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ABSTRACT

In this work, mainly, the first step of craniofacial surgical simulation and planning
procedure, reconstruction of tomography images 1is investigated. The Direct
Reconstruction techniques and algebraic methods are described in detailed

mathematical formulations for both two and three-dimensional cases.

And also a brief description of medical imaging techniques and the terminology of
craniofacial surgical simulation and planning is given.

In the last chapter the implementation details, the algorithms developed and some
resulting images are given and the images are compared with respect to the used

algorithms.
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Bu ¢alismada, ana olarak, kafatasimin operasyon Oncesi modellenmesi ve
operasyonun planlanmas: isleminin ilk asamas: olan tomografik resimlerin ii¢ boyutlu
yeniden yapilandinlmas: incelenmistir. Bu dogrultuda, iki ve ti¢ boyutlu ortamlar igin,
dogrudan yontemlerle birlikte cebirsel yontemler de detayll matematiksel formiillerle
ifade edilmistir.

Ayrnica, tipta goriintiileme yontemleri ve kafatasinin operasyon éncesi modellenmesi
ve operasyonun planlanmasi konular1 6zetlenmistir.

Caligmanin son bélimiinde ise, uygulama detaylari, gelistirilen algoritmalar, bu

algoritmalar uygulanarak elde edilen resimler ve kargilagtinlmalar sunulmustur.
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STYLE CONVERSIONS

Equation has been abbreviated to Eq. Likewise Equations Egs.

The letters m,n,k,h,l are used to denote the integer type variables, and x,y,z denote
continuous type variables.

Vectors are denoted by bold- faced small letters or Greek letters, as b or &.
Transpose of a vector is shown as 57 .

Matrices are denoted by bold- faced capital letters, like A. A real valued matrix with
I rows and J columns are denoted 4eIR"’. The individual elements are a;;
corresponding to row / and column ;.

Vectors are always column vectors, and i™ rows of the matrix are denoted a; ,1.e.

aj

Algorithms will use the Courier font.

The delta function is denoted by &(s).

The Hamilton step function is denoted by (e). The function is zero if the argument
is negative, and one if the argument is positive.

Fourier transform pairs are marked as g(¢) «& G(f).

In equations convolutions aredenoted by * for a one dimensional, ** for a two
dimensional, and * * * for a three dimensional convolution.

In the algorithms no convolution is found, * is used for multiplication.

The scalar product between to (column) vectors a and b are denoted by a-b=a’b

FUNCTIONS AND VARIABLES

The object functionand the reconstructed function f{x,y)

Projection angle &



Projection axis, sinogram »
The sinogram or Radon transform p(r, §)

The filtered sinogram ¢(7, 6)

FOURIER TRANSFROMS
A function f{x,y)

The 1D Fourier transform of f{x,y) in the first variable F(X,y)
The 1D Fourier transform of f{x,y) in the second variable F(x,Y)
The 2D Fourier transform of f{x,y) F(X,Y)

The 1D Fourier transform F(X)= [ f(x)e”**dx
The 1D inverse Fourier transform f(X) = f F(x)e’*™¥dx

The 2D Fourier transform F(X,Y) = f f £l e P ey

The Fourter transform operator 3
The Radon transform operator R
The inverse Fourier transform operator 3™
The inverse Radon transform operator R~

The Fourier transform in the r-variable 3,

~-1

The inverse Fourier transform in the R- variable 3}

DEFINITIONS
Radon Space:

Projection data p(r, 6) put in the (x,y) space where (x,y)=(rsin6, rcos6)
Sinogram projections:
Parallel equidistant projection data taken at equidistant angles &
Linogram projections:
Parallel projection data taken in equidistant zan@- steps for —45°<=6<=45’, an din
equidistant -cot@ steps for 45°<=p<=135". The projection data are equidistant
within each projection, but varies between the projections with the sample distances

as follows, const -cos@ for -45O<:6‘<=450, and const - sin @ for 45°<=6<=135",
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CHAPTER 1

INTRODUCTION

Medical imaging technologies are altering the nature of many medical professions
today. During the last decade, many radiology departments have installed powerful
imaging equipment for imaging modalities like Magnetic Resonance (MR), Computed
Tomography (CT), and Positron Emission Tomography (PET). These systems have
spawned new specialities, and have fundamentally changed the way many diseases are
diagnosed, and even the way they are treated.

Smaller CT scanners are being marketed by the imaging system manufacturers, who
expect such systems to be increasingly used at clinical department instead of at
centralized radiology departments. In addition, cheap Ultra Sound (US) systems are
increasingly being used in the clinical departments.

Unfortunately, although the “mechanical” equipment has seen a dramatic
development, the real power of these systems has not been released. The software and
knowledge, needed to take full advantage of the imaging systems, has not followed the
development of hardware.

It 1s, therefore, still not unusual that hospitals, even with powerful expensive 3D
scanners, only have diagnostic procedures for handling 2D image slices. In addition,
when hospitals do use the 3D reconstruction capabilities of the scanners, the available
software is not sufficiently flexible and advanced, to allow real interaction with the 3D
image data and provide useful support for diagnosis.

Only advanced medical imaging research laboratories, which have their own
software development capability and access to the latest technology through technical
partners, are today able to explore more advanced uses of the 3D images produced by
the scanners. Typical for those laboratories has been a specific focus on technical
research. The groups have participated in large technical advanced research projects, ie.
European Union projects, and have built up the necessary technical expertise through
these projects.

But from these research projects, and other research that is being performed in the

field of medical imaging, new technology is becoming available. Recent years have
1



seen the development of many image processing, and computer graphics algorithms.
Algorithms that ultimately will lead to better medical imaging software for diagnosis,
treatment planning, surgery training, and surgery assistance.

The work I proposed may be named as “passive aided surgery” in a way as in
(Subsol 1995). It is passive in the sense that the computer aids the surgeon by
displaying useful information but does not intervene in the diagnosis or surgery process
itself.

If atlas visualization and registration are added to a surgery simulation program
(craniofacial surgery (Delingette et al. 1994) or stereotactic surgery (Hardy 1994)), the
user can manipulate more easily the patient data thanks to automatic labelling and to
contrast the patient data with the normalized atlas. A medical doctor can then plan
surgical procedures.

Moreover if the registration algorithm can work in real time (at least a frequency
level of hertz), it becomes possible to superimpose the visualization of the atlas on the
real image of the surgery. This is the principle of “enhanced reality” developed by

several teams.



CHAPTER 2

MEDICAL IMAGING

The study of medical imaging is concerned with the interaction of all forms of
radiation with the tissue and the development of appropriate technology to extract
clinically useful information from observations of this interaction. Such information is
usually displayed in an image format. Medical images can be as simple as a projection
or shadow image or complicated as a computer reconstructed image- as produced by
Computerized Tomography (CT) using X- rays or by Magnetic Resonance Imaging
(MRI) using intense magnetic fields.

Although strictly speaking, medical imaging began in 1895 with Rdntgen’ s
discoveries of X- rays and the ability of X- rays to visualize bones and other structures
within the living body, contemporary medical imaging began in the 1970s with the
advent of Computerized Tomography. Early or what we called classical, medical
imaging utilizes images that are a direct manifestation of the interaction of some form
of radiation with tissue. First example of classical imaging, the conventional X- ray
procedure in which a beam of X- rays is directed through the patient onto a film. The
developed film provides a shadow image of the patient which is a direct representation
of the passage of X- rays through the body.

As a second example, think over a conventional nuclear medicine procedure. A
radioactive material is injected into the patient and its course followed by a detector,
which is moved over the patient in a specified manner. It provides a measure of
physiological function from the time course of radioisotope uptake. The conventional
nuclear medicine image is a direct measure of location and concentration of the
radioactive isotope used.

As a final example of classical medical imaging, consider conventional medical
ultrasound. Here, a pulse of ultrasonic energy is propagated into the patient and the
backscattered echo signal is recorded by the same transducer. By angulating or moving
the transducer positionally sequential echo signals are recorded, and a cross-sectional

image of the subject is displayed directly on a video monitor. Ultrasound images are



really a mapping of echo intensities and are a direct result of the interaction of the

ultrasound pulse with tissue (Cho et al. 1993).

2.1. Computed Tomographyv (CT)

Computed Tomography (CT) is an outstanding break- through in technology as well
as in medical diagnostics. Its global success paved the way for a new scientific
discipline called imaging, which encompasses such more recent developments such as
Synthetic Aperture Radar (SAR) and Magnetic Resonance Imaging (MRI).

The meaning of the word Computed Tomography is as follows. According to
Webster’ s dictionary tomography comes from the Greek word fomos, meaning slice or
section, and the Greek word graphein, meaning to write. Computed comes from the
demand of heavy computation.

Although CT is a general technique, its history is strongly related to the use of X- ray

imaging in medicine. The history of CT may be summarised by the following events.

1895 William K. Rontgen discovers X- ray emission
1901 Réntgen receives the first Nobel prize in Physics for this discovery
1917 Radon formulates a new mathematical 2D- transform

1914- 32 Development of classical tomography
1972 Hounsfield gets patent on the first CT scanner using an algebraic

reconstruction method

1974 The Filtered Backprojection Method (FBM) starts to replace algebraic
reconstruction techniques in commercial CT scanners

1978 Third generation fanbeam tomography with FBM is establihed

1979 Hounsfield and Cormack receives the Nobel prize in medicine for CT.

Although Roéntgen was unaware of the fact, X- rays are electromagnetic (EM) waves

0
in the interval 0.5 to 102 4. These EM waves are well suited for attenuation
measurements in the human body. Waves with longer wavelengths, such as light, are
too much attenuated and shorter wavelengths, such as gamma rays, are transmitted

almost completely without attenuation. In addition, to obtain a reasonable image
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resolution, the wavelength must at length be less then 1 mm. The X- rays satisfies also

this demand.

image de-
tector

X-ray tuba,
X-ray source

patient

Figure 2.1 Recording of an X- ray image of the human head.

X- ray transmission images are obtained by placing the patient between an X- ray
source and an image detector, Figure 2.1. The X- rays travel through the human body
where they are attenuated. When they hit the detector, a picture is produced where the
contrast is produced by different attenuation for different rays. By the unexperienced
viewer, the X- ray image is normally perceived as a “‘negative”.

Tomography was invented surprisingly early. In order not to confuse this kind of
tomography with the much later developed computed tomography, the first kind of
tomography will be called classical tomography. By classical tomography it is possible
to obtain a sharp picture of a specific plane of the body, while all other planes are
rendered unsharp by blurring in proportion to their distance from the specific plane.

Classical tomography is obtained by moving the X- ray source and the image
detector in relation to the patient in such a way that the image of the specific plane is
projected on to the detector without motion. The images of all other planes are thus
depicted with blur. The simplest form of classical tomography is linear tomography,
shown in Figure 2.2.

The X- ray source and the 2D detector move during the exposure along linear paths
synchronously and in opposite directions. They move in different planes, parallel to
each other and to the specific plane. Related techniques employ circular (circular

classical tomography) or spiral movements of X- ray source and detector.
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Figure 2.2 Linear classical tomography

In classical transversal tomography cross- sections of the human body are
depicted. The source and the detector move in circles around the patient, parallel to each
other and to the specific plane. In one kind of transversal tomography, the source, the
specific plane, and the detector are in the same plane so that the specific plane is
projected from edge to edge onto the detector. This kind transversal tomography was
never implemented commercially, but may be considered as a precursor to computed
tomography. The principle of projection recording in transversal tomography is shown
in Figure 2.3. Here the object or the patient moves in a circle, instead of the source and
the detector, but the effect is the same.

sinogram

attenuation
equalizing
filter

Figure 2.3 A special kind of classical transversal tomography. The projection recorder.



 The image obtained after the recording of the projections is called a sinogram, a
m'ws of 1D projections piled on top of each other. To get a real image of the cross-
section. post- processing or so called back- projection must be performed, where 1D
projections are smeared back over the image plane. One way to do is to use an analog

~mechanical optical device shown in Figure 2.4.

phragm’ drical

lens tomogram

Figure 2.4 The backprojector

by

Many of the early inventors of computed tomography (CT) had very little
_;ﬁ'eu owledge about the long development of classical tomography. In CT, object outside
the cross- section will not influence the image as in classical tomography. Neither will
objects in the cross- section be smeared out as in that special type of transversal
tomography mentioned above. In fact, theoretically the cross- section can be
nstructed perfectly without smearing or blurring.

- The basic reconstruction problem in CT is to find the 2D function ffx,y) from the
fm plete set of line integrals p(7, §) through the function. As was pointed out in 2.1 this
._".-'s problem of inversion, and it has been solved independently in different ways by a
number of researchers working in very different fields. Cormack has made a search in
the literature for early contributions. He found that the Dutch physicist H. A. Lorenz
probably the first to find a solution according to a reference from Bockvinkel 1906.

~ As mentioned above, in 1917 Johann Radon found a solution. After him the problem
called the Radon’ s problem The complete set of line integrals through the
function fix,y) is called the Radon transform, and the Radon’s solution of the problem

s called Radon’s inversion formula. The difficulty with the Radon inversion formula is



~ that it does not produce an obvious solution to a working algorithm, due to a zero
valued denominator for lines through the origin.

The first implementation of a solution to Radon’s problem to be used in practice was
made in 1956 by Ronald Bracewell in the field of radio astronomy. He reconstructed the
- radiation distribution of the sun disk from line integral across.

In 1958, B. I. Korenblyum, S. L. Tetelbaum, and A. A. Tyutin wrote an article in
Russian where the Radon problem was solved and a suggestion was made for applying
the solution to X- ray CT. Unfortunately, this article remained unknown to the western
research community until the eighties.

In 1963, Allan Cormack published a working algorithm for calculating a CT image.
- At that time virtually no one paid any attention to his article.

In 1969, Hounsfield applied for a patent on the first computerized tomography
scanner. The reconstruction technique he used was an algebraic reconstruction method.
~ The paten was granted 1972.

. For their discoveries in the field of computed tomography, Hounsfield and Cormack

received the Nobel prize in medicine 1979.

' Up to 1969 it seems that all researchers in the field worked independently and
without knowledge of each other. The commercial activities grew steadily from 1970
- and onwards.

In commercial CT scanners the algebraic reconstruction methods began to be
-~ replaced by the FBM around 1974. It was shown that the processing time as well as the
Jimage quality (for good projection data) was much better for the FBM than for algebraic
- methods.

The first and second generation CT- scanners generated parallel projection data using
“aslow and photon wasting procedure. The third generation, the fanbeam tomography
- scanners introduced in 1978, generated so called fanbeam projection data, where all
.rays in one projection originating from the same source point. The reconstruction
method used for fanbeam tomography was a modified, more complicated FBM. In a
third generation CT scanner (shown in Figure 2.5a), both the X- ray source and the
detector array rotates synchronously around the patient. In a fourth generation CT

‘scanner only the X- ray tube rotates around the patient inside a ring of stationary

detectors (Figure 2.5b)



In the early fanbeam scanners the fanbeam projection data were interpolated to
parallel data (so called rebinning) before reconstruction so that a parallel filtered
backprojection algorithm could be employed. Nowadays 1t is more usual to apply a
fanbeam filtered backprojection algorithm directly on the projection data. These
algorithms are somewhat more complicated than the parallel algorithm and were first
developed by Lakshminarayanan for equispaced collinear detectors and later by Herman
and Naparstek for equiangular rays. The benefit of no rebinning seems to outweigh the

increase in complexity.
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Figure 2.5 Cross- section of the X- ray source. the patient, and the detectors in (a) a third
generation CT scanner , (b) a fourth generation CT scanner.

A high quality X- ray CT scanner of 1993 typically has the following technical data
o Type of X- ray beam: fanbeam
o Number of projections: approximately 1000
o Number of detector values per projection: approximately 700
o Reconstructed image format: 512 *512 pixels
» Dynamic intensity range in reconstructed image: 12 bits
e Data acquisition per slice: 1-2 seconds
e Reconstruction time per slice: 2-5 seconds

o Cost: 0.5- IMS
X- ray CT has its widest use in medicine, but CT is also used in Industrial
applications in the field of nondestructive testing (NDT) of industrial parts and

materials. There are now several companies, mostly in USA, which produce special
9



industrial CT- scanners. Typically, the applications for NDT concemns expensive
products, safety demanding applications and material development, for instance
checking the quality of ammunition, inspection of turbo- blades for aeroplane engines.
and testing of composite- and powder- material products.

3D- imaging 1s of interest for both medical and industrial applications. The common
technique today to obtain an image volume is rather primitive. It is performed by
moving the patient couch stepwise through the CT scanner ring and collects the
projection data for a whole set of 2D- slices. The disadvantage with this procedure is
that it is slow and that the resolution from slice to slice usually is much lower than the
resolution inside 2D- slices.

A faster method is to use is so called helical scanning which gives a whole set of
projections in a comparatively short data acquisition time. The patient is translated
slowly and linearly through the CT- scanner ring. Simultaneously the X- ray source and
detector rotates continuously. The net result is a helical or spiral movement around the
patient, which supplies projection data for a whole set of slices. The spiral projection
data have to be interpolated to a set of 2D- slice projection data aligned in the same
plane. The reconstruction of each individual 2D- slice can then be done with
conventional 2D techniques.

The fastest 3D data acquisition method is cone beam scanning instead of the
conventional fanbeam scanning. Initially, all X- ray sources generate conebeam rays. To
obtain fanbeam rays, most of the conebeam rays are screened off. A conebeam source

requires a 2D detector, see Figure 2. 6.

@ detector

Figure 2. 6 (a) Fanbeam scanner (b) Conebeam scanner

Exact reconstruction of 3D- volumes from the 2D-conebeam projection data is not a
straightforward matter, however. The conventional FBM for parallel or fanbeam

: projection data consisting of filtering of projection data followed by backprojection

10



along the projection rays. Attempts have been made to extend this method to conebeam
projection data. The result is a 3D-image volume with varying image quality from a
perfect reconstruction of the central slice to heavy artifacts in the parts illuminated at
large cone- angles. One reason for the bad image quality is rather fundamental. A
conebeam source moving circularly around the object cannot give sufficient projection
data for a perfect reconstruction. This is the problem of missing data. The projection
data can be made complete in various ways, for instance, by adding a vertical line
movement at source at right angle to the circular path. The exact mathematical solution

to the reconstruction problem of conebeam projection data was given in (Kudo and

Saito 1990, Grangeat 1991).
2.2. SPECT

Conventional CT images the attenuation of X- rays in an object slice. Emission CT,
on the other hand, images the distribution of a radioactive isotope inside an object slice.
One technique is called SPECT (Single Photon Emission Computed Tomography),
where one single gamma photon is emitted for each nuclear event. SPECT 1s well
described in the literature, see for example (Kok and Slaney 1987)

The data acquisition starts by depositing isotopes in the patient. The isotopes are
injected or inhaled in the form of radio- pharmaceutical. After some time these
- substances tend to aggregate and deposit themselves in specific organs and tissues. The
concentration of the isotope can then be imaged by measuring the gamma photons
originating from radioactive decay of the isotope.

As the concentration of the isotope changes with time not only due to radioactive
decay, but also because of flow and biochemical kinetics within the body, functional
_properties of the human body can also be measured. However, its important that the
time constant of these human functions is large enough to measure a sufficient number
- of gamma photons for computation of one 3D image.
~ The geometry of SPECT is shown in Figure 2.7. The radioactive isotopes have
‘migrated and accumulated in a specific area in the patient. Gamma photons are emitted
from the isotopes and are then detected by the y- camera. In the scintillator crystal the
gamma photons are converted to light photons, which are detected and magnified by

photomultipliers. In front of the y- camera is a collimator consisting of many parallel
11



tubes of lead. The lead tubes restricts the flight paths of the measured photons so that a
parallel projection of the patient is produced for each position of the camera as it moves
- inacircle around the patient. In principle, from these 2D projections, the reconstruction
can be done in the same way as for X- ray CT where object cross- section is
reconstructed from sets of line integrals, i. e. 1D projections. Since the v- camera is two

dimensional, as shown in Figure 2.7, it is possible to achieve a whole 3D volume of

image data after reconstruction.

tom e side OF
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emitting gamma
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Figure 2.7 SPECT geometry. (a) Cutting through the y- camera and the patient. (b) The y- camera
from above.

There are several difficulties with SPECT. One is the unwanted attenuation of
photons as they travel from the isotope source towards the detector. The attenuation
depends both upon the photon energy and the nature of the tissue. In Figure 2.8, photons
- originating from an isotope source at g; are further away from the detector then g
E'_photons, and would therefore be more attenuated. To compensate for the attenuation,

the reconstruction formula could be modified. However, this modification is neither
| straightforward nor simple and the compensation is not perfect.

Another source of error is also shown in Figure 2.8. Photons originating from a
source between two nonparallel lines /y and /3 , but outside the area between /;, and /,
may also detected by the detector. Seen as probe, the collimator loses its sharpness with
distance. Therefore the resolution becomes lower for points lying far away from the
detector.

Typically, the images obtained with SPECT have the 64 or 128. The rather low
image quality in comparison with X- ray CT images (see for example Figure 2.12) is

due to a lower number of detected photons per pixel. Unfortunately, for safety reasons
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the dosage of the radioactive isotope cannot be increased. A certain increase in signal-
- noise ratio (SNR) si obtained by using two or three cameras at the same time.

=
EETR A s cryml

collimator

cross-section
of the patient

isotope area
emitting
gamma
photons

Figure 2.8 Source artifacts in SPECT

If CT is filtered version of transversal tomography, by the same token
ectomography can be called the filtered version of circular classical tomography.
omography is a new technique which is on the verge of being introduced clinically.
It is preferably meant for measurements in the same area as SPECT, i.e. measurement of
radiation from an isotope inside the body. Figure 2.9 shows the geometry of an
ectomography scanner. Integrals of the slanted lines through the body are recorded by a
rotating device. For the reconstruction similar methods as in CT are used. Exact
reconstruction is not possible because of missing data. Even so, there are certain
ations when this can be tolerated and where the ectomograohy may be more suitable

traditional SPECT.

gure 2.9 Geometry of ectomography.
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© 2.3.PET

PET or Positron Emission Computed Tomography is another type emission CT. A
- PET image shows the concentration of positron emitting isotopes inside a cross- section
_ of the human body. As in SPECT, a radioactive isotope is distributed to the patient, but
 this isotope emits positrons rather than gamma photons.

The principle of PET is shown in Figure 2.10. A positron can exist in nature for just a
short time interval. It very soon interacts with an electron, which results in annihilation
- of their masses while two photons are created, each of them having an energy of
- S11lkeV and travelling in exact opposite directions. Note that the mass m of an electron

or positron is 9.1091*10' kg and due to

E=mc* =8.19*107“Ws =51 1keV (2.1)

 this is equivalent to the wavelength

l=%=8.09*10':]m 2.2)

ow (usually 10-25 ns) and the number of emission events must be kept rather low to
‘avoid false matches. When a match is confirmed, we know that the positron-emitting
tope was on the line (or strip) between the two reacting detectors. APET device
tains a lot of detectors, where many coincidence lines are possible at the same time.
In Figure 2.10, for example, a ring of detectors surrounding the body is indicated. The
ording events constitute line integrals of the isotope concentration within the body.
Hence, in principle, the reconstruction can then be done in same ways as for X-ray CT
Where an object cross- section 1s reconstructed from sets of line integrals, 1. e.

projections.
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There are two clear advantages of PET compared to SPECT. One is that no

collimators are needed. Collimation is done by nature itself and the time windowing.
Consequently, the photon efficiency is higher. The other advantage is easy attenuation
compensation, see Figure 2.10. From the source S (an annihilated positron- electron
pair) two gamma photons g; and g, are emitted and travelling towards the detectors D,
and D, respectively. The distance that g, travel in the body is xj- x; and the distance that
gtravel in the body is x>- xp. The photons g; and g are then attenuated with the

probability functions

section of coincidence
the patient testing
: —| circuit
isotope area
emitting
positrons

D;, detector

- Figure 2.10 The principle of the PET.
- exp[— fu ,u(x)d_x] and exp[— fﬂ(x)dx] , respectively,

where u(x) is the attenuation coefficient along the actual path in the body. The total

attenuation 1, is independent of the source position xy along the actual path since

., = exp[— E' ,u(x)dx}exp[ L y(x)dx]

F o &3
- exp - [ ot [ o | = exe| = [ (s

The attenuation factor for every line through the body can then be estimated and put

into the reconstruction formula. An elegant and exact way to estimate the attenuation
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factors is by means of a so-called transmission study, which is made with an initial step
in the PET examination. During this calibration event 511 keV gamma photons are
generated not by annihilated positrons but by a controllable a gamma ray- source.

Typically, the resolution of the images obtained with PET are the same as for the
SPECT, ie. 64, 128, or mavbe 256A disadvantage with PET is high cost. An
examination with PET requires isotopes, which usually have to be produced by a
cyclotron. The total system with both PET- camera and cyclotron is considerably more
expensive then a SPECT scanner.

The Linogram Method (LM) and other Direct Fourier Methods (DFM) may replace
the Filtered Backprojection Method (FBM) in SPECT and PET as well as in X- ray CT.
However, the LM and other DFM have their greatest computation advantage over the
FBM for large image sizes, since their complexity is O(N’logN) compared to the O(N°)-
complexity for FBM.

4. MRI

The images produced by MRI (Magnetic Resonance Imaging) are similar to those
produced by CT in the sense that they represent cross- sections of the human body. Here
 we will give a simplified description of MRI in term of classical physics as well
- simplified description of two reconstruction methods.

MRI is based on the fact that any atom with an odd number of nucleons (protons or
neutrons) has a magnetic moment, which is due to the spin of the nucleus. When the
- atom is placed in a strong magnetic field, the magnetic moment of the nucleus tends to
| line up with the field. The magnetic moment can then be perturbed by another rotating
- magnetic field. This causes the magnetic field to precess. After the perturbation, during
- the return to equilibrium state a radio frequency signal is emitted. This signal can be
measured and reconstruction methods can be applied to compute an image of the
precessing nuclei density distribution inside the object.

The totally dominating measured element is the hydrogen nucleus, consisting of one
single proton. Hydrogen is the abundant in the human body, in water, fat, and all
ganic substances. Thus simplistically, MRI normally measures the hydrogen density

in the human body.
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The magnetic moment is associated with an angular momentum. The magnetic

- moment m[Am:] and the angular momentum Z[Nms]are related as

3|
Il

=
I

(2.4)

where y[Am/Ns] is the gyro- magnetic ratio, a property of the material. When the

magnetic moment is placed in a strong magnetic field E it tends to line up with the

field. In classical physics, it is well known that a static magnetic field ,:5'_O acts an

angular momentum with a torque. The torque influences the angular momentum (and
therefore also the magnetic moment) to process like a gyroscope around the direction of

the static magnetic field.

It can be shown that the precessing frequency, called the Larmor frequency, is

- W, =B, (2.5)

where wy [rad/s] is the angular frequency, y [Am/Ns] is the gyro- magnetic ratio, and By
[N/Am]= [Vs/m’] is the static magnetic field.

In reality the topic is more complicated than we have indicated here. Among other
things, we know from quantum mechanics that the angular momentum of any system
': can only take certain discrete values. Here we have not taken the discreteness under
consideration. Fortunately, the classical theory will give the same result as the quantum
mechanic approach if small partial volume elements consisting of several nuclei are
regarded instead of individual nuclei.

The hydrogen nuclei can be excited by a rotating magnetic field generated by coils
around the object. The frequency of this rotating field must be equal to the Larmor
E-’ﬁ'equency wy to obtain resonance, otherwise the excitation will be negligible. In our

classical model the excitation causes the precession angle 0 to increase according to

';,9:?8;5, (2.6)
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where 7, is the duration of the rotating magnetic field pulse. Common values of Eare

- 0.1- 2T. This gives resonance frequencies wy in the radio frequency range of 3- 60
MHz. The excitation signal is often called “the radio frequency signal” because of this
frequency range.

If the static strong magnetic field (B_O) lies in the Z- direction and the rotating

~ magnetic field (B,) lies in the xy- plane, the total vector B is given by

§=B_0+B_]=BOE+Bl(£cosw0t+}'zsinw0t) 2.7

- where %, y,and Zare unit vectors.

After the time ¢, the excitation field B, is turned off. The precession of the nuclei
then undergoes FID (free induction decay) as they return to their equilibrium state.
Efi'Juring this process an electromagnetic signal at the Larmor frequency quzis

- emitted. This signal can be detected by the same coils that earlier produced the rotating
I:.magnetic field. The signal is proportional to the hydrogen nuclei density of the material.
| A hydrogen nucleus returns to its equilibrium state with the time constant T; known
“as the longitudinal or spin- lattice relaxation time. The transverse or spin- spin
relaxation time, T, determines the time for the individual magnetic moments to come
out of phase. There are also a third, more practical parameter T,  which includes T, as

well as local inhomogeneities of the static magnetic field. Because of physical

constraints the following relationship always holds

(2.8)

The FID signal is attenuated both according to the T; and T, time constants Some
values for T, and Tz‘ are 0.5s and 50 ms, respectively. Except for imaging the
nuclei density, imaging of the time constants T, and T, can provide useful images since
he relation T, /T, differs greatly between various tissues of the human body.

MRI is presently undergoing a very lively development. 2D images as well as whole

3D volumes with higher resolution and more sample points are produced. Other nuclei
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than the hydrogen area of great interest for the clinicians and are beginning to be
exploited. Not only the anatomy, but also the dynamic physiology of the human body
can be visualised by fast 3D- imaging. Various new contrast fluids used together with
MRI give images with new information.

In Figure 2.11, Figure 2.12, an MRI image data and a CT- image is shown to top to
- down, respectively. The CT image is a horizontal slice of the human head, which is the
- only practically viable orientation for CT cross- sections. The MRI technique is more
- flexible with regard to orientation and to produce the vertical slices in Figure 2.11,
~ Figure 2.12 is no problem whatsoever. MRI and CT images show different things. MRI
- shows (mainly) hydrogen nucleus density, while CT shows matter density. Bone matter,
for example, gives a large signal in CT. In Figure 2.12, the white material is the skull. In
. MRI, on the other hand, bone gives no signal. Consequently, the skull forms a black
' area between the grey skin and the grey brain in Figure 2.11.

e 2.12 Cross- sectional images of the human head, CT

Itrasound Imaging

:,Medical ultrasound has become an important and widely accepted means fro the
noninvasive imaging of the human body. Studies in the wide range of clinical settings
have shown it to be accurate and versatile technique yielding cross- sectional
omographic images, with little risk or discomfort and with reasonable resolution.
derhaps the most important features of this modality are, first, its ability to produce real-
images of moving structures and, second, its low cost. The first is essential for
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cardiac and fetal applications; the second imperative for the efficacious practice of
medicine.

All diagnostic ultrasound units now in routine clinical service are based on a simple
pulse- echo technique in which the backscattered signal from an interrogating
ultrasound pulse is detected as a function of time by the same transducer that served as a
source. By moving transducer over a body region or by using an arrav of such
transducers, a cross- sectional image (actually a mapping of echo intensities) can be
formed. All current ultrasound-imaging systems are based on envelope detection
methods and therefore only capable of displaying echo amplitude (i.e., intensity)
information. Although present ultrasound systems have been clinically quite successful,
they. actually utilize only a small portion of the information available in the echo
waveform. For example, phase information is recorded by the transducer, which is a
phase- sensitive device but is not utilized in present display or measurement schemes.
Other parameters such as the spectral characteristics of the echo waveform are also
easily obtained but are not utilized.

In many ways, ultrasound has been the poor stepchild of medical imaging: despite
technological enhancement and image improvement, today’s ultrasound systems have
essentially the same block diagram as those from the beginnings of the modality over 40
years. There are at least three reasons why ultrasound has remained in its “‘classical”
imaging stage and has not yet to utilize, at least on a clinical basis, the reconstruction
- formalism so much a part of contemoprary imaging and the unifying volume for this
- volume. First, and perhaps the most surprising, is the fact that data rates in ultrasound
~are higher than even present computer technology can handle. Since ultrascund
-_propagates through tissue fairly slowly each image contains a large number of
interactions. Retaining both the phase and amplitude information associated with the
‘echo waveform, the database associated with a single ultrasonogram can contain several
- megabytes of information. To record in real time and to process in near real time, a
sequence of such data sets poses significant computational demands.

A second reason ultrasound has remained at the classical imaging stage has to do
with the fact that the interaction between sound and tissue is an exceedingly complex
?_. ocess. Major factors that describe the propagation of ultrasound in tissue include the
I ensity, elasticity, sound velocity, specific acoustical impedance, absorption, scattering,

and the parameter of nonlinearity. In general these parameters are frequency and
20



temperature dependent and, are also a function of tissue type and pathological state. In
many cases rather subtle changes in pathology can significantly alter the propagation
- process. By contrast the propagation of X- rays in tissue is quite simple, determined
largely by the density of the material. Thus, in principle, an immense of information
could be extracted from an analysis of the interaction of sound with tissue. The problem
~ is sorting out what is in effect an overload of complex information in a realistic manner.
| Finally a third reason ultrasonic imaging has not developed further si related to our
lack of knowledge of fundamental interactive processes. Although our knowledge of
ultrasound physics and of the interaction of ultrasound with tissue has certainly
increased recently, our knowledge is still far from complete. Clearly, it is difficult to

‘engineer a medical imaging system without all of the basic physics first in place.



CHAPTER 3

COMPUTER ASSISTED CRANIOFACIAL SURGERY

3.1. Craniofacial Surgery

Craniofacial surgery involves permanently or temporarily removing part of the
craniofacial and skull bones to access deeper regions consists of operations on the soft
tissues and bones in the head and face. These operations are done primarily on children
born with abnormal shapes of the head and face. Sometimes such surgery is done in-
- patients suffering with tumors, injuries or other disorders. Reconstructive surgery is not
applied to children with birth deformities, but used to remove tumors, both benign and
malignant, that would otherwise not be accessible. These tumors usually begin in
sinuses, nose throat, eye sockets, or ears and grow toward the brain. A team of doctors
composed of head & neck surgeon, neurosurgeon, neuro- otologist, and reconstruction
surgeon share their expertise to facilitate the surgery and reconstruction.

Successful execution of a surgical operation necessitates knowledge of the relevant
anatomy, physiology, pathology, and wound healing, as well as the technical specifics
- of the intervention. Historically, this knowledge has been acquired through reading,
- didactic teaching, dissection room practicum, intraoperative observation, personal
: operative experience, and animal experimentation. Common problems with minimally
altered anatomy lend themselves well to this educational process. Rare conditions with
markedly aberrant anatomy are more problematic, craniofacial anomalies are such

conditions.

- 3.2. Surgical Simulation

Just like flight simulators are essential today in the education of aircraft pilots,
‘surgery simulators are expected to have an important impact on education of surgeons
in the future (Satava 1990).

Currently training of surgeons is either performed using animals, cadavers, or actual

human patients. But it is expected that these training methods will be restricted in the
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- future. Animal protection groups are pressuring the medical industry to restrict the use

~ of animals for experiments, cadavers are generally problematic, and the use of direct

training (under supervision) on human patients will probably increasingly be limited by

~ Insurance problems and patient scepticism (Nielsen 1997). In addition, the facilities
- necess~ry for training on animals are quite expensive.

Virtual reality techniques are, therefore, being developed to replace experimentation

- on live objects with simulated environments. In particular, the fields of craniofacial and

minimally invasive surgery have seen the development of some initial surgery

simulators.

| 3.3. Some Examples of Craniofacial Deformities

The most common reason for doing craniofacial surgery is to correct abnormal head
and face shapes, which certain children are born with or develop after birth. This is due
10 Craniosynostosis.

- In this disorder, a child presents with a characteristic deformity of the head, or head
u face. It is typically an intrauterine (inside the womb) event. This is probably due to
a misdirected message from a gene. It is not due to a defect in parents. Sometimes,

'stnatal (after birth) synostosis can occur as well. There are rare cases where this is

due to inborn errors of metabolism where the body chemicals affect bone growth

'_!'l ormally.
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In babies, the skull bone is not one large vault as we see in adults. Rather, there are
numerous bones (Figure 3.1). The places where these bones come together are called
“sutures." Any or all of the cranial sutures can close prematurely. This is called
craniosynostosis or just synostosis. It is accompanied by abnormalities of the facial
skeleton. There are rare cases where other parts of the body, particularly the limbs, are
affected, in addition.

In the past, these patients were socially ostracized and only reluctantly brought for
- freatment. Accordingly, such individuals led reclusive lives, with little ability to
function normally in society.

In Figure 3.2, the most common type of synostosis is shown. This is sagittal
synostosis, where the suture along the top of the head closes prematurely. It produces an

- abnormally shaped head termed scaphocephaly.

Figure 3.2

In Figure 3.3, the second most common disorder is shown. This occurs with one
- coronal suture fused (the suture that goes from left to right, just behind the hairline).

The disorder is called plagiocephaly.
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In Figure 3.4, trigonencephaly is shown. Here, the child is born with fusion of the

suture down the middle of the forehead.

- Figure 3.4

Fusion of one suture can be associated with mental retardation. Usually it is not,
however. Operations in these cases are done for cosmetic (appearance) purposes. When
'two or more sutures are involved, there is a definite danger of mental retardation.
'Surgery is recommended in the first few months of life. Sometimes there can also be a
condition called hydrocephalus. In this instance, extra fluid accumulates within the
“brain. This is due to an abnormality regarding circulation of this fluid and can be
associated with mental retardation.

Generally speaking, craniosynostosis is seen in one out of 2,000 births. Deforming
tumors and trauma are also quite common. In some cases, removal of a tumor will
change the shape of the head and face. This requires bone and soft tissue reconstruction.
In other instances, the same process can occur due to a traumatic event or injury. In
niosynostosis, skull growth is inhibited along the line of the fused suture. Growth
occurs parallel to the suture. The purpose of surgery is to open fused sutures. When the

face is involved, the skull base behind the eyes and nose have to be moved forward, as

inction, when abnormal bone growth has resulted in restriction of body function or

evelopment.



In recent years promising work has been done to develop simulation software, which
' can model the soft tissue changes, that are the result of changes in the underlying bone
structure of the patient. The simulators developed, are not realistic models of the
- surgery simulation, but rather software tools for modelling and planning surgery.

During surgery, parts of the craniofacial bones are separated from the remainder, and
rearranged like building blocks, by the surgeon. Naturally, extensive planning takes
place to determine the best procedure.

- This planning is usually performed using X- ray cephalometric techniques and
reconstructed CT images. Some craniofacial teams are using solid modelling software,
'i_-:rn most use manual ad- hoc methods during the planning phase.

- Treatment planning for complex craniofacial operations was initially based upon
maxillofacial trauma experience, study of museum skulls with anomalies, conventional
and polytomographic radiography, and large patient volume for a few surgeons. The
development of computer assisted medical imaging, CT and MR, has made specific
led craniofacial anatomy of affected individuals in vivo. Postprocessing of digital
acquired by CT or MR scanning (or both) into three dimensional surface or
volumetric reformatted images or life sized models has made quantitative preoperative
i gical planning possible. An accurate surgical “blueprint” can be generated from such
mages or models. Such blueprints are routinely used in many craniofacial centers (Lo
tal. 1994).

alization of the blueprint prior to patient’s operation is the objective of surgical
imulation. Computer graphics workstations provide the platform for preoperative
ation by testing the blueprint on the digital image database rather than the patient.
outcome of the alternative procedures can be predicted, allowing selection of the
e that seems to provide the best solution for the given patient. At times the selected
ocedure will be standard, and times it will be novel(Lo et al. 1994).

4.1. The Basis for Surgical Simulation

Preoperative planning for craniofacial surgery must encompass both functional and
sthetic considerations. Because many craniofacial operations are performed on infants
d children, growth must be considered as well. The craniofacial operation should not

correct the dysmorphology at hand but also set the foundation for normal future
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~growth if possible. Ideally then, computer- assisted surgical simulation should include
‘manipulation of both hard and soft tissues, prediction of the acute hard- and soft tissue
: outcomes, and prediction of surgical and growth- induced alterations of size and shape
‘over time. Currently, the skull can be easily manipulated electronically and satisfactory
‘accuracy is achieved. Althongh acute bone outcome prediction is quantitatively
'i'mccessful, soft tissue prediction is not. Long-term skeletal and soft tissue changes are
‘ot well simulated. Soft tissue outcome prediction and long- term temporal changes for
all tissues remain the focus of current researches.

Comprehensive documentation of aberrant anatomy and function, through a
‘multidisciplinary craniofacial team, precedes surgical simulation (Marsh and Vannier
1985). The surgical plan attempts, ideally, to normalize shape, symmetry, and
‘dimensions of hard and soft tissues. Implementation of the surgical plan upon the digital
database, rather than the patient, is surgical simulation (Lo et al. 1994).

- Surgical simulation as a process, consists of three phases: development, validation
and utilization (Figures 3.5 to 3.7). The developmental phase began in the mid 1980s
and can be expected to continue as new simulation technology becomes available.
uring development, there is minimal interaction between the clinical environment and
the imaging laboratory. During validation, surgical plans are simulated for patients who
have already undergone the operation being simulated. The surgeon provides the imager
with expert guidance, if the imager and the surgeon are not the same person, to fine-

. ¢ simulation until it coincides with the actual outcome. Although laboratory

simulation- for example, phantom or cadavers- is important for verification of
uantitative validity (Hildebolt et al. 1990), mn vivo verification must precede clinical

se. In vivo verification consists of application of the same operative blueprint to both

database and the patient (the patient is operated upon following “traditional”

omputer assisted and other types of preoperative planning). Quantitative comparison is

ade between the simulation and the actual preoperative result. In the early phase of

alidation, discrepancies between the simulated and actual operative result lead to

odifications of the simulation process. Once the simulation has been refined, the

icted and actual result will coincide. When this congruency occurs consistently, the

'5-5 ation process has been validated and can be used prospectively as the definitive

: \ofand guidance for the surgical plan.



Patient with craniofacial Anomaly

:

Craniofacial Team Evaluation

-

CT scan

E

2D & 3D CT Reformations

.

v Surgical Plan

Comparison of ¢

actual outcome plan ,
Operation

T !

Perioperative CT scan

-

Long Term Follow- up

Figure 3.5 The development phase of surgical simulation consists of preoperative CT scan images
th the conventionally derived preoperative plan. Familiarity with the congruencies and
sences between the two educates the planner(Lo et al. 1994).

Surgical simulation has been performed in two environments: digital graphics
orkstations and solid life- sized facsimiles. Although each environments has its
roponents, both environments will likely to continue to be used for some time owing to
lique capabilities of each. Digital graphics workstations allow the simulator unlimited
errogation of the database. Multiple simulation operations can be performed on the
me database without degradation or destruction of that database. The major cost is the
nulator’s time. In addition, the workstation allows combinations of hard and soft
sues and can accommodate differential deformations of soft tissues following
wlated surgery. The digital data format facilitates quantitative analysis of simulation
= tcome. Facsimile models are intuitively more natural to practicing surgeons, who
en prefer to handle objects in simulation- for example, orthognathic model surgery,

. they more closely resemble the real intraoperative experience. Structural

aflict might be more easily discerned in solid model simulation than in electronic
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Patient with craniofacial Anomaly

'

Craniofacial Team Evaluation

.

CT scan

.

2D & 3D CT Reformations

.

Surgical Plan

Modificatin of Simulation of
simulation to match surgical plan
actual outcome

.

Operation

T

Unsatisfactory C?mplarl_son of | ¢
correpondence simulation to Perioperative CT scan
actual outcome $

Long Term Follow- up

Satisfactory
correspon-
dence

Simulation
validated

igure 3.6 The validation phase of surgical simulation occurs after the operation has been
rformed. Archived preoperative CT digital data are reformatted for simulation of the operation.
1e simulated outcome is compared qualitatively and quantitatively with the actual outcome of the
-ation using archived preoperative CT data. The simulation is modified to maximize
ngruence between the simulation and the actual outcomes (Lo et al. 1994).

ulation. Rigid internal fixation plates can be prebent, or plates and other implants
n be uniquely fabricated prior to the operation using solid models, thereby
Ximizi g fit and minimizing intraoperative time. Destructive manipulation of models
cessitates production of a new replica for each unique trial. The time and cost of
del fabrication remains a limitation. Finally, models do not readily lend themselves

he quantitative comparisons necessary for simulation verification.



- 3.5. Previous Work

Without going into specific technical details this section reviews the important work
I}bn craniofacial surgery simulation.

. Early work using solid modelling technianes have been reported by (Yasuda et al.
3990), (Satoh et al. 1992), (Caponetti and Fanelli 1993), (Lo et al. 1994) and (Delingette
et al. 1994). Delingette et al. Used 2- simplex surface meshes (Delingette 1994) to
represent the surface of skull, and also reported on some preliminary experiments using
- simplex meshes as models of soft tissue between the 2- simplex meshes of the skull
and skin.

~ In his Ph.D. thesis Pieper (Pierper 1992, Pieper et al. 1992) presented work on a
somplete system for simulating plastic surgery. His system used a volumetric linear
tic finite element model for the skin, and showed validation results comparing real
plastic surgery results to predictions obtained using the system.

- Interesting work has been reported by Waters and Terzopoulos on facial animation
‘ aters 1987, Waters and Terzopoulos 1991, Terzopoulos and Waters 1991, Waters
1992, Terzopoulos and Waters 1993, Lee et al. 1993, Lee et al. 1995) in which they
e ated non- linear mass- spring models of the facial soft tissues. By adding muscles,
and modelling the muscle activity for general human expressions, they developed the
ibility to animate human expressions.

- Keeve et al. (Keeve et al. 1995a, Keeve et al. 1995b, Keeve et al. 1996a) have been

trongly influenced by this work. They developed a similar system in which they

ed individualized models from CT scans and added the ability to perform surgical

rocedures on the bone structures using interactive computer graphics. By moving

parated bone pieces and modelling the corresponding soft tissue deformation,

.f-:n an estimate of the resulting facial changes for the particular surgery. Some

_f__iﬁ'-.- ation results have been reported.

bt (Keeve et al.1995a, Keeve et al. 1995b, Keeve et al. 1996a) Keeve et al. Used the

spring models originally proposed by Waters and Terzopoulos with slight

odifications. In later work (Keeve et al. 1996b,Keeve et al. 1996¢) they have used

nite element models of the soft tissue.

A similar system for modelling facial expressions around the mouth has also been

veloped by (Tanaka et al. 1995).
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(Koch et al. 1996) have used commercially available tools to built a craniofacial
imulation system. In this system soft tissue changes are modelled using a 2D finite
element surface model of the skin. The skin model is connected to the skull using
ings with spring constants depending on the soft tissue type they span. The soft tissue
type 1s determined automatically by classification of the CT scan, which provides the
3D model of the patient.

_ Since only a surface model of the soft tissue is used, the work Keeve et al. Seems
"ss." convincing, although the calculation of the spring constants based on the gray
level values of the CT scan, is an interesting new idea. Unfortunately, it is questionable
ther sufficient information can be gathered from CT scans which normally
ptimized for bone visualization(Nielsen 1997).

In (Nielsen 1995, Nielsen and Cotin 1995) some preliminary work on craniofacial
simulation was reported by Nielsen. Using a volumetric elastic model proposed
ier by (Terzopoulos and Fleischer 1988) the deformation of the face of an individual

/as modelled for horizontal movement of the jaw.
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Figure 3.1 The utilization phase of surgical simulation uses preoperative simulation to test alternative procedures and to select the procedure to be executed.



CHAPTER 4

THE BASICS OF RECONSTRUCTION METHODS

Reconstruction Principles

- In CT there are two different problems. One is the acquisition of the projection data
the object slice using various devices such as X- ray tubes and detector arrays. The
other is the reconstruction of the image from the projection data.

The image or the object function f(x,y) to be reconstructed, is the distribution of X-
ay attenuation values inside a slice of the object. Ideally, an X- ray traversing the slice

along the line L with the original intensity /, emerges attenuated to the intensity I
ccording to

- - fepa
[=],e g (.1)

By taking the natural algorithm on both sides we can express the line integral along L

I
Sf(x,y)=In 70 42)

practice there are many important deviations from the ideal situation in (Eq.4.2)
'.ﬂlese deviations cause imperfections in the reconstructed images.

represent the line L by (7, §), where r is the distance from the origin and 6 is the
its normal and positive x- axis, then we can express all line integrals
5 2) as p(r, 6). In practice the CT scanner only supplies us with samples of p(7, §). If
ed, 0=0;, then p(r, @) represents a parallel projection of f{x,y) with the angle 0; as

yn in Figure 4.1

4
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The general problem can then be formulated as follows. Using a procedure R, a set

- of projections p(7, 6) are obtained from the object function ffx,y) i.e.

p(r.0)=[Rf)r.0) (4.3)

Figure 4.1 An object slice f{x,y) and one of its projections

- Given p(r, §), how can we obtain f{x,y)? Obviously we need is the inverse R~ of R.

econstruction is a problem of inversion. The procedure R~ should be applied
ccording to

L)) = [9‘1‘ 3 pkx, ¥) (4.4)

reconstruction methods and algorithms are implementations of R ™. They can be
vided in two main groups, transform algorithms and algebraic algorithms.

The transform methods solve the inversion problem by relying heavily on the
urier Slice Theorem. Examples of such algorithms are the Filtered Backprojection
od (FBM) and Direct Fourier Methods (DFM). The Linogram Method is also a

nsform method. Developments of these algorithms are rooted in multidimensional
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- signal processing. An excellent overview of transform methods is given in (Lewitt
1983).

- Algebraic methods are also called iterative methods. The solution is obtained from a
first very crude guess by changing it stepwise until its projections comply with the
iginal projections. The process may require several iterations. Although conceptually
‘much simpler than the transform methods, this approach is normally much more
‘computation intensive.

There are many situations where the input data are far from ideal. Some projection
a may be lacking or objects with high density may absorb all X- ray energy and hide
behind lying matter. Such things are rather disruptive for the image quality in transform
method reconstruction, but often tractable by algebraic methods. Facts known in
advance, such as object size and non- negative matter density may also be included in
algebraic methods to improve image quality. Let us also remark that reconstruction
sing a priori knowledge and/ or incomplete data borders on the discipline of image
restoration.

The Radon transform is thoroughly described in (Deans 1983, Toft 1996). The
B2 for the Radon transform of the 2D function f{x,y) is

,9)=[€Rf](r, 6) = [’; J:, f(x,9)5(xcos + ysin — r)dxdy 4.5)

ere the xcosd + ysin@ —r =0 defines a line through f{x,y) and § is the Dirac
pulse symbol. Thus the Radon transform [Rfkr,6) can be interpreted as the set of il
e tegrals of the function f{x,y).

[he inverse solution to the Radon transform was described by Johann Radon in

7. In (Deans 1983), the Radon inversion formula is presented as

I dp(r a)

[SR pkx y)--_r-[;xcosﬁﬂ-y:mé? rdrdg Sl
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This formula states that it is possible to obtain original function f{x,y) if all its
projections p(7, €) are known. A straightforward digital implementation of (Eq. 4.6) will

_encounter difficulties since the denominator is zero for r=xcos&+ysiné..

ine Integrals and Projections

P A projection is a set of line integrals. An example of physical phenomenon that
generates almost perfect line integrals is the attenuation of X- rays as they propagate
through biological tissue. Figure 4.1, shows a parallel projection. Figure 4.2 also shows
.parallcl projection, but with more detailed geometry and coordinate systems. Clearly;

I'-: allel projection is a set of parallel line integrals.

- A parallel projection for a special 6=0; is denoted p(7, 8). A set of projections, for all

ngles 0, is denoted p(r, §) and also known as the Radon transform of f{, y).

Pl " N

re 4.2 An object f{x,y) and one of its projections p(r,d).

(r,s) coordinate system is a rotated version of the (x,y) coordinate system as

‘€ssed by
; co-s g sinf 2 -
~|-sin@ cosd | y
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x| [cosé -—sind {:r:'
1y| |sin@ cos@ | s 2
The set of projections p(7, §) in (Eq. 4.3) can then be formulated as

(r,ﬂ) = [; f(r cosf —ssinf,rsinf + s cos 9)ds (4.9)

_(r,6) =[ £,(r.5)ds (4.10)

here f,(r,s) is a rotated version of f{x,y). By using the delta function we get

0(r,0)= [ [ f(x,)5(xcos0 + ysin 6 - r)dxdy (4.11)

'.:": Projection geometries. (a) The geometry for parallel projections. (b) The geometry for
am projections.

\nother type of projection geometry is known as fanbeam projection, see Figure

All modern commercial CT- scanners use fanbeam projection geometry.
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The term sinogram is often used in this thesis. A sinogram is the collection of
parallel projections of the object- disk taken at equidistant angles 0, see Figure 4.4. The
: domain of the sinogram, seen as a 2D-function p(7,6), is —R<r<R-7/2<6<x/2.
The projection is a map of the projection data, i.e. of the Radon transform. The
sinogram is cyclic in the 8- coordinate. The term was first used by Edholm (Def.) and is
- motivated by the fact that a point in the object gives rise to a sinusoid in the sinogram,

see Figure 4.5. The same point gives rise to a circle in the Radon space.

-2
sinogram, p(r6)

gure 4.5 A point in the object disk gives rise to a sinusoid in the sinogram.

3. The Fourier Slice Theorem

An important property of the Radon transform is its correspondence with the Fourier
nsform. A projection of an object is formed by combining a set of line integrals
the object. The simplest projection, a parallel projection [‘:Rf Kr,é'), Is a
ection of parallel line integrals, that is a set of ,,radon values along a line through the

in, as shown in Figure 4.6a.

4
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Theorem: The Fourier transform P(R, &) of a parallel projection p(7, 8, of an image
fix,y) taken at angle & is found in the two dimensional transform F(X,Y) on a line
- subtending the angle 61 with the X- axis.
The theorem states that the Fourier transform of p(7, &) gives the values of F(X,Y)
' along line AA in Figure 4.6a. An intuitive understanding of the projection slice theorem
may be given by the following, see Figure 4.7. Consider the values along the X- axis in
the Fourier domain, F(X,0). Here we find the zero frequencies in the y-direction from
Jx,y). But the zero frequencies in the y-direction can also be calculated by integrating in
this direction along projection rays orthogonal to the x- axis and then taking the 1D
Fourier transform in the x direction. And this is exactly what the projection slice
theorem states for a projection with the angle 6; =0. For symmetry reasons this
explanation can be applied to all lines through the origin F(X,Y) and the projection slice
theorem should hold for all 6.

Fourier transform

Spatial domain Fourier dcmain

Figure 4.6 The projection slice theorem illustrated.

- Mathematically the Fourier transform of p(7, 6) in r is given by

PRO)= [ p(r0)e ™ dr )
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- or, when inserting Eq. 4.9

Fourier transform &

Figure 4.7 A special case of the projection slice theorem.

P(R,0) = f [ f f(rcosf —ssiné,rsinf + scos S)ds]e"fz‘ﬂ’dr (4.13)

We change to the (X,y) coordinate system using r=xcos @+ysin6, x=rcos6- ssin6,

=rsin@+scos 6, and by replacing the area differential drds with dxdy. The result is

.’9)___[” ff(x,y)e—jlm?(,rcas€+ysin&)dxdy (4_14)

\ g) E [‘ [" f(x, y)e—jzxi(ﬂ cos #)x+(Rsin ﬂ)y]dxdy (4.15)

or any fixed value of 6, the right hand side of this equation now represents values
g a line through the origin of the two dimensional Fourier transform F(X.,Y) and
the angle 6 with the X- axis. The coordinate values along the line are

|=R(cosB.sin6). Thus we can rewrite Eq. 4.15 as
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P(R,0) = F(Rcos8,Rsinf) (4.16)

which proves the Fourier slice theorem.

Vlethod (FBM). The backprojection itself means that projection data are smeared back

f:‘-. g the lines of their origin as shown in Figure 4.8.

4.8 A filtered projection q(r.0; is smeared out (backprojected) over the reconstruction

’rojection followed by backprojection is an operation which causes some sort of low
filtering in the image, see Figure 4.9. Projection p(r, §) are taken of a point- shaped
ct as shown to the left. Then these projections are backprojected over the
ted image area as shown in Figure 4.9b. The whole procedure is repeated for
rent equidistant 0:s, not only for the four projections shown in Figure 4.9. We call
yriginal function f{x,y) and the result image fuu(x,y). Since the object is a single
1s easy to see that f3,, is not identical to f but to f convolved with the point

d function is //g, where ¢ is the distance from the original location of the point,

41



M (x.3) =1/c* f(x,y) (4.17)

The Fourier Transform of 1/¢ is 1/P so that

B (X.Y)=P-F(X,Y) (“.18)

- Thus, to compensate for the blurring filter 1/P inherent in the backprojection method,
we can multiply £, (X,Y)with P, the inverse order of 1/P. One possibility to

::";.;:-. onstruct F(X,Y) is then to perform

E(X.Y) =P F,, (X,Y) 9

he functions 1/¢, /P and P are shown in Figure 4.10.

bw(x-)’)

2D Fourier
Transform

4.9 A set of projections followed by a set of backprpjections causes some sort of low- pass
ring in the image. This is easy to see when the object consists of a single point.

Instead of doing the compensating filtering in the 2D Fourier domain as indicated by

4.19. we can get the same effect by filtering each projection with 1D ramp filter

:;j_i =(R (4.20)
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Spatial domain Fourier domain Fourier domain

._'ls'.; ure 4.10 Projection followed by backprojection causes low- pass filtering in the image. The
equivalent filter function is 1/c in the spatial domain or 1/P in the Fourier domain. To compensate
or the low- pass filtering we can multiply the image with P in the Fourier domain.

hown to the right in Figure 4.11. The reason is as follows. The backprojection in
e 49b is a straightforward summation. In the Fourier domain this is also a
ummation albeit now of slices through the origin shown in Figure 4.9c¢. It is this 2D

unction that according to Eq.4.19 should be multiplied with P. However, if we multiply
ach contribution (i.e. the individual slices) with H(R) = ‘R| , we will get an identical
sult.

-Alternatively, we can convolve each projection in the spatial domain with the inverse
ourier transform of H(R), the 1D function h(r). If we assume that H(R) is limited to the

al -W to W this convolution function is

b . % 1 ; 2 ¥
= —sinc| — |- —sinc’| — (4.21)
el r) 4T° 2T

ere T is the sampling interval (T=1/(2W)). The band- limited version of H(R) and the

esponding function /(7) are shown in Figure 4.11.

Spatial domain Fourier domain
0.4} H
h(r) ®R)
0.2¢
0
-W w
-0.2
-5 0 5 -1 0.5 0 0.5 1

€4.11 The band- limited version of the ramp- filter H(R)= |RI shown in both domains.
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Figure 4.12 An overview of the FBM.

Al) Take parallel projection around the object for a number of different equidistant angles Band
collect them in a so called sinogram p(r,0) (the Radon transform).
A2) Take the 1D Fourier transform of each projection to obtain P(R,0).

) Perform ramp- filtering according to: Q(R, 9}=1R| - P(R.9).

‘Ad) Take the 1D inverse Fourier transform in th e R- direction We now have filtered projections:
q(r, 9).

AS) Perform backprojection with each filtered projection q(r,0).

~ An overview of the FBM is shown in Figure 4.12. Note that the steps a2), a3), and

24) can be replaced by a convolution with A(7).

4.4.2. Formal Proof

- The 2- dimensional inverse Fourier transform of the object f{x,y) is given by

fey) = [ [ F(x,1)e> D dxdy (4.22)

e exchange the rectangular coordinate system in the Fourier domain (X,Y), to a

lar coordinate system (R,0) by making the substitutions.

"= Rcosfd

(4.23)

= Rsind i

ng dXdY = R-dRd6 we can now rewrite the formula as
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flxoy) = f f " F(Rcosf, Rsin@)e/™=<s0+r509 pup g (4.25)

The integral can be split into two for 0< 6 <7 and 0<(@+7x)<r, respectively.

The result is

f(x,y) = _[' f F(Rcos8,Rsin@)e’>™ =eost+ysnd) pipig 4+

% f f F(Rcos(8 + 1), Rsin(@ + rr))e >Rxcos@++ysin@-x) p yp 10

(4.26)
Rcos(6 + 7) =—Rcos 8 (4.27)
Rsin(6 + 7) = —Rsin 6 (4.28)
1e Eq.4.26 yields
(v, y) = f f F(Rcos @, Rsin §)e/ > =cos8+rs9 papdg +
+ f fF(—R cos 8,—R sin @)e >~ RHxcos0+ysind) p IR G =
E f [ J_" F(Rcos 8, Rsin @)|R|g 2= (xeos0+rsn? dRJd& (4.29)
ng r=x-cosé + y-sind, we get
V)= f [[’ F(Rcosé,Rsin 9)|R|ef2""’dRJd9 (4.30)
;-_f'f we utilize the projection slice theorem Eq.4.16 to obtain
y) = f[f P(R,€)|Rfe”’“"’dR}d9 (4.31)
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Inside out Eq.4.31 is the same recipe as was illustrated in Figure 4.12. the first

computation is taking Fourier transforms of the projections p(r, §) to obtain P(R,8). The

- second one is

50 that Eq.4.31 yields

., (x,y)= f[ [ o)’ m'dR}dﬁ’ (4.33)

~ After 1D inverse Fourier transforms, the remaining step is the backprojection

expressed by

fxy) = [ a(r,0)d0 (434

i

Eq. 4.7 we know that » = xcos@ + ysiné so that Eq.4.34 can be rewritten as

(%) = f q(xcos® + ysin®,0)do o

This is the backprojection operation. See Figure 4.13. For every point (x,y) in the
1age there corresponds one certain » = xcosé + ysinf in the projection g(7,6), 6 fix.
s ding to Eq.4.35 it is the value g(r, ) that should be accumulated to ffx,y). The
in the image that should receive the same contribution g(7,6) are all found on the
r=xcosf + ysing which is the line AA in Figure 4.13.

I.‘E the value of the filtered backprojection, g(7, 6),will make the same contribution
Il the points on the line AA. That is, in the reconstruction process, for every 6 the

red projection g(r, §) are smeared out or backprojected over the image plane.
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Figure 4.13 Backprojection takes place when, for a given 6, a filtered projection g(r, 8) is smeared
ut over the reconstruction plane along lines of constant r.

jBy insertion of Eq.4.9 in Eq.4.12 and 4.12 in 4.31, we get a fully unrolled formula
:'_"-‘- 4.36 for all steps in the FBM.

[L[ﬁ[fm f(rcos@ —ssin@,rsiné + scos 9)ds]e“' 2"“"’th]| Rleﬂ""’dk]dg (436)

Filtering after Backprojection

t is also possible to make the backprojection, i.e., the adjoint Radon transform
ore the filtering (Deans 1993, Jain 1989). In this case another filter must be used
11996). For any function g(x,)) the Radon transform is given by

= f f g(x*,y*)5(p—x*cos@ — y *sinf)dx *dy * (4.37)
ting g(x,y) using delta function, Eq.4.37 gives

)= [ [ g0 y"8(x-x8(y - y)dx* dy*= (4.38)

_l_: Lg(x"‘, y¥)0(p—x*cos@ — y*sinf)dx*dy* (4.39)
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Eq.4.39 shows that each point (x*y*) is transformed into a sine curve in the Radon
_ domain. The Radon transform of g(x,y) is the sum (integral) of all the sine curves in the
Radon domain. In the following the integrations over x* and y* are omitted. This can be

 done because only linear transforms are used. Now assume a point source is given and

the adjoint Radon transform is applied before a filtering.

8(x,y)=0(x - x*)5(y - y*) = (4.40)

8(p,0)=5(p—x*cos@ - y*sinb) (4.41)

$(x,y) = _[' &(xcos@ + ysin@,0)dé (4.42)

= : | (4.43)
- in@—(v—v* ’
|(x x*)sin@ — (y — y*)cos @ T O BN
1
= (4.44)
T sl
—(x — x*)sin arctan( - ] -(y- y*)cosarctan[ it J
y=y* y-y*
L 2 3
P 1
(4.45)
— x*)?
=) +(y—y*) \/(x*f ) + (-
y _
an be recognized that this is a two- dimensional convolution.
1
%Y)=g(x,y) **h(x, y) where h(x,y)= - (4.46)
; x*+y°

Jsing the technique shown in Eq.4.39 it can be seen that Eq.4.46 is valid for any
 g(x,y), Eq.4.46 thus enables another inversion scheme. A two- dimensional Fourier
form of Eq.4.46 gives

{

k) =Gk, k,)H (k. k,) = (4.47)
| MR YOSETERROON ERSTITIST]. 4
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G(kr ? k}' )

B k)=
(k..k,) Hik. k) (4.48)

From standard 2D Fourier transform table it can be found that

h(x,y)=-1—<—>H(k

This means that g(x,y) can be found as

8(x,y) = J:' &(xcos@ + ysin,0)do (4.50)

Glk,ok,) = [ [ 80xp)e " dxdy s

gey) = [ [ 2 +k2G(k, k,)e™ " dk dk, (4.52)

The reconstruction method presented is here called Filtering after Backprojection,
which makes use of integration succeeded by a two-dimensional high pass filtering.

This is an inversion algorithm very similar to Filtered Backprojection.

. The Direct Fourier Method

Direct Fourier Methods of tomographic reconstruction have been investigated since
¢ introduction of the technique in the early 1970’s, although computerized tomograms
mploy the Filtered Backprojection Method 4.4 as means of the reconstruction. The
ain difficulty with DFM is the required interpolation of radially sampled data to the
artesian grid in order to allow a 2D Fourier transform to be performed on the
equency plane data, and is at least part of the reason for the preference of FBM
3rantner et al. 1997).

‘A different approach is the Direct Fourier Method (DFM)(Shepp and Logan 1974,

ark et al. 1981), that is based on the projection theorem for Fourier transforms. This
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theorem is known as the Fourier Slice Theorem (4.3), and relates the line integrals of a
physical property to the 2D Fourier transform (FT) of the desired image. The major
computational burden of this approach then becomes the FT. However, this can be
- achieved by exploiting the Fast Fourier Transform (FFT) algorithm, reducing the
- required computational time for 2D transforms.

The Fourier slice theorem demonstrates that the 2D FT of the desired image can be
- obtained by resampling a set of 1D FTs of the projection data. Fourier inversion of the
2D array yields the reconstruction. The resampling step is basically a coordinate
fransformation from the polar to the Cartesian grid in order to be able to apply a discrete
 Fourier transform.

| This resampling step is quite difficult, and its accuracy is the crucial point of the
' DFM to improve reconstruction quality. There are several simple interpolation
techniques, such as the nearest neighbour interpolation (NNB) and 2D linear
interpolation, the bilinear interpolation (BI).

More sophisticated interpolation techniques evaluate each point in the complex
frequency domain from many neighbouring samples, but are correspondingly more
‘computationally intensive.(Brantner et al. 1997) Several different solutions have been
suggested in recent publications that involve quite complex interpolation techniques.
For example, Belleon and Lanzavecchia (Bellon and Lanzavecchia 1995) introduced a
_-..' technique, the ‘moving window Shannon reconstruction’ (MWSR). This method
a high number of coefficients to resample a single complex point of the 2D
ransform, i.e. each point is reconstructed from all samples encompassed by a window
moving along the sampling interval. Matej and Bajla( Matej and Bajla 1990) suggested
 .==- ‘hybrid spline- linear interpolation’ (SPLI) which calculates, as a first step, de
oo’ s cubic spline interpolation in the radial direction; as a second step linear
nierpolation is performed in the angular direction. SPLI uses just four points to
ate the value of the desired point unlike MWSR.

A summary of DFM is shown in Figure 4.14, where the projections are stored
amediately in the Radon space. This is quite natural because of the symmetrical

lation between Radon and Fourier spaces as expressed in the Fourier Slice Theorem.
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Figure 4.14 An overview of the DFM

B1) Take parallel projections p(r,6) around the object f(x,y) for a number of different equidistant
angles . Put them intermediately in the Radon space.

B2) Take one 2D FFTs along the projection direction to arrive in F(X,Y) , the 2D Fourier transform
of object.

B3) Do 2D interpolation in the (X,Y)- space to obtain values on a square grid.
B4) Perform 2D IFFT to receive the reconstructed image.

4.7. The Linogram Method

The linogram method can be considered to be a direct Fourier method, which uses
linogram sampling instead of sinogram sampling in the Radon and Fourier spaces. For

Jetails on the linogram sampling see (Magnusson 1993).

In the case of linogram sampling the distance of d along projection varies with 0 as

d(0°)cos® —45°<H<45°
0)= (4.53)
d(0°)sind 45°<@0<135°

2 d(0°) is the sampling distance for the 0° projection and can be chosen to be the
mpling interval in the sinogram case. In practise, this means that for all projection
gles —45° <0 <45° —45° < <45° the linear detector array lies fixed along the x-
s (Figure 4.15a) and for all projection 45° <@ <135°the detector orientation is fixed
y- axis (Figure 4.15). This may be compared with sinogram sampling where the

allel projection data always are collected with a detector perpendicular to the ray
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Figure 4.15 a) The detector orientation is fixed along the x- axis for all projections

-45° <9 <45°.

b) The detector orientation is fixed along the y- axis for all projections 45° <4 <135°
¢) An object point contributes to linogram data points along a line in both linograms.

The angular increment A6 is not constant as in the sinogram case, instead

equidistance

JAtang=2/N -45°<0<45° 0
~Acotf=2/N 45°<6<135° ’

The projection data organized in a Cartesian space is called a linogram. A linogram
be divided into two linograms with axis (p/d(6),tan@),(p/d(6),—cotl),
respectively. A specific point (x;,y;) contributes the Radon data along a line, hence the
name linogram. (See Figure 4.15c¢)

Figure 4.16 attempts to visualize the difference between sinogram and linogram
sampling. We note that the sinogram sampling produces on concentric circles in the
- on space (Figure 4.16), while the linogram samples are located on concentric sets of
four semicircles (Figure 4.16).

The virtue of linogram projections comes forward in the Fourier domain. While the

dially applied Fourier transform on each sinogram projection produces an identical

of concentric circles in the Fourier space (Figure 4.16), the linogram projections

juce Fourier data in the form of concentric squares (Figure 4.16). Sampling along

ncentric squares in the Fourier domain was first proposed by (Mersereau 1973,
ereau 1976).
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Figure 4.16 a) Sinogram sampling of the Radon space. b) The Fourier space corresponding to

sinogram sampling. ¢) Linogram sampling of the Radon space. d) The Fourier space corresponding
to linogram sampling.

Along each vertical or horizontal segment of such a square we find equidistantant
amples of Fourier data. Likewise the sampling distance D(6)is constant along every

adial line. However as a direct consequence of (Eq.4.53) the sampling distance varies

over 6 as

d(0°)/cos@ —45°<@0<45°
(6) = i (4.55)
: d(0°)/sin@ 45° <@ <135°

We use to refer to the Fourier space with the sample pattern of concentric squares as
: Fourier square. The inverse square is the corresponding pattern in the Radon space
sisting of four semicircles. The radial sampling distances in two spaces are inversely
portional.

Reconstruction by the direct Fourier method requires resampling in the Fourier
e. Resampling from sinogram data (Figure 4.16) to a rectilinear grid requires 2D

rpolation. Resampling from linogram data (Figure 4.16) on the other hand requires
1D interpolation.
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Figure 4.17describes the complete linogram method. The projection data is divided
in two linograms. The first one consists of the projections —45° <@ <45%and the

second one consists of projections 45° <9 <135°.

Fourier space Filtered Fourer space
v
Yy 5 -
gﬁ ' = : ‘ : =
Hg(R) = IRI
Filtering with the
ramp filter
o
a=
33
L= x
Horizontal inverse 2=
Yy chirp z-transform 3 =
5 pEimen SR
—ts v 3R
Vertical inverse by
Fourier transform  § 3% 2
<o - - S
- TN
- . - a
. - & - 4
x .« s 9 = ?
Reconstructed = Horizontal inverse G
object s e ¢ y Fourier transform P e §
> < +> -«
? - - XN FE

1D Fourter space

igure 4.17 The linogram method.

~ With radial Fourier transforms of the projections in both linograms, we arrive to the
ourier space of the object. Due to the linogram sampling the data are sampled along
ncentric squares in the Fourier domain (i.e. if the two linograms are put together)

ead of interpolation the basic linogram method employs the chirp-z transform.
scribed by (Rabiner et al. 1969). The inverse chirp-z transform computes the 1D
erse Fourier transform exactly in the required sample points. Therefore, and in spite
being a rightfully classified direct Fourier method, the basic linogram reconstruction
In fact performed without any interpolation at all.

the inverse chirp- z transform all data points are weighted equally, which results in
pass filtering of the image, i.e. the lower frequencies are over represented. This is

’-:-;_:. easy to understand, as the sample pattern becomes denser towards the origin



(Figure 4.16d). to compensate this low- pass filtering, ramp filtering is applied in the
Fourier domain.

The inverse chirp- z transform is computed the 1D inverse Fourier transforms in one
direction. To arrive in the spatial domain we apply another inverse Fourier transform,
perpendicular to the one performed with the inverse chirp-z transform. The linogram
method requires 2N detector values in each projection to reach out the corners of the
square to be reconstructed. Garbage from the ramp filtering is obtained in the signal

- domain outside the reconstructed square, as illustrated in Figure 4.17. This garbage is
 truncated.

Since the Radon data weer divided into two linograms, each linogram delivers a
reconstructed image obtained from half of the projections. The final step in the linogram

‘method adds the two parts.

;__ Reconstruction Algorithms based on Linear Algebra

Inversion of Radon transform need not be based on the direct inverse formulas. A
different class of reconstruction schemes is based on linear algebra (Censor 1993, Deans
1983, Older and Johns 1993). This section presents the linear algebra based

feconstruction theory.

1.8.1. From the Radon Transform to Linear Algebra based Reconstruction

' The Radon transform is a linear transform, with respect to the function g(x,y), and so
s the discrete versions of the Radon transform, hence instead of considering the integral

rsion of the Radon transform operators a matrix representation can be used.

(0.6)=Rg(x, )
| (4.56)
A  x
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Assume a discrete set of values for the Radon transform g(p,,6,)=g,(r,7), and a

given sampling of wanted image g(x,,y,) =g, (m,n) used for the reconstruction. If the

matrix g(r,t) is rearranged into a vector, e.g.,
b =b,r,, =&(r,1) (4.57)

- and same technique is applied to the image, e.g.,

X =X,p.m = 8(m,n) (4.58)

then using a series expansion shown in Eq.4.60 the Radon transform can be rewritten in
the form shown in Eq.4.66. The vector dimensions are / = RT and J = MN, thus the
transformation matrix A have RTMN elements, and will be large.

26)=Y 3 gmmb(x-x,,y-v,)= (4.59)
; (r,1)= E fr (Zm Zﬂ gmn)p(x-x,,y-y, ))J(pr —xcos@, —ysinf,)dxdy (4.60)

:Zm Zn g(m,n)Eo £¢(x -x,,y—y,)0(p, —xcos@, — ysinb,)dxdy (4.61)

lence the matrix elements of the system matrix can be calculated as

) = 07t st -m (4.62)
R - fw L p(x-x,,y-y,)0(p, —xcosb, — ysinf,)dxdy (4.63)
= ‘[:, _[; P(x,y)0((p, —x,, cos, —y, sinf,) —xcos @, — ysin b, )dxdy (4.69)
| | =4(p, - x, cos, =y, sin6,,0,) .(4.65)

here the function #(e) is the expansion function in the image domain specifying how
s pixel at (x,,y,) models the image domain with the continuous positions
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(x,y).Eq.4.65 shows that the matrix element is the Radon transform of the expansion
function, where the p parameter has been shifted according to the pixel position.
Alternatives to the image pixel driven generation of matrix elements can be found in
(Lewitt 1992).

The methods to be presented all rely on a linear dependence between two vectors; the
known I- dimensional vector b (/=RT), containing the sinogram, and the unknown J-
dimensional vector x (J=M). For tomography the vector b will contain the sinogram
~ values wrapped into a vector using Eq.4.57, and x is the set of reconstructed pixels in

the image formed as a vector using Eq.4.58.

Now the reconstruction problem will be written in a matrix vector formulation.
b= Ax (4.66)

where 4<IR"is called the system matrix containing the weight factors between each

of the image pixels and each of the line orientations from the sinogram, as illustrated in

Figure 4.18.

/ Lineirdexi

|
“‘;Ff\
B
/

Z T-Image pixel

' j

e 4.18 The matrix element a;; can be considered as the weight factor between a certain
value numbered by i and the image pixel j.

.. Compared to the Radon based direct reconstruction methods, several new
bilities and problems arise.
Linear algebra is very strongly supported in mathematics, and the formalism can be
used for both 2D and 3D reconstruction.
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* An irregular scanner geometry with, e.g., limited line orientation is very bad for
direct reconstruction methods, and with linear algebra approach, problems with
missing data in the sinogram can easily be incorporated into the matrix formalism.

* A finite, i.e., non- zero detector size can be modelled into the system, hence the
model need no be based on a ray approximation, and varying detector sensibility can
in principle be modelled into the system of equations, hence better modelling of the
physical scanner setup is possible.

* The system matrix A is in general not quadratic (/ #.), which limit the number of

techniques applicable if not forming the normal equations, which will be shown in
Eq.4.70.

® The system matrix A will be (near) singular, i.e., have very small singular values,
1.e., that reconstruction written in the linear algebra formalism is an ill- conditioned
problem. Some of the image values can be under determined and others very over
determined due to the uneven coverage of the projections (sinogram lines) in the
image domain. This problem must then be controlled with constraints and/ or
regularization.

e It turns out that A does not have a simple structure, hence the inversion of A have to
use rather slow methods. The reason that A does not have a simple structure is partly
due to easy sorting schemes shown in Eq.4.57 and 4.58. Another reason is that line
parameters (p, §) does not have a very simple relation to the image coordinates (x,y).

¢ The matrix A is normally very large, thus calculation of a generalized inverse of A is

extremely costly both in time and memory.

The system matrix will be sparse due to the fact that only approximately M of the

M*M image pixels adds weight to a certain bin in the sinogram.

Calculation of Matrix Elements

- The matrix A can be estimated in several ways. One very common approach is to use
a nearest neighbour approximation. But a first order approximation better interpolation

can also be used. As mentioned previous, the alternative methods can be found in
Lewitt 1992).



Even though that some of the following interpolation schemes are very simple, they
can be attractive if they can be computed fast, due to the fact that the large matrices
normally are not stored in memory but calculated many times in the iterative

reconstruction schemes and a good interpolation scheme takes longer time compared to
the coarse interpolation schemes.

4.8.2.1. Pixel Oriented Nearest Neighbour Approximation

Around each pixel (x,,y,)is placed a square Ax*Ax wide. If the line with
parameters (o, ,0,) crosses the square then the matrix element a; is set to Ax, and else to

0. From Figure 4.19 it is easy to see that the test criterion can written as

p'=p, —x,cosf, —y, sinb, (4.67)

lp‘cos 6,|< —t—l_-)x—and|p‘sin 6, < % -7, T

(4.68)

Note that the index »7T + ¢ can easily be inverted to give r and ¢ using truncation to
lower integer and the modulus operator, and likewise with the index nM +m. This is
relevant when generating the matrix, e.g., column-wise or row-wise. Often the matrix

elements are set to 1 in case of the line crosses the pixel (Censor 1993) and zero

otherwise. This will imply a general scaling of the solution x.

\(P,_. )

T AZX
P, A
.
Xm

ure 4.19 The line with index i, corresponding to (0, ,8,), crosses the square pixel centered at

sV n ) p
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4.8.2.2. Discrete Radon Transform

Another interpolation scheme is to use the discrete Radon transform to approximate
the forward matrix multiplication. This can be done using Algorithm 4.1(Toft 1996),
either once (requires storage of the system matrix) or every times it is needed. If
multiplication with the transpose of the matrix is needed, then the discrete

backprojection operator (multiplied with a factor of two) can be used, cf. Eq.4.72 and
Algorithm 4.3(Toft 1996).

4.8.2.3. The Sinc Interpolation Strategy

Another approach i1s to use the Eq.4.69, which is based on sinc interpolation
-scheme(Toft 1996).

Ax 1 1
b : p———- min4 —— , ———— y
(ps 9! rm ) yn ) W Sln({{/ ln{ [sin 9! ] JCOS 6" }) (4 69)

This expression gives the elements of A.

= —sin( min . ) (4.70)
Lorar s om ” v jsin 9‘ ’ ‘cos 9' :
y/:—ﬂ- (p, —x, cos@, —y, siné,) (4.71)
r m i - n 4

- Note that this way of generating the matrix implies that some of the matrix elements
ill be negative, which definitely is bad from a physical point of view. Assuming that
only one pixel is non- zero in the image, then negative counts will be measured for
ome line orientations. Nevertheless Eq.4.70 represent a better interpolation from a
ignal processing point of view. Another drawback is that it is very costly to generate

he matrix in this way compared to the other methods.
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4.4.3. Dualitv Between Matrix Operations and the Radon Transform

Using the Radon transform scheme along with the matrsx formalism as shown in
Eq.4.66 implies ordinary matrix operations have equivalent Radan transform operations.

Eq.4.66 is the Radon transform of discrete image g(m,n) into the full discrete parameter
- domain g(7,2).

b= Ax <> Radon Transform of full size parameter domain 4.72)

Iterative algorithms such as ART, use the scalar product between row number : of 4,

1e., a; and the current reconstructed image x, i.e., a; x, which is the Radon transform of

the image x into one specific sample in the parameter domain.

b, =a/ x <> Radon transform of one sample in the parameter domain (4.73)

Another common operator in iterative algorithms is the transpose of matrix. The

operation X = A"b is the backprojected discrete parameter domain into the image

domain.

X=A4"b & Adjoint Radon transform of the sinogram into the image domain (4.74)

This fact is often not recognized in the literature, but it is a direct consequence from
he matrix formalism. The transpose of a matrix (without complex values) is an adjoint
erator, and in this case, the adjoint Radon transform is two times the backprojection
perator, cf. Page 134 of (Deans 1983), and it is equivalent to the transpose of matrix,
£ Eq.4.35.

~ One well-known approach to solve set of equations with a non- square system matrix

to form normal equations.

b =(4" A)x 4.75)
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An interesting analysis is shown in (Kawata and Nalciogln 1985) is that to the normal

~ equations

x=(A"A)"'A4"b (4.76)
can be interpreted in formalism of the direct reconstruction methods. The matrix A

represent the backprojection operator, cf. Eq.4.74, and then (474)" represents the filter
- in Eq.4.52. Likewise can it be shown that Filtered Backprojection can interpreted from
- Eq.4.74 if assuming full rank of A

x=(474)" A7b 4.77)
=(ATA) " AT (AAT)(A44T) ' (4.78)
=(ATA)"' (AT 4)AT(447)' b (4.79)
=A7(447 )" b (4.80)

where (447)" represents the filter in Eq.4.36 and A" (again) represents the
backprojection operator. Note that the assumption of full rank is not quite valid, due to

he problems, such as zero frequency problem.

44.4. Iterative Reconstruction using Algebraic Reconstruction Technique (ART)

A well- known way to solve the Eq.4.69 is named ART, which stands for Algebraic
Reconstruction Technique. Many articles, (Censor 1983, Herman and Mayer 1993, Jain
989) demonstrate the algorithm. ART was published in the biomedical literature in
970, and Cormack and Hounsfield used ART for reconstructing the very first
ymography images. They probably did not know the work of Johann Radon at that
and later it was discovered that ART is a reinvention of the algorithm introduced
in back in 1937.

The Basic operator required in ART is the scalar product between to certain row i of

2 system matrix, @ and a solution vector X
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(4.81)
=

ART is formulated as an iterative reconstruction algorithm, where the solution vector

In iteration & is updated by adding a scaled version of i of the system matrix.

b <a x®
| J:(&:4-[) =x(k) + i Tr ai (4.82)
a.a

[ St |

The main idea of ART is that the equation i is fulfilled in iteration &, which is easily
shown:

k-1)
b, —alx!
:"x{k 1) + i i T

T
i T ity &l i (4.83)
a; a;

i _

X a

| a
If using the Radon transformation terminology, then ART will modify the

Teconstructed image in iteration &, in order to give correct Radon transform at (p,,6,),

where (7,1) is found from the sinogram sorting scheme shown in Eq.4.60. In this way,
the reconstruction quality of ART in a given area can be altered by choosing that i
matches the lines passing through an interesting area frequently.

Often (Jain 1989) i is a function of & is chosen to i=k MOD I, where MOD is the
modulus operator, but this choice is not very good (Herman and Mayer 1993). Another
common and easy strategy is to choose i randomly using a uniform probability
density function. Initially x” can be chosen to zero or some good guess on the solution,
.g., in 2D from a fast algorithm like one based on Fourier slice theorem. Yet another
frategy is to initialize all solution values with a constant.

' The ART algorithm can also be interpreted from a geometrical point of view. Figure
20 shows the use of ART in a two-parameter estimation problem with two projééﬁon i
-» As shown in Eq.4.83 the current solution in iteration %, i.e., ™ s projected

endicularly (along the direction of a/) onto the hyperplane (in this case a line)
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determined by b,,, =a; x'*'. As seen from Figure 4.20 the speed of convergence is very

dependent on the angle between the hyperplanes.

p =X, ==

Figure 4.20 The different cases of iteration in a two parameter problem using ART. Depending on
the orthogonality of hyperlines (here lines) the convergence can be slow (left most figure) or fast
(right most figure)(Toft 1996).

Note that ART in each iteration only requires the scalar product between a; and the
current solution x ¥ | which can be compared to calculating one value in the parameter
‘domain using discrete Radon transform, hence each iteration is very fast but the quality
enhancement gained from one iteration is in general very limited. Often when
comparing ART to other iterative algorithms that requires computation of a full discrete

parameter domain, the iteration number used for ART is a full loop through all 7 rows,

1., ] times the actual number of iterations in ART.

A common alteration of ART is to introduce a relaxation parameter in form of a

‘weight factor as shown in Eq.4.84

a; (4.84)

where 4, can be set as a simple function of &, such as a linear function or a exponential
ay. Even given the result Eq.4.83 it has experimentally been proven (Herman 1980),
that setting 4, to values different from one can improve the speed of convergence. It
should be noted that the optimum value of A is a function of %, the sinogram values, and
the sampling parameters of the reconstructed image. In (Herman and Mayer 1993) it is
hown that optimizing the value of A4 in each iteration and careful selection of row
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index  as a function of & results in a reconstructed image quality as good as using the
EM-algorithm, at a order of magnitude less computational cost (The EM-algorithm is
presented in Section 4.8.5).

In the literature, authors have optimized ART and/or EM, and for some years it was
- not clear whether the one was better than the other. Now it seems as if ART is loosing
popularity compared to EM for 2D reconstruction, but for 3D reconstruction it is still
known as a good reconstruction technique.

As shown in Algorithms 4.1 and 4.2 ART is very easy to implement. Only a scaler
product is really needed. In the algorithm the matrix elements are used over and over
‘again, and note for a huge problem which cannot be stored in memory all at one time

‘each matrix element has be calculated in a function like it was shown in Section 4.8.2.

In Algorithm 4.1 the denominator values a” a. are computed once as a function of i. The
: g ; a; p

Ieason for showing two algorithms is that the first part can be computed once, and if
several sinograms with the same geometry should be reconstructed, then it is only

‘Algorithm 4.2 which should be used several times.

ORITEM 4.1 INITIALIZATION OF THE ART ALGORITHM

for i=0 to I-1 //For all values of I
sum=0 //Calculate the denominator

For j=0 to J-1 //For all values of j
- sum=sum+a (i,j) *a(i,]) //Accumulate value

- End

Anorm (i) =sum //Store denominator

End
For j=0 to J-1 //For all values of j

x(j)=c //Initialize with a constant
._:.'."

GORITHM 4.2 THE ART ALGORITHM

' 0 to K-1 //For K iteration of ART

Set i as a function of k //Choose row index in iteration k
S //Initialize scalar product

For j=0 to J-1 //For all values of J

Sum=sum+a (1i,3) *x(J) //Update scalar product

w=lambda (k) * (b (i) -sum) /anorm (i) //Calculate common weight
For j=0 to J-1 //For all values of J
x(j)=x(]j) +w*a(i,]) //Project solution




4.8.4.1 ART with Constraints

It is not guaranteed that ART will provide a non-negative solution, as required by the
physical meaning of the solution; in PET emission activity and in CT absorption
coefficient. There is a crude, but very easily implemented strategy is to restrict the
solution after some iterations from a upper limit estimate on the solution in each pixel
(Toft 1996), i.e., vector element or maybe just using a upper limit constant in each
iteration. A non-negativity constraint can be imposed as shown in Algorithm 4.3, where

the initialization part shown in Algorithm 4.1 has been removed. Other constraining

schemes for ART can be found in (Censor 1993).

~ ALGORITHM 4.3 THE ART ALGORITHM WITH CONSTRAINTS

For k=0 to K-1

Set i as a function of k
sum=0

For j=0 to J-1
sum=sum+a (i, 3) *x(3)

End

w=lambda (k) * (b (i) -sum) /anorm(i) //Calculate common weight

For j=0 to J-1 //For all values of j

x(3)=x(3)+w*a (i, ]) //Project solution
End

If k MOD kc=0
For j=0 to J-1

//For k iterations of ART
//Choose row index in iteration k
//Initialize scalar product

//For all values of j

//Update scalar preoduct

//Every kc iterations use constraints
//For all values of j

If x(j)<0 //Negative solution is found
x(j)=0 //which is set to zero
End

If x(j)>Maxx(]j)

//Too large solution is found
x(j) =Maxx(3)

//which is set to max limit

.8.4.2 Initialization

Using iterative algorithms also implies that the solution vector x should be initialized
ith a constant value or a good start guess, which need not be a constant. One
ssibility is to use fast direct algorithms, such as Fourier Slice based methods, for
- cing a start guess. If the start guess is good the iterative algorithms in general will
verge faster, but it also implies that the behavior of the algorithm will be biased by

ect method. Another very common starting guess is to initialize the solution with
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a constant. For the ART algorithm no restrictions are made concerning the initial value,
but for other iterative algorithms such as EM the initial value has to be positive.

Assuming that the solution is a constant, then by averaging in Eq.4.69 the value should
be

(4.85)

This initialization requires that the system matrix is computed an additional time or
can be combined with the first part of Algorithm 4.1. A faster scheme is to use the
- approximation that for a certain value of i a line approximately crosses M pixels each

with a value of approximately Ax, hence

1 I
o=~ IMAx S - 3
ZZ“ =X, IMAx; i V] (4.85)

'44.5. The EM Algorithm

So far the reconstruction methods have modelled the projections as line integrals,
which was reconstructed by use of discretization of the inverse Radon transform.
Especially in emission tomography with limited counts in each sinogram bin, the
statistical noise can dominate the reconstructed images when using direct reconstruction
methods. This lead many scientists to consider statistical approaches to derive
reconstruction algorithms.One of the most prominent iterative reconstruction methods is
Maximum Likelihood Reconstruction using the EM algorithm, which stands for
': pectation Maximization. In the very famous articles (Shepp and Krustal 1978) by
Shepp and Vardi and (Shepp et al. 1985) by Vardi, Shepp, and Kaufman a statistical
framework for reconstruction is given. It is assumed that the measurements originate

from uncorrelated Poisson generators, which ideally model the underlying physics, but
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problems like attenuation correction are not modelled in this framework. Another
feature of the EM-algorithm is that the model includes a non-negativity constraint.
The key idea of the EM- algorithm is to maximize the Likelihood

L(x) = P(b|x) = ]-J]:M_e—b,-.

(4.86)
L

where b* contains the unknown mean values of b, i.e., the true sinogram without noise,

and it is assumed that b * fit the solution perfectly

b*= Ax (4.87)

where the coefficients of the system matrix are considered as transition probabilities

normmalized as

=> a (4.88)

n PET meaning that a photon pair at detector pair 7 originates from one of the regions in
he brain (pixels in the image) with the probability of one.
- Now the expectation of the Likelihood is maximized from the log Likelihood /(x) by

etting the derivatives of /(x) to zero

_Z!:a‘_‘j+zf:_._;i‘.{@_=_1+z;&=0 (4.89)

=0 Vj where x;>0 (4.90)
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ol
-a-ii) <0 V) where x;=0 (4.91)
j

where the first equation is used to formulate an iterative mapping scheme

[ . i.j0i
0=x.a(x)=xj —1+Z-—-—-—"— = (4.92)

a[._jb,-
J

(k1)
3 e @i Xj

I
g5 _ _(k-1)
= (4.93)

i=1

This equation is very often found in statistical reconstruction literature, but it should
be noted that it requires that the elements of the system matrix is properly normalized.
ere another version of the EM algorithm proposed in (Carson and Lange 1985), and
found to give very good results is used. It does not require the assumption shown in

Eq.4.88, and works fine with the normalization used in Section 4.8.2.

!
ijY
4.94
Z J (k-1) [ 3 )

= 4+ (4.95)
. bi‘ (4 96)
D £
b_ 4T e (4.97)
(k-1) b
B *; (4.98)
5
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I
where s, = Z a, ; , forms a normalization vector that can be calculated once for all.
i=1
Eq.4.96 can lead to instability. Assume a PET imaging situation where a certain i
corresponds to a line not entering regions of activity, hence the forward projected value

b/ becomes zero, thus the denominator in Eq.4.96 is a potential stability problem.

The EM algorithm is computationally demanding. Eq.4.95 shows that each iteration
requires a forward projection (Radon transform) of the current solution, cf. Eq.4.72. The
quotient in each point between the measured sinogram b; and the forward projected
solution 5/, i.e., 7 is then backprojected into the image domain. Finally, in Eq.4.98,

the next estimate of the solution is generated by multiplying for each index j, the current

estimate of the solutionx{*™", e.g., Filtered Backprojection. Note also that the EM

algorithm is nonlinear, hence additive noise in the sinogram will not automatically lead
to an additive noise term in the reconstructed images, as it has been the case for all the
- previous methods.

In Algorithms 4.4 and 4.5 are shown the implementation of the EM-algorithm. It has
been split into two parts indicating that the first part has to be calculated once, and the

last part can then be used to reconstruct several images with the same geometry.

ALGORITEM 4.4 INITIALIZATION OF EM ALGORITHM

For j=0 to J-1 //For all values of j
sum=0 //Calculate the values of s(j)
I For i-0 to I-1

//For all values of I

sum=sum+a (i, j) //Accumulate wvalue
End
g(j)=sum //Store value

For j=0 to J-1

//For all values of j
x(j)=c

//Initialize with a constant

Note that the initialization of the EM-algorithm requires that the system matrix is
generated once in the initialization part, but this can be avoided by initializing the
solution vector as shown in Algorithm 4.6, and then use Algorithm 4.5 for the

remaining iterations. Note that in the first line of the Algorithm 4.5 the counter should
then be For k =1 to K-1.
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ALGORITHEM 4.5 THE EM ALGORITHM

For k=0 to K-1 //For K iterations of EM
For i=0 to I-1 //For all values of row index
sum=0 //Initialize scalar product
For j=0 to J-1 //For all values of j
sum=sum+a (1,3) *x(3) //Update scalar product
End
bg(i)=b (i) /sum //Stere scaled forward projection
End
For j=0 to J-1 //For all values of column index
sum=0 //Initialize backprojection sum
For i=0 to I-1 //For all values of row index
sum=sum+a (i, j) *bg (i) //Accumulate sum
End
x(3)=x(3) *sum/s (3) //Update solution
End
End

ALGORITHM 4.6 THE FIRST ITERATION OF THE EM ALGORITHM

For i=0 to I-1 //For all vales of row index
sum=0 //Initialize scalar product
For j=0 to J-1 //For all values of j

sum=sum+a (i,3j) *x(3) //Update scalar product
- End
- bg(i)=b(i)/sum //Store scaled forward projection

For j=0 to J-1 //For all values of column index
s(j)=0 //Initialize s- wvalues

sum=0 //Initialize backprojection sum
For i=0 to I-1 //For all values of row index

la=a(i,j) //Store value in a simple variable
sum=sum+la*bq (i) //Accumulate sum
s(j)=s(j)+1la //Increment s

End

x(j)=x(j) *sum/s (j) //Update solution
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CHAPTER 5

THREE DIMENSIONAL RECONSTRUCTION

5.1. Lines in a Three Dimesional Space

Lines in a three dimensional space cannot be written in a single form as in the two
‘dimensional case. Instead a parameter description can be used. In the following a line
‘description using four parameters is shown. This description is the basis of direct

‘inversion schemes. In general a line can be described by

r=r, +st (5.1)

where s is the free parameter, and ry is an offset vector. The vector t is a directional
vector, which can be normalized to the unit length, i.e., |r] =1. The vector can, e.g., be

described by

cos@ cos g
sin# cos @ (5.2)

sin ¢

[he base point vector (or offset vector) ry is descried by two parameters « and v using

vo directional vectors o and [, both normalized to unit length.

p =UQ + vpB (5.3)



 Figure 5.1 The (x.y,z) coordinate system and a line lying along to the t axis. The base point vector r,
‘can be wirtten as a linear combination of o and f.

It can be chosen that three vectors t, o and  form an orthogonal basis, and the last

rotational degree of freedom can be used for specifying that the z- component of « is

zero. In (Clack et al. 1989), o and B are defined as

-siné —cos@sing
=| cosf |and f=| —sinfsing (5.4)
P o cos @

- It should be mentioned that other symbols of the vectors can be found in the literature.
€8, (Orlov 1975a, Orlov 1975b, Nattarer 1986). Following (Clack 1992), line integrals
hrough a three- dimensional space can be expressed by the symbols defined in Egs. 5.1

P,u,v)= fw g(st+ua +vp)ds (5.3)

here (8, ¢,u,v)is four dimensional parameter domain. The mapping from the (x,y.z)

main to (s,u,v) is very useful

=ST+ua +vf (5.6)
(x| (cosfcosgp —sinf —cosfsingj s

2| y|=| sinfcosp cosd —sinfsing |u(=0, -
£ Si'n ¢ 0 Ccos ¢ v
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Using that the base vectors are orthogonal and normalized to unit length, hence the

rotation matrix Q is unitary i.e.,

(5.8)

One feature of matrix Q is that only two angles are used compared to a general
. rotation matrix, which uses three degrees of freedom, i.e., three angles. The definition of
the line integrals in Eg 5.5 implies that a three dimensional function g(x.,y.z) is
transformed into a four dimensional parameter domain g(6,@,u,v).

It has been chosen to denote the line integrals of g(7) with the symbol g. It can be
‘argued that Eq. 5.5 is not a radon transform of the function g(x,y,z). It is not, but it can
‘be seen as a hybrid or generalized Radon transform for lines through dimensional space.
In the following, Eq. 5.5 is called the 3D line Radon transform or simply the Radon
‘transform. In the rest of this chapter only the 3D line Radon definition will be
considered, and the actual parameters will uniquely determine which type of
transformation used. From the definition of the 3D line Radon transform some basic
rules are derived and shown in APPENDIX A. Additionally, the Radon transform of
simple geometrical functions are given in the same appendix.

- The 3D line Radon transform can be perceived as a convolution between a function
gfr) and a kernel / expressed in the coordinates p for a given combination of the

anglesd and ¢.

hr) = h( p) = h(s,u,v) = 5(u)5(v) (5.9)

vhich can be seen from the following, where *** implies a three dimensional

onvolution in the parameters (s,u,v).

s¢! u, V) = g(r) e 5(1{)5(]})
= _E; f L_m gs't+u'a+Vv' p)o(u—-u")o(v—v')ds'du'dv' (5.10)

= r__ g(s't+ua +vp)ds'

sides the new integration variable s, the results matches Eq. 5.5.

74



At this time it could be appropriate to look back to the two dimensional results. This

- can be done by choosing ¢=0, v=z,, and u=p, thus the line integral reduces to

8(p,0,0) = J: g(scos@ — psinf,ssinf + pcosb, z,)ds (5.11)

5.2. Fourier Slice Reconstruction in 3D

From the line integrals defined in Eq. 5.5, the function g(r) can be recovered using
 Fourier techniques, and the Fourier Slice Theorem is now derive for 3d line integrals by

applying the two dimensional Fourier Transform to each of the (%, v) planes in Eq.5.5.

G(0,6,v,,v,) = [” f 3(8,4,u,v)e /=) dqudy
o _ (5.12)
= f f f g(st +ua+vp)e ") dudyds

‘which indicates a close connection to the three dimensional Fourier transform of the

function g(7).

G(v) = ,[Z J: [; g(r)e”’*™dr (5.13)
glr)= ‘[; L EﬂG(v)eﬂma'v (5.14)

e v is the three dimensional frequency vector.
- Now, the integration parameters in Eq. 5.12. 1s changed into x, yand z, e, r. It is

sed that 7, @ and /3 are orthogonal.

=sT+ua+vp = 519
i=qrand v=[r = (5.16)
vy, +w, =r-(v,a+v,B)= (5.17)

6.9.v,.v,) = Eo J:; _Eng(f”)e-j Bl nl) gy (5.18)

These interesting results shows that the two-dimensional Fourier transform of the

e integrals is the three dimensional Fourier transform of the function to be
sonstructed (Clack 1992).



G(6.4.v,.v,) = G(v,a +v,B) (5.19)

which is a Fourier slice theorem for line integrals in a three- dimensional space. It
implies that the function g(7) can be recovered by applying a two dimensional Fourier
transform to the sinogram for all values of (6.¢), followed by a mapping of the

spectrum, and finally recovering the desired volume by using a three dimensional

inverse Fourier transform.

Goa+v,B) = [ [ 20.4,u,v)e’ " dudy (5.20)
¢ =[ [ [ cme™™av (5.21)

A non- trivial problem arises when implementing the mapping of the spectrum. Each

frequency point v is mapped into v,&+v,/B, but v is three-dimensional vector and
va+v,[ has four degrees of freedom. This implies that each v matches an infinite set

of parameters (6.¢,u,v). One possible solution is to use weighted averages of the
possible 4D frequency vectors for each value of v, and this problem is still an area of
active research, though in (Stearns 1990) several aspects have been covered.

3.3. The Backprojection Based Inversion of Line Integrals in 3D

Analogous to the 2D Filtered Backprojection, it is possible to filter the line
ojections and thcn make a backprojection of the sinogram into the volume domain
.-y,z)(Clack 1992). The backprojection operator in 3D is now analyzed from the
nsformation of a point source. Again, it is used that any function can be resolved into

| weighted sum (integral) of delta functions.

)= [ [ e()6(x=x)8(y = y0)8(z - z,)dx,dvydz, (5.22)
- f g(r,)o(r —r,)dr, (5.23)

lis implies that the corresponding Radon transform is given by
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8(6,9,u,v) = '[:g(ro)( _[:_m O(st+ua+vp - ro)ds)drn (5.24)

This shows that any function g(7) can be Radon transformed, if the point source can

be transformed. Now this will be done.

g,(r)=6(r-r)= (5.25)
8(6.0,u,v) = f O(st+ua+vf—r)ds (5.26)
= f (s=s,)r+(u- uo)(z+(v—vo)ﬁ)ds (5.27)

= '[15 St+u—-u)a+(v-v,)p)ds (5-28)

Here the unambiguous substitution 7, = 5,7 +u,@ + v, has been used. Using that the

delta function will be non zero if and only if the argument is a zero length vector

implies that the result will be non zero if and only if u =u, =7,-a and v=y, =7,- 3,

and because the base vectors are orthogonal the result can be expressed using the delta
function.

g,0.0,u,v)=0(u—uy)o(v-v,)=0(u-r,-a)do(v-r,-f) (5.29)

This can also be found directly from Eq. 5.10. It is a very important result, which can

used to formulate a backprojection operator in 3D (Clack 1992).

=[20.pu=rav=r-pda=[ [ g@O.pu=r-av=r Pycosdsdtd (530)
=0 B=-y
For convenience the integration over angles is written as a single integral with index

If the geometry is, e.g., Q,, the integration becomes the last part of Eq. 5.30, where

e term cosd is the Jacobian, found when converting to spherical coordinates.

i



5.4. Filtering After Backprojection of Line Integrals In 3D

Like in two dimensional backprojection algorithms, a high pass filter is needed either

before or after the backprojection (Clack 1992). In this section the aim is to find a

condition for the filter used after backprojection, i.e., on the volume. It can be derived

by backprojecting the Radon transform of a function g. Inserting in Eq. 5.5. into Eq.

5.30 gives

3(r _L _r g((r-a)a+(r-B)B +st)dsd (5.31)

Now it is utilized that the s- integration can be shifted along the t- axis, like it was

done from Eq. 5.27 to 5.28. Here the offset is chosento r- 7.

i =[ [ gllr-aa+(r-B)p+(r o) +st)isd (5.32)

= L f,, g(r + 57)dsd (5.33)

Which can be recognized to be a convolution, thus a 3D Fourier transform can be

applied on both sides.

Glv) = L f r g(r +st)e” ™" drdsdQ (534)
=[ [ [ gFe0drdsdq (5.35)
= Lr G(v)e’*™ " dsdQ (5.36)
LG(v)[ f ”“”ds]dQ (537)

G(v)

=G [o(v-7)dq= (5.38)

H,(v)

| This result is a 3D Filtering after Backprojection reconstruction method. The

ectrum of the backprojected sinogram is multiplied with the filter /A, (v), shown in

9.5.39. Finally Eq. 5.14 is used to recover the desired volume.
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a\V) = W (5.39)

In the geometry 2y, the filter can also be found on an analytical form. Several
papers, e.g., (Colsher 1980,Clack 1992), have shown different filters, which again have
- been shown to only differ with a normalization constant. Due to the circular symmetry

around z- axis, the filter can be calculated, with v,, i.e., the y- component of the

 frequency vector, set to zero.

- Lé(v, TdQ = L_w LO 5(v, cos@cos g + v, sing)cos pdGdg (5.40)

=2 [ 6(v, cos@ +v, tan p)dadp (5.41)
=2 ;dfﬁ where {}V B rmn{y/,Ia.rctan(vx V. ]} (5.42)
=7 (v siné, v cosé, +v, tang =0
cos¢@
&= 7 d 5.43
L'” \/vf —(vf + vf)sin" ¢ 4 o

The symmetry of the integral is used again to get the general results, i.e., in the last

line |v | is substituted back to /v? +v? , and the result is

- if v +v; <|siny
r

-1
1,(v) =1 I (5.44)
V| 2arcsin sin ¢ otherwise

2 2
Vs, +Vy

;Two things can be noted in Eq. 5.44. First, letting w — 7 /2implies full angular

verage and Eq. 5.44 becomes very easy, i.e., H,(v) =v/7. On the other hand letting

0 implies that the filter becomes close to H, (v) = /v} + v /(2y). Neglecting the

ization constant 2 ¥, the filter can be recognized as the filter used in 2D Filtering

er Backprojection.
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Figure 5.2 Normalized angular part of the filter as a function of ¢, =arcsin(v: f‘v!) for
¥=10°,20°,...,80°.

5.5. Filtered Backprojection of Line Integrals in 3D

Analogous to the two- dimensional Filtered Backprojection method, the filtering can
be done before backprojection of the line integrals in 3D. Here a two dimensional filter

h,(0,¢,u,v)is convolved in the (u,v)plane of the sinogram for each value of (6,9).

After the filtering shown in Eq. 5.45, the backprojection operator is used as shown in

Eq.5.47.

2§(9,¢,u,1’) ™ hb (9: ¢:ua V) % *g(ga ¢rua V) (5.45)
= [ [ _h@pu-w,y=v)20,6,u',v)du'd’ (5.46)
g(r)= L§(9, g,r-a,r- B)dQ (5.47)

The criterion that the filter in 3D Filtered Backprojection will have to satisfy can be
ived by choosing g(r) as a point source and requiring that Egs. 5.45 and 5.47 are self-

istent, i.e.,

(r)=0(r)= g(0,9,u,v) =5(u)5(v):> (5.48)

r)= th({?,qé,r ca,r- f)Q (5.49)
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The last equation can also be viewed in the 3D Fourier domain

- L[ [ [ [ n@¢rar ﬁ)e-ﬂ-'-‘*"dr)dn (5.50)
= L[ L J: .E;hb (9’ ¢,u’v)e-,i2.1'(:v-r+uv-cr+uV-ﬁ)dp}jQ (5.51)

- LH,} (9,¢,v-a,v-ﬁ)fe'”‘““‘fdsdﬂ (5.52)
= [H,(6.6,v-a,v- p)5(v-7)dQ (5.53)

~ where 2D Fourier transform of the filter has been used

H,0.6.v,,v,)= [ [ 1,(0.6,u,v)e " dudy (5.54)

In a given geometry, several filters are valid (Clack 1992), due to the 4D to 3D
transformation during reconstruction. In general, part of the filters belong to a null-
-.'ace, which could be used to improve noise performance without altering the signal
reconstruction, though more research is needed to derive appropriate filters.

In (Clack 1992) a criterion is given which makes Filtered Backprojection in a sense

uivalent to Filtering after Backprojection.

iH,(v,,v,)=H,(v,a+v,p) (5.55)

- Defining v, =v,a, +v,B,and v, =v,a, +v,B , then Egs. 5.44 and 5.55 imply that

one valid filter 1s

2 2
Vi +v _
L v if V2 +v2 <|siny

T

A2 +v2
1,(v,,7,) = Vs
] 2 2
,}vn T

2arcsin| ———=sIiny

2 2
+ ‘I/‘y

otherwise (5.56)

the geometry Q_,,, the filter is very simple
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H,(0,9,v,.v,)= i,}vi +vf
T

The Q_ , filter can be validated by inserting Eq. 5.57 in 5.53.

L H,(6,4,v-a,v- B)S(v,7)dQ

=%L ZJ(v-a)z +(v-B)6(v-r)dQ

=%L, EJ(v-a)z +(v-,f3)2 +(v-r)25(v-r)dQ
=% L”M5(v-r)dQ=l

In the last line the result from Egs. 5.40- 5.44 are used, with y = 7/2.

(5.57)

(5.58)

(5.59)

(5.60)

(5.61)



CHAPTER 6

IMPLEMENTATION DETAILS

6.1. Numerical Implementation of 2D Direct Reconstruction Algorithms

In this section the implementation of Filtered Backprojection, Filtering after
Backprojection and The Fourier Theorem are shown. All of these algorithms can be

based on Fourier transform, which is reviewed in the Chapter 4.

6.1.1. Using the DFT to Approximate the Fourier Transformation

All of the presented direct reconstruction schemes use Fourier transformation, either
for filtering, or for re- mapping of the spectra (Fourier Slice theorem). For digital
signals, the discrete Fourier transform (DFT) can be used to estimate the spectrum, and
in practise, the spectrum is estimated by the Fast Fourier Transform.

Assume that the one dimensional function, of a continuous variable ¢, denoted g(7) is

sampled uniformly, i.e., g . (n)= g(nAt).Furthennore, assume that only N values are

non-zero. In this case the Fourier transform can be approximated by the DFT

! N-1
G(f)= f gt)e Tt~ Aty g (me™'V =G, (m) (6.1)

n=0

lence, G,(m) will approximate the continuous spectrum

1 gl 6.2
(G, (m) [NA:J (6.2)

The discrete spectrum is in Eq.6.1 computed using the DFT of g, (n). With the same

proach the inverse Fourier transform is commonly approximated by



f 2t 1 S ~ j2amni N
g, ()= _[; G.()e"™df *'KIB‘}'Z‘U,,r (m)e?™'¥ =g (n) (6.3)
m=0

This technique can easily be generalized to two or more dimensions.

When approximating the Fourier transform by the DFT it should be noted that the
spectrum is available only in discrete samples and the samples represents the Fourier
transform of a periodical repetition of the discrete signal g; (n) with period N.

Furthermore a very important factor is that the discrete spectrum as a function of m

also is periodical with period N, i.e.,

G,(m)=G,(m+ N) (6.4)

This implies that the maximum absolute frequency corresponds to
m=N/2= f, =ﬁ, 1.e.,, the upper frequency f, equals half of the sampling

frequency. Due to the periodical behaviour of the discrete spectrum, the last half of the

digital spectrum, i.e., from m = N/2 to m = N-1 will correspond to negative frequencies.

- 6.1.1.1.The FFT Applied for Filtering

Now the practical use of the DFT for implementation of the operator J,

will be
“discussed. It is very important to note that the DFT uses an array of signal values g(n),
n=0,1,....N-1, where the last half of the array corresponds o negative continuous
variable. In this case the relevant signal is the discrete samples of the sinogram for a
certain value of 4, , i.e., A(r) = g(6, pr ), where the values of p lies symmetrically
around 0. In order to get the phase of the spectrum correct, the array g(n) used for the
DFT must be filled as shown in Figure 6.1. Note the wrapping so negative values of p
are filled into the last half of the array. It is also assumed that the DFT transformation
length is a power of two in order to use one of the fast radix-2 FFT algorithms. For the
unknown entries in the middle of the array of g(n) zeros must be filled in. This
yperation is called zero padding and this action will affect the spectrum.

A large number of zeros give a more smooth spectrum (due to a denser sampling in

requency domain), which can be desired if interpolation in the spectrum is required.
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Thus, the extra zeros padded can help to improve the numerical stability. In Figure 6.2 a
square signal is shown in the left upper comer, and the corresponding spectrum in the
right upper corner. Zeros have been padded, and again the spectrum has been found.

This is shown on the lower part of the figure. Note, that the new spectrum is more

smooth.

Feros tilled into g(n)

Figure 6.1 Filling an array h(n) into a larger array g(n), when using radix- 2 FFT.

As it briefly has been described, the use of DFT to approximate the Fourier transform
also implies that the signal becomes cyclical with the period of the transformation
length. This can lead to problems, as it later will be demonstrated in Subsection 6.1.5.1.
‘A common strategy to reduce this cyclical influence is to multiply the signal with a
‘window, 1.e., a weight function attenuating the edges of the signal.

A property, which can be used to reduce the computational cost, is based on real

(non-complex) valued signals. Assume a discrete cyclical real valued signal g(n)
G(m)=G(-m)*=G(M —m)* (6.5)

‘where * denotes the complex conjugate and g(n) = g(n + N ). This symmetry is easily
proved from the DFT definition shown in Eq.6.1, and it should be used if only a real
signal is provided, such as a sinogram, which should be filtered (without complex
values). In this way the length of the FFT needed, can be reduced by a factor of two, or
two real valued signals can be transformed with the same FFT.

- Numerical algorithms are available in virtually any numerical package for efficient
calculation of the FFT. Several packages furthermore also includes functions for
jalculating the DFT of a real valued sequence g(n) of length N = 2, e.g., Numerical
Recipes (Press et al.). Often the FFT-algorithm is a radix-2 algorithm. This restriction is

or reconstruction purposes not harsh, but must be remembered when zeros are padded.
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Figure 6.2 Upper left shows a square and the upper right shows the corresponding absolute
spectrum. The frequency ranges from 0 to the sampling frequency (last half is the negative
frequencies). Lower left shows the square where the zeros have been padded, and the lower right
shows the corresponding absolute spectrum, which appears more smooth.

In the implementation of Filtered Backprojection a 1D filtering of the sinogram is

v’ . This filter is

needed, where the filter is the absolute of the frequency parameter, i.e.,

approximated in many ways, but the structure of the FFT based filtering is the same, as
shown in Algorithm 6.1. The algorithm does not demonstrate the implementation of the
gxtra speedup gained by exploiting Eq.6.5, hence the array g(n) has complex entries.
Note also that the algorithm does not split the signal values as it was shown in Figure
6.1, because the filtering does not use the actual phase of the spectrum. What matters, is
that the filtered result is extracted from the same positions in the array, and is returned
i the original sinogram (g radon(t,r)), which is done for sake of memory
efficiency.

The filter calculated in line three of Algorithm 6.1 (sampling of Eq.6.2) is called the
tamp filter or Ram-Lak filter. Often it is multiplied with a weight function or simply

another function in order to get a better signal to noise ratio. The only item all of the

filters have in common is that they approximate M at low frequencies, and the
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difference is pronounced as the frequency v approaches half of the sampling frequency,

denoted by v, = L
2Ap

ALGORITEM 6.1 FILTERING USING DFT

Set P to upper power of two (P>=R) //Assuming radix-2 FFT
For r=1 to P/2 //Initialize filter

f(r)=r/(Delta_rho*P) //Approximate filter
End

For t=0 to T-1
For r=0 to R-1
g(r)=g_radon(t,r)

//For all angular samples
//For the radial samples
//Move the sinogram values

For r=R to P-1 //For padding
g(r)=0 //Pad with zeros
End
Compute FFT of g(n) //Using radix2 FFT
g(0)=0 //Handle zZero frequency
specially
g(P/2)=g(p/2)*f(p/2) //Handling half sampling
frequency
For r=1 to P/2-1 //Multiply with filter
g({r)=g(r) *£(r) //Positive frequency
g(P-r)=g(P-r)*f(r) //Negative frequency
End
Compute inverse FFT of g(r) //Using radix-2 FFT
For r=0 to R-1 //For the radial samples
g_radon(t,r)=real(g(r)) //Move the real part
End
End
End

Some of the filters reported in the literature (Jain 1989) are given below, where it is

only the part below a certain limit frequencyv, <v_ , which is sampled and used. The
reason for using these weight functions also called windows or apodizing functions is to

suppress the influence of noise. It is obvious that the filter |y| is a high pass filter and it

#ill attenuate any noise present in the sinogram. Examples of this property will be given

in Subsection 6.1.5.5. Many windows can be presented, but here only four examples are

e Cropped Ram- Lak/ Ramp Filter Sample the filter [v| until v/, i.e., the filter is

B oo = M (6.6)
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and for v, <|v| <v, the filter is set to zero. The ramp filter is widely used but will

amplify noise if v; is chosen too high.

The Shepp- Logan Filter A sinc window is multiplied to the ramp filter

.| v

sin| —

(21»;}

S (6.7)
bra%
2v,

and for v, <|v| < v, the filter is set to zero.

1

V) Shepp—Logan

The Hann Filter A Hann Window is multiplied to the filter.

HO) on = ’v|(1 4 cos(ﬂn (6.8)
Vi

\

and for v, <|v| < v, the filter is set to zero.

The Generalized Hamming Filter

v,

u

1| v
H(V)Geuemﬁzedﬁam min g = }V[{a + (1 - a) COS[—_]J (6.9)

where typical values of a are 0.5- 0.54. Again for v, <|v| <, the filter is set to zero.

Stochastic Filters In Section 10.8 of (Jain 1989), Jain derives a parameterized filter,
“which is shaped to the actual noise level.

Figure 6.3 shows three of the filters. They can all be written as a product of the
‘theoretical derived ramp filter and an apodizing window, which will influence the
'l performance in presence of noise. In general, if the apodizing window have a low cutoff
iﬁ'equency the resolution gets worse, but the noise suppression can be improved.

5 In the top part Figure 6.4 is shown the impulse response from the ramp filter. Note
t:;the lower sub-figure uses logarithmic scale. The figure shows that the impulse

response has long tails which implies that a number of zeros, in principle an infinite
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number, have to be padded to the signal or else the cyclical behavior of the DFT can

influence the filtered signal.
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Figure 6.3 The amplitude of the Ram- Lak filter, the Shepp- Logan filter, and the generalized
Hamming filter using «=0.5, all three as a function of frequency normalized to the upper limit
frequency, v
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Figure 6.4 Upper shows 51 samples of a ramp filter as a function of frequency. Upper right shows
the absolute value of the corresponding spectrum, found from a DFT of the same length. Here no
‘windowing has been used to reduce the cyclical behaviour of the DFT.

Figure 6.5 shows filtering of a sinogram corresponding to a circular disc in the image
domain. Here a Hann window has been multiplied to the ramp filter. This filtered

sinogram will later, in Figure 6.7, be backprojected to demonstrate the full
89
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reconstruction algorithm of Filtering after Backprojection. From Figure 6.5 it can be
seen that the spectrum is very localized around zero frequency, and the high-pass filter
will amplify the edges and from the last sub-figure, it can be seen that significant
negative values are found. A small remark is that the data representation in these

algorithms should include a sign bit.
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Figure 6.5 Upper left shows the sinogram for a fixed value of 6 and varying p. Upper right shows
'[ the corresponding discrete spectrum, and it can be noted that there is heavy low frequency
~ dominance. Lower left shows the filter, which here is the ramp multiplied with a Hann window.
- Lower right shows the filtered sinogram pait.

It should be mentioned that the complexity of filtering the sinogram is the number of
angular samples times the complexity of the FFT operations (plus some lower order
E terms)

0 =0O(TRlog R) (6.10)

Filtering

where R should be replaced by the smallest power of two larger or equal to R if a

radix-2 FFT is used.
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The 1D filtering could also have been done by convolving the sinogram with the
proper impulse response, which is infinitely long as indicated in Figure 6.4, hence
windowing is needed. This approach is fast if the impulse response is truncated into a
short signal, which will somewhat sacrifice the performance in the frequency domain.
This implementation of filtering of the sinogram followed by backprojection is known

as convolution backprojection.

6.1.2. Discrete Implementation of Backprojection

Filtered Backprojection is the easiest inversion scheme to implement. An algorithm
based on Filtered Backprojection will have two parts: A filtering part and an integration
part. The filtering part has been covered in Subsection 6.1.1.1 and in this section the

. implementation of the backprojection part is described.

The backprojector operator was found in Eq.4.35.

g(x,y)= fg(_xcosﬁ'+ysin9,8)d9 (6.11)

where g is the filtered sinogram in case of Filtered Backprojection and the original
sinogram in Filtering after Backprojection.

A commonly used approximation of Eq.6.11 is

T-1 _
e(x .y, )= AQZ g(x, cosf, +y,hsinb,,0,) (6.12)

=0

where a one dimensional interpolation must be used in p direction. Normally, either a

nearest neighbour approximation or a linear interpolation is incorporated. Now the

discrete indices of the sinogram are used.

Nearest Neighbour Approximation

x, cosf, +y,sinf, - p

min

T-1
e x..), )~ QQZ 3(r*le).  where r*(mnt)= .
1 r=0 J’o
(6.13)

91






ALGORITHM 6.2 INITIALIZATION BEFORE BACKPROJECTION

rhooff=rho_min/Delta_rho //Compute offset

For t=0 to T-1 //For all values of theta
theta=t*Delta_theta //theta is computed
costheta (t)=cos (theta) //cos (theta) is stored
sintheta (t)=sin(theta) //sin(theta) is stored

End

For m=0 to M-1 //For all values of x
xrel=(x_min+m*Delta_x)/Delta_rho //compute x

For t=0 to T-1 //For all values of theta
xc (m, t) =xrel*costheta(t) //Store x times cos theta
ys(m, t) =xrel*sintheta (t) -rhooff //Store y times sin theta
End

End

ALGORITHM 6.3 FAST BACKPROJECTION

For m=0 to M-1 //For all wvalues of x
For n=0 to M-1 //For all values of y
sum=0 //Initialize simple variable
For t=0 to T-1 //For all values of theta
rm=xc (m, t) +ys (n, t) //Compute non- integer index
rl=floor (rm) //Find lower integer
w=(rm-rl) //Compute weight
sum=sum+ (1-w) *g_Radon(t,rl)+w*g_Radon(t,rl+1)
End //Linear interpoaltion
finished
g(m,n)=sum*Delta_theta
End
~ End

Note that, in Algorithm 6.3 it is not checked whether the value of r1 correpond to
pixels in the image or not, 1.e., 0 <r/ < R —1. This operation is very time consuming as
it is evaluated in the most inner core of the loop. Checking can be avoided, if the initial

sinogram is expanded in size in the p direction by padding zeros, in order to fulfil

_ Xn COS 6. +y,sinf, —p_.
Ap

<R-1 Y(x,,y,.0)= R*>2(M —1);&“ (6.18)
D

‘where R* is the number of samples required in the new sinogram, when using the same
sampling interval Ap, and also adjusting the value of p_,, to maintain a symmetrical

jff:'_’-"-:lll ]_I_l'lg of o,

AV (6.19)
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The given implementation in Algorithm 6.2 and 6.3 will require two matrices of size
MT and the computational load is lowered significantly.
The discrete implementation of Filtered Backprojection is schematically shown in

Figure 6.6 using first filtering and then backprojection.

The filter
p V|
P
» L J » L J [ 3
:‘\?\- - » W [ 3
2 e it L B
=

Figure 6.6 The discrete implementation of Filtered Backprojection. At the left the sinogram is
filtered and then the filtered sinogram is by backprojection mapped into the reconstructed image.

Now a set of images are shown where a synthetic sinogram, corresponding to a
circular disc in the image domain, must be reconstructed using Filtered Backprojection
with an increasing number of angular samples. Figure 6.5 showed the filtering of the
sinogram, and here the (rotational symmetrical) disc is placed in the middle of the
coordinate system, hence each of one-dimensional the filtered sinogram does not

depend on #,. From 5 angular samples in the sinogram, i.e., T = 5, Figure 6.7

demonstrates the reconstructed image using Filtered Backprojection. The figure clearly
shows how the 5 sinogram parts are backprojected into the image, and more angular
samples are obviously needed. In Figure 6.8, only 10 angular samples was used, and the

reconstructed shape of the disc is much better recovered, but large artifacts are still very

' visible outside the disc. Increasing to 20 angular samples, as shown in Figure 6.9, the
artifacts are reduced in amplitude compared to Figure 6.8, and with 100 angular

samples, shown in Figure 6.10, the disc is nearly recovered perfectly.
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Figure 6.7 Filtered Backprojection from a
sinogram with 5 angular samples (T=5)
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Figure 6.9 Filtered Backprojection from a
sinogram with 20 angular samples (T=20)

Figure 6.8 Filtered Backprojection from a

sinogram with 10 angular samples (T=10)
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Figure 6.10 Filtered Backprojection from a
sinogram with 100 angular samples (T=100)

6.1.3. Imnlementation of Filtering after Backprojection

Implementation of Filtering after Backprojection requires a discrete implementation

of the backprojection operator, as shown in Section 6.1.2. After the backprojection the

matrix g(m,n) must be high pass filtered. The implementation resembles the one shown

in Subsection 6.1.1.1, but extended to two dimensions.

The spectrum of an image can be obtained in two ways. Either by using one of the

multidimensional FFT algorithms, e.g. (Press et al. 1992), or by using a one

dimensional FFT on first all of the rows and then all the columns of the image, which is

possible because the discrete spectrum can be written



M-1N-1

G(H, V) — Z Z g(m, n)e—-j.‘_:r(mu M+nvi N) {620)

m=0 n=0

M- N-1

= ng(m,n)e'”"’"“ e (6.21)
0 n=0

where both image sizes M and N must be powers of two, if using a radix-2 FFT. If this
is not true extra pad image samples at the edges. For filtering the additional samples
should not be can be padded with zeros. Assume that the reconstructed image should
look like a disc. Then the backprojected sinogram (into the image domain) will have
large non-zero values away from the disc, due to the convolution shown in Eq.4.46.
This implies that the filtering in the image domain will meet problem with the cyclical
behavior of the DFT (or FFT). These edge problem must be solved by backprojecting
onto a larger image than necessary (if using radix-2 FFT often to the nearest upper
power of 2), and then filter the expanded image, and cropping values of corresponding
to the specified image size.

Note that the image is considered periodical and the spectrum will have complex

- conjugate symmetry for a real valued signal, as shown in

Figure 6.11.
glmn)=g(m+M,n)=g(mn+ N) (6.22)
G(u,v)=G(m + M,n)=G(m,n+ N) (6.23)
g(m,n)=g(m,n)*= G(u,v) = G(-u,~v)*=GM -u,N —-v) * (6.24)

The symmetry of the spectrum can be exploited for reducing the memory

requirements due to a rather odd storage strategy needed.

g(m,n) real G(u,v) complex
m =0 m=7 u=0 u=7
n=0 v=0
L
N,
Complex conjugate
ﬂ
n=7 y=7

Figure 6.11 A real valued image gives a spectrum with complex conjugate pairs.
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The 2D filtering is very easy is the spectrum is calculated properly. The complex

spectrum can easily be multiplied by a sampled version of the filter k> +k’ .

u v
k. — and k. — :
k> iar y = Vi (6.25)
2 2
5 . u v
k: +k> = )| — | + 2
- () N

[f addressing the negative frequencies k x ! 0, u must be replaced by u-M and if k,<0,
v must be replaced by v-N. Symmetry can be used so approximately half of the complex
spectrum is multiplied with the filter and the other half is duplicated from the first due
to the complex conjugate symmetry. After the multiplication of the filter, the inverse
two dimensional DFT (or rather FFT) is used, and the real part of the result is extracted,
and the imaginary part should be zero.

The 2D DFT implementation of the high-pass filter should also incorporate
multiplication by an apodizing window, in order to reduce the edge effects, due to the
periodical behavior of the spectrum. Of the huge amount of windows available, two

relevant choices of windows should be mentioned.

Cropped 2D Ramp Filter Here the theoretically derived 2D ramp filter is cropped at a

certain frequency k;
( 2 2 . 2 2
Hk k)= GG U o e R (6.27)
' 0

where ; is set below the upper limit frequency in one of the directions, i.e., k, < Ty

Hanning Window The 2D ramp filter could also be multiplied by a Hanning window

M

Pt
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1 2 2 '\‘k-‘: +k-‘»]' ; 2 2
Hk. k)= ;Jk_r K7 (1+cos /TT if (ki +k, <k, 38}
) \

0 else

where k; again is <et below the upper limit frequency in one of the directions, i.e.,

k, <L.
2Ax

The two windows both use a cutoff frequency k; , which can be varied, depending on
the noise- level. A high noise level might call for a low value for k;, which implies that
the reconstructed image will be somewhat blurred.

Note again that the mean value of the reconstructed image will always be set to zero.
This value might be estimated in an area of the reconstructed image where some prior
knowledge implies that the value should be, e.g., zero. In brain tomography the relevant

area could be outside the brain.

6.1.4. Implementation of the Fourier Slice Theorem

The basis of the Fourier Slice Theorem is given in Section 4.3. In the

| implementation, the discrete spectrum of the sinogram is calculated for each of the

angular samples like it was shown in Sub- section 6.1.1.1. Note that here the phase is

| important, hence the shifting shown in Figure 6.1 must be considered. This spectrum is
| considered as polar samples, and must be mapped onto a quadratic frequency grid, as
{ shown in Figure 6.12. This operation calls for two-dimensional interpolation in the

| frequency domain, an item to be discussed furthermore. Finally, the two-dimensional

quadratic spectrum can be inverted using 2D inverse FFT in order to get the

reconstructed image.
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Figure 6.12 Following from upper left. At first the discrete spectrum is computed. The spectrum is
then considered to be polar, and mapped onto a quadratic grid in the frequency domain using two-
dimensional interpolation. Finally, the 2D spectrum is inverted into the reconstructed image using

2D inverse FFT.

The complexity of this implementation, where the FFT is used to computing the

spectra is given by

Forward| DFFTofSinogram = O( TR log R) {6.29)
Ofm'ersel DFFTofSpectrum = O(JM : lOgM) (630)
OFouﬂ'erS.fireﬂJeorem = O(M d log M) (6.31)

where the time used to map the polar spectrum onto the quadratic spectrum has not been
- considered, and it will actually be negligible if using nearest neighbour interpolation. In
the last equation it has been assumed that 7~ R ~ M . In all three equations the values
of R and M should correspond to the expanded sinogram and image (powers of two), if
using radix-2 FFT. In conclusion, Eq. 6.31 indicates that the implementation of the
Fourier Slice Theorem is of a lower order than Filtered Backprojection and Filtering
after Backprojection.

Next some of the problems with this implementation are discussed. If omitting the
important shifting problems, illustrated in Figure 6.1, the polar and the quadratic

spectrum can match in three different ways as shown in Figure 6.13. The boundary
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corresponds to the maximum frequencies (half of the sampling frequencies). Note that a

square and centered reconstructed image is still assumed M = N, X,in = Vmin and Ax=A4y.
v v
h
= e O
7 S / \ / \
\ / ) K/

(a) (b) (c)

Figure 6.13 Three ways that the polar and the quadratic spectrum can match.

¥
¥

In the first case (a) the quadratic spectrum is too small. Some parts of the polar
spectrum is not mapped onto the quadratic spectrum. This is a very bad situation, and

the result 1s unreliable when

max|k

X

=*“1—"<V.mx =Lc>Ax>Ap (6.32)
2Ax 2Ap

In the second case (b) the entire polar spectrum is mapped onto the quadratic
spectrum. This will happen when Ax=Ap. In the final case (c), where the polar spectrum
is fully covered by the quadratic spectrum. This means that the output image in
principle uses all of the spectrum, but the reconstructed image will appear as it was low
pass filtered, because the polar spectrum must be assumed to be equal to zero for
frequencies higher than half of the polar sampling frequency.

Concerning the 2D interpolation, nearest neighbour interpolation is very fast, but the
cost is that artifacts must be expected in the reconstructed image. Another common
choice is instead to use the slower but more stable bilinear interpolation as shown in the

following equations. Figure 6.14 illustrates that the value of each sample in the

- quadratic grid is a weighted sum of the four nearest neighbours in the polar grid. First of

all the frequencies in the quadratic grid are expressed in polar coordinates.
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k.t = COSg 633
k, sin@ (=

Then the four nearest neighbours are found.

. . 6 ~ g -6,
Find the integer ¢ = [ZEJ =6,<6 <6, and set w, = — 7 (6.34)
4 . v - V-v -
Find the integer r = [—J =>v,Sv<y, andset o, ——=Ap(V -v,) (6.35)
Av Av

where the last formula only is valid for positive frequencies. In case of negative
frequencies, the periodical behavior of the spectrum must be considered and proper
shifting must be used.

Finally, a bilinear interpolation in the polar coordinates of the four values are used

Gk, k,)=(1-w,)(1-®,)G(,.0,)+0,G0,.,.6,)
+w,(1-w,)GW,,0,,,)+0,G,.,,0.))

(6.36)

The sampling of the output image must furthermore be sufficiently dense to adjust to
the level of information in the polar spectrum, but due to the distribution of polar
samples, with an increased density towards (0,0), a general problem is that the quadratic
spectrum does not exploit the high number of samples near (0,0) leading to aliasing
artifacts. On the other hand for high polar frequencies, the density is low, so the
quadratic spectrum samples the polar spectrum faster than necessary. Note, the angular

distance between samples in the polar grid is 46, and in the radial parameter v the

distance between samples 1s Av = , cf. Eq. 6.2. The distance in each of the

coordinates in the rectangular grid is Ak, = Ak, =ﬁ. [f choosing dp=Ax, cf.

Eq.6.32, one criterion is that the sampling interval in the radial parameter § must match

the one in the rectangular grid, which is a reasonable tradeoff, i.e.,

bk, =Mk, =——=Av=—-2M =R (6.37)
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where both M and R should correspond to the expanded values, i.e., being a power of
two if using a radix-2 FFT.

The presented reconstruction algorithm will introduce more noise than accumulated
in the backprojection algorithms. Especially, ringing problems are common. The
problem can be reduced by use of higher-order interpolation and/or use of, e.g. a non-
linear grid in the Radon domain. Note that higher-order filters can provide better
numerical results, but the computational load might increase to an unacceptable level.
Another method (Carlson et al. 1995) illustrated in Figure 6.15 is to distribute each of
the polar samples onto the rectangular map using proper weights, which implies that all
of the polar samples will always be represented in the quadratic grid, but the cost of the
uneven density of samples is that an additional filtering is required.

The 2D interpolation in the frequency domain described in this section is in general
considered the major problem in implementations of the Fourier Slice Theorem, and the

method has apparently found limited success in clinical use.

LA .Fé\

Figure 6.14 Strategy 1: A weighted sum of the Figure 6.15 Strategy 2: Any of the samples on
four closest polar samples is used to estimate the . polar grid are distributed with certain
spectrum on the quadratic grid. weights to the quadratic grid.

6.2. Implementation of 3D Direct Reconstruction Algorithms

Going from 2D to 3D reconstruction one major difference is the size of the inversion
problem. A practical reconstruction program (either iterative or direct) will include
several steps of filtering, Radon transform, and the backprojection is the most time
consuming.

The program will require a uniformly sampled sinogram as it will shown in Eq.6.38,

based on Qy- geometry and the reconstructed volumes will also be sample uniformly.
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The value of W is left to the user. The package also includes the program names
“3D_RadonAna” which has been developed for generating a volume and the
corresponding four dimensional sinogram from a set of scaled, rotated, and translated

primitives. This program is based on properties shown in Appendix A. The usage of the
program is shown in Appendix B.

6.2.1. Implementation of the 3D Reconstruction Methods

It has been shown that reconstruction of volumes from 4D line integrals can be done
by filtering, either the projections, cf. Eq.5.56, or the backprojected volume, cf. Eq.5.44.
The implementation is a straight forward generalization of the 2D reconstruction

implementation discussed in Chapter 4, but the filters are not as simple, if the limiting

angle w < % Again, apodizing windows should be multiplied to the filters in order to

limit the influence of noise.

Here the reconstruction algorithms are based on the geometry Q,,, and the parameters

in the parameter domain are sampled uniformly

=¢ =-y+p—-, =0,,.,P-1
o, = VrpPo = P
V4
9=9r=f?, t=0,1,.,T-1 (6.38)
U=u, =u . +ilu, i=0l,..,71-1

v=v, =V + jAv, Jj=0l,...,J-1

where Ag = % ,A0 = % B.n =0, and ¢, =-w have been inserted.

The parameters of the reconstructed volume are also samples uniformly

X=x, =x_. +kAx, k=0l...,K~1
VY=Y, = Vua +18Y, { =05, L—1 (6.39)
2=z, =I., + mAz, m=01,..,M -1
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Note that a measured sinogram must be resampled (rebinned) into this geometry and
missing parts of the sinogram can be estimated using the Kinahan & Rogers

reprojection technique.

6.2.1.1.Implementation of the Backprojection Operator

The backprojection operator can be approximated by a sum, here shown using a

nearest neighbour approximation

8(r.,.)= L:n ‘E:_W 80,9, u=r-a,v=r-f)cosgdpdd (6.40)
2] I-l ¥ I s S T ¥, : ~ Vs

*ABA{E}Z C05¢ng(t, », k..m Pt min A kd.m ﬂp.r min ) (6.41)
2=0 =0 Au Ay

[n Algorithm 6.4 the implementation of the backprojection operator is shown, when

using nearest neighbour interpolation.

It has been shown that all of the reconstruction methods are heavily based on

projections of the directional vectors &, £, and ronto the volume coordinates . In order

to speed up the reconstruction algorithms, the vectors a=(«,.a, ,cz:)r,
ﬂ=(ﬁ_c,;’3‘}_,ﬁ__)r, and r=(rx,ry,rz)r, should be computed once, for all values of

(p.t). This can be done rather efficiently and will only require six matrices. In Algorithm

6.4 the arrays are assumed given, e.g., alpha x(t; p) = «,(f,,¢,). For further

optimization, the double loop of all possible angles (6 ¢) can be combined into one
loop, and the values of x (k) , y (1), and z (m) should be moved to simple variables
before entering the inner loops. In this way many of the array calculations can be
avoided.

For each value of (z,p), Eq.6.40 requires that the u- and the v- values lies within the
- bounds shown in Eq.6.38. One scheme to avoid this time-consuming testing is to
expand the sinogram in the u and v direction (by padding with zeros at the edges),
though this might not be desirable, due to the memory requirements For the expansion,

it can easily be shown that

104




= max!r{-_!.m = z"min . maX’rk.f,m‘ — Ui
i< (6.42)
Au Au
= max"k_:_mj ~ Vmin . max!rfc.s.m ’ ~ Vmin
sis (6.43)
Av Av

Another scheme to avoid the index testing. could be to compute the intervals (p,z),
which will give legal values of « and v, cf. Eq.6.40. In principle this is viable, but might
require more computations compared to the reduction being offered by this alteration.

The number of loops shown in Algorithm 6.4 illustrates that the complexity of

backprojection is high, namely

0308ackprojecﬂ'on = O(KLMN s T) (6.44)

Hence, the complexity increases with the number of voxels in the reconstructed
volume times the number of angular samples in the sinogram, and it indicates that the

backprojection operator is a rather demanding operation.

ALGORITEM 6.4 BACKPROJECTION OPERATOR IN 3D

For k=0 to K-1 //For all values of x
For 1=0 to L-1 //For all values of y
For m=0 to M-1 // For all wvalues of z
sum=0 //Initialize sum
For p=0 to P-1 //For all values of phi
sump=0 //Initialize sump
For t=0 to T-1 //For all values of theta
u=x (k) *alpha _x(t,p)+y (1) *alpha_y(t,p)+
z(m) *alpha_z (t,p) //Calculate u value
i=round((u-u_min) /Delta u) //Calculate i index
If O<=1i<l
v=x (k) *beta_x(t,p)+y (1) *beta_vy(t,p)+
z (m) *beta_z (t,p) //Calculate v value
j=round( (v-v_min) /Delta_v)
If 0<=j<J
sum=sum+g_radon(t,p,1i,3) //Update sum
End
End
End
sum=sum+sump*cosphi (p) //Update sump
End

g_backproject (k,1l,m)=sum*Delta_rho*Delta_phi //Store result
End

End

End
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6.2.1.2. Implementation of the Radon Transform Operator

An implementation of the Radon transform defined in Eq.5.5 will now be shown.
This operator is needed for the Kinahan & Rogers reprojection methods and for any of

the iterative methods presented in Chapter 4.

g0,0,u,v)= J: g(st+r))ds, where ry,=(xy,¥,, z(,):r =ua +vf (6.45)

= .[: g(sT, +x4,ST, + ¥y,ST, +2,)ds (6.46)

In order to avoid the problems with too high slopes, the line integral is projected onto
the axis with maximum absolute component of the directional vector relative to its

sampling interval. Assume that the projection is made onto the x- axis

T T,
> — 6.4
Ax Ay (549

Then the 3D Radon transform can be written

; l X X x (x
86,0,u,v) = f —‘g(x, g ® ' R (6.48)
where
(x) Ty (x) (x)
y=— and Vo' =W =P, (6.49)
T,
(x) T: (x) (x) =
zV =—= and z;’ =z,—z"x, (6.50)
T

X

where the exponent (x) merely means with respect to x.
A simple discretization, which will require a few calculations each time, can now be

derived from Eqs.6.39, 6.46, 6.49, and 6.50.
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% K X, 1___(.\'! + v(.rl iy X z[.t] e Zf,r} s il
$(6,0,u,v) = AxY g(k,| == —0 - mn ||k - i 6.51
ZJ g 5 " ) (6.51)
K
=Y gl fak + 60 a0k + b)) (6.52)
k=0
T T (% 5 oo AT
where a'!" = S and b =L (oo ~ %) + 20~ Yomin (6.53)
g T Oy T, Ay Ay
(x) ‘__Z‘_:E and bE.t) =r_z(xmi _xo) i 2o~ Thin (6.54)
T, Ay . T Az A,

a1,

With respect to the high slope problem, Eq.6.47 implies that la'f,"’ <1 and iai“’

i.e., a step from k to k+/ in the sum shown in Eq.6.52, will not lead to a step in / or m
greater than 1.
The discrete implementation of Radon transform is also quite demanding, due to the

complexity

Olbﬁaa‘anfransform = O(‘PTIJK) (6-55)

which accounts for the number of times where the projection is made onto the x- axis.
For projection onto the y and z- axis similar expressions are found, with K substituted
by L and M, respectively.

If either the absolute y- or z-component of t is the greatest, then it is very easy to
derive almost identical formulas, and the formulas will only require swapping of
symbols compared to the ones shown above. In Algorithm 6.5 the implementation of the
' discrete 3D Radon transform is shown using a nearest neighbour approximation. The

algorithm only shows the case where Eq.6.47 is fulfilled. The algorithm uses the

: (x) (x) () _po s
variables a_y=a,”, a_z=a;Y, b_y=b", and b_z=5,". Two very similar

algorithms are needed to cover projection onto the y- axis and the z- axis, respectively.
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ALGORITHM 6.5 DISCRETE 3D RADON TRANSFORM

For p=0 to P-1 //For all values of phi
For t=0 to T-1 //For all values of theta
For i=0 to I-1 //For all values of u
For j=0 to J-1 //For all values of v

Assuming Eqg.6.47 is fulfilled
Set a_y,b v,a z,b_z from Egs.6.52,6.53

sum=0 Initialize sum
For k=0 to K-1 //For all values of x
l=round(a_*k+b_y) //Calculate y-index
If 0<=1<L //Check if index is wvalid
m=round (a_z*k+b_z) //Calculate z-index
If 0<=m<M //Check if index is valid
sum=sum+g (k, 1, m) //Update sum
End
End
End
g_Radon(p,t,1i,]j)=sum*Delta_x //Update Radon domain
End
End
End
End

6.3. Examples Using Direct Reconstruction Algorithms

Here, reconstruction of a phantom is examined. In Figure 6.1 is shown the noise free

sinogram corresponding to the image shown Figure 6.17

Slmogram

o

Figure 6.16 Sinogram of the phantom
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Figure 6.19 The reconstructed head phantom

i 2
B¢ filtering after backprojection Figure 6.20 The reconstructed head phantom

using Fourier slice theorem

First, Filtered Backprojection has been used to reconstruct the image as shown in
Figure 6.18. It can be seen that the mean value is displaced, and a ring is visible outside
the head phantom with a radius corresponding to the extension of the sinogram in the p-
direction. When using Filtering after backprojection, as shown in Figure 6.19, the ring
effect has been dissappeared, but otherwise the result appears to be just as good with
respect to edge sharpness.

Finallv a nearest neighbour implementation of the Fourier slice theorem has been
used as shown in Figure 6.20. The reconstructed image appears to be comparable to the
two backprojection methods, but more “texture” can be found in the area outside of
head (and inside too).

The sampling parameters of the sinogram are 4p=0.0/, R=201, T=200 and for the

image, A/=201 and Ax=0.01 has been used.
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The sampling parameters of the sinogram are 4p=0.0/, R=201, T=200 and for the

image, M=201 and Ax=0.0! has been used.

6.3.1. Reconstruction With Varving Image Size

The next example addressees qualification of the reconstruction quality and artifacts
when using a Fourer Slice algorithm, Filtered Backprojection, and Filtering after
Backprojection. From the sinogram in Figure 6.16, image shave been reconstructed
with varying image size, going from M=51 to M=401 in steps of 50 samples (on each
dimension of the reconstructed image), where the sampling distance has been changed
in order to keep the image in focus, as in Figure 6.17.

A modified L’- measure of misfit is given in Eq.6.56.

> (gnn-g-g+57f

> (e -27)f

L2 = (6.56)

where g,” is the reference image (the original) and the bars indicate the average over

all samples.
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Figure 6.21 L2 error as a function of the reconstructed image size M for Filtered Backprojection,
Filtering after Backprojection, and a Fourier slice implementation.
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Figure 6.21 shows the misfit in this case as a function of the image size M. It can be
seen that here the errors limited, and the Fourier Slice method has the worst error-
measure. For Filtered Backprojection, Figure 6.22 shows that the error has several
reasons. It 1s obvious that the step edges in the image are not reconstructed perfectly,
due to the use of linear filters. Furthermore, lines are visible in the figure which are due
to aliasing problems. The sinogram should have been sampled more densely. Finally,

the ring also found in Figure 6.18 will also add the total error.
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Figure 6.22 The absolute error between the original image and the reconstructed image using
Filtered Backprojection.

For a Pentium 120 MHz (Linux system) the time needed to reconstruct the images
are shown in Figure 6.23. It is clear the radix-2 FFT used for this implementation
implies that several steps can be seen in the Filtering after Backprojection and the
Fourier Slice implementation. The reason that Filtering after Backprojection is much
slower compared to Filtered Backprojection is that backprojection must be done into a
larger number of samples (power of two) in order to reduce edge effects in the
subsequent filtering. It can be seen that Filtering after Backprojection from image size
151 to 251 gets slightly faster. In this range the use of radix-2 FFT implies that a 256*
256 image 1s generated in all three cases (151, 201, 251) when backprojecting, and due

to the implementation, the subsequent cropping becomes slightly faster here.
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This example shows that Filtered Backprojection can be implemented efficiently on a

PC and provide fast reconstruction.
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Figure 6.23 Time usage for reconstructing the sinogram in seconds as a function of the

reconstructed image size M for Filtered Backprojection, Filtering after Backprojection, an da
Fourier Slice Theorem implementation.

6.3.2. Reconstruction into an Oversampled Image
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Figure 6.24 Sinogram of a square with R=251, T=200, and 40=0.0025.

In order to illustrate the problems with the Fourier Slice Theorem if Ax > Ap , (cf.

Eq.6.32) a sinogram with R=251, T=200, and 4p=0.0025 has been created. The
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sinogram corresponding to a square in the image domain is shown in Figure 6.24. Then
two reconstruction methods have been used, namely the Fourier Slice Theorem in

Figure 6.25, and Filtering after Backprojection Figure 6.26.
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Figure 6.25 Reconstructed image with M=101 and Ax=0.01 using Fourier Slice Theorem.
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Figure 6.26 Reconstructed image with M=101 and Ax=0.01 using Filtering after Backprojection.




[t can be seen that Filtering after Backprojection has no problems. Using Fourier
Slice Theorem severe artifacts can be seen, due to aliasing of the spectrum.

As a result, Filtered Backprojection is normally precise, but somehow slow, with
complexity of O(M®), where M is the number of samples in one direction of the
resulting image. The Fourier Slice Theorem gives a fast algorithm, O(M * log M), but

does not have the same numerical stability.

6.4. Examples Using Iterative Reconstruction Algorithms

In this subsection a set of examples are presented when iterative methods have been
used. In Figure 6.27 a sinogram with 281*336 samples is shown. The sinogram is
reconstructed into an image with 301*301 samples. The system matrix has
94416*%90601 elements of which 0.23% are non- zero when modelling then system

matrix using the Radon transform of a square.
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Figure 6.27 A slice of a sinogram of human brain.
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Figure 6.28 The reconstructed image after 10 iterations of EM.
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6.5. Examples of 3D Reconstructed Volumes

6.5.1. Reconstruction of a Ball

The first example concern reconstruction of a homogeneous ball, cf. A.2.1. In this
case the axial limiting angle ¥ was set to 90°. Here the reconstructed volume has
31*51*51 voxels and the sinogram uses P=12, T=10, and 51*51 samples in each of the

(u,v) planes. Both the volume and the sinogram requires MBytes of memory.

Figure 6.30 Reconstructed ball using 3D Filtered Backprojection.

In Figure 6.30, 3D Filtered Backprojection has been used to reconstruct the ball, and
n Figure 6.31 3D Filtering after Backprojection. The figures indicate that the ball has
ieen recovered well, though the edges of the ball are blurred. This could be expected,
lue to low number of samples in both domains.

Next the iterative methods ART and EM have been used to reconstruct the same ball.
lor ART some artifacts were found, while EM is successful. Here the figures has been

mitted due to the high similarity shown above.
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Figure 6.31 Reconstructed ball using 3D Filtering after Backprojection

6.5.2. Reconstruction of the Mickev Phantom

In this example, the axial acceptance has been reduced to merely ¥=9’. The volume
has centered around (0,0,0) with Ax=Ay=Az=0.5 and K=L=M=7], which requires
1.4MBytes of memory. In the sinogram, 7=90, P=11, I=J=61 and Au=Av=1 were
used, and the sinogram requires 14.7 MBytes of memory.

Using 3D Filtering after Backprojection, the reconstructed volume can be visualized
with Polyr and Geomview. Figure 6.32 shows the result which looks like original
Mickey Mouse. In Figure 6.33 and Figure 6.34 the reconstructed central (x,y) and (y.z)
planes are shown. The figures use individual color scale according to the minimal and
maximal value. This volume has the value 0.2 inside the “skull” and a small “tumor”-
ball with radius fo 1 and value 0.4 placed at (0,1,0). The tumor is visible but blurred, but
it is clear that the general structures have been recovered .The sinogram was
backprojectde onto a 128*128*128 volume in order to use radix-2 FFT filtering.

Next Filtered Backprojection used to reconstruct the same phantom. Figure 6.35 and

Figure 6.36 show the central (x,y) and (y,z) planes for Filtered Backprojection.
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Figure 6.32 The Mickey phantom
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Figure 6.33 Reconstructed phantom in the central (x,y) plane usign Filtered Backprojection.
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Figure 6.34 Reconstructed phantom in the central (y,z) plane using Filtering after Backprojection.
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Figure 6.35 Reconstructed phantom in the central (x,y) plane using Filtered Backprojection.
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Figure 6.36 Reconstructed phantom in the central (y,z) plane using Filtered Backprojection.

Finally, five iterations using EM algorithm has been demonstrated. Figure 6.37 and

Figure 6.38 again show the (x,y) and (y,z) planes. It is obvious that more iterations are

needed, but it is more time consuming.
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Figure 6.37 Reconstructed phantom in the cental (x,y) plane using five- iterations of EM.
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Figure 6.38 Reconstructed phantom in the central (y,z) plane using five iterations of EM.




CHAPTER 7

RESULTS AND FUTURE WORK

In this work, most prominently, the reconstruction methods of medical imaging
modalities such as CT are investigated.

At the beginning of this study, it was planned to have a complete software system,
which performs craniofacial surgical simulation and also planning. While going into
details of the subject, we saw that there are two different steps. The first one is the
reconstruction of medical images and the second and complementary one is to process
these reconstructed images in cooperation with surgeons, who are specialist in
craniofacial surgery.

As was stated before, this thesis although named as “ Craniofacial Computer- Aided
Surgical Planning and Simulation”, we have worked on just reconstruction step, and a
software package, which consists of implementations of several reconstruction
techniques, was written.

The next step for who plan to work on this subject will be to understand the functions
of structures in the head and face, and the purposes of craniofacial surgery, which is
especially important for planning procedure.

Identification of bones, the interconnections of these bones and the influences on
each other would be included in simulation phase. The definitions, techniques are
briefly described in Chapter 3 for both simulation and planning phases.

Medical image registration may also be viewed as a further work, which provides a
complete image that consists of both hard and soft tissues. In this case, it would be

possible to show the to the patient how he/ she would look like after the operation.
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APPENDIX A

A PROPERTIES OF THE 3D LINE NORMAL RADON

TRANSFORM

A.l. Basic Properties of the 3D Line Radon Transform

g(0,0,u,v)= f g(st+ua+vp)ds

A.l1.1. Linearitv

The first crucial property is linearity of the transform.
g(r)= Z K.g.(r)=g(0,p,u,v)= ZK‘.gl.(t?,qé,u,v)
where K, are arbitrary constants.

A.1.2. Translation

It 1s assumed that

hr)y=g(r-r,)=

h(0,,u,v)= _I_ g(st+ua+vf—r,)ds
Here the translation r are resolved after the basis vectors, i.e.,

vy =S,T+ua+v,f

This can be done in an unambiguous way
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This is inserted in Eq.A.3

h(o. o,u, \.)—J ((s —s, )1'+(u—u0)a+(v-v)ﬁ)iv (A.6)
l (ST+—-uy)a+(v-v,)B)ds = (A.7)
ho.¢,uv)=3(0.¢.u— ty GV =¥y J§) (A.8)

Note that the angular parameters #and ¢ are not changed.

A.1.3. Rotation and Scaling

Rotation and scaling can be controlled by means of a general transformation matrix 4

h(r)=g(Ar) (A.9)

The diagonal elements of the 3*3 matrix control the individual scaling and off- diagonal

elements are controlling the rotation. The corresponding Radon transform is given by

hO.0.u.v) = glA(sT +ua +vp))ds (A.10)

.'[—_—

[

g(sdr +uda +vAL)ds (A.11)

Il
)

This will in general alter the directional vector 7 of the line, i.e., a new direction vector

1s needed
Ar=y7l7|=1 »=20 (A.12)

The vector 7 defines cf. Eq.5.2 two corresponding angles @ and a , which again

defines the two remaining vectors & and f, cf. Eq.A.12 is inserted into Eq.A.11.

hb,p,u.v)= L l g(sT + A(ua + vp))ds (A.i3)
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The next step 1s to resolve the line offset parameters after the three new tilde vectors,

which again can be done unambiguously.

Alwa +vf)=s 7 ~u,a+ vqﬁ (A.14)

This implies that the 3D line Radon transform is given by

- § e "k - . -
hit?.,a’.f'.u,v)-—ﬂ—} g((s+so)f +u0a+v0ﬂ}is (A.15)
oo N -
=—| 8(57 +u,a@ +v,B)ds (A.16)
-
:_:\{Q-Q'Hosvu) (A.17)
v

where four tilde parameters are given by

: cos @ cos ) l —sinf —sing cos8

7 =|cosdsind = ——AT,; &=| cosf |and E =| - sirln;;sin ) (A.18)
. sino e L0 }‘ cosd

y=ldr. u =a-A-(au+p), v,= E A - (cu + ) (A.19)

The matrix A can be partitioned in three rotational matrices and one scaling matrix

A A AS (A.20)

N

where A, rotates in the y- z coordinates, e.g.

(1 0 0
A, 4 =0 cosw . siny, (A.21)
; 0 —siny  cosy, )

and A4, rotates in the x-z coordinates,e.g.
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Cos L/ 0osiny |

A, =| 0 1 0 J (A.22)

-sinv 0 cosy,

and finally 4. rotates in the x-y coordinates, e.g.

Cosly. siny. 0\|

A. = -sinw. cosy. (A.23)

0
0 0o 1

The scaling matrix S here is chosen to be the lat in Eq.A.20 because the interpretatioﬁ
of the scaling is by far easier when applied directly on the base function g(r). The

matrix can be chosen to
S=1 0 — 0 (A.24)

The scaling parameters in the diagonal are chosen so that they directly relate to
length in the new function /(7). The total rotation and scaling matrix defined in Eq.A.20

multiplied together becomes

; : - \
cosi cosy, cosy, siny, siny,
S, S, S,
gl Cosy.sinw +cosy siny, siny, cosy cosy, —siny siny, siny, cosy siny,
! 5 S, S,
| sinw siny . —cosy , cosy, siny, cosy, siny siny, +cosy siny, Ccosy, cosy,
S, S, S. y,
(A.25)
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A.2. Analvtical Radon Transform of Primitives

Along the basic rules of the 3D line Radon transform it is very useful to have a set of
base 3D functions and their corresponding Radon transform. In the following the Radon
transform of the unit ball and a Gaussian bell are derived. This can be used to produce

more complex functions written as a weighted sum of shifted, rotated and scaled

primitives.

A.2.1. The Ball

The first primitive is the unit ball, i.e.,

{ : I".I for x*+y*+z<l
.\‘. 1.: -8 = - 5
' 0 Jor 2 yteg 2]

(A.26)

Lr .
S hall

Due to the rotational symmetry of the primitive, the corresponding Radon transform
cannot be depend on the two angular parameters § and ¢, thus the Radon transform is
derived in a rotated coordinate system with 7 lying along the x- axis and the vector

r, =ua + v along the v- axis. As illustrated in Fig.A.1, the Radon transform is merely

the distance between the two intersection points between the line and the ball.

Figure A.1 The unit ball with radius 1 and the Radon transform is the length between the two
intersection points between the line and the surface of the ball.
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The length of 7 is vu® +v? | which implies that the Radon transform can be

calculated as

g.-’.‘{.'."." (t_)' (D‘ HA)= 1 g":r:H (S’ Vi : °F vz ‘O s = (A.27)
5. ] 2 2 2 2
" : 2Nl =u” -v for u®+v° <l
Gy (0.9 u1) = A (A.28)
0 for u- +v- 21

A.2.2. The Gaussian bell

The Gaussian bell 1s another primitive, where the Radon transform can be found

analvtically.

(x,v,z) =exp(-x* - y* =2%) (A.29)

o -
© gauss

Again the function has rotational symmetry, hence the Radon transform does not
depend on the angular parameters #and ¢, and the Radon transform can, e.g., be derived

as

- S _ g T
g (B.ouvi=le" " Vds=>g_ (0,0,u,v =\/-f;e o (A.30)
S guuss - g,auss
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APPENDIX B

B THE USAGE OF RECONSTRUCTION TOOLS

A software package has been developed for 3D reconstruction of sinograms (line
integrals), as shown in Chapter 5. The programs described in this Appendix are
compiled both on Linux, and Windows98 operating systems. In Section B.1 the
package of “Recon3D” is explained, which can generate a volume and the
corresponding four- dimensional sinogram from a set of scaled, rotated, and

translated primitives.

B.1. The 3D Reconstruction Program “Recon3D”

The program “Reocn3D” uses the following parameters

e Sinogram [String] Name of the file containing the 4D sinogram. The file
must have the name same as the .ini file, and the extension .f4f (binary format) or
.a4f (ASCII format).

e OrgFile [String] (optional) Name of a volume specifying the sampling
parameters of the reconstructed volume. If given, then error measures will be
computed with respect to this volume.

e Volume [String] Name of the volume to be reconstructed. The file must have
the extension .f3f (binary format), or .a4f (ASCII format).

e Function [String] Parameter specifying the function to be used.

+ FB Direct reconstruction using Filtered Backprojection, result in Volume.
+ FAB Direct reconstruction using Filtering After Backprojection, result in

Volume

¢+ CS Direct reconstruction using Fourier Slice theorem (Experimental). Result in
Volume.

+ Forward Radon transform of volume into Sinogram.

¢+ ART Iterative reconstruction using ART. Result in Volume.

+ EM Iterative reconstruction using EM. Result in Volume.

Bl



Iterations [Integer] For EM the number of iterations before the iteration
ends. For ART the number of full iterations, i.e., the number of actual ART
iterations are Iterations times the number of rows in the system matrix.
Iterative_Par_1 [Float] In ART the initial weight parameter A.
Iterative_Par_2 [Float] In ART the final weight parameter A.
Select_Par 1 [Integer] In Fourier Slice Reconstruction a value of 0 will
choose a nearest neighbour interpolation in the spectrum, and a value of 1 will chose
tri- linear interpolation technique.

Xmin [Float] The minimum value of x in the volume. Only needed if
OrgFile is not specified.

Ymin [Float] The minimum value of y in the volume. Only needed if
OrgFile is not specified.

Zmin [Float] The minimum value of z in the volume. Only needed if
OrgFile is not specified.

DeltaX [Float] The sampling interval of x in the volume. Only needed if
OrgFile is not specified.

DeltaY [Float] The sampling interval of y in the volume. Only needed if
OrgFile is not specified.

DeltaZ [Float] The sampling interval of z in the volume. Only needed if
OrgFile is not specified.

Xsamples [Integer] The number of x samples in the volume. Only needed if
OrgFile is not specified.

Ysamples [Integer] The number of y samples in the volume. Only needed if
OrgFile is not specified.

Zsamples [Integer] The number of z samples in the volume. Only needed if

OrgFile is not specified.

An example of valid ini- file for “Recon3D” is shown below. The ini- file is used to

reconstruct a sinogram El.ini.f4f into El.ini.FB.f3f with the same
sampling parameters as contained in the El.ini.f3f. Here the Filtered

Backprojection is used.
B.2



Sinogram=El Sino.f4f
Volume=El Vol.FB.f3f
OrgFile=El Vol.f3f
Function=FB

Xmin=-2

DeltaX=0.08
XSamples=51

Iterations=5

B.2. The Analytical Sinogram Program “3D_RadonAna”

The program “3D_RadonAna” uses the following parameters.

Xmin [Float] The minimum value of x in the volume.

Ymin [Float] (optional) The minimum value of y in the volume. If not
specified, Xmin is used.

Zmin [Float] (optional) The minimum value of z in the volume. If not
specified, Xmin is used.

DeltaX [Float] The sampling interval of x in the volume.

DeltaY [Float] (optional). The sampling interval of y in the volume. If
not specified, DeltaX is used.

DeltaZ [Float] (optional) The sampling interval of z in the volume. If
not specified, DeltaX is used.

XSamples [Integer] The number of x samples in the volume.

YSamples [Integer] (optional) The number of y samples in the volume.
If not specified, XSamples is used.

ZSamples [Integer] (optional) The number of z samples in the volume.
If not specified, XSamples is used.

USamples [Integer] The number of # samples in the sinogram.

VSamples [Integer] (optional) The number of v samples in the

sinogram. If not specified, USamples is used.



DeltaU [Float] The sampling interval of u in the sinogram.

DeltaV [Float] The sampling interval of v in the sinogram. If not specified
DeltaU is used.

Phisamples [Integer] The number of ¢ samples in the sinogram. This
number will be distributed from ¢, =—y =—PhiLimit to —@_. =i = PhiLimit .
PhiLimit [Float] The axial acceptance angle ¥ (measured in degrees).

GenerateVolume If set to O then the volume will not be generated, and if 1 it

will be.

GenerateSinogram Ifset to O then the sinogram will not be generated, and if 1,

then 1t will be.

NumberOfShapes Number of primitives used.

The ordering of parameters shown above is arbitrary. After these parameters a
number of lines must follow specifying a scaling, rotation, and shifting parameters of

each primitive. The line uses the following parameters in this order

Shapei [String] whereiis0to NumberOfShapes

Type [Integer] The type of primitive, where

+ 1 A ball centered around (0,0) with radius 1 and uniform signal 1 in the ball.
+ 2 A 3D Gaussian bell exp(-x*-y*-z°)

offx [Float] Shift of of the primitive in the x-axis.

offy [Float] Shift of of the primitive in the y-axis.

offz [Float] Shift of of the primitive in the z-axis.

rotx [Float] Rotation angle of the primitive around the x-axis.
roty [Float] Rotation angle of the primitive around the y-axis.
rotz [Float] Rotation angle of the primitive around the z-axis.
scalx [Float] Scaling of the primitive in direction of x-axis.
scaly [Float] Scaling of the primitive in direction of y-axis.
scalz [Float] Scaling of the primitive in direction of z-axis.

power [Float] Scaling of the value of primitive.
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B.3. The Functions used in “Recon3D”

¢ Recon3ddeneme2.cpp
This is the central program, which contains routines to call the main calculation

routines. It reads the specified IniFile.ini file and executes one of the following

functions:

ffl Central Slice (CS) experimental!

ffl Filtered BackProjection (FB).

ffl Filtering after BackProjection (FAB).

ffl Algebraic Reconstruction Technique (ART).
ffl Expectation Maximization (EM).

ffl Convert between ASCII and Binary (Convert).

ffl Numerical Radon Transform (RT).

e (CSreconstruct3D

Synopsis : void CSreconstruct3D(void)
Description : The function implements the Fourier Slice Theorem
Usage : CSreconstruct()

e FABreconstruct3D

Synopsis : void FABreconstruct3D(void)
Description :The function implements filtering after backprojection.
Usage : FABreconstruct()
e FBreconstruct3D
Synopsis : void FBreconstruct3D(void)
Description : The function implements filtered backprojection.
Usage : FBreconstruct()
e ART3D
Synopsis : void ART3D(void)
Description : The function implements 3D ART.
Usage : ART3D()
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e EM3D

Synopsis
Description
Usage
Forward3D
Synopsis
Description
integrals.
Usage

Note
Convert
Synopsis

Description

: void EM3D(void)
: The function implements 3D EM.
: EM3D()

: void Forward3D(void)

: The function implements a numerical calculation of the line

: Forward3D()
: Uses the OrgFile to specify the 4D Sinogram.

: void Convert(void)

:The function converts the Volume and Sinogram from ASCII to

binary or opposite depending on the types. The function writes in the same

filenames with opposite extentions.

Usage

: Convert ()

B.4. Functions Used in “3D_RadonAna”

This program generates Volumes and corresponding four-dimensional sinograms of

line integrals.

Currently two basic functions can be used. Either a uniform ball or a Gaussian 3D

bell. Both can be scaled, rotated, and shifted and put together with an arbitrary

number of objects.

init

Syncpsis : void init (void)

Description : The function will initialize and read the .ini-file.
MakeVolume

Synopsis void MakeVolume (void)

Description : The function will generate the volume.
MakeSinogram

Synopsis : void MakeSinogram(void)

Description

: The function will generate the 4D-Sinogram.
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B.5. Additional Functions used in both Packages

e GenerateTrigDef
Synopsis : TrigDef * GenerateTrigDef{(
int ThetaSamples, PhiSamples, Usamples, VSamples,
float Thetamin, Phimin, Umin, Vmin,
float DeltaTheta, DeltaPhi, DeltaU, DeltaV)
Description : This function returnes a TrigDef with proper trigonometric arrays
defined. The structure is used for 3D reconstruction from line integrals.
Usage
MyTrigDef=GenerateTrigDef(ThetaSamples,PhiSamples,USamples,VSamples,
Thetamin,Phimin,Umin,Vmin, DeltaTheta,DeltaPhi,DeltaU,DeltaV);
e GenerateXYZ
Synopsis : XYZDef * GenerateXYZ(
int Xsamples, YSamples, ZSamples,
float Xmin, Ymin, Zmin,
float DeltaX, DeltaY, DeltaZ)

Description : This function returnes a XZYZDef with proper arrays defined for
sampling the volume domain. The structure is used for 3D reconstruction from line
integrals.

Usage

MyXYZDef=GenerateXYZ(XSamples,Y Samples,ZSamples, Xmin, Ymin,Zmin,
DeltaX,DeltaY,DeltaZ);
e GenerateXYZ fromMultiStruct
Synopsis :XYZDef *GenerateXYZ_fromMultiStruct(
MultiStruct *MyMultiStruct)
Description : The function generates the XYZDef from a three dimensional

MultiStruct.
Usage : MyXYZ=GenerateXYZ fromMultiStruct(MyMultiStruct);
Note :See GenerateXYZ.
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e GenerateXYZ fromIniFile

Synopsis : XYZDef *GenerateXYZ_fromIniFile()

Description :The function generates the XYZDef from data from the IniFile
Usage : MyXYZ=GenerateXYZ fromlIniFile();

Note :See GenerateXYZ

e GenerateTrigDef fromMultiStruct
Synopsis :TrigDef *GenerateTrigDef fromMultiStruct(
MultiStruct *MyMultiStruct)

Description :The function generates the TrigDef from a four dimensional

MultiStruct.
Usage :MyTrig=GenerateTrigDef fromMultiStruct(MyMultiStruct);
Note :See GenerateTrigDef

e CSrebin3D TL
Synopsis :MultiStruct * CSrebin3D_TL(MultiStruct*,TrigDef* XYZDef*),
Description :Calculates the two-dimensional Fourier transformation of a

sinogram (for each combination of angles). This sinogram is distributed in the
Fourier space of the reconstructed volume with tri linear interpolation. (Central Slice
ifea).
Usage :RecVol=CSrebin3D TI(Sinogram,MyTrig MyXYZ);
Reconstructs the volume from the sinogram using central slice theorem for lines in a
three dimensional space.

e CSrebin3D_ NN
Synopsis MultiStruct * CSrebin3D_NN(MultiStruct*, TrigDef*, X YZDef*);
Description : Calculates the two-dimensional Fourier transformation of a
sinogram (for each combination of angles). This sinogram is distributed in the
Fourier space of the reconstructed volume. (Central Slice ifea).
Usage : RecVol=CSrebin3D NN(Sinogram,MyTrig, MyXYZ);
Reconstructs the volume from the sinogram using central slice theorem for lines in a
three dimensional space.

e NumericalRadon3D Restore

Synopsis : MultiStruct* NumericalRadon3D—Restore(MultiStruct
*MyRadon, MultiStruct *InVolume, TrigDef *MyTrig)

B.8
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Description :The function will numerically calculate line integrals through a

three dimensional volume. The sampling of the Radon domain is given through

MyTrig.
Usage :NumericalRadon3D(MyRadon,InVolume,MyTrig);
Note :Uses bilinear interpolation. Requires that the Sinogram

(MyRadon) is allocated. See also NumericalRadon3D.

NumericalRadon3D

Synopsis :MultiStruct* NumericalRadon3D(MultiStruct *InVolume, TrigDef
*MyTrig)
Description : The function will numerically calculate line integrals through a

three dimensional volume. The sampling of the Radon domain is given through

MyTrig.
Usage : MyMultiStruct=NumericalRadon3D(InVolume,MyTrig);
Note : See NumericalRadon3D Restore.

NumericalRadon3D_OneSampl_ NN

Synopsis : int NumericalRadon3D—OneSample—NN(VolWeight * TrigDef
* XYZdef *, int,int,int,int)
Description :The function will numerically calculate line integrals through a

three dimensional volume ONLY at one samples in the parameter domain. The
function will number of samples and in the first parameter the indices and weight
factors corresponding to the voxels. The sampling of the Radon domain is given
through MyTrig. uuint, vvint, thetaint and phiint determines the sample in the
parameter domain. The function will return in VolWeight, which must be externally

be allocated with at least a length of maxfXSamples, YSamples, ZSamplesg.

Usage :NoOfSamples=NumericalRadon3D OneSample NN(MyWeight,
MyTrig, MyXYZ, int thetaint, int phiint int uuint, int vvint);

Note :Uses currently nearest neighbor interpolation. See also
NumericalRadon3D.

NumericalRadon3D_OneSample_ BL

Synopsis :int NumericalRadon3D—OneSample—BL(VolWeight * TrigDef

* XYZdef *, int,int,int,int)
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Description :The function will numerically calculate line integrals through a
three dimensional volume ONLY at one samples in the parameter domain. The
function will number of samples and in the first parameter the indices and weight
factors corresponding to the voxels. The sampling of the Radon domain is given
through MyTrig. uuint, vvint, thetaint and phiint determines the sample in the
parameter domain. The function will return in VolWeight, which must be externally
be allocated with at least a length of maxfXSamples, YSamples, ZSamplesg.

Usage : NoOfSamples=NumericalRadon3D OneSample BL(MyWeight,

MyTrig, MyXYZ, int thetaint, int phiint int uuint, int vvint);
Note : Uses bilinear interpolation. See also NumericalRadon3D.

BackProject3D_Restore

Synopsis : void BackProject3D—Restore(MultiStruct *MyVol,
MultiStruct *My4D, XYZDef *MyXYZ, TrigDef *MyTrig)
Description : The function will backproject a 4D set of line integrals through a

3D volume. (See Chapter 5.)

Usage : BackProject3D Restore(MyVolume My4D MyXYZ MyTrig);
Note :‘This function requires that the volume has been allocated
elsewhere.

BackProject3D

Synopsis :MultiStruct *BackProject3D( MultiStruct *My4D, XYZDef
*MyXYZ, TrigDef *MyTrig)

Description :The function will backproject a 4D set of line integrals through a
3D volume. (See Chapter 5)

Usage : My3D=BackProject3D(My4D,MyXYZ ,MyTrig),

Note : See also BackProject3D Restore

Searches for an entry "Function' in [niBuffer, and returns its value in Function.

MultReStore
Synopsis : void MultReStore(float *p1,float *p2)
Description : The function will multiply the two complex numbers A and B and

store the result at the location of A. Here A =p1[0] +ipl[1] and B = p2[0] + i p2[1].
Usage : MultReStore(arr1,arr2);

Preforms the multiplication arrl=arr1*arr2.
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e MultNew

Synopsis : void MultNew(float *p1,float *p2,float *p3)

Description : and B, so that C = AB. The result is stored at the location of C.
Here A =pl1[0] +1ipl[1], B=p2[0] +ip2[1] and C =p3[0] + i p3[1].

Usage : MultNew(arr1,arr2,arr3);

Preforms the multiplication arr3=arr1*arr2.

e FindSignalIndexInMultiStruct

Synopsis : int FindSignallndexInMultiStruct(int *Indices,int *Samples,int
Dimensions)

Description : Returns index in MultiStruct-?Signal for the multidimensional

element with indices Indices. Applies to MultiStruct of type RealArray.

Usage :Myindex=int FindSignallndexInMultiStruct(Indices,Samples,Dim)

Note : See FindIndicesInMultiStruct for the opposite function.

e FindIndicesInMultiStruct
Synopsis : void FindIndicesInMultiStruct(int *Indices,int *Samples,
int index,int Dimensions)
Description : Returns indeces in for the multidimensional element with index

Index in MultiStruct->Signal. Applies to MultiStruct of type RealArray.

Usage : FindSignallndexInMultiStruct(Indices,Samples,index,Dim)
Note : See FindIndexInMultiStruct for the opposite function.
e SliceMultiStruct
Synopsis : MultiStruct * SliceMultiStruct(MultiStruct *InMultiStruct,int *
CutVector)
Description : The function returns a slice of InMultiStruct corresponding to

CutVector which is of same dimension. Is the 1'th element of CutVector is negative
that dimenion is unchanged. If positive elements with that position is chosen. The
number of non-negative elements determine the dimension of the returned
MultiStruct.

Usage : MyMulti=SliceMultiStruct(InMultiStruct,CutVector)

e SubtractMultiStruct
Synopsis : MultiStruct * SubtractMultiStruct(MultiStruct * MultiStruct *);
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Description : This function will subtract the second MultiStruct from the first. It

is checked whether the two are of same size.

Usage : DifNewMultiStruct=SubtractMultiStruct(MyMult1,MyMult2);

L2 measure

Synopsis : float * L2—measure(MultiStruct * MultiStruct *);

Description : This function will return the variance estimate of the difference,

1.e.,, the squareroot of the second order measure of misfit between the two

MultiStructs. It 1s checked whether the two are of same size.

Usage : MyL2=L2 measure(MyMult1,MyMult2);

StatMultiStruct

Synopsis : void StatMultiStruct(MultiStruct *,float *, float*);

Description : This function will return the mean estimate and the deviance

estimate of the MultiStruct.
Usage : StatMultiStruct(MyMulti,&MyMean,&MyDev);
where MyMean, MyDev are of type float.

ReadFIF
Synopsis : Image *ReadFIF(char *FileName),
Description : The function reads a picture in .fif format (raw float with header)

from the file 'FileName.fif'. All memory allocation is done internally. A pointer to

the new image is returned.

Usage : Test = ReadFIF("Test");

Reads the image Test.fif and return the pointer in Test.

WriteFIF

Synopsis : void WriteFIF(Image *MyImage);

Description : The function writes a picture in .fif format. The name of the saved

image is determined by Mylmage->FileName. The file extension is appended to
the filenames in all the “write' routines.

Usage : WriteFIF(Test);

Write the image Test to a .fif file .

WriteMultiStruct
Synopsis : void WriteMultiStruct(MultiStruct *MyMultiStruct)
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Description :The function will save the MultiStruct to the disc under the
filename contained in the structure. A file extension .f<N>f is added, where <N>

is the dimension.

Usage : WriteMultiStruct(MyMultiStruct);

ReadMultiStruct

Synopsis : MultiStruct * ReadMultiStruct(char *FileName,int Dim)

Description : The function will read a MultiStruct with filename
FileName.f<Dim>f.

Usage : MyMultiStruct=ReadMultiStruct("My3D",3);

This will read My3D.f3f.

Iterative ART_3D

Synopsis :MultiStruct * Iterative—ART—3D(MultiStruct *, X YZDef *,float)

Description : This function will estimate the reconstructed volume using ART

in a three dimensional version. The function will return the reconstructed volume.

The input parameters are: The 4D sinogram, a XYZDef defining the sampling of the

volume and the last parameter determines the number of iterations relative to the

number of samples in the 4D sinogram.

Usage : MultiStruct * Iterative ART 3D(MultiStruct *MyRadon,
XYZDef *MyXYZ, float maxiterations)

Iterative_EM 3D

Synopsis : MultiStruct * Iterative EM_3D(MultiStruct *, XYZDef * float)

Description :This function will estimate the reconstructed volume using EM in

a three dimensional version. The function will return the reconstructed volume. The

input parameters are: The 4D sinogram, a XYZDef defining the sampling of the

volume and the last parameter determines the number of iterations relative to the

number of samples in the 4D sinogram.

Usage : MultiStruct * Iterative ART 3D(MultiStruct *MyRadon,

XYZDef *MyXYZ, float maxiterations)
WindowVolume

Synopsis : void WindowVolume(MultiStruct *My3D,int width)
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Description : The function windows a volume with a Hann window in all three
directions. The parameter width determines how many samples are altered measured

from the edges.

Usage : WindowVolume(InVolume,5);
Filter4DSinogram
Synopsis : void Filter4DSinogram(MultiStruct *My4D, TrigDef *MyTrig,

float PhiMin, int WindowParam, float Relative filtercutoff)
Description : The function will apply a highpass filter to the images (u,v) for
each (6 ¢@). The parameter PhiMin determines the limiting #-angle in the geometry
2y. The parameter WindowParam controls the windowing. If set to 0 no
windowing is done. If set to 1 pre-windowing is done. A cubic Hann- window is used

to reduce the edge artifacts.

Usage : FilterdDSinogram(My4D,MyTrig,PhiMin,0);

FilterVolume

Synopsis : void FilterVolume(MultiStruct *My3D,float psi)

Description : The function will filter a given volume with a high pass filter. The

function is intended for a filtering after backprojecting algorithm.

Usage : FilterVolume(InVolume,-MySinogram->psi_min);
ComplexNdimFFT
Synopsis : void ComplexNdimFFT(float *data, unsigned long *nn,

int ndim, int isign);
Description : Calculates the n-dimensional Fourier transformation of a n-
dimensional data structure in data. (See (Press et al.1989) pp. 523-524 for a complete
description). Data are stored in sequence in data. The dimensions in dim, where
dim[1] is the size in the first direction, and so on. . .
Usage : ComplexNdimFFT(&Test[-1],&dim[-1],3, _FFT);
Calculates the 3-dimensional FFT of the image stored in data.

Note :Be sure that dimensions is powers of two. See also NewNdimFFT.
BoxFilterVolume

Synopsis : void BoxFilterVolume(MultiStruct *My3D,int hwidth)
Description : The function filters a volume with a cubic box filter with width

equal 2*hwidth+1 in all three directions.
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Usage : _WindoonImne(InVolume,S);

NdimFFT
Synopsis : void NdimFFT(float *data, int *nn, int ndim, int isign);
Description . Calculates the n-dimensional Fourier transformation of a n-

dimensional data structure in data. (See (Press et al. 1989) pp. 523-524 for a
complete description). Used by FFTImage. Data are stored in sequence in data. The
dimensions in dim, where dim[0] is the size in the first direction, and so on. . . This
function is meant to give a simpler interface (no old-fortran shift problem) to
ComplexNdimFFT.

Usage : NdimFFT(Test,dim,3, FFT);

Calculates the 3-dimensional FFT of the image stored in data.

Note : Be sure that dimensions is powers of two. See also

ComplexNdimFFT.
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