Condition 
 

 

Wall boundary conditions are use to bound solid and fluid regions. The wall 

boundaries can be stationary or moving walls that depend on the problem. In this thesis 

all walls are defined as stationary. For that reason, all of the velocity component values 

at these walls are zero. Several thermal boundary conditions can be defined at wall 

boundaries such as constant temperature, heat flux, convective heat transfer coefficient 

etc. Details about the boundary conditions using in this thesis and their definitions are as 

follows;   
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3.4.4.1. Thermal Boundary Conditions 
 

 
  Two different types of thermal boundary conditions at the wall indicated as (5) 

in red surfaces in Figure 3.15 are defined. These are constant heat flux and uniform 

temperature.  

 

 
 

Figure 3.15. Thermal boundary conditions at walls 

 

When a constant temperature condition is applied at the wall, the heat flux from 

the wall boundary to a solid cell is computed as 

 

)( solidwall
Al TT
n

k
q −−=

∆
                                (3.32) 

 

where, �n is the normal distance between wall surface and the solid center. And the 

uniform temperature thermal boundary condition for the surface is defined as 

 

           T| x,y=  373 [K]                                             (3.33) 

 

As for a constant heat flux boundary condition, the wall surface temperature is 

computed as 
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Al

solidwall k
nq

TT
∆−=                                       (3.34) 

 

And the constant heat flux boundary condition for the surfaces is; 

 

                                                   qx = qy = 24 [W/cm2] , qz = 0                                  (3.35)        

 

 

3.4.4.2. Adiabatic Walls 
 

 

In this thesis, the walls at the inlet and the outlet sides are assumed to be 

adiabatic as shown in Figure 3.16. Adiabatic walls are perfectly insulated from heat 

flow. 

 

 
 

Figure 3.16. Adiabatic wall condition 
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The adiabatic wall condition for these surfaces is defined as 

 

                                                                                                   (3.36) 

 

 

where, n is the surface normal direction. 

 

 

3.4.4.3. Interface Walls   
 

 

The surfaces of solid regions which are in contact with the fluid region are called 

interface walls. These surfaces in black are shown in Figure 3.17. 

 

 
 

Figure 3.17. Interface walls. 

 

The following conditions can be written for these interface walls; 

 

u = v = w = 0                                                  (3.37) 
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∂−                                   (3.38) 

 

                                                                       (3.39) 

 

  

 The heat transfer coefficient hfluid is computed based on local flow-field 

conditions such as temperature and velocity profiles, turbulence level etc. The pressure 

values at these interface surfaces are calculated since the wall velocities are known.  

 

 

3.5. Governing Equations  
 

 

 In this part, the governing equations are given for considered problem under 

three distinct flow conditions. These are steady-laminar, unsteady-laminar and turbulent 

flow. Hence, this part may be divided into two minor parts as laminar and turbulence.   

 

 

3.5.1. Laminar flow 
 

 

 In order to determine the flow characteristics such as velocity, temperature and 

pressure field of the flow, the following governing equations must be solved; 

 

� Continuity Equation  

 

  The mathematical expression of the principle of conservation of mass applied to 

an elemental control volume within a fluid in motion is called the continuity equation 

and is given by Eq. 3.40.  
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The first term on the left hand side of continuity equation is the time rate of 

change of density (mass per volume). The second term is the convective term. The 

above equation is valid for unsteady flows of compressible fluids.  The problem we 

consider here is incompressible and therefore, the continuity equation reduces to 

 

 0 = 
x
u

i

i

∂
∂

                                                   (3.41) 

 

ui is the tensor notation of velocity vector of the fluid and it has three 

components for Cartesian coordinate, one in x direction (u1=u), one in y direction 

(u2=v) and one in z direction (u3=w). So ui can also be written as; 

 

kwjviuui
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++=                                               (3.42) 

The equation can be written in rectangular coordinates as 
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                                             (3.43) 

 

The continuity equation is valid for steady as well as unsteady flows. 

 

� Momentum Equations 

 

   The dynamic behavior of fluid in motion is governed by a set of equations 

called the momentum equations or the equations of motion. These equations are 

obtained by applying Newton’ s second law of motion to a very small mass of fluid.  
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where, 
�

 



���

�

The above equation is a general form of Navier-Stokes equations. The equation 

is valid any viscous, compressible Newtonian fluid with varying viscosity. The F term 

represents body forces such as forces of gravitational, electrical and surface forces. The 

body force can be written as 

kfjfifF zyxi

���

++=                                           (3.45) 

 

� Energy Equation 

 

The energy equation may be obtained by applying the first law of 

thermodynamics to a differential element of mass. The first law of thermodynamics 

states that the rate of heat transfer to an element minus the rate of work done by the 

element is equal to the rate of increase of energy of that element. The energy equation 

may be written in terms of fluid enthalpy I is defined by: 

 

ρ
P

UI +=                                                     (3.46) 

 

q
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�+++∇∇= Φρ )(                                      (3.47) 

 

In the energy equation (3.50) the term on the left-hand side term represents the 

convective terms, and the terms on the right-hand side from left to right are the rate of 

heat diffusion, the rate of reversible work done on the fluid particles by compression, 

the rate of viscous dissipation per unit volume, and heat generation per unit volume. 

Since for an incompressible fluid with constant physical properties, 

 

cdTdU =                                                      (3.48) 

 

where c is the specific heat of fluid.   

 

The above set of equations is valid for both laminar and turbulent flows. In 

order to analyze the problem under steady-laminar condition, the time dependent 

terms in the governing equations should be ignored. 
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The above set of equations also is coupled and nonlinear. They are only valid 

for the fluid side of the considered problems and it should be noted that the density, 

dynamic viscosity, specific heat and thermal conductivity values are taken for the 

working fluid which one wants to be analyzed. There are five unknowns as u, v, w, P, 

T and solution of the above set of equations provides the distributions of these 

unknowns in the computational domain. For the solid zones the Equation 3.47 should 

be used ignoring the velocity terms, thus obtaining a conduction equation, and 

constant thermo-physical properties of aluminum ought to be taken. These equations 

are suitable for the computational domains, given in Figure 3.11, investigated under 

steady and unsteady-laminar cases in this thesis. The details of the computational 

domain are explained in section 3.6 of this chapter.  

 In next part, detailed information about the turbulence model and also its 

calculation method is given. 

 

 

3.5.2. Turbulent flow 
 

 

  The standard k-epsilon (k-�) model is used to model the turbulent flow. It must 

be noted, however, that the quantities such as velocity, pressure, and temperature in 

these governing equations described above are instantaneous values. In turbulent flow, 

the values always vary with time, and the variations are modeled as irregular 

fluctuations about mean values as shown in Figure 3.18 (Kakaç S. and Yener Y. 

1994). 

 

 
 

Figure 3.18. Variation of the velocity component u with time  
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The velocity can be decomposed into a steady mean value u  plus a time-

dependent fluctuating component u′′′′ (t) as seen in Figure 3.18: 

 

),,,(),,(),,,( tzyxuzyxutzyxu ′+=                            (3.49) 

 

The same decomposition rule applies to the other variables of the flow field as well: 

 

  vvv ′+=          www ′+=                                         (3.50) 

                                                PPP ′+=        TTT ′+=        

 

The fluctuating component such as u′′′′ (t) can be seen from Figure 3.18 to have both 

positive and negative values, and the mean value u  is defined as 
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where t∆∆∆∆  is sufficiently large compared to the period of the random fluctuations 

associated with turbulence in order to obtain a true average of the flow components. 

Hence it becomes clear that 
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because during the period t∆∆∆∆ all the fluctuating components of velocity cancel each 

other. This statement is same and true for other variables of flow field, temperature, 

pressure etc. 

 Turbulent flow is defined as steady when the mean values of variables of flow 

field such as TPwvu ,,,,  etc. do not change with time. Therefore, the time average of 

all quantities describing the fluctuations is equal to zero (Kakaç S. and Yener Y. 1994). 

 In order to obtain the governing equations for the turbulent flow, a special set 

of algebraic rules that follow from equation (3.51) and also equation (3.52) is defined 

(Bejan A, 1993): 
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� Continuity Equation  

 

 In order to obtain the continuity equation for turbulent flow, the equations (3.49) 

and (3.50) should be substituted into the instantaneous continuity equation obtained 

from equation (3.48) for an incompressible flow with constant fluid properties. Thus, it 

is written as (Kakaç and Yener 1994); 
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 When this equation is averaged over a time interval t∆∆∆∆ by using the definitions 

of equations (3.51) and (3.52), the time averages of the fluctuating components become 

zero and the average quantities u , v and w  remain the same (Kakaç and Yener 1994). 

Thus the equation (3.54) reduces to 
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� Momentum Equations  

 

 A similar process with continuity equation is performed on momentum 

equations (3.46 – 3.48). And assuming that the flow is steady and has constant flow 

properties, then the momentum equations become 
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      (3.58) 

 

 

It is important to note that the first term in the parenthesis on the left hand side 

and the right hand side terms appear in the instantaneous equations, but extra term 

which is the second term on the left hand side of the momentum equations given above 

has been obtained after the substitutions are done for turbulent flow. The new term 

involves products of fluctuating velocities and constitute convective momentum transfer 

due to the velocity fluctuations.  Generally, it is customary to place this term on the 

right hand side of the equations (3.59 – 3.61) to reflect its role as additional turbulent 

stresses on the mean velocity components u , v and w (Versteeg and Malalasekera 

1995), (Bejan 1993): 

 

    (3.59) 

 

 

       (3.60) 

 

 

    (3.61) 

 

 These extra turbulent stresses are termed as Reynolds stresses. This set of 

equations (3.59 – 3.61) is called the Reynolds Averaged Navier Stokes -RANS- 

equations.  

 

� Energy Equation  

 

A similar process is performed on energy equation (3.47) and assuming that the 

flow is steady and incompressible with constant thermal conductivity, no viscous heat 

dissipation, no compression work and without heat generation inside, for steady-

turbulent flow the energy equation (3.47) takes the form of 
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The terms on the left-hand side of equation (3.62) represents the heat transfer by 

convection. The first term on the right-hand side represents the heat transfer by 

molecular conduction within the fluid, and second term represents the process of 

turbulent or eddy transfer (convective transfer). Transfer processes in a turbulent flow 

are controlled by two mechanisms: molecular and convective diffusions. Therefore, 

property fluctuations in a turbulent system produce apparent (total) stresses and fluxes 

(Kakaç and Yener 1994).   

 

� Transport Equations 

 

The standard k- � model is used as a turbulence model in this thesis. Assumed 

that the flow is incompressible with constant thermal conductivity, there is no heat 

dissipation, no compression work and without heat generation. The turbulence is 

assumed to be homogeneous and isotropic and therefore, the turbulence kinetic energy 

k, and its rate of dissipation �, are given by following two equations (Versteeg and 

Malalasekera 1995);  

 

 

         (3.63) 

 

 

(3.64) 

 

 

In these equations, the left-hand side term is transport of kinetic energy. The first 

tem in parenthesis on right-hand side is the diffusion of k or � , second term is rate of 

production of k or �. Gk represents the generation of turbulent kinetic energy due to 

mean velocity gradients, and calculated as; 
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to evaluate Gk in a manner consistent with the Boussinesq hypothesis, 

 

2SG tk µ=                                                         (3.66) 

 

where S is the modulus of the mean rate-of-strain tensor, defined as 

 

ijij SSS 2≡                                                      (3.67) 
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The turbulent (or eddy) viscosity tµ  is computed by combining k and � as follows: 

 

ε
ρµ µ

2k
Ct =                                                  (3.69) 

 

The model constants for the two transport equations ε1C , ε2C , µC , kσ  and εσ  have the 

following values: 

44.11 =εC ,   92.12 =εC ,   09.0=µC ,   0.1=kσ ,   3.1=εσ  

 

� Near Wall Treatments for Wall-Bounded Turbulent Flows 

 

 Turbulent flows are significantly affected by the presence of walls. Obviously, 

the mean velocity field is affected through the no-slip condition that has to be satisfied 

at the wall. Very close to the walls, viscous damping reduces the tangential velocity 

fluctuations, while kinematic blocking reduces normal fluctuations. However, towards 

the outer part of the near-wall region, the turbulence is rapidly augmented by the 
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production of turbulence kinetic energy, due to the large gradients in the mean 

velocity. 

 Traditionally, there are two approaches to modeling the near-wall region 

shown in Figure 3.19. In one approach the viscosity-affected inner region (viscous 

sub-layer and buffer layer) is not resolved. Instead, semi-empirical formulas called 

“ wall-functions”  are used to bridge the viscosity-affected region between the wall and 

fully-turbulent region. The use of wall functions obviates the need to modify the 

turbulence model to account for the presence of the wall.  

 

 
 Figure 3.19. Subdivisions of the near-wall region  

       (Source: Fluent 6.3 User’ s Guide 2006). 

 

 In another approach the turbulence models are modified to enable the 

viscosity-affected region to be resolved with a mesh all the way to the wall, including 

the viscous sub-layer and are called the “ near-wall modeling”  approach. 

Among the two approaches, the wall function approach substantially saves 

computational resources, because the viscosity-affected near-wall region, in which the 

solution variables change most rapidly, does not need to be resolved. The wall 

function approach is also economical, and reasonably accurate.  For that reasons, the 

wall function approach is used in thesis. 

Wall functions are a collection of semi-empirical formulas and functions that in 

effect “ bridge" or “ link" the solution variables at the near-wall cells and the 
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corresponding quantities on the wall. The wall functions consist of (Fluent 6.3 User’ s 

Guide 2006) 

� laws-of-the-wall for mean velocity and temperature (or other scalars) 

� formulas for near-wall turbulent quantities 

 

The law-of-the-wall for mean velocity yields 

 

                                           (3.70) 

 

where 

                                    (3.71) 

 

 

 

                                     (3.72) 

 

and  

� = Von Karman constant (= 0.4187) 

E = empirical constant (= 9.793) 

UP = mean velocity of the fluid at point P (center of cell) 

kp = turbulence kinetic energy at point P  

yP = distance from point P to the wall 

y* = non-dimensional sublayer thickness 

 

The logarithmic law for mean velocity is known to be valid for 30 < y* < 300. 

The log-law is employed when y* > 11.225. When the mesh is such that y* < 11.225 at 

the wall-adjacent cells, the laminar stress-strain relationship is applied and the relation 

can be written as 
** yU =                                                        (3.73) 

It should be noted that, in the numerical calculations for turbulence flow, the 

laws-of-the-wall for mean velocity and temperature are based on the wall unit, y*, rather 

than y+ shown in Figure 3.5.2.  
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µ
ρ τ yU

y =+                                                    (3.74) 

 

where the friction velocity is defined as 

ρ
τ

τ
wU =                                                    (3.75) 

These quantities are approximately equal in equilibrium turbulent boundary layers. 

The law-of-the-wall for mean temperature yields 

 

 

       (3.76) 

 

 

 

where P is the relationship formula between molecular Prandtl number, Pr and 

turbulent Prandtl number, Prt (0,85 at the wall), and computed by using the formula  

 

 

                            (3.77) 

 

 

The non-dimensional thermal sublayer thickness, yT*, in Equation 3.76 is 

computed as the y* value at which the linear law and the logarithmic law intersect, 

given the molecular Prandtl number of the fluid being modeled.  

The procedure of applying the law-of-the-wall for temperature is as follows. 

Once the physical properties of the fluid being modeled are specified, its molecular 

Prandtl number is computed. Then, given the molecular Prandtl number, the thermal 

sublayer thickness, yT*, is computed from the intersection of the linear and logarithmic 

profiles, and stored. During the iteration, depending on the y* value at the near-wall 

cell, either the linear or the logarithmic profile in Equation 3.76 is applied to compute 

the wall temperature Tw or heat flux q (depending on the type of the thermal boundary 

conditions) (Fluent 6.3 User’ s Guide 2006). 

 

�
�

�
�

�

>��

�
��

	 +

<
=

−
≡

)()ln(
1

Pr

)(Pr)(
***

***
2/14/1

*

Tt

T
pppw

yyPEy

yyy

q

kCCTT
T

κ

ρ µ

�

[ ])Pr(Pr/07.0

4/3

28.01*1
Pr
Pr

24.9 teP
t

−+
�
�

�

�

�
�

�

	
−



�

�

�

�
=



	��

�

3.6. Numerical Solution of the Governing Equations 
 

 

 The flow in an OSF channel is characterized by a complex flow field, which is 

affected by blockage and recirculation zones enhanced by narrow gaps. In this case the 

actual physical device is replaced by a discrete number of nodes that represent the entire 

geometry of the cell where the distributions of unknowns such as pressure, velocity etc. 

to be found. The approach requires defining the mathematical equations that govern the 

physical process. The governing equations of fluid flow and heat transfer given by 

Equations 3.43, 3.44, and 3.47 for laminar flow and Equations 3.55, 3.58 - 3.64 for 

turbulent flow can not be solved analytically therefore; these equations should be solved 

numerically for the investigated fluid flow problems. These equations will be solved 

only at the discrete points of considered problem. 

 As above mentioned, the flow problems include the solution of governing equations 

which are nonlinear partial differential equations (PDEs). First of all, the numerical 

solution of these governing equations starts from dividing the computational domain 

into small volumes (sub-domain) that are also called as meshes. For that purpose, the 

meshing operation for the considered heat exchanger models is accomplished by using 

commercial software, Gambit. Gambit has ability to generate different structured or 

unstructured meshes for all kinds of flow geometry. The mesh types for two and three 

dimensional cases shown in Figure 3.20 are available in Gambit.  
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Figure 3.20. Mesh types.  
(Source: Fluent 6.3 User’ s Guide 2006) 

  

 The unstructured hexahedral meshes are used to create the computational 

domain of considered heat exchanger problem. Detailed information about meshing 

operation for the considered problem is given in section 3.8. 

 Governing equations are solved by the finite volume method (FVM) which is a 

special type of the finite difference method. For that purpose, Fluent, one of the 

commercial CFD software, based on the FVM is used. Fluent includes two numerical 

methods:  

� pressure-based solver  

� density-based solver  

The pressure-based approach is used for low-speed incompressible flows, while 

the density-based approach is mainly used for high-speed compressible flows. In both 

methods the velocity field is obtained from the momentum equations. In the density-

based approach, the continuity equation is used to obtain the density field while the 

pressure field is determined from the equation of state. On the other hand, in the 

pressure-based approach, the pressure field is extracted by solving a pressure or 
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pressure correction equation which is obtained by manipulating continuity and 

momentum equations. Fluent solves the governing integral equations for the 

conservation of mass and momentum, and (when appropriate) for energy and other 

scalars such as turbulence. In both cases using a control-volume-based technique is used 

that consists of (Fluent 6.3 User’ s Guide 2006): 

 

� Division of the domain into discrete control volumes using a computational grid. 

� Integration of the governing equations on the individual control volumes to 

construct algebraic equations for the discrete dependent variables (unknowns) such as 

velocities, pressure, temperature, and conserved scalars. 

� Linearization of the discretized equations and solution of the resultant linear 

equation system to yield updated values of the dependent variables. 

 

The two numerical solvers employ a similar discretization process, but the 

approach used to linearize and solve the discretized equations is different. In this study 

the pressure-based approach was chosen because of the fact that the flow in OSF 

channel is incompressible.  

In the pressure-based approach, the constraint of mass conservation (continuity) 

of the velocity field is achieved by solving a pressure (or pressure correction) equation. 

The pressure equation is derived from the continuity and the momentum 

equations in such a way that the velocity field, corrected by the pressure, satisfies the 

continuity. Two pressure-based solver algorithms are available in Fluent. These are a 

segregated and a coupled algorithm. In the segregated algorithm, the individual 

governing equations for the solution variables (u, v, w, P, T, k, �) are solved one after 

another. Each governing equation is “ decoupled”  or “ segregated”  from other equations, 

while being solved. In this approach the non-linear governing equations are solved 

sequentially using the iterative technique. Each step in iteration can be summarized as 

follows (Fluent 6.3 User’ s Guide 2006, Versteeg and Malalasekera 1995); 

 

1. Update fluid properties (density, viscosity, conductivity, specific heat etc.) 

including turbulent viscosity (diffusivity) based on the current solution (or initial 

conditions).  

2. Solve the momentum equations, one after another, using the recently updated 

values of pressure and face mass fluxes.  
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3. Solve the pressure correction equation using the recently obtained velocity field 

and the mass-flux.  

4. Correct face mass fluxes, pressure, and the velocity field using the pressure 

correction obtained from Step 3.  

5. Solve the equations for additional scalars, if any, such as turbulent quantities, 

energy, and radiation intensity using the current values of the solution variables.  

6. Check for the convergence of the equations.  

 

 
 

Figure 3.21. Overview of the pressure-based solution methods. 
(Source: Fluent 6.3 User’ s Guide 2006) 

  

Unlike the staggered algorithm described above, the pressure-based coupled 

algorithm solves a coupled system of momentum and continuity equations. Thus, in the 

coupled algorithm, Steps 2 and 3 in the segregated solution algorithm are replaced by a 

single step in which the coupled system of equations are solved. The remaining 



	��

�

equations are solved as in the segregated algorithm. Since the momentum and continuity 

equations are solved in closely coupled manner, the rate of solution convergence 

significantly improves when compared to the segregated algorithm. However, the 

memory requirement increases by 1.5 or 2 times that of the segregated algorithm. Since 

the discrete system of all momentum and pressure-based continuity equations needs to 

be stored in memory when solving for the velocity and pressure fields. For that reasons, 

the pressure-based segregated algorithm is used to solve computational domains of 

considered problem in thesis. 

 There is a point which needs to be taken into consideration for the pressure – 

based algorithms. Solving the momentum equations is too complicated because of the 

lack of an independent equation for the pressure, whose gradient appears in each of 

three momentum equations. For that reason some pressure-velocity linkage algorithms 

can be used in the pressure-based algorithm. There are several of pressure-velocity 

coupling algorithms in literature known shortly as SIMPLE, SIMPLER, SIMPLEC, and 

PISO etc. In this thesis, The SIMPLE (Semi Implicit Method for Pressure Linked 

Equations) algorithm is used to supply the relationship between velocity and pressure 

fields. The momentum equation is solved using a guessed pressure field which is 

calculated previous iteration or initial guess to obtain face flux. If the resulting face flux 

does not satisfy the continuity equation, a correction face flux is added to obtain the 

corrected face flux because of satisfying the continuity equation. The SIMPLE 

algorithm substitutes the flux correction equations into the discrete continuity equation 

to obtain the discrete equation for the pressure correction in the cell.  

 The governing equations which are discrete and non-linear are linearized to 

produce a system of equations for dependent variables in every computational cell. The 

resultant linear system is then solved to yield an updated flow-field solution. In this 

thesis, the governing equations are linearized by the “ Point Implicit Gauss-Siedel”  

linear equation with respect to the set of dependent variables. By this method the 

unknown value in each cell is computed using a relation that includes both existing and 

unknown values from neighboring cells. 

 In brief, with using the finite control volume technique, the governing equations 

are converted to algebraic equations that can be solved numerically. This technique 

consists of integrating the governing equations about each control volume, yielding 

discrete equations that conserve each quantity on a control volume basis.   
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Discretisation of the governing equations can be illustrated most easily by considering 

the unsteady conservation equation for transport of a scalar quantity �. This is 

demonstrated by the following equation written in integral form for an arbitrary control 

volume CV as follows: 

 

��� � Φ+Φ∇Γ=Φ+
∂

Φ∂

CVCV

dVSAdAdudV
t

���
..ρρ

                      (3.78) 

 

 The Equation 3.78 is the so-called transport equation for property �. The 

equation is used as the starting point for computational procedures in FVM. By setting 

� equal to 1, u, v, w and T, and selecting the appropriate values for diffusion coefficient 

	 and source terms S�, the governing equations for appreciate problem are obtained. 

The integration operation of the governing equations is applied on the individual control 

volumes in the computational domain to construct algebraic equations for the discrete 

dependent variables (unknowns) such as velocities, pressure, temperature, and 

conserved scalars. Discretisation of Equation 3.78 on a given cell yields 

 

VSAdAduV
t Φ+Φ∇Γ=Φ+

∂
Φ∂

��
���

..ρρ
                          (3.79) 

 

where V
t∂
Φ∂ρ

 is transient term. For transient simulations, the governing equations must 

be discretized in both space and time. The spatial discretization for the time-dependent 

equations is identical to the steady-state case.  

The discretized scalar transport equation (Equation 3.79) contains the unknown scalar 

variable � at the cell center as well as the unknown values in surrounding neighbor 

cells. This equation will, in general, be non-linear with respect to these variables. A 

linearized form of Equation 3.79 can be written as 

 

� +Φ=Φ
nb

nbnbP baa                                               (3.80) 

� −= PnbP Saa                                                 (3.81) 

Φ+= Pc SSS                                                   (3.82) 
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where the subscript nb refers to neighbor cells, and aP and anb are the linearized 

coefficients for � and �nb, and b is the contribution of the constant part of the source 

term Sc and of the boundary conditions.  Similar equations can be written for each cell 

in the grid.  

 The discrete values of scalars at cell centers are stored and the face values of the 

scalars needed for the convection terms are computed by interpolating the cell center 

values. The realization of this interpolation is made by using an upwind scheme. 

Upwinding means that the face values are derived from quantities in the cell upstream, 

relative to the direction of the normal velocity. There are mainly four different 

upwinding schemes; first order upwinding scheme, second order upwinding scheme, 

power law and QUICK scheme. In this thesis the first upwind scheme is used. When 

this scheme is used, the face value of scalar quantities is set equal to the value in the 

upstream cell.  

 At the end of each iteration, the residual sum for each of the conserved variables 

is computed and stored. On a computer with infinite precision, these residuals will go to 

zero as the solution converges but on an actual computer, the residuals decay to some 

small value (round-off) and then stop changing. Residual definitions that are useful for 

one class of problem are sometimes not appropriate for other classes of problems. 

Therefore, it is convenient to judge convergence not only by examining residual levels, 

but also by monitoring relevant quantities. 

The residual is defined as the imbalance in Equation 3.80 summed over all the 

computational cells. In this way unscaled residuals are calculated as (Fluent 6.3 User’ s 

Guide 2006); 

 � �−
Φ Φ−+Φ=

Pcells nb PPnbnb abaR  (3.83) 

  

 Since the unscaled residual is difficult to be used for the judgment of the 

convergence, the scaled residuals are used instead. The scaled residuals are defined as 

(Fluent 6.3 User’ s Guide 2006); 

�
� �

−

−Φ

Φ

Φ−+Φ
=

Pcells PP

Pcells nb PPnbnb

scaled a

aba
R                         (3.84) 

 

 For the momentum equations the denominator term  is replaced by  , 

where  is the magnitude of the velocity at cell. For the continuity equation, the 
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unscaled form and scaled form of residual are defined by Equations 3.85 and 3.86, 

respectively (Fluent 6.3 User’ s Guide 2006); 

 

  Unscaled form:  (3.85)  

 

 Scaled form:  (3.86) 

  In Equation 3.86,  represents the residual at the Nth iteration while 

 is the largest absolute value of the continuity residual in the first five 

iterations. 

 The under-relaxation of equations is used in the pressure-based solver to 

stabilize the convergence behavior of the nonlinear iterations by introducing selective 

amounts of � in the system of discretized equations (Fluent 6.3 User’ s Guide 2006).  

 

 oldPnb nbnb
P aba

a Φ−++Φ=Φ
� α

α
α

1
 (3.87) 

 

where, � is the under-relaxation factor.  

 

 

3.7. Grid Generation and Computational Details 
 

 

3.7.1. Grid Generation  
 

 

 Of explained before, in order to perform numerical calculations, the 

representative domain of the considered problem should be divided into several small 

sub domains which are called as meshes or grids. The grid generation for the considered 

heat exchanger problem including OSF is obtained by using Gambit software. 

The considered problem is analyzed for two different flow regimes, laminar and 

turbulence. In this thesis, only one meshing operation to numerically analyze the 

problem for both regimes is applied; although, two different meshing operations are in 
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general required in order to analyze the problem for the two different regimes. 

Compared to the laminar flow simulations, the turbulent flow is more challenging in 

many ways, and it needs some extra care for grid generation. In this thesis, for easier 

data management, grid appropriate for the turbulence case is applied to laminar case as 

well. For turbulent case, wall function approach is used to resolve the viscosity-affected 

region between the walls of OSF channels and fully-turbulent region in flow, and the 

mean quantities in turbulent flow have larger gradients than in laminar flow. For that 

reason some extra care is taken for grid generation as follows; 

� Hexahedral mesh is used.  

� First grid point is created in log-law region where 50050 ≤≤≤≤≤≤≤≤ ++++y  (Fluent 6.3 

User’ s Guide 2006)   

� At least ten points are created in boundary layer (Fluent 6.3 User’ s Guide 2006) 

 

 
 

Figure 3.22. Grid generation for wall function approach. 
(Source: Fluent 6.3 User’ s Guide 2006) 

 

As shown in the Figure 3.22 one point should be created in log-law layer for 

modeling of turbulent flow. For that purpose, the non dimensional sublayer y+ is taken 

as equal to 50. The first grid point yP1 is calculated as about 0.01 mm by using Equation 

(3.72 and 3.73) in near wall treatments for wall-bounded turbulent flows section of this 

chapter and assuming that the problem is analyzed for Reynolds number of 4000 where 

the flow is turbulent. In order to create at least five points in boundary layer the 

following equation is used to calculate the boundary layer thickness (Bejan 1993). 
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                                         (3.88) 

 

where x is taken as the fin length for considered problem. The boundary layer thickness 

is calculated as about 0.1mm. When the situations are considered the minimum size at 

one face of the flow part that is conjunction with wall side of solid face is have to equal 

0.01. If uniform mesh was considered for the problem, the total mesh number at only 

this face would have been equal to about 75000. Also the domain has a lot of 

conjunction faces. Thus the mesh number for whole domain would have achieved to an 

extreme number. Because of the reasons non-uniform mesh is used to create the grid 

generation for the numerical domain. As shown in Figure 3.23 the domain is created, 

which is based on non-uniform mesh and the rules for conjunction faces.   

 

 
 

Figure 3.23. Grid generation by applying non-uniform mesh and rules for conjunction 

faces. 
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In order to resolve the velocity and temperature fields better the finer scale of 

meshes are used particularly near the walls, near the leading edges and in the wakes of 

the domain as shown in Figure 3.24 

 

 
 

Figure 3.24. Finer meshes in domain (a-Top, b-Front, c-Isometric, and d-Left View) 

 
In order to obtain an optimal mesh the interval sizes of the critical edges shown 

in Figure 3.25 are orderly changed and the alphabetic codes are given to them. They are 

tabulated in Table 3.93 according to order of increasing mesh number. 

 
Figure 3.25. Alphabetic codes 
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Table 3.1. Different mesh numbers 

 

M
es

h 
N

o 

Codes Interval 
Size 

Non-
Uniform 

Mesh 
Ratio 

Total Mesh 
in 

Domain 

M
es

h-
1 

a 0,1 1,2 

120.960    
b 0,02 1,2 
c 0,1 1,2 
d 0,2 1,2 
e 0,05 1 

M
es

h-
2 

a 0,075 1,2 

375.360    
 

b 0,02 1,2 
c 0,075 1,2 
d 0,1 1,2 
e 0,05 1 

M
es

h-
3 

a 0,06 1,2 

510.720    
b 0,02 1,2 
c 0,06 1,2 
d 0,1 1,2 
e 0,05 1 

M
es

h-
4 

a 0,05 1,2 

776.000    
b 0,02 1,2 
c 0,05 1,2 
d 0,1 1,2 
e 0,05 1 

M
es

h-
5 

a 0,05 1,2 

1.015.000    
b 0,01 1,2 
c 0,04 1,2 
d 0,1 1,2 
e 0,05 1 

M
es

h-
6 

a 0,05 1,2 

1.289.000    
b 0,02 1,2 
c 0,05 1,2 
d 0,15 1,2 
e 0,05 1 

M
es

h-
7 

a 0,04 1,2 

1.653.000    
b 0,01 1,2 
c 0,025 1,2 
d 0,1 1,2 
e 0,05 1 

. 
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Mesh independence analysis is conducted for fanning friction factor f as non-

dimensional form of pressure drop and Colbourn j factor as non-dimensional form of 

heat transfer coefficient at Re=650 (laminar), Re=4000 (turbulence) based on the 

different mesh numbers shown in Table 3.1. Detailed information about the calculation 

strategy for the two factors is given in section 3.8.  Results are shown in Figure 3.26 and 

3.27.  It is seen from this figure that at least 1 million meshes are needed to obtain mesh 

independent results for both of the flow regimes. 

 

MESH INDEPENDENCE FOR RE 650
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Figure 3.26. Mesh independence analysis for laminar flow 
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Figure 3.27. Mesh independence analysis for turbulent flow 

 

 

3.7.2. Computational Details 

 

 

� Convergence  

 

For the investigated problems, scaled residuals for continuity, velocities and 

energy equations are monitored during the iterative solutions and the following values 

are taken into consideration for the converged numerical results; 

For laminar case 

� Residual for continuity: =10-4 

� Residuals for velocities in x, y and z directions: 10-7 
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� Residual for energy: 10-7 

 The residual history of a model is shown in Figure 3.28. Similar residual 

histories are obtained for all of the investigated numerical models including laminar 

flow. 

 

 
 

Figure 3.28. Residuals of a numerical model for laminar flow solution. 

 

For turbulent case 

� Residual for continuity: =10-7 

� Residuals for velocities in x, y and z directions: 10-7 

� Residual for energy: 10-7 

� Residual for transport equations k - �: =10-7 

  

The residual history of a model is shown in Figure 3.29. Similar residual 

histories are obtained for all of the investigated numerical models including turbulent 

flow. 
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Figure 3.29. Residuals of a numerical model for turbulent flow solution. 

 
� Under-Relaxation Factors  

 

 The constant under-relaxation factors (�) that are used in Equation 3.92 can be 

listed as; 

for laminar flow; 

 

� Pressure:       0.3 

� Momentum : 0.7 

� Energy:            1 

 

for turbulent flow; 

 

� Pressure:       0.3 

� Momentum : 0.7 

� Energy:            1 

� TKE :            0.8 (for Turbulent Kinetic Energy) 

� TDR:            0.8 (for Turbulent Dissipation Rate) 
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3.8. Numerical Calculation Details of Heat Transfer Coefficient and 

Pressure Drop 
 

 

Ones computations are finalized, two important factors are calculated depending 

on Equation 3.89 and Equation 3.90, which are the commonly used factors in heat 

exchanger analysis. These factors are the Colbourn j factor that is the non-dimensional 

form of heat transfer, and the f-fanning friction factor that is the non-dimensional form 

of pressure drop.  

 

                                                     (3.89) 

 

 

                                          (3.90) 

 

 

As shown in above equations, firstly the mean quantities of working fluid in 

OSF channel should be calculated. For that purpose the mean temperature of the fluid 

should be calculated. At this point two different calculation strategies are performed in 

order to compute the temperature value. Because the numerical problem is analyzed 

under two different thermal boundary conditions; constant heat flux, uniform 

temperature and the fluid temperature shows different behaviors under these two 

boundary conditions as shown in Figure 3.30 and Figure 3.31. 
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Figure 3.30. Fluid and surface temperature distributions under uniform temperature 
boundary condition 

 

 

 
 

Figure 3.31. Fluid and surface temperature distributions under constant heat flux 
boundary condition 
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 As shown in Figure 3.30 the mean temperature of fluid increases exponentially 

when the problem is analyzed under uniform temperature boundary condition however, 

upon analyzed under constant heat flux boundary condition, the mean temperature 

improves linearly. In order to get the mean temperature, firstly the fluid temperatures at 

inlet and outlet faces of OSF channel are calculated using the Equation 3.91 given 

below; 

 

                                                      (3.91) 

 

For constant heat flux boundary condition the mean temperature of the working 

fluid can be calculated using the Equation 3.92 

 

                                                  (3.92) 

 

 

Whereas, for uniform temperature boundary condition firstly the logarithmic mean 

temperature should be calculated in order to get the mean temperature because of 

exponentially increasing fluid temperature. The log-mean temperature is calculated 

from Equation 3.93 as (Shah and Sekulic 2003); 

 

                                  (3.93) 

 

 

 

Then, the mean temperature of working fluid is calculated from Equation 3.94 

for uniform temperature case (Shah and Sekulic 2003); 

 

                                                (3.94) 

 

The fluid properties are obtained by substituting the mean temperature value into 

fluid properties equations given in section 3.3.2.   

In order to compute the j factor given in Equation 3.90 the Reynolds, Nusselt, and 

Prandtl numbers are computed respectively with using following definitions; 
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(3.95) 

 

 

                                                        (3.96) 

 

                                                              (3.97) 

 

 

As seen in Equation 3.95, Equation 3.96 and also f-factor equation the equations 

depend on hydraulic diameter of OSF channel and it is defined as (Manglik and Bergles 

1995); 

 

                                                    (3.98) 

 

 

The mean value of the velocity, um in Equation 3.95 and also in f-factor equation 

is calculated from average value of the velocities which are at inlet and outlet faces. 

Equations of the velocities and the mean velocity of them are given respectively, 

 

                                                       (3.99) 

 

 

                                               (3.100) 

 

In order to calculate the average heat transfer coefficient on OSF walls, the 

numerically obtained local heat transfer coefficients are integrated over the OSF surface 

areas. The local heat transfer coefficient is calculated by using the Equation 3.39.  Thus, 

Equation of the average heat transfer coefficient is given as follows; 
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The pressure difference in the f-factor equation is calculated by subtracting the 

average pressure at inlet face from average pressure at outlet face of OSF. The pressure 

difference equation is given as; 

                               

      (3.102) 

 

The pressure value at outlet is kept equal to 0 as a boundary. Thus, only the mean 

pressure at inlet should be calculated. This pressure is calculated as; 

 

 

                                   (3.103) 
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CHAPTER 4 
 

 

CHAPTER 4. EXPERIMENTAL ANALYSIS 
 

 

The geometrical parameters of a flow channel with OSF given in Table 4.1 are 

used in the experimental analyses.  

 

Table 4.1. Geometrical parameters of OSF used for experimental analyses. 

 

 

 

 

 

 

 

 

 

 

This work investigates the pressure drop and average heat transfer coefficient for 

the channel with OSF where heat originated from the walls of the channel. Relations are 

experimentally investigated by changing the channel Reynolds number (by changing the 

flow rate) from 150 to 3500 in the OSF channel and could not be carried for 5000, due 

to the very high pressure drops. Water is used as a working fluid of the experiments.  

 

 

4.1. The Flow Loop and Instrumentation 
 

 

The schematic view of the experimental setup is illustrated in Figure 4.1. As 

seen from this figure, the instruments in the experimental setup may be explained under 

Geometrical Parameters Dimensions (mm) 
Fin Length (Lf) 1.5 

Fin Height (h) 3.8 

Fin thickness (t) 0.2 

Fin Size  (s) 2.6 

Channel Length (Ld) 200 

Channel width 25 

Channel height 4 
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two groups; first group is used for supplying water as working fluid to a test unit and the 

second one is the data acquisition. The instruments used in first group consist of  

• A storage tank 

• Water pump 

• A filter 

• Manual flow maters 

• Test unit 

• A heat exchanger and fan 

• Adjusting valves 

 

 
 

Figure 4.1. Schematic view of experimental setup. 

 

The experimental loop can briefly be explained as: The water is stored in the 

tank which is also used a thermal mass in order to slow down the system response to a 

manageable level. A centrifuge pump is used to force the water to the test unit and also 

optionally through a filter (if need for filtering the water) and a set of flow meters. 

There are three manual flow meters; one with 0-20 l/min and other two with 0-1.2 l/min 

capacity which are all used in parallel. There are valves at the each flow meter entrance 

which are used to adjust the flow rate of the working fluid. The test unit part is the most 

important part of the experimental setup and detailed information about it is given in 

next section. A heat exchanger and an axial fan are used to transfer the built up heat in 

the water and therefore decrease the temperature of it.  Temperature of the working 

fluid can not be allowed to exceed 60°C degrees since some of the construction 
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materials (Delrin) would lose too much of its strength and the integrity of the setup 

would be in danger. There are additional three adjusting valves are used for system 

operation; one for decreasing the flow rate and others for opening or closing some 

system units (such as filter unit). An open loop circulation is used to manage pressure 

levels and eliminate the negative effects of the expansions of the water. The instruments 

used in second group consist of 

� Pressure transducer 

� Multimeter 

� Thermocouples 

� Data-logger 

� Power supplies 

� Computer 

Pressure is measured using a differential pressure transducer. The transducer is a 

silicon diaphragm that uses a wheat-stone bridge resistor network to measure the 

deflection. The excitation voltage is 24 VDC supplied by using a power supply and the 

output is from 4 to 20 mA. The pressure transducer is selected to give the highest level 

of accuracy, with a range of 0 to 5 PSIG. The output current is measured using a three-

digit digital multimeter.  

J-type thermocouples are used to measure the temperature data. This type of 

thermocouples consists of two different materials, constantan and iron. The two 

materials are connected each other at a point. If the connected point is touched to any 

object such as ice that is 0°C, then a potential difference exist between the different 

materials because of that the materials have different thermal conductivity. The 

potential difference is transferred to a data-logger in order to convert it to temperature. 

The measuring temperature data is kept by a computer. The photo of the experimental 

setup is illustrated in Figure 4.2. 
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 Figure 4.2. A scene from the experimental setup. 

 

As shown in this figure, devices of the test unit are listed below; 
1. Flow meters, 

2. Pressure drop measuring unit,  

3. Power supplies, 

4. Test section, 

5. Data logger, 

6. Exchanger and fan. 

 

 

4.2. Test Section 

 

 
The test unit illustrated in Figure 4.3 consists of three regions. These are 

entrance, test and outlet regions. The entrance and outlet regions are made of delrin 

although test region is made of aluminium alloy. 

 

 

6 2 

 

1  
4 

5 3 
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Figure 4.3. Test unit used for experimental analyses. 

 

  Fluid is being delivered uniformly to the entrance region with a 1-entrance-to-8-

exit distributor which has a much bigger flow area the connected pipes and therefore 

minimal pressure drop as shown in Figure 4.4.  The flow in the distributor is transferred 

to entrance region by eight hose fittings with small inner diameter (�3 mm). 

 

 

 
 

Figure 4.4. The distributor used in experimental setup 
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Figure 4.5. Entrance region. 

 

Water from the distributor goes through the streamlined entrance region, shown 

in Figure 4.5. Flow first goes through a honeycombed region constructed with drinking 

straws of 75 mm long and 5 mm in diameter. This part helps to dissipate any large scale 

fluid motions that might be coming from distributor pipes.  Flow than goes into the 

contraction which is designed as fifth degree polynomial in order to achieve a uniform 

velocity profile. This fifth degree polynomial is a widely used method in flow research 

facilities (gas or liquid) in order to obtain uniform velocity profile. The fifth degree 

polynomial equation and its boundary conditions are given as; 

 

                                     (4.1) 

 

                                                    (4.2) 

 

                                                      (4.3) 

 

                                                      (4.4) 

 

                                                     (4.5) 
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                                                      (4.6) 

 

 

where W is the half wide of outlet part of the contraction region and L is the length of 

the region as shown in Figure 4.5. 

As shown in Figure 4.3, there are two holes on the cover of the entrance region. 

One hole with blue point is used to measure the pressure at inlet of the test region and 

the other one with red point is used to measure the temperature of fluid at inlet of the 

test region.  They are 5 mm and 5 mm off from the flange interface respectively.  

Pressure holes are carefully drilled and cleaned in order not to cause any error in the 

measurement. 

As shown in Figure 4.6, another important part of the test unit is the test region. 

In this figure the film heater and the plate type heat exchanger used for analyzing of 

OFS are illustrated in “ a”  and a cut front view of the test region is shown in “ b”  and a 

cut view of the plate and OSF are given in “ c” , and the real photo of the heat exchanger 

is illustrated in “ d” . As mentioned earlier, the plate and also the OSF in it are made out 

of aluminum alloy and they are joined by brazing so that the thermal resistance between 

the fin and flat surfaces of the channel of the test region is minimal. Upon focusing on 

the figure 4-6-b, the test unit consists of seven parts. These are two insulated walls to 

prevent the heat transfer on plate surfaces to the ambient, two film heaters as heat 

sources, upper and lower parts of plate and a the OSF itself. As shown as red points in 

Figure 4.3, totally ten 32 AWG thermo-couples of J-type are placed on the upper and 

lower surfaces of the plate type heat exchanger in order to measure the local 

temperature data from the plate surfaces. Thermocouple connections are tested with 

continuity test before and after the experiments. 
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a) 

 
b) 

 

 

 

 

 

 

(c) 

 

 

c) 

 
d) 

 

 

Figure 4.6. Test Region and Its Parts. 

 

Another part of the test unit is the outlet region, Figure 4.3. As shown in Figure 4.7, the 

outlet region is an expansion with a half angle of 2o. Its purpose is to slowdown the flow 
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and increase the static pressure so that no effect from upstream would travel to test 

section and affect it. 

 

 
 

Figure 4.7. Outlet region 

 
As shown in Figure 4.3, there are also two holes on the cover of the outlet 

region. One hole with blue point is used to measure the outlet pressure of the test region, 

other one with red point is used to measure the temperature of the fluid at outlet of the 

test region. 

In summary, there are twelve points for measuring temperature and two points 

for measuring pressure. Two thermocouples on the either side of the test section are 

used to obtain the temperature difference of the water, and others on the channel wall 

are used to get the temperature difference of the upper and bottom surfaces of the heat 

exchanger along the flow direction.   

The expanded fluid in the outlet region is collected by a collector which has 

three inlets and an outlet. The collector used in the test setup is illustrated in Figure 4.8.  

 

 
 

Figure 4.8. Collector  
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4.3. Test Procedure 
 

 

It is ensured that the water used as working fluid for experimental analyses is 

first degassed by keeping it in the tank for a week. Since the gasses in the water may 

form bubbles which can stick on the heat transfer surfaces and affect the heat transfer 

and flow as well. In order to overcome this degassing problem, some precautions have 

to be taken into consideration; first, an open loop circulation system is used so that the 

bubbles can be taken out easily.  Secondly, a huge volume storage tank is used so that 

not to entrain the bubbles in the circulation again. Later, the test unit is vibrated while 

the fluid is moving in it at the same time heat is supplied to it so that stuck bubbles can 

released from the surfaces. 

An AC centrifugal pump is used to force the flow from the storage tank to test 

section through the parallel flow meters. The flow rate is manually adjustable by using 

the flow meters.  The heat flow used is 165 W and is kept constant for all of the 

experiments. Then the measured temperature and temperature difference are viewed real 

time to make sure the heat transfer process reached the steady state. In this thesis for all 

experimental analyses the temperature differences between both measured points are 

waited to be stable because of decreasing analysis time, although the steady state 

situation in a flow occurs when the all measured temperatures achieve constant values 

with respect to time. When the flow is stable, the flow rate and also pressure drop are 

measured. Note that first adjusted flow rate value at the beginning of the experiments 

changes during the experiment due to temperature changes.  Therefore it is a guessed 

value depending on the aimed Reynolds number and the experience of the 

experimentalist. Since, the properties of the fluid change when the fluid is heated.  

 

 

4.4. Data Reduction for Heat Transfer and Pressure Drop Coefficients 
 

 

Following the completion of data gathering, two important factors; Colbourn j 

factor and the f-fanning friction factor are calculated depending on Equation 3.89 and 

Equation 3.90 given in chapter three.  
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  In order to calculate these factors, firstly the mean quantities of working fluid in 

OSF channel should be calculated.  For that purpose the mean temperature of the fluid 

and also the mean temperature of the surfaces of test region must be accurately 

calculated. Although all of the temperature data is recorded to make sure of the steady 

state regime, only final twenty data is used as averages for the data reduction in order to 

reduce scatter.    

The mean temperature of the working fluid can be calculated using the Equation 

3.92 given in chapter three. The fluid properties are obtained by substituting the mean 

temperature value into fluid properties equations given in section 3.3.2.  

Since the experiment is performed under the constant heat flux thermal boundary 

condition, its calculation strategy is nearly the same as to the numerical analysis with 

constant heat flux case. There is only one difference which must be mentioned is the 

way to calculate the average heat transfer coefficient of the OSF. In order to calculate 

the average heat transfer coefficient, Equations 4.7 and 4.8 (Shah and Sekulic 2003), 

depending on overall heat transfer coefficient of the heat exchanger and overall 

efficiency of it are used.  
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As shown in Equation 4.7 and 4.8, they are coupled to each other, thus they are 

solved iteratively. In these equations, the total heat transfer surface area of whole heat 

exchanger shown as “ A “, is obtained from sum of the plate and the fin areas where the 

heat transfer occur (Shah and Sekulic 2003).   
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The logarithmic mean temperature difference is computed by using Equation 

3.98 given in numerical procedure part. The surface temperature appearing in this 

equation is computed from the average value of measured surface temperatures from 

totally ten points on the test region, where the five points are on one side of it and other 

five points are on opposite side. The mean velocity of the flow is computed from 

measured flow rate to compute the Reynolds number. Noted that other equations used in 

this thesis are the same to the equations given in numerical analysis procedure part. 

 

 

4.5. Experimental Uncertainties 
 

 

The uncertainty analysis is a procedure used to quantify data validity and 

accuracy. The uncertainty of a measured (or a reduced from measured) parameter is 

determined by the method of evaluating the bias and precision errors. The following 

equation is used to calculate the uncertainty in a measured quantity R = R(x1, x2, ….., 

xn) (Kline and McClintock 1953); 

 
 

                            (4.10) 

 

 

where U, R, and x are respectively; uncertainty interval, result, and variable. 

The measuring instruments used in the test setup have different uncertainties. 

The pressure transducer has an uncertainty of ± 1.724 Pa (± 0.8 mA). The power supply 

has also an uncertainty of ± 0.5 W. The uncertainties for geometrical parameters are 

assumed to be ±0.1 mm. The uncertainties of the flow meters are ± 0.05 l/min for low 

scale and ± 0.25 l/min for high scale meters (These are guessed quantities from meter 

scales). 

 The temperature reading has an uncertainty as well. The uncertainty of 

temperature directly reflects on to for the temperature difference between inlet and 

outlet of the working fluid which is needed to calculate the heat transfer rate and also 

the logarithmic mean temperature difference which are again used to calculate the 
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overall heat transfer coefficient of the heat exchanger. Uncertainty of temperature 

difference is determined by using f-distribution technique. For that reason twenty 

temperature data are taken into consideration. As an example, these data tabulated in 

Table 4.2 are selected after the temperature difference becomes nearly constant. The 

standard deviation ���  of the results of the both temperature differences are obtained by 

using the following equations (Kline and McClintock 1953): 

 

��� � � 	
�	� ���� � ��������
��	 ����                                        (4.11) 

 

where ������ is the average 

                                                 ������ � 	
� ����
��	                                             (4.12) 

 

The standard deviation for the temperature difference of the fluid is calculated to be 

0.00071 and for the logarithmic mean temperature difference is calculated to be 

0.000164.  A confidence interval for the temperature differences with 95% confidence 

level is obtained as T ± 1,729���  by using Student t-distribution. Therefore, the 

uncertainties for the temperature difference of fluid and the logarithmic mean 

temperature difference are calculated as ±0.00123 oC and ±0.0003 oC, respectively 

(Kline and McClintock 1953). Indeed, the uncertainties are very small because they 

only consist of random errors. It is known that the uncertainty consists of the method of 

evaluating the bias and random errors. Generally the bias errors are greater than random 

ones. Thus, the uncertainty of temperature reading is assumed as ± 0.1 °C from 

thermocouple catalog.      

The resulting uncertainties are calculated for the all required quantities, for a 

median case (Re = 2144). One of the quantities is Reynolds number. The computing 

equation for the Reynolds number is 

 

    ��� ����� � �� ! "#�                                  (4.13) 

 

In order to calculate the uncertainty interval of the Reynolds number, firstly, the 

uncertainties for the velocity u and also for the hydraulic diameter are need to be 
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calculated. The velocity is a function of volumetric flow rate and cross-section area of 

the OSF. 

 

        � $�%&                                                           (4.14) 

 

Table 4.2. Temperature data measured from experiment. 

 

Sample Tf in Tf out Tw mean �T �TLN 

1 35,76 36,27 38,76 0,51 2,74 
2 35,76 36,29 38,76 0,53 2,73 
3 35,76 36,26 38,77 0,51 2,75 
4 35,74 36,27 38,76 0,52 2,75 
5 35,75 36,27 38,75 0,52 2,74 
6 35,76 36,27 38,76 0,51 2,74 
7 35,74 36,25 38,75 0,51 2,74 
8 35,75 36,26 38,75 0,51 2,73 
9 35,74 36,26 38,76 0,52 2,75 

10 35,74 36,25 38,75 0,52 2,74 
11 35,74 36,26 38,76 0,52 2,75 
12 35,74 36,26 38,76 0,52 2,76 
13 35,75 36,26 38,72 0,51 2,71 
14 35,75 36,27 38,75 0,52 2,73 
15 35,73 36,25 38,75 0,52 2,76 
16 35,74 36,25 38,74 0,51 2,73 
17 35,73 36,26 38,76 0,53 2,75 
18 35,73 36,25 38,72 0,52 2,72 
19 35,73 36,25 38,75 0,52 2,75 
20 35,73 36,24 38,73 0,51 2,74 

 

 

The volumetric flow rate are measured as 2.8 l/min by using two flow meters 

('�# �2 ±0.25 l/min for high scale, '�( ��0.8±0.05 l/min for low scale) 

 

                                                             '� � '�# ) '�(                                                   (4.15) 
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The relative uncertainties in volumetric flow rate for high and low scale meters 

are calculated as 

 

*$�� � +,�-.�/0�12-�/0�12 � +,�3-.�425�*$� 6 � +,�,.�/0�12,�7�/0�12 � +,�,89� 
 

Thus, the relative uncertainty in the total volumetric flow rate is calculated by 

using the Equation 4.10. 
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The cross-section area of OSF is related to fin size s and also fin height h. 
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The relative uncertainties of the fin size and fin height are  
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Thus, the relative uncertainty in the area is calculated by using Equation 4.10 as 
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Therefore, the relative uncertainty of the velocity is calculated by using Equation 4.10 

and 4.14 
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The hydraulic diameter of the OSF is calculated by using Equation 4.17   

 

(4.17) 

 

As shown the equation above, the hydraulic diameter is related t fin geometrical 

parameters. Thus firstly the relative uncertainties in these parameters should be 

calculated. The uncertainties in fin size and fin height have been calculated above. So, 
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Therefore, the relative uncertainties in the hydraulic diameter is calculated by using 

Equation 4.10 and 4.17 
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Finally the relative uncertainty of the Reynolds number is calculated as 
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In order to calculate the uncertainties in the heat transfer rate Q and overall heat 

transfer coefficient U of the heat exchanger, firstly the relative uncertainties in the 

temperature difference of working fluid and in the logarithmic temperature difference 

should be computed. The temperature differences are given in Equation 4.18 and 4.19 

respectively. 

 

    JK � KL�M�F � KL��
                                      (4.18) 

 

(4.19) 

 

 

The relative uncertainties for these temperatures are calculated as 

 

*NOPQRS � + ,�3�T98�.U�T � +,�,,-U��425��*NOPQRS � + ,�3�T9.�U8�T � +,�,,-7�� 
 

*NV � + ,�3�T9?�W9�T � +,�,,-.�� 
 

The uncertainty for the temperature difference is calculated by using Equation 4.10 and 

4.18 

*XN � +:YKL��
JK <JK<KL��
 *NOP�Z[
� ) YKL�M�FJK <JK<KL�M�F *NOPQRS[

�
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The uncertainty for the logarithmic temperature difference is calculated by using 

Equation 4.10 and 4.19 
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The heat transfer rate is calculated from below equation 

 

    ` � �� TaJK � `�� ! JK�                                          (4.20) 

 

The relative uncertainty in the heat transfer rate is calculated by using Equation 4.10 

and 4.20 

*b � +:;�̀ <`<�*�=� ) ;JK̀ <`<JK*XN=
�
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The overall heat transfer coefficient is calculated from below equation. 

 

    * � bXN\] % � *`! JK̂ _ �                                          (4.21) 

 

The relative uncertainty in the overall heat transfer coefficient is calculated by using 

Equation 4.10 and 4.21 

 

*c � +:;*̀ <*<`*b=� ) ;JK̂ _* <*<JK̂ _ *XN\] =� 

 

���������������������������������������������*c � +�,�3.8.      or �������*c � +�3.�8.�@ 

 

The average heat transfer coefficient is calculated from below equation. 

 

    C � � 	de� Sfgh% � C*! G�                                               (4.22) 

 

The relative uncertainty in the average heat transfer coefficient is calculated by using 

Equation 4.10 and 4.22 
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The Nusselt number is calculated from below equation. 

 

                                                 i � #��j � i C! "#�                                            (4.23) 

 

The relative uncertainty in the Nusselt number is calculated by using Equation 4.10 and 

4.23 

*k� � +:; Ci <i <C *#=� ) ;"#i <i <"# *��=
�
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The Colbourn j factor is calculated from below equation. 

 

    � � k�HIlmd0n � �i ! ���                                            (4.24) 

 

The relative uncertainty in the Colbourn j factor is calculated by using Equation 4.10 

and 4.24 

*� � +:;i � <�<i *k�=
� ) ;��� <�<��*HI=

�
 

 

������������������������������������������*� � +�,�3U-.       or �������*� � +�3U�-.�@ 

 

The pressure drop in the OSF channel is measured as 5.14 A ±0.8 mA. Thus, 

The relative uncertainty in the pressure drop is calculated as 

 

                                                    *Xl � + o�p�I�oqr�	s � +,�,,,3.8   
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The fanning friction factor f is calculated from below equation. 

 

(4.25) 

 

 

As shown the above equation, the fanning friction factor is as a function of �P, Dh, u. 

Therefore, the relative uncertainty in the fanning friction factor is calculated as 
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 The calculated uncertainties of the required quantities are tabulated in Table 4.3 below. 

 
Tablo 4.3. Uncertainty analysis for required quantities in thesis. 

 

Region Heat Transfer        Pressure Drop 

Re h Nu j    
P    f 

± 0.103 ± 0.138 ± 0.1385 ± 0.1740 ±0.00015   ± 0.1450 

10.30 % 13.80 % 13.85 % 17.40 % 15.6 %   14.50 % 

2
mm

h

c u(1/2)�
D

4L
�P

f =
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CHAPTER 5 
 

 

CHAPTER 5. RESULTS AND DISCUSSION 
 

 

The main emphasis of this thesis is to obtain an optimum numerical procedure to 

successfully analyze OSFs backed by experimental verifications. For that purpose, two 

issues are taken into consideration. One of them is creating a numerical model for an 

OSF that was already experimentally analyzed. Secondly, another OSF is tested 

experimentally by ourselves and modeled using same technique in order to ensure the 

accuracy of the procedure. Since the later used fin has different geometry and it has 

never been analyzed yet.  The studied issues briefly are; 

 

• Determining the average heat transfer coefficient and pressure drop in OSF at 

different Reynolds numbers, 

• Determining the effect of Prandtl number on the heat transfer rate and pressure 

drop, 

• Determining the effects of the two thermal boundary conditions on heat transfer 

and pressure drop. 

 

 

5.1. Comparison of the Numerical Model with an Experimental Study  

 

 

A comparison of our numerical results with an experimental study conducted by 

Kays and London (1964) is performed in order to test the reliability of the numerical 

models.  In this thesis, only the OSF with the code of 1/8-16.00(D) from the Kays and 

London study is taken into consideration, due to the fact that their corresponding 

Reynolds numbers are very close to our interest which is between 200 and 5000. The 

geometrical properties of the OSF are given in Table 5.1  
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Table 5.1. The Geometrical properties of OSF with code number 1/8-16.00(D). 

 
 

 

 

 

 

 

 

 

 
In Kays and London’ s experimental study, a cross-flow heat exchanger is 

employed as a test section, as shown in Figure 5.1.  This setup, in general, consists of 

the following basic elements on the unknown side; a test section, a fluid metering 

device, a fluid pumping device, temperature measurement devices. Similar devices are 

also used on the known side. Air is used on the unknown-side while steam is used on 

the known-side. In their experiments, the flow rates on both fluid sides of the exchanger 

are set at constant predetermined values. Once the steady-state conditions are achieved, 

the fluid temperatures and also the pressures upstream and downstream of test section 

on both fluid sides are measured. The tests are repeated with different flow rates on the 

unknown side to cover the desired range of Reynolds number for the j and f factors vs. 

Re characteristics (Shah and Sekulic 2003). 

 

 
 

Figure 5.1. Schematic view of test setup used by Kays and London 
(Source: Shah and Sekulic 2003). 

Geometrical 

Parameters 

Dimensions 

(mm) 

Fin Length (Lf) 3.175 

Fin Height (h) 3.006 

Fin thickness (t) 0.152 

Fin Size  (s) 1.434 

Channel Length (Lc) 93.25 
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Since the heat capacity ratio of air versus condensing steam is almost equal to 

zero, condensing steam supplies an uniform temperature on the known-side of OSF.. A 

numerical model of the OSF with the geometrical dimensions given in Table 5.1 is 

created in the present study to accomplish the comparison of the numerical results with 

the experimental results of Kays and London. The numerical model and its meshes are 

presented in Figure 5.2. 

  

 
 

Figure 5.2. A numerical model for the OSF experimentally analyzed by Kays and 
London. 
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As shown in figure above, modeled part of the domain contains a wall junction, 

and a quarter part of the air channel including an OSF (or unknown side) and a uniform 

temperature on the steam side. This modeling approach makes use of geometrical 

symmetries and therefore results in a much simpler model and a drastic decrease the 

computational time. Detailed information about other boundary conditions, governing 

equations and also mesh independence analysis for the numerical model are given in 

chapter three in this thesis. The numerical analyses for this model are conducted by 

assuming that the flow is laminar and steady-state in the range of Reynolds number 

from 200 to 5000. The Colbourn j factor that is the non-dimensional form of convective 

heat transfer coefficients and the fanning friction factor-f that is the non-dimensional 

form of pressure drop from our numerical analyses for the OSF are compared with the 

experimental results of Kays and London (1964) and also the results obtained from 

correlations developed by Manglik and Bergles (1995) in Figures 5.3 and 5.4, 

respectively. Some information about the correlation equations are mentioned in chapter 

two and also the results obtained from the correlations developed by Manglik and 

Bergles are given in Table 2.1 in that chapter.  
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Figure 5.3. Comparison of the numerical results of the present study with the 
experimental results of Kays and London (1964) and the results obtained 
from correlations of Manglik and Bergles (1995) for Colbourn j factor. 
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Figure 5.4. Comparison of the numerical results of the present study with the 

experimental results of Kays and London (1964) and the results obtained 
from correlations of Manglik and Bergles (1995) for Fanning friction f 
factor. 

 

It can be seen from the figures that there is a considerably good agreement 

between the numerical results of present study and the experimental results of Kays and 

London (1964) for both Colbourn j factor and fanning friction factor f.  As shown in 

Figure 5.3, since the correlations of Manglik and Bergles (1995) are obtained by curve 

fitting to the results of Kays and London (1964), their agreements should not surprise. 

The numerical results for j factor of the Reynolds number greater than 2000 start under-

predicting the experiments, and the difference between experimental and numerical 

results increases with increasing Reynolds number. As shown in Figure 5.4, the f factor 

of the same numerical analyses shows a much satisfactory agreement with the same 

experimental data at even higher Reynolds numbers (Re~3000), but the results of 

Manglik and Bergles (1995) starts over-predicting the experiments at an earlier  

Reynolds number. The main possible reason of the values being underpredicted after a 

certain Reynolds number may be that the flow in the OSF channels changes a regime. 

Note that the numerical analyses are conducted under laminar flow assumption for all of 

the Reynolds numbers, therefore lower values of the j and the f factors for higher 

Reynolds numbers are expected. Detailed information about the effect of flow regime is 

given in next section of this chapter. It is concluded that the numerical results for j and f 

under a laminar case seem to be reliable up to Reynolds numbers of 2000 and 3000 

respectively.  Remember that the ordinate of the given figures are in logarithmic scale 
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which magnifies smaller values.  Therefore the disagreement between numerics and the 

experiments are really small. 

 

 

5.2. Effect of Flow Regime  
 

 

Firstly, a numerical model based on the study of Kays and London (1964) is 

performed in order to investigate the effect of the flow regime.  The average heat 

transfer coefficient and the pressure drop in the OSF channel are compared with respect 

to Reynolds number. As shown in Figures 5.5 – 5.7, the heat transfer coefficient and its 

non-dimensional forms, Nusselt number and the Colburn j factor, are given respectively.   
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Figure 5.5. Average heat transfer coefficient vs. Reynolds number 
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Figure 5.6. Nusselt number vs. Reynolds number  
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Figure 5.7. Colbourn j factor vs. Reynolds number 

 

 As seen in these figures above, the heat transfer coefficient and also Nusselt 

number increase with respect to increasing Reynolds number while the j factor 

decreases due to the fact that Reynolds numbers increases much faster than the Nusselt 

number.   

The pressure drop and its non-dimensional form, the fanning friction factor f are 

shown in Figure 5.8 and 5.9 respectively. It is also seen that pressure drop increase and f 

factor decreases with increasing Reynolds number.  Similarly, the reason of decreasing f 

factor is that kinematic energy of the flow (U2) increases in much faster rate than the 

pressure drop. 
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Figure 5.8. Pressure drop vs. Reynolds number 
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Figure 5.9. Fanning Friction f factor vs. Reynolds number 

 

As mentioned in previous section, the numerical results for the study of Kays 

and London are under-predicted for Re > 2000.   However, it must be mentioned that 

this difference between computations and experiments is most probably in the error 

margin.  A steady turbulent model is being solved for Re > 800 in order to make certain 

if these under predictions can be overcome. The obtained results are compared with the 

laminar case and experimental results in Figure 5.10.   
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Figure 5.10. Comparison of Laminar and Turbulent Results 

 

As shown in this figure above, the results obtained for turbulent flow model 

overly over-predicts both j and f factors.   The k – � numerical model used for turbulent 

case is known to be suitable for this kind of thin wake and boundary layer flows 

(Versteeg and Malalasekera 1995). The reason of this situation is conjectured to be that 

the flow in the OSF channel may never be fully turbulent even at high Reynolds 

numbers due to periodic disruption of boundary layers. Upon focusing on literature for 

this issue, the study of Joshi and Webb (1986) can make this situation clearer. Four 

different flow regimes in the OSF channel were identified focusing on the wake flow in 

between two successive fins by using flow visualization. As shown in Figure 5.11, in 

the first regime, the flow was laminar and steady. In the second regime, the oscillating 

flow structures were observed to appear in the transverse direction. In the third regime, 

the flow oscillated in the wake region. In the fourth regime, the vortex shedding started 

to become important. The second regime where the flow starts oscillate was assumed as 

transition point and after this point, the flow was usually assumed to be turbulent 

although, after this critical point, it may be unsteady laminar even for Re of 4500.  
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Figure 5.11. Flow patterns observed in the visualization experiments. 
(Source: Joshi and Webb 1986) 

 

An equation for the critical this Reynolds number, where the flow starts to 

oscillate, was also suggested by Joshi and Webb (1986). The equation includes 

geometrical parameters of the OSF and Reynolds number based on hydraulic diameter 

of the channel. In this thesis, the critical Reynolds number for the numerically analyzed 

OSF is computed as 1000 although the under-prediction of numerical analyses for 

laminar case with respect to the experimental analyses starts from 2000 for j factor and 

3000 for f factor, Figure 5.10. The reason of obtained under prediction values as 

different critical Reynolds number from 1000 may be explained with the oscillation in 

the wake of the OSF channel obtained from flow visualization which does not make 

discernible effect on the results of the heat transfer and also the pressure drop. Actually, 

the critical Reynolds number points out the second region where small oscillations in 

wake region start. So the flow has to be unsteady laminar instead of turbulent. Various 

studies confirm the unsteadiness of the flow in OSF channel (Dejong and Zhang 1998, 

Saidi and Sunden 2001). According to those studies, when unsteady laminar flow exists 

in the OSF channel, Karman vortexes plays an important role, and affect the heat 

transfer on fin surfaces and also the pressure drop in the OSF channel. These vortexes 

start oscillating the flows at the trailing edges and this oscillation disturbs the boundary 
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layers downstream. The thermal resistance between the fin walls and the fluid decreases 

because of the disturbance of the boundary layer and this would result in an increase of 

heat transfer. The situation also results in an increase in pressure drop. Dejong and 

Zhang (1998) show that the increase in the heat transfer and also pressure drop are not 

as much as in turbulent flow. Thus, the flow in the Kays and London (1964) study may 

start to become unsteady and laminar beyond the Reynolds number of 2000.  

  Thus, in order to investigate the oscillation in the wake region, an unsteady 

laminar flow analyses are conducted in this thesis. Although the numerical model for 

analyzing the unsteady flow is successfully converged, no oscillations in the wakes of 

the OSF can be obtained. The reason of the situation may result from two important 

issues. One of them is that the very high frequency of the oscillated flow due to very 

thin fins.  Secondly, the mesh number and also grid size in the core region of the flow 

may not be enough to resolve unsteady flow structures.  

The contour plots of the velocity magnitude in the OSF channel are illustrated in 

the Figures 5.12 and 5.13 for the steady-state laminar and for steady-state turbulent flow 

respectively. For both cases, the region between 18th and 20th row of the OSF channel is 

illustrated, since the flow in this region is periodically fully developed. As shown in 

these figures, wake flow dominates the region. Upon focusing on the laminar case, at 

even lower Reynolds number such as 200, an impingement flow on the leading edges of 

the fin and a small recirculation region behind the trailing edges are observed. The wake 

flow fills between two successive fins beyond the Reynolds number, 1000.  The same 

situation is obtained by Patankar and Prakash (1981). The Reynolds number related to 

this wake region must be defined with respect to the fin thickness.  Since the fin 

thickness to hydraulic diameter ratio is about 20, wake Reynolds number is 1/20th of the 

channel Reynolds number. The Reynolds numbers are tabulated in Table 5.2. 

 

Table 5.2. Reynolds number based on hydraulic diameter and fin thickness. 

 

Rewake 10 50 75 150 
ReDh 200 1000 1500 3000 
 

It is known that the wake flow starts to oscillate around Reynolds number 60 

(White “ viscous fluid flow” , 1991) for a flow around a cylinder which corresponds to 

1200 for our channel Reynolds number.  Although our results start to deviate from the 
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experiments of Kays and London (1964) around the Re 2000.  This may be due to the 

difference in geometry.  The same observation was obtained in the study of Jossi and 

Webb (1998).  Their flow visualization study shows that the boundary layers on the 

each fin always remain laminar even at high Reynolds numbers around 2500.  

Therefore, turbulent boundary layer may never exist on the fins because of the fact that 

the fin lengths are so small and they are interrupted along the flow direction.   

 

 
 

Figure 5.12. Contours of velocity magnitude for laminar flow. 
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Figure 5.13. Contours of velocity magnitude for turbulent flow. 

 

As mentioned earlier, another OSF is taken into consideration in this thesis (also 

known as Gürcan’ s fin). This fin is investigated numerically and also experimentally in 

the range of Reynolds numbers from 150 to 3500. Water is used as the heat transfer 

fluid and the heat is supplied uniformly by a ribbon heater. As shown in Figures 5.14 – 

5.15, the Nusselt number and the Pressure drop over channel length data obtained by 

our experiments are compared with numerical data in order to show the accuracy of the 

experiments.  As shown in those figures, the Nusselt numbers and also the pressure 

difference over channel length data are good agreement with the computational results 

for almost all Reynolds numbers. The Colbourn j factor and the fanning friction f factor 

results are also given in Figure 5.16 and Figure 5.17 respectively in order to give much 

more meaningful comment on the comparisons.  
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Figure 5.14. Comparisons of Nusselt numbers. 

 

 

 
 

Figure 5.15. Comparisons of pressure drop over channel length. 
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Figure 5.16. Comparison of experimental and numerical results for j factor. 

 

 

 
 

Figure 5.17. Comparison of experimental and numerical results for f  factor. 

 

As shown in those figures, the computational results of Gürcan’ s fin for j are in 

very good agreement with computations and other experiments as well.  This is very 

encouraging for the dependability of the computations and as well as the experiments.  

On the other hand, fanning friction f factor are under-predicted with respect to our 

experimental results for Re >1500 although when comparing with experiment of Kays 

and London (1964) and the numerical results of the OSF with code 1/8-16.00(D) , the 

numerical results are strongly in good agreement similarly to the results given in Figure 

5.4. This suggests a larger error margin for the pressure drop measurements.  
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Nevertheless, our experiments and computations are in very close proximity of the Kays 

and London’ s findings. Note that Kays and London’  experiments and also our 

computational domain created in this thesis is conducted under an uniform temperature 

thermal boundary condition and by using air as a working fluid whose Prandtl number 

is almost 0.7.  Although, the experiments and computational domain for Gürcan’ s fin is 

done by using constant heat flux thermal boundary condition and by using water as a 

working fluid whose Prandtl number is 2 to 4,35. The obtained results show that there is 

no remarkable effect of using different types of thermal boundary condition on the heat 

transfer and the pressure drop. It is also concluded that the differences between the 

Prandtl numbers of the fluids does not significantly affect the important flow 

characteristics. Detailed information about these two effects is given in next sections.   

According to the results obtained in this study and the flow visualization results 

obtained by Dejong and Zhang (1998), and also Saidi and Sunden (2001), the flow 

regions in the OSF channel can be explained as 

 

� For Re<2000, the flow in OSF channel is steady and mostly laminar 

� At Re ~ 3000, oscillations in the flow start to affect on heat transfer and 

pressure drop.  Flow is conjectured to be still laminar but unsteady.  

� Beyond this critical Reynolds number, vortexes in the wakes are shed and at 

the same time, the oscillations become important.  

 

 

5.3. Effect of Prandtl Number  
 

 

The effect of Prandtl number is investigated by using air, 0.707 < Pr < 0.71 and 

water, 2 < Pr < 4.35 and ethylene glycol, 94 < Pr < 138. The obtained results are 

illustrated as j and f factor vs. Re in Figure 5.18 and 5.19.  
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Figure 5.18. Effect of Prandtl number on heat transfer. 

 

 

 
Figure 5.19. Effect of Prandtl number on pressure drop.   

 

As shown in Figure 5.18, the Colbourn j factor increases with increasing Prandtl 

number. The reason of the increasing the j data, which is a non-dimensional form of 

heat transfer coefficient, with increasing Prandtl number is that the flow with Prandtl 

number of nearly one, the velocity and temperature boundary layers develop at almost 

same rate, however, for a fluid whose Prandtl number greater than one such as water the 

thermal boundary layer develops much slower than the hydraulic boundary layer. So the 

thermal developing region is much longer than the hydraulic developing length. The 

situation is similar to effect of entrance region of flow in a continuous duct, where a 
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higher heat transfer coefficient is gained at the entrance. Upon focusing on the results of 

the fanning friction factor-f given in Figure 5.19, for high Prandtl number fluids is 

almost same although the f factor data for Prandtl number of nearly one is higher than 

others.  

 

 

5.4. Effect of Thermal Boundary Condition 
 

 

The numerical domain for Gürcan’ s fin is numerically analyzed by supplying 

constant heat flux and uniform temperature thermal boundary conditions on top and 

bottom surfaces of it in order to investigate the effect of using different thermal 

boundary conditions on the heat transfer coefficient and also pressure drop. For that 

reason, a plane shown in Figure 5.20 is created at the middle of the 20th row of the OSF. 

 

 

The comparisons for the different boundary conditions are illustrated on the 

plane as temperature contour-lines in Figure 5.21. 

Figure 5.20. The plane at the middle of 20th row of the OSF. 
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               Constant Heat Flux              Uniform Temperature 
 

  
                                                      a-) Re = 200 
 

  
                                                    
                                                   b-) Re = 1000 
 
 

Figure 5.21. Comparison of the thermal boundary conditions 
 
 

(cont. on next page) 
. 
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                                                     c-) Re = 3000 
 

Figure 5.21. (cont.) Comparison of the thermal boundary conditions. 

 

As shown in those figures above, using different types of boundary conditions 

for the considered OSFs does not make any difference between these two very different 

boundary conditions. For that reason, the velocity vectors and velocity contour-lines at 

different Reynolds numbers only for the uniform temperature thermal boundary 

condition are illustrated, respectively.  

Secondary flows are observed as shown in Figure 5.22. These flows start from 

near the upper and bottom walls of the OSF due to the velocities at x direction, grown 

towards to center due to the velocities at z direction and the velocities at both x and z 

directions disappear at the center because of the velocities at y direction which is the 

flow direction. The velocities at x and z direction are substantially smaller than the 

velocity at y direction. Effects of these secondary flows to the heat transfer are subject 

to a future study.  
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                        a) Re = 200 

 
                               b) Re = 1000 

 

  
                                                          c) Re = 3000 

 

Figure 5.22. Velocity vectors at x-z direction 
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                a) Re = 200 
 

 
              b-) Re = 1000 
 

                                                       
                                                   
 
 

                                                  
                                                           c-) Re = 3000 

Figure 5.23. Contour-lines of velocity at x-direction. 
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                a) Re = 200                b) Re = 1000 

 
                                                       
                                                    
                                                     
 

                                                     
                                                       c) Re = 3000 

 

Figure 5.24. Contour-lines of velocity at y-direction. 
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             a) Re = 200 
 

             b) Re = 1000 
 

                                                       
                                                    
 

                                                    
                                                        c) Re = 3000 

 

Figure 5.25. Contour-lines of velocity at z-direction. 
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CHAPTER 6  
 

 

CHAPTER 6. CONCLUSIONS  

 

 

The main aim of the present study is to check consistencies between 

computations and experiments of the heat transfer characteristics of an OSF.   For that 

purpose, two experiments for two different OSFs (code: 1/8-16.00(D) by Kays and 

London (1964) and Gürcan’ s fin) are used.   Note that the geometry of the OSF coded as 

“ Gürcan’ s Fin”  has not been studied up to now and there is no result about it in 

literature. Computations by using a 3-D numerical model created in this thesis for these 

fins are also performed. Analyzing the fins with using a 3-D numerical model, that is 

investigated as conjugate problem, is the main difference of the present thesis from the 

literature. The computational model for these fins is analyzed by assuming the flow as 

steady and laminar at the range of Reynolds number from 200 to 5000. The effect of 

flow regime in these types of OSFs is investigated. Also, the heat transfer boundary 

conditions and the Prandtl numbers of the computationally tested fluids are kept 

different for these fins in order to see the effect of those. The effect of Prandtl number is 

investigated by using air, 0.707 < Pr < 0.71 and water, 2 < Pr < 4.35 and ethylene 

glycol, 94 < Pr < 138. The obtained results from experiments and also computations are 

illustrated as the Nusselt number and Colbourn j factor, which are the non-dimensional 

forms of the heat transfer coefficient, and the fanning friction f factor, which is the non-

dimensional form of pressure drop. Moreover, all results (experimental and 

computational) are compared with Kays and London’ s experiments (1964) and also the 

results of Manglik and Bergles’ s correlations (1995). Results of the study can be 

summarized shortly below; 

 

1. The heat transfer coefficient in an OSF channel increases with increasing Reynolds 

number as in duct flow. As expected, high pressure drop is also observed. 

 

2. The computational results show that a deviation from experiments starts (as an 

under-prediction) at around Reynolds number, 2000 for j factor and 3000 for f factor.  
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3. The flow regimes for the OSFs are explained as 

 

�  For Re < 2000, the flow in OSF channel is steady and mostly laminar thus, only 

the surface interruption increases the heat transfer and the pressure drop because 

the interruptions causes to periodically restart the boundary layers on fin 

surfaces and bound the growth of them 

� At Re ~ 3000, oscillations in the flow start to show an effect on heat transfer and 

pressure drop.  Flow is conjectured to be still laminar but unsteady.  

� Beyond this critical Reynolds number, transverse vortexes that in the wakes are 

shed and at the same time, the oscillations become important. In this regime the 

vortices plays important role to improve the heat transfer by bringing fresh fluid 

from the main region to fin surface. But the swirling flow generated by the 

vortices near the fin surfaces increase the skin friction on them. Thus the 

pressure drop increases  

 

4. The computations indicate that the Colbourn j factor increases with increasing 

Prandtl number. The fanning friction factor-f, for high Prandtl number fluids (water 

and Ethylene Glycol) is almost same although the f factor for Prandtl number of 

nearly one (air) is higher than others.   

5. Using different types of thermal boundary condition, i.e. constant heat flux and 

uniform temperature, does not make any measurable difference in the heat transfer 

and the pressure drop characteristics. 

 

After taking everything into consideration, future works may be suggested as 

 

� Flow visualization analyses should be performed in a scale up model in order to 

determine the all of the flow regimes in an OSF 

� Unsteady analyses should be conducted to obtain the effect of wake flow in 

these type of fins. 
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