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ABSTRACT 

 
ANALYSIS OF THE CRACKED INFINITE HOLLOW CYLINDER 

WITH LOADING ON CRACK SURFACES 

 
In this study, the cracked infinite hollow cylinder with an axisymmetric crack of 

width (b-a) is considered. The ring-shaped crack is located at the symmetry plane. 

Surfaces of the crack are subjected to the distributed compressive loads. The outer 

surface of the cylinder is rigid and the inner one is stress free. The material of the 

cylinder is assumed to be linearly elastic and isotropic. 

Integral transform techniques are used for the solution of the field equations. The 

resultant singular integral equation in terms of crack surface displacement derivative is 

converted to a system of linear algebraic equations by using Gauss-Lobatto, Gauss-

Jacobi and Gauss-Laguerre integration formulas. The stress intensity factors at the tips 

of the crack are numerically calculated for uniform and linear load distributions on 

crack surfaces. Some results are presented in graphical and tabular forms. 
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ÖZET 

 
ÇATLAK YÜZEYLERİNDE YÜKE MARUZ SONSUZ 

UZUNLUKTAKİ TÜPÜN ANALİZİ 

 
Bu çalışmada, eni (b-a) olan eksenel simetrik çatlak içeren sonsuz uzunlukta bir 

tüp problemi ele alınmıştır. Halka biçimindeki çatlak simetri düzleminde yer 

almaktadır. Çatlak yüzeyleri yayılı basınç yüklerine maruzdur. Tüpün dış yüzeyi rijit, iç 

yüzeyi serbesttir. Tüpün malzemesi lineer elastik ve izotrop olduğu varsayılmaktadır. 

Elastisite denklemlerinin çözümü için integral dönüşüm teknikleri kullanıldı. 

Gauss-Lobatto, Gauss-Jacobi ve Gauss Laguerre integrasyon formülleri kullanılarak, 

çatlak yüzü yer değiştirme türevi cinsinden yazılan tekil integral denklemi bir lineer 

cebrik denklem takımına dönüştürülmüştür. Düzgün ve lineer yayılı basınç yükleri için 

çatlak uçlarındaki gerilme şiddeti katsayıları nümerik olarak hesaplandı. Bazı sonuçlar 

grafikler ve tablolar biçiminde verilmektedir. 
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CHAPTER 1 

 

INTRODUCTION 
 

 An important step is the identification of the most likely modes of failure and 

the application of a suitable failure criterion in the design of structural or machine 

components. Fracture characterized as the formation of new surfaces in the material is 

one such mode of mechanical failure. Fracture may be viewed as the rupture separation 

of the structural component into two or more pieces due to the discontinuities. These 

discontinuities can be in the form of cracks, holes, notches or inclusions that are very 

important factors influencing stress distributions in the structural or machine 

components. 

There are two approaches to fracture study. The first is based on the stress 

intensity factor, k and the second is based on the J integral. The J integral approach is 

suitable for ductile fracture with strong deformations. The stress intensity factor 

approach is based on the possibility of representing the stress field around the crack tip 

by a stress intensity factor, k. The stress intensity factor depends on the way the crack is 

invited to propagate, on the mode of application of the load, on the level and variation 

of the stress in the material far from the crack tip and on the type of the crack. These 

modes of application of the load are defined as of three types (Figure 1.1.): 

• Mode I: the principle load is applied normal to the crack plane, tends to 

open crack 

• Mode II: corresponds to in plane shear loading, tends to slide one crack face 

with respect to the other one 

• Mode III: refers to out of plane shear loading. 

 

 
 

Figure 1.1. Three modes of application of the load. 
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 The stress becomes infinite at the tips of the cracks or inclusions. In such cases, 

stress concentration cannot be defined as a strength parameter and it is necessary to 

consider the stress distributions from fracture mechanics point of view. Fracture 

toughness can be easily calculated in terms of the stress intensity factors. The stress 

near the crack tip varies with singularity, regardless of the configuration of the cracked 

body. These types of problems are studied by using numerical and analytical methods 

based on partial differential equations. For linear elastic materials, individual 

components of stress, strain and displacement are additive. In many cases of analytical 

solutions, principle of superposition allows stress intensity for complex configurations 

to be built from simple cases. 

 

1.1. A Brief Introduction and Method of Solution of the Problem 
 

 In this study, an infinite hollow cylinder containing a ring-shaped crack at the 

symmetry plane is considered. Crack surfaces are subjected to distributed load. The 

outer wall of the hollow cylinder is rigid and the inner wall is free of traction. The 

material of the hollow cylinder is assumed to be linearly isotropic and elastic. The 

solution for the problem can be found by superposition of two sub-problems: (1) the 

problem of an infinite elastic medium containing a ring-shaped crack at the symmetry 

plane and (2) the problem of an infinite elastic medium without a crack subjected to 

arbitrary symmetric loads. 

 The general solutions of these sub-problems are obtained by using Hankel and 

Fourier transforms on Navier equations. And a singular integral equation is obtained by 

using the boundary conditions on the crack. By using Gauss-Lobatto and Gauss-Jacobi 

integration formulas, this singular integral equation is reduced to a linear algebraic 

equation. And this linear algebraic equation is solved numerically by using Gauss-

Laguerre integration. 

 

1.2. Literature Overview 

 
 Collins (1962) considered some axially symmetric stress distributions in an 

infinite elastic solid and in a thick plate containing penny-shape cracks. It was shown 

that representations for the displacements in an infinite solid containing two or more 
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cracks and in a thick plate containing a single crack can be constructed and used to 

reduce problems of determining the stresses in these solids to the solutions of Fredholm 

integral equations of the second kind by use of representation for the displacement in an 

infinite elastic solid containing a single crack. 

 Sneddon and Welch (1963) considered a long circular cylinder of elastic 

material and made an analysis of the distribution of stress when it is deformed by the 

application of pressure to the inner surfaces of a penny-shaped crack positioned 

symmetrically at the centre of the cylinder. The cylinder surface was assumed to be free 

from stress. The equations of the classical theory of elasticity were solved in terms of an 

unknown function that was shown to be the solution of an integral solution previously 

derived by Collins (1962). 

 Arın and Erdoğan (1971) considered two axially symmetric mixed boundary 

value problems in elastic dissimilar layered medium. An elastic layer was assumed to be 

bonded to two semi-infinite half spaces along its plane surfaces, and contains a penny-

shape crack parallel to the interfaces. The numerical examples were given for a constant 

pressure on the crack surface. 

 The axisymmetric semi-infinite cylinder with fixed short end is considered by 

Gupta (1974). Normal loads were applied far away from the fixed end. By using an 

integral transform technique, a singular integral equation has been provided. Stress 

along the rigid end and stress intensity factors have been calculated numerically and 

presented graphically. 

 Agarwal (1978) reduced the axisymmetric end-problem for semi-infinite elastic 

circular cylinder to a system of singular integral equations. It is found that the kernels of 

the integral equations contained Cauchy as well as generalized Cauchy-type 

singularities. A system of algebraic equations was obtained from the system of singular 

integral equations by using an approximate method. Axisymmetric solution for joined 

dissimilar elastic semi-infinite cylinders under uniform tension was solved as an 

application. 

 Erdöl and Erdoğan (1978) studied an elastostatic axisymmetric problem for a 

long thick-walled cylinder containing a ring-shaped internal or edge crack. The problem 

had been formulated in terms of an integral equation has a simple Cauchy kernel for the 

internal crack and a generalized Cauchy kernel for edge crack as dominant part by using 

transform technique. 
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 Nied and Erdoğan (1983) considered the elasticity problem for a long hollow 

cylinder containing an axisymmetric circumferential crack subjected to general non-

axisymmetric external loads. The problem had been formulated in terms of a system of 

singular integral equations. Stress intensity factors and the crack opening displacement 

had been calculated for a cylinder under uniform tension. 

 Chen (2000) evaluated the stress intensity factors in a cylinder with a 

circumferential crack. To study the problem, an indirect method has been developed. 

The finite difference method had been used to solve the boundary value problem. 

Numerical examples had been given which demonstrates the effect of cylinder length on 

the stress intensity factor. 

 Artem and Geçit (2002) studied the problem of an elastic hollow cylinder under 

axial tension containing a crack and two rigid inclusions of ring shape. The material of 

the hollow cylinder was assumed to be linearly elastic and isotropic. The cylinder was 

assumed to be under the action of uniform loading. Because of the mixed boundary 

condition of the problem, Hankel and Fourier transform techniques were used and a 

system of three singular integral equations is analyzed and solved numerically. The 

normalized stress intensity factors were calculated for crack and two rigid inclusions. 

 Aydın (2005) made an investigation of stress intensity factors in an elastic 

cylinder under axial tension with a crack of ring-shape. Hankel and Fourier transform 

techniques were used to obtain a singular integral equation. This singular integral 

equation was solved numerically by using Gauss-Lobatto integration formula. The 

normalized stress intensity factors were calculated for crack and presented graphically. 

 Kaman and Geçit (2006) considered the problems of cracked semi-infinite 

cylinder and finite cylinder. General solutions of these problems were obtained by using 

Hankel and Fourier transforms on Navier equations. The singular integral equations 

were converted to a system of linear algebraic equations that were solved numerically 

by using Gauss-Lobatto and Gauss-Jacobi integration formulas. Mode I and Mode II 

stress intensity factors at the edges of cracks and inclusion and normal and shearing 

stresses along the rigid support were calculated. And results were presented graphically. 



CHAPTER 2 

 

PROBLEM DEFINITION AND FORMULATION 
 

2.1. The Infinite Hollow Cylinder Containing a Ring-Shaped Crack 

Problem 
 

 An infinite hollow cylinder of width (B-A) containing a ring-shaped crack of 

width (b-a) at the symmetry plane, z = 0 is considered. Distributed compressive load is 

applied on the crack surface. The outer wall of the cylinder is rigid and the inner wall is 

free of traction. The material of the cylinder is assumed to be linearly elastic and 

isotropic (Figure 2.1). 

 

 
 

Figure 2.1. Geometry of the problem 
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 The equilibrium equations for linearly elastic, isotropic and axisymmetric 

problems can be written in the form of 

 

0  (2.1)       

0       (2.2) 

 

where σ and τ symbolizes the normal and shear stresses, respectively. The relation 

2        (2.3) 

 

here   
1   
0     

       

between stress and strain in the body in tensor notation is 

 

w

  

   

ar modulus, v is the Poisson’s ratio. 

 The strain-displacement relations for the axisymmetric problem are in the form 

and µ is the she

of 

 

  

  

  

             (2.4a-d) 

 

where u and w are displacements in r and z di ctions in cyl

spectively. 

isplacement relations for the axisymmetric cylindrical problem are found 

 

 

re  indrical coordinates, 

re

 By substituting expressions given in the equation (2.4a-d) into the equation 

(2.3), stress-d

as
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1 3   

1 3   

1 3   

            (2.5a-d) 

 

where 3 4  for plane strain. 

 By substituting equations (2.5a-d) into the uatio  (2.1 and (2.2), a second 

tion system that is called the Navier Equations can be 

 

 

eq ns ) 

order partial differential equa

found as 

1 1 2 0  

2 1 1 0         (2.6a-b) 

 The Navier equations must be solved using the boundary c itions: 

 

, ∞ 0   

, ∞ 0   

, 0    

, 0  

, 0  

, 0 ∞  

, 0  ∞  

, 0 0             (2.7a-i) 

 

where  is the intensity dist ted load on the crac  surfaces. 

 

 

 

 

ond

, 0 0   ,  

  ∞ ∞

  ∞ ∞

   ∞

 ∞

   

 of the ribu k
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.1.1. The Perturbation Problem 

The solution for the infinite hollow cylinder containing a ring-shaped crack may 

e found by the superposition of the solutions for two sub-problems as showed in 

 a ring-shaped 

ne and (2) the problem of an infinite medium 

ithout crack subjected to arbitrary symmetric loads. 

 
Figure 2.2. Perturbation problem 

 

2.1.1.1. An Infinite Elastic Medium having a Crack 
 

 Consider an infinite medium containing a crack at z = 0 plane, z is the axis of the

medium. The crack surf distributed axisymmetric 

compressive loads. 

ne half of the medium 

0  instead of considering both parts of the medium. Displacement and stress 

ompon

2
 

 

b

Figure 2.2: (1) The problem of an infinite elastic medium containing

crack of width (b-a) at the symmetry pla

w

 

 

aces are under the action of 

 Because of the symmetry, it is sufficient to consider o

c ents will be obtained by using Hankel transformation technique. 

 By using Hankel transform definition 

 

;     0     (2.8) 
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here tions. ,  is an odd and ,  is an 

ven function in r direction, Hankel transform of the displacement functions can be 

written in the form of 

; ,   ,           (2.9a-b) 

where J0 and J1 are the Bessel functions of the first kind of order zero and one, 

respectively. Applying Hankel transform to equation (2.6) in r

equations can be obtained 

w n = 0 for even and n = 1 for odd func

e

 

, ; ,   ,   

,

 

 direction, the following 

 

1 , 1 , 2 0  

2 1 , 1 , 0        (2.10a-b) 

 By doing some manipulations, the equation system (2.10) can be reduced to a 

forth order ordinary differential equation in the form: 

 
,

 

2 , , 0   (2.11) 

The general solution of the equation (2.11) is found as 

 

,

here c  0. 

In order to get finite displacement at infinity, constants c3 and c4 must be equal 

to zero for the upper half of the medium (z > 0) and constants c1

ero for the lower half of the medium (z < 0). Therefore, considering subscripts u and l 

quation (2.12) can be 

 

 

 

   (2.12) 

 

w 1, c2, c3 and c4 are arbitrary unknown constants and α >

 

 and c2 must be equal to 

z

indicate the upper and the lower half of the medium respectively, e

expressed in the form of 
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   0        (2.13a-b) 

e procedure for  , , the solutions can be found as 

 

,

,    0   

,

 

Using the sam

    0

,   0        (2.14a-b) 

 By taking inverse transforms of equations (2.13a-b) and (2.14a-b), displacement 

omponents are found as 

 

,    0   

,    0   

,

 

c

  0  

,   0       (2.15a-d) 

 By substituting the equations (2.15a- the ressions 

equations (2.5a-d), stress components can be found as 

 

, 2 3

2

 

d) into  exp given in the 

 

2

(z ≥ 0)

, 2 3

 

(z ≤ 0)

, 1 2  (z ≥ 0)
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, 1 2  (z ≤ 0)

, 1 2  (z ≥ 0)

, 1 2  (z ≤ 0) (2.16a-f)

 

 These expressions satisfies the following continuity and symmetry conditions on 

z = 0 plane. 

 

, 0 , 0     0 ∞ 

, 0 , 0     0 ∞ 

, 0 , 0 0   0 ∞ 

, 0 , 0 2   0 ∞       (2.17a-d) 

 

where  is the unknown crack surface displacement derivative such that 0 

when , . Using the conditions (2.17a-d), the unknown constants 

c1, c2, c3 and c4 can be found as 

 

   

          (2.18a-b) 

 

where 

 The hollow cylinder co  is symm t z axis 

and it is sufficient to consider the solution of the axisymmetric problem in the upper or 

lower half of the medium. Therefore, t ions for the splacement and 

the stress components in the upper half of the medium are in the form of 

 

. 

ntaining a ring-shaped crack etric abou

he general express di

 



12 
 

,
1
1 1 2  

1
1, 1 2  

,
2

1 2 1

2
1 2 1

1
 

,
4

1 1  

,
4

1  (2.19a-e)

 

2.1.1.2. An Infinite Elastic Medium without a Crack 
 

 An infinite elastic medium without a crack that is loaded symmetrically is 

considered. This infinite elastic medium is symmetric about z-axis and z = 0 plane. The 

Fourier transforms of the displacement components are written below using the Fourier 

sine and cosine transform definitions: 

 

, ; , cos ,   

, ; , cos ,         (2.20a-b) 

 

where ,  and ,  are the Fourier cosine and sine transforms of functions 

,  and , , respectively, λ is the Fourier transform variable. Noting that ,  is 

even and ,  is odd functions in z, the Fourier cosine and sine transforms may be 

applied to equation (2.6a-b) and the system of second order ordinary differential 

equation is obtained as 
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1 1 2 0  

2 1 1 0       (2.21a-b) 

 

Equations (2.21a-b) can be reduced to a single equation. 

 

2 2 3 2 3

2 3 0 (2.22)

 

be found in a previous study of (Artem and 

002) as

 
1
2

The solution of this reduced equation can 

Geçit 2  

,
1
2  

,
1
2

1
2 1

1  (2.23a-b)

where , ,  and  are arbitrary constants,  and  are the modified Bessel 

functions of the first kind of order zero and one, respectively,  and  are the 

modified Bessel functions of the second kind of order zero and one, resp c

By taking inverse Fourier cosine and sine transforms of equations (2.23a-b), the 

,
2

 

e tively. 

 

displacement components can be expressed as 

 

1
2

1
2

cos  

2
, 2

1
2
1

1

1 sin  (2.24a-b)
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And the stress components can be found by substituting equations (2.24a-b) into stress-

displacement relations equation (2.5a-d). 

,

 

1 2

1 2 cos   

,

5 2 5

2 cos   

,

1 2 1

2 cos   (2.25a-c)

 

2.1.2. General Solution 

ts found in the problem of an infinite elastic 

edium having a crack (Hankel Transformation) and the problem of an infinite elastic 

medium without a crack (Fourier Transformation). 

 

, , ,     

, , ,     

, , ,     

, , ,     

, , ,          (2.26a-e) 

 

 The arbitrary unknown constants , ,  and  can be written in the terms of 

unknown function  with the conditions given for inner and outer lateral surfaces of 

the cylinder: 

 

 The general solution of the problem can be found by adding the expressions for 

the displacement and the stress componen

m
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, 0    

herefore, a system of equations can be obtained by applying the boundary conditions 

given for inner and outer surfaces of the cylinder to 4a-b) 

and (2.25a-c): 

 
1
2

, 0    

, 0    

, 0          (2.27a-d) 

 

T

the equations (2.19a-e), (2.2

1
2

1
1

1 2 1

∞

0

∞

0
cos  

1
2

1
2 1

1

1
1

1 2 0

∞

0

∞

0
sin  

1 1

1 2

1 2

2
1

2 1
1

1

∞
∞

0
0

2 1 0 cos  

1 2

1 2

4
1

∞

0
1

∞

0
sin  

(2.28a-d)
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This system of equations (2.28a-d) is in double integral form and it can be reduced to a 

single integral form by using the integral formulas given in Appendix A. 

 
1
2

1
2

1
1 1 2

2  
1
2

1
2 1

1

1
1 2 1

2  
1 1

1 2

1 2

1
1 4

4 2 1
 

1 2

1 2

1
1

1
2

 (2.29a-d)

 

Equation (2.29a-d) can now be rewritten as 
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1
2

1
2  

1
2

1
2 1

1  
1 1

1 2

1 2  

1 2

1 2  (2.30a-d)

ndix B and , ,  and  are unknown 

onstants. Now , ,  and  can be found in terms of , ,  and  by solving 

is system of equations (Equations (2.30)) : 

 

where , ,  and  are given in Appe

c

th

 

 

 

 

 (2.31a-d)

 

where  and  are given in Appendix B. 

 The expressions for , ,  and  are found by using the boundary conditions 

on the lateral surfaces of the cylinder. The unknown function  can be found by 

sing the remaining boundary condition that is , 0  on the crack surfaces. u



CHAPTER 3 

 

INTEGRAL EQUATION 
 

3.1. Derivation of Integral Equation 
 

 The expression for  can be obtained in terms of the unknown function 

 by substituting equation (2.19d) and equation (2.25b) into the equation (2.26c). 

,

,
4

1

 

1

2

5 2

5 2 cos  (3.1)

he remaining boundary condition , 0  can be applied now 

 

, 0
4

1

 

T

2

5 2

to a singular integral equation with kernel having Cauchy 

type singularity (Muskhelishvili 1953): 

 

1

5 2  (3.2)

 

Equation (3.2) can be reduced 

22
2 , ,   (3.3)

where 
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,
, 1

  (3.4)

,

2 2
,

2
,

 (3.5)

 complete elliptic integrals of the first and the second kinds, respectively. 

n (3.3) must be solved under the condition for the displacement around the 

crack given as 

 

 

 

K and E are the

The equatio

0 (3.6)

t p s of singularities 

,  and  ,  

because of the integrand behaviour as  ∞. 

he integral ,  can be rewritten as 

 

, , ,  (3.7)

d r and bounded part of the integrand 

 Then ,  can be expressed as  

, ,  

  ,

, , ,  

 

The integral equation (3.3) has three y e

• Cauchy type singularity at  

• Logarithmic singularity in the kernel ,  

• The integral ,  has singular terms at 

T

 

where ,  an ,   denotes singula

respectively.

 

, (3.8)

 

The singular part of  can be separated as 

 

(3.9)
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 The integrand of the equation (3.9) has the modified Bessel functions 

. Applying the asymptotic expansions for the modified Bessel functions 

are given in the Appendix C and by doing some manipulations the integrand of the 

singular part of the integral   can be found as 

, ,  and 

,

, ,
1 1

 

√
4 2

6 3

4 2 6

4  (3.10)

gral  ,  can be obtained by 

sing the integration formula given in Appendix D as 

 

, ,
1

 

 The integrand of the singular part of the inte

u

1
4 12

√

3
1
2

2
1
24 12  

(3.11)

herefore, the bounded part of the integral   ,  can be found as 

 

, , , , ,  (3.12)

he equation (3.3) can now be rewritten as 

 

1

 

T

 

T

2
,  (3.13)

ins all the bounded terms of the equation (3.3). 
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where  is the function that conta



3.2. Characteristic Equation 

itie

fore, the singular behaviour of the unknown function  can be 

etermined by writing 

 

 

 The unknown function  is expected to have integrable singular s at the 

tips of the crack. There

d

 
0 1

0 1  
(3.14)

where 

 and  are the unknown constants. The unknown constants  and  can be found by 

 

1

 

 

 is Hölder continuous function (Muskhelishvili 1953) in the interval , , 

examining the integral equation (3.13) near the ends  and . 

 The integral equation (3.13), together with equation (3.14) can be written as 

2

 

,  

1

 (3.15)

 

 The integral on the left-hand side of the equation (3.15) near the ends  

and   can be calculated with the help of the complex function technique described 

in (Muskhelishvili 1953). The required integrals are 

 

cot cot
 

1
2

2 sin

2 sin
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1
2

sin 2 sin

 

1
2

1
sin

1

2 sin

 

1
2

2 sin

2 sin
 

1
2

2 sin sin

 

1
2

1

2 sin

1
sin

 
(3.16a-g)

here 

 

 

w ,  and  are the bounded parts. 
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3.2.1 Internal Crack 

uation (3.16a) into the equation (3.15) and multiplying the 

resultin

cos 0 (3.17)

 

 

 By substituting the eq

g equation by   and considering the limiting case  for an internal 

crack  , the following characteristic equation for  can be obtained as 

 

Therefore,  that is in perfect agreement with the results for an embedded crack tip 

neou

By substituting the equation (3.16a) into the equation (3.15) and multiplying the 

resultin

cos 0 (3.18)

herefore, 

in a homoge s medium. 

g equation by   and considering the limiting case  for an internal 

crack  , the following characteristic equation for  can be obtained as 

 

 

T  is obtained for this case. 

These results are in agreement with the previous studies, (Cook ve Erdoğan 

.2.2 Crack Terminating at Rigid Surface 
 

When the crack spreads out at the rigid surface along the crack  , in 

ted into the 

quation (3.15). Multiplying the resulting equation by    and considering the 

 characteristic equation can be obtained as 

 

1972), (Gupta 1974), (Delale ve Erdoğan 1982), (Nied ve F. 1983), (Artem ve Geçit 

2002), (Aydin ve Artem 2007). 

 

3

 

addition to equation (3.16a), equation (3.16e-g) must also be substitu

e

limiting case  , the following

 

2 cos 4 8 3 0 (3.20)

 

 The equation (3.20) is in agreement with (Kaman and Gecit 2006). 
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3.2.3 Internal Edge Crac
 

k 

When the crack spreads out and the cylinder is completely broken along the 

crack  , in addition to equation (3.16a), equation (3.16b-d) must also be 

bstituted into the equation (3.15). Multiplying the resulting equation by    and 

 , the following characteristic equation for  can be 

btained as 

cos 2 2 1 (3.19)

3.3. Solution of the Integral Equation 

 
 After obtaining the singular behaviour of the unknown function, the integral in 

the equation (3.3) can be rewritten as a non-dimensional equation by using the 

imensionless variables   and  for the cracks: 

 

su

considering the limiting case 

o

 

 

Therefore, 0 is obtained. 

 

d

 

  , 1 1  

   1 1  

llowing form 

,       (3.21a-b) 

 

in the fo

 

, ,   1 1   

 

where  

 

(3.22) 

2 2  (3.23)

, ,  (3.24)

, 2 2 2 ,  (3.25)
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3.3.1 Internal Crack 
 

The singular behaviour of the dimensionless unknown is to be  

 

1
 (3.26)

 

here  w

2 2

 

2  (3.27)

 

 Substituting equation (3.26) into the equation (3.22), the following singular 

tegral equation is obtained: in

 

1
1

2
,

1
2

,

 

1 1  (3.28)

 

The integral equation (3.28) can be reduced to an algebraic system by using the 

obatto integration formula given in Appendix E: 

 

Gauss-L

2

 

, ,
1

2  (3.29)

 

here  w

 

cos
1
1  1,2,3,… ,  (3.30 a)

cos
2 1
2 1  1,2,3, … , 1  (3.30 b)
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are the roots of the weighting constants of related Lobatto polynomials. The algebraic 

system (3.29) has  unknowns,  and 1  equations. The single valued 

ondition (Equation (3.6)) must be used to have  equations because the number of 

 The equation (3.6) becomes 

c

unknowns is larger than the number of the equations.

 

0 1 1  (3.31)

 

3.3.2 Crack Terminating at Rigid Surface 

ensionless unknown is to be 

 

 The singular behaviour of the dim

 

√1 1
(3.32) 

here  

 

w

 

2 2 2  (3.33)

 

1

 Substituting equation (3.32) into the equation (3.22), the following singular 

integral equation is obtained: 

 

2
√1 1

, ,

1
2  

1 1  (3.34)

 The integral equation (3.34) can be reduced to an algebraic system by using the 

auss-Jacobi integration (Erdoğan, et al. 1973): 

 

G
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2
, 2,

1
 (3.35)

 

where   are the weights,  and  are the roots of Jacobi polynomials: 

, 0 1,2,3, … ,  
, 0 1,2,3,… , 1  (3.36a-c)

 

 

The algebraic system (3.35) has  unknowns,  and tions. The single 

valued condition (Equation (3.6)) must be used to have  equations because the number 

 unknowns is larger than the number of the equations. The equation (3.6) b

 

1  equa

of ecomes 

0 1 1  (3.37)

e stress intensity factor. 

 of the crack will be calculated in the 

llowing section. 

 

3.4.1. Stress Intensity Factors at the Tips of Internal Crack 
 

In this study, only Mode I stress intensity factor calculations and investigation 

will be of the crack has been 

efined in (Erdol ve Erdoğan 1978) as 

 

 The infinite integral appearing in the bounded part of ,  can be obtained 

numerically by using Laguerre integration method, Appendix E, for each  and 

values. The behaviour of the unknown function at the tips of the crack 1  is 

characterized by th

 

3.4. Stress Intensity Factors 
 

 The stresses become infinite at the tips of the crack in crack problems. The stress 

state at close vicinity of the tips of the crack will be presented by the stress intensity 

factor. The stress intensity factors at the tips

fo

 
 considered. Mode I stress intensity factor at the tips 

d
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lim 2 , 0 ,

lim 2

 

, 0 . (3.38a-b)

, 0  can be expressed in terms of the integral equation(3.3): 

 

, 0
4

1

 

, 0  (3.39)

where  

 

, 0
2

1

 

2 , , . (3.40)

 

ow  can be written as N

 

⁄
,  

⁄
,  

 

(3.41)

method gi

1

 

and the integral equation (3.39) can be evaluated by using the ven in 

(Muskhelishvili 1953) 

 
⁄

sin 2 sin 2
 (3.42)

 

here  is the bounded part of the integral equation (3.42) for . As r 

hes a

w

approac , the second part of the integral equation (3.42) will be bounded too. 

Therefore, the integral equation (3.42) becomes 
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1
 (3.43)

 

where  contains all the bounded parts of the integral equation. Now the stress 

intensity factors given by the equation (3.38) can be expressed in term of the unknown 

nction  . And by substituting the equation (3.39) and the equation (3.43) into the 

4

1

fu

equation (3.38), the stress intensity factors can be found as 

 

2

, 

4

1 2

, .

norm  str ity factors 

(3 44a-b)

 and 

 

 To find the alized ess intens , the 

imensionless form of the    will be used. Comparing the equation (3.26) and the 

equation (3.41), it can be related  and 

d

 by 

 

2  1 1

stress intens

 (3.45)

 

 By substituting the equation (3.45) into the equation (3.44), the normalized 

ity factors  and    becomes 

 
4

1 1 , 

4
1 1 . (3.46a-b)

 

3.4.2 Stress Intensity Factors at the Tips of Crack Terminating at 

Rigid Surface 
 

Using a similar procedure used in the previous section the normalized stress 

y factors 

 

intensit

29 
 

 and    can be obtained as (Birinci 2002). 
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4

1 2 1 , 

4
1 1 . (3.47a-b)

here 

1 1 2

 

w

 

2 3

2 sin  (3.48)

 

the Tip of Internal Edge Crack 
 

 Following a similar procedure as in Section 3.4.1, it can be obtained that 

 

3.4.3 Stress Intensity Factor at 

4
1 1 . (3.49)

 



CHAPTER 4 

 

NUMERICAL RESULTS AND DISCUSSION 

 
 Normalized stress intensity factors  and  are calculated for various 

geometric configurations. Results are obtained for the following load distributions on 

crack surfaces: 

3
2 3 2 3

 

 (4.1a-b)

 

 

where  is the mean of compressive distributed load on crack surfaces. The uniform 

pressure on crack surfaces is considered for the purpose of possible comparisons; since 

extensive numbers of examples with uniform load that appear in the literature. The 

outer wall is rigidly fixed while the inner surface is stress free. It is obvious that stress 

distribution at the location of crack for infinite cylinder loaded at infinity will not be 

uniform. It will vary with radial coordinate r. In order to present additional useful 

results one may expect for the perturbation problem in such situations where the infinite 

cylinder is loaded at infinity, here linearly varying load distribution on the crack 

surfaces are also considered. 

 In numerical calculations, one needs to define dimensionless load distributions 

as in the following form: 

 

3 2
2 2 3 2 3  (4.2a-b)

 

 

where   ⁄ , ⁄ . 
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 The following case is considered to check the formulation and the numerical 

results of the problem as a starting point: when the crack size becomes very small 

compared to other dimensions of the hollow cylinder ( ⁄ 10 ), the problem 



turns out to be finite crack in an infinite medium and therefore the normalized stress 

intensity factors  and  approach unity (see Table 4.1). This is a well-known 

result for crack tips surrounded by a homogenous medium. Table 4.1 shows the 

variation of the normalized stress intensity factors  and  for an internal crack 

in thick-walled cylinder. 

 

Table 4.1. Variation of the normalized stress intensity factors for an internal crack in 
the thick-walled cylinder ⁄ 0.25, 0.3  for load distribution 
of  . 

     

10-5 1.000000 1.000000 

0.2 1.009990 0.990367 

0.4 1.020380 0.980565 

0.6 1.031450 0.970255 

0.8 1.043670 0.959180 

1 1.057750 0.947087 

1.2 1.074640 0.933708 

1.4 1.095470 0.918781 

1.6 1.121410 0.902146 

1.8 1.153310 0.883965 
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 Figures 4.1-4.4 show the variation of the normalized stress intensity factors at 

the tips of the central crack (net ligaments,  and  , are equal) for load 

distributions of   and   , respectively. As the 

crack size is increased (the thickness of the net ligaments are decreased), the normalized 

stress intensity factor at the inner tip of the crack ( ) increases while the 

normalized stress intensity factor at the outer tip of the crack ( ) decreases. 
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Figure 4.1. Variation of the normalized stress intensity factor  for an internal crack 
in the thick-walled cylinder  ⁄ 0.25  for uniform load distribution 
of   
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Figure 4.2. Variation of the normalized stress intensity factor  for an internal crack 
in the thick-walled cylinder  ⁄ 0.25  for uniform load distribution 
of   

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Variation of the normalized stress intensity factor  for an internal crack 
in the thick-walled cylinder  ⁄ 0.25  for linear load distribution 
of   
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Figure 4.4. Variation of the normalized stress intensity factor  for an internal crack 
in the thick-walled cylinder  ⁄ 0.25  for linear load distribution 
of   

 

 Figures 4.5-4.6 show the comparison of the stress intensity factors at the tips of 

the central crack (net ligaments,  and  , are equal) for load distributions 

of    and    with v=0.3. 
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Figure 4.5. Variation of the normalized stress intensity factor  for an internal crack 
in the thick-walled cylinder  ⁄ 0.25, 0.3  for load distributions 
of   and   
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Figure 4.6. Variation of the normalized stress intensity factor  for an internal crack 
in the thick-walled cylinder  ⁄ 0.25, 0.3  for load distributions 
of   and   
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 Figures 4.7-4.10 show the variation of the normalized stress intensity factors at 

the tips of the internal crack for uniform load distribution of   and for linear 

load distribution of   . As the outer tip of the crack 

approaches to the outer wall of the hollow cylinder while the inner tip of the crack is 

being held constant ( ⁄  increases from 2.5 to 3.4,  ⁄ 1.6), the normalized stress 

intensity factor at the inner tip of the crack ( ) increases while the normalized 

stress intensity factor at the outer tip of the crack ( ) decreases. 
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Figure 4.7. Variation of the normalized stress intensity factor  for an internal crack 
in the thick-walled cylinder  ⁄ 0.25,    / 1.6  for uniform load 
distribution of   

  

37 
 



0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

2.5 2.6 2.7 2.8 2.9

b/A

3.0 3.1 3.2 3.3 3.4

v=0.3

v=0.2

v=0.34

 

 

 

 

 

 

 

 

Figure 4.8. Variation of the normalized stress intensity factor  for an internal crack 
in the thick-walled cylinder  ⁄ 0.25,    / 1.6  for uniform load 
distribution of   
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Figure 4.9. Variation of the normalized stress intensity factor  for an internal crack 
in the thick-walled cylinder  ⁄ 0.25, / 1.6  for load distribution 
of    
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Figure 4.10. Variation of the normalized stress intensity factor  for an internal 
crack in the thick-walled cylinder  ⁄ 0.25, / 1.6  for load 
distribution of    

 

 Figures 4.11-4.12 show the comparison of the stress intensity factors at the tips 

of the internal crack for uniform load distribution of    and linear load 

distribution of    as the outer tip of the crack approaches to 

the outer wall of the hollow cylinder while the inner tip of the crack is being held 

constant. 
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Figure 4.11. Variation of the normalized stress intensity factor  for an internal 
crack in the thick-walled cylinder  ⁄ 0.25, 0.3, / 1.6  for 
load distributions of   and   
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Figure 4.12. Variation of the normalized stress intensity factor  for an internal 
crack in the thick-walled cylinder  ⁄ 0.25, 0.3, / 1.6  for 
load distributions of   and   
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 Figures 4.13-4.16 show the variation of the normalized stress intensity factors at 

the tips of the internal crack for uniform load distribution of   and linear load 

distribution of   . As the inner tip of the crack approaches 

to the inner wall of the hollow cylinder while the outer tip of the crack is being held 

constant ( ⁄  increases from 1.6 to 2.5, ⁄ 3.4), the normalized stress intensity 

factor at the inner tip of the crack ( ) decreases while the normalized stress 

intensity factor at the outer tip of the crack ( ) increases. 
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Figure 4.13. Variation of the normalized stress intensity factor  for an internal 
crack in the thick-walled cylinder  ⁄ 0.25,    / 3.4  for uniform 
load distribution of   
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Figure 4.14. Variation of the normalized stress intensity factor  for an internal 
crack in the thick-walled cylinder  ⁄ 0.25,    / 3.4  for uniform 
load distribution of   

 

 

 

 

 

 

 

 

Figure 4.15. Variation of the normalized stress intensity factor  for an internal 
crack in the thick-walled cylinder  ⁄ 0.25, / 3.4  for load 
distribution of   
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Figure 4.16. Variation of the normalized stress intensity factor  for an internal 
crack in the thick-walled cylinder  ⁄ 0.25, / 3.4  for load 
distribution of   

 

 Figures 4.17-4.18 show comparison of stress intensity factors at the tips of the 

internal crack for load distributions of    and    

as the inner tip of the crack approaches to the inner wall of the hollow cylinder while 

the outer tip of the crack is being held constant. 
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Figure 4.17. Variation of the normalized stress intensity factor  for an internal 
crack in the thick-walled cylinder  ⁄ 0.25, 0.3, / 3.4  for 
load distributions of   and   

 

 

 

 

 

 

 

 

Figure 4.18. Variation of the normalized stress intensity factor  for an internal 
crack in the thick-walled cylinder  ⁄ 0.25, 0.3, / 3.4  for 
load distributions of   and   
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 Figures 4.19-4.22 show the variation of normalized stress intensity factors  

and  at the tips of the crack terminating at the rigid surface. As /  increases 

(crack gets further from the free inner surface),  decreases considerably more than 

 for all values of v=0.2, v=0.3, v=0.34. 
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Figure 4.19. Variation of the normalized stress intensity factor  for a crack 
terminating at rigid surface in the thick-walled cylinder                  
  ⁄ 0.25,    / 1  for load distribution of   
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Figure 4.20. Variation of the normalized stress intensity factor  for a crack 
terminating at rigid surface in the thick-walled cylinder                   
⁄ 0.25,    / 1  for load distribution of   

 

 

 

 

 

 

 

 

 

Figure 4.21. Variation of the normalized stress intensity factor  for a crack 
terminating at rigid surface in the thick-walled cylinder                  
  ⁄ 0.25, / 1  for linear load distribution of                   
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Figure 4.22. Variation of the normalized stress intensity factor  for a crack 
terminating at rigid surface in the thick-walled cylinder                  
  ⁄ 0.25, / 1  for linear load distribution of                   
   

 

 Figure 4.23 and Figure 4.24 are presented for comparison purposes for v=0.3. 
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Figure 4.23. Variation of the normalized stress intensity factor  for a crack 
terminating at rigid surface ⁄ 0.25, 0.3, / 1  for load 
distributions of   and   

 

 

 

 

 

 

 

 

Figure 4.24. Variation of the normalized stress intensity factor  for a crack 
terminating at rigid surface ⁄ 0.25, 0.3, / 1  for load 
distributions of   and   
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 When / 1 and /  increases (crack tip gets closer to the rigid surface), 
 increases initially while the crack length has relatively small values, then 

decreases slightly. This can be seen in Figure 4.25 and Figure 4.26. 
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Figure 4.25. Variation of the normalized stress intensity factor  for an internal 
edge crack in the thick-walled cylinder  ⁄ 0.25,    / 1  for load 
distribution of   
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Figure 4.26. Variation of the normalized stress intensity factor  for an internal 
edge crack in the thick-walled cylinder  ⁄ 0.25, / 1  for load 
distribution of   
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 Variation of  for uniform and linear loadings with v=0.3 for an internal 
edge crack is shown in Figure 4.27 for comparison purposes. 
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Figure 4.27. Variation of the normalized stress intensity factor  for an internal 
edge crack in the thick-walled cylinder  ⁄ 0.25, 0.3, / 1  
for load distributions of   and   

 



CHAPTER 5 

 

CONCLUSION 

 
 In this thesis, the stress intensity factors for an infinite hollow cylinder at the tips 

of the crack is calculated for an internal crack (embedded), a crack terminating at the 

rigid surface and internal edge crack. Problem is defined and modelled in terms of a 

linear second order partial differential equation system with mixed boundary conditions. 

Integral transform techniques are used to solve these governing equations that are 

reduced to a singular integral equation. Solving this singular integral equation 

numerically, normalized stress intensity factors are calculated for various geometric 

conditions and for various Poisson’s ratio. Numerical results are presented in graphical 

forms. 

 The following results are concluded: 

1. It is observed that  is always greater than  . 

2. As the outer crack tip approaches the rigid wall (b increases),  decreases 

because rigid wall prevents the crack opening. 

3. As the inner crack tip approaches the stress free surface (a increases),  

increases since the free lateral surface lets the crack open. 

4. The results are also compared for uniform and linear loadings applied on crack 

surfaces. Both showed the similar behaviour for stress intensity factors at the 

crack tips. 

5. It is observed that, stress intensity factors are affected by Poisson’s ratio as a 

material property. 
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APPENDIX A 

 

INTEGRATION FORMULAS 
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APPENDIX B 

 

INTEGRAL FORMS AND COEFFICIENTS 
 
, ,      integrals are given as 
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APPENDIX C 

 

ASYMPTOTIC EXPANSIONS 
 

Asymptotic expansions for modified Bessel functions for ∞ (Abramowitz 

and Stegun 1965) 
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APPENDIX D 

 

ALGEBRAIC EQUALITIES 
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APPENDIX E 

 

GAUSS-LOBATTO AND GAUSS-LAGUERRE 

INTEGRATION 

 
 Gauss-Lobatto integration formula 
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 Gauss-Laguerre integration formula 

 

 

 

where  are abscissas and  are weights of the Laguerre integration. 
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