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ABSTRACT 
 

FABRICATION OF Lu DOPED YBCO THIN FILMS BY PULSED 
LASER DEPOSITION TECHNIQUE AND THEIR 

CHARACTERIZATION 
 

Nearly twenty years ago YBCO was the first superconductor discovered with a 

transition temperature above the boiling point of liquid nitrogen, the “fascinating” limit 

for high temperature superconductivity. From the day forward, the interest in this 

ceramic compound has not diminished. YBCO is one of the most promising materials 

for the application of high temperature superconductors (HTS) because it is able to 

carry a technically useful current density in applied fields at 77 K. A lot of experiments 

guided to investigate the basic properties of the HTS and to further the theoretical 

understanding of them also used YBCO, because this progress has been achieved in the 

preparation of bulk samples, and especially thin films deposited by a various methods. 

The aim of the experimental investigation presented in this thesis was to produce 

high quality epitaxial Lutetium doped YBCO thin films on MgO substrates prepared by 

pulsed laser deposition. For this purpose, bulk Lu2O3 powder was mixed into YBCO by 

using solid-state reaction method and pressed to make a stoichiometric target for PLD 

process. KrF excimer laser was worked at 14 Kv with repetition rates ranging from 3 to 

5 Hz to deposited Y0.9Lu0.1Ba2Cu3O7-δ thin films at a substrate temperature of 800 oC. 

The surface of the films were characterized by employing XRD, SEM, EDX and AFM 

techniques. 
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ÖZET 

 
Lu KATKILI YBCO İNCE FİLMLERİNİN PULS-LAZER YIĞMA 

TEKNİĞİYLE YAPILMASI VE KARAKTERİZASYONU 
 

 Yaklaşık yirmi yıl önce YBCO yüksek sıcaklık süperiletkenliği için büyüleyici 

bir sınır olan sıvı azotun kaynama sıcaklığının üzerinde bir geçiş sıcaklığına sahip ilk 

süperiletken olarak keşfedildi. O zamandan beri, bu seramik bileşiğe olan ilgi artarak 

devam etmiştir. YBCO,  yüksek sıcaklık süperiletkenlerin uygulama alanları için en 

umut verici materyallerden biridir çünkü 77K’de uygulanan alanlarda teknik bakımdan 

faydalı akım yoğunluğu taşıyabilme özelliğine sahiptir. Birçok deneysel çalışmada 

YBCO yüksek sıcaklık süperiletkenlerinin başlıca özelliklerinin araştırılmasına ve 

teorik olarak ifade edilmesine rehberlik etmiştir çünkü bu süreç bulk örnekler 

hazırlanarak, çeşitli metotlarla ince filmler kaplanarak sağlanmıştır.  

Bu tezde sunulan deneysel araştırmanın amacı, MgO alttaşlar üzerine, puls-lazer 

yığma tekniğiyle, yüksek kaliteli epitaksiyel Lütesyum katkılı YBCO ince filmler 

üretmektir. Bu amaçla, bulk Lu2O3 tozu katı-hal tepkime yöntemiyle YBCO ile 

karıştırılmıştır ve PLD yöntemi için stokiyometrik target oluşturmak amacıyla 

preslenmiştir. Y0.9Lu0.1Ba2Cu3O7-δ ince filmlerin kaplanması için KrF excimer lazer 3 

ve 5 Hz’lik tekrarlama değerleriyle 14 Kv enerjide çalışmış, alttaş sıcaklığı da 800 
oC’de tutulmuştur. Oluşan filmlerin yüzeyi XRD, SEM, EDX ve AFM analiz 

teknikleriyle incelenmiştir. 
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CHAPTER   1 

 

INTRODUCTION 

 
1.1. Superconductivity 

 
In this section, an overview of superconductivity wil be presented. In the first 

subsection, the historial review of the superconductivity will be mentioned. In the next 

subsection, Meissner effect, BCS theory, type I and type II superconductors, Bean 

critical state model and high-Tc superconductors will be explained in details. 

 

1.1.1.  Historical  Review 

 
The phenomenon of superconductivity was discovered by the Dutch physicist H. 

Kamerlingh Onnes in 1911. He found that dc resistivity of mercury suddenly drops to 

zero below 4.2 K.  

In 1933, W.Meissner and R. Ochsenfeld discovered one of the most fundamental 

properties of superconductors: perfect diamagnetism. They found that the magnetic flux 

is expelled from the interior of the sample that is cooled below the critical temperature 

in weak external magnetic fields. 

In 1934 F. and H. London discovered a simple two-fluid model. The London 

model explained the Meissner effect and predicted the penetration depth  λ: a 

characteristic length of penetration of the static magnetic flux into a superconductor. 

In 1957 John Bardeen, Leon Cooper and Robert Schrieffer proposed a complete 

microscopic theory of superconductivity. This is usually referred to as the BCS theory. 

Then, in 1986, a truly breakthrough discovery was made in the field of 

superconductivity. Georg Bednorz and Alexander Müller researchers at the IBM 

Research Laboratory in Rüschlikon, Switzerland, created a brittle ceramic compound 

that showed superconductivity at the highest then temperature known 30 K. Ceramics 

are normally insulators and do not conduct electricity well at all, so the researchers had 

not considered them as possible high-temperature superconductor candidates. This 
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property of seramics made the discovery so remarkable. The Lanthanum, Barium, 

Copper and Oxygen (La1.85Ba0.15CuO4) compound that Müller and Bednorz synthesized 

was the evidence for high-Tc superconductivity at ~ 30 K. 

In February 1987 K. Wu and Paul Chu discovered Y1Ba2Cu3O7 ceramics with 

Tc= 92 K. This was an important discovery that for the first time a superconductor had a 

critical temperature above liquid nitrogen which is a much cheaper coolant than liquid 

helium. 

Early in 1988, Bi- and Ti- cuprate oxides were discovered with Tc= 110 and 125 

K respectively. 

 

 
Figure 1.1. The evalution of critical temperatures since the discovery of superconductivity  

                  (Source: Gross and Hackl, 2001-2009) 

 

1.1.2.  Basic  Phenomena 

 
The electrical resistivity of all metals and alloys decreases when they are 

cooled. The resistivity of a superconductor vanishes abruptly at a certain temperature. 

The temperature at which superconductors loose resistance is called transition 

Year 
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temperature or critical temperature Tc. Below Tc; it enters an entirely different 

superconducting state. Superconducting transition is reversible: when they heated it 

recovered its normal resistivity at the temperature Tc. At the temperature above absolute 

zero the atoms are vibrated and will be displaced by various amounts of from their 

equilibrium position furthermore foreign atoms or other defects randomly distributed 

can interrupt the perfect periodicity. Both the thermal vibrations and any impurities or 

imperfections scatter the moving electrons and give rise to electrical resistance. When 

the temperature is lowered, the thermal vibrations of the atoms decrease and the 

conduction electrons are less frequently scattered. Any real specimens of metals cannot 

be perfectly pure and will contain some impurity. Therefore the electrons, in additions 

to being scattered by thermal vibrations of the lattice are scattered by impurities.   

 

 
Figure 1.2. The drop to zero resistivity, ρ = 0, at a temperature  Tc, compared to a normal 

behavior. 

 

1.1.3.   Meissner Effect  (Perfect Diamagnetism) 

 
Superconductors have unique combination of electric and magnetic properties. 

Although the term “superconducting” implies zero resistance, superconductors do not 

simply behave as perfect conductors (R = 0). In a perfect conductor the resistance 

around an imaginary close path is zero, therefore the amount of magnetic flux enclosed 

within this path cannot change. This must be true for any such imaginary circuit, which 

may happen only if the flux density at every point in the perfect conductor does not vary 

with time, 
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                                                                                                         (1.1) 

 

This means that if a perfect conductor at room temperature with no applied 

magnetic field is cooled to a very low temperature, and then a magnetic field is applied, 

the magnetic flux will not be allowed to enter the specimen and the interior will remain 

flux-free, since dB/dt=0 must hold. 

On the contrary, if a perfect conductor is subjected to an applied field before 

the cooling, the flux density inside will be the same as that of the external field. This is 

due to the value of the relative magnetic permeability in most metals, which is very 

close to unity, except for the ferromagnetic materials. If the metal is then cooled down 

to a low temperature, this will have no effect on the magnetization, and the flux 

distribution will remain unchanged. Now, as the applied field is removed, dB/dt must 

hold again, so that currents will be induced in the interior of the perfect conductor, 

maintaining the flux inside unchanged, see Figure. 1.3. 

In 1933, Meissner and Ochsenfeld measured the flux distribution of metal 

superconductors, cooled down to their Tc while in a magnetic field. They found out that 

a metal in the superconducting state never allows a magnetic flux density to exist in its 

interior. It exhibits perfect diamagnetism and the following equality always holds: 

. This property, which cannot be explained by an equivalence of superconductors 

with perfect conductors, has been named Meissner effect.   

The expulsion of an applied field is  a result of the existence of induced 

currents in a superconductor, which generate magnetic field, opposite in direction and 

equal in magnitude to the external field, so that the total field inside the superconductor 

is zero. The cancellation of flux lines within the superconductor may be viewed as if the 

external field lines are 'forced' to circumvent the specimen and not allowed to enter 

inside. The pattern of the external field depends on the shape of the specimen and is 

characterized by the demagnetizing factor η of the geometry. For superconductors of 

slab geometry in parallel field (thin rectangle with infinite length) the demagnetizing 

factor is zero. The state of perfect diamagnetism is retained only if the temperature is 

below Tc and the magnetic field below H. 

 



 
 

5

 
Figure 1.3.  Meissner Effect 

(Source: Gross , 2001-2009) 

 

1.1.4.  The BCS Theory 

 
The microscopic mechanism of superconductor based on the effect of electron 

scattering was formulated by Bardeen, Cooper, and Schrieffer known as BCS theory in 

1957. The BCS explains that atomic vibrations unify the entire current. As one 

negatively charged electron passes by positively charged ions in the lattice of 

superconductor, the lattice can distorts. The distortion causes phonons to  be emitted, 

which forms a rough of positive charge around electrons. The forces exerted by the 

phonons overcome the electrons repulsion and make them a pair known as cooper pairs. 

The Cooper pair could pass all the obstacles which caused resistance in the 

superconductors.  Only if the superconductor is cooled to very low temperatures, the 

Cooper pairs can stay a pair due to the  reduced molecular motion. However, once the 

superconductor gains heat energy, the vibration energy in the lattice become more 

increase and break the pairs. The distance between two electrons of the Cooper pair is 

defined as coherence length. The values for  the coherence length range are from a few 

angstrom to as high as hundred nanometer (Figure 1.4). 

Once the temperature of superconducting material is below the critical 

temperature, the resistivity of material is zero. The superconductor can hold huge 

current since there is no loss in electric energy when superconductors transmit electric 

current. However, there is a certain maximum current that the superconductor can carry. 

When certain amount of current is pushed through superconductors, it will relapse the 

superconductor to the normal metal state although the temperature is under  its critical 
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temperature. The current value is called critical current density (Jc). An electrical 

current in a wire generate magnetic fields around a wire. The strength of the magnetic 

fields increase as the current in the wire increases, because superconductors are able to 

carry large current without loss of energy. The superconductors are well suited for 

making strong magnets, but the magnetic field also can relapse superconductors to 

normal metals known as critical magnetic fields (Hc). 

 

 
Figure 1.4.  The formation of  Cooper pairs; the two electrons become a pair together and could 

travel through the superconductor lattice. (Source: Kim, 2005) 

 

1.1.5.  Type I and Type II Superconductors 

 
Superconductors are divided into two classes as Type I and Type II 

superconductors. In Type I superconductors there is no penetration of an external 

magnetic field into the material while it is in the superconducting state; T < Tc and H < 

Hc. An applied external magnetic field only penetrates into the sample as much as the 

London penetration depth λL, as super currents are based on the outer part of the 

material, which build up a magnetization equal and opposite to the applied magnetic 

field. The Meissner effect, or perfect diamagnetism, was one of the two defining 

characteristics of a superconductor along with perfect conductivity. In Figure 1.5a the 

sample will be in the Meissner state below the superconducting region formed by the 

temperature and applied magnetic field, and in Figure 1.5b the internal magnetic field 

versus applied magnetic field (showed in another way). The internal magnetic field of 

the superconductor is zero up to thecritical field Hc at which time the superconductor 

becomes normal and the magnetic field can penetrate the sample.  
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Figure 1.5.  Type I superconductivity. (a) Penetration of the magnetic field into the sample in 

the  normal state above Hc. (b) Behavior of  the applied magnetic field versus 

internal field. 

 

In the same year as BCS theory (1957), Alexi Abrikosov published a paper and 

introduced a new class of superconductors, which he termed these Type II 

superconductors. This new class of these new materials showed two distinct critical 

magnetic fields, Hc1 and Hc2. The key feature of these was the penetration of magnetic 

flux into the material at a lower critical magnetic field Hc1. Below the lower critical 

magnetic field Hc1, the superconducting material behaves the same as a Type I 

superconductors, expelling the applied magnetic field. Notably, above the lower critical 

field and below the upper critical field, Hc1 < H < Hc2, the material allows the 

penetration of the applied magnetic field in quantized vortices without the loss of 

superconductivity. Each vortex has a normal core that allows the magnetic field to pass 

through and is surrounded by a shielding super current, screening out the magnetic field 

locally, analogous to the screening of the bulk in Type I superconductors described 

above. An illustration of Type II superconductors is shown in Figure 1.6. Below Hc1 is 

the usual Meissner state, like found in Type I superconductors. However, above Hc1 but 

below Hc2, is the mixed state with magnetic flux penetration through the sample before 

coming to Hc2, above which superconductivity is destroyed and the sample becomes 

normal. The vortices are arranged in a regular lattice in the mixed state. 
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Figure 1.6.  Type II superconductivity. (a) Type II superconductors have an additional phase                      

between Hc1 and Hc2, the mixed phase, that allows partial penetration of the 

magnetic field via flux lines. (b) Applied magnetic field versus internal field for                      

Type II superconductors. There is no penetration until Hc1, after which there is                     

partial flux penetration as vortices. The sample then becomes normal at Hc2. 

 

1.1.6. The Bean Critical State Model 

 
            Modelling tools for HTS superconductors are required since theoretical solutions 

for current and field equations have been found for simple geometries only and are 

based on the assumptions of Bean's critical state model, which is not fully applicable to 

superconductors with smooth current-voltage characteristics. In this thesis we used only 

slab geometry so we will explain theoretical background of Bean model for slab 

geometry.   

            A great advance in the theoretical modelling of superconductors was triggered in 

1957 by a paper from Abrikosov, who presented a theory for the magnetization of hard 

(Type II) superconductors, in which he showed that the flux enters the specimen in 

quantized flux lines, starting at very low field Hc1  and completing its penetration at a 

much higher field Hc2. Several years afterwards, in order to obtain the virgin 

magnetization curves in hard superconductors, which exhibited magnetic hysteresis, 

Bean introduced a model, later referred to as the critical state model (CSM), a basic 

premise of which is the existence of a limiting macroscopic superconducting current 

density Jc  that the superconductor can carry. In Bean's model only two states are 

possible to occur in the superconductor, zero current for regions with no magnetic flux 



 
 

9

penetration, and full current with density Jc  in regions with partial or complete flux 

penetration. 

Along the width of a superconducting specimen, the current density is given by 

 

                                              (1.2) 

 

In Maxwell's Equation, this can be also written as: 

 

                                                                                                       (1.3)                       

 

with J = ± Jc or zero.  

Even though experiments had shown that the critical current density is a 

function of the magnetic field, Bean assumed that Jc is independent of B, which in his 

early paper was equivalent to the assumption that the magnetic field is much less than 

the critical field of the filaments Hc. 

 

1.1.7. High Tc Ceramic Superconductors 

 
In 1986, Bednorz and Muller discovered superconductivity in LaBaCuO 

ceramics above the temperature limit postulated to be associated with the BCS theory. 

This report launched numerous studies worldwide and resulted in the discovery of many 

additional cuprate superconductors as shown in Figure 2.1. Indeed, at the special session 

of the 1987 fall MRS meeting in Boston, Paul Chu and coworkers defined a new record 

breaking the liquid nitrogen barrier (77K). The formula, YBa2Cu3O7-δ, (YBCO) was 

shown to exhibit superconducting properties at ~ 92K. This discovery is particularly 

important because these materials break the liquid nitrogen temperature, 77K. Before 

this time, it was most common for superconductors to be cooled with liquid helium 

(4.2K). Liquid helium cryogen is expensive to produce; it functions as an inefficient 

cryogen, and requires extensive safety precautions. Because this new class of 

superconductors had transition temperatures above the BCS theory predictions, they are 

called high temperature superconductors. Since 1987, several new formulas have been 
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discovered, raising the transition temperature to 135 K in ambient pressure and 160 K at 

elevated pressures.  

Although many materials have been formulated which have transition 

temperatures above Paul Chu’s formulation of YBCO, research is still being performed 

on this important material for a number of reasons. The YBCO materials can be 

transformed into axially oriented thin films useful for devices, which is more difficult 

with the superconducting materials that transition at a higher temperature. In addition, 

most of these higher transition temperature materials are inherently more toxic and 

include volatile components that complicate sample preparation and utilization. For 

example, the material with the highest transition temperature to date, HgBa2Ca2Cu3O1+x, 

(Tc = 135 K) requires heating in a sealed vessel so that gaseous mercury may intercalate 

into and remain within the crystalline lattice. Lastly, YBCO has regained renewed 

interest as it retains  superconductivity under larger magnetic fields than many other 

superconductors in its class. 

 

1.1.7.1. Crystal Structure of YBa2Cu3O7-δ 

 

YBa2Cu3O7−δ is a ceramic high temperature superconductor. Typical for this 

group of superconductors is their highly anisotropic layered structure built up of 

perovskite-like (ABO3) subunit cells. In Figure 1.8 perovskite structure is illustrated. 

For YBCO the crystal structure exhibits a tripled unit cell of perovskite type. The 

crystal structure of YBCO can change depending on the oxygen stoichiometry. In 

Figure 1.7 the orthorhombic and tetragonal phases are shown. The orthorhombic unit 

cell contains two CuO2 planes situated symmetric above and below the Y atom. It is in 

these planes that the superconductivity occurs. Each copper atom is surrounded by 5 

oxygen atoms that form a pyramid with a basis area that is slightly distorted (≈ 2%) 

from a square. There are also Cu atoms between the Ba atoms, which form Cu chains 

parallel to the b axis. These Cu atoms are only surrounded by 4 O atoms since the 

oxygen sites along the a-axis are not occupied. Further, the YBCO unit cell consists of 

three subunit cells, two containing a Ba atom and one which is situated in between them 

containing an Y atom. 

The dimensions of the unit cell are seen in Table 1.1. The c-axis lattice 

constant is much larger than those for the other two lattice directions. The values for the 
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a- and b-axis are almost identical which leads to frequent formation of twin boundaries, 

since areas with different orientations can easily be formed by the crystal growth. 

Depending on the oxygen doping, the crystallographic phase changes. Beside 

the superconducting orthorhombic phase also a tetragonal phase exists at low oxygen 

doping. The oxygen doping can be described by the parameter δ. For δ=1 there is 

tetragonal YBa2Cu3O6 which is an antiferromagnetic insulator. When δ is getting 

smaller a phase transformation occurs at δ=0.6 into the orthorhombic phase. At the 

same time there is a phase transition from the antiferromagnetic insulator to the 

superconducting phase. Figure 1.9 shows the phase diagram for YBCO, which is typical 

for the cuprate high temperature superconductors.  As seen in the phase diagram, at 

δ=0.05 the superconductor has its highest transition temperature Tc=92 K. This 

YBa2Cu3O6.95 is the optimally doped form of YBCO. With increasing δ, the transition 

temperature decreases and the system moves into the so called under doped regime. In 

the same way for decreasing δ also Tc decreases and the system moves into the over 

doped regime which is small since δ can not get negative. This can be understood by 

looking at the electronic structure of YBCO. 

 

 
Figure 1.7.   The structure of YBCO (a) tetragonal structure (a0 = b0 = 3.86 Å, c0 = 11.7 Å) (b)         

orthorhombic structure (a0 = 3.823 Å, b0 = 3.885 Å, c0 = 11.7 Å) (Source:Soltan, 

2005) 

 

(a) (b) 
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Figure 1.8. Perovskite structure. 

 
Table 1.1. The dimensions of the unit cell. 

a 0.3814 nm 

b 0.3884 nm 

c 1.1660 nm 

                                                

Important for superconductivity are the CuO2 planes that are situated 

symmetrically on both sides of the Y3+  ion, and the one dimensional Cu-chains situated 

between the Ba2+  ions. The fully doped compound is YBa2Cu3O7 where all the oxide 

sites are filled. With increasing δ more and more oxide atoms leave the oxide chains 

until at δ =1 they are completely extinguished. The CuO2-planes always remain fully 

occupied. Owing to the strong electro-negativity of the oxygen, occupation of the oxide 

sites in the copper chains leads to a transfer of electrons from the planes into the chains. 

Thus with a decreasing δ, a stronger hole doping in the planes is achieved. These holes 

are those for the superconductivity relevant charge carriers. In this way, an increasing δ 

lead to a reduction of charge carriers and, thus, also the superconducting properties like 

the transition temperature are reduced. 

Since superconductivity takes place in the two-dimensional CuO2-planes, there 

is an extreme anisotropy of the material properties in these compounds. This anisotropy 

is reflected in the important superconducting parameters. The penetration depth, 

λc=700−800 nm is much larger than λab =140−160 nm and the coherence length, 

ξab=1.0−2.0 nm larger than ξc =0.3−0.4 nm. The coherence length along the c-direction 

shows roughly the same value as the distance between the CuO2-planes. This leads to a 

suppression of the density of Cooper pairs between the planes.  
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Figure 1.9. Phase diagram of YBa2Cu3O7−δ .Depending on oxygen doping δ and          temperature 

the system can show antiferromagnetic, metallic or   superconducting properties. 

(Source: Djupmyr, 2008) 

 

As mentioned above, the electrical properties of all the high-Tc materials are 

strongly dependent on the number of charge carriers in the CuO2 planes. Doping levels 

between 1.6 and 2.0 holes per copper in the planes promotes the highest Tc. Varing the 

oxygen content in these planes can alter the carrier concentration. This plays a large role 

in the synthesis of YBCO thin films. Two plateau’s in the Tc vs. oxygen curve can be 

seen in Figure 1.10. With increasing oxygen content the first plateau is a Tc of 60 K at 

an oxygen content between 6.4 and 6.6. With higher oxygen content of 6.8 to 7.0 the Tc 

increases to it’s highest level of 92 K. 

 

 
Figure 1.10.  Oxygen content and Tc in YBCO (Source: Chudzik, 2000) 
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1.1.8. Issues for Substrate Selection for High-Tc Superconductors 

 
The quality of film-substrate epitaxy is also strongly influenced by the 

differences in thermal expansion, chemical compatibility between the materials, surface 

quality, cleanliness, and homogeneity. When creating a multilayer device or only a 

structural template for a final layer, it is important to inhibit chemical reactions between 

layers. One must be conscious of the diffusivity of species involved at the growth 

temperatures in a range of 600-1000 oC  for several hours during the deposition of 

following layers.  

There are a lot of possible substrate choices for high temperature 

superconductors. The major issues involved in substrate selection include the folowing. 

 

1.1.8.1. Lattice Matching  

 
The highest quality films as determined by crystallography and transport 

measurements are obtained when the film is epitaxially grown from the underlying 

substrate. When the atomic sites between the two layers are brought into coincidence or 

near coincidence by either a rotation of crystal axis or straight cube-on-cube growth. 

This condition will only occur when the lattice constants are within 15 % each other. A 

better lattice match will mean higher quality films can be grown at lower substrate 

temperatures, because a lower number of misfit dislocations are required to make up the 

difference in atomic layer distances between the films. 

Epitaxy is the growth or deposition of a film on a substrate such that the film 

has a certain crystallographic relationship to the substrate. It is important in that it 

allows for the reduction of defect densities and impurities as well as allows for the 

fabrication of multilayers with differing chemical, physical and electrical properties 

than substrate.  

There are two types of epitaxy: homoepitaxy and heteroepitaxy. The letter 

refers to the growth of a film, or epilayer, on a substrate of similar material, for example 

the growth of silicon on silicon wafer. Heteroepitaxy refers to the growth of afilm on a 

substrate of dissimilar material. An important example in superconducting applications 

in the growth of cerium oxide on yttria-stabilized zirconia. 
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Homoepitaxy results in a perfectly latticed matched multilayer because the 

epitaxial layer, called epilayer, and the substrate are the same material. Heteroepitaxy is 

the more technologically important and is far less trivial than homoepitaxy. 

Heteroepitaxy can result in one of the three epitaxial relationships illustrated in Figure 

1.11 matched, strained or relaxed, depending on the mismatch in lattice parameters and 

thickness of the epilayer. If the mismatch is small enough the epitaxial relationship is 

the same as the homoepitaxy case where tha layers are matched. If the mismatch is large 

then the epilayer will result in a strained or relaxed configuraton. 

 

 
Figure 1.11. Epitaxial relationship between film and substrate. 

 

1.1.8.2. Chemical Compability 

 
It is important that the superconducting film does not react chemically with the 

buffer layer at the high deposition temperatures required to obtain epitaxy. This is 

whether true the film is epitaxial or not. The substrate must be unreactive in the oxygen 

rich deposition environments common with the metal-oxide buffer layers and 

superconductors. 

 

1.1.8.3. Surface Quality 

 
A smooth growth surface is paramount to obtaining high quality film. Some of 

the surface defects that effect film growth include: 

 The sub-micron scale: impruty phases; 
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 The micron scale: pores, crystalline boundaries, grinding scratches; 

 The micron scale: surface warp and cracks 

 

Surface  scratches cab have a significant impact on nucleation processes. 

Surface quality plays a large role in film to film growth reproducibility. 

 

1.1.8.4. Thermal Stability 

 
The substrates and buffer layers used in superconducting film growth must be 

thermodynamically stable within the range of processing temperatures. In the case of 

zirconia substrates it is important that the cubic phase is stabilized within the 

temperatures used for YBCO growth. 

 

1.1.8.5. Thermal Expansion Match 

 
A large mismatch in the thermal expansion coefficient can led to film cracking 

and possibly delamination during thermal cycling to and from film deposition 

temperatures. 
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CHAPTER 2 

 

PULSED LASER DEPOSITION 

 
Pulsed Laser Deposition (PLD) is a physical vapor deposition (PVD) technique 

based on the evaporation of material by using a pulsed, highly energetic laser beam 

focused inside a vacuum chamber to strike a target of the desired composition. This 

versatile technique may be applied to profoundly different materials such as, metals, 

insulators, semiconductors and high-Tc superconductors. With the use of PLD, the 

stoichiometric transfer of these materials from a multicomponent target to a film on a 

substrate can be obtained entirely. Under the right experimental conditions, PLD also 

offers the potential for epitaxial thin film growth. 

 

2.1. Historial Development of PLD 

 
After laser was first illustrated in 1960, it has used as a powerful and controlled 

energy source in many applications with its distinctive properties such as narrow 

frequency bandwidth, coherence and high power density. The first proof of the idea for 

using a laser tool to deposite thin films was carried out by Smith and Turner using a 

ruby laser in 1965. This was the very beginning of the development of pulsed laser 

deposition technique. Then, Venkatesan tried to use laser to deposit thin film of high-Tc 

superconductor  YBCO, however, the elements in the composition of YBCO evaporated 

at different times due to the different rates and as a result, different composition from 

the target that was non-stoichiometric. 

However, the development and investigations of PLD did not acquire the 

expected momentum. In fact, the availability of the types of laser was limited; the 

stability output was poor and the laser repetation rate was too low for any practical film 

growth processes. 

In the late1970’s excimer lasers became available. These lasers provided both 

high energy density and ultraviolet (UV) wavelengths, allowing the disassociation of 

even very stable chemical bonds. 
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In 1987 Dijkkamp deposited the first thin film of a high-Tc superconductors  by 

PLD using an excimer laser and, unlike Venkatesan, he achieved to deposit PLD growth 

thin film with the same stoichiometry as in the target.  

The present name, pulsed laser deposition (PLD), was defined by formal voting 

from the participants of the first Material Research Society Symposium on Pulsed Laser 

Ablation held in San Francisco in April 1989. 

During the last decade, PLD has been employed to fabricate crystalline thin 

films with epitaxy quality. Ceramic oxide, nitride films, metallic multilayers, and 

various superlattices grown by PLD to synthesis nanotubes, nanopowders and quantum 

dots have also been reported. 

 

2.2. Typical PLD Setup 

 
The basic idea of PLD can be simply explained by the experimental setup in 

Figure 2.1. 
PLD system basically consists of a target holder and substrate holder in the 

vacuum chamber with a laser outside. The chamber is equipped with a UV (ultraviolet) 

transparent lens focuses the laser beam onto the target surface. The evaporation power 

source, i.e. the laser, is separated from the vacuum system, and this makes the technique 

very flexible.  

The useful range of laser wavelengths for thin film growth by PLD lies 

between 200nm and 400nm. The growth can be occurred in ultra high vacuum or in the 

presence of a background gas, such as oxygen which is commonly used during the 

deposition of oxides to fully oxygenate the deposited films. Typically, each laser pulse 

has a duration length of a few nanocesonds. 

Targets in PLD, usually in disk shape, are normally rotated and scanned with 

respect to the laser beam in order to suppress surface roughening. The most commonly 

used targets are ceramic ones. Dense small-grained targets are more desirable because 

single-crystalline or coarse-grain-polycrystalline ones are damaged by thermal shock 

after few pulses. 
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Figure 2.1. Shematic representation of PLD system 

 

2.3. Principles of PLD 

 
In this technique a pulsed high energetic laser beam is focused on a target 

resulting in ablation of material. At the early stage of the laser pulse a dense layer of 

vapor is formed in front of the target. Energy absorption during the reminder of the laser 

pulse causes, both, pressure and temperature of this vapor to increase, resulting in 

partial ionization. This layer expands from the target surface due to the high pressure 

and forms the so-called plasma plume. During this expansion, thermal and ionization 

energies are converted into the kinetic energy (several hundreds eV) of the ablated 

particles. 

The theoretical description of PLD is highly complicated and draws on many 

disciplines of science. To understand this technique, the discussion of laser-target 

interaction, the laser-plasma interaction, the plume-substrate interaction, particulate 

formation, choice of independent variables and the film growth may be convenient. 

These six stages affect the quality and composition of the film grown. 
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2.3.1. Laser-Target Interaction 

 
As illustrated in Figure 2.2 a simple physical description for the laser-target 

interaction in which material is removed from the target by several processes. 

 

 
Figure 2.2.  The schematic illustration for interaction of a target and laser pulse. (A) initial laser                     

irradiation hits the laser. (B) it melts the surface of the target. (C) The liquid is                     

vaporized. (D) then it is ionized to form a plasma which is ejected from the target                      

surface. 

 

In an extremely simplified picture, the laser ablation of a solid target occurs 

when the local temperature increased by means of the laser beam, overcome the 

vaporization temperature of such material. A number of parameters like the absorption 

coefficient and reflectivity of the target material, and the pulse duration τ , wavelength λ 

and laser fluence F ( energy for pulse on spot size) affect the interaction of the laser 

beam with the target. Each material has its own threshold fluence Fth: for values of F 

above Fth the laser-target interaction regime is called ablation. For fluence values F 

lower than Fth the regime is called desorbing, for F higher than Fth it is called 

spallation. 

From analytical point of view, the problem of laser–target interaction is very 

complex: the presence of a moving laser-solid interface, resulting from the melting and 

the evaporation, and the thermal dependence of the sample optical and thermal 

properties on the temperature, make extremely complicated the exact description of the 

phenomenon. 



 
 

21

For this reason it is widely used a macroscopic approach, based upon an 

energetic balance: the problem is transformed in the calculus of the temperature 

distribution on the sample, after the interaction with laser radiation. 

The target region concerned by the ablation process has the xy sizes of the laser 

spot dimension on target surface, times a Lth dimension, on the z direction perpendicular 

to the target. Such value of Lth depends on the thermal diffusivity of the sample 

material and on the pulse duration as followed: 

 

                                                                                             (2.1) 
                      

D is the thermal diffusivity and τL is the pulse duration. From hence, the longer 

the pulse, the deeper and the wider is the laser affected zone. 

Since the value of  Lth is usually very much smaller than the laser beam 

irradiated zone on the target surface (with a ns laser pulse Lth=1µm ), one can assume 

that the thermal gradient in the transverse plane xy of the target face is irrelevant with 

respect to the thermal gradient in z direction normal to the target. In this approximation, 

the temperature distribution T(r,t) into the irradiated target is given by the one 

dimensional heat equation. 

In general the interaction between the laser radiation and the solid material 

occurs through the absorption of photons by electrons of the atomic system. The 

absorbed energy causes electrons to be in excited states with high energy and as a result 

heat the material up to very high temperatures in a very short time. Then, the electron 

subsystem will transfer the energy to the lattice, by means of electron-phonon coupling. 

In this frame, the temporal and spatial evolution of the electrons subsystem and 

the lattice should be described by means of two different temperatures: Te (electrons) 

and Ti (lattice), on the base of the two temperature diffusion model, developed by 

Anisimov et.al. 

Nonetheless, in case of ns laser pulses, it can be assumed that Te=Ti=T since 

the electron–phonon coupling occurs in picoseconds time scale (typically 1–5ps). With 

the previous approximation, the ablation process via a ns laser pulse can be described by 

the one dimensional heat equation in T: 

 



 
 

22

                                                         (2.2) 

 

Here, Ci is the heat capacitance of the lattice, I(t) is the laser pulse intensity, k0 is 

thermal conductivity and α is the absorption coefficient. 

 

2.3.2. Laser-Plasma Interaction 

 
In the description of the laser–plasma interaction, the laser pulse duration plays 

a critical role: although in the case of nanosecond laser pulse, the forming plasma 

interacts with the laser beam ”tail”, in the case of femtosecond (fs) laser pulse the 

previous mechanism doesn’t take place. 

The laser absorption of the forming plasma reduces the efficiency of the energy 

deposition into the sample (plasma shielding effect) and increases the plume ionization 

degree, complicating the plume expansion mechanism. Because of the plasma-laser 

interaction, the temperature of the evaporated material increases therefore rapidly to 

extremely high values and the electrons are further accelerated. The excited particles 

will emit photons, leading to a bright plasma plume, which is characteristic for the laser 

ablation process. The main absorption processes are the inverse bremsstrahlung (IB) 

and the photoionization (PI), since the cross section of the other processes are much 

smaller. 

 

2.3.3. Plume-Substrate Interaction 

 
In pulsed laser deposition, the deposition of the ablated material on the 

substrate surface can be regarded as instantaneous for every pulse, since the time scale 

of the atomistic processes involved in the film growth exceeds the deposition pulse 

duration. Each instantaneous deposition is followed by a relative long time interval, 

where no deposition occurs. Due to the instantaneous deposition at typical PLD 

conditions, the nucleation takes place after the deposition pulse and can be considered 

as post-nucleation. Such separated random deposition and subsequent growth is, 
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furthermore, advantageous for the study of the effect of plume expansion dynamics on 

film growth kinetics developed in this work. 

Parameters which control the instantaneous deposition rate are the laser energy 

density at the target, the distance between target and the substrate and ambient gas 

properties, i.e. , pressure. 

The extremely high deposition rate, typical of PLD deposition (of the order of 

1020 atoms cm-2 s-2), leads to a very high degree of supersaturation, ∆µ, defined as: 

 

                                                                                     (2.3)       

 

kB is the Boltzmann’s constant, R is the actual deposition rate and R0 its equilibrium 

value at temperature T. 

Two independent process play a role during the vapor-phase epitaxial growth 

on a surface: the nucleation and the growth of islands. Both processes occur far from the 

thermodynamic equilibrium and are determined by kinetic processes. In the frame of the 

thermodynamical approach, used to describe the crystal growth close to equilibrium (for 

a thermodynamically stable system), local fluctuation from equilibrium leads to the 

phase transition from gas to solid, where a prerequisite for this process of nucleation is a 

supersaturated gas. 

The high supersaturation of the vapor leads to a large nucleation rate. The 

nuclei will be formed until a critical density is reached. From this point on wards the 

nuclei will grow and crystallization process will occur. 

 

2.3.4.  Particulate Formation 

 
Process conditions and deposition materials determine the generation rate, 

energy, velocity, size, chemistery, and microstructure of particulates deposited by PLD. 

Particulates have two main causes, but are saperated into four classes. 

Three classes of particulates are due to laser-target interactions. The first type 

is caused by protrusions on the target surface, such as pits, craters, or microcracks, 

being mechanically dislodged from target due to laser-induced thermal and mechanical 

shock. This process is termed exfoliation. The second type of particulates is caused by 
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rapid expansion of trapped gas bubbles beneath the surface during laser irradiation, 

causing forcible ejection of molten surface matter by the process called subsurface 

boiling. The third type results from rapid surface evaporation splashing the molten layer 

left on the target. This is termed expulsion of the liquid layer by shock wave recoil 

pressure. 

Target resurfacing before deposition, target densification, and target rotation 

minimize exfoliation. Reducing laser energy limits subsurface boiling as well as 

expulsion of the liquid layer by shock wave recoil pressure. 

The last type of particulate matter is due to plume interactions. These 

particulates are created from the condensation of vapor species due to interplume 

collisions. To minimize this type of particulate, precise control must be obtained of the 

partial pressure of  background gas used during the deposition. Reducing the pressure of 

ambient gas, reduces collisions between species in the plume and gas molecules, 

causing a reduction in the number density of condensation particulates. 

A certain pressure of background gas, O2, is required during deposition to 

incorporate oxygen within YBCO. Pressures must be precisely controlled to allow the 

formation of film precursors within the plume without the creation of particulate matter. 

 

2.3.5.  Choice of Independent Variables for Optimization 

 
Based on previous discussion of thin film deposition via pulsed laser ablation, 

there area number of variables that effect deposition in a strong manner. The 

background pressure of oxygen incorporates oxygen in the lattice and creates particulate 

matter. The substrate temperature effects the mobility of species on the surface of 

substrate determining if the assembly  recrystallizes into the desired phase. The laser 

energy determines the initial energy and velocities of the species in the plume. In 

addition, the laser energy can create laser droplets and influence film morphology by 

creating subsurface boiling or expulsion of the liquid layer by shock wave recoil 

pressure. The target to substrate distance determines the energy of species in the plume 

when they reach the target surface. The repetition rate of laser determines how often 

new material is delivered to the surface, which in turn defines the time period over 

which diffusing may occur prior to the arrival of the next layer. 
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2.3.6.  Film Growth Mechanism 

 
The thin film growth can be explained  by three different modes such as three-

dimensional island growth, two-dimensional  monolayer formation, and the growth of 

separate islands on the top of a full monolayer. The three-dimensional film growth 

includes a number of processes that particles can go through after arriving on the 

substrate (Figure 2.3). The nucleation rate of the clusters and the relation of a cluster 

growth and dissociation are controlled by the total free energy of the system. The size of 

a stable cluster decreases with decreasing the surface energy between the arriving atoms 

and the clusters or increasing the negative volume free energy. In practice, changing the 

substrate temperature or increasing the deposition rate can control the free energy. A 

monolayer can be formed with low surface energy of the clusters and high surface 

energy of the substrate due to energy favor for the thin film. A higher temperature and a 

lower deposition rate support the formation of larger islands instead of numerous small 

clusters. Two-dimensional layers could be formed before three-dimensional nucleation. 

However, the growth mode changes from initial state to three-dimensional nucleation 

state because the increasing film thickness causes the stress due to lattice mismatching 

or strong relation between the substrate and the films. 

In general, the quality of the deposited film is determined by the crystallinity of 

the lattice and the surface smoothness. The generation of  particulates during the PLD 

process is one of the most important factors which can affect the smoothness of the 

films and crystallinity. These particulates can be classified as small droplets and large 

irregular shape outgrowths. The density of all kinds of particulates increases with the 

number of laser pulses because the largest outgrowths are believed to originate directly 

from the target. The typical explanation for large target fragments on the substrate is 

that the breaking of projecting surface features or splashing of a molten surface layer. 

However, the droplets are considered as resolidified molten drops from hydrodynamic 

sputtering of the target. Moreover, the loss of epitaxy in thicker films generates many 

types of differently shaped outgrowths. Precipitates are particles whose stoichiometry is 

different from that of the surrounding film. The crystallinity of the film is improved 

when precipitates are formed since the film is separated into two phases including the 

precipitates and the crystal matrix. In Figure 2.4 the possible film growth modes are 

illustrated. 
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Figure 2.3. The schematic diagram for atomic processes in the nucleation of the three-

dimensional clusters of deposited thin film atoms on a substrate surface. 

 
 

 
Figure 2.4. Film possible growths: (a) Frank-VanderMerweor layer-by-layer growth, (b) step-     

flow growth, (c) Stranski-Krastanov growth, (d)Volmer-Weber growth. 

 

2.4.  YBCO Film Growth by Pulsed Laser Deposition 

 
The growth of high quality YBCO thin films is complicated by its complex 

composition, layered structure and limited thermodynamic stability of YBCO that 

complicates its growth. The oxygen- temperature thermodynamic phase diagram from 

the growth of the YBCO is given in Figure 2.5. 
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YBCO with 1-2-3 coposition is only stable in a portion of the pO2-T phase 

diagram. Above, m1 in Figure 2.5, YBCO incongruently melts. Below d1 on the phase 

diagram YBCO decomposes into three separate phases, BaCu2O2, Y2BaCuO5, and 

YBa3Cu2O7-δ. Line d2 is another decomposition line that doesn’t play a large role in film 

growth because it occurs at a low enough temperature that atom mobility is too low for 

thermodynamically more favorable phases to form. This line however forms a lower 

temperature limit for stable YBCO synthesis. 

YBCO grown at high temperatures has an oxygen content between 6.0 and 6.3 

which is a tetragonal phase and is not superconducting. By oxidation and cooling 

through temperatures around 650oC, YBCO becomes orthorhombic. This oxidized 

phase is superconducting and has room temperature a and b lattice parameters of 

approximately 3.83 Å, and 3.88 Å respectively. Although the phase is orthorhombic, the 

crystal structure is considered pseudo-tetragonal because of the nearly equal a and b 

lattice parameters. The superconducting transition temperature of this orthorhombic 

phase is near 92 K. The thermodynamic stability relationship in Figure 2.5. are actually 

significantly simplified and don’t include the two orthorhombic phases I and II, which 

have different Tc’s depending on oxygen content, and are common in YBCO growth. 

In-situ growth of YBCO is typically achieved at temperatures greater than 

650oC because of the strong metal-oxygen bonds in YBCO, requiring high temperatures 

to provide enough adatom mobility to achieve epitaxial growth. Figure 2.5 includes 

reported pO2 and temperatures zones for in-situ growth of YBCO by MOCVD, PLD, 

EBE, and sputtering. 

As will be discussed in the next chapter, the first PLD pattern superconducting 

YBCO film presented by Dijkkamp et.al. in August 1987, in the same year that the 

discovery of YBCO by Wu et.al., with a Tc of ~ 92 K, close to its bulk values. Before 

this success, the researchers had failed to catch the right stoichiometry of the film as its 

bulk samples. This provide the necessary incentive for many other research workers and 

they succeeded in depositing different kinds of complex oxide materials in the 

following few years. 

Generally, near UV and visible lasers (190 nm ≤ λ ≤ 532 nm) seem to be ideal 

for the ablation of complex oxide materials, as they are able to generate a congruent 

material transfer from the ablation target to substrate, thereby ensuring the correct 

stoichiometry of growing film. 
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In most cases in PLD process, as-grown films are oxygen deficient and need to 

be annealed in higher pressures to develop their best superconducting properties. Here, 

the reported procedures differ even more than for the growth process itself. The general 

consensus seems to be that oxygen pressures up to 1 bar should be introduced as soon as 

possible after growth while the substrate is slowly cooling down. During the cool down, 

the temperature is often fixed at certain values for prolonged periods. 

 
Figure 2.5.   Oxygen pressure and growth temperature phase diagram for the growth of YBCO                             

                   using various techniques. (Source: Chudzik, 2000) 

 
Unfortunately, this fairly consistent understanding of the film growth does not 

define a sufficiently accurate procedure to achieve reliable results. Due to the very rich 

phase diagram of YBCO, its growth is very sensitive to small changes in the deposition 

conditions. Furthermore, each PLD apparatus has its unique characteristics, and growth 

parameters may not easily be transferred from one system to another. Therefore, the 

precise control and careful calibration of all parameters is necessary for each system, 

and finding the correct conditions is often a very time-consuming and painstaking 

procedure. 

A critical point which requires careful attention is to ensure that growth 

proceeds within the thermodynamic stability boundaries of the desired YBa2Cu3O7-δ 

phase (the so-called 123-phase). The applicable stability principles have been 

investigated by Bormann and Nölting and Hammond and Bormann shown in Figure 2.6.  
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 Figure 2.6.  Temperature vs. partial oxygen presure phase diagram for YBCO according to     

                      Bormann and Nölting and Hammond and Bormann.(Source: Schlepütz, 2009) 

 
If the partial oxygen pressure during growth is lower than a certain critical 

pressure, the perovskite structure decomposes into various other phases like Y2BaBuO5, 

BaCuO2 and Cu2O like many other deposition techniques as shown in Figure 2.5. This 

temperature-dependent phase boundary is located at the point where the oxygen content 

in the 123-phase drops below y=6.0, where δ >1, as shown in Figure 2.6. The stability 

regime is divided up into a tetragonal and an orthorhombic crystallographic phase. PLD, 

as most film growth techniques, obviously works optimally in the tetragonal phase just 

near the decomposition line. The phase transition from the tetragonal to the desired 

high-Tc  orthorhombic 123-phase occurs for an oxygen content of at least 6.5 (δ ≤ 0.50). 

Seemingly, the best growth normally proceeds in the tetragonal phase close to the 

decomposition line, where the temperature, and hence the surface mobility, is high, and 

partial oxygen pressures, and therefore the oxygen reactivity, quite low. A transition to 

the orthorhombic phase and an ideal oxygenation of 7-δ ≈ 6.9 of the compound is then 

achieved by in-situ post annealing step. 

To help the oxygenation during growth and to avoid falling into the 

decomposition regime for the quite high substrate temperatures necessary to provide a 

good surface mobility for the desired two-dimensional growth of the films. 

In this study we used single crystal MgO substrates, so we investigated the 

literature and focused on these parameters which selected MgO as a substrate during the 

deposition process. By the help of these parameters we tried to optimize our deposition 

system and to find out our suitable parameters. Table 2.1 shows some of these 

paratemeters taken from the literature.  
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Table 2.1. Typical parameters taken from the literature. 

 

 

2.5.  Advantages and Disadvantages of PLD 

 
Advantages of PLD technique can be summarized as indicated below; 

 

 PLD provides stoichiometry transfer between target and substrate. It replicates 

the composition of target in the film. 

 PLD uses laser as an energy source and it is located outside the chamber.  

 In PLD, there are many adjustable parameters like laser fluence, target material, 

substrate type, deposition parameters, target to substrate geometry, etc. 

 Pulsed nature of PLD means small spot size of the laser beam and small target 

size. This future of PLD allows complex compounds and multilayer depositions. 

 It is a fast deposition technique and by using PLD high quality samples can be 

grown in 10 or 15 minutes. 

 Since it uses UHV during the process, it is a clean, low cost (one laser can serve 

many vacuum systems). 

 During the process, PLD allows the usage of any ambient gas. 

 PLD provides epitaxial thin films at low temperatures. 

 In this technique both in-situ and ex-situ heat treatments are possible. 

 PLD has high deposition rates, and this feature ensures decreasing impurities 

like oxygen contamination during deposition. 

 PLD has a very wide application area in science and technology. 
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However, there are some disadvantages that causes detrimental effects on deposited 

films; 

 

 Laser droplets; subsurface boiling, recoil ejection and exfoliation. 

 Inhomogenous flux and angular energy distributions within the plume. 

 Sometimes there are many macroscopic particulates that comes from plasma 

plume on the film surface. 

 Crystallographic defects on the film caused by bombardment of high energetic 

ablation of particles. 

 Mechanisms of PLD are difficult to explain and dependence on parameters are 

very difficult to control. 
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CHAPTER 3 

 

EXPERIMENTAL 

 
 In this chapter, we will discuss the experimental details are given. In the first 

section, target preparation, briefly Lutetium, substrate cleaning is employed. In the next 

section, experimentally PLD, deposition parameters are discussed. In the final section, 

characterization techniques of the samples such as XRD, AFM, SEM and EDX are 

illustrated. 

 

3.1.  Lutetium Doped YBa2Cu3O7-δ Target for PLD 

 

3.1.1. Lutetium 

 
Lutetium is a silvery white corrosion-resistant trivalent metal. It has the smallest 

atomic radius and is the heaviest and hardest of the rare earth elements like scandium, 

yttrium and fifteen lanthanides. It has the highest melting point (1652oC) between the 

lanthanides, and is difficult to find it in the pure form. Therefore, Lutetium is in the 

form of Lu2O3. It tarnishes slowly in air, and burns easily at 150oC to form Lu2O3.  
 

                                4 Lu + 3 O2 → 2 Lu2O3                                                                             (3.1) 

 

Lutetium oxide has been attracting ever-growing attention from researchers for 

the last 15 years. This simple oxide doped with various lanthanides was fabricated and 

investigated in different forms such as nanocrystalline powders, thin films, sintered 

ceramics, single crystals. 

Lutetium oxide is in the form of RE2O3, and this type of oxides are called rare 

earth sesquioxides. These oxides are of interest in the science and technology of many 

applications such as high temperature materials. They can be used as precursors of high- 

Tc superconductors like REBa2Cu3O7-δ, generally indicated as the most promising 

materials for power applications of superconductivity due to their high critical current 
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density, Jc. Furthermore, Lu2O3 exhibits hygroscopic immunity compared to lanthanum 

oxide (La2O3). 

In this study we selected Lutetium for doping into YBCO because 

Raychaudhuri et.al. reported that partial Lutetium substituted YBCO bulk samples 

shows much more Meissner effect than pure YBCO samples. 

 

3.1.2. Target Preparation 

 
The preparation of the targets to be used in the pulsed laser deposition of thin 

films is an important aspect of film growth because the target determines to a large 

extent, the stoichiometry, impurity content, laser energy coupling, particulate density, 

surface morphology, etc. of the film. Typically a target for PLD consists of a well 

compacted pellet, whose composition is identical to that of the desired film. Well 

sintered targets reduce particulate ejection during the ablation process. The target was 

prepared by the solid-state reaction method. The solid-state reaction method is a general 

method to produce HTSCs. The process consists of selection of raw materials, 

weighing, mixing, calcining and pulverizing steps. Figure 3.1 shows YBCO’s flowchart 

and explains this common method. 

 

 
Figure 3.1. Flowchart of YBCO 
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 In Lu doped YBCO target, powders of Y2O3, BaCO3, CuO and Lu2O3 

combined in stoichiometric ratios, and they were mixed in an agate mortar for several 

hours to provide the uniformity and homogeneity of particle size. This mixture was 

calcined 920oC for 24 h in air. After calcination, the mixture was crushed again and 

pressed into pellet. The pellet was sintered at 930oC for 50h in air and cooled to room 

temperature at a cooling rate of 50oC/min. The weight of the target is about 8 gram and 

the area is about 3.96 cm2. Figure 3.2 displays the picture of our target. The ratios of the 

components in the reaction are, 

 

0.45 (Y2O3) + 0.05 (Lu2O3) + 2 (BaCO3) + 3 CuO → Y0.9Lu0.1Ba2Cu3O7-δ + 2 CO2 (3.2) 

 

 
Figure 3.2. Lu doped YBCO target’s diameters. The height is 0.26 cm. 

 

3.2. Substrate Preparation and Cleaning 

 
General requirements for an appropriate substrate material to produce the best 

quality epitaxial thin films are that chemical compatibility, lattice match, thermal 

expansion match, substrate surface quality, substrate homogeneity as mentioned in 

chapter one. An ideal substrate surface for superconducting thin film fabrication would 

be flat, uniform, dense and free of twins and other structural inhomogeneities. High-Tc 

YBCO superconducting thin films have been grown in a successful manner on a few 

materials such as Lanthanum Aluminate (LaAlO3), Magnesium Oxide (MgO), 

Neodymium Gallate (NdGaO3), Saphire (Al2O3), Strontium Titanate (SrTiO3), and 

Yttria stabilized Zirconium Oxide (Y2O3-ZrO3). According to the klowledge of the 
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properties of these substrates, one can choose the ideal one for the designs depending on 

the application aim. 

In this study, we used thin films deposited on 5x5x0.5 mm3 single crystal MgO 

(100) substrates. The choice of MgO substrate is because MgO is an attractive substrate 

due to its low dielectric loss compared to better lattice matched substrates like LaAlO3, 

SrTiO3 etc. It has the Rocksalt structure shown in Figure 3.3. This is a cubic structure 

with two interpenetrating FCC crystal lattices. This structure forms when the anion is 

larger than the cation. The close-packed direction of MgO lies along the (111) direction, 

which has the shortest distance between cations and anions. The properties of MgO is 

given in Table 3.1. MgO is also an easily available and inexpensive substrate. It also has 

a small thermal expansion mismatch with YBCO and is stable at the high processing 

temperatures required for growth. However, lattice constant of MgO is 4.21 Å while  

that for YBCO is a=3.82 Å and b=3.89 Å, giving a lattice mismatch of ~10%. This is 

one of the reasons that the YBCO films contain several grain boundaries [Singh et al, 

1988; Norton et al, 1989]. Furthermore, the quality of the films are found to be highly 

dependent on the surface preparation of MgO before growth [Moeckly et al, 1990]. Due 

to the sensitivity of the MgO surface to degradation, it is not possible to repeatedly 

grow high quality YBCO films on used MgO substrates. 

 

Table 3.1. Typical properties of single crystal MgO substrates. 

Substrate MgO 

Crystal Structure Cubic 

Lattice Parameter a = 4.216 

Thermal Conductivity (WK-1cm-1) 3 

Specific Heat (JK-1cm-3) 0.53 

Melting Point (oC) 2800 

                          

 
Figure 3.3. Crystal structure of magnesium oxide 

   (Source: webelements 2010) 
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Substrate cleaning is a very important step for the process of film deposition. 

Even a small dust particle on the substrate surface might inhibit the formation of a 

uniform film structure. Consequently, substrates have to clean as good as possible 

before the deposition process. For the purpose of cleaning our MgO substrates the 

following steps must be performed: 

 

 Cleaning MgO substrates ultrasonically in acetone for 1 hour. 

 In the following, cleaning substrates ultrasonically in alcohol for 1 

hour. 

 In the end, drying them with N2 gas flow. 

 

The MgO surfaces are hygroscopic and is easily degraded by humid 

environment, and as a result of that the formation of hydroxides of Mg occurs. Hence, 

special care has to be taken to avoid such degradation and contamination of the 

substrate surfaces, and all the substrates are stored in vacuum dessicators. 

 

3.3. Experimental Aspects of PLD 

 
Pulsed laser deposition of  Lu doped YBCO thin films on MgO substrates were 

achieved in our laboratory by using a commercially obtained system from the Neocera 

Corporation. Our system includes an excimer laser with a KrF radiation that has a 

wavelength of 248 nm and pulse duration of 18 ns, a toxic gas cabinet for the 

containment of the lasing gases, an 18-inch diameter spherical deposition chamber with 

pumping stack, and the connected laser optics. In the following sections, the properties 

of our system will be discussed. 

 

3.3.1. Laser and Laser Optics 

 
As mentioned above, the laser is a KrF excimer laser of wavelength 248 nm 

and pulse width of 18 ns. The maximum output energy of the laser is 125 mJ at an 

operating voltage of 16 kV. Although the pulse repetation rate can be varied in the 

range of 1 to 20 Hz, we used 3 to 8 Hz to deposit our films onto the substrates. The laser 

optics used to focus the laser pulse onto the target consists of a mirror which is used to 
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guide the laser, and lens to focus the laser beam. The beam is focused onto the target at 

45o by the help of the lens. All these equipments are made up of UV graded fused silica. 

The mirrors have a coating that provides the reflection at 45o. Due to the lens 

dimension, same as the beam, small misalignment of the mirror causes about 32 % laser 

power loss before reaching the target. Figure 3.4 exhibits the optical system of our PLD 

system. 

A combination of the high absorption of the 248 nm UV laser beam by YBCO 

and the low thermal conductivity creates dielectric breakdown in the YBCO and 

instantaneously high absorption in a very thin surface layer of the target material. The 

name excimer comes from “excited dimer”. An excited dimer is a diatomic molecule in 

an excited state. During the laser operation the creation of the excited KrF molecule 

proceeds with the following reaction: 

 

,                                                           (3.3) 

,                                                    (3.4) 

                                         (3.5) 

 

Here the Ne atoms serve as a collision partner, without which the reaction 

cannot proceed to from the KrF excimer. 

 

 
Figure 3.4. The optic system and the vacuum chamber of PLD. 
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3.3.2. Deposition Chamber and Pumping 

 
The deposition chamber is an 18-inch stainless steel (SS) chamber with a 

number of ports serving the functions of viewing, laser window, vacuum gauges etc.  

Multi-target holder which can hold up to 6 targets, shown in Figure 3.7 and 

substrate holder are inserted inside the chamber without breaking the vacuum. The 

substrates are attached with the surface parallel to the target surface at a target-to-

substrate distance of almost 2 to 10 cm. We used the distance of about 5 to 7,5 cm 

during the process. Inside of the deposition chamber in our lab is shown in Figure 3.6. 

During the deposition, the target is spinned around its axis and also rastered with the 

angles ±15o around the carousel target axis to maximize useful target area and prevent 

the target burn out. Also the substrate holder rotates to increase the uniformity of the 

film during deposition. In addition, the deposition process can be performed both 

manually and automatically by the software. 

The substrate heater that is above the substrate holder is designed to reach the 

temperature value of around 900 oC, and a shutter provides the necessary protection 

during the ablation of the target which is known as pre-ablation. 

Due to the relatively high deposition rate, base pressure in the range 10-7 torr is 

adequate for PLD. This pressure range, which is in the high vacuum (HV) regime, is 

necessary for the film growth to reduce surface contamination. To achive this, turbo-

molecular pump is a good choice because it avoids hydrocarbon contamination and 

allows for the fast evacuation of the deposition chamber. The turbo-molecular pump and 

scroll pump as a backing pump are connected at the bottom of the chamber. The 

chamber is vented with nitrogen gas each time a substrate or a target has to be inserted, 

than the evacuation begins from the ambient pressure. Therefore, a valve system allows 

a direct connection of the chamber with the backing pump. When the humidity level in 

the chamber increased too much and breaks the vacuum, the chamber is baked from 

outside with the help of heating tapes. A special care has to be taken for the temperature 

not to reach 100 oC. 

A gate valve separates the chamber from the turbo-molecular pump, and it 

controls the speed by changing the area of the aperture connecting the chamber and the 

pump. An anbient gas oxygen for YBCO deposition is introduced in the chamber, and 
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pressure is adjusted to the desired value in the range of 1 mtorr to 1 torr using a flux 

meter and a needle valve; and the pressure is measured by ionization vacuum gauge. 

In Figure 3.5 six target carrousel for in-site multilayer depositions, in Figure 

3.6 the PLD system in our laboratory at İYTE Physics department and in Figure 3.7 

interior of the deposition chamber are illustrated. 

 

 
Figure 3.5.  A Neocera six target carrousel for in-situ multilayer depositions.                

                   (Source: neocera 2011) 
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                                               Figure 3.6. PLD in our lab. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. Target and substrate holders. Target and substrate shutters. 
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3.3.3. Deposition Parameters 

 
The Y0.9Lu0.1Ba2Cu2O7-δ target was sanded down to fresh uniform surface with 

Water Proof Silicon Carbide Supraflex paper P1000A sandpaper. The target surface was 

cleaned off with acetone and alcohol, and dried with N2 gas flow. The substrate holder 

plate was cleaned with diluted HCl solution to remove the materials come from the 

previous deposition. Afterwords, the plate was polished with the same quality sandpaper 

(P1000A) to remove waste silver paint and cleaned with acetone, alcohol and DI water. 

5x5x0.5mm, (100) MgO substrate was taken from the vacuum dessicator and mounted 

on the holder plate with silver paint, from SPI Inc. The substrate holder then baked at 

about 100 oC for 5 minutes to dry up the silver paint before loading the holder inside the 

chamber. After the target and the substrate holder were loaded into the chamber, the 

system was vacuumed down to 10-7 torr in about 6 hours. The MgO substrate was 

brought to the temperature 800oC at a ramp rate of 40oC per minute. In this temperature 

value the substrate was annealed for 30 minutes in 10-7 torr vacuum. During this 

annealing the 248 nm excimer laser warmed up for the oparetion and turbo-molecular 

pump slowed down from 833 Hz speed to 190 Hz. Once these were completed, oxygen 

as an ambient gas was introduced into the chamber the pressure range of ~300 mtorr. 

The target and the substrate rotated at a constant velocity to obtain a uniform film 

surface and to avoid the target burn out. The substrate holder spinned with 25 degree 

per second, the target rotates at 40 degree per second and rastered from -15o to 15o with 

a speed of 10 degree per second during the whole process.The laser power was set to 14 

kV before preablation. The target was preablated with 900 laser pulses at 5 Hz to have 

fresh surface with substrate shutter was closed. After the preablation, the substrate 

shutter was opened and deposition run with 15000 laser shots at 3 Hz in 300 mtorr 

oxygen atmosphere. The laser energy density during preablation was 1,97 J/cm2 and 

laser spot size area was 2 mm2. After the deposition process, the temperature decreased 

to 650oC with a speed of 5o per minute and the pressure was slowly increased at the 

same time. At 7 torr O2 pressure, the turbo pump was stopped to quickly increase the 

pressure. The substrate was annealed at 500oC temperature for 30 minutes and at the 

same time 250 to 300 torr O2 pressure. Lastly, the system was cooled down to room 

temperature. The film was demonstrated ~240 Ω resistance at room temperature. In 
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Figure 3.8 the position of the substrate on the holder is shown, and in Figure 3.9 the 

deposition parameters are illustrated. 

 

 
Figure 3.8. Shematic illustration of the substrate on holder. 

 

 
Figure 3.9. Deposition parameters 

 
Before we obtain our optimized parameters for pulsed laser deposition process 

above, we tried to many different parameters for this purpose. In Table 3.1 there are 

some of our old parameters and successful ones are given. During deposition, the shape 

of the plume as a picture is illustrated in Figure 3.10. 

 

 
Figure 3.10. The image of the plume during deposition 
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Table 3.2 Some of our tested deposition parameters and the ones in rectangle are successful ones. 

 

 

3.4. Characterization Techniques 

 

3.4.1. Electrical Characterization 

 

3.4.1.1. Resistance vs Temperature Measurements 

 

3.4.1.1.1. Cryogens 

 
The title high temperature superconductors refers to a class of materials with 

high transition temperatures relative to the superconducting materials. To achieve 

superconducting behavior, one must cool the sample significantly below room 

temperature. Such cooling may be achieved by using a mechanical cooling system such 

as refrigerator or by direct cooling with cold liquids, known as crygens. 

Simple closed-cycle refrigerators can produce temperatures down to about 4K 

and provide an easy way of performing low-temperature measurements. The 

disadvantage of most refrigerators is that the geometry of their construction, which is 

necessary for the cooling operation, is not well suited to many of the different types of 
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measurements performed. For this reason, most experiments on high temperature 

superconductors are made using cryogenic liquids. 

The most common cryogens used are liquid nitrogen (has a boiling point of 77 

K) and liquid helium (which boils at 4.2 K). Since the transition temperatures of the 

high-Tc materials are often above 77 K, liquid nitrogen may provide sufficiently low 

temperatures for many experiments. However, for measurements on samples with lower 

transition temperatures or at high magnetic fields, it will be necessary to use liquid 

helium for cooling samples. 

In our lab we use helium gas flow cryostat system, in which the sample is 

heated or cooled by flowing helium vapor. For measurements between about 4 K and 

room temperature, liquid helium from a reservoir flows through a needle valve and 

capillary tube to a resistive heater. It then flows vertically up through the sample space 

and out to atmosphere through a flow valve. The temperature of the vapor, and thus the 

sample, is controlled by the heater. A thermometer at the heater allows the vapor 

temperature to be monitored, and by connecting to a controller, temperature of the 

following vapor may be monitored. To operate at lower temperatures down to 1.4 K, 

liquid helium is allowed through the capillary tube into the sample space, where it is 

pumped to produce evaporative cooling. 

 

3.4.1.1.2. Electrical Contacts 

 
For electrical transport measurements, it is important to maintain low contact 

resistance so that there is little dissipation in the contacts. Attaching measurement leads 

to high-Tc superconductors has been problematic because of the poor quality of sample 

surface layers. Several different techniques have been used to achieve low-resistance 

electrical contacts to both single crystals and thin films. The simplest method involves 

direct contact of the measurement wire to the surface of the sample. This may be done 

using an electrically conductive silver paint which binds the wire to the surface. This 

technique is usually known as four-point contact and we used this method for our R-T 

measurements. Figure 3.11 displays the R-T measurement system built in our 

laboratory.  
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Figure 3.11. R-T characterization setup in our lab 

 

3.4.2. Surface Characterization  

 
Y0.9Lu0.1Ba2Cu2O7-δ thin films were characterized by structural, morphological, 

compositional and electrical analyses. The structural analysis is carried out by X-Ray 

Diffraction (XRD). The Scanning Electrom Microscopy (SEM) and Atomic Force 

Microscopy (AFM) gives information on the surface morphology and the Energy 

Dispersive X-ray analysis (EDX) individuates the chemical composition on the surface 

of our films. 

 

3.4.2.1. X-Ray Diffraction (XRD) 

 
X-ray diffraction is a powerful, fast and nondestructive method of determining 

crystal structure, phase, grain size, strain and grain orientation in materials. Diffraction 

is a scattering mechanism where x-rays scattered by large numbers of periodically 

arranged atoms in a lattice create phase relations. X-ray diffraction phenomenon follows 

Bragg’s Law for diffraction which describes the condition for constructive interference 

for X-rays scattering from atomic planes of a crystal. The condition for constructive 

interference is,  

                                         

Helium closed-
cycle cryostat 



 
 

46

                                                      (3.1) 

 

Here ϴ is the angle of incidence relative to the planes, n is an integer and λ is the 

wavelength of the x-ray. In Figure 3.12 the diffraction geometry of the x-rays is shown. 

The Bragg’s Law requires that ϴ and λ be matched for diffraction. By changing λ or the 

orientation of a single crystal, this condition should be done. When x-rays are incident 

under a very small angle with the sample surface, the technique is often called grazing 

incidence x-ray analysis (GIXA) and it is usefull for thin film analysis. Film thickness 

and roughness can be analyzed with GIXA because the reflection of the beam occurs at 

interfaces.   

The ϴ-2ϴ XRD measurements of the films were made by using a Philips 

X’Pert Pro X-ray diffractometer with Cu-Kα λ=1.5418 Å. The samples were detected 

with the angles between 5 to 80 degrees.  

 

 
Figure 3.12.  2ϴ X-ray diffraction geometry for phase, composition and normal-to- substrate 

texture measurements. (Source: Malisa, 2005) 

 

3.4.2.2. Atomic Force Microscopy (AFM) 

 
Atomic Force Microscopy is a useful method for the topography and structural 

study of epitaxial thin films. AFM is based on the detection of a low power laser beam 

reflected by the edge of a soft cantilever. A typical cantilever for the system is made up 

of silicon tip material and oscillares freely in air at its resonant frequency. AFM consists 
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of two operating modes are tapping (non-contact) mode and contact mode. In the 

tapping mode, the tip does not touch the sample surface, but in the contact mode there is 

an interaction between the tip and the substrate surface. This causes the removal of the 

atoms from their places on the surface, and this leads to damages on the film surface. 

Eventually, the tapping mode gives better image results compared to contact mode. In 

Figure 3.13 a typical AFM is illustrated below. 

In this study, AFM images were taken from a Multimode SPM, Nanoscope IV 

Digital Instrument. This analysis gave information about our film surfaces. 

 

 
Figure 3.13. A schematic diagram of an atomic force microscope (AFM). 

(Source: Malisa, 2005) 

 

3.4.2.3. Scanning Electron Microscopy (SEM) and Energy Dispersive   

             X-ray Spectroscopy (EDX or EDS) 

 
Scanning electron microscopy is a typical method used for characterization of 

the surface morphology of the thin films. SEM is a very beneficial technique for a quick 

view of the whole area of the surface of a given film. Compared to other techniques like 

AFM, SEM is a very quick method for surface characterization. From the point of 

working principle, SEM depends on sending highly focused electrons on the sample, in 
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order to scan its surface in vacuum. The generated secondary electrons are accelerated 

toward a detector. The pictures formed to provide information down to less than a 

micron size. 

Energy dispersive x-ray spectroscopy, EDX or EDS, is a chemical 

microanalysis technique performed in cunjuction with a scanning electron microscope. 

In this technique, an electron beam of 10-20 keV hits the surface a conducting sample 

that causes x-rays to be emitted from the point of incidence. The x-ray detector 

measures the number of emitted x-rays according to their energy. By collecting and 

analyzing the energy of these x-rays, the component elements of the sample can be 

determined. From the EDX spectrum we can easily identified the elements Lu, Y, Ba, 

Cu, O and Mg in our samples. 

In this study, SEM (Phillips XL-30S FEG) was used to analyze the surface of 

the films grown on MgO substrates. 
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 
In this chapter, experimental results are mentioned. Structural characterization 

of the Lu doped YBCO thin films deposited by pulsed laser deposition are performed 

and their results are presented. Electrical characterization is performed by showing R-T 

measurement graphs. 

 

4.1. Structural Characterization 

 
In this section, XRD results of both the film and the target and EDX result of 

the target are illustrated, AFM and SEM results of the film are presented. The Lu doped 

YBa2Cu3O7-δ thin films of about 400 to 500 nm thickness were grown on single crystal 

(5x5x0.5 mm3)- sized MgO (100) substrates by pulsed laser deposition. The films were 

characterized by structural, morphological, compositional and electrical analysis. 

Structural analysis is performed by X-Ray Diffraction (XRD) from which the 

information on the phases and their crystallographic orientation with recpect to the 

substrate can be obtained. The Scanning Electron Microscope (SEM) and Atomic Force 

Microscope (AFM) give information on the film morphology and the Energy Dispersive 

X-ray analysis (EDX) differentiates the chemical species analyzing the x-rays emitted 

from the samples when they are hit by the SEM electron beam. 

 

4.1.1. XRD Results 

 
XRD patterns of both Lu doped YBCO target used in PLD during deposition 

and Lu doped YBCO thin film at optimized growth parameters are displayed in Figure 

4.1 and 4.2. According to Philips X’Pert Pro X-ray diffractometer’s data analyse 

program, the Lutetium peaks begin from 29 and end with 75 in 2ϴ degrees of Lu doped 

YBCO target. These peaks continue with intervals from 29 to 75. In our study the 
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Lutetium doping level is quite low as mentioned before and the XRD peaks of Lutetium 

is are spread through these values which are in ovals. 

The YBCO peaks are easily noticed from the XRD result of Lu doped YBCO 

thin film in Figure 4.2 as the same in the literature. The same peaks at the same 2ϴ 

values lie in the literature but there might be some oxygenation problem during the PLD 

process because the other peaks that come after (007) peak can’t be displayed. 

 

 
Figure 4.1. XRD result of Lu doped YBCO target 

 

 
Figure 4.2. XRD result of Lu doped YBCO thin film on MgO substrate. 

 

Lu peaks 
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4.1.2. SEM and EDX Results 

 
Figure 4.3 shows the EDX result of our Lu doped YBCO target. By using EDX 

analysis we found out the elements Lu, Ba, Cu, O and Mg which are in the target 

composition. As you see from the Figure 4.3, the Lutetium amount is very low. There is 

some carbon arises fron this analysis and that might belong to impruties inside our bulk 

target. 

 

 
Figure 4.3 EDX result of Lutetium doped YBCO target 

 

From the literature, the changes in the deposition temperature causes changes 

in the film quality. Low temperatures produces poorly ordered films. Figure 4.4 shows 

the Lu doped YBCO film deposited at 800 oC, with an oxygen partial pressure of 300 

mTorr, and laser power of 14 kV, and in-situ annealing temperature of 650 oC for 45 

minutes. 

One of the largest factors, which can affect the overall smoothness of the 

specimen is the production of laser droplets. These particulates are produced by 

collisions of ions within the plume before they react with the surface. The material with 
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droplets often does not have enough energy to recrystallize as the correct stoichiometry, 

YBa2Cu3O7-δ, once reaching the substrate. Laser droplets typically yield nonconducting 

particulate matter that disrupt further deposition of the desired material within that 

region of the deposited film. To quantified the density of laser droplets, the films are 

examined by scanning electron microscope. Several pictures are taken at specified 

magnifications and the areas of these droplets range from 600nm to 4 µm. 

 In Figure 4.4A, the film morphology is examined as well. There are a large 

number of laser droplets seem as round white spots marking the surface of the film. 

Looking at a higher magnification, Figure 4.4B, shows the outgrowth of elongated 

rectangular grains evocative of a-axis films on top of the smooth coalesced background 

typical of c-axis film. As the surface of the film becomes further removed from the 

substrate, the effective temperature of the surface drops with deposition. It can be 

inferred from this information that an a-axis overlayer can grow atop the c-axis oriented 

film when the deposition temperature is close to the boundary for c-axis deposition, 

which appears to be the case for these samples. 

 

 
Figure 4.4. SEM for the films deposited at 800 oC, 300 mTorr, and 14 kV. Image A reveals 

several round white spots, which are identified as laser droplets. Image B shows an 

a-axis growing as a “basket-wave pattern”, indicative af a-axis orientation, on the 

mosaic pattern indicative of c-axis films. Image A has 30,000 and image B has 

60,000 magnifications. 

 

The films shown in Figure 4.5 was deposited at the same parameters but 

different in-situ annealing temperature, and delay time. These films were annealed at 

670 oC for 30 minutes. 

A B
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Figure 4.5 Lu doped YBCO films had the same deposition parameters but these films were 

annealed at 670 oC for 30 minutes. The disorder seen on Figure 4.4 is also seen in 

the image A. As is shown in image B, the round spots are laser droplets that are 

imbedded in the film. Image A has 30,000 and image B has 60,000 magnifications. 

In addition to the disorder caused by these spots, the mosaic square structure seen in 

high quality c-axis films does not match perfectly. 

 

The cause for the disorder is easier to see when examining the film using SEM. 

There are a large number of laser droplets plainly visible. Unlike Figure 4.4A, these 

droplets have larger sizes and more rounded shapes seeming to indicate that the 300 

mTorr oxygen partial pressure may not be high enough to sharpen the plume 

sufficiently. 

 

4.1.3. AFM Results 

  
The AFM images were also taken to provide a clear insight into the surface 

morphology of the Lu doped YBCO films. In Figure 4.6 the AFM photos of our 

samples are shown. In Figure 4.6A the mean surface roughness, Ra, of the Lu doped 

YBCO thin films grown on MgO substrates within scanned area of 4.331 µm2 was 

measured as about 6.597 nm, and besides this image its 3-dimensional graph is 

illustrated to see how rough the film surface was. In Figure 4.6B the Ra value with a 

scanned area of 4.076 µm2 was measured 7.627 nm. Besides this image its 3-D version 

is placed. 

 

A B 
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Figure 4.6.  AFM surface roughness analysis of the Lu doped YBCO thin film on MgO 

substrates. 

 

4.2. Electrical Characterization of Lu Doped YBCO Thin Films 

 

4.2.1. Resistance vs Temperature Measurements 

 
Another technique used to quantify the quality of the film is measuring its 

resistance versus temperature characteristics. A normal metal often has a linear response 

of resistance with temperature. A superconductor undergoes a deviation from this at its 

superconducting temperature. According to the literature, this transition for YBCO 

should occur at ≈ 92K. However, inefficient coupling between adjacent grains, the 

inclusion of impurity phases, or the loss of oxygen from the lattice can cause both a 

drop in this temperature and a broadening of the transition region.  

In this study we found out two useful parameters as mentioned in chapter 3. 

These parameters were shown in Table 3.1 and the in-situ annealing processes is very 

important for the growth films to have higher transition temperatures. One of these 

parameters was; the samples were kept at 650 oC temperature, 250 Torr O2 pressure for 

45 minutes and the other was; the samples were kept at 670 oC, 300 Torr O2 pressure for 

A A-3D

B B-3D
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30 minutes. In Figure 4.7 and Figure 4.8 the R-T measurements of these two parameters 

are illustrated. According to annealing time in O2 pressure and annealing temperature, 

the transition temperature changes. The samples have shown a sharp transition at 

temperatures nearly 82 K and 83.5 K. 

 
Figure 4.7.  R-T measurement of the films that produced using (670 oC, 300 Torr O2 presure, 30  

                    min.) annealing process. 

 
Figure 4.8.  R-T measurement of the films that produced using (650 oC, 250 Torr O2 presure, 45  

                    min.) annealing proce 
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CHAPTER 5 

 

CONCLUSIONS 

 
Presently high temperature superconductor thin films for electronic 

applications are dominated by YBa2Cu3O7-δ and related 123 materials. These materials 

are one of the most complicated materials subjected to technological development 

today. Growth of epitaxial, complex oxide thin films poses a particular challenge 

because of the incompatibility of chemical reactivity and the varying volatility of the 

elements involved. Pulsed laser deposition, shortly PLD, is one of the most convenient 

methods to obtain thin films of these materials. During PLD tiny amounts of vaporized 

material originated from superconducting bulk target are deposited on a substrate in a 

controlled ebvironment and deposition regime. It is done in such a way that the original 

stoichiometry of the bulk material is preserved and high quality superconducting thin 

films can be performed. 

In this study, we fabricated Lutetium doped YBCO thin films on MgO 

substrates by using pulsed laser deposition technique. For this aim, we firstly prepared a 

Lutetium doped YBCO target by using solid-state reaction method from commercially 

available Y2O3, BaCO3, CuO and Lu2O3 materials. Lutetium oxide is in the form of 

RE2O3 as mentioned in chapter 3, and they are called rare earth sesquioxides.These 

oxides are of interest in the science and technology in many applications. They can be 

used as precursors of high temperature superconductors like REBa2Cu3O7-δ. Secondly, 

(100) single crystal MgO substrates were selected to use during this study. Afterwords, 

by using PLD system and in-situ annealing process we tried to obtained epitaxially 

grown Lu doped YBCO thin films. For this purpose, lots of different PLD parameters 

such as, laser fluence, laser energy, laser repetition rate, oxygen pressure, substrate 

temperature, annealing time and annealing temperature were adjusted during the 

process. This is named as PLD optimization in literature and it took to much time to 

obtain the right parameters for our deposition system. We found out that to obtain in-

situ, epitaxially grown Lu doped YBCO thin films with good superconducting 

properties by PLD, two parameters have to be controlled: the substrate temperature both 

during deposition and annealing and the oxygen partial pressure during the whole 
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process. The oxygen pressure used during PLD process determines the occupancy of the 

oxygen sites of the tetragonal phase of the films, whereas the in-situ cooling process 

determines the occupancy of the oxygen chains of the orthorhombic, superconducting 

phase. Both effects seem to be independent from each other. The tetragonal to the 

superconducting orthorhombic phase transition takes place during a slow cooling under 

a high oxygen pressure. Our successful parameters are shown in Table 3.1. 

We have analyzed the morphological features of our Lu doped YBCO thin 

films by scanning electron microscopy (SEM), the crystallographic microstructure by 

X-ray diffraction (XRD), and the superconducting properties of the films by resistance 

versus temperature measurements. XRD analysis was performed using Phillips X’Pert 

Pro X-ray diffractometer with Cu-Kα λ=1.5418 Å. The samples were detected with the 

angles between 5 to 80 degrees. The energy dispersive x-ray spectroscopy (EDX) of the 

Lu doped YBCO target was performed to observe the chemical ratios of the components 

of the target. SEM analysis was done by using Phillips XL-380S FEG. The roughness of 

the film surface was examined by Atomic Force Microscopy (AFM), and the images 

were taken from a Multimode SPM, Nanoscope IV Digital Instrument. According to 

SEM results, several round white spots known as laser droplets were lying along the 

film surface. These laser droplets are a major problem in PLD process and it is not easy 

to cope with them, and substrate temperature, laser fluence, oxygen pressure are highly 

relevant to this particulation. 

After giving the results of the surface characterization of our samples, the 

electrical characterization has to be discussed to find out superconducting parameters of 

the samples. R-T measurements were carried out for this purpose. Four point contact 

method was applied to the film surface by using silver paint and the measurement was 

carried out by the help of helium closed-cycle cryostat. By examining R-T graph shown 

in chapter 4, we found out that transition temperature changes slightly according to 

annealing time of samples in oxygen pressure and annealing temperature. Two 

parameters that explained in chapter 4 gave two different transition temperature values 

such as 82 K and 83.5 K. According to the literature, these transition temperature values 

are under the YBCO’s common transition temperature observed in its thin films. This 

result might be because our samples may need more oxygenation during the in-situ 

annealing process. 

Consequently, in the end of this study, we produced a stoichiometric target to 

use in pulsed laser deposition technique. Optimization of PLD took lasts of time and we 
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tried many parameters in order to obtain usefull parameters for our deposition system. 

Lutetium doped YBCO thin films were doposited on single crystal MgO substrates and 

their R-T measurement were done. To investigate the effect of Lutetium doping we 

have to measure the critical current density but we couldn’t cope with the particulation 

on the film surface and we couldn’t perform the photolithography process for device 

patterning. The off-axis geometry might be improved to deal with this major problem in 

PLD grown films. 
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