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ABSTRACT 

 
EFFECT OF STORAGE TIME ON  

OLIVE OIL QUALITY 

 
This work reports changes in the major quality parameters of Turkish extra 

virgin olive oils stored at room and refrigerator temperatures in dark and monitored for 

14 months. Peroxide values, specific absorbance values, total phenol content, free fatty 

acidity, fatty acid and phenolic profiles of extracted (Erkence and Ayvalık-Edremit) and 

commercial extra virgin olive oil samples (Altınoluk, Ezine, Bayındır and Ortaklar) 

from South and North of the Aegean were determined. The acidity and K232 values of 

samples were within the acceptable limits, the peroxide and K270 values exceeded the 

limits after 7 and 9 months storage. Hydroxytyrosol, tyrosol, caffeic acid, vanillic acid, 

vanilin, p-coumaric acid, ferulic acid, m-coumaric acid, cinnamic acid, luteolin, and 

apigenin were determined as the major phenolics in Turkish extra virgin olive oils. The 

concentration of hydroxytyrosol and tyrosol increased, while a decrease was observed 

in the amounts of other phenolics during storage.  

The highly unsaturated flaxseed oil was mixed with olive oil at 5-15 % levels 

and stored at room and refrigerator temperature to examine the effect of olive oil on the 

oxidative stability of flaxseed oil. 15% olive oil addition to flaxseed oil increased its 

oxidative stability. 

Fourier Transform (FT-IR) spectral data were used to predict the oxidative 

quality parameters, total phenol content and the fatty acid compositions by partial least 

square analysis (PLS). FT-IR spectra of samples subjected to accelerated oxidation were 

examined to determine the bandwidths, which can be considered as the finger-prints of 

the oxidation phenomenon (2924, 2852, 1746-1743, 1163 and 967-976 cm-1).  
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                                     ÖZET 

 
DEPOLAMA SÜRESİNİN ZEYTİNYAĞI KALİTESİ ÜZERİNE 

ETKİSİ 

 
Bu çalışmada, oda sıcaklığı ve buzdolabında 14 ay boyunca depolanan naturel 

zeytinyağlarının başlıca kalite parametreleri, yağ asitleri ve fenolik madde 

kompozisyonlarındaki değişimleri gözlemlenmiştir. Ekstre edilmiş (Erkence ve 

Ayvalık) zeytinyağları ile Kuzey ve Güney Ege bölgelerine ait ticari zeytinyağlarının 

(Altınoluk, Ezine, Bayındır ve Ortaklar) peroksit değerleri, spesifik absorbans değerleri, 

toplam fenol içerikleri, serbest yağ asitliği, yağ asidi ve fenol profilleri belirlenmiştir. 

Zeytinyağı örneklerinin serbest asitliği ve K232 absorbans değerleri kabul edilir sınırlar 

içersinde kalırken, peroksit değerleri ve K270 absorbans değerleri 7 ve 9 aydan sonra 

sınır değerlerini geçmişlerdir. Hidroksitirosol, tirosol, kafeik asit, vanilik asit, m-

kumarik asit, sinamik asit, luteolin ve apigenin Türk naturel sızma zeytinyağlarının 

başlıca fenolikleri olarak belirlenmiştir. Depolama sırasında hidroksityrosol ve tirosol 

miktarları artarken, diğer fenolik maddelerin miktarlarında azalma görülmüştür.   

Yüksek miktarda doymamış yağ asidi içeren keten tohumu yağı % 5-15 

oranlarında zeytinyağı ile karıştırılmış, keten tohumu yağının oksidasyon 

özelliklerindeki değişiklikler gözlenmiştir. %15 oranında keten tohumu yağına eklenen 

zeytinyağı, keten tohumu yağının oksidatif stabilitesini arttırmıştır. 

Oksidasyon kalite parametrelerini, toplam fenol içeriğini ve yağ asidi 

kompozisyonlarını orta bölge kızıl ötesi Fourier Transform (FT-IR) spektra verileriyle 

tahmin etmek için, kısmi en küçük kareler analizi (PLS) uygulanmıştır. Hızlı 

oksidasyona tabi tutulan yağ örneklerinin FT-IR spektrasında oksidasyonun parmak 

izleri olan bant genişlikleri tanımlanmıştır (2924, 2852, 1746-1743, 1163, 967-976 ve 

721 cm-1) . 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 
Olive oil is a very important agricultural product of the Mediterranean region, 

especially, Spain, Italy, Greece, Tunisia, Syria, Turkey and Morocco.  Turkey produces 

4.3% of world’s olive oil and is located in the sixth place in the world both in 

production and consumption (International Olive Oil Council 2007).  

Olive oil’s characteristic aroma, taste, color and nutritive properties, stability 

distinguish it from other edible vegetable oils. Therefore there is a matter of great 

concern for the olive industry to preserve its product without loss of these positive 

attributes. The positive influence of olive oil on health include an improvement in blood 

lipid profile by lowering the bad LDL-cholesterol (Low Density Lipoprotein) level 

while significantly raising the level of good HDL-cholesterol (High density 

Lipoprotein) in the blood stream. Olive oil consumption reduces coronary hearth 

diseases, diabetes, certain cancer risks such as breast, prostate and colon cancers, certain 

malignant tumors (endometrium, digestive tract, skin tumors) and some other chronic 

diseases (Perez-Jimenez, et al. 2007).  

One of the primary causes of loss of olive oil quality is oxidation. Among the 

technological factors that influence the composition and oxidative stability of olive oils, 

the extraction method and storage conditions play a critical role in its quality.  Oxidation 

takes place either in the presence of light (photooxidation) or in the dark (autoxidation) 

and also by the effect of enzymes (enzymatic oxidation). Olive oil is considered to be 

resistant to oxidation in comparison with other vegetable oils because of its low content 

of polyunsaturated fatty acids and the presence of natural antioxidants. Abundance of 

oleic acid, ranging from 56 to 84% of total fatty acids, is the feature that sets olive oil 

apart from other vegetable oils. Olive oil provides a rich source of natural antioxidants. 

These include carotenoids, tocopherols and phenolic compounds which may act, by 

different mechanisms, to confer an effective defence system against free radical attack. 

Although the interest in phenolic compounds is related primarily to their antioxidant 



 2

activity, they also show important biological activity in vivo and may be beneficial in 

combating diseases related to excessive oxygen radical formation exceeding the 

antioxidant defence capacity of the human body (Aparicio, et al. 1999). 

There is a need in developing reliable analytical methods to ensure compliance 

with labeling, i.e. the control of geographical origin giving also support to the 

denominated protected origin policy, and the determination of the genuineness of the 

product by the detection of eventual adulterations, quality maintenance during 

processing and storage periods.  One of the agricultural products designated with the 

Protected Denomination of Origin (PDO) is olive oil. An important European (EU) 

regulation allows the PDO labeling of some EU EVOOs and this designation guarantees 

that the geographical origin of the product is closely in conjunction with the quality of 

the product (Cosio, et al. 2006). Furthermore, the International Olive Oil Council 

(IOOC) and European Communities Legislation (EC) define the identity characteristics 

of olive oil and olive-pomace oil, specify analytical methods and standard limit values 

of the quality parameters such as peroxide value (PV), acidity, UV absorbance values 

(K232 and K270) and organoleptic characteristics (odor, taste and color) for olive oils 

in order to improve product quality, to expand international trade, to raise its 

consumption. In this study, the compliance of Turkish extra virgin olive oil samples to 

these legal limits were reported during storage in order to determine quality.  
Effect of storage conditions, time and their consequences were studied for olive 

oils produced in Europe (Manzi, et al. 1998, Mastrobattista 1990, De Leonardis and 

Macciola 1998, Cinquanta, et al. 1997, Okogeri and Tasioula-Margari 2002, Gomez-

Alanso, et al. 2007, Capino, et al. 2005, Kalua, et al. 2006, Torres, et al. 2006). To our 

knowledge, there are not published studies corresponding to the effect of storage 

conditions and time on quality of olive oils grown in Turkey.  

In this study, oxidative quality of Turkish extra virgin olive oils from different 

geographical region were monitored during 14 months to reveal the changes in chemical 

compositions at different storage conditions. In another phase of this study, flaxseed oil, 

which is known as alpha-linolenic acid (ALA) source and easily oxidized plant oil 

because of its highly poly-unsaturated fatty acid composition, was mixed with olive oil 

and the effect of olive oil on the oxidation of flaxseed oil was determined. Several 

studies about chemical characterization of Turkish olive oils were reported in the 

literature. However, there is a lack of knowledge about the changes in quality 

parameters of Turkish extra virgin olive oils over time. The findings of this study can 



 3

reveal the oxidative properties of Turkish olive oils of different varieties in long term 

storage and also the changes in their phenolic fractions and fatty acid compositions. 
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CHAPTER 2 

 

 

OLIVE OIL AND QUALITY 

 

 
2.1. Olive Oil  
 

 

The olive tree (Olea europea L.) grows in a subtropical climate as a traditional 

main crop in Mediterranean countries. It probably originates from Mesopotamia and has 

been cultivated from many centuries in southern European countries bordering the 

Mediterranean and in North Africa (Murkovic, et. al. 2004). Olive oil is one of the 

oldest known vegetable oils mainly produced in the countries surrounding the 

Mediterranean Sea. It is a natural fruit juice, obtained from the fruit of the tree Olea 

europea, with a unique composition and quality. Beside, olive oil is one of the very few 

oils that can be consumed in its natural form, thus preserving all its natural constituents.  

Olive oil is a key component of the traditional Mediterranean diet, which is 

believed to be associated with a relatively long life in good health. Consumption of 

olive oil has also increased in non-Mediterranean areas because of the growing interest 

in the Mediterranean diet and the tendency of consumers to select least-processed foods. 

Consumers are increasingly demanding that high food quality be maintained during the 

period between purchase and consumption. These expectations are a consequence not 

only of the primary requirement that the food should remain safe but also of the need to 

minimize unwanted changes in sensory quality (Morello, et al. 2003).  

Virgin olive oil quality depends on many factors related to olive tree cultivation 

and to the harvesting, storage and olive processing steps and time. Of particular 

importance for olive oil quality are the olive cultivar, the pedoclimatic conditions of 

cultivation, as well as the pruning, fertilization and irrigation of olive trees. Harvest 

timing can have a significant effect on oil quality as well as on yield, oil stability and 

sensory characteristics. In order to obtain a characteristically fragrant and delicately 
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flavored olive oil, it is imperative that it is properly extracted from undamaged fruits at 

its best degree of ripeness. This illustrates the need to determine the quality of olive oil 

from a range of harvest times and cultivars to establish an optimum harvest time 

(Baccouri, et al. 2006). The maturity of the olives (Olea europaea L.) and the method of 

processing have been shown to contribute to a wide range of quality aspects in oil 

produced within individual olive groves.  

In harvest periods olives are often piled into large heaps and stored at ambient 

temperatures for up to several weeks prior to processing for oil extraction, and during 

this period the greatest deterioration takes place. Pressure within the olive pile during 

storage can cause fluid secretion from the fruit that can provide an optimum medium for 

growth of fungi and bacteria. Under these conditions, anaerobiosis can occur in the 

inner part of the pile while aerobic losses occur in the outer part. Furthermore, heat 

production from respiratory activity may accelerate the deterioration of the fruit and 

eventually cause the breakdown of cell structure. Oil extracted from these damaged 

olives can be high in acidity and low in stability and can develop a high content of 

volatile acids (acetic or butyric) that causes a characteristic musty smell (Agar, et al. 

1998). 

Olive processing consists of the following stages: milling, mixing, pressure or 

centrifugation for classic and centrifugal systems respectively, and separation of the oil 

phase. The centrifugal force produced by high-speed rotating machines increases the 

difference between the specific weight of the immiscible liquid and the solid matter and 

this is used to extract the oil from the olives.  

Proper storage techniques for olive oil are very important, not only to preserve 

the delicate taste of the oil, but also to ensure that it does not spoil and become rancid, 

which will have a negative effect on its nutritional profile. Olive oil can be kept longer 

than any other edible oil, and if stored properly it will take years before it becomes 

rancid. Even though olive oil's monounsaturated fats are more stable and heat-resistant 

than the polyunsaturated fats that predominate in other oils (especially the easily 

damaged omega-3 fatty acids found in flaxseed oil, which should always be refrigerated 

and never heated), olive oil should be stored properly and used within a few months to 

ensure its healthy phytonutrients remain intact and available. Virgin olive oil is more 

stable than other edible oils because of its high content of phenolic compounds, 

tocopherol, carotenoids and monounsaturated fatty acids. On the other hand, high 

quality olive oils are rich in polyphelons, which apart from the health benefits they 
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offer; they can also give a shelf life that is considerably longer.  The most significant 

factors affecting the olive oil quality after processing and during storage are 

environmental, temperature, exposure to light and contact with oxygen. Light is an 

initiator of reactions that ultimately result in deterioration of the oil. Sensitizers such as 

chlorophyll may play a role in promoting photooxidation. The type of packaging has a 

dramatic effect on the shelf life of the oils. Oil that has been carefully processed to 

maximize palatability may be damaged by improper selection of the storage container. 

It is desirable to maintain the product quality at an optimum level for the longest time 

period. Papers concerning the behavior of various packaging materials have been 

published by Mendez and Falque (2006), Koutsaftakis, et al. (1999). Kanavouras, et al. 

(2004), Gutierrez and Fernandez (2002), Cecchi, et al. (2006) studied selected 

characteristic flavor compounds evolved in extra virgin olive oil when packaged in 

various packaging materials and stored under different conditions. Pagliarini, et al. 

(2000) has studied the stability of extra virgin olive oil by different types of bottles and 

under different commercial conditions and proved that it was not significantly 

influenced by different controlled bottling, transport and storage conditions in 

supermarkets. Otherwise, Vekiari, et al. (2007) eludicated that glass acted as a barrier to 

oxygen, which can not pass through it, avoiding the loss of certain components that 

deteriorate under its presence but it allows the direct action of light on the olive oil and 

this could promote oxidative rancidity as a consequence of its sensibility to photo-

oxidation. Therefore, the storage of extra virgin olive oil in PVC bottles, can not be 

suggested as the most appropriate mean for maintaining the quality of the extra virgin 

olive oil. The best containers for storage are glass (especially tinted glass), ceramic, 

porcelain, or non-reactive metals such as stainless steel. Olive oil should not be stored 

in containers made of reactive metals such as copper or iron for the reason of the 

chemical reaction between the olive oil and the metal will damage the oil and may 

produce toxins.  

Olive oil should be stored in a cool, dark place in consideration of accelerated 

oxidation effect of light factor. Caponio, et al. (2005) touched on the influence of light 

on EVOO quality during storage. They concluded that the shelf life of oils exposed to 

light was shorter that the ones kept in dark and after only 2 months of exposure to light 

oils could not be considered as extra virgin. Olive oil can be refrigerated without 

significantly affecting its quality or flavor. Beyond, it should be stored at normal room 

temperature (21-25°C) if olive oil is kept in a dark area where the temperature remains 
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fairly constant.  The stability of olive oil usually ranges 9 to more than 18 months, 

assuming that it is properly stored (Gomez-Alonso, et al. 2007). As olive oil ages, it 

continually degrades and the acidity level rises. Rancidity, a wine smell or taste and a 

metallic flavor are the three key signs which indicate that olive oil is no longer desirable 

for consumption.  

 

 

2.2. Designations and Definitions of Olive Oil 
 

 

Olive oil is produced by mechanical means without using solvents or 

reesterification processes. It is marketed according to the following designations and 

definitions: (International Olive Council 2007) 

Virgin olive oil: The oil obtained from the fruit of the olive tree only by 

mechanical or other physical conditions, peculiarly thermal conditions, that do not cause 

alterations in the oil, and which has not undergone any treatment other than washing, 

decantation, centrifugation, and filtration. Virgin olive oils are classified according to 

free fatty acid content (g oleic acid/100 g olive oil): 

Extra virgin olive oil: Free fatty acidity (expressed as oleic acid) of a virgin 

olive oil should not exceed 0.8 grams per 100 grams. 

Virgin olive oil: Virgin olive oil which has a free fatty acidity (expressed as 

oleic acid), of not more than 2 grams per 100 grams. 

Ordinary virgin olive oil: Virgin olive oil which has a free acidity (expressed 

as oleic acid), should not exceed 3.3 grams per 100 grams.  

Virgin olive oil not fit for consumption as it is, designated lampante virgin 

olive oil:  Virgin olive oil having a free acidity (expressed as oleic acid), more than 3.3 

grams per 100 grams. It is intended for refining or for technological use. 

Refined olive oil: The olive oil obtained from virgin olive oils by refining 

methods which do not alter in the initial glyceridic structure. It has a free fatty acidity 

(expressed as oleic acid), not more than 0.3 grams per 100 grams. 
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Olive oil: The oil consisting of a blend of refined olive oil and virgin olive oils 

fit for consumption. It has a free fatty acidity (expressed as oleic acid), not more than 1 

gram per 100 grams.  

Olive-pomace oil: The oil obtained by treating olive pomace with solvents or 

other physical treatments not including the oils obtained by reesterification processes 

and of any mixture with oils of other kinds. It is marketed in accordance with the 

following designations and definitions:  

Crude olive-pomace oil: Olive pomace oil is intended for refining for use for 

human consumption, or for technical use.  

Refined olive pomace oil: The oil obtained from crude olive pomace oil by 

refining methods which do not alter in the initial glyceridic structure. It has a free fatty 

acidity (expressed as oleic acid), not more than 0.3 grams per 100 grams. 

Olive pomace oil: The oil comprising the blend of refined olive pomace oil and 

virgin olive oils fit for consumption. Free fatty acidity of this oil should not exceed 1 

gram per 100 grams. 

Riviera olive oil: The oil that is obtained by mixing refined olive oil with 

natural olive oil that can directly be consumed as a food. The free fatty acidity should 

not be more than 1.5 gram per 100 gram (Turkish Food Codex 2000). According to EU 

(1991) and IOOC (2007), the mixture of refined and virgin olive oil is named as olive 

oil with free fatty acidity not more than 1 gram per 100 gram. 

 

 

2.3. Olive Oil Chemical Composition 
 

 

Olive oil chemical composition can be classified into two groups as major and 

minor compounds. Nearly 98% fraction of the olive oil structure includes 

triacylglycerols (TAG) and the group of glyceridic compounds made up of free fatty 

acids (FFA) and mono-(MAG) and diacylglycerols (DAG). Minor components that 

constitute about 2% of its composition, which are phospholipids, waxes and esters of 

sterols, aliphatic and triterpenic alcohols, carotenoids, chlorophylls, hydrocarbons, 

antioxidants, volatile compounds etc. Minor compounds play an important role in the 
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quality and purity analyses, in the studies of authentication and genuineness, and more 

recently in olive oil trace ability and health. 

 

 

2.3.1. Major Components  
 

 

Major components of olive oil are also called saponifiable substances which 

include triacylglycerols (TAGs). In a molecule of olive oil, the fatty acids are bound in 

groups of three together with a unit of glycerol. These units are called triacylglycerol 

molecules or TAGs. Only when the fatty acids are bound in these small units are they 

considered to be good quality oil. A triacylglycerol unit may lose one fatty acid to 

become a diacylglycerol and if it loses two fatty acids it is a monoacylglycerol. The 

fatty acid which is lost from the triacylglycerol is then called free fatty acid. The 

glycerol unit can have any three of several fatty acids attached to form TAGs. The 

carbon chains may be different lengths and they may be saturated, monounsaturated or 

polyunsaturated. It is the relative proportion of these that make one oil different from 

another.  

The most important components in olive oil are the fatty acids (Figure 2.1). 

Fatty acids are simple structures made up of long chains of various numbers of carbon 

atoms. There are only a few types of fatty acids in olive oil, but the proportions of each 

strongly influence the characteristics and nutritive value of the oil. The main fatty acids 

in olive oil are comprised between the myristic (14 carbon atoms) and lignoceric (24 

carbon atoms). The most prominent are the monounsaturated oleic and palmitoleic, the 

polyunsaturated linoleic and linolenic. Fatty acid compositions of olive oil, pomace oil 

and extra virgin olive oil are presented in Table 2.1. 

Oleic acid, as the characteristic monounsaturated fatty acid of olive oil, 

constitutes 55-83% of total fatty acids. In point of health aspects, high intake of oleic 

acid in the Mediterranean region was reported to be the reason for decreases in the rates 

of coronary artery disease. Also, olive oil improves the lipid profile of cardiovascular 

risk by decreasing the ratio of LDL/HDL (Martinez-Gonzalez and Sanchez-Villegas 

2004).  
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Figure   2.1. Forms of some fatty acids in olive oil 

(Source: NSW Department of Primary Industries 2006) 
 

 

Table  2.1. Fatty acid compositions of olive oil, pomace oil and extra virgin olive oil 
 

 Olive and olive-pomace oil 
(Turkish Food Codex 2000, 

IOOC 2007) 

Extra virgin olive oil 
(EU 1991) 

Myristic acid (C14:0) ≤ 0.05 ≤ 0.1 

Palmitic acid (C16:0) 7.5-20 - 
Palmitoleic acid (C16:1) 0.3-3.5 - 

Heptadecanoic/margaric  acid (C17:0) ≤ 0.3 - 
Heptadecenoic/margoleic acid (C17:1) ≤ 0.3 - 

Stearic acid (C18:0) 0.5-5.0 - 

Oleic acid (C18:1) 55.0-83.0 - 

Linoleic acid (C18:2) 3.5-21.0 - 

Linolenic acid (C18:2) ≤  0.91 ≤ 0.9 

Arachidic acid (C20:2) ≤ 0.6 ≤ 0.7 

Gadoleic/eicosenoic acid  (C20:1) ≤ 0.4 - 

Behenic acid (C22:0) ≤ 0.22 ≤ 0.3 
Lignoceric acid (C24:0) ≤ 0.2 ≤ 0.5 

1 IOOC states this value as ≤ 1 
2 This value of olive-pomace oil should be ≤ 0.3 
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2.3.2. Minor Components 

 

 

           Sterols: Sterols are nutritionally important lipids that need to be routinely 

determined in foods. 4-desmethylsterols, β-Sitosterol are the predominant sterols in 

olive oils. Minor sterols include ∆5-avenasterol, stigmasterol, sitostanol, and cholesterol. 

The triterpene dialcohols erythrodiol and uvaol are also present in olive oil, at 

concentrations ranging from 10 to 200 mg/kg oil. The predominant sterol was β-

sitosterol and total sterol content depended on the type of oil, and ranged from 687 to 

2.479 mg/kg. Stigmasterol and the amount of erythrodiol plus uvaol can be used in 

order to distinguish between olive oil and seed oil (Martinez-Vidal, et al. 2007). 

Compositional analysis of the sterol fraction of olive oil can be used to assess the degree 

of purity of the oil and the absence of other plant oils. This determination also permits 

characterization of the type of olive oil.  
             Squalene: Squalene is the major olive oil hydrocarbon and  makes up more 

than 90% of the hydrocarbon fraction ranging from 200 to 7500 mg/kg oil or even 

higher (800−12000 mg/kg oil). Squalene is regarded as partially responsible for the 

beneficial effects of olive oil against certain cancers. In a recent study on the content of 

minor constituents of Italian olive oils, derived from olives of six cultivars and different 

degrees of ripeness, it was found that squalene loss during storage of oil samples in the 

dark was greater than that of α-tocopherol (Manzi, et al. 1998). This was attributed to a 

possible regeneration of α-tocopherol from squalene implying thus an antioxidant 

activity of this highly unsaturated hydrocarbon.  
            Pigments: The color of a virgin olive oil is due to the solubilization of the 

lipophilic chlorophyll and carotenoid pigments present in the source fruit. Virgin olive 

oil contains 1.0 to 2.7 ppm β-carotene as well as 0.9 to 2.3 ppm lutein (Psomiadou and 

Tsimidou 2002). Carotenoids and especially β-carotene can slow down oil oxidation by 

light filtering, singlet oxygen quenching, sensitizer inactivation, and free radical 

scavenging. In the absence of light, carotenoids and their oxidation products may act as 

prooxidants in vegetable oils (Velasco and Dobarganes 2002). 
These components can transfer energy from light into chemical molecules. Thus, 

they act as prooxidants during storage in light. Although chlorophylls are strong 

prooxidants under light acting as a sensitizer to produce 1O2, they act as antioxidants in 
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the dark possibly by donating hydrogen to free radical (Endo, et al. 1985, Francisca and 

Isabel 1992). Both chlorophylls and carotenoids are considered to have an important 

role in keeping the quality of edible oils, mainly due to their action as photo-sensitizers 

or singlet oxygen quenchers respectively (Cert, et al. 2000).   

         Tocopherols: There are four natural tocopherols α, β, γ, δ- forms are available in 

olive oil. The α-tocopherol or vitamin E is the major antioxidant present in olive oil and 

the amount is in the range of 150 and 300 ppm. These compounds display antioxidant 

properties and they are active as vitamins (vitamin E), which makes them particularly 

important for human health. The antioxidant activities are mainly depended on their 

concentration and presence of other antioxidants in olive oil. Tocopherols act as singlet 

oxygen quenchers and increase the oxidative stability of vegetable oils during storage in 

light and when chlorophyll is present (Cert, et al. 2000). 

         Phospholipids: The amount of phospholipids in olive oils changes between 40-

135 mg/kg. Phosphatidylcholine, phospatidylethanolamine, phosphatidylinositol, and 

phosphatidylserine, phosphatidylglycerol, phosphatidic acid are the main phospholipids 

detected in olive oils. Their presence in the olive oils oils may affect their oxidative 

stability or the physicochemical state of cloudy (veiled) olive oil. The antioxidant 

functions of phospholipids based on an amino group that has the capacity to chelate 

metals and keep them in an active form. They can act as synergists with phenolic 

compounds and tocopherols contributing to enhance their antioxidant activity (Velasco 

and Dobarganes 2002). Phospholipids have hydrophilic and hydrophobic groups in the 

same molecule. The hydrophilic groups of the phospholipids are on the surface of oil 

and hydrophobic group are in the edible oil. The phospholipids decrease the surface 

tension of edible oil and may increase the diffusion rate of oxygen from the headspace 

to the oil to accelerate oil oxidation (Choe and Min 2006).  
          Phenolic Compounds: VOO contains at least 30 phenolic compounds. The 

major phenolic compounds are oleuropein derivatives, based on hydroxytyrosol which 

are strong antioxidants and radical scavengers. Phenolic compounds are complex class 

of chemicals including a hydroxyl group on a benzene ring. The pulp of olives contains 

these compounds, which are hydrophilic, but they are also found in the oil. The class of 

phenols includes numerous classes, such as simple phenolic acids and derivates like 

vanillic, coumaric and caffeic acids, tyrosol and hydroxytyrosol and more complex 

compounds like the secoiridoids of oleuropein and ligstroside, the lignans (1-
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acetoxypinoresinol and pinoresinol), flavones (apigenin, luteolin). Table 2.2 refers to 

the major phenolic compounds in virgin olive oil. 

 Phenolic acids contains two distinguishing constitutive carbon frameworks, 

namely the hydroxycinnamic and hydroxybenzoic structures. They present in olives 

with the chemical structure of C6–C1 (benzoic acids) and C6–C3 (cinnamic acid) 

(Garrido Fernandez, et al. 1997). Phenolic acids have been associated with color and 

sensory qualities, as well as with the health-related and antioxidant properties of foods 

(Nergis and Unal 1991). Recent interest in phenolic acids stems from their potential 

protective role, through ingestion of fruit and vegetables, against diseases that may be 

related to oxidative damage (coronary heart disease, stroke, and cancers) (Masaki, et al. 

1997). In particular, several phenolic acids such as gallic, protocatechuic, p-

hydroxybenzoic, vanillic, caffeic, syringic, p- and o-coumaric, ferulic and cinnamic acid 

have been identified and quantified in VOO (in quantities lower than 1 mg of analyte 

kg-1 of olive oil). Phenolic acids may be conjugated with organic acids, sugars, amino 

compounds, lipids, terpenoids, or other phenolics.  Bianco, et al. (2002) investigated the 

presence of hydroxy-isochromans in VOO. In fact, during the malaxation step of VOO 

extraction, hydrolytic processes through the activity of glycosidases and esterases 

augment the quantity of hydroxytyrosol and carbonylic compounds, thus favouring the 

presence of all compounds necessary for the formation of isochroman derivatives. Two 

hydroxy-isochromans, formed by the reaction between hydroxytyrosol and 

benzaldehyde or vanillin, have been identified by HPLC-MS/MS technique and 

quantified in commercial VOOs. 

The secoiridoids oleuropein, demethyloleuropein, and ligstroside are the main 

complex phenols in virgin olive oil. Secoiridoids are characterised by the presence of 

elenolic acid in its glucosidic or aglyconic form (Bianco and Uccella 2000). The 

secoiridoids, which are glycosidated compounds, are produced from the secondary 

metabolism of terpenes as precursors of several indole alkaloids (Soler-Rivas, et al. 

2000) and are characterised by the presence of elenolic acid in its glucosidic or 

aglyconic form. Especially, they are formed from a phenyl ethyl alcohol 

(hydroxytyrosol and tyrosol), elenolic acid and, eventually, a glucosidic residue. 

Oleuropein is the ester between 2-(3,4-dihydroxyphenyl) ethanol (hydroxytyrosol) and 

the oleosidic skeleton common to the glycosidic secoiridoids of the Oleaceae. 

Oleuropein and demethyloleuropein are hydrolyzed by endogenous β -glycosidases to 
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the dialdehydic form of elenolic acid linked with 3,4-dihydroxyphenylethanol (3,4-

DHPEA-EDA) and 3,4-dihydroxyphenylethanol-elenolic acid (3,4-DHPEA-EA) during 

crushing and malaxation (Bendini, et al. 2007). 

Hydroxytyrosol, which is the major phenolic alcohol, can be present as a simple 

or esterified phenol with elenoic acid, forming oleuropein and its aglycone, or as part of 

the molecule of verbascoside (Servili, et al. 1999); it can also be present in several 

glycosidic forms, depending on the hydroxyl group to which the glucoside is bound 

(Bianco, et al. 1998, Ryan, et al. 2001). 

Another group of substances present in the phenolic fraction is lignans, (+)-1-

acetoxypinoresinol and (+)-pinoresinol (Owen, et al. 2000). The substance (+)-

pinoresinol is a common compound of the lignan fraction of several plants such as 

Forsythia species and Sesamum indicum seeds, while (+)-1 acetoxypinoresinol, (+)-1-

hydroxypinoresinol and their glycosides have been found in the bark of the Olea 

europeae L. (olive) (Kato, et al. 1998).  

The phenolic compounds in olive oil acted as antioxidants mainly at the initial 

stage of autoxidation (Deiana, et al. 2002) by scavenging free radicals and chelating 

metals. Changes in the phenolic compounds of virgin olive oils during storage are also 

reported. Cinquanta, et al. (1997) studied the evolution of simple phenols during 18 

months of storage in the dark. They found a great increase in the tyrosol and 

hydroxytyrosol contents due to hydrolysis of their complex derivatives in a first stage 

and a rapid loss of hydroxytyrosol as compared with that of tyrosol at the end of the 

storage period. Hydroxytyrosol was the most effective antioxidant in olive oil oxidation. 

Among phenolic compounds, o-diphenols such as caffeic acid are oxidized to quinones 

by ferric ions and become ineffective in inhibiting iron-dependent free radical chain 

reactions in oil (Keçeli and Gordon 2002). However, hydroxytyrosol, tyrosol, vanilic 

acid, p-coumaric acid were not oxidized by the ferric ions. 

Flavonoids also have a great concern because of their beneficial health effects 

related to cancer and coronary heart diseases. Flavonoid aglycones are subdivided into 

flavones, flavonols, flavanones, and flavanols depending upon the presence of a 

carbonyl carbon at C-4, an OH group at C-3, a saturated single bond between C-2 and 

C-3, and a combination of no carbonyl at C-4 with an OH group at C-3, respectively.  

Rovellini, et al. (1997) and Morello, et al. (2005) revealed the luteolin and apigenin in 

flavonoid group of phenolic compounds in VOO. Luteolin may originate from rutin or 

luteolin-7- glucoside, and apigenin from apigenin glucosides. 
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Table 2.2. Major classes of phenolic compounds in VOO 
(Source: Servili, et al. 2004) 

 

 
 

Major classes of  phenolic compounds in VOO 

Phenolic acids and derivatives 

Vanillic acid  

Syringic acid  

p-coumaric acid  

o-coumaric acid  

Gallic acid  

Caffeic acid  

Protocatechuic acid  

p-hydroxybenzoic acid  

Ferulic acid  

Cinnamic acid  

4-(Acetoxyethyl)-1, 2-dihydroxybenzene  

Benzoic acid  

Hydroxy-isochromans  

Phenolic alcohols 

Hydroxytyrosol  

Tyrosol  

(3,4-Dihdroxyphenyl)ethanol-glucoside  

Secoiridoids 

3, 4-DHPEA (3, 4-DHPEA-EDA) 

(p-HPEA-EDA) 

(3, 4-DHPEA-EA)  

Ligstroside aglycon  

Oleuropein  

p-HPEA-derivative  

Dialdehydic form of oleuropein aglycon  

Dialdehydic form of ligstroside aglycon  

Lignans 

(+)-1-Acetoxypinoresinol  

(+)-Pinoresinol  

Flavones 

Apigenin  

Luteolin 
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The concentrations of the phenolic compounds have a great importance through 

these compounds are responsible for the sensory and antioxidant properties of high-

quality olive oils. The quality of the olives and the oil is affected by the amount of 

oleuropein and its hydrolytic products (Limiroli, et al. 1995). Separately, the absolute 

content of the phenolic compounds of the olive oil depends on the place of cultivation, 

the climate, the variety, and the olives’ level of maturation during of harvesting time 

(Cinquanta, et al. 1997, Visioli and Galli 1998, Brenes, et al. 1999).  

Volatile Compounds: Volatile compounds are low molecular weight 

compounds which vapourise readily at room temperatures. Characteristic aroma and in 

particular green and fruity features of olive oil originates from many volatile 

compounds derived from the degradation of polyunsaturated fatty acids through a chain 

of enzymatic reactions known as the lipoxygenase (LOX) pathway which takes place 

during the oil extraction process (Angerosa, et al. 2000, Angerosa, et al. 2004).  

 

 

Table 2.3. Defined major volatile compounds in VOO 
 

aldehydes alcohols esters hydrocarbons ketones furans 

3-Methylbutanal Methanol Methyl acetate Octane 2-Butanone Ethylfuran

(E)-2-Pentenal Ethanol Ethyl acetate 2-Methylbutane 3-Pentanone  

(Z)-2-Pentenal 1-Hexanol Butyl acetate Nonane 1-Penten-3-one  

Hexanal 1-Penten-3-ol Hexyl acetate Hexane 2-Octanone  

(E)-2-Hexenal (E)-3-Hexen-1-ol (Z)-3-Hexenyl-acetate    

(Z)-3-Hexenal (Z)-3-Hexen-1-ol Ethyl propanoate    

Heptanal (E)-2-Hexen-1-ol     

2-4-Heptadienal 1-Octen-3-ol     

Octanal Terpineol     

Nonanal 3-Methylbutan-1-ol     

2,4-Nonadienal      

2,4-Decadienal      

(E)-2-Undecenal      

 

 

 

Some of the volatiles found in virgin olive oil are present in the intact tissue of 

the fruit, and others are formed during disruption of cell structure during the virgin olive 

oil production due to enzymatic reactions in the presence of oxygen. The main 
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precursors of volatile compounds are fatty acids (particularly linoleic and alpha-

linolenic) and amino acids (leucine, isoleucine and valine) (Morales and Tsimidou 

2000). In fact, it has been reported that the concentrations of volatile compounds depend 

on the enzymatic activity (Salas, et al. 2005) though external parameters (e.g. climate, 

soil, harvesting and extraction conditions) may alter the inherent olive oil sensory 

profile (Morales and Aparicio 1999).  
The aroma of olive oil is attributed to aldehydes (hexanal, trans-2-hexenal, 

acetaldehyde), alcohols (methanol, hexan-1-ol, 3-methylbutan-1-ol), esters (methyl 

acetate, ethyl acetate, hexyl acetate), hydrocarbons (2-methylbutane, hexane, nonane), 

ketones (2-butanone, 3-methyl-2-butanone, 3-pentanone), furans and other undefined 

volatile compounds. The major volatiles in virgin olive oils are C6 and C5 volatile 

compounds (Angerosa, et al. 2004, Cimato, et al. 2006). Table 2.3 also demonstrates the 

major volatile compounds identified in VOO.  

Volatile compounds, whether major or minor, contribute olive oil quality 

crucially and provide useful quality indicators. Beside volatile compounds, non-volatile 

compounds such as phenolic compounds also stimulate the tasting perception of 

bitterness, the latter pungency, astringency and metallic attributes. 

 

 

2.4. Quality of Olive Oil 
 

 

Quality is defined as the combination of attributes or characteristics of a product 

that have significance in determining the degree of acceptability of that product by the 

user. Olive oil quality may be defined from commercial, nutritional or organoleptic 

perspectives. The nutritional value of EVOO originates from high levels of oleic acid 

content and minor components, such as phenolic compounds, whereas the aroma is 

strongly influenced by volatile compounds. Nutritional value and unique pleasant flavor 

promotes consumption demands and price of olive oil in comparison with other edible 

oils. In order to fulfill the expectations of consumers, good quality control of olive oil 

should be assured in the course of production and storage line. The quality of olive oils 

is maintained in terms of measurement of analytical parameters for which certain limit 

values are set. 
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The International Olive Oil Council, which was created by olive oil producing 

countries to raise olive productivity and improve olive oil quality, has proposed a 

conventional index which expresses numerically the quality of the oil and provides 

indirectly a warranty for its authenticity. The International Olive Oil Council  and the 

EEC have designated the quality of olive oil, based on parameters that include free fatty 

acid (FFA) content, peroxide value (PV), UV specific extinction coefficients (K232 and 

K270) and sensory score. Especially, the quantity of FFA is an important factor for 

classifying olive oil into commercial grades. Apart from the quality parameters that 

IOOC and EEC defined, the changes in major and minor compounds and their 

concentrations in olive oils give an idea for providing and improving quality of olive 

oil, especially for storage, marketing and packaging issues. In order to protect producers 

of high quality olive oils and ensure consumer awareness of product quality, European 

Community legislation has introduced the Protected Designation of Origin (PDO) mark 

that allows the labeling of virgin olive oils with the names of the areas where they are 

produced. This certification increases the oil value. The question of geographical 

identification becomes more interesting when it regards small production areas, where 

high quality products are often obtained.  

Finally, during storage of the oil the hydrolysis, esterification and oxidation also 

originate changes in the minor constituents. Accordingly, the determination of the minor 

constituents is essential for the analytical assessment of the quality, origin, extraction 

method, refining procedure and adulteration of the olive oils. In the following sections, 

the quality parameters of olive oil that are used to define oxidative quality of olive oil 

and its color.  

 

 

2.4.1. Acidity Determination (Free Fatty Acid Content) (FFA) 

 

 

The acidity expresses the percentage content (in weight) of the free fatty acids in 

the oil under examination. Free fatty acids are normally present also in oils  when the 

triglycerides are formed, there is a progressive increase in acidity due to the action of 

enzymes (lipase) naturally present in the olive fruit, which help the fatty acids to detach 

from the molecule of triglyceride (lipolysis). The lipolytic action of lipase produces free 
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fatty acids which are responsible for the acidity of the oil. The same lipolytic action can 

be caused by enzymes produced by micro-organisms which grow on the fruit. Thus, in 

order to obtain a product which is organoleptically better and has lower acidity, it is 

necessary to preserve the olives well. Consequently, FFA reflects the stability of oil and 

its susceptibility to rancidity. 

Acidity determination is mainly accomplished by titration using potassium 

hydroxide. The method determines the amount of free fatty acids (FFA) present in the 

oil, which is expressed as percentage of oleic acid. The free fatty acidity is a measure of 

the quality of the oil, and reflects the care taken in producing and storage processes of 

the oil. As well, acidity values are used as a basic criterion for classifying the different 

categories of olive oil. In contrast, according to Kiritsakis, et al. (1998), acidity is not 

considered as the best criterion for evaluating olive oil quality, since one oil with 

relatively high acidity may have a good aroma while another one with low acidity may 

not have so good a taste and aroma. For extra virgin olive oil the maximum acidity is 

0.8%, according to EU (European Union Commission 1991).  

 

 

2.4.2. Peroxide Value (PV) 

 

 

Peroxide value (PV) is a measure of total peroxides in olive oil expressed as 

miliequivalent of O2 kg−1 oil (meq O2 /kg oil) and so this value is known as a major 

guide of quality. The official EU method is based on the titration of iodine liberated 

from potassium iodide by peroxides present in the oil. In other words, the peroxide 

value is a measure of the active oxygen bound by the oil which reflects the 

hydroxyperoxide value, and is one of the simplest measures of the degree of lipid 

peroxidation. The higher the number means the greater degradation due to oxidation. 

Peroxide value usually increases gradually over time after pressing. The upper standard 

value of the peroxide is 20 meq O2 /kg oil.  The upper standard peroxide indexes, which 

are established by European Regulation for other types of olive oil, are displayed in 

Table 2.4. In general, peroxide levels higher than 10 may mean less stable oil with a 

shorter shelf life (Nouros, et al. 1999). 
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2.4.3. Specific Absorption Coefficients (UV Absorbance Values) (K232   

and K270) 

 

 

Determination of the specific absorption coefficients (specific extinction) in the 

ultraviolet region is needed for estimating the oxidation stage of olive oil. The 

absorption at specified wavelengths at 232 and 270 nm in the ultra violet region is 

related to the formation of conjugated diene and triene in the olive oil system, due to 

oxidation or refining processes. Compounds of oxidation of the conjugated dienes 

contribute to K232 while compounds of secondary oxidation (aldehydes, ketones etc.) 

contribute to K270 (Kiritsakis, et al. 2002). The upper standard UV absorbance values 

are shown in Table 2.4. 

 

 

Table  2.4.  European Regulation Standard limit values for olive oil quality parameters 
 

 
Quality Indexes 

 
Acidity 

(oleic acid 
%) 

 
Peroxide Index 

(meq/kg) 

 
K232 

 
K270 

EVOO ≤ 1.0 ≤ 20 ≤ 2.5 ≤ 0.20 

VOO ≤ 2.0 ≤ 20 ≤ 2.6 ≤ 0.25 

Ordinary VOO ≤ 3.3 ≤ 20 ≤ 2.6 ≤ 0.25 

Lampante olive oil > 3.3 > 20 ≤ 3.7 > 0.25 

Refined olive oil ≤ 0.5 ≤ 5 ≤ 3.40 ≤ 1.20 

Olive oil ≤ 1.5 ≤ 15 ≤ 3.30 ≤ 1.00 

Crude olive-pomace oil > 0.5 - - - 

Refined olive-pomace oil ≤ 0.5 ≤ 5 ≤ 5.5 ≤ 2.5 

Olive-pomace oil ≤ 1.5 ≤ 15 ≤ 5.3 ≤ 2.0 
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2.4.4. Anisidine Value (AV) 

 

 

Anisidine value (AV) determination is an empirical test for assessing advanced 

oxidative rancidity of oils and fats. It estimates the secondary oxidation products of 

unsaturated fatty acids, principally conjugated dienals and 2-alkenals. Aldehydes are 

largely considered responsible for the off-flavors in fats and oils due to their low 

sensory threshold values. The AV test is particularly useful for oils of low peroxide 

value (PV) and for assessing the quality of highly unsaturated oils. The test involves a 

condensation reaction between the conjugated dienals or 2-alkenals and p-anisidine to 

form colored products. The AV is empirically defined as 100 times the absorbance of a 

solution resulting from 1 g of fat or oil mixed with 100 mL of isooctane/acetic acid/p-

ansidine reagent, measured at 350 nm in a 10 mm cell under the conditions of the test. 

As the absorbance maximum shifts towards longer wavelengths with increasing 

unsaturation and as the color intensity is greater with conjugated dienals than 2-

alkenals, the absorption maximum varies from oil to oil. The AV obtained is only 

comparable within each type of oil. In spite of the low specificity of the AV test and has 

no a standard limit in olive oil codex, it is reported as a very useful indicator of oil 

quality and complements the PV test (Labrinea, et al. 2001).  

 

 

2.4.5. Iodine Value (IV) 
 

 
Iodine value is a measure of the unsaturated linkages in fat and is expressed in 

terms of percentage if iodine absorbed. The decline in iodine value can be used to 

monitor lipid oxidation. The unsaturated fatty acid residues of the glycerides react with 

iodine, and thus the iodine value indicates the degree of unsaturation of the fatty acid 

residues of the glycerides. The iodine value is often most useful in identifying the 

source of an oil. Generally, the higher iodine values indicate oils and the lower values 

fats. Iodine values are normally determined using Wijs or Hanus methods. 
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2.4.6. Color 
 

 

Color is a sensory property with a strong influence on food acceptance as it 

contributes decisively to the initial perception that one can acquire of the condition, 

ripeness, degree of processing, and other characteristics of foods (Alos, et al. 2006). As 

virgin olive oil is a natural product whose color depends exclusively on biological 

compounds such as the chlorophyll and carotenoid pigments, their identification and 

individual evaluation make it possible to relate oil color with the content and type of 

these compounds present.  

 

 

 
 

Figure  2.2.  Coordinates of chromatic components of L*, a*, b* 
(Source: Hunterlab 2008) 

 

 

Oil appearance might be an indicator of a quality problem having occurred 

during blending, storage, crushing, and extraction or the refining process. The American 

Oil Chemists’ Society (AOCS) has proposed four official methods for the color 

determination of fats and oils. Related methods are Lovibond color, Wesson color, 

spectrophotometer color and chlorophyll color. Presently, CIE L*a*b*, XYZ, Hunter 

Lab, and RGB (Red, Green, Blue) are the alternative color models that might be used in 

objective oil color evaluation. L*a*b* is an international standard for color 
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measurements, adopted by the Commission Internationale d’Eclairage (CIE) in 1976. 

L* is the lightness component ranging from 0 to 100. a* refers to the color ranges from 

green to red and b* displays the colors from blue to yellow. These two chromatic 

components range from -120 to 120 (Figure 2.2).  

 

 

2.5. Instrumental Techniques in Olive Oil Analysis  
 

 

2.5.1. Fourier Transform Infrared Spectroscopy (FT-IR) 

 

 

The infrared (IR) spectra contain significant information about the individual 

components of complex mixtures; Fourier transform infrared (FT-IR) spectroscopy is 

able to enhance greatly the quantitative analysis capabilities of IR spectroscopy. It has 

an important role in the analysis of edible oils by yielding simpler and more rapid 

techniques for determining common oil quality parameters and identification of 

molecular structure originates from the high information content of IR spectra and to 

assign specific absorption bands refers to functional groups. The FT-IR spectroscopy 

technique brings in several advantages in comparison with the dispersive IR technique: 

improvement in the signal-to-noise ratio, higher resolution and accuracy in wavelength 

measurement, as well as advantages in storing and manipulating data, among others. For 

these reasons, the application of FT-IR spectroscopy is acquiring a great concern in the 

study of edible fats and oils. Recently, methods have been improved for determination 

of iodine value and saponification number (Van der Voort, et al. 1992), free fatty acids 

(Ismail, et al. 1993), peroxide value (Van der Voort, et al. 1994),  fatty acid composition 

(Maggio, et al. 2008) and cis-trans content (Van der Voort, et al. 1995) of edible oils 

from FT-IR.  

This technique is also able to characterize edible oils with multivariate statistical 

techniques such as partial least square (PLS) and principle component analysis (PCA), 

which allows accenting the differences between spectra, and the classification of the 

samples. Bendini, et al. (2007) discriminated the VOO samples from Italy by FT-IR and 

PCA techiques. Moreover, this technique has shown to be a useful tool in detecting 
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mixtures or adulterations. The degree of unsaturation of oils and fats can be determined 

by infrared spectroscopy, from the ratio of absorbances of olefinic and aliphatic –C–H 

stretching vibration bands or from the absorbance of a single band such as the –C=C– 

stretching band at 1658 cm-1 or the olefinic band at 3007 cm-1, although, in these cases, 

only cis- unsaturation is taken into account. The degree of unsaturation is closely related 

to the iodine value and can be determined by means of calibrations between both 

parameters including cis- and trans- unsaturations. 

Other important parameter for oils such as saponification number can be 

determined from infrared spectra by means of calibrations applying partial least square 

analysis (PLS) to several spectral regions. Determination of FFA content has also been 

carried out by infrared spectroscopy through quantification of the intensity of the band 

at 1710 cm-1 by different methods or of the band at 1570 cm-1 after derivatisation of the 

sample to obtain carboxylate anions. Parameters related to the concentration of primary 

or secondary oxidation products of oils and fats, such as peroxide value and anisidine 

value, can also be obtained from infrared spectroscopic data in combination with PLS 

calibrations in good agreement with chemical methods. This technique has shown to be 

useful to monitoring the oil oxidation process. 

At higher frequencies between 3400 and 3700 cm-1, the bands observed in the 

spectrum of edible oil can be related to the –OH stretching vibration of water (H–OH), 

hydroperoxides (ROOH) and their breakdown products, namely alcohols (ROH). The 

2850–3025 cm-1 region is known as the absorption zone of C–H stretching vibration of 

methylene and terminal methyl groups of fatty acid chains. In the center of the 

spectrum, a band due to the C=O stretching absorption of the triglyceride ester linkages 

is present. Vlachos and co-workers (2006) evidenced that both the spectral region 

between 3050 and 2740 cm-1  and the band at 1746 cm-1 undergo several changes 

(because of the production of saturated aldehydes functional groups or other secondary 

oxidation products) during the oxidation process of corn oil samples heated at various 

temperatures or/and exposed to UV radiation. At lower frequencies (1650–1500 cm-1), 

the carbonyl absorption bands of aldehydes (R–CHO) and ketones (R–CO–R) can be 

observed. The next region (1500–900 cm-1) is the so-called “fingerprint region” because 

the pattern of the bands is particularly characteristic of molecular composition and can 

be used to identify minor substances (Table 2.5). 
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      Table 2.5. Frequencies of bands (b) or shoulders (s) of some edible oils and fats in              
infrared spectra  (Source: Guillen and Cabo 1997) 

 

 
 

 

2.5.2. Gas Chromatography (GC) 

 

 

Gas chromatography (GC) is a powerful and widely used tool for the separation, 

identification and quantitation of components in a mixture. In this technique, a sample is 

converted to the vapor state and a flowing stream of carrier gas (often helium or 

nitrogen) sweeps the sample into a thermally-controlled column. In the case of gas-

liquid chromatography, the column is usually packed with solid particles that are coated 

with a non-volatile liquid, referred to as the stationary phase. As the sample mixture 

moves through the column, sample components that interact strongly with the stationary 
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phase spend more time in the stationary phase vs. the moving gas phase and thus require 

more time to move through the column.  

Retention time is defined as the time from injection of the sample to the time a 

specific sample component is detected. Components with higher volatility (lower 

boiling points) tend to spend more time in the moving gas phase and therefore tend to 

have shorter retention times. After exiting the column the separated components are 

detected and a detector response is recorded (Figure 2.3).  
The most application field of GC in olive oil analysis is the determination of 

methyl esters of fatty acids. The aim of this determination is to establish the percentage 

composition of fatty acids in olive oil, more commonly known as fatty acid 

composition, which is influenced by the olive variety, production zone, climate and 

stage of maturity of the drupes when they are collected. Determination of fatty acid 

composition of olive oil is not only a quality indicator but also is used for classification 

and characterization of the oils. Some studies have been carried out with the aim of 

characterizing particular productions of olive oil, which have given great importance to 

the fatty acid profile.  Kotti, et al. (2008) characterized the two varieties Chetoui and 

Chemlali from Tunisian, Poiana and Mincione (2004) evaluated the fatty acid and 

compositions of olive oils extracted from different olive cultivars grown in Calabrian 

area. Ollivier, et al. (2006) differentiated the French virgin olive oil by fatty acid 

compositions and triacylglycerol and sensory characteristics. Additionally, Spugnoli et 

al. (1998) characterized the fatty acid profile of some monovariety olive oils from 

Tuscany. Stefanoudaki, et al. (1999) made classification virgin olive oils of the two 

major Cretan cultivars based on their fatty acid composition. Gurdeniz, et al. (2008) had 

an investigation related to classification of Turkish olive oils with respect to with 

respect to cultivars, geographic origin and harvest year, and using fatty acid profile and 

mid-IR spectroscopy. The fatty acid profile evolution of oils produced by typical 

Spanish olive cultivars like Picual and Hoijblanca (Gutierrez, et al. 1999) and Moroccan 

Picholine (Ajana, et al. 1998) has also been studied. 
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Figure   2.3. Schematic representation of a system for gas chromatography 
(Source: Oliveoil 2003) 

 

 

Apart from fatty acid compositon of olive oil, sterols, triglycerides and the 

volatile compounds are also analyzed by using various GC methods and combined 

chromatographic methods. For instance, GC-MS technique was used for detection of 

phenols, secoroids and sterols (Angerosa, et al. 1996, Cinquanta, et al. 1997). Capillary 

GC has also been used to separate triglycerides, not only according to their carbon 

number but also by their degree of unsaturation. Finally, solid-phase micro extraction 

(SPME) method coupled to GC–MS and GC–FID combined technique is effective for 

isolation and the characterization of volatile components in olive oil. Characterization 

of VOO from Tunisia according to their volatile componds using SPME- GC method 

was achieved by Zarrouk, et al. (2007) and Manai, et al. (2007).  

 

 

2.5.3. High Performance Liquid Chromatography (HPLC) 

 

 

HPLC is a chemistry based tool for quantifying and analyzing mixtures of 

chemical compounds which is used to find the amount of a chemical compound within a 

mixture of other chemicals. High performance liquid chromatography (HPLC) has the 
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ability to separate, identify and quantitate the compounds that are present in any sample 

that can be dissolved in a liquid. 

 

 

 

Figure  2.4. Schematic representation of a system for high performance liquid 
chromatography (Source: Oliveoil 2003) 

 

 

HPLC and combined chromatographic methods has a great emphasis in olive oil 

analysis techniques. Several minor components of olive oil such as phenolic 

compounds, pigments, sterols, tocopherols and triacylglycerols can be identified and 

quantitated with this technique. Reversed-phase high performance liquid 

chromatography (RP-HPLC) currently is the most popular and reliable technique for the 

determination of phenolic compounds. Numerous mobile phases have been employed 

with different modifiers, which include methanol, acetonitrile or tetrahydrofuran, acids 

(acetic or formic) and/or salt (ammonium phosphate) (Ryan, et al. 1999). Detection is 

typically based on the measurement of ultraviolet (UV) absorption, usually at 280 nm, 

which represents a suitable compromise as most phenols absorb considerably at this 

wavelength (Ryan and Robards 1998). Several compounds such as: tyrosol, 

hydroxytyrosol, phenolic acids, (ferulic, syringic, caffeic and p-coumaric), oleuropein 

aglycone, deacetoxyoleuropein aglycone, elenolic acid and derivatives, other 
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secoiridoid compounds and flavone aglycones (luteolin and apigenin), have been 

identified by HPLC in olive oils obtained from different olive cultivars in many studies. 

Phenolic compounds in Spanish VOO were characterized by HPLC. Simple phenols 

such as tyrosol, hydroxytyrosol, vanilic acid, p-coumaric acid, ferulic acid and vanilin 

were detected. The flavonoids apigenin and luteolin; the dialdehydic form of elenolic 

acid linked to tyrosol and hydroxytyrosol were found in most Spanish olive oils 

(Brenes, et al. 1999). Gomez-Rico, et al. (2008) also evaluated the effect of cultivar and 

ripening stage of olive fruit on the phenolic profile of six different Spanish varietes by 

HPLC analysis. The phenolic compounds present in 29 samples of Portuguese olive 

fruits were analyzed by RP-HPLC method by Vinha, et al. (2005). Ocakoglu, et al. 

(2008) depicted phenolic characterization of Turkish olive oils.  

RP-HPLC method was also used to determine carotenoids in olive oil, lutein and 

β-carotene as major pigmets in concentrations varying with the type of oil and process 

of manufacture. Cichelli and Pertensana (2004) distinguished the VOO according to 

their pigments such as chlorophylls, pheophytins and carotenoids by using HPLC with 

fluorescence detection, alternatively, triglycerides can be analyzed by RP-HPLC 

coupled with refractive index (RI). Percentage determination of the various triglycerides 

present in virgin olive oil or high performance liquid chromatography offers a way of 

detecting possible adulterations with oils which, while having a similar fatty acid 

composition to olive oil, have a different triglyceride composition. Canabate-Diaz, et al. 

(2006) applied the LC-MS with atmospheric pressure chemical ionisation (APCI) and 

evaluated for the first time identification and characterization sterol fraction in the olive 

oil sample. In the result of this study, a sufficient separation of cholesterol, stigmasterol, 

b-sitosterol, sitostanol, fucosterol, erythrodiol and uvaol was achieved. 

HPLC is the most common methodology used for the analysis of tocopherols 

and tocotrienols. Cunha, et al. (2006) compared the three different HPLC detection 

systems, which are fluorescence and diode array connected in series, ultraviolet, and 

evaporative light scattering for determination of tocopherols and tocotrienols in 18 

samples of Portuguese olive oils. The best results were obtained with the fluorescence 

detector in the quantification of tocopherols and tocotrienols.  
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2.5.4. Electronic nose (e-nose) 

 

 

Electronic nose is a system that mimics the human olfaction by combining the 

response of a set of chemical sensors with partial specificity for the measurement of 

volatiles and develops techniques to recognize patterns for data interpretation (Gardner 

and Bartlett 1993).  Electronic nose combined with pattern recognition techniques; offer 

a fast, simple and efficient tool for classification purposes. The electronic nose consists 

of an array of gas sensors, a signal collecting unit and pattern-recognition software. The 

principle is the transfer of the total headspace containing different chemical volatile 

compounds to a sensor array, where each sensor has partial specificity to a wide range 

of aroma molecules. 

  In food industry it has been applied for assessment of food properties 

(Brezmes, et al. 2001, Garcia-Gonzalez and Aparicio 2003, Guadarrama, et al. 2000), 

detection of adulteration (Oliveros, et al. 2002), sensory properties prediction (Buratti, 

et al. 2007). Application of this method has advantages of cheapness, no time-

consuming, simplicity, little or no sample pre-preparation. There has been several 

researchs for usage of e-nose in characterization and differentiation of olive oils in 

regard to their geographical origin (Guadarrama, et al. 2001, Cosio, et al. 2006, 

Oliveros, et al. 2002)  and determination the quality control of olive oil aroma profiles 

(Guadarrama, et al. 2001). 

 

 

2.5.5. High-Resolution Nuclear Magnetic Resonance (H-NMR) 

Spectroscopy 

 

 

H-NMR is useful for a variety of quantitative analytical purposes in the 

chemistry of fats and oils. This technique is mainly focused on the quantitative 

information that can be obtained from the oils by H-NMR spectra, which regards minor 

and major components. One or two dimensional high-resolution NMR spectroscopy has 

been recognized as a viable technique to analyze oils for their fatty acid composition, 

authenticity, adulteration and nature of unsaturation. Mannina, et al. (2001) cited the 
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wide application of H-NMR in monitoring olive oil quality and adulteration by 

determination of the free acidity, fatty acid profiles, unsaturated fatty acids, phenolic 

compounds, aldehydes and volatile compounds, sterols, squalene and chlorophyll and 

monitoring oxidation of olive oil, analysis of mixtures of olive oil with other fatty 

compounds.     

The unsaturated fatty acids (oleic, linoleic, linolenic) in oil can be quantified 

using H-NMR. The results agree well with GC conducted as a control, although 

reportedly 13C-NMR results correlate even better with GC (Miyake, et al. 1998). Rezzi, 

et al. (2005) studied the profile of olive oil samples in relation to its geographical origin 

and processing with the combination of H NMR fingerprinting with multivariate 

analysis. Petrakis, et al. (2008) also analyzed the olive oils by means of 1H and 31P 

NMR spectroscopy and characterized according to their content in fatty acids, 

phenolics, diacylglycerols, total free sterols, free acidity, and iodine number. 

 

 

2.5.6. Differential Scanning Calorimetry (DSC) 

 

 

Differential scanning calorimetry (DSC) is a solventless, simple and relatively 

inexpensive method used to examine the physical state and properties of food 

components. Modified DSC can adequately describe changes related to the level of 

oxidation due to structural conformations of the triacylglycerols and their oxidation 

derivatives inside the olive oil mass. Since this technique is sensitive to composition 

changes resulting from oxidation, it could be used as a rapid and effective method to 

characterize the quality of olive oil at different degrees of oxidation (Kiritsakis, et al. 

2002). Kanavouras, et al. (2004) applied modulated DSC to extra virgin olive oil and to 

oil subjected to various accelerated oxidation treatments. They found a very good 

correlation between thermograph parameters selected for the main crystallization peak 

and the various off-flavors derived mainly from the oleic acid degradation. Thermal 

properties (measured both in cooling and heating regimes) of monovarietal EVOO 

samples were found to correlate well with the chemical composition (Chiavaro, et al. 

2008). DSC has application in assessment of olive oil adulteration with other vegetable 

or seed oils of lower quality and/or economic value. Jimenez-Marquez (2003) evaluated 
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DSC heating thermograms of admixtures of virgin olive oil with low-quality olive oils: 

melting transition enthalpy and peak temperatures discriminated virgin olive oil from 

other olive oils, as well as from their admixtures. 
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CHAPTER 3 

 

 

OLIVE OIL OXIDATION 

 

 
Extra virgin olive oil, is one of the few oils being consumed without any 

chemical treatment, has high resistance to oxidative deterioration mainly due to two 

reasons; 

1) Its fatty acid composition which is characterized by a high monounsaturated 

to polyunsaturated ratio, 

2) The presence of certain minor components is equally significant and initial 

content of natural antioxidants, especially phenolic compounds (total polyphenols, o-

diphenols or olesidic forms of hydroxytyrosol) carotenoids, tocopherols, and 

polyphenols are natural antioxidants that delay the oxidation of lipids and the 

production of the undesirable volatile compounds (Gutierrez, et al. 2002, Velasko and 

Dobarganes 2002). 

Olive oil quality and stability are principally affected by lipid oxidation, a 

general term for a complex process that results in generation of off-flavour and 

reduction in nutritional value and causes health risks. This deterioration is characterized 

by physicochemical changes, a marked decrease in the nutritional value, an unpleasant 

flavor called “rancid,” and even some toxicity. The process is complex because of the 

influence of multiple factors, such as light, temperature, enzymes, and metals. 

Furthermore, it always takes place by the same mechanism: chain reactions involving 

free radicals, which are called autoxidation. The oxidation taking place in light is known 

as photooxidation (Gutierrez, et al. 2002). 

The oxidation level of oil is an important quality criteria for food industry. As 

stated before, oxidation of oils not only produces rancid flavours but also decrease the 

nutritional quality and safety by the formation of oxidation products, which may play a 

role in the development of diseases (Muik 2005). Lipid peroxidation has been proposed 

as a possible mechanism in production of toxic compounds which causes lung damage. 

In addition to this effect, reactions between peroxidized lipids and proteins have been 
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shown to cause loss of enzyme activities, polymerization, accelerated formation of 

brown pigments and the destruction of essential amino acids such as histidine, lysine, 

tryptophan and methionine. Aldehydes, ketones, hydrocarbons and furans, which are 

known as the cleavage products of hydroperoxides, cause reduction in protein solubility, 

and reduction in nutritional value of proteins, too. As well, lipid oxidation provokes a 

decrease in nutritional values of some vitamins such as A, D, E and K. From the health 

point of view, lipid radicals and oxidation products contribute formation of some 

diseases such as aging, DNA damage, parkinsonism, carcinogenesis, tumor formation 

and coronary heart diseases.  

 

 

3.1. Mechanisms of Lipid Oxidation  
 

 

As lipids oxidize, they form hydroperoxides, which are susceptible to further 

oxidation or decomposition to secondary reaction products, such as aldehydes, ketones, 

acids, and alcohols. In many cases, these compounds adversely affect flavor, aroma, 

taste, nutritional value, and overall quality. Many catalytic systems, including light, 

temperature, enzymes, metals, metalloproteins, pigments, and microorganisms, can 

accelerate lipids oxidation. Most of these reactions involve some type of free radical 

and oxygen species. The oxidation can be produced either in the dark (autoxidation) or 

in the presence of light (photooxidation), or the process of oxidative deterioration can 

occur by the effect of enzymes (Harwood and Aparicio 2000). 

 

 

3.1.1. Lipid Autoxidation 

 

 

The many catalytic systems, which are light, temperature, enzymes, metals, 

metalloproteins, pigments, and microorganisms, stimulate oxidation mechanism of 

lipids. In these reactions, many free radicals and oxygen species, such as singlet oxygen 

are involved. The main substrates for these reactions are unsaturated fatty acids and 

oxygen.   
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The free radical mechanism of lipid oxidation is usually described as three 

stages of initation, propagation, and the termination steps. Free radicals are produced 

during peroxide formation - hydroperoxides are the highly reactive substance defined as 

a molecular entity having single unpaired electron.  

1. Initiation - formation of free radicals: In initation stage of autoxidation, free 

radicals are formed directly from lipid components where initiator, such as temperature, 

light, and other radicals or metals, are involved. In other words, initiation takes place by 

the abstraction a hydrogen radical from the allylic methylene group in double bonds of 

unsaturated fatty acids and results in formation of lipid free radical. 

 

RH               R•   +    H •                                          (3.1) 

 
Initiation starts with the abstraction of a hydrogen atom adjacent to a double 

band in a fatty acid (RH) molecule, and this may be catalyzed by light, heat, or metal 

ions to form a free radical.  Direct reaction of fatty acid molecule with oxygen does not 

take place frequently, because of the high activation energy.  

     The resultant free radical (R•) reacts with atmospheric oxygen to form an 

unstable peroxy free radical (ROO •), which may in turn abstract a hydrogen atom from 

another unsaturated fatty acid to form a hydroperoxide (ROOH) and a new alkyl free 

radical initiates further oxidation and contributes to the chain reaction. This chain 

reaction is called propagation stage of autoxidation. The chain reaction may be 

terminated by formation of nonradical products resulting from combination of two 

radical species.  

 

R• + 3O2                       ROO •   (3.2) 

ROO • + RH                ROOH + R•  (3.3) 

 

2. Propagation - free-radical chain reaction: The propagation stage in 

autoxidation process includes an induction period when hydroperoxides formation is 

minimal. The rate of oxidation of fatty acids increases in relation to their degree of 

unsaturation. The relative rate of autoxidation of oleate, linoleate, and linolenate is in 

order of 1:40-50:100 on the basis of oxygen uptake and 1:12:25 on the basis of peroxide 

formation. Therefore, oils that contain high proportions of polyunsaturated fatty acids 
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may experience stability problems. The breakdown products of hydroperoxides, such as 

alcohols, aldehydes, ketones, furans, esters, lactones and hydrocarbons, generally cause 

off-flavors. These compounds may also interact with other food components and change 

their functional and nutritional properties (Akoh and Min 2002). 

3. Termination - formation of nonradical products: In termination stage of 

the autoxidation, free radicals interact or react with each other and turn to normal state 

cause formation of non-radicals (R – R, ROOR).  

 

R • + R •                       R -  R   (3.4) 

R• + ROO •            ROOR  (3.5) 

ROO • + ROO •              ROOR + O2  (3.6) 

 

 

3.1.2. Photooxidation 

 

 

Another important way of oxidation involves exposure to light and a sensitizer 

such as chlorophyll. Exposure to light can cause formation of hydroperoxides when 

both oxygen and the photosensitizer are present. The process of formation of 

hydroperoxides can take place by photooxidation and photolytic autoxidation. This 

process is initiated and propagated by the free radical reactions, and similar isomers of 

hydroperoxide are formed as during autoxidation without light.   

Photooxidation of olive oil in the presence of naturally occurring chlorophyll 

pigments produces singlet oxygen, which acts with unsaturated fatty acids and produces 

fatty acid hydroperoxides. This photooxidation results in a change in color and because 

of the formation of hydroperoxide decomposition products, develops undesirable odor 

and flavor constituents (Rahmani and Csallany 1998).   

During photosensitized oxidation, energy is transferred from light to the 

sensitizer and into oxygen as follows: 

 

sensitizer ground + hv                       sensitizer excited (3.7) 
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Energy (hv) is transferred from light onto sensitizer (sensitizerexcited), as seen in equation 

(3.7) which, in turn, can react directly with lipid (RH)-forming radicals (R•), which, in 

turn, initiate autoxidation.  

 

sensitizer excited + RH                     sensitizer H + R •  (3.8) 

 

More damaging is the reaction of excited sensitizer with ground state oxygen to form 

singlet oxygen. 

 

sensitizer excited + 3O2                         sensitizer ground + 1O2  (3.9) 

 

The transformation of energy onto an acceptor, unsaturated fatty acid, causes formation 

of a hyroperoxide.  

 
1O2     +   RH                     ROOH +    3O2  (3.10) 

 

Singlet oxygen has been found to react with linoleic acid about 1500 times faster 

than does normal oxygen (Harwood and Aparicio 2000). In addition, singlet oxygen is 

very harmful and capable of damaging endogenous DNA, lipids and enzymes. 

Therefore, this reactive component is defined as the most important initiator in the free 

radical autoxidation of vegetable oils. Singlet oxygen can interact with other molecules 

such as carotenoids in two different ways: it can provoke a chemical reaction or an 

energy transfer reaction, either of them leading to the deactivation of singlet oxygen 

(Viljanen, et al.  2002). 

Carotenoids are effective inhibitors of photo-oxidation by quenching singlet 

oxygen and triplet excited states of photosensitizers. The physical quenching 

mechanism of carotenoids is based on their low singlet energy state, which facilitates 

the acceptance of energy from singlet oxygen. Chlorophyll is also functioned as a 

photosensitizer resulting in rapid oxidation of the oil and the added components and loss 

of color (Psomiodou and Tsimidou 2002).    
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3.1.3. Enzymatic Oxidation of Unsaturated Fatty Acids 

 

 

Decomposition of unsaturated fatty acids begins with hydrolysis of various 

glycerides by lipases, lipolytic acyl hydrolases, and phospholipases, during which the 

polyunsaturated fatty acids are, freed (Figure 3.1). Lipoxygenases then convert 

unsaturated fatty acids into hydroperoxides, mainly 9 and 13 isomers, which are 

unstable. In last step, lyases, isomerases, and dehydrogenases transfer hydroperoxides 

into a variety of volatile and nonvolatile products. The flavor components formed, such 

as aldehydes and alcohols, can be directly responsible for off-flavor.  

 

 

 
 

Figure  3.1. Enzymatic oxidation of unsaturated fatty acids 
(Source: Harwood and Aparicio 2000) 

 

Lipases 
Hydrolases 
Phospholipases 

Linoleic and linolenic acids  

oxygen 

lipoxygenases 
9- and 13- hydroxyperoxides of  
linoleic and linolenic acids 

Alkanals, alkenals, alkadienals, 
Alcohols, ketones, oxoacids 

Lyases 
Isomerases 
dehydrogenases 

Gylicerides,  phospholipids, glycolipids 



 39

Free unsaturated fatty acids, particularly linoleic and linolenic acids in plants, 

are the preferred substrate for oxidation by lipoxygenases. Certain lipoxygenase 

isoenzymes can also catalyze the oxidation of unsaturated fatty acids when they are 

esterified in lipids. Preferred conditions for oxidation enzymes are when oxygen is 

present, and then oxidation is performed at the highest rate. Lack of oxygen does not 

halt oxidation because some forms of lipoxygenases can oxidize fatty acids without the 

presence of oxygen, thus forming free radicals. The presence of trace amounts of 

hydroperoxides accelerates the oxidation of unsaturated fatty acids by lipoxygenase, 

particularly under anaerobic conditions.  Free radical formed from the decomposition of 

hydroperoxides can elevate further oxidation, which causes earlier than expected off-

flavor formation and results in lower oil stability during storage (Harwood and Aparicio 

2000). 

 

 

3.2. Factors Affecting Lipid Oxidation 

 

 

The oxidation of oil is influenced by the fatty acid composition of the oil, oil 

processing, energy of heat or light, the concentration and type of oxygen, and free fatty 

acids, mono- and diacylglycerols, transition metals, peroxides, thermally oxidized 

compounds, pigments, and antioxidants. These factors interactively affect the oxidation 

of oil and differentiation of the individual effect of the factors is not easy (Choe and 

Min 2006). 

 

 

3.2.1. Fatty Acid Composition of Oils 

 

 

Oils that are more unsaturated are oxidized more quickly than less unsaturated 

oils (Parker, et al. 2003). As the degree of unsaturation increases, both the rate of 

formation and the amount of primary oxidation compounds accumulated at the end of 

the induction period increase. The relative autoxidation rate of oleic, linoleic, and 
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linolenic acids was reported as 1:40 to 50:100 on the basis of oxygen uptake (Choe and 

Min 2006).  

 

 

3.2.2. Oil Processing 

 

 

During olive oil milling process, hammer crushing should be applied instead of 

stone mill. Because hammer crushing increases polyphehol concentration as compared 

with stone mills. Application of different temperatures during malaxation resulted in an 

increase in polyphenols and olive oil stability increase with temperature but decrease 

with time and water addition (Velasco and Dobarganes 2002). In addition, according to 

the studies, which were about observation of the olive oil stability during extraction 

methods, it was found that pressure extraction had higher polyphenol and ortho-

diphenol contents and consequently higher stabilities towards oxidation than obtained 

by centrifugation (Di Giovacchino, et al. 1994, Cert, et al. 1996, Piacquadio, et al. 1998, 

De Stefano, et al. 1999, Sciancalepore, et al. 2000). 

Filtering should be avoided to increase shelf life of the oil because of the 

suspended materials play role of stabilizer by acting as antioxidants. After olive oil 

extraction, in order to prevent oxidation and extend the shelf life of the oil, storage 

should be done in dark, with certain materials promote metal contamination and 

minimum headspace and also should be kept away from light sources (Pagliarini, et al. 

2000, Ahmed-Khan and Shahidi 1999). 

 

 

3.2.3. Temperature and Light 

 

 

Source of energy that can lead to the formation of radical initiators. UV light is 

particularly harmful. It is well known that minor compounds can be excited 

electronically due to the absorption of light. Therefore, the prevention of photoxidation 

during storage is great of importance to improve the oxidative stability of olive oil. 

Light is much more important than temperature in oxidation. Reportedly, the effect of 
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light on oil oxidation becomes less as temperature increases. Autoxidation of oils and 

the decomposition of hydroperoxides increase as the temperature increases.  

At low and moderate temperatures, the formation of oxidation products during 

the induction period is slow, ROOH are the major compounds formed and their 

concentration increases until the advanced stages of oxidation. In these stage of 

oxidation, polymerisation compounds and the minor volatile compound, in particular 

carbonyl compounds, which have enormous sensory significant, are formed (Marquez-

Ruiz, et al. 1996).  

Autoxidation of oils and the decomposition of hydroperoxides increase as the 

temperature increases (St. Angelo 1996). The concentration of the hydroperoxides 

increases until the advanced stages of oxidation (Velasco and Dobarganes 2002). 

 

 

3.2.4. Oxygen 

 

 

The oxidation of oil can often take place when oil, oxygen, and catalysts are in 

contact. Both concentration and type of oxygen affect the oxidation of oils. The oxygen 

concentration in the oil is dependent on the oxygen partial pressure in the headspace of 

the oil. A higher amount of oxygen is dissolved in the oil when the oxygen partial 

pressure in the headspace is high. Oxidation of the oil increased with the amount of 

dissolved oxygen. The effect of oxygen concentration on the oxidation of oil increase at 

high temperature and in the presence of light and metals such as iron or copper. Higher 

oxygen dependence of oil oxidation at high temperature is due to low solubility of 

oxygen in the oil at high temperature. Consequently, vacuum packaging or flushing the 

oil with nitrogen, having minimum headspace, using the packaging materials which are 

impermable to oxygen should be considered while packaging or storage of the olive oil 

(Velasco and Dobarganes 2002).  
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3.2.5. Minor Components Present in Oil 
 

 

Edible oil consists of mostly triacylglycerols, but it also contains minor 

components such as free fatty acids, mono- and diacylglycerols, metals, phospholipids, 

peroxides, chlorophylls, carotenoids, phenolic compounds, and tocopherols. Some of 

them accelerate the oil oxidation and others act as antioxidants. Phospholipids, color 

compounds, tocopherols, phenolic compounds were discussed in section 2.3. Free fatty 

acids act as prooxidants in edible oil (Miyashita and Takagi 1986, Mistry and Min 

1987). They have hydrophilic and hydrophobic groups in the same molecule and prefer 

to be concentrated on the surface of edible oils. The hydrophilic carboxy groups of the 

free fatty acids will not easily dissolve in the hydrophobic edible oil and are present on 

the surface of edible oil. Mistry and Min (1987) reported that free fatty acids decrease 

the surface tension of edible oil and increase the diffusion rate of oxygen from the 

headspace into the oil to accelerate oil oxidation.  

 

 

3.3. Measurement of Lipid Oxidation  
 

 

The measurement of oxidative stability and oxidation products is essential to 

determine shelf life, acceptability, and nutritional quality of edible oils. Lipid oxidation 

measurement involves a variety of techniques because the oxidation process involves 

several stages. Many methods and parameters have been developed to access the extent 

of oxidative deterioration, which are related to measurement of the concentration of 

primary or secondary products or of both (Harwood and Aparicio 2000). These 

parameters related to olive oil deterioration are included in official regulations with 

regard to olive oil and olive-pomace oil (EC 1991). The peroxide value (PV) is most 

commonly used to assay oxidation in oils and is applicable to the early stages of 

oxidation. A second early-stage oxidation measure is the conjugated diene (absorption 

coefficients) value. This technique measures the conjugation that is formed as the 

unsaturated lipid oxidizes. To monitor accumulated secondary oxidation products, 

usually carbonyl-type compounds, and the anisidine value (AV) test is a widely 
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accepted method. The test estimates the level of aldehydes, principally 2-alkenals, 

present in the oil (Yıldız, et al. 2001).  
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CHAPTER 4 

 

 

FLAXSEED OIL (LINSEED OIL) 

 

 
4.1. Flaxseed 

 

 

Flax (Linum usitatissimum L.) is a multi-purpose crop. Its production goes back 

to ancient history. Its remnants were found in Stone Age dwellings in Switzerland and 

ancient Egyptians made fine from flax fiber. Two types of flax are grown, seed flax for 

the oil in its seed and fiber flax for the fiber in its stem. It is mainly grown in Canada, 

Argentina, America, China and India (Wang, et al. 2007). The plants range in height 

from 30 to 100 cm and have narrow leaves flowers that are in different shades of blue. 

Its seeds containing about 36 to 40% of oil have long been used in human and animal 

diets and in industry as a source of oil and as the basic component or additive of various 

paints or polymers (El-Beltagi 2007).  
The main components of flaxseed, expressed on a moisture-free basis, are 

protein (21%), dietary fiber (28%), and fat (41%). Flaxseed has a unique fatty acid 

profile. It is high in polyunsaturated fatty acids (73% of total fatty acids), moderate in 

monounsaturated fatty acids (18%), and low in saturated fatty acids (9%). Linoleic acid, 

an omega-6 fatty acid, constitutes about 16% of total fatty acids, whereas alpha-

linolenic acid (ALA) constitutes about 57% (Morris 2001), the highest of any seed oil 

(Thompson, et al. 1991). The growing concern that the linoleic acid content of the 

typical Western diet is too high has led some experts to recommend replacing dietary 

omega-6 fatty acids with those from the omega-3 family.  Flaxseed is the richest source 

of food lignans, and can contain 75–800 times more than other food sources (2.0 mg/g 

based on seed dried weight). The flaxseed lignans secoisolariciresinol (SECO) and its 

diglucoside secoisolariciresinol diglucoside (SDG) are reported to have a number of 

health benefits associated with their consumption that have in part been attributed to 
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their antioxidant properties. Flaxseed also contains phospholipids from which 2.9% of 

sterol glycosides can be extracted. The sterols can be fractionated into cholesterol (2% 

sterol fraction), campesterol (26%), stigmasterol (7%), sitosterol (41%), ∆5– avenasterol 

(13%), cycloartenol (9%), and 24- methylenecycloartanol (2%).  

Flaxseed has recently gained attention as a “functional food” because of its 

unique nutrient profile and potential to affect the risk and course of cardiovascular 

disease and some cancers (Thompson, et al. 1991), particularly hormone-dependent 

cancers such as prostate and breast (Ingram, et al. 1997). Functional foods are those that 

resemble traditional foods, but render benefits beyond their nutrition and energy value 

in promoting health and preventing certain chronic diseases, especially cardiovascular 

disease, cancer, diabetes, autoimmune disorders, arthritis, and arrhythmia (Shahidi 

2002). Thus, use of flaxseed in foods has increased during the past decade due to the 

presence of functional compounds alpha-linolenic acid (ALA), lignans, and fiber 

(Schorno, et al. 2003).  

 

 

4.2. Flaxseed Oil 
 

 

Flaxseed oil is derived from the seeds of the flax plant. Unrefined flaxseed oil 

from good seed has an attractive golden color, a pleasant, nut-like flavor, and mild odor. 

Flaxseed oil is qualitatively different from the more common vegetable oils with high 

PUFA proportions, such as soya oil, sunflower oil, rape oil, olive oil, etc. Flax oil is a 

rich source of the following unsaturated fatty acids: oleic (C18:1, 16–24%), linoleic 

(C18:2, 18–24%), and linolenic acid (C18:3, 36–50%) (Figure 4.1). Beside that, it 

contains about 6% palmitic acid, 2.5% stearic acid and 0.5% arachidic acid 

(Flachowsky, et al. 1997).  Unsaponifiable lipid constituents of seed oils naturally 

contain hydrocarbons, terpene alcohols, sterols, tocopherols and other phenolic 

compounds which may act as oxidation inhibitors under a range of conditions. In flax 

grains, lipids are protected against oxidation by various mechanisms, for example, the 

presence of antioxidants such as lignans, phenols, tocopherols (vitamin E) and 

flavonoids. In addition to preventing rancidity, these antioxidants could increase 

commercial value of food products and have beneficial effects on human health. When 
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consumed together with essential unsaturated fatty acids, they can reduce the risk of 

various diseases. The antioxidant ability of phenols, tocopherols (vitamin E) and 

flavonoids is related to the presence of OH groups which may directly bind to free 

radicals and chelate metals (Romieu and Trenga 2001).  

  

 

 
 

Figure  4.1. Structures of common fatty acids in flaxseed oil: 1- oleic acid, 2- linoleic 
acid, 3- linolenic acid (Source: Flachowsky, et al. 1997). 

     

  

 
 

Figure 4.2. Structure of alpha-linolenic acid (ALA) 
(Source: Schorno, et al. 2003) 
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There have been few studies related to the composition of flaxseed oil. It has 

gained attention because of its high content of alpha-linolenic acid content (Figure 

4.2).Choo and coworkers (2006) had a study which remarked the physicochemical and 

quality characteristics of seven New Zealand-grown flaxseed oils. The major tocopherol 

in the seven cold-pressed flaxseed oils was in the γ-form. The amount of γ-tocopherol 

was between 10.56 and 15.00 mg/100 g oil. The β- and δ-tocopherol were not detected 

in the seven cold-pressed flaxseed oils. As far as the authors were aware, there were no 

reports available on the occurrence of β-tocopherol in flaxseed or flaxseed oil. Oomah, 

et al. (1997) reported the presence of δ -tocopherol in flaxseed but at very low levels 

(0.17–0.30 mg/100 g of seed) and Velasco and Goffman (2000) reported the occurrence 

of δ -tocopherol at 0.0–0.3 mg/100 g of seed in 288 accessions of the genus Linum. The 

acid values of the seven cold-pressed flaxseed oils were within the limit of 4.0 mg 

KOH/g of oil. These acid value measurements correlated well with the free fatty acid 

measurements, which were determined as oleic acid (%) and ranged between the values 

of 0.25 and 0.98%. Moreover, unsaponifiable matter content (%), chlorophyll content 

(mg of pheophytin/ kg of oil), total flavonoid content (lutein equivalents mg/ 100 g) and 

total phenolic acids as ferulic acid equivalents (mg/100 g) were stated in ranges of 0.39-

0.71, 0.80-3.72, 12.7-25.6, 76.8-307.3, respectively. The peroxide values of all the cold-

pressed flaxseed oils were found within the limit of up to 10 milliequivalents peroxide/ 

kg of oil under the New Zealand Food Regulations (1984) for edible fats and oils and 15 

milliequivalents peroxide/kg of oil under the Codex Alimentarius Commission (1999) 

standard for virgin oils and cold-pressed fats and oils.  
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CHAPTER 5 

 

 

CHEMOMETRICS 

 

 
Chemometrics has been defined as the application of mathematical and 

statistical methods to problems of chemistry and has been used with success in different 

areas. The progressive use of chemometrics in diverse fields is explained by its 

capability of treating large quantities of information. In the food and beverage 

industries, chemometrics is applied in many instances, such as monitoring and 

controlling processes, determinations of geographical origin and sources of food and 

detection of fraudulent practices (Bortoleto, et al. 2005).  

Chemometric methods implicate procedures for multivariate data analysis. 

Multivariate analysis comprises a set of techniques dedicated to the analysis of data sets 

with more than one variable. These methods are intended at projecting the original data 

set from a high dimensional space onto a line, a plane, or a 3D coordinate system (Diaz, 

et al. 2004). The most common projection methods of multivariate data analysis used in 

olive oil studies, especially for classification and authentication, are principle 

component analysis (PCA), partial least square analysis (PLS), discriminant analysis 

techniques (linear discriminant analysis (LDA) and partial least-squares discriminant 

analysis  (PLS-DA).  

 

 

5.1. Principle Component Analysis (PCA) 

 

 

PCA is an unsupervised pattern recognition technique. This means that there is 

no prior knowledge of the classes that the samples will fall into. It is a way of 

identifying patterns in data, and expressing the data in such a way as to reveal their 

similarities and differences. PCA is also known as a variable reduction procedure. It is 
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useful when having data on a number of variables (possibly a large number of 

variables), and is believed that there is some redundancy in those variables. In this case, 

redundancy means that some of the variables are correlated with one another, possibly 

because they are measuring the same construct. Because of this redundancy, it is 

considered that it should be possible to reduce the observed variables into a smaller 

number of principal components (PCs) that will account for most of the variance in the 

observed variables.  
The general purposes of PCA are: dimensionality reduction,   determination of 

linear combinations of variables, feature selection: choosing the most useful 

variables,   visualization of multidimensional data, identification of underlying 

variables, and identification of groups of objects or of outliers.  

The basic concept of the method can be described geometrically as a reduction 

of multidimensional data sets by projecting the data X of p dimensions onto a subspace 

of a few dimensions, k (k < p). Score matrix T (n x k) and loading matrix P (k x k) can 

construct the X matrix (n x p) which is the prediction matrix of actual observations, X.  

The mathematical background is decomposing the original variable matrix X into the 

product of the score matrix T and the transposed loading matrix P plus a residual matrix 

E (Eriksson, et al. 2001).      
X = TP + E (5.1) 

 

Principal components (PC) account for the majority of the variability in the data. 

This enables to describe the information with considerably few variables than originally 

present. PC is defined as a linear combination of optimally weighted observed variables. 

“Optimally weighted” refers to the fact that the observed variables are weighted in such 

a way that the resulting components account for a maximal amount of variance in the 

data set. The loadings are the coefficients of the original variables that define each 

principal component (Brereton 2003). In reality, the number of components extracted in 

a principal component analysis is equal to the number of observed variables being 

analyzed. The first component extracted in a principal component analysis accounts for 

a maximal amount of total variance in the observed variables. Under typical conditions, 

this means that the first component will be correlated with at least some of the observed 

variables. The second component extracted will have two important characteristics. 

First, this component will account for a maximal amount of variance in the data set that 

was not accounted for by the first component. Again under typical conditions, this 
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means that the second component will be correlated with some of the observed variables 

that did not display strong correlations with component 1. The second characteristic of 

the second component is that it will be uncorrelated with the first component. 

When the analysis is complete, the resulting components will display varying 

degrees of correlation with the observed variables, but are completely uncorrelated with 

one another. Thus, PCA develops an alternative set of coordinate axes; PCs are 

orthogonal to each other. After determination of significant components determination, 

the grouping of data is formed by plotting the latent variables, which are called score 

plots. Scores are the projections of the objects on the new axes.  In score plots, the 

horizontal axis indicates the scores of first PC and the vertical one refers to the second 

PC. By plotting the principal components, one can view interrelationships between 

different variables, and detect and interpret sample patterns, groupings, similarities or 

differences (Gan, et al. 2005). 

Application of PCA chemometric method combined with many spectroscopic 

and chromatographic techniques has been carried out in the classification, 

characterization and authentication studies of olive oil. There are several examples of 

olive oil classification and characterization studies, for instance, Diaz, et al. (2005) 

characterized the VOOs obtained from olives of Manzanilla Cacerena of the North of 

Caceres (Extremadura-Spain) according to content of the various triglycerides, sterols, 

or both by application of PCA method with soft independent modeling class analogy 

(SIMCA). D’Imperio, et al. (2007) and Rezzi, et al. (2005) had studies related to 

classification of olive oils from Italy and from various Mediterranean areas, 

respectively, by the combination of NMR with multivariate analysis techniques of PCA 

and linear discriminant analysis (LDA). Aranda, et al. (2004) have measured 

triglycerides, total and 2- position fatty acid composition by HPLC and achieved 90% 

correct classification using PCA and LDA in differentiating Spanish olive oil cultivars.  

Else, the rancid defects of Portuguese virgin olive oil with different percentages 

(0−100%) of rancid standard oil, was detected by using electronic-nose. In this research, 

PCA was applicated to analyze the structure of data sets and detect abnormal 

information (outliers), successfully (Aparicio, et al. 2000). Oliveras, et al. (2004) 

discriminated the 105 EVOO from five different Mediterranean areas depended on their 

volatile fractions by using headspace mass spectrometry with PCA and LDA methods. 
Bendini, et al. (2007) collected FT-IR spectra of 84 monovarietal virgin olive oil 
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samples from eight Italian regions and manipulated fingerprint region by PCA  in order 

to control the geographic origin and quality of virgin olive oils. 

 The application of PCA with different methods, in particular, infrared 

spectroscopy (mid-infrared and near IR) has growing interest in detection of the 

adulterated olive oils with different vegetable oils in recent years. Christy, et al. (2004) 

have detected and quantified adulterated olive oil by NMR and using chemometric 

techniques: PCA and partial least square (PLS) and applied methods for data 

pretreatments such as multiplicative signal correction. Gurdeniz and co-workers (2008) 

reported the efficiency of PCA and mid-infrared techniques combination for detection 

of the adulteration in Turkish olive oils, which were mixed with different vegetable oils 

such as rapeseed, cottonseed and corn–sunflower binary mixtures. Webster, et al. (1999) 

analyzed the samples of VOO and refined olive oil for n-alkanes by gas 

chromatography with flame ionisation detection to determine if the hydrocarbon 

patterns could be used as determinants for assessing adulteration of olive oil. n-alkane 

data of olive oil was added to an existing database that included rapeseed, safflower, 

sunflower, corn, palm, palm kernel, coconut, groundnut and soybean oils and analysed 

by PCA. Analysis of the n-alkane pattern by PCA made it possible to identify 

adulterants at levels as low as 0.5% w/w. Lastly, Park and Lee (2003) investigated 

adulterated of olive oils mixed with soybean oil using triacylglycerol profiles by high 

temperature gas chromatography and PCA methods together. 

 

 

5.2. Partial Least-Squares Analysis (PLS)  
 

 

PLS is known as the regression extension of PCA, working with two matrices, X 

and Y. However, PLS methods differ from PCA methods as the X variables and the 

corresponding Y variables (response data of each object) are projected simultaneously 

on a subspace with respect to a maximum covariance between X and Y data for the final 

goal to predict Y from X. In another words, the principle of PLS is based on 

determination of the components in the input matrix (X) that describe as much as 

possible of the relevant variations in the input variables, and at the same time have 

maximal correlation with the target value in Y, but without including the variations that 
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are irrelevant or noisy (Rezzi, et al. 2005). The mathematical demonstration of this 

method is given in equations 5.2 and 5.3. In these equations, the first terms x′*1  and 

y′*1  refer the variable averages and originates from the pre processing step. The 

information related to the observations is given by the scores matrices T and U; the 

information related to the variables is stored in the X- loading matrix P’ and Y-weight 

matrix C’. The variation in the data that is left out of the modeling forms the E and F 

residual matrices. 

EPTxX +′+′= **1   (5.2) 

FCUyY +′+′= **1   (5.3) 

First PLS component is usually not enough to describe the variation in the Y-

data. So, second PLS component describes the remaining variation as much as possible. 

Second PLS component is also a line orthogonal to first one and it improves the 

description of X data and provides good correlation with Y remained after first 

component (Eriksson, et al. 2001). 

As well PCA has been used in order to classify and to detect the adulteration 

studies of olive oil, the PLS method has also applied in many studies. Tapp, et al. 

(2003) distinguished 60 EVOO from different four European countries by using FT-IR 

in combination with PLS and LDA methods with a cross-validation success rate of 

96%. Gurdeniz, et al. (2007) were able to differentiate the mixtures of monovarietal 

olive oils from Turkey (Erkence-Nizip and Ayvalik-Nizip) by mid-infrared 

spectroscopy with 94 – 96 % success ratio. Tay, et al. (2002) illustrated the authenticity 

of EVOO by using FT-IR and multivariate quantification based on PLS successfully 

and quantified the composition of sunflower oil, the degree of adulteration in the olive 

oil. Pena, et al. (2005) also developed a new methodology to detect and quantify 

adulteration of virgin olive oil and olive oil with hazelnut oil through direct analysis of 

oil samples by headspace-mass spectrometry and various multivariate analysis 

techniques such as PLS and PCR. Davis and McEwan (2007) evaluated the oxidative 

status of New Zealand EVOO samples according to their volatile organic compounds by 

ion flow tube mass spectrometry. In this research, PLS model including 13 volatile 

organic compounds was constructed in order to predict the peroxide values (PV) for 

oxidized olive oils. 
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5.3. Partial Least-Squares Discriminant Analysis (PLS-DA) 

 

 

PLS-DA is a PLS application for the optimum separation of classes using 

dummy variables 0 and 1 as variables of the Y matrix. Each class is assigned by 0 or 1 

and a regression of Y onto X is calculated. For a two-dimensional subspace, the PLS-

DA operation can be described as the positioning of a plane in the X space ensuring an 

optimum separation of assigned classes. So, the principle of PLS-DA is to find a model 

that separates classes of observations on the basis of their X-variables. Beyond, this 

method is applicable for two intents: for consideration of classification adequacy, given 

the group memberships of the objects under study; or for assignment of objects to one 

of a number of (known) groups of objects. Consequently, discriminant analysis may 

thus have a descriptive or a predictive objective.  

PLS-DA method is usually applied to determine the classification of the olive 

oils. Galtier, et al. (2007) achieved the quantification of fatty acids and triacylglyceols 

in French VOO samples by NIR spectra and used PLS-DA technique for classification. 

In another study, VOO samples were grouped into four classes according to their 

storage conditions in order to evaluate their freshness and classified by PLS-DA method 

(Sinelli, et al. 2007).  

 

 

5.4. SIMCA (Soft Independent Modelling of Class Analogy) 

 

 

Simca is supervised classification technique, which is solely based on PCA to 

find out local groupings, a general PCA can be run first if one does not know the classes 

before. Each class in data set is modelled separately by PCA. These are called local 

models. When new observations come into the data, they are tested to which one of the 

classes, previously defined they belong. Leave-one-out cross-validation is used to set up 

dimension of each class.  

Cooman’s plots (continuation of Simca method) are used to define the bound 

area of each class and prevent them in a two-dimensional plot scale refers to the 

distance of observations to class 1, while the scale refers to that of observations class 2. 
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When a new observation joins in, it will be placed within that class to which it was the 

lowest distance or it may plot outside of two regions.  
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CHAPTER 6 

 

 

MATERIALS AND METHODS 

 

 
6.1. Materials 

 

 

6.1.1. Extracted Extra Virgin Olive Oil Samples 

 

 

Extracted EVOO samples were produced with olives obtained from cultivated 

garden of Olive Research Institute (İzmir, Turkey) and İzmir Institute of Technology 

(IYTE) campus (İzmir, Turkey) in the 2007 harvest year. The extracted olive oil 

samples used in this study, Ayvalık-Edremit (AE) oilves (Olive Research Institute) and 

Erkence (Erk) olives (IYTE-Gulbahce Campus) were milled with a maximum 5 kg 

capacity laboratory scale olive oil mill (TEM Spremoliva, Italy) and then stored in dark 

at refrigerator temperature (8°C) during analysis period which consists of 3 months time 

intervals in a year (2007-2008).  

 

 

6.1.2. Commercial Extra Virgin Olive Oil Samples 

 

 

Commercial EVOO samples were supplied by Tariş Olive Oil Company (İzmir, 

Turkey). The commercial olive oil samples used in the study were Altınoluk (A), Ezine 

(Erk), Bayındır (B) and Ortaklar (O). Each olive oil sample was separated into two 

groups according to their storage conditions as the samples stored in dark at refrigerator 

temperature (8°C) and stored in dark at room temperature during analysis period which 

consists of 3 months time intervals for 14 months (2008-2009) (Table 6.1). Commercial 

EVOO samples which were subjected to extended oxidation conditions were also 
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obtained from North and South of Aegean region (Tariş Olive Oil Company İzmir, 

Turkey). The samples used in this study were ‘South Aegean Extra Virgin Olive Oil’ 

(Güney Ege Naturel Sızma Zeytinyağı) which was referred as ‘S’  and  ‘North Aegean 

Extra Virgin Olive Oil’ (Kuzey Ege Naturel Sızma Zeytinyağı) which was referred as 

‘N’ in this study. These olive oil samples were kept in an incubator at 60°C. 

 

 

Table 6.1. Abbreviations used for commercial EVOO samples 
 

sample name olive oil samples  stored at 
room temperature 

olive oil samples stored at 
refrigerator temperature 

Altınoluk aro are 

Ezine ero ere 

Bayındır bro bre 

Ortaklar oro ore 

 

 

Table  6.2. Abbreviations used for olive oil and flaxseed oil samples 
 

oil sample name oil samples stored at 
room  temperature 

oil samples stored at 
refrigerator  
temperature 

pure olive oil oro ore 

pure flaxseed oil fro fre 

5% olive oil+95% flaxseed oil 5ro 5re 

10% olive oil+90% flaxseed oil 10ro 10re 

15% olive oil+85% flaxseed oil 15ro 15re 

 

 

6.1.3. Flaxseed Oil Samples  
 

 

  Flaxseed oil samples were purchased from Bükaş (İzmir, Turkey). These 

flaxseed oil samples were blended with olive oil sample (Burhaniye), which was 

supplied by Tariş Olive Oil Company (İzmir, Turkey), at the percentages of 5, 10 and 
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15% (v/v). These mixed oil samples were put in test tubes and kept at both refrigerator 

temperature (8°C) and room temperature (20-22°C) during analysis period which 

consists of 21 days time intervals (Table 6.2). 

 

 

6.1.4. Chemicals Reagents 

 

 

Chemical reagents used for determination of fatty acid compositions, phenolic 

compounds and chemicals used for determination of PV, specific extinction coefficients 

(K232 and K270), AV, IV, FFA and TPC analysis of  oil samples are given in Table 

6.3.  

 

 

Table  6.3. Chemicals used in the analysis 
 

NO CHEMICAL CODE 
Peroxide value (PV) 

1 Acetic acid Riedel-deHaen 27225 
2 Chloroform Riedel-deHaen 24216 
3 Potassium iodate KIO3 Fluka 60390 
4 Potassium iodure (KI) Riedel-deHaen 03214 
5 Sodium thiosulphate ( Na2O3S2 ) Fluka 72049 
6 Starch Carlo Erba 417587 
7 Sulfuric acid (H2SO4) Merck 1.00713.2500-UN1830 

Specific extinction coefficient (K232 & K270) 
8 Cyclohexane Labscan 

Anisidine value (AV) 
9 Acetic acid Riedel-deHaen  27225 
10 Isooctane Merck 
11 p-Anisidine Fluka 

Iodine value (IV) 
12 Acetic acid Riedel-deHaen  27225 
13 Cyclohexane Labscan 
14 Potassium iodate KIO3 Fluka 60390 
15 Potassium iodure (KI) Riedel-deHaen 03214 
16 Sodium thiosulphate (Na2O3S2) Fluka 72049 
17 Starch Carlo Erba 417587 
18 Wijs reagent Merck-1.00713.2500 

Free fatty acids (FFA) 
19 Diethyl ether Riedel-deHaen 
20 Ethanol Riedel-deHaen 

                                                                
(cont. on next page)  
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Table  6.3. (cont.) Chemicals used in the analysis 
 

21 Phenolphthalein Riedel-deHaen   
22 Potassium hydrogen phthalate ((KHC8H4O4) Fluka 
23 Potassium hydroxide (KOH) Riedel-deHaen   

Gas chromatography analysis (GC)  
24 F.A.M.E mix C8-C24 Supelco # 18918 
25 n-Hexane Sigma-Aldrich 34859 
26 Potassium hydroxide (KOH) Riedel-deHaen   

Total phenol content (TPC)  
27 Folin-Ciocalteau reagent Fluka 47641 
28 Gallic acid Fluka 48630 
29 Methanol Sigma-Aldrich 34885 
30 Sodium carbonate (NaCO3) Riedel-deHaen  13418 
31 Tween 20 Sigma-Aldrich P1379 

HPLC analysis of phenolic compounds  
32 Acetonitril  Sigma-Aldrich 
33 Gallic acid Fluka 48630 
34 Methanol Sigma-Aldrich 34885 
35 n-Hexane Sigma-Aldrich 34859 

Standard phenolic compounds  
36 Apigenin  Fluka 10798 
37 Caffeic acid Fluka 60020 
38 Chlorogenic acid Fluka 25700 
39 Cinnamic acid Fluka 96340 
40 Ferulic acid Fluka 37528 
41 Gallic acid Fluka  48630 
42 4-hydroxybenzoic acid Fluka 54630 
43 4-Hyroxyphenylacetic acid Fluka 56140 
44 Hydroxytyrosol Extrasynthese 4986 
45 Luteolin  Fluka 62696 
46 M-coumaric acid Fluka 28180 
47 O-coumaric acid Fluka 28170 
48 Oleuropein  Extrasynthese 0204 
49 P-coumaric acid Fluka 28200 
50 Syringic acid Fluka 86230 
51 Tyrosol Fluka 56105 
52 Vanilic acid Fluka 94770 
53 Vanilin  Fluka 94750 
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6.2. Methods 

 

 

6.2.1. Determination of Peroxide Value (PV)  
 

 

Determination of PV of olive oil samples were made according to the analytical 

method described in European Official Method of Analysis (Commision Regulation 

EEC N-2568/91- Determination of peroxide value). The PV was expressed in 

milliequivalents of oxygen per kg of oil (mequiv of O2/kg). For standardization of 0.01 

M sodium thiosulphate; 2 g of potassium iodate (KIO3) was dried in an incubator 

(Memmert) at 90-100 C° for 1-2 hours. After 1-2 hours, 0.001 mol/L KIO3 solutions 

(≈0.1070 gr KIO3/500 ml dH2O) was prepared with potassium iodate taken from the 

incubator. Exact weight of KIO3 was recorded. In order to prepare 0.5 M H2SO4 

solutions, 2.8 mL of H2SO4 (96% purity) was diluted to 100 mL with deionized water. 

For preparation of starch solution; 1 g of starch was weighed and dissolved in 10 mL of 

deionized water. 90 mL of boiling deionized water was added to starch solution and 

boiling continued for 2-3 minutes.                    

Before titration, 0.2 g of potassium iodine (KI) was weighed and 1 mL of   0.5 

M H2SO4, 50 mL of 0.001 M potassium iodate (KIO3) solution was added. Reddish 

brown solution was titrated with sodium thiosulphate (0.01 mol/L) until the solution has 

turned to its initial reddish brown colour and has become pale yellow. 2 mL of starch 

indicator was added into pale yellow solution and titration was completed when the 

solution becomes colourless and sodium thiosulphate spent during titration was 

recorded. 

Molarity of standardize sodium thiosulphate was calculated by means of the 

following equations. 

 solutionmLV
molgMWgm

M
KIO

KIOKIO
KIO )(

)/(/)(

3

33

3
=

 (6.1) 

  

(6.2) 

 

 

3 3
6* ( / )* ( )

( )
KIO KIO

sodiumthiosulphate
sodiumthiosulphate

M mol L V mL
M

V mL
=  
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=
3KIOm  weight of  KIO3 ( 0.1070 g ) 

=
3KIOMW  molecular weight of KIO3 (214 g/mol) 

=solutionVKIO3
 total volume of  KIO3 solution (500 mL) 

=
3KIOV  volume of KIO3 solution (50 mL) 

Vsodiumsulphate  =  amount of sodium thiosulphate used in titration (mL)  

After standardization part of the experiment; 10 mL of chloroform, 15 mL of 

acetic acid and 1 mL of potassium iodide solution were added into 3 g of an olive oil 

sample and mixed for 1 minute. Then, the sample was kept in dark and at the room 

temperature for 5 minutes. Lastly, 75 mL of deionized water and 0.5 mL of starch 

solution were added to oil sample. Titration of free iodine was carried out with 0.002 M 

sodium thiosulphate solution until the dark blue colour of solution turns to colourless 

and the amount of total sodium thiosulphate solution spent during the titration was 

recorded.  

The calculation of peroxide values in terms of meq O2 / kg oil; 

             
( ) * ( / ) * 1 0 0 0

( )
V m L M m o l LP V

m g
=                                       (6.3) 

 

V:  volume of sodium thiosulphate solution spent during titration (mL)  

M:  molarity of sodium thiosulphate solution 

m:  the weight of the sample (g) 

 

 

6.2.2. Specific Extinction Coefficient at 232 and 270 nm    

(K232 and K270)  
 

 

European Official Method of Analysis (Commision Regulation EEC N-2568/91) 

was used for the determination of specific extinction coefficients of the olive oil 

samples. 250 mg of olive oil was weighed. The weighed sample was placed into a 25 

mL graduated flask and diluted to 25 mL with cyclohexane (spectrophotometric grade). 

The sample was homogenized using vortex (Velp Scientifika, Europe) for 30 seconds 

and then resulting solution was placed into a quartz cuvette. Absorbance at 232 and 270 
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nm was determined in a spectrophotometer (Shimadzu UV-2450 UV-Visible 

Spectrophotometer, Japan), using the pure cyclohexane as the blank. 

 

 

6.2.3. Determination of Anisidine Value (AV) 

 

 

Anisidine value was determined by the standard 2504 IUPAC method (IUPAC, 

1987) using a Shimadzu UV-2450 UV-Visible Spectrophotometer. In accordance with 

the method, 100 mg of olive oil sample was weighed into a 25 mL volumetric flask. The 

sample was dissolved and diluted to 25 mL of volume with isooctane. Then the 

absorbance of the solution was measured in a cuvette at 350 nm with the 

spectrophotometer (Shimadzu UV-2450 UV-Visible Spectrophotometer, Japan), using 

the reference cuvette filled with isooctane solvent as a blank. After the measurement of 

absorbance, 2.5 mL of this solution was taken and added to 0.5 mL of p-anisidine 

analytical reagent ( 0.5 % w/v p-anisidine in acetic acid ). After exactly 10 minute the 

absorbance of the solvent was measured at 350 nm, using the p-anisidine analytical 

reagent solution as a blank in the reference cuvette.        

The method used for calculation of anisidine values;     

 

( )2 12 5 1 .2A V WA A= ∗ − /                                         (6.4) 

 

A2:  the absorbance of solution prepared with p-anisidine analytical reagent 

A1:  the absorbance of solution prepared with isooctane 

W:   weight of the sample (g) 

 

 

6.2.4. Determination of Iodine Value (IV)  

 

 

The Wijs method was used for the determination of the iodine value (IV). With 

respect to this method, 2.1 g KIO3 (potassium iodate) was dried in an incubator at 90-

100 C for 1-2 hours. Then, 0.01 mol/L KIO3 solution was prepared with potassium 
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iodate taken from the incubator. 0.5 M H2SO4 solution was prepared. 2 g KI (potassium 

iodine) was weighed and 10 mL of 0.5 M H2SO4, 50 mL of 0.01 M  KIO3  solution were 

added. Solution was titrated with thiosulphate until the solution has lost its initial 

reddish brown color and has become pale yellow. 2 mL of starch indicator was added 

and titration was completed. Sodium thiosulphate spent during titration was recorded. 

This part of the method was used for determination of molarity of standardization of 0.1 

M sodium thiosulphate. After standardization, 0.1 mg of oil sample was weighed in to 

500 mL flask and 20 mL of the solvent (prepared by mixing equal volumes of 

cyclohexane and acetic acid) was added. Similarily a blank with the solvent and the 

reagent was prepared. Following the addition of 25 mL of the Wijs reagent into this 

sample, it was left in the dark for 1 hour. At the end of 1 h, 20 mL of the potassium 

iodide solution (100 g/l) and 150 mL of deionized water were added into sample flask. 

Solution was titrated with the standard volumetric sodium thiosulphate solution until the 

yellow color due to iodine has almost disappeared. A few drops of the starch solution 

were added and titration was completed. 

The iodine value is given by the expression;    

 

( )1 2= 12.96*c* - /IV mV V⎡ ⎤⎣ ⎦                                                (6.5) 

  

c:  the exact concentration (mol/L) 

V1: volume of the standard sodium thiosulphate solution used for the blank test (mL) 

V2: volume of the standard sodium thiosulphate solution used for oil sample (mL) 

 m: weight of the sample (g) 

 

 

6.2.5. Total Phenol Content (TPC) 

 

 

The total phenol content (TPC) of the olive oil extracts were determined by the 

Folin–Ciocalteau spectrophotometric method at 765 nm, in terms of gallic acid as mg 

GA / kg oil (Montedoro, et al. 1992). The measurements were repeated three times.  

An oil sample of 2 g was weighed. 10 mL of methanol/water solution (80:20 

v/v) and 1-2 drops of Tween-20 was added to oil sample. For extraction the sample was 
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homogenized with crusher (Heidolph – SilentCrusher M, Germany) at 15000 g for 1 

minute and then centrifuged at 5000 rpm for 10 minutes (Nüve NF 615, Ankara, 

Turkey). After centfifugation the supernatant part of the sample was collected in a tube. 

Extraction with remaining oil residue is repeated two more times without Tween 20 

addition and each time the supernatant part of the sample was collected in the same tube 

containing supernatant extracted before. The collected volume was recorded as total 

volume of the olive oil sample at the end of the extraction part. Following the 

extraction, 1 mL of the collected supernatant was taken and then 1mL of the aqueous-

methanolic solution (80:20 v/v) was added and diluted with 5 mL of deoinized water. 

The 0.5 mL Folin-Ciocalteu reagent, 2 mL of sodium carbonate (NaCO3) solution (15 % 

w/v) were added respectively. The mixture is diluted with deoinized water by adding 

1.5 mL. The homogenization was applied by a vortex (Velp Scientifika, Europe) for 30 

seconds. The mixture was kept in dark for 2 hours. For blank the same procedure was 

repeated with 1 mL of methanol-water (80:20 v/v) instead of phenolic extract. Finally, 

the absorbance was measured at 765 nm in a spectrophotometer (Shimadzu UV-2450 

UV-Visible Spectrophotometer, Japan). The total phenol content of extract was 

determined by using a gallic acid calibration curve. 

Gallic acid (GA) calibration curve was constructed by means of the standard 

gallic acid solution which was prepared with different concentrations changing from 

0.005 mg/mL to 0.09 mg/mL. Three parallel analyses were prepared for standard Gallic 

acid solution (0.005 mg/mL–0.09 mg/mL) obtained from mother solution of gallic acid 

(25 mg gallic acid/250 mL deionized water) and blank sample. Gallic acid calibration 

curve was obtained with spectrophotometer (Shimadzu UV-2450 UV-Visible 

Spectrophotometer, Japan) using the absorbance values at 765 nm. Absorbance values 

were converted to concentration by means of the gallic acid calibration curve and total 

phenol content was determined in terms of gallic acid as mg gallic acid / kg oil. 

 

( ) ( )
s a m p le

/ m L * * 1 0 0 0
=

( g )
s a m p l e

W

G A m g m L
T P C V               (6.6) 
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6.2.6. FT-IR Analysis 

 

 
All infrared spectra (4000-650 cm-1) were acquired with a Perkin Elmer 

Spectrum 100 FT-IR spectrometer (Perkin Elmer Inc., Wellesley, MA). This instrument 

was equipped with a horizontal attenuated total reflectance (HATR) sampling accessory 

(ZnSe crystal) and a deuterated tri-glycine sulphate (DTGS) detector. HATR accessory 

was used to collect the spectral data of oil. The resolution was set at 2 cm-1 and the 

number of scans collected for each spectrum was 128. ZnSe crystal was cleaned with 

hexane in between sample runs. Measurements were conducted duplicate or triplicate 

for each olive oil sample. In Figure 6.1, the typical FT-IR spectrum of an olive oil 

sample is given. The x-axis refers to the wavelengths among 4000-650 cm-1 and the y-

axis refers to the absorbance values. The regions of the wavelength of 3050-2800, 1740 

and 1500-650 cm-1 indicate the C-H stretching vibrations, C=O double bond stretching 

vibrations and deformations and bending of C-H and stretching vibrations of C-O, 

respectively. The significant differences between the examined oil samples can be 

observed by overlapping the spectra of samples.  

 

 

 
Figure  6.1. Typical FT-IR spectrum of olive oil 
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6.2.7. Determination of the Free Fatty Acids (FFA) 

 

 

European Official Methods of Analysis (EEC 1991) was used for the 

determination of free fatty acid value in terms of % oleic acid. Approximately 1 g of 

potassium hydrogen phthalate (KHC8H4O4) was weighed and dried in an oven at 110º C 

for 2 hours. Accurately 0.4 g of potassium hydrogen phthalate was weighed into an 

erlenmayer flask. 75 mL of deionized water and 3 drops of phenolphthalein indicator 

(0.5 g phenolphthalein in 50 mL 95% ethanol (v/v)) were added into the flask before 

titration with potassium hydroxide (KOH). 1 mol/L potassium hydroxide (KOH) was 

prepared with deionized water and it was standardized with potassium hydrogen 

phthalate.  

50 mL of 95% ethanol-water solution (95:5 v/v) and 50 mL of diethyl ether 

mixture (1:1 v/v) were prepared. 3 drops of phenolphthalein indicator was added into 

the mixture. The ether-ethanol mixture was titrated with KOH solution until a sudden 

color change has occured. 20 g of olive oil sample was weighed. The titrated ether- 

ethanol mixture was added to the 20 g of sample and 3 drops of phenolphthalein 

indicator was added into the mixture before titration. Then, the mixture was titrated with 

0.1 mol/L solution of KOH and the volume of solution spent was recorded. 

Acidity was expressed as percentage of oleic acid with the equation given 

below: 

 

100 * ** * *
1000 10*

M V c MV c
m m

=                                            (6.7) 

 

V : the volume of titrated KOH (mL) 

c: exact concentration of the titrated solution of KOH (mol/L) 

M: the molar weight of the oleic acid (282g/mole) 

m:  weight of the sample (g) 
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6.2.8. Gas Chromatography Analysis (GC) 

 

 

Sample Preparation Method: European Official Methods of Analysis (EEC, 

1991) was used for the preparation of methyl esters. 100 mg oil sample was weighed in 

20 mL test tube. The sample was dissolved in 10 mL n-hexane and 100 µL 2 N 

potassium hydroxide in methanol was added (2.8 g in 25 mL). The sample solution was 

vortexed for 30 seconds and centrifuged for 15 minutes. After centrifugation, 

supernatant phase was transferred into 2 mL autosampler vial for chromatographic 

analysis. 

Analytical Conditions: Chromatographic analyses were performed on an 

Agilent 6890 GC (Agilent Technologies, Santa Clara, USA) equipped with a flame 

ionization detector (FID). The instrumental configuration and analytical conditions were 

summarized in Table 6.4. 

 

 

Table  6.4. Chromatographic method for the analysis of fatty acid methyl esters 
 

Chromatographic system Agilent 6890 GC 
Inlet Split/spitless 

Detector FID 

Automatic sampler Agilent 7683 
Liner Split liner (p/n 5183-4647) 

Column 100 m x 0.25 mm ID, 0.2 µm HP-88 (J&W 112-88A7) 

Inlet temperature 250 oC 

Injection volume 1µL 
Split ratio 1/50 
Carrier gas Helium 

Head pressure 2 mL/min constant flow 
Oven temperature 175oC, 10 min, 3oC/min, 220oC, 5 min 

Detector temperature 280 oC 

Detector gas Hydrogen:40mL/min;           Air:450mL/min; 
Helium make-up gas:30mL/min 
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Fatty acids used in the analysis were myristic acid (C14:0), palmitic acid 

(C16:0), palmitoleic acid (C16:1), stearic acid (C18:0), oleic acid (C18:1), linoleic acid 

(C18:2), linolenic acid (C18:3), arachidic acid (C20:0) and behenic acid (C22:0) (Figure 

6.2). Each sample was analyzed at least two times. 9 main fatty acids in olive oil 

samples were determined by retention time of each one according to the reference of 

standard fatty acids. The area of the each peak which belonged to these fatty acids was 

integrated by using Chem-station software. The integrated area of each fatty acid was 

converted to the % concentration by dividing the calculated area of each acid to total 

area content of all related fatty acids existed in olive oil. 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure  6.2. Typical GC chromatogram of olive oil 
 

 

6.2.9. HPLC Analysis of Phenolic Compounds 

 

 

Phenolic Extraction: The phenolic extracts of olive oil samples were carried 

out according to the procedure of Brenes et al. (1999). Firstly, 14 g olive oil sample was 

extracted by using 14 mL of methanol/water (80:20 v/v) for 4 times, 0.01 mol of gallic 

acid solution (0.05g GA / 25 mL methanol-water) as the internal standard was added to 

oil sample and homogenized, then centrifuged to separate the supernatant phase. After 

centrifugation, supernatant phase was collected in a clean tube and in a rotary 

minutes 

pA 
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evaporator (Heidolph Laborota-4000, Germany) for 22 minutes. Methanol was 

removed, and then 15 mL of acetonitrile was added to the residue and washed with ×20 

mL of n-hexane for 3 times.  Acetonitrile solution was evaporated under vacuum for 37 

minutes and the residue was exposed to nitrogen for 10 minutes and dissolved in 1 mL 

of methanol/water.  Final extract was filtered with a 0.45 µ m pore-size membrane filter 

(Minisart, Sartorious, and Goettingen, Germany) and transferred into a tube. The extract 

was injected to HPLC as 20 µL.  
HPLC Analysis : HPLC system with Agilent 1100 series with quat pump, diode 

array detector (DAD), and a 5 µm, 25 cm× 4.6 mm, C18 column (Ace, Aberdeen, 

Scotland) was used to identify phenolic compounds. Separation was achieved by elution 

gradient using an initial composition of 90% water (pH adjusted to 3.1 with 0.2% acetic 

acid) and 10% methanol. The concentration of the methanol was increased to 30% in 10 

min and maintained for 20 minutes. Subsequently, the methanol percentage was raised 

to 40% in 10 min, maintained for 5 min, increased to 50% in 5 min, and maintained 

another 5 min. Finally, the methanol percentage was increased to 60, 70, and 100% in 5 

min periods. Initial conditions were reached in 15 min. The flow rate was 1 mL/min.  

Column temperature was kept at 35 °C. In order to obtain effective separation of 

individual phenolic compounds, degassing of mobile phase was provided by Helium gas 

during the HPLC analysis.  

 

 

 
 
 
 

Figure 6.3. Typical HPLC chromatogram of olive oil at 280 nm 

mAU 

minutes 
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Phenolic compounds were stated with commercial standards at 280 and 320 nm, 

according to their retention time. The phenolic area of each compound and the area of 

gallic acid area as an internal standard were integrated (Figure 6.3). The peak ratio of 

the phenolic compounds was calculated by dividing phenolic area to gallic acid area. 

This peak ratio was also quantified by using their related 4-point calibration standard 

curves. Hydroxytyrosol, dialdeyhdic forms of elenolic acid and ligstroside aglycon were 

quantified by tyrosol standard and oleuropein aglycon was also quantified by oleuropein 

standard. Calibration curves of phenolic standards were given in Appendix B. 

 

 

6.2.10. Color Analysis 

 

 

In order to determine the oil color, a colorimeter (chromometer type CR-400, 

Minolta Sensing, Osaka, Japan) was used. Before measurement the oil color, calibration 

of the colorimeter was done according to the color coordinates by acquiring the values 

as Y=93.5, x=0.3140, y=0.3318. After calibration of the instrument, 40 mL of oil 

sample was put into the glass cell and measurement of the oil samples color was carried 

out at three different positions, in terms of L*, a* and  b*. The oil color was reported as 

the average of three readings for L*, a*, b*. L*, a*, b* values refer to lightness value; 

red and green color; yellow and blue color respectively. 

 

 

6.2.11. Data Analysis 

 

 

6.2.11.1. Univariate Statistical Analysis 

 

 

Analysis of variance (ANOVA) was applied to the data of the measurements 

comprising TPC, PV, K232, K270 and color coordinates of the extracted and 

commercial EVOO samples. Tukey’s test at 5% significance level was used to establish 
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differences oil samples and storage time (Minitab 14, Minitab Inc., State College, 

USA). Significance was accepted at p < 0.05.  

 

 

6.2.11.2. Multivariate Statistical Analysis 

 

 

The multivariate analysis was carried out by using soft independent modelling of 

class analogy (SIMCA) software (Umetrics, Sweden). The quality parameters were 

predicted by FT-IR spectra using PLS. In this technique, FT-IR between 3620-2520 cm-

1 and 1875-675 cm-1 were taken as X-matrix and PV, K232, K270, FFA, TPC, palmitic 

acid, palmitoleic acid, stearic acid, oleic acid, linoleic acid and linolenic acid values 

were taken as Y-variables. Wavelet orthogonal signal correction (WOSC), which 

provides an increase in predictability and efficiency of PLS, was performed for each 

quality parameter prediction by FT-IR spectra. By the application of WOSC, number of 

X-variables was reduced in order to remove X-spectral data, which were not related 

with Y-variables. 

Simca-P software determines the goodness of fit parameter R2 and the goodness 

of prediction parameter Q2. The goodness of prediction parameter Q2 is calculated by 

leave-one-out cross validation and indicates the predictive power of the model. R2, the 

fraction of the variation of Y explained by the model after each components, and Q2, the 

fraction of the variation of Y that can be predicted by the model according to the cross 

validation. Q2 value is always less than R2 value and it is desired to be close to R2 for a 

good model.  
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CHAPTER 7 

 

 

RESULTS AND DISCUSSION 

 

 
7.1. Monitoring EVOO samples for 14 months  
 

 

In this section, the results of 14-month storage of north (Altınoluk and Ezine) 

and south (Bayındır and Ortaklar) Aegean olive oil samples, which belonged to 2007 

harvest year, are presented. The changes in PV, K232, K270, FFA, TPC, color 

coordinates, fatty acid and phenolic profiles of EVOO samples were tabulated during 14 

months in Appendix A.  

 

 

7.1.1. Peroxide Value (PV) 

 

 

The initial PVs of all samples were within the legal limit of 20 meq/kg. Bayındır 

olive oil had the highest and Ezine olive oil had the lowest initial PV among the olive 

oil samples monitored (Figure 7.1). All samples showed a progressive increase in PVs, 

which indicated the greater primary oxidation, after 7-month storage. Except Ezine and 

Ortaklar olive oils stored at refrigerator, all other olive oils exceeded the upper limit in 

7th month of storage. Ezine and Ortaklar olive oils exceeded the maximum value with a 

slight amount at 10th month of the storage in comparison to other olive oil samples. 

Bayındır olive oil stored at room temperature had the highest PV at the end of the 

storage time. It was clear that the increase in PVs of the olive oils stored at room 

temperature was more than the oils stored at refrigerator temperature during 14-month 

storage.  
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According to the study of Gomez-Alanso, et al. (2007), the PVs of the 

Cornicabra VOO samples, PVs of which were found lower than 6.6 meq/kg at the 

beginning of the assay, did not exceed the upper limit established by European 

regulation for EVOO during the storage at 21 months and room temperature. The 

differences can be based on the lower initial values of PVs of the Cornicabra oils than 

our olive oil samples.  

In a study of evaluation of the extent of degradation in the quality of some Greek 

virgin olive oils during storage, olive oil samples stored in darkness an increase in PV 

was observed during the first 7 months. After this time, a reduction occurred probably 

due to the break up of peroxides into secondary products. So the PVs decreased until the 

9th month of the storage time. The peroxide value of oil samples extracted using the 

classic system and stored in dark did not exceed the limit of 20 meq/kg of oil until the 

5th month of storage and values remained close to this during the remaining storage 

period in the same study (Vekiari, et al., 2002). Kiritsakis (1998) also searched the 

changes in PVs of six olive oil samples from olive fruits of the cultivar Koroneiki, 

which were stored in glass bottles and in dark for 2 years. According to results of this 

study, the PVs did not exceed the legal limit during storage period.  
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Figure 7.1. Changes in PVs of EVOO samples during 14-month storage period 
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According to the result of this statistical analysis significance differences were 

obtained among the olive oils (p<0.05). To reveal the effect of storage time and olive oil 

type on PVs of the oils, two-way ANOVA was performed and significant differences 

were found (p-value < 0.05).  

 

 

7.1.2. K232 and K270 Values  
 

 

None of the oil samples exceeded the upper limit of 2.5 during 14-month 

storage.  Altınoluk olive oil had the lowest and Ortaklar olive oil had the highest initial 

K232 value. All K232 values decreased on 4th month of the storage time and then they 

began to increase to the end of the storage time (Figure 7.2). The olive oil samples, 

which were stored at room temperature, had higher final K232 values compared to 

those.  
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Figure 7.2. Changes in K232 values of EVOO samples during 14-month storage period 

 

 

Vekiari and friends (2002) reported that the values of K232 in samples of Greek 

olive oils stored in dark showed an increase during the first 7 month and the K232 

values of these samples did not exceed the upper limit value for K232. In addition, 
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Gutierrez and Fernandez (2002) pointed out the olive oils stored at 2°C and in dark for 6 

months, K232 values remained practically constant or very slightly increased. The limit 

value of 0.25 for extra virgin olive oils exceeded at 85 and 63 days in Picual and 

Hojiblanca olive oils, respectively in the same study.  

To determine the effect of time and oil type on K232 values, two-way ANOVA 

was performed to all oil samples. Significant differences were obtained among oils and 

storage months. 
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Figure 7.3. Changes in K270 values of EVOO samples during 14-month storage period 

 

 

The initial K270 values of olive oil samples were less than the limit of 0.2. 

Ortaklar olive oil had the highest and Bayındır olive oil had the lowest initial K270 

values. Altınoluk, Bayındır and Ortaklar olive oils, which were stored at room 

temperature, and Ortaklar olive oil, which were stored at refrigerator, exceeded the limit 

on 4th month of storage time. Sharp increase was observed in Altınoluk and Bayındır 

olive oil samples after 1st storage month. The increase occured in oils, which were 

stored at room temperature, was more than the oils stored at refrigerator, as the changes 

in K232 values during storage period. Figure 7.3 refers to the changes in K270 values of 

EVOO samples for 14 months.  

Caro and co-workers (2006) reported the K270 values of the Bosana oil samples 

stored in dark and at room temperature for 16 months, and observed a significance 
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increase in K270 values, which were remained below the legal limit of 0.2. For the 

determination of quality of Picual and Hojiblanca olive oils during storage at 2°C, the 

K270 values of the samples were observed as unchanged (Gutierrez and Fernandez 

2002).  

Two-way ANOVA was performed to the samples to check the effect of time and 

oil types. Significant differences were observed in K270 values with respect to olive oil 

and time. 

 

 

7.1.3. Free Fatty Acid (FFA) 

 

 

The initial FFA values of the oil samples ranged from 0.3 to 0.41. The highest 

initial FFA value belonged to Ortaklar olive oil, while Altınoluk olive oil had the lowest 

FFA. The initial FFA value of Bayındır olive oil (0.38) was close to Ezine olive oil 

(0.39). During storage period of the oil samples, the FFA values increased slightly 

(Figure 7.4). None of the samples reached to limit of 0.8 %. 
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Figure 7.4. Changes in FFA values of EVOO samples during 14-month storage period 

 
 
 
 



 76

Gutierrez and Fernandez (2002) studied on quality indices of Picual and 

Hojiblanca EVOO samples, which were extracted from from several olive cultivars 

grown in the same Italian region and stored at 2°C at dark for 6 months. The FFA 

values of the oil samples maintained their initial acidity values for 6 months. In the 

same study, the oils stored at 30°C showed an increase in acidity with the storage time 

that became significant (p < 0.05) at the end of the storage period.  

 

 

7.1.4. Total Phenol Content (TPC) 

 

 

Ortaklar olive oil had the highest initial TPC value among the oil samples 

monitored. An increase in TPCs of all oil samples was observed in 4th month, and then 

these values decreased. The sharp decrease was observed in 14th month of storage 

(Figure 7.5).   

Cinquanta, et al. (1997) studied the changes in phenolic compounds of olive oil 

samples from Molise region during 18-month storage in darkness and at room 

temperature. The reduction in TPC of these oils appeared after 6, 12, and 18 months of 

storage is a result of oxidation and hydrolytic activities, which increase during storage. 
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Figure 7.5. Changes in TPC values of EVOO samples during 14-month storage period 
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Two way ANOVA was applied to olive oil samples both stored at room and 

refrigerator temperatures individually including all months and significant differences 

were observed between the samples stored at room temperature. On the other hand, no 

significant differences (p < 0.05) were observed among the oils stored at refrigerator. 

 

  

7.1.5. Color 

 

 

Ezine oil had the higher L* value than others. During storage period, the 

luminosity values of the oil samples, which were kept at room temperature, increased 

regularly (Figure 7.6). The regular change in the L* values of the oil samples, which 

were stored at refrigerator, were not observed. The L* values of Altınoluk and Bayındır 

oils increased until the 7th month of storage time, but a decrease was seen in 10th month 

of the storage.  The increase for Ortaklar oil was in a regular way like the oils, which 

were stored at room temperature during 10-month storage period. Two-way ANOVA 

was applied to the L* values for determination of the differences between both oil 

samples and storage months. Therefore, significance difference was found with the 

result of p-value < 0.05. 
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Figure 7.6. Changes in L* values of EVOO samples during 10-month storage period 
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The highest and the lowest a* values were 1.08 and 0.39, for Altınoluk and 

Ortaklar olive oils (Figure 7.7). The initial b* values of the samples were almost 

similiar and varied from 8.00 to 11.61 (Figure 7.8). Although no sharp increase was 

observed in b* values of the samples during storage, significant differences were found 

among the b* values of oil samples statistically. 
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Figure 7.7. Changes in a* values of EVOO samples during10-month storage period 

 

 

Morello and co-workers (2003) reported that storage did not have a significance 

effect on chromatic coordinate b* values of commercial olive oils of the Arbequina 

cultivar after 12 months of storage.  
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Figure 7.8. Changes in b* values of EVOO samples during 10-month storage period 

 

 

7.1.6. Fatty Acid Profiles 

 

 

Fatty acid composition suffered slight changes during storage. An increase in the 

percentage of oleic acid as a consequence of the decrease in of linoleic and linolenic 

acid contents were observed. 

The initial oleic acid content of olive oil samples varied from 71.52 to 76.10. An 

increase was observed in oleic acid contents of the samples from 4th month to the end of 

the storage period (Figure 7.9).  

The initial linoleic acid contents of Altınoluk and Ezine olive oils were higher 

than Bayındır and Ortaklar olive oils. A steady decrease was observed in linoleic acid 

contents of olive oils after 4th month of storage (Figure 7.10). The decrease in linolenic 

acid content was also observed olive oils after 4th month of storage (Figure 7.11).  

Gomez-Alonso, et al. (2007) evaluated the changes occured in fatty acids of 

Spanish olive oils stored at room temperature for 21 months. In their study, there were 

no detectable changes in oleic acid after 21 months of storage time. The reductions 

observed in linoleic and linolenic acids of the olive oil samples ranging between 2.1% 

and 3.8% for linoleic acid and between 5.8% and 10.0%. 
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Figure 7.9. Changes in oleic acid contents of EVOO samples during 14-month storage    

period 
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      Figure 7.10. Changes in linoleic acid contents of EVOO samples during 14-month 

storage period 
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Figure 7.11. Changes in linolenic acid contents of EVOO samples during 14-month   

storage period 
 

 

In the study of Morello, et al. (2003) an increase in oleic acid contents in 

commercial olive oil of Arbequina cultivar stored for 12 months ranging from 70.1 to 

76.8%, which is similar to our results.  

 

 

7.1.7. Anisidine Value (AV) 

 

 

The highest initial AV belongs to Altınoluk olive oil. The other EVOO samples 

had approximately the same initial AVs. As a result of decomposition of 

hydroperoxides, a non-volatile portion of the fatty acid that remains a part of the 

glyceride molecule occurs. This non-volatile reaction product causes an increase in AV. 

From the 1st month of storage period AVs increased continuly.  

The increase in AVs of oils kept at room temperature was greater than the oils 

stored at refrigerator (Figure 7.12).  
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Figure 7.12. Changes in AVs of EVOO samples during 14-month storage period 

 

 

7.1.8. Iodine Value (IV) 
 

 

The initial IVs of the EVOO samples were close to each other and varied from 

84.48 to 87.18. Among the oils, Altınoluk olive oil had the highest initial IV. As 

expected, unsaturated fatty acids declined during storage period. Decreasing of 

unsaturated fatty acids was observed for all storage period (Figure 7. 13).  
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Figure 7.13. Changes in IVs of EVOO samples during 14-month storage period 
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7.1.9. Determination of Differences in FT-IR Spectra during 14-Month    

Storage Period 

 

 

The changes in the FT-IR spectra of EVOO samples during storage, some of the 

most significant wavenumbers (cm-1), which are useful indicators of the oxidation 

status, are defined in this part of the study.  In all FT-IR spectra, X-axis indicates the 

wavenumbers (cm-1) and Y-axis indicates the absorbance values (A). In order to 

emphasize the changes in FT-IR spectra of Altınoluk olive oil at the beginning (1st 

month) and at the end of the storage period (14th month) are compared in figures 7.14, 

7.15, 7.16, 7.17, 7.18 and 7.19. 

 

 

 
 
Figure 7.14. Changes in FT-IR spectra between 3530 and 3420 cm-1 for Altınoluk olive 

oil (—1st month, — 14th month) 
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In bands near 3445 and 3468 cm-1, broading of bands indicates the presence of 

hydroperoxides and appreciable proportion of alcohols in high amounts. So this region 

of the spectra refers to the oxidized oils. The figure 7.14 shows the changes in bands 

between 3530-3420 cm-1. In this spectrum, broading is observed around the region of 

3500 and 3460 cm-1. 

Near the bands 2925-2852 cm-1 a reduction is seen in absorbance which is 

attributed to the symmetric stretching vibration of the aliphatic CH2 group (Figure 7.15 

and 7.16).  

 

 

 
 
Figure 7.15. Changes in FT-IR spectra between 2930 and 2910 cm-1 for Altınoluk olive 

oil (—1st month, — 14th month) 
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Figure 7.16. Changes in FT-IR spectra between 2856 and 2852 cm-1 for Altınoluk olive 

oil (—1st month, — 14th month) 
 

 

The region between the wavenumbers of 1746 and 1743 cm-1, is the indicator of 

production of saturated aldehyde functional groups or other secondary oxidation 

products.  The major peak at 1743 cm-1 arises from C=O streching vibrations. The 

absorbance of the band at approximately 1746 cm-1, due to the ester carbonyl functional 

group of triglycerides, also change during oxidation.   In this region, a slight decrease in 

absorbance value of band is determined (Figure 7.17).  

The bands near 1238 and 1163 cm-1 associate with the stretching vibration of the 

C-O ester groups and with bending vibration of changes during oxidation period. Sharp 

decrease in absorbance value of band near 1163 cm-1 refers to the oxidation process. 

The lower absorbance value is the marker of the more advanced oxidation (Figure 7.18).  
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Figure 7.17. Changes in FT-IR spectra between 1748 and 1740 cm-1 for Altınoluk olive 

oil (—1st month, — 14th month) 
 

 

 

 
 
Figure 7.18. Changes in FT-IR spectra between 1187 and 1062 cm-1 for Altınoluk olive 

oil (—1st month, — 14th month) 
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The absorbance of the band at 967 cm-1, associated with bending vibrations of 

CH functional groups of isolated trans-olefins, increases as oxidation advances. Bands 

at wavelengths of 973 and 976 cm-1 assigns to secondary products such as aldehydes 

and ketones. Therefore the region of 976 – 950 cm-1 refers to the possible aldehydic and 

ketonic groups with isolated trans double bonds, which an increase in the absorbance 

values of spectra occurs. The higher absorbance values are the indicator of the advanced 

oxidation process (Figure 7.19) (Vlachos, et al. 2006, Guillen and Cabo 1997).  

 

 

 
 
Figure 7.19. Changes in FT-IR spectra between 977 and 952 cm-1 for Altınoluk olive oil 

(—1st month, — 14th month) 
 

 

7.1.10. Phenol Composition of EVOO Samples 

 

 

The amount of phenolic compounds in olive oil is an important factor when 

evaluating the quality of olive oil because natural phenols contribute to its resistance to 

oxidation especially during storage period and improve its taste. These compounds 

correlate with the shelf life of oil and, in particular, its resistance to oxidation.  
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The common phenolic compounds, which were identified in this study, were 

hydroxytyrosol, tyrosol, chlorogenic acid, caffeic acid, vanillic acid, vanilin, p-coumaric 

acid, ferulic acid, m-coumaric acid, cinnamic acid, luteolin, and apigenin. The common 

phenolic compounds identified in this study; such as hydroxytyrosol, tyrosol, vanillic 

acid, p-coumaric acid, cinnamic acid, luteolin, and apigenin were also determined 

previously in Turkish extra virgin olive oils (Ocakoglu, et al., 2008). Several phenolic 

compounds, such as 4-hydroxybenzoic acid, 4-hydroxyphenylacetic and syringic acid 

were not present in oil samples. Cinnamic acid was found in high amount in all oils in 

forth month of storage time. This phenolic acid was identified and quantified in high 

levels in olive oils previously by Montedoro, et al. (1992). Altınoluk and Ezine olive oil 

samples separate from Bayındır and Ortaklar olive oils due to their chlorogenic acid 

content. The amount of chlorogenic acid in Altınoluk and Ezine olive oils ranges 

between 0.02 to 0.007 mgGA/kg oil. Phenolic compounds concentrations from 4th 

month to 14th month storage are presented in Appendix-A.  

For identification of some of the secoiridoids and lignans qualitatively, which 

appeared between 37th and 62th minutes of HPLC analysis, study of Brenes and friends 

(2000) was used. The peaks between 37–39 minutes (undefined 1) can be qualitified as 

dialdehydic forms of elenolic acid and lignans (1-acetoxypinoresinol and pinoresinol. 

The unidentified peak 2, which existed between 46 and 49 and before cinnamic acid 

might be considered as oleuropein and oleuropein aglycon. Lastly, the unidentified peak 

3 between luteolin and apigenin (between 59-62 minutes) might be described as 

ligstroside aglycon. As a sample, chromatograms of Ortaklar olive oil stored at room 

and refrigerator temperatures were given in Appendix A. The changes (%) in phenolic 

compounds between 4th month and 14th month storage are given in Table 7.1.  

Calculation of change (%) in concentrations of phenolic compounds: 

 

                ( ) ( )14 4 4∆C % = - / *100C C C⎡ ⎤⎣ ⎦                                          (7.1) 

 

∆C: change in concentration (%) 

C14: concentration of phenolic compound in 14th month (mg GA/kg oil) 

C4: concentration of phenolic compound in 4th month (mg GA/kg oil) 
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Table 7.1. Changes (%) in phenolic compounds during 14-month storage 
 

 olive oil samples 
phenolic compounds aro ero bro oro are ere bre ore 

Hydroxytyrosol -75.42 -44.34 -20.86 93.63 -52.57 -24.69 -15.74 23.03 
Chlorogenic acid -58.88 -79.76 0.00 0.00 71.53 28.33 0.00 0.00 

Tyrosol 66.16 -19.47 0.74 12.61 52.00 -48.37 22.99 12.21 
4- Hydroxybenzoic acid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

4-Hydroxyphenylacetic acid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Caffeic acid -86.79 -71.54 -35.53 -49.31 -25.72 -52.95 -48.35 -81.19 
Vanilic acid -66.62 -4.09 -33.74 -28.97 -23.59 -49.92 -41.67 -90.89 
Syringic acid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Vanilin -66.37 -58.46 -69.08 -43.64 -76.16 -75.19 -17.69 -15.16 
P-coumaric acid -71.99 -56.49 -35.89 -8.00 -43.21 -70.95 -7.79 -48.86 

Ferulic acid -59.51 -91.77 -77.17 -93.74 -2.33 -55.75 -65.87 28.29 
M-coumaric acid -71.72 -64.84 -47.94 -25.92 -49.24 -37.57 29.41 -47.68 

Undefined 1 -83.47 79.18 63.60 -63.16 -0.92 58.26 49.16 -24.46 
Undefined 2 -69.05 -29.46 -51.90 -92.29 -29.95 -41.23 -215.0 -33.67 
Cinamic acid -14.25 -44.85 -59.14 -18.41 -65.74 -80.50 -28.62 -6.96 

Luteolin -87.15 -90.65 -69.30 36.31 -15.65 -57.42 -60.04 -48.96 
Undefined 3 -64.16 -21.11 -70.62 -39.30 -55.67 -48.81 -29.31 -57.03 

Apigenin -93.19 -30.75 -77.84 -52.87 -8.18 -40.75 -10.05 -59.39 
 

 

For Altınoluk olive oil sample stored at room temperature hydroxytyrosol, 

tyrosol, p-coumaric acid and m-coumaric acid had the highest concentrations among the 

others in 4th month. During storage the amount of p-coumaric and m-coumaric acids 

decreased slightly, whereas the concentration of hydroxytyrosol and tyrosol increased 

during storage time. The amount of cinnamic acid increased after 4 months and then 

decrease, while the apigenin concentration decreased sharply after 7 months of storage 

time.  

Altınoluk olive oil stored at refrigerator temperature was rich in amount of the 

phenolics of vanilin, p- and m-coumaric acids, cinnamic acid and luteolin, initially. The 

amount of hydroxytyrosol and tyrosol increased as observed in Altınoluk olive oil 

stored at room temperature. Moreover, a decrease was observed in the concentrations of 

p- and m-coumaric acids, ferulic acid and vanilin. The concentrations of cinnamic acid, 

luteolin and apigenin decreased after 4 months storage, but they began to increase in 7th 

month. 
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The high amount of phenolics in Ezine olive oil stored at room temperature were 

hydroxytyrosol, p-coumaric and m-coumaric acids and cinnamic acid with the related 

concentrations 2.83, 3.10, 2.52 and 2.33, respectively. The amount of tyrosol in this 

sample had no a steady increase during all storage period as occured in other samples. 

After 7 months a decrease was observed in the concentration of tyrosol. All phenolic 

compounds had their lowest values at the end of the storage period.  

Ezine olive oil stored at refrigerator temperature also had hydroxytyrosol, p-

coumaric and m-coumaric acids, cinnamic acid and vanilin in high amounts, initially as 

Ezine olive oil stored at room temperature had. Unlike the Ezine oil stored at room 

temperature, high amount of vanilin was observed in refrigerated Ezine oil during 

storage. The concentrations of vanilic acid, ferulic acid, m-coumaric acid, cinnamic acid 

and luteolin remained constant first 7 months, but after 7th month of storage period a 

decrease was occured in their concentrations. 

The major phenolics were detected in Bayındır olive oil stored at room 

temperature were, tyrosol, p-coumaric and m-coumaric acids and cinnamic acid. The 

amounts of the hydroxytyrosol and tyrosol increased while the amounts of p-coumaric, 

cinnamic acid and luteolin decreased during all storage period. 

For Bayındır olive oil stored at refrigerator temperature tyrosol, p-coumaric and 

m-coumaric acids and cinnamic acid had the highest initial concentrations. The amount 

of tyrosol, had an increase during storage time. The other phenolic compounds detected 

in this sample decreased after 4 months of storage but began to increase after 7 months 

of storage period, except hydroxytyrosol, luteolin and apigenin.   

In Ortaklar olive oil stored at room temperature, hydroxytyrosol, tyrosol, vanilin, 

p-coumaric and m-coumaric acids, cinnamic acid were the major phenolics. During 

storage period, hydroxytyrosol and tyrosol values increase, and varied 1.51-3.04 and 

2.04-4.44, respectively. The other phenolics in this sample, declined after 4 month of 

storage.  

Ortaklar olive oil, stored at refrigerator temperature had the common major 

phenolic compounds. Hydroxytyrosol and tyrosol phenolics of Ortaklar olive oil stored 

at refrigerator temperature increased until 7th month then began to decrease till the end 

of the storage period. The identical behavior was also observed for all other phenolic 

compounds in this sample.   

Morello, et al. (2003) determined noticeable secoiridoid derivatives of Spanish 

olive oil samples, while lignans remained stable after 12 months storage. Beside, the 
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amount of vanilic acid and vanilin did not change during storage period due to their low 

initial concentrations in the same study. Cinquanta, et al. (1997) reported an increase in 

the content of hydroxytyrosol and tyrosol during 18-month storage, and they attributed 

this phenomenon to the hydrolysis of complex phenols which resulted in the formation 

of hydroxytyrosol and tyrosol. Additionally, Gomez-Alonso, et al. (2007) evaluated the 

changes in hydroxytyrosol and tyrosol concentrations of Cornicabra virgin olive oil 

samples during 21-month storage time. The hyroxytyrosol and tyrosol concentrations 

increased linearly in particularly all oil samples confirming that their secoiridoid 

derivates undergo partial non-oxidative hydrolysis. 

 

 

7.2. Monitoring of Erkence (Erk) and Ayvalık-Edremit (AE) EVOO 

for 12 months  
 

 

In this section, 12-month storage results for oils of Erkence (Erk) and Ayvalık-

Edremit (AE) olives, harvested in 2006 are presented.  The changes in PV, K232, K270, 

FFA, TPC, color coordinates and fatty acid profiles of EVOO samples were tabulated 

during 12 months in Appendix A.  

Peroxide value (PV): PV is a measure of primary oxidation. The initial PV of 

AE was in the legal limit (PV < 20 meq/kg) and it also remained in this limit during 

storage period. Therefore, AE olive oil showed a low initial oxidation status according 

to PV. The initial PV of Erk was 23.57 meq/kg, exceeded the limit of 20 meq/kg. The 

PVs of AE oil showed more stable profile aganist to oxidation than Erk olive oil during 

storage (Figure 7.20).  The PVs of Erk and AE remained almost constant in the first 10 

months of storage. An increase in PVs appeared for both of the samples in the 12th 

month of storage time.  In the study of Ocakoglu et al. (2008), the initial PV of AE olive 

oil was reported as 10.64 meq/kg, which was similar to our result. The PVs of twenty 

olive oil samples, obtained from Lianolia variety olives in Greece stored both in light 

and dark conditions, reached to the maximum limit on the 7th month and also they 

exceeded the limit value after storage of 12 months (PVs ranged 25.8-36.00 meq/kg 

(Okogeri and Tasioula-Margari, 2002). 
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In order to determine whether significant difference occurred between the oil 

samples among the storage months, two-way ANOVA was applied to the data. 

According to this statistical analysis, a significant difference was reported (p-value < 

0.05).  
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Figure 7.20. Changes in PVs of Erk and AE oils during 12-month storage period at 8°C 

 

  

K232 and K270 Values: The maximum permitted value of K232 for EVOO is 

2.5. The initial absorbance values at 232 nm of the oil samples were below limit of 2.5. 

The K232 values of both oils maintained under the limit of 2.5 until the 12th month of 

the storage. Erk and AE olive oils exceeded the upper legal limit in the 12th month.  

Figure 7.21 refers the changes in K232 values of the oils during 12-month storage. 

Capino, et al. (2005) analyzed the EVOOs from Corantina cultivars quality parameters 

during 12-month storage. With respect to the results of this search the K232 values 

showed significantly higher values and reached to the maximum limit at the end of the 

storage time. In another survey, it was reported dark-stored samples were ranged 1.8 to 

3.3 in 6th month and 2.3 to 4.7 in 12th month of storage time (Okogeri and Tasioula-

Margari, 2002). 

Significant differences were observed among the olive oil samples and storage 

months at 5% level.  
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The upper limit of K270 value, which is known as a secondary oxidation product 

marker, is less than 0.20. The initial K270 values of both Erk and AE oils were 

observed within the limit. An increase was observed in K270 values of both oil samples. 

Increase in K270 values of AE oil was more than Erk oil (Figure 7.22).  
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Figure 7.21. Changes in K232 values of Erk and AE oils during 12-month storage 

period at 8°C 
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Figure 7.22. Changes in K270 values of Erk and AE oils during 12-month storage 

period at 8°C 
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Sinelli and friends (2007) exhibited the changes in K270 values of the olive oil 

samples from Garda region in dark one year and two years. The initial K270 values of 

the analyzed oil samples range from 0.05 to 0.24; but after storage of oils for 1 and 2 

years, these ranges were found 0.1-0.54 and 0.16-0.6, respectively.  

Significant differences were obtained between oils and storage months, 

statistically (p-value = 0.041 < 0.05).  

Free Fatty Acid (FFA): FFA is also one of the most important factors in order 

to determine olive oil quality. The established acidity value of EVOO by EU regulation 

is less than 0.8%. The initial acidity of Erk and AE were 0.18 and 0.79, respectively. 

The initial acidity value of AE oil was higher than Erk olive oil (Figure 7.23). 
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Figure 7.23. Changes in FFA values of Erk and AE oils during 12-month storage period 

at 8°C 
 

 

During the storage, an increase in FFA was observed in two oil samples till the 

end of the storage. This increase in acidity is due to the free fatty acid hydrolysis. Oils 

of both cultivars maintained their extra quality (< 1%) at the end of storage time. 

Total Phenol Content (TPC): TPC of Erk oil was higher than the TPC of AE 

oil. The initial TPC of Erk oil was 178.79 whereas the TPC value of AE oil was 61.06. 

Total phenol contents of olive oils decreased during storage (Figure 7.24). This 

reduction of the total phenol content of oils during storage is a result of the 
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decomposition processes that occur in the oxidation activities. Capino, et al. (2005) 

expressed the decrease in TPC values of Corantina cultivar olive oils during 12-month 

storage in darkness. The sharp decrease in TPC values were observed after storage of 8 

months.  

The changes among the olive oils during the storage period were not found 

significant, statistically (p < 0.05). 
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Figure 7.24. Changes in TPC values of Erk and AE oils during 12-month storage period 

at 8°C 
 

 

Color: The initial luminosity values (L*) of Erk and AE oils were 23.58 and 

24.88, respectively.  L* value decreased in 4th and 7th month for Erk oil and a decrease 

was also observed in 4th month for AE oil. This value increased after the 10 month 

storage time probably as a consequence of the reduction on the pigment content.  

AE oil showed higher negative initial a* value than Erk oil. Nevertheless, initial 

b* value, which corresponds to yellow zone, of Erk oil showed similarity to AE oil. 

Figures 7.25, 7.26 and 7.27 refer to the changes in color coordinates during 12-month 

storage period of EVOO samples. Significance differences between L*, a* and b* 

values of two types of EVOO samples were found at 5% level among the storage 

months. 
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Figure 7.25. Changes in L* values of Erk and AE oils during 12-month storage period at 

8°C 
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Figure  7.26. Changes in a* values of Erk and AE oils during 12-month storage period 

at 8°C 
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Figure  7.27. Changes in b* values of Erk and AE oils during 12-month storage period 

at 8°C 
 

 

Fatty Acid Profiles: In this section, results for oleic, linoleic and linolenic acids 

were presented. The most abundant fatty acid in olive oil is oleic acid. The initial oleic 

acid content of Erk olive oil sample (68.10 %) was higher than that of AE olive oil 

(67.40%). During storage period, an increase was observed in the oleic acid contents of 

both oil samples (Figure 7.28).  

The initial linoleic acid content of Erk oil was also higher than the AE oil. A 

decrease was observed in linoleic acid content of Erk oil while the decrease in AE oil 

was not regular like Erk oil (Figure 7.29). In addition, the initial linolenic acid amounts 

of Erk and AE oil samples was found 0.73 and 0.65, respectively. The linolenic acid 

contents of both oil samples decreased during 12-month storage time (Figure 7.30).  

However, the other fatty acid contents of Erk and AE olive oil samples 

decreased during 12-month storage time.  
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Figure 7.28. Changes in oleic acid contents of Erk and AE oils during 12-month storage 

period at 8°C 
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Figure 7.29. Changes in linoleic acid contents of Erk and AE oils during 12-month     

storage period at 8°C 
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Figure 7.30. Changes in linolenic acid contents of Erk and AE oils during 12-month      

storage period at 8°C 
 

 

7.3. Monitoring Accelerated Oxidation of North and South Aegean 

EVOO during 19 Days 

 

 

In this section, the results of the olive oil samples exposed to accelerated 

oxidation for 19 days are given. The tables showed the changes in PV, K232 and K270 

values of EVOO samples during 19 days were presented in Appendix A.  

 

 

7.3.1. Peroxide Value (PV) 

 

 

During autoxidation, the peroxide value of oil reaches a maximum followed by a 

decrease at more advanced stages varying according to the fatty acid composition of the 

oil and the conditions of oxidation. Thus, measurement of PV is an indicator of the 

initial oxidation. 

The initial PVs of both South (S) and North (N) Aegean EVOO samples were 

below the upper limit value, which is 20 meq/kg. The initial peroxide concentration of 

northern olive oil samples was lower than those from south Aegean oil samples. 
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Otherwise, PVs of both oil samples exceed the related legal limit when the first day of 

exposed to oxidation period.  

PVs increased considerably when compared the initial values, then began to 

decline and this decline in PV kept on until 9th day of oxidation. After 10th day of 

oxidation process the related PVs of both samples increased at the end of oxidation 

period. However, the increase took place in southern Aegean oil samples was more than 

northern Aegean oil samples, so this pointed out the stability of olive oil obtained from 

north region of Aegean is more stable against to oxidation  depending on PV results 

(Figure 7.31). 

A significance difference between PVs of two types of EVOO samples was 

found at 5% level.  
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Figure 7.31. Changes in PVs of North and South Aegean EVOOs during 19 day 

accelerated oxidation 
 

 

7.3.2. K232 and K270 Values 

 

 

Specific extinction coefficients express the oxidation stage of olive oil. The 

absorption value at 232 nm in the ultra violet region refers to the conjugated diene and 

the absorption at 270 nm refers to the conjugated triene concentrations in olive oil due 
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to oxidation process. The higher concentration of conjugated dienes and trienes induce 

greater amounts of K232 and K270.  

The initial K232 values of the oil samples were less than the limit of 2.5 and 

remained within this limit during one week of oxidation process. In the consequent days 

of oxidation period the K232 values exceeded this upper limit (Figure 7.32).  
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Figure 7.32. Changes in K232 values of North and South Aegean EVOOs during   19 

day accelerated oxidation 
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Figure 7.33. Changes in K270 values of North and South Aegean EVOOs during 19  
                     day accelerated oxidation 
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K232 values of north and south Aegean olive oil samples were found 

significantly different for each day (p < 0.05).   

The initial K270 values of oil samples were also within the limit of K270 ≤ 0.20, 

which was established by EU and Turkish Food Codex. However, this limit value was 

exceeded in the 2nd day of oxidation period for both north and south Aegean EVOO 

samples. Between the 2nd and 8th days of oxidation, the values varied 0.11 to 0.17 for 

the sample of north Aegean EVOO, additionally in these days stability was observed in 

K270 values of south Aegean EVOO. After the 8th day, an increase was observed in 

K270 values to end of the oxidation period (Figure 7.33).  

The significance of differences at a 5% level among the K270 values during 

oxidation was detected. 

 

 

7.3.3. Determination of Differences in FT-IR Spectra During Oxidation 

 

 

The differences in the FT-IR spectra, due to oxidation are presented in figures 

7.34, 7.35 and 7.36 for the 1st and 19th days.  

In the region of wave numbers 2855-2851 cm-1, stretching vibration of the 

aliphatic CH2 functional groups form, and then absorbance declines and a narrowing is 

observed in bands. Guillen and Cabo (2000) reported on the significant changes in the 

spectra of FT-IR on different edible oils under oxidative conditions of 70°C 

temperature. Apart from these changes, they also emphasized the changes occurred in 

bands of 3600-3100 cm-1, which depicts the presence of hydroperoxides during 

oxidation and a sharp decrease in frequency of band near 3006 cm-1, which represents 

the disappearance of cis double bands, and the band at 988 cm-1, was characterized as 

the indicator of presence of trans- and cis, trans conjugated olefinic double bonds. Any 

changes in these regions were not observed in this study.  

Another important change in the spectra of oxidized olive oils formed among the 

1743-1746 cm-1.  A slight decrease in absorbance value of the band near 1746 cm-1 was 

detected. This region corresponds to carbonylic compounds. Lower absorbance values 

indicate the more advanced oxidation process.  
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Figure 7.34. Changes in FT-IR spectra between 2855-2852 cm-1 (—1st day,  

— 19th day) 
 

 

 
 
Figure 7.35. Changes in FT-IR spectra between 1746-1742 cm-1 (—1st day,  
                      — 19th day) 
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Figure 7.36. Changes in FT-IR spectra between 974-956 cm-1 (—1st day, — 19th day) 
 

 

The region of 974-950 cm-1, where considerable change occurred during 

oxidation process, is the indicator of the possible presence of aldehydic or ketonic 

groups with isolated trans double bonds. In this stage an increase was seen in the 

absorbance values of the spectra.  
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7.4. Results of Flaxseed-Olive Oil Mixtures 

 

 

The tables of the measurements were provided in Appendix-A for pure olive oil, 

pure flaxseed oil and flaxseed oil-olive oil mixtures (5%, 10%, 15%). 

 

 

7.4.1. Peroxide Value (PV) 

 

 

Pure olive oil sample had the highest initial PV in comparison to other oil 

samples. The initial PV of flaxseed oil also higher than the 5, 10, 15% flaxseed-olive 

oil mixtures. The initial PVs of the oil mixtures of 5, 10 and 15% were 2.81, 2.54 and 

2.34, respectively.  During storage period, the PVs of the samples, which contained 

flaxseed oil, ranged 2.34 to 6.73.  As expected, oil samples stored at room temperature 

had higher PVs than the samples kept at refrigerator at the end of the storage, because 

of the negative effect of temperature to oxidation of oil. In this study some of the oil 

samples stored at room temperature had slightly lower final PVs at the end of the 126-

day storage. According to the initial PVs and the other PVs measured during storage, 

the PVs of the oil mixture samples decreased with the increase in amount of olive oil 

addition to flaxseed oil. However, as stated in the previous sections, peroxides are the 

primary oxidation products and peroxide concentration may fluctuate over time since 

peroxides turn to other oxidation products in time.  

During storage of the samples, increases in PVs of all oil samples were observed 

(Figure 7.37).  In the figures suffix ‘ro’ and‘re’ in the sample names stand for the room 

and refrigerator conditions. ‘o’ is for pure olive oil, whereas ‘f’ is for pure flaxseed oil. 

5, 10, 15 represent the percentages of olive oil in the flaxseed oil. The increase in PVs 

of the oil samples, stored at room temperature, was higher than the oil samples, which 

were kept at refrigerator.   
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Figure 7.37. Changes in PVs of oil samples during 126-day storage period 

 

 

7.4.2. K232 and K270 Values 

 

 

Olive oil sample had the highest and 15% flaxseed-olive oil mixture sample had 

the lowest initial K232 values among all samples. As shown in Figure 7.38, the samples 

maintained their stability in terms of K232 values during storage time, especially the oil 

samples stored at refrigerator. It is clear that K232 values of pure flaxseed oil samples 

remained approximately constant, as in oil samples during 100 days. However, an 

increase was observed in pure oil samples as opposed to flaxseed and olive oil samples 

after 100 days. None of the samples exceeded the upper limit value for K232 

(K232≤2.5) during storage time. 

The initial K270 values of oil samples were within the maximum limit and 

varied from 1.64 to 0.20. Flaxseed oil had the highest initial K270 value while 15% 

mixtured sample had the lowest one. Pure flaxseed oil exceeded the upper limit of K270 

after 21-day storage (Figure 7.39). Moreover, olive oil sample, which was kept at room 

temperature, reached the limit value in 105th day of the storage.   
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Figure 7.38. Changes in K232 values of oil samples during 126-day storage period 

 

 

At room temperature, the K270 values of flaxseed oil showed an increase after 

63-day storage time, whereas the changes in K270 values of this sample were not as 

high as flaxseed oil stored at room temperature.   
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Figure 7.39. Changes in K270 values of oil samples during 126-day storage period 
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7.4.3. Total Phenol Content (TPC) 

 

 

As given in Figure 7.40, the high content of total phenol belonged to olive oil 

sample. Flaxseed had the lowest initial TPC value among the oil samples. The olive oil 

addition contributes a small increase in TPCs of flaxseed-olive oil mixtures. TPC of the 

samples decreased during the storage regularly. The changes in TPCs of the oil samples, 

which were stored at room temperature, were higher than the oils stored at refrigerator 

during 126-day storage period.  

Choo and co-workers (2007) studied the physicochemical and quality 

characteristics of seven cold-pressed flaxseed oils sold in New Zealand. They measured 

the total phenolic acids of these samples as ferulic acid equivalents at 725 nm. 

According to their results the total phenol acid content of the flaxseed oil samples 

ranged from 87.2 to 307.3 as ferulic acid equivalents (mg/100g).  
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Figure 7.40. Changes in TPC values of oil samples during 126-day storage period 
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7.4.4. Fatty Acid Profiles 
 

 

The initial oleic acid contents of pure olive oil and flaxseed oil samples were 

70.42 and 17.94, respectively. Based on the high content of oleic acid stability of olive 

oil is about 6 times higher than that for linseed oil. By the addition of olive oil to 

flaxseed oil the initial oleic acid contents of the flaxseed-olive oil mixture samples 

became higher than the initial oleic acid content of pure flaxseed oil. Slight changes 

were observed in oleic acid contents of oil samples during 126-day storage (Figure 

7.41).  The increase was observed in oleic acids after 63 and 84 days of storage.  
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Figure 7.41. Changes in oleic acid contents of oil samples during 126-day storage 

period 
 

 

Significant changes were observed in linoleic acid contents of oil samples until 

105th day of the storage period, after 105 days linoleic acid contents of the all oil 

samples decreased (Figure 7.42).  
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Figure 7.42. Changes in linoleic acid contents of oil samples during 126-day storage 

period 
 

 

0

10

20

30

40

50

60

oro fro 5ro 10ro 15ro ore fre 5re 10re 15re

oil samples

lin
ol

en
ic

 a
ci

d 
(%

)

1 21 42 63 84 105 126
 

 
Figure 7.43. Changes in linolenic acid contents of oil samples during 126-day storage 

period 
 

 
As shown in Figure 7.43, linolenic acid content of pure flaxseed oil and 

flaxseed-olive oil mixtures are higher than pure olive oil. The initial linolenic acid 

contents of pure flaxseed oil and pure olive oil were 54.88 and 0.36, respectively.  The 
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reduction in linolenic acid content of pure olive oil was steady as expected, but also the 

linolenic acid contents of pure flaxseed oil and flaxseed-olive oil samples decreased 

continually during storage period.  

 

 

7.4.5. Determination of Differences In FT-IR Spectra of Olive Oil and 

Flaxseed Oil 
 

 

The overall appearance of the FT-IR spectra of olive oil and flaxseed oil are not 

similiar, they show differences both in exact absorbance values in presence and absence 

of some functional groups in their structure and different oxidative behavior (Figure 

7.44).  

 

 

 
 

Figure 7.44. The spectra of olive oil and flaxseed oil (— flaxseed oil, — olive oil) 
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The observed differences between these oil types around the regions of 3500-

3440, 2924-2840, 1746-1743, 1654, 1463, 1377, 1255-1210, 1140-1110, 1000-800 and 

721 cm-1. Absorbance at 2924 and 2852 cm-1 are due to bands arising from CH2 

strecthing vibrations, asymmetric and symmetric, respectively. The large peak around 

1743 cm-1 results from C=O double bond stretching vibration of carbonyl groups. Peaks 

of 1463-1377 cm-1 arise from CH2 and CH3 scissoring vibration.  Fingerprint region lay 

between 1250-700 cm-1 which is due to stretching vibration of C-O ester group and CH2 

rocking vibration (Guillen and Cabo 1999, Vlachos, et al. 2006).  

 

 

7.5. Relationship Between FT-IR and PV, UV Absorbance Values 

(K232 and K270) and TPC Values 

 

 

The predictability of  oxidation and quality parameters (PV, K232, K270 values 

and TPC) and fatty acid profiles by FT-IR spectra was studied by PLS technique. In 

order to check the correlation between these variables and FT-IR spectra, 13 Y-

variables and 4603 X-variables (FT-IR spectral data) with 80 observations were used. 

Wavelet orthogonal signal correction (WOSC), which provides an increase in 

predictability and efficiency of PLS, was performed for each quality parameter 

prediction by FT-IR spectra. By the application of WOSC, number of X-variables was 

reduced to 128, so X-spectral data, which were not related with Y-variables were 

removed. Results of quality parameters and fatty acid predictions by FT-IR readings are 

presented in Table 7.2. Figures 7.45, 7.46, 7.47, 7.48, 7.49 and 7.50 show the PV, K232, 

TPC, stearic, oleic and linolenic acid values, respectively.  
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Figure 7.45. Results of PLS model: Predicted vs observed PV 
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Figure 7.46. Results of PLS model: Predicted vs observed K232 values 
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Figure 7.47. Results of PLS model: Predicted vs observed TPC values 
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Figure 7.48. Results of PLS model: Predicted vs observed stearic acid values 
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Figure 7.49. Results of PLS model: Predicted vs observed oleic acid values 
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Figure 7.50. Results of PLS model: Predicted vs observed linolenic acid values 
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It was observed that all quality parameters (PV, K232, K270 and TPC) and fatty 

acids except arachidic and behenic acids can be described with a high accuracy by using 

FT-IR spectra.  

 

 

Table 7.2. Parameters of PLS models of quality variables and fatty acid profiles 
 

quality parameters number of components 
R2 Q2 

PV 1 0.933 0.927 
K232 1 0.925 0.923 
K270 1 0.795 0.764 
TPC 1 0.889 0.887 

myristic acid 2 0.794 0.758 
palmitic acid 1 0.979 0.978 

palmitoleic acid 1 0.992 0.992 
stearic acid 1 0.939 0.938 
oleic acid 1 0.991 0.991 

linoleic acid 1 0.870 0.867 
linolenic acid 1 0.998 0.998 
arachidic acid 1 0.718 0.652 
behenic acid 2 0.732 0.695 
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CHAPTER 8 

 

 

CONCLUSION 

 

 
This study evaluated the changes in chemical compositions and oxidative quality 

of Turkish extra virgin olive oils from north and south Aegean regions during 14 month 

storage at two temperatures in the dark. In addition, contribution of olive oil on the 

oxidation rate of flaxseed oil and prediction of quality variables with FT-IR spectra by 

using PLS technique was studied.  

During storage an increase took place in the values of quality parameters PV, 

UV absorbance values (K232 and K270), FFA and AV that are the measure of oxidative 

degradation of oils. The oxidative stability of olive oil samples stored at room 

temperature was less than the oils stored at refrigerator. Significant differences were 

found among the oil samples during storage period at 5% significance level. PVs 

exceeded the upper acceptable level of 20 meq/kg after 7 and 9 months of storage. 

Nevertheless, K232 values of oil samples remained within the limit until 10th month 

while K270 values of oil samples reached the maximum value earlier. It was also 

concluded that when the initial quality of of oil samples were poor, they reached to the 

maximum allowable attained to the limit values of these quality parameters rapidly. 

Acidity of oil samples were also within the limit (< 0.8 %) and no significance increase 

were observed in this value during storage period.  

The decrease in total phenol content of oil samples varied 20 to 70% during 

storage time. The individual phenolic concentrations of oil samples were qualified by 

HPLC. Hydroxytyrosol, tyrosol, caffeic acid, vanillic acid, vanilin, p-coumaric acid, 

ferulic acid, m-coumaric acid, cinnamic acid, luteolin, and apigenin were determined as 

the major phenolic compounds in Turkish extra virgin olive oils. In storage period of oil 

samples, the concentrations of hydroxytyrosol and tyrosol increased, while the other 

phenolic compounds decreased.  

Addition of olive oil to flaxseed oil, which is known as highly-unsaturated plant 

oil, had positive effect on oxidation parameters during 126-day storage. While UV 
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absorbance values of flaxseed oil showed an increase during storage, the olive oil-

flaxseed oil samples maintained their stability. Flaxseed oil and 5% olive oil-flaxseed 

oil mixture exceeded the legal limit of K270. In addition, the other quality parameters 

(PV and K232) of the oil samples remained within the limits during 126-day storage 

time. Considering all quality parameters, 15% olive oil addition to flaxseed oil 

increased the oxidative stability.  

 PLS processing with FT-IR data also allowed to set up mathematical models 

which were able to predict EVOO degradation in terms of peroxide value (PV), UV 

absorbance values (K232 and K270), total phenol content (TPC) and fatty acid profiles 

with prediction values ranged between 0.99 and 0.65. In addition, the peaks at 3468-

3445, 2924, 2852, 1746-1743, 1163, 1119 and 967-976 cm-1 in FT-IR spectra were 

assigned as the useful markers of oxidative status of oil samples.  
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APPENDIX A 

 

 
EXPERIMENTAL DATA 

 

 

Table A.1. PVs of EVOO samples during 14-month storage period 
 

olive oil  time (months)    

 1 4 7 10 14 

aro 13.56±0.02 18.12±0.61 36.85±0.06 38.74±0.81 43.05±0.23 

ero 11.05±0.04 19.96±1.87 27.78±0.14 37.28±0.65 41.14±0.51 

bro 17.49±0.02 19.74±0.02 40.77±0.42 53.36±1.88 58.24±0.85 

oro 15.48±0.06 33.14±0.23 36.87±0.16 41.98±0.03 46.22±0.10 

are 13.56±0.02 11.56±0.13 25.76±0.06 31.52±0.89 33.7±0.71 

ere 11.05±0.04 14.82±0.37 15.85±1.18 22.92±0.57 24.9±0.71 

bre 17.49±0.02 15.25±0.06 27.38±0.62 35.75±0.18 37.81±0.52 

ore 15.48±0.06 27.6±0.94 19.29±0.29 25.33±0.19 27.97±0.65 
 

 

Table A.2. K232 values of EVOO samples during14-month storage period 
 

olive oil  time (months)   

 1 4 7 10 14 

aro 0.72±0.05 0.73±0.03 0.93±0.03 1.26±0.02 1.69±0.00 

ero 1.62±0.37 1.17±0.20 1.19±0.01 2.00±0.00 2.11±0.00 

bro 0.8±0.11 0.7±0.11 0.97±0.11 1.61±0.00 1.95±0.00 

oro 1.64±0.03 1.34±0.24 1.68±0.00 2.01±0.00 2.32±0.00 

are 0.72±0.05 0.53±0.06 0.62±0.04 1.04±0.05 1.29±0.00 

ere 1.62±0.37 0.65±0.11 0.99±0.00 1.85±0.00 1.92±0.00 

bre 0.8±0.11 0.88±0.06 0.93±0.02 1.20±0.00 1.45±0.00 

ore 1.64±0.03 0.79±0.07 1.12±0.00 1.89±0.00 1.97±0.00 
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Table A.3. K270 values of EVOO samples during 14-month storage period 

 
olive oil  time (months)   

 1 4 7 10 14 
aro 0.11±0.05 0.24±0.02 0.26±0.01 0.28±0.01 0.31±0.00 
ero 0.12±0.02 0.14±0.02 0.18±0.00 0.19±0.00 0.21±0.00 
bro 0.10±0.02 0.21±0.02 0.21±0.00 0.24±0.02 0.29±0.00 
oro 0.17±0.03 0.25±0.00 0.26±0.00 0.29±0.00 0.32±0.00 
are 0.11±0.05 0.16±0.04 0.19±0.00 0.2±0.00 0.21±0.00 
ere 0.12±0.37 0.11±0.01 0.16±0.00 0.18±0.00 0.2±0.00 
bre 0.10±0.11 0.15±0.02 0.19±0.00 0.2±0.01 0.22±0.00 
ore 0.17±0.03 0.20±0.02 0.21±0.00 0.21±0.00 0.23±0.00 

 

 

Table A.4. FFA values of EVOO samples during 14-month storage period 
 

olive oil  time (months)   
 1 4 7 10 14 

aro 0.3 0.32 0.34 0.41 0.47 
ero 0.39 0.45 0.48 0.5 0.57 
bro 0.38 0.44 0.46 0.47 0.51 
oro 0.41 0.43 0.46 0.5 0.58 
are 0.3 0.31 0.32 0.35 0.4 
ere 0.39 0.42 0.43 0.45 0.49 
bre 0.38 0.41 0.42 0.44 0.48 
ore 0.41 0.42 0.43 0.44 0.49 

 

 

Table A.5. TPC values of EVOO samples during 14-month storage period 
 

olive oil  time 
(months)    

 1 4 7 10 14 

aro 238.84±24.91 258.15±11.59 200.45±5.02 159.38±5.16 115.2±2.54 
ero 225.75±23.11 260.11±10.97 208.26±4.63 177.50±2.75 134.31±9.38
bro 220.24±12.17 281.98±5.70 219.41±4.81 185.02±6.37 138.18±3.81
oro 361.5±17.76 346.8±52.52 215.05±6.21 197.77±3.65 193.29±2.66
are 238.84±24.91 285.82±10.62 202.01±4.27 164.49±5.01 155.71±4.20
ere 225.75±23.11 286.94±5.69 309.61±5.24 256.90±7.38 159.46±4.28
bre 220.24±12.17 288.39±6.37 214.78±7.43 193.97±5.89 152.3±4.87 

ore 361.5±17.76 410.66±9.50 324.30±9.15 318.46±4.63 247.75±3.34
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Table A.6. L* values of EVOO samples during 10-month storage period 
 

olive oil  time (months)   

 1 4 7 10 

aro 21.66±0.08 21.86±0.10 22.34±0.07 22.47±0.15 

ero 23.68±0.24 24.02±0.08 24.05±0.07 24.42±0.06 

bro 21.71±0.13 22.21±0.04 22.42±0.04 22.83±0.25 

oro 22.59±0.26 23.44±0.12 23.92±0.19 23.48±0.30 

are 21.66±0.08 21.74±0.04 22.17±0.43 22.02±0.24 

ere 23.68±0.24 24.64±0.50 23.57±0.04 24.92±0.15 

bre 21.71±0.13 22.01±0.09 22.10±0.13 21.88±0.06 

ore 22.59±0.26 23.48±0.11 23.68±0.09 23.74±0.18 
 

 

Table A.7. a* values of EVOO samples during 10-month storage period 

olive oil time (months) 
 1 4 7 10 

aro 1.08 ±0.02 0.68±0.04 0.53±0.05 0.27±0.14 
ero 0.79±0.05 1.24±0.03 1.30±0.03 1.35±0.11 
bro 0.92±0.01 0.29±0.02 0.22±0.08 0.05±0.11 
oro 0.40±0.08 0.09±0.01 0.29±0.00 0.54±0.25 
are 1.08±0.02 0.80±0.05 0.84±0.05 0.72±0.14 
ere 0.79±0.05 1.05±0.06 0.73±0.3 1.22±0.06 
bre 0.92±0.01 0.53±0.05 0.65±0.05 0.58±0.07 
ore 0.40±0.08 0.11±0.05 0.15±0.00 0.26±0.01 

 

 

Table A.8. b* values of EVOO samples during 10-month storage period 

olive oil  time (months)   
 1 4 7 10 

aro 8.463±0.07 8.54±0.09 9.20±0.09 9.41±0.14 
ero 11.61±0.22 11.35±0.22 11.44±0.22 11.08±0.11 
bro 8.00±0.20 9.27±0.03 9.56±0.03 9.53±0.11 
oro 9.00±0.13 8.99±0.14 9.30±0.14 10.26±0.25 
are 8.46±0.07 8.67±0.31 8.17±0.31 7.92±0.14 
ere 11.61±0.22 10.80±0.06 11.20±0.06 10.77±0.06 
bre 8.00±0.20 8.75±0.14 8.70±0.14 8.33±0.07 
ore 9.00±0.13 8.60±0.07 9.42±0.08 9.43±0.26 

 



 136

Table A.9. AVs of EVOO samples during 14-month storage period 
 

olive oil  time (months)   

 1 4 7 10 14 

aro 15.69 27.45 36.81 32.75 38.83 

ero 10.22 27.56 33.00 32.49 34.98 

bro 10.12 15.09 20.33 21.53 36.61 

oro 10.64 35.01 38.68 38.23 42.31 

are 15.69 22.41 30.44 29.07 31.40 

ere 10.22 16.62 22.17 24.59 25.23 

bre 10.12 11.53 22.66 17.07 19.40 

ore 10.64 28.34 30.55 30.48 31.27 
 

 

 

 

Table A.10. IVs of EVOO samples during 14-month storage period 
 

olive oil  time (months)   

 1 4 7 10 14 

aro 87.18 82.31 72.72 66.05 61.74 

ero 86.54 84.01 64.70 60.88 55.16 

bro 84.48 83.13 70.95 68.04 60.03 

oro 85.51 83.23 77.14 63.70 58.94 

are 87.18 83.05 76.92 68.47 65.64 

ere 86.54 84.12 70.49 64.67 60.32 

bre 84.48 83.17 75.06 74.60 71.15 

ore 85.51 84.52 79.45 60.32 57.48 
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Table A.11. Fatty acid profiles of (% total fatty acids) of EVOO samples during 14-month storage 
 

time (months) olive oil samples C14:0 C16:0 C16:1 C18:0 C18:1 C18:2 C18:3 C20:0 C22:0 

1 aro 0.015 10.285 0.549 2.837 74.739 10.204 0.518 0.691 0.161 
 ero 0.017 12.845 0.652 2.844 71.521 10.895 0.489 0.584 0.153 
 bro 0.018 11.295 0.637 2.519 76.110 8.065 0.432 0.782 0.143 
 oro 0.018 11.822 0.708 2.669 75.097 8.344 0.466 0.723 0.152 
 are 0.015 10.285 0.549 2.837 74.739 10.204 0.518 0.691 0.161 
 ere 0.017 12.845 0.652 2.844 71.521 10.895 0.489 0.584 0.153 
 bre 0.018 11.295 0.637 2.519 76.110 8.065 0.432 0.782 0.143 
 ore 0.018 11.822 0.708 2.669 75.097 8.344 0.466 0.723 0.152 

4 aro 0.042 11.986 0.602 3.194 72.421 10.133 0.550 0.884 0.193 
 ero 0.020 13.467 0.645 2.938 68.708 11.439 0.486 1.001 0.162 
 bro 0.023 12.323 0.675 2.540 75.139 7.890 0.459 0.800 0.152 
 oro 0.021 12.810 0.730 2.799 73.934 8.320 0.489 0.736 0.162 
 are 0.028 11.248 0.600 3.194 73.146 10.291 0.528 0.777 0.188 
 ere 0.019 13.218 0.642 2.915 70.640 11.122 0.479 0.801 0.163 
 bre 0.023 12.407 0.674 2.531 74.805 7.944 0.445 1.036 0.142 
 ore 0.022 12.744 0.732 2.765 73.866 8.456 0.488 0.760 0.167 

7 aro 0.015 10.879 0.542 3.142 74.298 10.039 0.342 0.663 0.079 
 ero 0.015 11.469 0.607 2.998 73.797 9.925 0.348 0.772 0.070 
 bro 0.013 9.648 0.647 2.698 77.193 8.138 0.728 0.832 0.102 
 oro 0.014 10.498 0.664 2.501 77.723 7.529 0.275 0.712 0.082 
 are 0.011 9.860 0.495 3.030 78.087 7.602 0.254 0.590 0.072 
 ere 0.019 10.923 0.579 2.952 74.588 9.884 0.256 0.717 0.081 

                                                                                                                                                                                             

                                                                                                                                                                                             (cont. on next page)
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Table A.11. (cont.) Fatty acid profiles of (% total fatty acids) of EVOO samples during 14-month storage 

 

 bre 0.015 11.870 0.649 2.645 76.400 7.186 0.273 0.886 0.077 

 ore 0.016 10.826 0.672 2.451 77.473 7.462 0.289 0.748 0.064 

10 aro 0.011 10.707 0.570 3.186 74.869 9.719 0.354 0.509 0.076 

 ero 0.013 11.683 0.535 2.769 75.024 9.072 0.318 0.524 0.062 

 bro 0.012 10.331 0.564 2.303 78.333 7.457 0.274 0.655 0.069 

 oro 0.012 10.418 0.633 2.208 78.295 7.404 0.275 0.681 0.075 

 are 0.010 9.008 0.463 2.956 79.084 7.647 0.239 0.522 0.071 

 ere 0.012 13.010 0.706 3.324 72.752 9.355 0.263 0.496 0.081 

 bre 0.012 11.794 0.569 2.290 77.103 7.172 0.241 0.743 0.076 

 ore 0.015 10.436 0.664 2.234 78.420 7.087 0.259 0.702 0.057 

14 aro 0.009 9.738 0.517 2.427 78.196 8.293 0.308 0.467 0.045 

 ero 0.009 8.859 0.551 1.969 80.132 7.714 0.285 0.431 0.050 

 bro 0.008 8.266 0.704 2.514 80.154 7.518 0.281 0.500 0.053 

 oro 0.011 7.886 0.547 2.410 81.090 7.166 0.288 0.548 0.055 

 are 0.010 9.033 0.426 2.360 80.008 7.394 0.217 0.482 0.069 

 ere 0.010 9.897 0.720 3.298 76.587 8.764 0.312 0.349 0.063 

 bre 0.010 8.428 0.528 2.542 80.845 6.855 0.238 0.496 0.057 

 ore 0.010 10.079 0.613 2.117 79.207 6.962 0.258 0.699 0.055 
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Table A.12. Individual phenolic compounds of EVOOs in 4th month 
 

  olive oil samples 

Month 4 phenolic compounds aro ero bro oro are ere bre ore 

 Hydroxytyrosol 1.649 2.839 0.850 1.513 0.331 1.866 0.538 1.551 

 Chlorogenic acid 0.007 0.025 0.000 0.000 0.001 0.004 0.000 0.000 

 Tyrosol 1.164 1.517 2.517 2.056 0.181 0.953 1.916 2.026 

 4 Hydroxybenzoic acid 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 4 Hydroxyphenylacetic acid 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 Caffeic acid 0.189 0.323 0.149 0.251 0.039 0.113 0.126 0.229 

 Vanilic acid 1.048 0.908 0.816 0.235 0.216 0.861 0.807 0.296 

 Syringic acid 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 Vanilin 0.333 4.478 1.459 0.989 0.784 3.998 1.527 1.203 

 P-coumaric acid 3.106 2.328 3.998 3.576 0.937 3.549 3.565 3.930 

 Ferulic acid 0.104 0.328 0.149 0.101 0.035 0.116 0.246 0.151 

 M-coumaric acid 2.521 2.995 4.964 2.087 0.702 2.395 2.983 2.662 

 undefined 1 10.184 11.905 4.008 5.516 3.929 10.755 3.206 7.324 

 undefined 2 1.764 1.975 1.649 1.079 0.560 1.477 1.125 1.114 

 Cinamic acid 2.335 4.183 4.060 3.968 3.525 3.457 4.535 3.861 

 Luteolin 1.681 2.149 0.420 0.210 0.641 1.740 0.265 0.247 

 undefined 3 0.547 0.374 1.004 0.419 0.301 0.713 0.189 0.222 

 Apigenin 0.896 0.286 1.164 0.315 0.075 0.194 0.273 0.374 
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Table A.13. Individual phenolic compounds of EVOOs in 7th month 
 

  olive oil samples 

Month 7 phenolic compounds aro ero bro oro are ere bre ore 

 Hydroxytyrosol 1.949 2.860 0.909 1.816 0.864 2.050 0.505 2.048 

 Chlorogenic acid 0.008 0.015 0.000 0.000 0.005 0.041 0.000 0.000 

 Tyrosol 1.444 1.988 2.492 2.283 0.039 1.512 1.633 2.588 

 4 Hydroxybenzoic acid 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 4 Hydroxyphenylacetic acid 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 Caffeic acid 0.101 0.215 0.126 0.094 0.053 0.117 0.079 0.092 

 Vanilic acid 0.691 1.562 0.096 0.828 0.104 0.855 0.584 0.814 

 Syringic acid 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 Vanilin 1.071 4.351 0.585 1.176 0.299 3.346 1.069 0.659 

 P-coumaric acid 1.465 3.412 3.219 3.723 1.938 1.724 3.119 4.503 

 Ferulic acid 0.023 0.391 0.042 0.118 0.051 0.114 0.085 0.141 

 M-coumaric acid 1.004 2.175 0.358 1.897 1.270 2.083 3.153 2.324 

 undefined 1 2.694 5.366 1.643 3.497 6.062 0.741 2.179 7.309 

 undefined 2 1.027 3.027 1.284 1.290 0.284 1.970 1.131 9.037 

 Cinamic acid 2.970 3.499 2.499 4.613 1.431 3.099 1.504 3.292 

 Luteolin 0.268 1.883 0.282 0.335 0.579 1.660 0.365 0.375 

 undefined 3 0.656 0.610 0.401 0.402 1.427 0.628 0.433 0.431 

 Apigenin 0.101 0.210 0.265 0.319 0.073 0.267 0.412 0.245 
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Table A.14. Individual phenolic compounds of EVOOs in 10th month 
 

  olive oil samples 

Month 10 phenolic compounds aro ero bro oro are ere bre ore 

 Hydroxytyrosol 2.037 1.981 1.050 3.043 0.699 1.248 0.865 1.759 

 Chlorogenic acid 0.006 0.015 0.000 0.000 0.008 0.007 0.000 0.000 

 Tyrosol 1.634 1.023 2.973 4.442 0.328 0.606 2.512 2.166 

 4 Hydroxybenzoic acid 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 4 Hydroxyphenylacetic acid 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 Caffeic acid 0.048 0.144 0.125 0.154 0.047 0.068 0.084 0.058 

 Vanilic acid 0.417 1.171 0.852 0.404 0.305 0.529 0.638 0.039 

 Syringic acid 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 Vanilin 0.170 2.079 0.644 1.767 0.228 1.126 1.446 1.414 

 P-coumaric acid 1.008 1.361 3.067 3.528 1.634 1.241 3.327 2.032 

 Ferulic acid 0.072 0.058 0.065 0.247 0.043 0.066 0.108 0.217 

 M-coumaric acid 1.014 1.085 2.906 1.807 1.064 1.545 4.149 1.478 

 undefined 1 1.708 2.628 1.551 2.257 4.295 4.531 2.271 5.633 

 undefined 2 0.574 1.588 0.964 5.453 0.827 0.883 4.930 1.755 

 Cinamic acid 2.243 2.124 2.053 3.548 2.674 0.805 3.502 3.888 

 Luteolin 0.358 0.235 0.196 0.338 0.725 0.860 0.136 0.389 

 undefined 3 0.219 0.434 0.323 0.872 0.524 0.349 0.388 0.572 

 Apigenin 0.093 0.174 0.313 0.545 0.086 0.128 0.289 0.170 
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Table A.15. Individual phenolic compounds of EVOOs in 14th month 
 

  olive oil samples 

Month 14 phenolic compounds aro ero bro oro are ere bre ore 

 Hydroxytyrosol 2.892 1.580 0.673 2.930 0.505 1.405 0.623 1.908 

 Chlorogenic acid 0.003 0.005 0.000 0.000 0.004 0.005 0.000 0.000 

 Tyrosol 1.934 1.222 2.536 4.650 0.275 0.492 2.356 2.274 

 4 Hydroxybenzoic acid 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 4 Hydroxyphenylacetic acid 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 Caffeic acid 0.025 0.092 0.096 0.127 0.029 0.053 0.065 0.043 

 Vanilic acid 0.350 0.945 0.541 0.303 0.267 0.431 0.471 0.027 

 Syringic acid 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 Vanilin 0.112 1.860 0.451 1.421 0.187 0.992 1.257 1.385 

 P-coumaric acid 0.870 1.013 2.563 3.290 1.342 1.031 3.287 2.01 

 Ferulic acid 0.042 0.027 0.034 0.196 0.0354 0.0512 0.084 0.194 

 M-coumaric acid 0.713 1.053 2.584 1.546 1.047 1.495 3.86 1.393 

 undefined 1 1.683 2.479 1.459 2.032 3.893 4.489 1.63 5.532 

 undefined 2 0.546 1.393 0.793 2.074 0.392 0.868 3.545 1.489 

 Cinamic acid 2.002 2.307 1.659 3.238 2321 0.674 3.237 3.592 

 Luteolin 0.216 0.201 0.129 0.286 0.541 0.741 0.106 0.368 

 undefined 3 0.196 0.295 0.295 0.583 0.469 0.365 0.245 0.348 

 Apigenin 0.061 0.198 0.258 0.482 0.0692 0.984 0.300 0.152 
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Figure A.1. HPLC chromatogram of Ortaklar olive oil sample stored at room 

temperature between 0 and 24 minutes, at 280 nm ( — 4th month, — 
7th month, —10th month, — 14th month) 

 

 
 

 
 
 

Figure A.2. HPLC chromatogram of Ortaklar olive oil sample stored at room 
temperature between 35 and 66 minutes, at 280 nm ( — 4th month, — 
7th month, —10th month, — 14th month) 

 
 

min.

min.
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Figure A.3. HPLC chromatogram of Ortaklar olive oil sample stored at refrigerator 
temperature between 0 and 24 minutes, at 280 nm ( — 4th month, — 
7th month, —10th month, — 14th month) 

 

 
 

 

 
 

Figure A.4. HPLC chromatogram of Ortaklar olive oil sample stored at refrigerator 
temperature between 35 and 65 minutes, at 280 (— 4th month, — 7th 
month, —10th month, — 14th month) 

 
 

min.

min.
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Table A.16. PVs values in Erk and AE olive oils during 12- month storage 
 

 

 

Table A.17.  K232 values in Erk and AE olive oils during 12-month storage 
 

time (months) K232 

 Erk AE 

1 1.66 ± 0.03 1.70 ± 0.03 

4 1.90 ± 0.01 1.89 ± 0.00 

7 2.17 ± 0.00 2.18 ± 0.00 

10 2.18 ± 0.00 2.18 ± 0.00 

12 2.62 ± 0.00 2.60 ± 0.43 
 

 
 

Table A.18.. K270 values in Erk and AE olive oils during 12-month storage 
 

time (months) K270 

 Erk AE 

1 0.13 ± 0.00 0.17 ± 0.04 

4 0.14 ± 0.00 0.18 ± 0.02 

7 0.16 ± 0.00 0.20 ± 0.00 

10 0.17 ± 0.00 0.20 ± 0.00 

12 0.20 ± 0.00 0.22 ± 0.00 
 
 
 
 
 

time (months) PV 

 Erk AE 

1 23.57 ± 0.00 10.07 ± 0.00 

4 23.71 ± 0.10 11.07 ± 0.32 

7 24.7 ± 0.04 12.91 ± 0.23 

10 26.26 ± 0.31 13.92 ± 1.00 

12 32.06 ± 0.10 20.18 ± 0.04 
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Table A.19. FFA values in Erk and AE olive oils during 12-month storage 
 

time (months) FFA 

 Erk AE 

1 0.18 0.79 

4 0.32 0.8 

7 0.48 0.81 

10 0.5 0.83 

12 0.54 0.87 
 
 

 

Table A.20. TPC values in Erk and AE olive oils during 12-month storage 
 

time (months) TPC 

 Erk AE 

1 178.79 ± 4.84 61.06 ± 30.07 

4 172.29 ± 2.08 40.30 ± 1.95 

7 157.81 ± 3.25 28.92 ± 3.45 

10 154.97 ± 6.16 19.22 ± 1.60 

12 142.93 ± 9.52 13.78 ± 1.95 
 

 

Table A.21. Color coordinates of Erk and AE olive oils during 12-month storage 
 

time 
(months) L * a * b * 

 Erk AE Erk AE Erk AE 

1 23.58 ± 0.04 24.88± 0.06 -0.72 ± 0.05 -1.89 ± 0.02 11.78 ± 0.07 11.92 ± 0.11 

4 22.54 ± 0.38 24.26± 0.25 -0.15± 0.06 -1.69 ± 0.26 9.28 ± 0.34 11.48 ± 0.39 

7 22.86± 0.26 25.32± 0.30 -0.16 ± 0.08 -1.76 ± 0.09 10.45 ± 0.42 10.68 ± 0.30 

10 23.31± 0.05 23.16± 0.12 -0.52 ± 0.01 -0.03 ± 0.00 11.22 ± 0.04 9.65 ± 0.03 

12 23.49± 0.09 24.39± 0.02 -0.62 ± 0.01 -1.72 ± 0.05 11.45 ± 0.22 10.91 ± 0.07 
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Table A.22. Fatty acid profiles of (% total fatty acids) of Erk and AE olive oil samples during 12-month storage 
 

time (months) olive oil samples C14:0 C16:0 C16:1 C18:0 C18:1 C18:2 C18:3 C20:0 C22:0 

1 Erk 0.018±0.00 13.24±0.03 0.15±0.00 2.74±0.00 68.10±0.03 14.47±0.03 0.73±0.00 0.41±0.02 0.11±0.02 

 AE 0.019±0.00 14.84±0.01 1.12±0.00 2.12±0.02 67.40±0.06 13.23±0.03 0.65±0.01 0.41±0.01 0.15±0.01 

4 Erk 0.014±0.00 13.00±0.19 0.12±0.00 2.69±0.03 68.72±0.24 14.21±0.09 0.70±0.00 0.40±0.01 0.10±0.00 

 AE 0.016±0.00 14.06±0.06 1.01±0.06 2.08±0.01 68.02±0.17 13.67±0.24 0.60±0.00 0.40±0.01 0.13±0.00 

7 Erk 0.012±0.00 12.72±0.07 0.13±0.00 2.82±0.02 68.73±0.23 14.31±0.20 0.69±0.01 0.42±0.00 0.12±0.00 

 AE 0.018±0.00 14.20±0.18 1.02±0.00 2.02±0.01 68.02±0.17 12.71±0.43 0.53±0.00 0.36±0.00 0.14±0.00 

10 Erk 0.011±0.00 13.10±0.07 0.10±0.00 2.62±0.06 69.30±0.25 13.67±0.15 0.64±0.00 0.39±0.00 0.11±0.00 

 AE 0.017±0.00 14.00±0.18 1.06±0.01 2.03±0.03 69.37±0.37 12.44±0.16 0.56±0.00 0.36±0.00 0.12±0.00 

12 Erk 0.011±0.00 12.68±0.28 0.12±0.00 2.72±0.02 69.97±0.81 13.35±0.5 0.64±0.02 0.37±0.01 0.11±0.00 

 AE 0.015±0.00 14.68±0.05 1.04±0.00 2.05±0.00 68.33±0.04 12.75±0.05 0.59±0.00 0.39±0.00 0.12±0.00 147 
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Table A.23. PV values of South (S) and North (N) Aegean EVOO samples during 
oxidation 

 
 PVs 

Time (days) North (N) South (S) 

1 19.18 ± 0.003 19.81 ± 0.26 
2 44.19 ± 1.47 46.56 ± 1.96 
3 38.23 ± 1.37 41.77 ± 1.00 
4 35.78 ± 2.40 31.08 ± 0.62 
5 48.17 ± 2.88 53.28 ± 1.33 
8 39.00 ± 2.92 37.34 ± 0.18 
9 47.05 ± 1.15 47.6 ± 3.17 

10 67.42 ± 1.54 77.12 ± 3.42 
11 69.19 ± 12.52 68.35 ± 0.25 
12 83.68 ± 0.24 86.74 ± 7.25 
15 89.72 ± 2.53 102.03 ± 1.75 
16 108.66 ± 4.39 125.34 ± 1.41 
17 137.99 ± 3.21 142.05 ± 5.05 
19 147.06 ± 2.15 154.04 ± 0.31 

 

 

Table A.24. K232 values of South (S) and North (N) Aegean EVOO samples during 
oxidation 

 
 K232 Values 

Time (days) North (N) South (S) 

1 1.48 ± 0.24 1.61 ± 0.23 
2 1.70 ± 0.29 1.82 ± 0.08 
3 1.68 ± 0.12 1.52 ± 0.40 
4 1.88 ± 0.23 2.16 ± 0.34 
5 1.70 ± 0.19 1.59 ± 0.04 
8 2.83 ± 0.15 2.70 ± 0.16 
9 2.33 ± 0.41 2.15 ± 0.08 

10 1.95 ± 0.16 2.17 ± 0.18 
11 2.87 ± 0.02 2.76 ± 0.15 
12 2.33 ± 0.18 2.40 ± 0.58 
15 2.38 ± 0.09 2.31 ± 0.08 
16 3.21 ± 0.07 3.18 ± 0.10 
17 3.37 ± 0.00 3.29 ± 0.10 
19 3.40 ± 0.04 3.48 ± 0.06 
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Table A.25. K270 values of South (S) and North (N) Aegean EVOO samples during 
oxidation 

 
 K270 Values 

Time (days) North (N) South (S) 

1 0.21 ± 0.01 0.20 ± 0.01 
2 0.30 ± 0.01 0.27 ± 0.009 
3 0.11 ± 0.001 0.11 ± 0.02 
4 0.17 ± 0.0007 0.11 ± 0.02 
5 0.11 ± 0.006 0.11 ± 0.05 
8 0.31 ± 0.04 0.24 ± 0.02 
9 0.27 ± 0.12 0.17 ± 0.02 

10 0.12 ± 0.02 0.16 ± 0.002 
11 0.13 ± 0.004 0.22 ± 0.02 
12 0.27 ± 0.009 0.27 ± 0.02 
15 0.26 ± 0.01 0.29 ± 0.009 
16 0.27 ± 0.003 0.32 ± 0.01 
17 0.29 ± 0.004 0.32 ± 0.01 
19 0.36 ± 0.009 0.33 ± 0.01 

 

 

Table A.26. PVs of oil samples during 126-day storage time 
 

oil 
samples time (days) 

 1 21 42 63 84 105 126 

oro 14.15 15.05 15.22 16.21 16.54 16.75 15.99 

fro 3.01 3.74 4.52 5.13 5.52 6.02 5.39 

5ro 2.81 3.40 4.00 4.53 5.12 5.55 4.59 

10ro 2.54 2.73 2.86 3.07 3.32 3.70 5.52 

15ro 2.34 2.53 2.73 3.27 3.40 3.53 4.92 

ore 14.15 14.21 14.65 15.65 15.74 15.92 16.99 

fre 3.01 3.34 3.80 4.14 4.52 5.01 6.73 

5re 2.81 3.06 3.33 3.73 3.92 4.20 6.12 

10re 2.54 2.73 2.86 3.07 3.32 3.75 5.52 

15re 2.34 2.53 2.73 3.27 3.40 3.53 4.92 
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Table A.27. K232 values of oil samples during 126-day storage time 
 

oil 
samples time (days) 

 1 21 42 63 84 105 126 
oro 1.99±0.00 2.01±0.01 2.02±0.00 2.02±0.00 2.03±0.00 2.03±0.00 2.03±0.00 
fro 1.18±0.01 1.21±0.00 1.24±0.00 1.28±0.00 1.39±0.00 1.58±0.00 1.88±0.00 
5ro 1.15±0.00 1.18±0.01 1.19±0.00 1.20±0.00 1.20±0.00 1.20±0.00 1.21±0.00 
10ro 1.15±0.00 1.17±0.00 1.18±0.00 1.18±0.00 1.19±0.00 1.19±0.00 1.2±0.00 
15ro 1.14±0.01 1.15±0.00 1.16±0.00 1.17±0.00 1.17±0.00 1.17±0.00 1.77±0.00 
ore 1.99±0.00 1.99±0.01 2.00±0.00 2.00±0.00 2.00±0.00 2.00±0.00 2.00±0.00 
fre 1.18±0.01 1.17±0.00 1.20±0.00 1.21±0.00 1.25±0.00 1.41±0.00 1.81±0.00 
5re 1.15±0.00 1.15±0.00 1.15±0.00 1.16±0.00 1.16±0.00 1.16±0.00 1.17±0.00 

10re 1.15±0.00 1.15±0.00 1.15±0.00 1.15±0.00 1.15±0.00 1.15±0.00 1.16±0.00 
15re 1.14±0.01 1.14±0.00 1.14±0.00 1.15±0.00 1.15±0.00 1.15±0.00 1.15±0.00 

 

 

Table A.28. K270 values of oil samples during 126-day storage time 
 

oil 
samples time (days) 

 1 21 42 63 84 105 126 
oro 0.18±0.00 0.19±0.00 0.19±0.00 0.19±0.00 0.19±0.00 0.2±0.00 0.2±0.00 
fro 0.2±0.02 0.21± 0.01 0.22±0.01 0.25±0.00 0.27±0.00 0.3±0.00 0.32±0.00 
5ro 0.20±0.00 0.21±0.00 0.22±0.00 0.23±0.00 0.23±0.00 0.23±0.00 0.23±0.00 
10ro 0.17±0.00 0.18±0.00 0.19±0.00 0.19±0.00 0.19±0.00 0.2±0.00 0.19±0.00 
15ro 0.16±0.00 0.18±0.00 0.18±0.00 0.18±0.00 0.19±0.00 0.19±0.00 0.19±0.00 
ore 0.18±0.00 0.18±0.00 0.18±0.00 0.18±0.00 0.18±0.00 0.18±0.00 0.18±0.00 
fre 0.2±0.02 0.2±0.00 0.2±0.00 0.21±0.00 0.22±0.00 0.23±0.00 0.24±0.00 
5re 0.20±0.00 0.18±0.00 0.18±0.00 0.18±0.00 0.18±0.00 0.18±0.00 0.18±0.00 

10re 0.17±0.00 0.17±0.00 0.18±0.00 0.18±0.00 0.18±0.00 0.18±0.00 0.18±0.00 
15re 0.16±0.00 0.17±0.00 0.17±0.00 0.17±0.00 0.18±0.00 0.18±0.00 0.18±0.00 

 

 

Table A.29. TPC values of oil samples during 126-day storage time 
 

oil samples 
time (days) 

1 21 42 63 84 105 126 

oro 114.57±1.41 111.31±2.16 103.83±5.46 99.3±2.45 96.15±5.54 92.08±4.25 90.74±3.44 

fro 81.23±0.81 75.14±5.95 71.95±5.68 67.93±2.45 62.77±2.94 57.03±5.53 54.8±5.36 

5ro 85.02±2.41 79.77±1.57 76.12±1.57 74.18±5.72 71.37±2.16 67.8±3.73 64.68±2.94 

10ro 92.1±4.25 87.37±2.94 84.06±1.63 81.48±1.63 76.19±3.87 73.70±2.23 68.03±2.83 

15ro 96.01±1.39 92.79±1.60 86.29±2.41 82.25±4.91 78.51±2.23 74.19±0.84 70.88±0.84 

ore 114.57±1.41 113.78±2.08 108.77±1.57 107.78±4.07 106.47±4.25 103.67±3.95 100.97±2.16

fre 81.23±0.18 79.19±4.09 75.55±4.38 72.96±0.81 69.84±0.81 66.69±2.83 65.94±2.94 

5re 85.02±2.14 90.78±3.75 87.47±4.09 86.09±1.69 82.79±1.63 80.45±1.63 79.14±1.41 

10re 92.1±4.25 90.83±2.53 89.37±2.53 86.65±3.26 85.31±3.04 82.39±1.68 78.35±6.74 

15re 96.01±1.39 94.5±4.55 92.14±4.91 89.78±1.69 87.23±0.84 83.25±3.39 81.62±9.94 
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Table A.30. Fatty acid profiles of (% total fatty acids) of oil samples during 126-day storage 
 

time (days) oil samples C14:0 C16:0 C16:1 C18:0 C18:1 C18:2 C18:3 C20:0 C22:0 
1 oro 0.026 11.970 0.815 3.224 70.427 11.481 0.577 0.367 0.120 
 fro 0.039 5.660 0.089 6.579 17.949 14.403 56.278 0.282 0.115 
 5ro 0.047 5.732 0.120 6.386 21.623 14.904 52.302 0.215 0.107 
 10ro 0.080 6.654 0.176 6.225 24.453 14.886 49.804 0.604 0.118 
 15ro 0.062 6.783 0.206 4.857 29.850 13.389 46.873 0.235 0.089 
 ore 0.026 11.970 0.815 3.224 70.427 11.481 0.577 0.367 0.120 
 fre 0.039 5.660 0.089 6.579 17.949 14.403 56.278 0.282 0.115 
 5re 0.047 5.732 0.120 6.386 21.623 14.904 52.302 0.215 0.107 
 10re 0.080 6.654 0.176 6.225 24.453 14.886 49.804 0.604 0.118 
 15re 0.062 6.783 0.206 4.857 29.850 13.389 46.873 0.235 0.089 

21 oro 0.022 11.460 0.649 2.981 72.930 10.296 0.554 0.324 0.095 
 fro 0.038 5.342 0.087 5.625 20.833 13.782 56.198 0.264 0.101 
 5ro 0.041 6.221 0.103 5.747 22.808 14.626 52.183 0.246 0.080 
 10ro 0.047 6.711 0.143 5.745 27.090 14.128 49.624 0.260 0.092 
 15ro 0.062 6.783 0.206 4.857 29.850 13.389 46.139 0.235 0.089 
 ore 0.022 11.544 0.631 2.940 73.187 10.135 0.564 0.314 0.084 
 fre 0.040 5.595 0.083 5.849 20.781 14.447 55.724 0.265 0.089 
 5re 0.073 6.581 0.113 5.828 22.309 14.444 53.332 0.301 0.084 
 10re 0.057 6.722 0.172 5.781 27.172 13.984 49.566 0.268 0.094 
 15re 0.076 6.501 0.204 5.261 29.198 13.395 47.031 0.320 0.092 

42 oro 0.022 12.263 0.618 3.012 72.055 10.673 0.547 0.269 0.082 
 fro 0.039 5.432 0.088 5.748 21.522 13.610 54.885 0.257 0.087 
 5ro 0.041 6.294 0.098 5.825 22.795 14.830 51.904 0.238 0.075 
 10ro 0.046 6.768 0.140 5.626 27.382 14.067 49.324 0.252 0.078 
 15ro 0.057 7.038 0.211 4.879 30.044 13.460 45.967 0.232 0.083 

                                                          
                                                                                                                                                                                             (cont. on next page) 
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Table A.30. (cont.) Fatty acid profiles of (% total fatty acids) of oil samples during 126-day storage 
 

 ore 0.021 11.285 0.607 2.891 75.318 8.460 
 fre 0.049 5.916 0.093 5.807 20.563 14.294 
 5re 0.070 6.402 0.094 5.671 23.076 14.156 
 10re 0.039 6.510 0.158 5.356 27.375 14.032 
 15re 0.054 4.830 0.169 4.399 40.007 11.401 

63 oro 0.017 12.770 0.687 3.300 71.457 10.783 
 fro 0.038 5.402 0.087 5.749 21.503 13.606 
 5ro 0.050 5.947 0.090 6.030 21.086 14.152 
 10ro 0.036 6.376 0.136 5.869 23.606 13.981 
 15ro 0.039 6.761 0.151 5.746 26.261 13.789 
 ore 0.017 12.910 0.693 3.395 71.506 10.480 
 fre 0.040 5.092 0.056 6.054 18.308 14.506 
 5re 0.043 5.706 0.094 5.721 21.200 14.090 
 10re 0.036 6.365 0.135 5.849 23.671 13.983 
 15re 0.035 6.754 0.164 5.669 26.178 13.803 

84 oro 0.016 12.250 0.676 3.275 72.307 10.573 
 fro 0.028 3.883 0.064 4.010 23.605 13.261 
 5ro 0.042 5.598 0.075 5.562 22.715 13.506 
 10ro 0.034 6.214 0.122 5.776 23.915 14.281 
 15ro 0.035 6.648 0.135 5.762 26.958 13.953 
 ore 0.013 12.689 0.664 3.305 73.125 9.270 
 fre 0.039 5.017 0.057 6.094 17.837 14.928 
 5re 0.041 5.249 0.095 5.465 20.548 14.895 
 10re 0.033 6.188 0.140 5.649 24.675 13.674 
 15re 0.032 6.467 0.163 5.700 25.892 14.017 

                        

           (cont. on next page) 152 
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Table A.30. (cont.) Fatty acid profiles of (% total fatty acids) of oil samples during 126-day storage 
 

105 oro 0.019 13.016 0.688 3.435 71.469 10.424 

 fro 0.027 3.756 0.058 3.926 22.408 13.282 

 5ro 0.039 5.528 0.069 5.482 23.366 13.307 

 10ro 0.031 5.648 0.116 5.477 25.864 13.991 

 15ro 0.033 6.056 0.124 5.664 27.912 13.882 

 fre 0.030 4.586 0.045 5.465 21.057 13.525 

 5re 0.035 4.782 0.080 5.365 21.808 14.669 

 10re 0.027 5.678 0.133 5.415 26.912 13.286 

 15re 0.026 5.877 0.142 5.393 30.230 13.647 

126 oro 0.018 12.689 0.637 3.280 71.953 10.512 

 fro 0.027 3.453 0.040 3.816 22.137 13.922 

 5ro 0.036 5.413 0.064 5.340 23.792 13.199 

 10ro 0.040 6.286 0.116 5.751 23.617 14.054 

 15ro 0.024 5.849 0.115 5.447 30.660 13.310 

 ore 0.015 13.095 0.682 3.466 72.708 9.204 

 fre 0.026 4.259 0.044 5.223 21.985 13.366 

 5re 0.030 4.617 0.072 5.236 22.511 14.487 

 10re 0.027 5.631 0.121 4.676 29.907 11.370 

 15re 0.022 5.423 0.121 5.363 31.322 13.304 
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APPENDIX B 
 

 
STANDARD CALIBRATION CURVES FOR PHENOLIC 

COMPOUNDS 
 

 

y = 10.231x
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Figure B.1. Standard calibration curve for gallic acid 
 

 

y = 0.3766x + 0.3627
R² = 0.9967
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Figure B.2. Standard calibration curve for chlorogenic acid 
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Tyrosol y = 0,0871x + 0,2881
R2 = 1
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Figure B.3. Standard calibration curve for tyrosol 
 

 

 

 

4-Hyroxybenzoic Acid y = 0,0299x + 0,3
R2 = 0,9993
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Figure B.4. Standard calibration curve for 4-hydroxybenzoic acid 
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4-Hydroxyphenylacetic Acid y = 0,1092x + 0,8508
R2 = 0,9986
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Figure B.5. Standard calibration curve for 4-hydroxyphenylacetic acid 
 

 

 

 

Caffeic Acid y = 0,0713x + 0,2206
R2 = 0,9906
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Figure B.6. Standard calibration curve for caffeic acid 
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Vanilic Acid y = 0,0271x + 0,1108
R2 = 1
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Figure B.7. Standard calibration curve for vanilic acid 
 

 

 

 

Syringic Acid y = 0,0168x + 0,2522
R2 = 0,9926
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Figure B.8. Standard calibration curve for syringic acid 
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Vanilin y = 0,017x - 0,0125
R2 = 1
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Figure B.9. Standard calibration curve for vanilin 
 

 

 

 

P-coumaric Acid y = 0,021x + 1,5623
R2 = 0,9959
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Figure B.10. Standard calibration curve for p-coumaric acid 
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M-coumaric Acid y = 0,0088x + 0,3501
R2 = 0,9992
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Figure B.11. Standard calibration curve for m-coumaric acid 
 

 

 

 

Oleuropein y = 0,2974x - 0,2194
R2 = 0,9953
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Figure B.12. Standard calibration curve for oleuropein 
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Cinnamic Acid y = 0,0071x + 0,188
R2 = 0,9994
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Figure B.13. Standard calibration curve for cinnamic acid 
 

 

 

 

Luteolin y = 0,176x
R2 = 0,9939
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Figure B.14. Standard calibration curve for luteolin 
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Apigenin y = 0,1556x + 3,2925
R2 = 0,9993
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Figure B.15. Standard calibration curve for apigenin 


