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ABSTRACT

In this work, mainly, the first step of craniofacial surgical simulation and planning

procedure, reconstruction of tomography images is investigated. The Direct

Reconstruction techniques and algebraic methods are described in detailed

mathematical formulations for both two and three-dimensional cases.

And also a brief description of medical imaging techniques and the terminology of

craniofacial surgical simulation and planning is given.

In the last chapter the implementation details, the algorithms developed and some

resulting images are given and the images are compared with respect to the used

algorithms.

III



oz

Bu ((ah~mada, ana olarak, kafatasmm operasyon oncesi modelJenmesi ve

operasyonun planlanmasl i~leminin ilk a~amaSI olan tomografik resimlerin ii9 boyutJu

yeniden yapIlandmlmasI incelenmi~tir. Bu dogrultuda, iki ve ii9 boyutlu ortamlar i9in,

dogrudan yontemlerle birJik.'1ecebirseI yontemler de detayh matematikseI formiilJerJe

ifade edilmi~tir.

Aynca, tlpta goriintiileme yontemleri ve kafatasmm operasyon oncesi modelJemnesi

ve operasyonun planlanmasl konulan ozetlenmi~tir.

<;ah~manm son boliimiinde ise, uygulama detaylan, geli~tirilen aIgoritmalar, bu

algoritmalar uygulanarak elde edilen resimler ve kar~Ila~tmlmalan sunulmu~tur.
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STYLE CONVERSIONS

• Equation has been abbreviated to Eq. Likewise Equations Eqs.

• The letters m,n,k,h,l are used to denote the integer type variables, and x,y,z denote

continuous type variables.

• Vectors are denoted by bold- faced small letters or Greek letters, as b or ~ .

• Transpose of a vector is shown as bT •

• Matrices are denoted by bold- faced capital letters, like A. A real valued matrix with

1 rows and J columns are denoted A E IR IxJ. The individual elements are aij

corresponding to row i and column).

• Vectors are always column vectors, and ith rows of the matrix are denoted ai ,i.e.

A = ...
aT

I

• Algorithms will use the Courier font.

• The delta function is denoted by 5(.).

• The Hamilton step function is denoted by ,u(.). The function is zero if the argument

is negative, and one if the argument is positive.

• Fourier transform pairs are marked as get) ~ G(f).

• In equations convolutions aredenoted by * for a one dimensional, * * for a two

dimensional, and * * * for a three dimensional convolution.

• In the algorithms no convolution is found, * is used for multiplication.

• The scalar product between to (column) vectors a and b are denoted by a . b = aT b

FUNCTIONS AND VARIABLES

• The object functionand the reconstructed function f('e,y)

• Projection angle e

v



• Projection axis, sinogram r

• The sino gram or Radon transform p(r, ())

• The filtered sino gram q(r, (})

FOURIER TRANSFROMS

• A functionj(x,y)

• The ID Fourier transform ofj(x,y) in the first variable F(X,y)

• The ID Fourier transform ofj(x,y) in the second variable F(x,}j

• The 2D Fourier transform ofj(x,y) F(X, 1)

• The ID Fourier transform F(X) = [",j(x)e-J2IV\Xdx

• The ID inverse Fourier transform j(X) = [", F(x)eJ271:Xx dX

• The 2D Fourier transform F(X, Y) = [", [", j(x, y)e-J2Jr(xt+Yy) dxdy

• The Fourier transform operator :J

• The Radon transform operator 9t

• The inverse Fourier transform operator :J-1

• The inverse Radon transform operator 9t-\

• The Fourier transform in the r-variable :Jr

• The inverse Fourier transform in the R- variable :J~I

DEFINITIONS

• Radon Space:

Projection datap(r, fJ) put in the (x,y) space where ('C,y)= (rsin B, rcos())

• Sinogram projections:

Parallel equidistant projection data taken at equidistant angles ()

• Linogram projections:

Parallel projection data taken in equidistant tane- steps for -450<=()<=45°, an din

equidistant -cote- steps for 45°< = ()< = 135°. The projection data are equidistant

within each projection, but varies between the projections with the sample distances

as follows, const· cos() for-450<=()<=45°, and const· sin() for 45°< =()< =135°.
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CHAPTER 1

INTRODUCTION

Medical imaging technologies are altering the nature of many medical professions

today. During the last decade, many radiology departments have installed powerful

imaging equipment for imaging modalities like Magnetic Resonance (MR), Computed

Tomography (CT), and Positron Emission Tomography (PET). These systems have

spawned new specialities, and have fundamentally changed the way many diseases are

diagnosed, and even the way they are treated.

Smaller CT scanners are being marketed by the imaging system manufacturers, who

expect such systems to be increasingly used at clinical department instead of at

centralized radiology departments. In addition, cheap Ultra Sound (US) systems are

increasingly being used in the clinical departments.

Unfortunately, although the "mechanical" equipment has seen a dramatic

development, the real power of these systems has not been released. The software and

knowledge, needed to take full advantage of the imaging systems, has not followed the

development of hardware.

It is, therefore, still not unusual that hospitals, even with powerful expensive 3D

scanners, only have diagnostic procedures for handling 2D image slices. In addition,

when hospitals do use the 3D reconstruction capabilities of the scanners, the available

software is not sufficiently flexible and advanced, to allow real interaction with the 3D

image data and provide useful support for diagnosis.

Only advanced medical imaging research laboratories, which have their own

software development capability and access to the latest technology through technical

partners, are today able to explore more advanced uses of the 3D images produced by

the scanners. Typical for those laboratories has been a specific focus on technical

research. The groups have participated in large technical advanced research projects, ie.

European Union projects, and have built up the necessary technical expertise through

these projects.

But from these research projects, and other research that is being performed in the

field of medical imaging, new technology is becoming available. Recent years have



seen the development of many image processing, and computer graphics algorithms.

Algorithms that ultimately will lead to better medical imaging software for diagnosis,

treatment planning, surgery training, and surgery assistance.

The work I proposed may be named as "passive aided surgery" in a way as in

(Subsol 1995). It is passive in the sense that the computer aids the surgeon by

displaying useful information but does not intervene in the diagnosis or surgery process

itself.

If atlas visualization and registration are added to a surgery simulation program

(craniofacial surgery (Delingette et aL 1994) or stereotactic surgery (Hardy 1994)), the

user can manipulate more easily the patient data thanks to automatic labelling and to

contrast the patient data with the normalized atlas. A medical doctor can then plan

surgical procedures.

Moreover if the registration algorithm can work in real time (at least a frequency

level of hertz), it becomes possible to superimpose the visualization of the atlas on the

real image of the surgery. This is the principle of "enhanced reality" developed by

several teams.
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CHAPTER 2

l\IEDICAL IMAGING

The study of medical imaging is concerned with the interaction of all forms of

radiation with the tissue and the development of appropriate technology to extract

clinically useful information from observations of this interaction. Such information is

usually displayed in an image format. Medical images can be as simple as a projection

or shadow image or complicated as a computer reconstructed image- as produced by

Computerized Tomography (CT) using X- rays or by Magnetic Resonance Imaging

(MRI) using intense magnetic fields.

Although strictly speaking, medical Imagmg began in 1895 with Rontgen' s

discoveries of X- rays and the ability of X- rays to visualize bones and other structures

within the living body, contemporary medical imaging began in the 1970s with the

advent of Computerized Tomography. Early or what we called classical, medical

imaging utilizes images that are a direct manifestation of the interaction of some form

of radiation with tissue. First example of classical imaging, the conventional X- ray

procedure in which a beam of X- rays is directed through the patient onto a film. The

developed film provides a shadow image of the patient which is a direct representation

of the passage of X- rays through the body.

As a second example, think over a conventional nuclear medicine procedure. A

radioactive material is injected into the patient and its course followed by a detector,

which is moved over the patient in a specified manner. It provides a measure of

physiological function from the time course of radioisotope uptake. The conventional

nuclear medicine image is a direct measure of location and concentration of the

radioactive isotope used.

As a final example of classical medical imaging, consider conventional medical

ultrasound. Here, a pulse of ultrasonic energy is propagated into the patient and the

backscattered echo signal is recorded by the same transducer. By angulating or moving

the transducer positionally sequential echo signals are recorded, and a cross-sectional

image of the subject is displayed directly on a video monitor. Ultrasound images are

3



really a mapping of echo intensities and are a direct result of the interaction of the

ultrasound pulse with tissue (Cho et al. 1993).

2.1.Computed Tomoeraphy (eT)

Computed Tomography (CT) is an outstanding break- through in technology as well

as in medical diagnostics. Its global success paved the way for a new scientific

discipline called imaging, which encompasses such more recent developments such as

Synthetic Aperture Radar (SAR) and Magnetic Resonance Imaging (MRI).

The meaning of the word Computed Tomography is as follows. According to

Webster's dictionary tomography comes from the Greek word tomos, meaning slice or

section, and the Greek word graphein, meaning to write. Computed comes from the

demand of heavy computation.

Although CT is a general technique, its history is strongly related to the use of X- ray

imaging in medicine. The history of CT may be summarised by the following events.

1895

1901

1917

1914- 32

1972

1974

1978

1979

William K. Rontgen discovers X- ray emission

Rontgen receives the first Nobel prize in Physics for this discovery

Radon fommlates a new mathematical 2D- transform

Development of classical tomography

Hounsfield gets patent on the first CT scanner usmg an algebraic

reconstruction method

The Filtered Backprojection Method (FBM) starts to replace algebraic

reconstruction techniques in commercial CT scanners

Third generation fanbeam tomography with FBM is establihed

Hounsfield and Cormack receives the Nobel prize in medicine for CT.

Although Rontgen was unaware of the fact, X- rays are electromagnetic (EM) waves
o

in the interval 0.5 to 10.2 A. These EM waves are well suited for attenuation

measurements in the human body. Waves with longer wavelengths, such as light, are

too much attenuated and shorter wavelengths, such as gamma rays, are transmitted

almost completely without attenuation. In addition, to obtain a reasonable Image

IIZMIR YUKS[K It.~NUL~.Ji¥t~\JllIU:)t;
I REKTORlUCUI
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resolution, the wavelength must at length be less then 1 mm. The X- rays satisfies also

this demand.

Figure 2.1 Recording of an X- ray image of the human head.

X- ray transmission images are obtained by placing the patient between an X- ray

source and an image detector, Figure 2.1. The X- rays travel through the human body

where they are attenuated. When they hit the detector, a picture is produced where the

contrast is produced by different attenuation for different rays. By the unexperienced

viewer, the X- ray image is normally perceived as a "negative".

Tomography was invented surprisingly early. In order not to confuse this kind of

tomography with the much later developed computed tomography, the first kind of

tomography will be called classical tomography. By classical tomography it is possible

to obtain a sharp picture of a specific plane of the body, while all other planes are

rendered unsharp by blurring in proportion to their distance from the specific plane.

Classical tomography is obtained by moving the X- ray source and the image

detector in relation to the patient in such a way that the image of the specific plane is

projected on to the detector without motion. The images of all other planes are thus

depicted with blur. The simplest form of classical tomography is linear tomography,

shown in Figure 2.2.

The X- ray source and the 2D detector move during the exposure along linear paths

synchronously and in opposite directions. They move in different planes, parallel to

each other and to the specific plane. Related techniques employ circular (circular

classical tomography) or spiral movements of X- ray source and detector.

5



X-ray
focus

object plane
with detail
which should
be reproduced
sharply

In the image, the ob­
ject plane with detail is
reproduced sharply,
but the detail outside
the plane is repro­
duced as a blurred line
shadow.

Figure 2.2 Linear classical tomography

In classical transversal tomography cross- sections of the human body are

depicted. The source and the detector move in circles around the patient, parallel to each

other and to the specific plane. In one kind of transversal tomography, the source, the

specific plane, and the detector are in the same plane so that the specific plane is

projected from edge to edge onto the detector. This kind transversal tomography was

never implemented commercially, but may be considered as a precursor to computed

tomography. The principle of projection recording in transversal tomography is shown

in Figure 2.3. Here the object or the patient moves in a circle, instead of the source and

the detector, but the effect is the same.

sinogram

Figure 2.3 A special kind of classical transversal tomography. The projection recorder.

6



The image obtained after the recording of the projections is called a sinogram. a

series of 1D projections piled on top of each other. To get a real image of the cross­

section. post- processing or so called back- projection must be performed, where 1D

projections are smeared back over the image plane. One way to do is to use an analog

mechanical optical device shown in Figure 2.4.

Figure 2A The backprojector

Many of the early inventors of computed tomography (CT) had very little

knowledge about the long development of classical tomography. In CT, object outside

the cross- section will not influence the image as in classical tomography. Neither will

objects in the cross- section be smeared out as in that special type of transversal

tomography mentioned above. In fact, theoretically the cross- section can be

reconstructed perfectly without smearing or blurring.

The basic reconstruction problem in CT is to find the 2D function j(x,y) from the

complete set of line integrals p(r, B) through the function. As was pointed out in 2.1 this

is s problem of inversion, and it has been solved independently in different ways by a

number of researchers working in very different fields. Cormack has made a search in

the literature for early contributions. He found that the Dutch physicist H. A. Lorenz

was probably the first to find a solution according to a: reference from Bockvinkel 1906.

As mentioned above, in 1917 Johann Radon found a solution. After him the problem

is often c:llled the Radon' s problem The complete set of line integrals through the

functionjfx,y) is called the Radon transform, and the Radon's solution of the problem

is called Radon's inversion formula. The difficulty with the Radon inversion formula is

7



that it does not produce an obvious solution to a working algoritlun, due to a zero

valued denominator for lines through the origin.

The first implementation of a solution to Radon's problem to be used in practice was

made in 1956 by Ronald Bracewell in the field of radio astronomy. He reconstructed the

radiation distribution of the sun disk from line integral across.

In 1958, B. 1. Korenblyum, S. 1. Tetelbaum, and A. A. Tyutin wrote an article in

Russian where the Radon problem was solved and a suggestion was made for applying

the solution to X- ray CT. Unfortunately, this article remained unknown to the western

research community until the eighties.

In 1963, Allan Cormack published a working algorithm for calculating a CT image.

At that time virtually no one paid any attention to his article.

In 1969, Hounsfield applied for a patent on the first computerized tomography

scanner. The reconstruction technique he used was an algebraic reconstruction method.

The paten was granted 1972.

For their discoveries in the field of computed tomography, Hounsfield and Cormack

received the Nobel prize in medicine 1979.

Up to 1969 it seems that all researchers m the field worked independently and

without knowledge of each other. The commercial activities grew steadily from 1970

and onwards.

In commercial CT scanners the algebraic reconstruction methods began to be

replaced by the FBM around 1974. It was shown that the processing time as well as the

image quality (for good projection data) was much better for the FBM than for algebraic

methods.

The first and second generation CT- scanners generated parallel projection data using

a slow and photon wasting procedure. The third generation, the fan beam tomography

scanners introduced in 1978, generated so called fanbeam projection data, where all

rays in one projection originating from the same source point. The reconstruction

method used for fanbeam tomography was a modified, more complicated FBM. In a

third generation CT scanner (shown in Figure 2.5a), both the X- ray source and the

detector array rotates synchronously around the patient. In a fourth generation CT

scanner only the X- ray tube rotates around the patient inside a ring of stationary

detectors (Figure 2.5b)
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In the early fanbeam scanners the fanbeam projection data were interpolated to

parallel data (so called rebinning) before reconstruction so that a parallel filtered

backprojection algorithm could be employed. Nowadays it is more usual to apply a

fanbeam filtered backprojection algorithm directly on the projection data. These

algorithms are somewhat more complicated than the parallel algorithm and were first

developed by Lakshminarayanan for equispaced collinear detectors and later by Herman

and Naparstek for equiangular rays. The benefit of no rebinning seems to outweigh the

increase in complexity.
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Figure 2.5 Cross- section of the X- ray source, the patient, and the detectors in (a) a third
generation CT scanner, (b) a fourth generation CT scanner.

A high quality X- ray CT scanner of 1993 typically has the following technical data

• Type of X- ray beam: fanbeam

• Number of projections: approximately 1000

• Number of detector values per projection: approximately 700

• Reconstructed image format: 512 *512 pixels

• Dynamic intensity range in reconstructed image: 12 bits

• Data acquisition per slice: 1-2 seconds

• Reconstruction time per slice: 2-5 seconds

• Cost: 0.5- 1M$

X- ray CT has its widest use in medicine, but CT is also used in Industrial

applications in the field of nondestructive testing (NDT) of industrial parts and

materials. There are now several companies, mostly in USA, which produce special
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industrial CT - scanners. Typically, the applications for NDT concerns expensIve

products, safety demanding applications and material development, for instance

checking the quality of ammunition, inspection of turbo- blades for aeroplane engines.

and testing of composite- and powder- material products.

3D- imaging is of interest for both medical and industrial applications. The common

technique today to obtain an image volume is rather primitive. It is performed by

moving the patient couch stepwise through the CT scanner ring and collects the

projection data for a whole set of 2D- slices. The disadvantage with this procedure is

that it is slow and that the resolution from slice to slice usually is much lower than the

resolution inside 2D- slices.

A faster method is to use is so called helical scanning which gives a whole set of

projections in a comparatively short data acquisition time. The patient is translated

slowly and linearly through the CT- scanner ring. Simultaneously the X-ray source and

detector rotates continuously. The net result is a helical or spiral movement around the

patient, which supplies projection data for a whole set of slices. The spiral projection

data have to be interpolated to a set of 2D- slice projection data aligned in the same

plane. The reconstruction of each individual 2D- slice can then be done with

conventional 2D techniques.

The fastest 3D data acquisition method is cone beam scannmg instead of the

conventional fanbeam scanning. Initially, all X- ray sources generate conebeam rays. To

obtain fanbeam rays, most of the conebeam rays are screened off. A conebeam source

requires a 2D detector, see Figure 2. 6.

_Object

Figure 2. 6 (a) Fanbeam scanner (b) Conebeam scanner

Exact reconstruction of 3D- volumes from the 2D-conebeam projection data is not a

straightforward matter, however. The conventional FBM for parallel or fanbeam

projection data consisting of filtering of projection data followed by backprojection

10



along the projection rays. Attempts have been made to extend this method to conebeam

projection data. The result is a 3D-image volume with varying image quality from a

perfect reconstruction of the central slice to heavy artifacts in the parts illuminated at

large cone- angles. One reason for the bad image quality is rather fundamental. A

conebeam source moving circularly around the object cannot give sufficient projection

data for a perfect reconstruction. This is the problem of missing data. The projection

data can be made complete in various ways, for instance, by adding a vertical line

movement at source at right angle to the circular path. The exact mathematical solution

to the reconstruction problem of conebeam projection data was given in (Kudo and

Saito 1990, Grangeat 1991).

2.2. SPECT

Conventional CT images the attenuation of X- rays in an object slice. Emission CT,

on the other hand, images the distribution of a radioactive isotope inside an object slice.

One technique is called SPECT (Single Photon Emission Computed Tomography),

where one single gamma photon is emitted for each nuclear event. SPECT is well

described in the literature, see for example (Kok and Slaney 1987)

The data acquisition starts by depositing isotopes in the patient. The isotopes are

injected or inhaled in the form of radio- pharmaceutical. After some time these

substances tend to aggregate and deposit themselves in specific organs and tissues. The

concentration of the isotope can then be imaged by measuring the gamma photons

originating from radioactive decay of the isotope.

As the concentration of the isotope changes with time not only due to radioactive

decay, but also because of flow and biochemical kinetics within the body, functional

properties of the human body can also be measured. However, its important that the

time constant of these human functions is large enough to measure a sufficient number

of gamma photons for computation of one 3D image.

The geometry of SPECT is shown in Figure 2.7. The radioactive isotopes have

migrated and accumulated in a specific area in the patient. Gamma photons are emitted

fromthe isotopes and are then detected by the y- camera. In the scintillator crystal the

gamma photons are converted to light photons, which are detected and magnified by

photomultipliers. In front of the y- camera is a collimator consisting of many parallel
11



tubes of lead. The lead tubes restricts the flight paths of the measured photons so that a

parallel projection of the patient is produced for each position of the camera as it moves

in a circle around the patient. In principle, from these 2D projections, the reconstruction

can be done in the same way as for X- ray CT where object cross- section is

reconstructed from sets of line integrals, i. e. 1D projections. Since the y- camera is two

dimensional, as shown in Figure 2.7, it is possible to achieve a whole 3D volume of

image data after reconstruction.

The y-camera
from the side photo­

multipliers
scintillator
crystal
collimator

patient

isotope area
emitting gamma
photons

The y-camera
from above

photo-

• multipliers

I I .
, I

, ..

Figure 2.7 SPECT geometry. (a) Cutting through the y- camera and the patient. (b) The y- camera
from above.

There are several difficulties with SPECT. One is the unwanted attenuation of

photons as they travel from the isotope source towards the detector. The attenuation

depends both upon the photon energy and the nature of the tissue. In Figure 2.8, photons

originating from an isotope source at g2 are further away from the detector then gJ

photons, and would therefore be more attenuated. To compensate for the attenuation,

the reconstruction formula could be modified. However, this modification is neither

straightforward nor simple and the compensation is not perfect.

Another source of error is also shown in Figure 2.8. Photons originating from a

source between two nonparallel lines lo and l3 , but outside the area between l, and l2

may also detected by the detector. Seen as probe, the collimator loses its sharpness with

distance. Therefore the resolution becomes lower for points lying far away from the

detector.

Typically, the Images obtained with SPECT have the 64 or 128. The rather low

image quality in comparison with X- ray CT images (see for example Figure 2.12) is

due to a lower number of detected photons per pixel. Unfortunately, for safety reasons

- m_~_
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the dosage of the radioactive isotope cannot be increased. A certain increase in signal­

to- noise ratio (SNR) si obtained by using two or three cameras at the same time.

e-- detector
W&¥M¥ • crystal

collimator

three

photon
sources:

g1
g
g

cross-section
of the patient

isotope area
emitting
gamma
photons

Figure 2.8 Source artifacts in SPECT

If CT is filtered verSlOn of transversal tomography, by the same token

ectomography can be called the filtered version of circular classical tomography.

Ectomography is a new technique which is on the verge of being introduced clinically.

It is preferably meant for measurements in the same area as SPECT, i.e. measurement of

y- radiation from an isotope inside the body. Figure 2.9 shows the geometry of an

ectomography scanner. Integrals of the slanted lines through the body are recorded by a

rotating device. For the reconstruction similar methods as in CT are used. Exact

reconstruction is not possible because of missing data. Even so, there are certain

situations when this can be tolerated and where the ectomograohy may be more suitable

thantraditional SPEeT.

Figure 2.9 Geometry of ectomography.
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2.3. PET

PET or Positron Emission Computed Tomography is another type emission CT. A

PET image shows the concentration of positron emitting isotopes inside a cross- section

of the human body. As in SPECT, a radioactive isotope is distributed to the patient, but

this isotope emits positrons rather than gamma photons.

The principle of PET is shown in Figure 2.10. A positron can exist in nature for just a

short time interval. It very soon interacts with an electron, which results in annihilation

of their masses while two photons are created, each of them having an energy of

SilkeV and travelling in exact opposite directions. Note that the mass m of an electron

or positron is 9.1091 * 10-31 kg and due to

E = mcl = 8.19 * 10-14 Ws = 511ke V

this is equivalent to the wavelength

. h -'1
It = - = 8.09 * 10 - m

E

(2.1)

(2.2)

An emitted positron is detected by time coincides of two photons arriving at two

diametrically opposite detector elements. Evidently, the time window must be very

narrow (usually 10-25 ns) and the number of emission events must be kept rather low to

avoid false matches. When a match is confirmed, we know that the positron-emitting

isotope was on the line (or strip) between the two reacting detectors. APET device

contains a lot of detectors, where many coincidence lines are possible at the same time.

In Figure 2.10, for example, a ring of detectors surrounding the body is indicated. The

recording events constitute line integrals of the isotope concentration within the body.

Hence, in principle, the reconstruction can then be done in same ways as for X-ray CT

where an object cross- section is reconstructed from sets of line integrals, i. e.

projections.
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There are two clear advantages of PET compared to SPECT. One is that no

collimators are needed. Collimation is done by nature itself and the time windowing.

Consequently, the photon efficiency is higher. The other advantage is easy attenuation

compensation, see Figure 2.10. From the source S (an annihilated positron- electron

pair) two gamma phot()l1s gl and gz are emitted and travelling towards the detectors D1

and D2 respectively. The distance that gl travel in the body is Xo- XI and the distance that

g2travel in the body is Xr Xo. The photons gl and g2 are then attenuated with the

probability functions

x
cross­
section of
the patient

isotope area
emitting
positrons

coincidence
testing
circuit

Figure 2.10 The principle of the PET.

exp[- r j.1(x)dX] and exp[ - [j.1(X)dx] , respectively,

where fJ(x) is the attenuation coefficient along the actual path in the body. The total

attenuation j.1/o/ is independent of the source position Xo along the actual path since

J.1tot = exp[ - r j.1(x)dx Jexp[ [j.1(x)dx ]

= exp[- r j.1(x)dx - [j.1(X)dX] = exp[ - r j.1(x)dX]

(2.3)

The attenuation factor for every line through the body can then be estimated and put

into the reconstruction formula. An elegant and exact way to estimate the attenuation
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factors is by means of a so-called transmission study, which is made with an initial step

in the PET examination. During this calibration event 511 keV gamma photons are

generated not by annihilated positrons but by a controllable a gamma ray- source.

Typically, the resolution of the images obtained with PET are the same as for the

SPECT, i.e. 64, 128, or mavhe 256A disadvantage with PET is high cost. An

examination with PET requires isotopes, which usually have to be produced by a

cyclotron. The total system with both PET-camera and cyclotron is considerably more

expensive then a SPECT scanner.

The Linogram Method (LM) and other Direct Fourier Methods (DFM) may replace

the Filtered Backprojection Method (FBM) in SPECT and PET as well as in X- ray C1.

However, the LM and other DFM have their greatest computation advantage over the

FBM for large image sizes, since their complexity is O(N2ZogN) compared to the O(N3)_

complexity for FBM.

2.4. MRI

The images produced by MRI (Magnetic Resonance Imaging) are similar to those

produced by CT in the sense that they represent cross- sections of the human body. Here

we will give a simplified description of MRI in term of classical physics as well

simplified description of two reconstruction methods.

MRI is based on the fact that any atom with an odd number of nucleons (protons or

neutrons) has a magnetic moment, which is due to the spin of the nucleus. When the

atom is placed in a strong magnetic field, the magnetic moment of the nucleus tends to

line up with the field. The magnetic moment can then be perturbed by another rotating

magnetic field. This causes the magnetic field to precess. After the perturbation, during

the return to equilibrium state a radio frequency signal is emitted. This signal can be

measured and reconstruction methods can be applied to compute an image of the

precessingnuclei density distribution inside the object.

The totally dominating measured element is the hydrogen nucleus, consisting of one

single proton. Hydrogen is the abundant in the human body, in water, fat, and all

organic substances. Thus simplistically, MRI normally measures the hydrogen density

inthe human body.
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The magnetIc moment IS associated with an angular momentum. The magnetic

moment 111[.-:111/2] and the angular momentum Z(Nms ]are related as

m=yL (2.4 )

where y[AmJNs] is the gyro- magnetic ratio, a property of the material. When the

magnetic moment is placed in a strong magnetic field Eo it tends to line up with the

field. In classical physics, it is well known that a static magnetic field Eo acts an

angular momentum with a torque. The torque influences the angular momentum (and

therefore also the magnetic moment) to process like a gyroscope around the direction of

the static magnetic field.

It can be shown that the precessing frequency, called the Larmor frequency, is

(2.5)

where Wo [rad/s] is the angular frequency, y [Am/Ns] is the gyro- magnetic ratio, and Eo

[N1Am]= [Vs/m2] is the static magnetic field.

In reality the topic is more complicated than we have indicated here. Among other

things, we know from quantum mechanics that the angular momentum of any system

can only take certain discrete values. Here we have not taken the discreteness under

consideration. Fortunately, the classical theory will give the same result as the quantum

mechanic approach if small partial volume elements consisting of several nuclei are

regarded instead of individual nuclei.

The hydrogen nuclei can be excited by a rotating magnetic field generated by coils

around the object. The frequency of this rotating field must be equal to the Larmor

frequency Wo to obtain resonance, otherwise the excitation will be negligible. In our

classicalmodel the excitation causes the precession angle 8 to increase according to

B= '/B tf' I P

I'ZMIR YUKSfK TEKNOl~.JIJ~~Sllr' SURfK10RLUGU

Ir.uffip~Gile ve Dnl,iim "lJsyon Deire Bs.k.

(2.6)
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where (p is the duration of the rotating magnetic field pulse. Common values of Bo are

0.1- 21. This gives resonance frequencies Wo in the radio frequency range of 3- 60

MHz. The excitation signal is often called "the radio frequency signal" because of this

frequency range.

If the static strong magnetic field (Bo) lies in the Z- direction and the rotating

magnetic field (BI) lies in the xy- plane, the total vector B is given by

(2.7)

where X, y, and z are unit vectors.

After the time tp the excitation field BI is turned off. The precession of the nuclei

then undergoes FID (free induction decay) as they return to their equilibrium state.

During this process an electromagnetic signal at the Larmor frequency WO=y Bo is

emitted. This signal can be detected by the same coils that earlier produced the rotating

magnetic field. The signal is proportional to the hydrogen nuclei density of the material.

A hydrogen nucleus returns to its equilibrium state with the time constant T I known

as the longitudinal or spin- lattice relaxation time. The transverse or spin- spin

relaxation time, T2 determines the time for the individual magnetic moments to come

out of phase. There are also a third, more practical parameter T2' which includes T2 as

well as local inhomogeneities of the static magnetic field. Because of physical

constraints the following relationship always holds

(2.8)

The Fill signal is attenuated both according to the T 1 and T2' time constants Some

typical values for T I and T2' are 0.5s and 50 ms, respectively. Except for imaging the

nucleidensity, imaging of the time constants T I and T2' can provide useful images since

therelation T I /T2' differs greatly between various tissues of the human body.

MRI is presently undergoing a very lively development. 2D images as well as whole

3D volumes with higher resolution and more sample points are produced. Other nuclei
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than the hydrogen area of great interest for the clinicians and are beginning to be

exploited. Not only the anatomy, but also the dynamic physiology of the human body

can be visualised by fast 3D- imaging. Various new contrast fluids used together with

MRl give images with new information.

In Figure 2.11, Figure 2.12, an MRI image data and a CT- image is shown to top to

down, respectively. The CT image is a horizontal slice of the human head, which is the

only practically viable orientation for CT cross- sections. The MRl technique is more

flexible with regard to orientation and to produce the vertical slices in Figure 2.11,

Figure 2.12 is no problem whatsoever. MRl and CT images show different things. MRl

shows (mainly) hydrogen nucleus density, while CT shows matter density. Bone matter,

for example, gives a large signal in CT. In Figure 2.12, the white material is the skull. In

MRl, on the other hand, bone gives no signal. Consequently, the skull forms a black

areabetween the grey skin and the grey brain in Figure 2.11.

Figure 2.11 Cross- sectional images of the human head, MRI

Figure 2.12 Cross- sectional images of the human head, CT

2.5. Ultrasound Imaeine

Medical ultrasound has become an important and widely accepted means fro the

noninvasive imaging of the human body. Studies in the wide range of clinical settings

have shown it to be accurate and versatile technique yielding cross- sectional

tomographic images, with little risk or discomfort and with reasonable resolution.

Perhapsthe most important features of this modality are, first, its ability to produce real­

time images of moving structures and, second, its low cost. The first is essential for
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cardiac and fetal applications; the second imperative for the efficacious practice of

medicine.

All diagnostic ultrasound units now in routine clinical service are based on a simple

pulse- echo technique in which the backscattered signal from an interrogating

ultrasound pulse is detected as a function of time by the same transducer that served as a

source. By moving transducer over a body region or by using an array of such

transducers, a cross- sectional image (actually a mapping of echo intensities) can be

formed. All current ultrasound-imaging systems are based on envelope detection

methods and therefore only capable of displaying echo amplitude (i.e., intensity)

information. Although present ultrasound systems have been clinically quite successful,

they. actually utilize only a small portion of the information available in the echo

waveform. For example, phase information is recorded by the transducer, which is a

phase- sensitive device but is not utilized in present display or measurement schemes.

Other parameters such as the spectral characteristics of the echo waveform are also

easily obtained but are not utilized.

In many ways, ultrasound has been the poor stepchild of medical imaging: despite

technological enhancement and image improvement, today's ultrasound systems have

essentially the same block diagram as those from the beginnings of the modality over 40

years. There are at least three reasons why ultrasound has remained in its "classical"

imaging stage and has not yet to utilize, at least on a clinical basis, the reconstruction

formalism so much a part of contemoprary imaging and the unifying volume for this

volume. First, and perhaps the most surprising, is the fact that data rates in ultrasound

are higher than even present computer technology can handle. Since ultrasound

propagates through tissue fairly slowly each image contains a large number of

interactions. Retaining both the phase and amplitude information associated with the

echowaveform, the database associated with a single ultrasonogram can contain several

megabytes of information. To record in real time and to process in near real time, a

sequenceof such data sets poses significant computational demands.

A second reason ultrasound has remained at the classical imaging stage has to de

with the fact that the interaction between sound and tissue is an exceedingly complex

process.Major factors that describe the propagation of ultrasound in tissue include the

density,elasticity, sound velocity, specific acoustical impedance, absorption, scattering,

and the parameter of nonlinearity. In general these parameters are frequency and
20



temperature dependent and, are also a function of tissue type and pathological state. In

many cases rather subtle changes in pathology can significantly alter the propagation

process. By contrast the propagation of X- rays in tissue is quite simple, determined

largely by the density of the material. Thus, in principle, an immense of information

could be extracted from an analysis of the interaction of sound with tissue. The problem

is sorting out what is in effect an overload of complex information in a realistic manner.

Finally a third reason ultrasonic imaging has not developed further si related to our

lack of knowledge of fundamental interactive processes. Although our knowledge of

ultrasound physics and of the interaction of ultrasound with tissue has certainly

increased recently, our knowledge is still far from complete. Clearly, it is difficult to

engineer a medical imaging system without all of the basic physics first in place.
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CHAPTER 3

COMPUTER ASSISTED CRANIOFACIAL SURGERY

3.1. Craniofacial Sureerv

Craniofacial surgery involves permanently or temporarily removing part of the

craniofacial and skull bones to access deeper regions consists of operations on the soft

tissues and bones in the head and face. These operations are done primarily on children

born with abnormal shapes of the head and face. Sometimes such surgery is done in­

patients suffering with tumors, injuries or other disorders. Reconstructive surgery is not

applied to children with birth deformities, but used to remove tumors, both benign and

malignant, that would otherwise not be accessible. These tumors usually begin in

sinuses, nose throat, eye sockets, or ears and grow toward the brain. A team of doctors

composed of head & neck surgeon, neurosurgeon, neuro- otologist, and reconstruction

surgeon share their expertise to facilitate the surgery and reconstruction.

Successful execution of a surgical operation necessitates knowledge of the relevant

anatomy, physiology, pathology, and wound healing, as well as the technical specifics

of the intervention. Historically, this knowledge has been acquired through reading,

didactic teaching, dissection room practicum, intraoperative observation, personal

operative experience, and animal experimentation. Common problems with minimally

altered anatomy lend themselves well to this educational process. Rare conditions with

markedly aberrant anatomy are more problematic, craniofacial anomalies are such

conditions.

3.2.Sur~ical Simulation

Just like flight simulators are essential today in the education of aircraft pilots,

surgery simulators are expected to have an important impact on education of surgeons

in the future (Satava 1990).

Currently training of surgeons is either performed using animals, cadavers, or actual

human patients. But it is expected that these training methods will be restricted in the
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future. Animal protection groups are pressuring the medical industry to restrict the use

of animals for experiments, cadavers are generally problematic, and the use of direct

training (under supervision) on human patients will probably increasingly be limited by

insurance problems and patient scepticism (Nielsen 1997). In addition, the facilities

neces""ry for training on animals are quite expensive.

Virtual reality techniques are, therefore, being developed to replace experimentation

on live objects with simulated environments. In particular, the fields of craniofacial and

minimally invasive surgery have seen the development of some initial surgery

simulators.

3.3. Some Examples of Craniofacial Deformities

The most common reason for doing craniofacial surgery is to correct abnormal head

and face shapes, which certain children are born with or develop after birth. This is due

to craniosynostosis.

In this disorder, a child presents with a characteristic deformity of the head, or head

and face. It is typically an intrauterine (inside the womb) event. This is probably due to

a misdirected message from a gene. It is not due to a defect in parents. Sometimes,

postnatal (after birth) synostosis can occur as well. There are rare cases where this is

due to inborn errors of metabolism where the body chemicals affect bone growth

abnormally.

: "\ .

. .I

Figure 3.1
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In babies, the skull bone is not one large vault as we see in adults. Rather, there are

numerous bones (Figure 3.1). The places where these bones come together are called

"sutures." Any or all of the cranial sutures can close prematurely. This is called

craniosynostosis or just synostosis. It is accompanied by abnormalities of the facial

skeleton. There are rare cases where other parts of the body, particularly the limbs, are

affected, in addition.

In the past, these patients were socially ostracized and only reluctantly brought for

treatment. Accordingly, such individuals led reclusive lives, with little ability to

function normally in society.

In Figure 3.2, the most common type of synostosis is shown. This is sagittal

synostosis, where the suture along the top of the head closes prematurely. It produces an

abnormally shaped head termed scaphocephaly.

Figure 3.2

In Figure 3.3, the second most common disorder is shown. This occurs with one

coronal suture fused (the suture that goes from left to right, just behind the hairline).

Thedisorder is called plagiocephaly.

Figure 3.3
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In Figure 3.4, trigonencephaly is shown. Here, the child is born with fusion of the

suture down the middle of the forehead.

Figure 3.4

Fusion of one suture can be associated with mental retardation. Usually it is not,

however. Operations in these cases are done for cosmetic (appearance) purposes. When

two or more sutures are involved, there is a definite danger of mental retardation.

Surgery is recommended in the first few months of life. Sometimes there can also be a

condition called hydrocephalus. In this instance, extra fluid accumulates within the

brain. This is due to an abnormality regarding circulation of this fluid and can be

associatedwith mental retardation.

Generally speaking, craniosynostosis is seen in one out of 2,000 births. Deforming

tumors and trauma are also quite common. In some cases, removal of a tumor will

changethe shape of the head and face. This requires bone and soft tissue reconstruction.

In other instances, the same process can occur due to a traumatic event or injury. In

craniosynostosis, skull growth is inhibited along the line of the fused suture. Growth

occursparallel to the suture. The purpose of surgery is to open fused sutures. When the

faceis involved, the skull base behind the eyes and nose have to be moved forward, as

well.

3.4.Craniofacial Sureical Simulation and Plannine

Craniofacial surgery is used to change the bone structure of a patient's face. The

purposeof this kind of surgery is to enhance the appearance patient or to restore normal

function,when abnormal bone growth has resulted in restriction of body function or

development.
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In recent years promising work has been done to develop simulation software, which

can model the soft tissue changes, that are the result of changes in the underlying bone

structure of the patient. The simulators developed, are not realistic models of the

surgery simulation, but rather software tools for modelling and planning surgery.

During surgery, parts of the craniofacial bones are separated from the remainder, and

rearranged like building blocks, by the surgeon. Naturally, extensive planning takes

place to determine the best procedure.

This planning is usually performed usmg X- ray cephalometric techniques and

reconstructed CT images. Some craniofacial teams are using solid modelling software,

but most use manual ad- hoc methods during the planning phase.

Treatment planning for complex craniofacial operations was initially based upon

maxillofacial trauma experience, study of museum skulls with anomalies, conventional

and polytomographic radiography, and large patient volume for a few surgeons. The

development of computer assisted medical imaging, CT and MR, has made specific

detailed craniofacial anatomy of affected individuals in vivo. Postprocessing of digital

data acquired by CT or MR scanning (or both) into three dimensional surface or

volumetric reformatted images or life sized models has made quantitative preoperative

surgicalplanning possible. An accurate surgical "blueprint" can be generated from such

images or models. Such blueprints are routinely used in many craniofacial centers (La

et al. 1994).

Actualization of the blueprint prior to patient's operation is the objective of surgical

simulation. Computer graphics workstations provide the platform for preoperative

simulation by testing the blueprint on the digital image database rather than the patient.

The outcome of the alternative procedures can be predicted, allowing selection of the

one that seems to provide the best solution for the given patient. At times the selected

procedurewill be standard, and times it will be novel(Lo et al. 1994).

3.4.1.The Basis for Sur~ical Simulation

Preoperative planning for craniofacial surgery must encompass both functional and

aestheticconsiderations. Because many craniofacial operations are performed on infants

andchildren, growth must be considered as well. The craniofacial operation should not

only correct the dysmorphology at hand but also set the foundation for normal future
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growth if possible. Ideally then, computer- assisted surgical simulation should include

manipulation of both hard and soft tissues, prediction of the acute hard- and soft tissue

outcomes, and prediction of surgical and growth- induced alterations of size and shape

over time. Currently, the skull can be easily manipulated electronically and satisfactory

accuracy is achieved. Althclllgh acute bone outcome prediction is quantitatively

successful, soft tissue prediction is not. Long-term skeletal and soft tissue changes are

not well simulated. Soft tissue outcome prediction and long- term temporal changes for

all tissues remain the focus of current researches.

Comprehensive documentation of aberrant anatomy and function, through a

multidisciplinary craniofacial team, precedes surgical simulation (Marsh and Vannier

1985). The surgical plan attempts, ideally, to normalize shape, symmetry, and

dimensions of hard and soft tissues. Implementation of the surgical plan upon the digital

database, rather than the patient, is surgical simulation (Lo et al. 1994).

Surgical simulation as a process, consists of three phases: development, validation

and utilization (Figures 3.5 to 3.7). The developmental phase began in the mid 1980s

and can be expected to continue as new simulation technology becomes available.

During development, there is minimal interaction between the clinical environment and

the imaging laboratory. During validation, surgical plans are simulated for patients who

have already undergone the operation being simulated. The surgeon provides the imager

with expert guidance, if the imager and the surgeon are not the same person, to fine­

tune simulation until it coincides with the actual outcome. Although laboratory

simulation- for example, phantom or cadavers- is important for verification of

quantitative validity (Hildebolt et al. 1990), in vivo verification must precede clinical

use. In vivo verification consists of application of the same operative blueprint to both

digital database and the patient (the patient is operated upon following "traditional"

computerassisted and other types of preoperative planning). Quantitative comparison is

made between the simulation and the actual preoperative result. In the early phase of

validation, discrepancies between the simulated and actual operative result lead to

modifications of the simulation process. Once the simulation has been refined, the

predictedand actual result will coincide. When this congruency occurs consistently, the

simulation process has been validated and can be used prospectively as the definitive

testof and guidance for the surgical plan.
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Patient with craniofacial Anomaly

Craniofacial Team Evaluation

CT scan

2D & 3D CT Reformations

Surgical Plan

Comparison of
actual outcome plan

Operation

Peri operative CT scan

Long Term Follow- up

Figure 3.5 The development phase of surgical simulation consists of preoperative CT scan images
with the conventionally derived preoperative plan. Familiarity with the congruencies and
divergences between the two educates the planner(Lo et al. 1994).

Surgical simulation has been performed in two environments: digital graphics

workstations and solid life- sized facsimiles. Although each environments has its

proponents,both environments will likely to continue to be used for some time owing to

uniquecapabilities of each. Digital graphics workstations allow the simulator unlimited

interrogation of the database. Multiple simulation operations can be performed on the

samedatabase without degradation or destruction of that database. The major cost is the

simulator's time. In addition, the workstation allows combinations of hard and soft

tissues and can accommodate differential deformations of soft tissues following

simulatedsurgery. The digital data format facilitates quantitative analysis of simulation

andoutcome. Facsimile models are intuitively more natural to practicing surgeons, who

oftenprefer to handle objects in simulation- for example, orthognathic model surgery,

because. they more closely resemble the real intraoperative experience. Structural

conflictmight be more easily discerned in solid model simulation than in electronic
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Patient with craniofacial Anomaly
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Figure 3.6 The validation phase of surgical simulation occurs after the operation has been
performed. Archived preoperative CT digital data are reformatted for simulation of the operation.
The simulated outcome is compared qualitatively and quantitatively with the actual outcome of the
operation using archived preoperative CT data. The simulation is modified to maximize
congruence between the simulation and the actual outcomes (Lo et al. 1994).

simulation.Rigid internal fixation plates can be prebent, or plates and other implants

can be uniquely fabricated prior to the operation using solid models, thereby

maximizingfit and minimizing intraoperative time. Destructive manipulation of models

necessitatesproduction of a new replica for each unique trial. The time and cost of

modelfabrication remains a limitation. Finally, models do not readily lend themselves

tothe quantitative comparisons necessary for simulation verification.
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3.5. Previous \Vork

Without going into specific technical details this section reviews the important work

on craniofacial surgery simulation.

Early work using solid modelling technioll~s have been reported by (Yasuda et al.

1990), (Satoh et al. 1992), (Caponetti and Fanelli 1993), (Lo et al. 1994) and (Delingette

et al. 1994). Delingette et al. Used 2- simplex surface meshes (Delingette 1994) to

represent the surface of skull, and also reported on some preliminary experiments using

3- simplex meshes as models of soft tissue between the 2- simplex meshes of the skull

and skin.

In his Ph.D. thesis Pieper (Pierper 1992, Pieper et al. 1992) presented work on a

complete system for simulating plastic surgery. His system used a volumetric linear

elastic finite element model for the skin, and showed validation results comparing real

plastic surgery results to predictions obtained using the system.

Interesting work has been reported by Waters and Terzopoulos on facial animation

(Waters 1987, Waters and Terzopoulos 1991, Terzopoulos and Waters 1991, Waters

1992, Terzopoulos and Waters 1993, Lee et al. 1993, Lee et al. 1995) in which they

created non- linear mass- spring models of the facial soft tissues. By adding muscles,

and modelling the muscle activity for general human expressions, they developed the

abilityto animate human expressions.

Keeve et al. (Keeve et al. 1995a, Keeve et al. 1995b, Keeve et al. 1996a) have been

strongly influenced by this work. They developed a similar system in which they

created individualized models from CT scans and added the ability to perform surgical

procedures on the bone structures using interactive computer graphics. By moving

separated bone pieces and modelling the corresponding soft tissue deformation,

obtained an estimate of the resulting facial changes for the particular surgery. Some

validationresults have been reported.

In (Keeve et a1.1995a, Keeve et al. 1995b, Keeve et al. 1996a) Keeve et al. Used the

mass- spring models originally proposed by Waters and Terzopoulos with slight

modifications. In later work (Keeve et al. 1996b,Keeve et al. 1996c) they have used

finiteelement models of the soft tissue.

A similar system for modelling facial expressions around the mouth has also been

developedby (Tanaka et al. 1995).
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(Koch et al. 1996) have used commercially available tools to built a craniofacial

simulation system. In this system soft tissue changes are modelled using a 2D finite

element surface model of the skin. The skin model is connected to the skull using

springswith spring constants depending on the soft tissue type they span. The soft tissue

type is determined automatically by classification of the CT scan, which provides the

3D model of the patient.

Since only a surface model of the soft tissue is used, the work Keeve et al. Seems

more convincing, although the calculation of the spring constants based on the gray

levelvalues of the CT scan, is an interesting new idea. Unfortunately, it is questionable

whether sufficient information can be gathered from CT scans which normally

optimized for bone visualization(Nielsen 1997).

In (Nielsen 1995, Nielsen and Cotin 1995) some preliminary work on craniofacial

surgery simulation was reported by Nielsen. Using a volumetric elastic model proposed

earlierby (Terzopoulos and Fleischer 1988) the deformation of the face of an individual

wasmodelled for horizontal movement of the jaw.
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Figure 3.1 The utilization phase of surgical simulation uses preoperative simulation to test alternative procedures and to select the procedure to be executed.
Comparative outcome analysis continues as a means of quality control.
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CHAPTER 4

THE BASICS OF RECONSTRUCTION METHODS

4.1.Reconstruction Principles

In CT there are two different problems. One is the acquisition of the projection data

fromthe object slice using various devices such as X- ray tubes and detector arrays. The

otheris the reconstruction of the image from the projection data.

The image or the object function f(x,y) to be reconstructed, is the distribution of X­

rayattenuation values inside a slice of the object. Ideally, an X- ray traversing the slice

along the line L with the original intensity 10 emerges attenuated to the intensity I

accordingto

- r j(x.y)dl

1= fo.e ·L (4.1)

By taking the natural algorithm on both sides we can express the line integral along L

as

i 10f(x,y) = In] (4.2)

In practice there are many important deviations from the ideal situation in (EqA.2)

andthese deviations cause imperfections in the reconstructed images.

If we represent the line L by (r, B), where r is the distance from the origin and 8 is the

anglebetween its normal and positive x- axis, then we can express all line integrals

(Eq.1.2)as p(r, B). In practice the CT scanner only supplies us with samples of p(r, (}).If

8 lS fixed. 8=8j, then p(r, B J represents a parallel proj ection of f(x,y) with the angle 8j as

shownin Figure 4.1
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The general problem can then be formulated as follows. Using a procedure 91, a set

of projections p(r, B) are obtained from the object functionf(x,y) i.e.

p(r,B) = [91fKr,B) (4.3)

r

I>
X

Figure 4.1 An object slice f(;t",y) and one of its projections

Givenp(r, (J), how can we obtainf(x,y)? Obviously we need is the inverse 91-1 of 91.

Reconstruction is a problem of inversion. The procedure 91-1 should be applied

accordingto

(4.4)

All reconstruction methods and algorithms are implementations of 91-1 . They can be

dividedin two main groups, transform algorithms and algebraic algorithms.

The transform methods solve the inversion problem by relying heavily on the

FourierSlice Theorem. Examples of such algorithms are the Filtered Backprojection

Method(FBM) and Direct Fourier Methods (DFM). The Linogram Method is also a

transform method. Developments of these algorithms are rooted in multidimensional
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signal processing. An excellent overvIew of transform methods IS gIVen III (Lewitt

1983).

Algebraic methods are also called iterative methods. The solution is obtained from a

first very crude guess by changing it stepwise until its projections comply with the

original projections. The process may require several iterations. Although conceptually

much simpler than the transform methods, this approach is normally much more

computation intensive.

There are many situations where the input data are far from ideal. Some projection

datamay be lacking or objects with high density may absorb all X- ray energy and hide

behind lying matter. Such things are rather disruptive for the image quality in transform

method reconstruction, but often tractable by algebraic methods. Facts known in

advance, such as object size and non- negative matter density may also be included in

algebraic methods to improve image quality. Let us also remark that reconstruction

using a priori knowledge and! or incomplete data borders on the discipline of image

restoration.

The Radon transform is thoroughly described in (Deans 1983, Toft 1996). The

formulafor the Radon transform of the 2D functionf(.'C,y) is

p(r,B) = [9tf Kr,B) = [, [, f(x, y)5(xcos B + y sin B - r)dxdy (4.5)

where the x cos B + y sin B - r = 0 defines a line through f(x,y) and 8 is the Dirac

impulsesymbol. Thus the Radon transform [9tf Kr, B) can be interpreted as the set of all

lineintegrals of the functionf(.'C,y).

The inverse solution to the Radon transform was described by Johann Radon in

1917. In (Deans 1983), the Radon inversion formula is presented as

1 dp(r,B)

f(x,y) = [9t-1pkx,y) =_1 r [ Jr' dr. drdB2Jr ao x cos B + Y SIllB - r
(4.6)
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This formula states that it is possible to obtain original function I("y) if all its

projections p(r, B) are known. A straightforward digital implementation of (Eq. 4.6) will

encounter difficulties since the denominator is zero for r=xcos(}+ysine ..

4.2. Line Inteerals and Projections

A projection is a set of line integrals. An example of physical phenomenon that

generates almost perfect line integrals is the attenuation of X- rays as they propagate

throughbiological tissue. Figure 4.1, shows a parallel projection. Figure 4.2 also shows

a parallel projection, but with more detailed geometry and coordinate systems. Clearly;

aparallel projection is a set of parallel line integrals.

A parallel projection for a special 8=8j is denoted p(r, eJ. A set of projections, for all

anglese, is denotedp(r, B) and also known as the Radon transform ofl(x,y).

r

x

Figure 4.2 An objectf(x,y) and one of its projections p(r,BJ.

The (r,s) coordinate system is a rotated version of the (x,y) coordinate system as

expressedby

[r] [case sinej[x]~ = - sin e cos e y

orsimilarly

IZMIR YUKSfK TtKNOlOJI ENSlllU ,.
.. ., ....

RfK10RLUSU

Kuruphane ve Dokiimontu.syon Doire Bs~

(4.7)
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[.:] = [c~s () - sin ()][!.-Jy sm () cos () s

Theset of projections p(r, ()) in (Eq. 4.3) can then be formulated as

p(r,e) = [, f(r cos () - s sin (), r sin () + s cos())ds

or

p(r,e) = [,fr(r,s)ds

wherej,(r,s) is a rotated version off(x,y). By using the delta function we get

p(r,e) = [, [,f(x,y)5(xcos()+ ysin()-r)dxdy

(4.8)

(4.9)

(4.10)

(4.11)

Figure4.3 Projection geometries. (a) The geometry for parallel projections. (b) The geometry for
fanbeamprojections.

Another type of projection geometry is known as fanbeam projection, see Figure

4.3b. All modem commercial CT - scanners use fanbeam projection geometry.
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The term sinogram is often used in this thesis. A sino gram is the collection of

parallel projections of the object- disk taken at equidistant angles 8, see Figure 4.4. The

domain of the sinogram, seen as a 2D-function p(r, fJ), is - R ~ r ~ R,-tr / 2 < B ~ tr / 2.

The projection is a map of the projection data, i.e. of the Radon transform. The

sinogram is cyclic in the 8- coordinate. The term was first used by Edholm (Def.) and is

motivated by the fact that a point in the object gives rise to a sinusoid in the sinogram,

seeFigure 4.5. The same point gives rise to a circle in the Radon space.

r

Figure 4.4 Collection of projections 0 fan object disk in a sinogram.

G) object, f(x,y)

(x,y)

Figure4.5 A point in the object disk gives rise to a sinusoid in the sino gram.

4.3. The Fourier Slice Theorem

An important property of the Radon transform is its correspondence with the Fourier

transform.A projection of an object is formed by combining a set of line integrals

through the object. The simplest projection, a parallel projection [91fKr,B), is a

collectionof parallel line integrals, that is a set of "radon values along a line through the

origin,as shown in Figure 4.6a.
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Theorem: The Fourier transform P(R, BJ of a parallel projection p(r, BJ of an image

f(x,y) taken at angle Bi is found in the two dimensional transform F(X,Y) on a line

subtending the angle ei with the X-axis.

The theorem states that the Fourier transform of p(r, Bi) gives the values of F(X,Y)

along line AA in Figure 4.6a. An intuitiv~ understanding of the projection slice theorem

may be given by the following, see Figure 4.7. Consider the values along the X- axis in

the Fourier domain, F(X,O). Here we find the zero frequencies in the y-direction from

f(x,y). But the zero frequencies in the y-direction can also be calculated by integrating in

this direction along projection rays orthogonal to the x- axis and then taking the ID

Fourier transform in the x direction. And this is exactly what the projection slice

theorem states for a projection with the angle ej =0. For symmetry reasons this

explanation can be applied to all lines through the origin F(X,Y) and the projection slice

theorem should hold for all e.

Fourier transform

x

f(x,y) ,

object

Spatial domain

Figure 4.6 The projection slice theorem illustrated.

Mathematically the Fourier transform of p(r, ()) in r is given by

P(R,(}) = [,p(r,B)e-J2irRr dr

x

(4.12)
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or, when insening Eq. 4.9

f(x,y).
object

r

=0

Figure 4.7 A special case of the projection slice theorem.

P(R,(J) = [,[ [<Xl/(rcosB - ssinB,rsinB + scosB)ds }-J2;rRr dr

We change to the (x,y) coordinate system using r=xcosB+ysinB, x=rcosB- ssinB,

y=rsin()+scosB, and by replacing the area differential drds with dxdy. The result is

(4.13)

P(R,(J) = [, [<Xl/(x,y)e-J2irR(XCOso+YSinO)d.xdy

or

(4.14)

(4.15)

For any fixed value of 8, the right hand side of this equation now represents values

alonga line through the origin of the two dimensional Fourier transform F(X,Y) and

formingthe angle 8 with the X- axis. The coordinate values along the line are

rx,Y)=R(cosB,sinB). Thus we can rewrite Eq. 4.15 as

. . ... f

IIMIR YUKStK HKNOLOJI L~)TlTUSU I
RfKTORlUGU ,
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p(R,e) = F(Rcose,Rsine)

whichproves the Fourier slice theorem.

4.4. The Filtered Backprojection Method

4.4.1. Intuitive Description

(4.16)

Today the common method for CT- reconstruction is the Filtered Backprojection

Method(FBM). The backprojection itself means that projection data are smeared back

alongthe lines of their origin as shown in Figure 4.8.

x

Figure 4.8 A filtered projection q(r,8i) is smeared out (backprojected) over the reconstruction
plane.

Projection followed by backprojection is an operation which causes some sort of low

passfiltering in the image, see Figure 4.9. Projection p(r, CV are taken of a point- shaped

object as shown to the left. Then these projections are backprojected over the

reconstructedimage area as shown in Figure 4.9b. The whole procedure is repeated for

differentequidistant 8:s, not only for the four projections shown in Figure 4.9. We call

theoriginal function f(x,y) and the result image filulx,y). Since the object is a single

point,it is easy to see that filur is not identical to f but to f convolved with the point

spreadfunction is 1/~, where ~ is the distance from the original location of the point,

I.e.
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hlur(X,y) = 1/; * f(x,y) (4.17)

TheFourier Transform of lie; is lIP so that

Fb1ur(X,Y) = p. F(X,Y) (4.18)

Thus, to compensate for the blurring filter lIP inherent in the backprojection method,

we can multiply F;,'ur(X,.Y)with P, the inverse order of lIP. One possibility to

reconstruct F(X,Y) is then to perform

F(X, Y) = p. F;,'ur(X, Y) (4.19)

Thefunctions 1/;, liP and P are shown in Figure 4.10.

G Fourier dQmain

Fblur(X, y)

® BackprQjectioo

p(r,O;)

~

o Projectioo

Figure 4.9 A set of projections followed by a set of backprpjections causes some sort of low- pass
filtering in the image. This is easy to see when the object consists of a single point.

Insteadof doing the compensating filtering in the 2D Fourier domain as indicated by

Eq.4.19. we can get the same effect by filtering each projection with 1D ramp filter

(4.20)
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Fourier domain

Figure 4.10 Projection followed by backprojection causes low- pass filtering in the image. The
equivalent filter function is 1/<;in the spatial domain or lIP in the Fourier domain. To compensate
for the low- pass filtering we can multiply the image with P in the Fourier domain.

shown to the right in Figure 4.11. The reason is as follows. The backprojection in

Figure 4.9b is a straightforward summation. In the Fourier domain this is also a

summationalbeit now of slices through the origin shown in Figure 4.9c. It is this 2D

functionthat according to Eq .4.19 should be multiplied with P. However, if we multiply

eachcontribution (i.e. the individual slices) with H(R) = IRI ' we will get an identical

result.

Alternatively, we can convolve each projection in the spatial domain with the inverse

Fouriertransform ofH(R), the ID function her). Ifwe assume that H(R) is limited to the

mterval-W to W this convolution function is

h( 1. ( r ) 1 . ? ( r )
r)=--smc - ---sme -

2T2 T 4T2 2T
(4.21)

whereT is the sampling interval (T=1/(2W). The band- limited version of H(R) and the

correspondingfunction h(r) are shown in Figure 4.11.

0.2

0.1

·5

Spatial domain

h(r)

o 5

Fourier domain

0.4

0.20

-w

-0.2
-1

-0.50

w

0.5

Figure4.11The band-limited version of the ramp- filter H(R)= IRI shown in both domains.
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Figure 4.12 An overview of the FBM.

AI) Take parallel projection around the object for a number of different equidistant angles 8and
collect them in a so called sinogram p(r,8) (the Radon transform).
A2) Take the ID Fourier transform of each projection to obtain P(R,8).

AJ) Perform ramp- filtering according to: Q(R, 8)= IRI· P(R,8).

A4) Take the ID inverse Fourier transform in th e R- direction We now have filtered projections:
q(r,8).
AS) Perform backprojection with each filtered projection q(r,8).

An overview of the FBM is shown in Figure 4.12. Note that the steps a2), a3), and

a4) can be replaced by a convolution with h(r),

4.4.2.Formal Proof

The 2- dimensional inverse Fourier transform of the objectf(x,y) is given by

f(x,y) = [, [, F(X,Y)eJ2;r(x.t+YY)dXdY (4.22)

We exchange the rectangular coordinate system in the Fourier domain (X,Y), to a

polarcoordinate system (R,e) by making the substitutions.

x = Rcose (4.23)

Y = Rsine (4.24)

UsingdXdY = R . dRd e we can now rewrite the formula as

---~---
\I.ZMIR YUKStK TtKNOlr~Ji~t~~iHOSl.I!,

REKTORLUGU I
V;,+i"I"~ftn" \)1'\ nl\l,i,mnntnf'Uf\n Of'!:"!) P.{~
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f(x,y) = r: fT F(RcosB,RsinB)ei2;r(XCosB+ysinB)RdRdB (4.25)

The integral can be split into two for 0 ~ B ~ Jr and 0 ~ (B + Jr) < Jr, respectively.

The result is

f(x,y) = r r F(RcosB,RsinB)ei2JrR(XCosB+YSinB) RdRdB +

+ r r F(R cos(B + Jr), R sin(B + Jr))ei2JrR(XCOS(BH)+ysin(BH)) RdRdB (4.26)

Since

R cos(()+ Jr) = -R cos B

R sin(()+ Jr) = -R sin B

the EqA.26 yields

f(x,y)= r r F(RcosB,RsinB)ei2'TR(XCOsB+YSinB)RdRdB+

+ r r F(_RcosB,_RsinB)ei2'T(-R)(XCosB+YSinB)RdRdB=

= r [[,F(R cos B, R sin B)IR/ei2JrR(XCosB+YSinB) dR JdB

Usingr = x . cos B + y . sin B , we get

f(x,y) = r[ [,F(R cosB, R sin B)IRlei2JrRr dRJdB

Finally,we utilize the projection slice theorem Eq.4.16 to obtain

f(x,y) = r[[,P(R,B)IRlei2;rRr dR }B

. .. ..I
IZMIR YUKSfK TEKNOlOH ENSllTUSC

REKTORlDGO

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

45

1/-. ~ I n 1_ "'. n I



Inside out Eq.4.31 is the same reCIpe as was illustrated in Figure 4.12. the first

computation is taking Fourier transforms of the projections p(r, B) to obtain P(R, B). The

second one is

Q(R,e) = p(R,e) ·IRI

so that Eq.4.31 yields

f(x,y) = r[ [,Q(R,e)ej2/rRr dR }e

(4.32)

(4.33)

After 1D mverse Fourier transforms, the remaImng step IS the backprojection

expressedby

f(x,y) = rq(r,(})de

FromEq. 4.7 we know that r = xcos(} + ysin(} so that Eq.4.34 can be rewritten as

f(x,y) = r q(xcos(} + ysin(},(})d(}

(4.34)

(4.35)

This is the backprojection operation. See Figure 4.13. For every point (--r,y) in the

imagethere corresponds one certain r = xcos(} + ysin(} in the projection q(r, e), e fix.

Accordingto Eq.4.35 it is the value q(r, B) that should be accumulated to f(x,y). The

pointsin the image that should receive the same contribution q(r, B) are all found on the

line r = .'Ccos(}+ ysine which is the line AA in Figure 4.13.

Thus. the value of the filtered backproj ection, q(r, e), will make the same contribution

to all the points on the line AA. That is, in the reconstruction process, for every e the

filteredprojection q(r, fJ) are smeared out or backprojected over the image plane.
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Figure 4.13 Backprojection takes place when, for a given e, a filtered projection q(r, e) is smeared
out oYer the reconstruction plane along lines of constant r.

By insertion of Eq.4.9 in Eq.4.12 and 4.12 in 4.31, we get a fully unrolled formula

Eq. 4.36 for all steps in the FBM.

j(x,y) =

= r[[,[[[ [,f(rcosO -ssinO,rsinO + scosO)ds }-i2:rRr dr ]IRlei2:rRr dR }to (4.36)

4.5.Filterin{: after Backprojection

It is also possible to make the backprojection, i.e., the adjoint Radon transform

before the filtering (Deans 1993, Jain 1989). In this case another filter must be used

(Toft 1996). For any function g(x,)) the Radon transform is given by

g(p,B) = [, [g(x*,y*)5(p - x * cos 0 - y * sin O)dx * dy *

Rewritingg(x,)) using delta function, Eq.4.37 gives

g(x,y)= [[,g(x*,y*)5(x-x*)5(y- y*)dx*dy*~

g(p,B) = [, [,g(x*,y*)5(p - x * cosO - y * sinO)dx * dy *

(4.37)

(4.38)

(4.39)
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Eq.4.39 shows that each point (x*,y*) is transformed into a sine curve in the Radon

domain. The Radon transform of g(x,y) is the sum (integral) of all the sine curves in the

Radon domain. In the following the integrations over x* andy* are omitted. This can be

done because only linear transforms are used. Now assume a point source is given and

the adjoint Radon transform is applied before a filtering.

g(x,y) = 5(x - x*)5(y - y*) =>

g(p,e) = 5(p - x * cos B - y * sin B)

g(x,y) = rg(xcosB + ysinB,B)dB

1

I(x - x*) sin B - (y - y*) cos B! (x-x')cos 8+(y- yO) sin 8=0

1

1+(;=::)' 1
= = -----------------------------

_(x_-_X*_)_2+ (y _ y*) ~(x _ x *Y + (y _ y*)2
y-y*

Itcanbe recognized that this is a two- dimensional convolution.

1

g(x,y) = g(x,y) * *h(x, y) where hex, y) = ~ x2 + y2

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(4A5)

(4A6)

Using the technique shown in EqA.39 it can be seen that EqAA6 is valid for any

giveg(x,y), Eq.4.46 thus enables another inversion scheme. A two- dimensional Fourier

transformof Eq.4.46 gives

I !ZMIR YUKSfK TfKNOlOJi tlCllTUSO I
I RfK10RlUGU

! ifOtiionone ve Dobimnntowofl nllirp. R\k

(4A7)
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G(k k)
G(k k) = x' y

x' Y H(k k)x' y

From standard 2D Fourier transform table it can be found that

1 1
hex, y) = -~-_-_-_-_-HH(k , k ) = -_-_-~-=

~" x y ~' ,x- + y- k- + k-x y

Thismeans that g(x,y) can be found as

g(x,y) = rg(xcosB + ysinB,B)dB

( ) = [ [ ~e e 6(k k) j2Jr(k,x+k"y) dk dkg x, Y "" a) x + y x' y e x y

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

The reconstruction method presented is here called Filtering after Backprojection,

which makes use of integration succeeded by a two-dimensional high pass filtering.

Thisis an inversion algorithm very similar to Filtered Backprojection.

4.6. The Direct Fourier Method

Direct Fourier Methods of tomographic reconstruction have been investigated since

theintroduction of the technique in the early 1970's, although computerized tomograms

employ the Filtered Backprojection Method 4.4 as means of the reconstruction. The

maindifficulty with DFM is the required interpolation of radially sampled data to the

Cartesian grid in order to allow a 2D Fourier transform to be performed on the

frequency plane data, and is at least part of the reason for the preference of FBM

(Brantneret al. 1997).

A different approach is the Direct Fourier Method (DFM)(Shepp and Logan 1974,

Starket al. 1981), that is based on the projection theorem for Fourier transforms. This
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theorem is known as the Fourier Slice Theorem (4.3), and relates the line integrals of a

physical property to the 2D Fourier transform (FT) of the desired image. The major

computational burden of this approach then becomes the FT. However, this can be

achieved by exploiting the Fast Fourier Transform (FFT) algorithm, reducing the

required computational time for 2D transforms.

The Fourier slice theorem demonstrates that the 2D FT of the desired image can be

obtained by resampling a set of 1D FTs of the projection data. Fourier inversion of the

2D array yields the reconstruction. The resampling step is basically a coordinate

transformation from the polar to the Cartesian grid in order to be able to apply a discrete

Fourier transform.

This resampling step is quite difficult, and its accuracy is the crucial point of the

DFM to improve reconstruction quality. There are several simple interpolation

techniques, such as the nearest neighbour interpolation (NNB) and 2D linear

interpolation, the bilinear interpolation (BI).

More sophisticated interpolation techniques evaluate each point III the complex

frequency domain from many neighbouring samples, but are correspondingly more

computationally intensive.(Brantner et al. 1997) Several different solutions have been

suggested in recent publications that involve quite complex interpolation techniques.

For example, Belleon and Lanzavecchia (Bellon and Lanzavecchia 1995) introduced a

noveltechnique, the 'moving window Shannon reconstruction' (MWSR). This method

uses a high number of coefficients to resample a single complex point of the 2D

transform,i.e. each point is reconstructed from all samples encompassed by a window

movingalong the sampling interval. Matej and Bajla( Matej and Bajla 1990) suggested

using 'hybrid spline- linear interpolation' (SPLI) which calculates, as a first step, de

800r' s cubic spline interpolation in the radial direction; as a second step linear

interpolation is performed in the angular direction. SPLI uses just four points to

calculatethe value of the desired point unlike MWSR.

A summary of DFM is shown in Figure 4.14, where the projections are stored

immediately in the Radon space. This is quite natural because of the symmetrical

relationbetween Radon and Fourier spaces as expressed in the Fourier Slice Theorem.
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Figure 4.14 An overview of the DFM

BI) Take parallel projections p(r,8) around the object f(x,y) for a number of different equidistant
angles. Put them intermediately in the Radon space.
B2) Take one 2D FFTs along the projection direction to arrive in F(X,Y) , the 2D Fourier transform
of object.

B3)Do 2D interpolation in the (X,Y)- space to obtain nlues on a square grid.
B4)Perform 2D IFFT to receive the reconstructed image.

4.7.The Lino~ram Method

The linogram method can be considered to be a direct Fourier method, which uses

Iinogram sampling instead of sinogram sampling in the Radon and Fourier spaces. For

details on the linogram sampling see (Magnusson 1993).

In the case of linogram sampling the distance of d along projection varies with 8 as

-45° ~e~45°

45°~e~135°
(4.53)

where d(Oo) is the sampling distance for the 0° projection and can be chosen to be the

sampling interval in the sinogram case. In practise, this means that for all projection

angles - 45 ° ~ e ~45 ° - 45 ° ~ e ~45 ° the linear detector array lies fixed along the x­

axis (Figure 4.15a) and for all projection 45° ~ e ~ 135° the detector orientation is fixed

alongy- axis (Figure 4.15). This may be compared with sinogram sampling where the

parallel projection data always are collected with a detector perpendicular to the ray

direction.
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Figure 4.15 a) The detector orientation is fixed along the x- axis for all projections
-450 ~B~45°.

b) The detector orientation is fixed along the y- axis for all projections 450 ~ B ~ 1350
c) An object point contributes to linogram data points along a line in both Iinograms.

The angular increment ~e is not constant as in the sino gram case, instead

equidistance

f !:J. tanB = 2/ N1- !:J. cot B = 2/ N

-450 ~B~45°

450 ~B~135°
(4.54)

The projection data organized in a Cartesian space is called a linogram. A linogram

can be divided into two linograms with axis (p/d(B),tanB),(p/d(B),-cotB),

respecti\"ely.A specific point (Xj,YI) contributes the Radon data along a line, hence the

namelinogram. (See Figure 4.15c)

Figure 4.16 attempts to visualize the difference between sinogram and linogram

sampling. We note that the sinogram sampling produces on concentric circles in the

Radonspace (Figure 4.16), while the linogram samples are located on concentric sets of

foursemicircles (Figure 4.16).

The virtue of linogram projections comes forward in the Fourier domain. While the

radiallyapplied Fourier transform on each sino gram projection produces an identical

patternof concentric circles in the Fourier space (Figure 4.16), the linogram projections

produceFourier data in the form of concentric squares (Figure 4.16). Sampling along

concentric squares in the Fourier domain ·.vas first proposed by (Mersereau 1973,

Mersereau1976).
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Figure 4.16 a) Sinogram sampling of the Radon space. b) The Fourier space corresponding to
sinogram sampling. c) Linogram sampling of the Radon space. d) The Fourier space corresponding
to Iinogram sampling.

Along each vertical or horizontal segment of such a square we find equidistantant

samples of Fourier data. Likewise the sampling distance D(B)is constant along every

radial line. However as a direct consequence of (EqA.53) the sampling distance varies

over 8 as

D(B)=fd(OO)/cosB -45° ~B~45°ld(OO)/sinB 450 ~B~135°
(4.55)

We use to refer to the Fourier space with the sample pattern of concentric squares as

theFourier square. The inverse square is the corresponding pattern in the Radon space

consistingof four semicircles. The radial sampling distances in two spaces are inversely

proportional.

Reconstruction by the direct Fourier method reqUIres resampling in the Fourier

space.Resampling from sinogram data (Figure 4.16) to a rectilinear grid requires 2D

interpolation. Resampling from linogram data (Figure 4.16) on the other hand requires

only1D interpolation.
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Figure 4.l7describes the complete linogram method. The projection data is divided

in two linograms. The first one consists of the projections - 45° :s; e :s; 45° and the

second one consists of projections 45° :s; e :s; 135° .

Radon space
Fourier space Filtered Foun'er space

Reconstructed
object ..'..'..

.
........•

.'," .;'.. •.. '~:,'. ..
,.

".:,.' .O''. .
I

Horizontal inverse

chirp z-transform

••••

tVertical inverse
Fourier transform

•••

Horizontal inverse

x Fourier transform
••

y

v*:::.:u --¥-.. *""~:.. "I.'

R

HR(R) = IRI
v • v

x

Radial Fourier

transform

Signal space 10 Fourier space

Figure 4.17 The linogram method.

With radial Fourier transforms of the projections ill both linograms, we arrive to the

Fourierspace of the object. Due to the linogram sampling the data are sampled along

concentricsquares in the Fourier domain (i.e. if the two linograms are put together)

Instead of interpolation the basic linogram method employs the chirp-z transform.

describedby (Rabiner et al. 1969). The inverse chirp-z transform computes the lD

inverseFourier transform exactly in the required sample points. Therefore, and in spite

ofbeinga rightfully classified direct Fourier method, the basic linogram reconstruction

isinfactperformed without any interpolation at all.

In the inverse chirp- z transform all data points are weighted equally, which results in

lowpass filtering of the image, i.e. the lower frequencies are over represented. This is

intuitivelyeasy to understand, as the sample pattern becomes denser towards the origin
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(Figure 4.16d). to compensate this low- pass filtering, ramp filtering is applied in the

Fourier domain.

The inverse chirp- z transform is computed the 1D inverse Fourier transforms in one

direction. To arrive in the spatial domain we apply another inverse Fourier transform,

perpendicular to the one performed with the inverse chirp-z transform. The linogram

method requires 2N detector values in each projection to reach out the comers of the

square to be reconstructed. Garbage from the ramp filtering is obtained in the signal

domain outside the reconstructed square, as illustrated in Figure 4.17. This garbage is

truncated.

Since the Radon data weer divided into two linograms, each linogram delivers a

reconstructed image obtained from half of the projections. The final step in the linogram

methodadds the two parts.

4.8.Reconstruction Aleorithms based on Linear A1eebra

Inversion of Radon transform need not be based on the direct inverse formulas. A

differentclass of reconstruction schemes is based on linear algebra (Censor 1993, Deans

1983, Older and Johns 1993). This section presents the linear algebra based

reconstruction theory.

4.8.1.From the Radon Transform to Linear A1eebra based Reconstruction

The Radon transform is a linear transform, with respect to the function g(x,y), and so

isthe discrete versions of the Radon transform, hence instead of considering the integral

versionof the Radon transform operators a matrix representation can be used.

g(p,B) = ~g(x, y)

~ ~ -l-

b A x

(4.56)
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Assume a discrete set of values for the Radon transform g(Pr ,fi() = gd (r,t), and a

given sampling of wanted image g(xm, y n) = g d (m, n) used for the reconstruction. If the

matrix g(r, t) is rearranged into a vector, e.g.,

hi = brT+I = g(r, t)

and same technique is applied to the image, e.g.,

Xj = xnM+m = gem, n)

(4.57)

(4.58)

thenusing a series expansion shown in Eq.4.60 the Radon transform can be rewritten in

the form shown in Eq.4.66. The vector dimensions are 1= RT and J = MN , thus the

transformation matrix A have RTMN elements, and will be large.

g(r,t) = [, [~ (Lm In gem, n)¢(x - x"" y - yJ )5(Pr - xcos B( - y sin B( )dxdy (4.60)

hencethe matrix elements of the system matrix can be calculated as

ai.; = arT+t,nM-m (4.62)

= [, [¢(X-xm,y- yJr5(Pr -xcosB( - ysinB()dxdy (4.63)

= [, [¢(x,y)r5((Pr -xm cosB( - Yn sinB()-xcosB( - ysinB()dxdy (4.64)

wherethe function ¢(.) is the expansion function in the image domain specifying how

the pixel at (xm, yJ models the image domain with the continuous positions
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(t,y).EqA.65 shows that the matrix element is the Radon transform of the expansion

function, where the p parameter has been shifted according to the pixel position.

Alternatives to the image pixel driven generation of matrix elements can be found in

(Lewitt 1992).

The methods to be presented all rely on a linear dependence between two vectors; the

known 1- dimensional vector b (I=RT), containing the sinogram, and the unknown J­

dimensional vector x (J=M2). For tomography the vector b will contain the sino gram

values wrapped into a vector using Eq.4.57, and x is the set of reconstructed pixels in

the image formed as a vector using Eq.4.58.

Now the reconstruction problem will be written in a matrix vector formulation.

b=Ax (4.66)

where A E IR ixJ is called the system matrix containing the weight factors between each

of the image pixels and each of the line orientations from the sino gram, as illustrated in

Figure4.18.

I L.ine ir.dex i

I---

t---

,~ '\
/ /.I rl\

(.

/:-
':01/ ()

.~\ I /r---
"'1

/

--Im.age pixel

j

Figure 4.18 The matrix element aiJ can be considered as the weight factor between a certain
sinogram value numbered by i and the image pixelj.

Compared to the Radon based direct reconstruction methods, several new

possibilitiesand problems arise.

• Linear algebra is very strongly supported in mathematics, and the formalism can be

used for both 2D and 3D reconstruction.
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• ~'1 irregular scanner geometry with, e.g., limited line orientation is very bad for

direct reconstruction methods, and with linear algebra approach, problems with

missing data in the sinogram can easily be incorporated into the matrix formalism.

• A finite, i.e., non- zero detector size can be modelled into the system, hence the

model need no be based on a ray approximation, and v::lrying detector sensibility can

in principle be modelled into the system of equations, hence better modelling of the

physical scanner setup is possible.

• The system matrix A is in general not quadratic (I -::F J), which limit the number of

techniques applicable if not forming the normal equations, which will be shown in

EqA.70 .

• The system matrix A will be (near) singular, i.e., have very small singular values,

i.e., that reconstruction written in the linear algebra formalism is an ill- conditioned

problem. Some of the image values can be under determined and others very over

determined due to the uneven coverage of the projections (sino gram lines) in the

image domain. This problem must then be controlled with constraints and! or

regularization.

• It turns out that A does not have a simple structure, hence the inversion of A have to

use rather slow methods. The reason that A does not have a simple structure is partly

due to easy sorting schemes shown in EqA.57 and 4.58. Another reason is that line

parameters (p, B) does not have a very simple relation to the image coordinates (x,y).

• The matrix A is normally very large, thus calculation of a generalized inverse of A is

extremely costly both in time and memory.

• The system matrix will be sparse due to the fact that only approximately M of the

M*M image pixels adds weight to a certain bin in the sino gram.

4.8.2 Calculation of Matrix Elements

The matrix A can be estimated in several ways. One very common approach is to use

a nearest neighbour approximation. But a first order approximation better interpolation

can also be used. As mentioned previous, the alternative methods can be found in

(Lewitt 1992).
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Even though that some of the following interpolation schemes are very simple, they

can be attractive if they can be computed fast, due to the fact that the large matrices

normally are not stored in memory but calculated many times in the iterative

reconstruction schemes and a good interpolation scheme takes longer time compared to

the coarse interpolation schemes.

4.8.2.1. Pixel Oriented Nearest Neiehbour Approximation

Around each pixel (xm, Y m) is placed a square &* & wide. If the line with

parameters (p r , Bt) crosses the square then the matrix element aij is set to L1x, and else to

O. From Figure 4.19 it is easy to see that the test criterion can written as

p'= Pr - xm cosBt - Yn sin Bt

Ip'cosB11 < ~'( andlp'sinBrl < ~ ~ arT+t.nM+m = &

(4.67)

(4.68)

Note that the index rT + t can easily be inverted to give rand t using truncation to

lower integer and the modulus operator, and likewise with the index nM +m. This is

relevantwhen generating the matrix, e.g., column-wise or row-wise. Often the matrix

elements are set to 1 in case of the line crosses the pixel (Censor 1993) and zero

otherwise.This will imply a general scaling of the solution x.

V"n

Figure 4.19 The line with index i, corresponding to (p r' Bt) , crosses the square pixel centered at
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4.8.2.2. Discrete Radon Transform

Another interpolation scheme is to use the discrete Radon transform to approximate

the forward matrix multiplication. This can be done using Algorithm 4.1 (Toft 1996),

either once (requires storage of the system matrix) or every times it is needed. If

multiplication with the transpose of the matrix is needed, then the discrete

backprojection operator (multiplied with a factor of two) can be used, cf. Eq.4.72 and

Algorithm 4.3(Toft 1996).

4.8.2.3. The Sinc Interpolation Strateev

Another approach IS to use the Eq.4.69, which IS based on smc interpolation

scheme(Toft 1996).

I(p,e,xm,Yn) = At Sin(lf/min{-, .1_, '_I _I_I})If/ sm e cos e

Thisexpression gives the elements of A.

At . ( . {II})QrT+I.nM+m =-sm If/mm -I .-, '-I -IIf/ sm e cose

(4.69)

(4.70)

(4.71)

Note that this way of generating the matrix implies that some of the matrix elements

willbe negative, which definitely is bad from a physical point of view. Assuming that

onlyone pixel is non- zero in the image, then negative counts will be measured for

some line orientations. Nevertheless Eq.4.70 represent a better interpolation from a

signalprocessing point of view. Another drawback is that it is very costly to generate

thematrix in this way compared to the other methods.
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4.4.3. Dualitv Between Matrix Operations and the Radon Transform

Using the Radon transform scheme along with the matr~x formalism as shown in

Eq.4.66 implies ordinary matrix operations have equivalent Radan transform operations.

Eq.4.66 is the Radon transform of discrete image g(m,n) into the full discrete parameter

domain g(r,t).

b = Ax ~ Radon Transform of full size parameter domain (4.72)

Iterative algorithms such as ART, use the scalar product between row number i of A,

i.e.,ai and the current reconstructed image x, i.e., a; x, which is the Radon transform of

theimage x into one specific sample in the parameter domain.

bi = a;x ~ Radon transform of one sample in the parameter domain (4.73)

Another common operator in iterative algorithms is the transpose of matrix. The

operation x = Arb is the backprojected discrete parameter domain into the Image

domain.

x = AT b ~ Adjoint Radon transform of the sinogram into the image domain (4.74)

This fact is often not recognized in the literature, but it is a direct consequence from

thematrix formalism. The transpose of a matrix (without complex values) is an adjoint

operator.and in this case, the adjoint Radon transform is two times the backprojection

operator,cf. Page 134 of (Deans 1983), and it is equivalent to the transpose of matrix,

cf. Eq.4.35.

Onewell-known approach to solve set of equations with a non- square system matrix

isto form normal equations.

(4.75)
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An interesting analysis is shown in (Kawata and Nalciog1n 1985) is that to the normal

equations

(4.76)

can be interpreted in formalism of the direct reconstruction methods. The matrix AT

represent the backprojection operator, cf. EqA.74, and then (ATArl represents the filter

in EqA.52. Likewise can it be shown that Filtered Backprojection can interpreted from

Eq.4.74 if assuming full rank of A

x=(AT At ATb

=(AT A)-IAT(AAT)(AAT)-tb

=(AT Ar1(AT A)AT(AAT)-t b

(4.77)

(4.78)

(4.79)

(4.80)

where (AATrl represents the filter in EqA.36 and AT (again) represents the

backprojection operator. Note that the assumption of full rank is not quite valid, due to

theproblems, such as zero frequency problem.

4.4.4. Iterative Reconstruction usine A1eebraic Reconstruction Technique (ART)

A wel1-known way to solve the EqA.69 is named ART, which stands for Algebraic

Reconstruction Technique. Many articles, (Censor 1983, Herman and Mayer 1993, Jain

1989) demonstrate the algorithm. ART was published in the biomedical literature in

1970, and Cormack and Hounsfie1d used ART for reconstructing the very first

tomography images. They probably did not know the work of Johann Radon at that

point,and later it was discovered that ART is a reinvention of the algorithm introduced

by Kaczmarz in back in 1937.

TheBasic operator required in ART is the scalar product between to certain row i of

thesystem matrix, a. and a solution vector x
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(4.81)

ART is formulated as an iterative reconstruction algorithm, where the solution vector

in iteration k is updated by adding a scaled version of i of the system matrix.

(4.82)

The main idea of ART is that the equation i is fulfilled in iteration k, which is easily

shown:

(4.83)

If uSlllg the Radon transformation terminology, then ART will modify the

reconstructed image in iteration k, in order to give correct Radon transform at (p r ,8,) ,

where (r.t) is found from the sinogram sorting scheme shown in EqA.60. In this way,

the reconstruction quality of ART in a given area can be altered by choosing that i

matches the lines passing through an interesting area frequently.

Often (Jain 1989) i is a function of k is chosen to i=k MOD I. where MOD is the

modulus operator, but this choice is not very good (Herman and Mayer 1993). Another

very common and easy strategy is to choose i randomly using a uniform probability

density function. Initially x(O) can be chosen to zero or some good guess on the solution,

e.g., in 2D from a fast algorithm like one based on Fourier slice theorem. Yet another

strategyis to initialize all solution values with a constant.

The ART algorithm can also be interpreted from a geometrical point of view. Figure

4.20shows the use of ART in a two-parameter estimation problem with two projection

lines. As shown in EqA.83 the current solution in iteration k, i.e., x(k) is projected

perpendicularly (along the direction of a;) onto the hyperplane (in this case a line)
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determined by bi(~) = a; X(k) . As seen from Figure 4.20 the speed of convergence is very

dependent on the angle between the hyperplanes.

X1

Xl

X I

X 1

Xl

XD

X I

X 1

Xl

X

Figure 4.20 The different cases of iteration in a two parameter problem using ART. Depending on
the orthogonality of hyperlines (here lines) the convergence can be slow (left most figure) or fast
(right most figure)(Toft 1996).

Note that ART in each iteration only requires the scalar product between ai and the

currentsolution x (k) , which can be compared to calculating one value in the parameter

domainusing discrete Radon transform, hence each iteration is very fast but the quality

enhancement gained from one iteration is in general very limited. Often when

comparing ART to other iterative algorithms that requires computation of a full discrete

parameter domain, the iteration number used for ART is a full loop through all I rows,

i.e.,I times the actual number of iterations in ART.

A common alteration of ART is to introduce a relaxation parameter in form of a

weightfactor as shown in Eq.4.84

b T (k-I)
(k) (k-I) 1 i-aix Tx =x +/\'k T ai

ai ai

(4.84)

where,1,k can be set as a simple function of k, such as a linear function or a exponential

decay.Even given the result Eq.4.83 it has experimentally been proven (Herman 1980),

thatsetting Ak to values different from one can improve the speed of convergence. It

shouldbe noted that the optimum value of Ak is a function of k, the sinogram values, and

thesampling parameters of the reconstructed image. In (Herman and Mayer 1993) it is

shownthat optimizing the value of Ak in each iteration and careful selection of row
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index i as a function of k results in a reconstmcted image quality as good as using the

EM-algorithm, at a order of magnitude less computational cost (The EM-algorithm is

presented in Section 4.8.5).

In the literature, authors have optimized ART and/or EM, and for some years it was

not clear whether the one was better than the other. Now it seems as if ART is loosing

popularity compared to EM for 2D reconstruction, but for 3D reconstruction it is still

known as a good reconstruction technique.

As shown in Algorithms 4.1 and 4.2 ART is very easy to implement. Only a scaler

product is really needed. In the algorithm the matrix elements are used over and over

again, and note for a huge problem which cannot be stored in memory all at one time

eachmatrix element has be calculated in a function like it was shown in Section 4.8.2.

InAlgorithm 4.1 the denominator values ar a; are computed once as a function of i. The

reason for showing two algorithms is that the first part can be computed once, and if

several sino grams with the same geometry should be reconstructed, then it is only

Algorithm4.2 which should be used several times.

ALGORITHM 4.1 INITIALIZATION OF THE ART ALGORITHM

For hO to 1-1
sum=O

For j=O to J-1

sum=sum+a(i,j)*a(i,j)
End

Anorm(i)=sum
End

For j=O to J-1
x (j) =c

End

ALGORITHM 4.2 THE ART ALGORITHM

//For all values of I
//Calculate the denominator

//For all values of j
//Accumulate value

//Store denominator

//For all values of j
//Initialize with a constant

//For K iteration of ART

//Choose row index in iteration k

//Initialize scalar product
//For all values of J
//Update scalar product

For k=O to K-1
Set i as a function of k
sum=O

For j=O to J-1
Sum=sum+a(i,j)*x(j)

End

w=lambda(k)*(b(i) -sum)/anorm(i)//Calculate common weight
For j=O to J-1 //For all values of J
x(j)=x(j)+w*a(i,j) //Project solution

End

End
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4.8.4.1 ART with Constraints

It is not guaranteed that ART will provide a non-negative solution, as required by the

physical meaning of the solution; in PET emission activity and in CT absorption

coefficient. Ther~ is a crude, but very easily implemented strategy is to restrict the

solution after some iterations from a upper limit estimate on the solution in each pixel

(Toft 1996), i.e., vector element or maybe just using a upper limit constant in each

iteration. A non-negativity constraint can be imposed as shown in Algorithm 4.3, where

the initialization part shown in Algorithm 4.1 has been removed. Other constraining

schemes for ART can be found in (Censor 1993).

ALGORITHM 4. 3 THE ART ALGORITHM WITH CONSTRAINTS

For k=O to K-l
Set i as a function of k
sum=O

For j=O to J-l
sum=sum+a(i,j)*x(j)

End

w=lambda(k)*(b(i)-sum)/anorm(i)

For j=O to J-l
x (j ) =x (j ) +w* a (i , j )

End

If k MOD kc=O

For j=O co J-l
If x(j)<O
x(j)=O

End

If x(j»Maxx(j)
x(j)=Maxx(j)

Gnd

End
End

End

4.8.4.2 Initialization

IIFor k iterations of ART
IIChoose row index in iteration k

IIInitialize scalar product
IIFor all values of j
IIUpdate scalar product

IICalculate common weight
IIFor all values of j
IIProject solution

IIEvery kc iterations use constraints
IIFor all values of j
IINegative solution is found
Ilwhich is set to zero

IIToo large solution is found
Ilwhich is set to max limit

Using iterative algorithms also implies that the solution vector x should be initialized

with a constant value or a good start guess, which need not be a constant. One

possibilityis to use fast direct algorithms, such as Fourier Slice based methods, for

producinga start guess. If the start guess is good the iterative algorithms in general will

convergefaster, but it also implies that the behavior of the algorithm will be biased by

the directmethod. Another very common starting guess is to initialize the solution with
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a constant. For the ART algorithm no restrictions are made concerning the initial value,

but for other iterative algorithms such as EM the initial value has to be positive.

Assuming that the solution is a constant, then by averaging in Eq.4.69 the value should

be

I

Lb,
,,0 = '=1 V'. j } I }

'" '" a~~ I.}
j=1 i=1

(4.85)

This initialization requires that the system matrix is computed an additional time or

can be combined with the first part of Algorithm 4.1. A faster scheme is to use the

approximation that for a certain value of i a line approximately crosses M pixels each

witha value of approximately Llx, hence

} { 1 I~'a. ~IM&=:;.xo =--'" bV}'L...L I.} ) l'A'(A~ ~ Ii=1 ;=1 IVlLU i=1

4.4.5. The EM Al20rithrn

(4.85)

So far the reconstruction methods have modelled the projections as line integrals,

which was reconstructed by use of discretization of the inverse Radon transform.

Especially in emission tomography with limited counts in each sino gram bin, the

statisticalnoise can dominate the reconstructed images when using direct reconstruction

methods. This lead many scientists to consider statistical approaches to derive

reconstruction algorithms. One of the most prominent iterative reconstruction methods is

Maximum Likelihood Reconstruction using the EM algorithm, which stands for

Expectation Maximization. In the very famous articles (Shepp and Krustal 1978) by

Sheppand Vardi and (Shepp et al. 1985) by Vardi, Shepp, and Kaufman a statistical

frameworkfor reconstruction is given. It is assumed that the measurements originate

fromuncorrelated Poisson generators, which ideally model the underlying physics, but
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problems like attenuation correction are not modelled in this framework. Another

feature of the EM-algorithm is that the model includes a non-negativity constraint.

The key idea of the EM- algorithm is to maximize the Likelihood

[ (b *)~,
L(x) = p(blx) =Il ;,e-b,·

1=1 b;.
(4.86)

where b * contains the unknown mean values of b, i.e., the true sinogram without noise,

andit is assumed that b * fit the solution perfectly

b*= Ax (4.87)

where the coefficients of the system matrix are considered as transition probabilities

nonnalized as

[

I=Ia
;=1

(4.88)

inPET meaning that a photon pair at detector pair i originates from one of the regions in

thebrain (pixels in the image) with the probability of one.

Now the expectation of the Likelihood is maximized from the log Likelihood l(x) by

settingthe derivatives of 1('C) to zero

alex) =_ fa. + f a;,jb;
ax. LJ '.} LJ IJ} 1=1 1=1 a .. ,X.,

j'=l I.} }

f a;,jb;--1+ LJ----=O
i=l "J a .. ,X.,LJj'=1 I,} }

(4.89)

Inthe literature an additional non-negativity constraint is imposed and it can be shown

thatthis results in the Kuhn-Tucker conditions,

x. alex) = 0
J ax }

Vj where xj > 0

, -::-::,
IlMIR YUKStK HKNOlOll [,,511 iUSU .

REKTORLUGU

(4.90)
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V) where x· =0
j (4.91)

where the first equation is used to formulate an iterative mapping scheme

- alex) - [ If ai,jbi J

O-x---x -1+ ----- ~
} ax. j- IJj 1-1 a. ·,X·,

j'=l I,j j

(k) _ (k-l) If ai,jbi
x. -x· ------

} j . IJ (k-l)
1=1 a. ·,X·

j'=l I,j j

(4.92)

(4.93)

This equation is very often found in statistical reconstruction literature, but it should

be noted that it requires that the elements of the system matrix is properly normalized.

Here another version of the EM algorithm proposed in (Carson and Lange 1985), and

foundto give very good results is used. It does not require the assumption shown in

EqA,88, and works fine with the normalization used in Section 4.8,2.

(k-I) f b

X(k) = xj '" ai,j i} If L.., IJ (k-l)
a·, 1=1 a· ·,X·

i'=1 I j'=! I,j j

(4.94)

EqA.94 is a very compact form to show the EM-algorithm, but it does not show that

eachiteration consists of four steps

bl = Ax(k-l) (4.95)

bq=~

(4.96)f M I

i = AT bq

(4.97)

X(k) =

X(k-I) xb

} } (4.98)} 5j
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I

where Sj = I a i.j , forms a normalization vector that can be calculated once for all.
i=l

EqA.96 can lead to instability. Assume a PET imaging situation where a certain i

corresponds to a line not entering regions of activity, hence the forward projected value

b( becomes zero, thus the denominator iTl Eq.4.96 is a potential stability problem.

The EM algorithm is computationally demanding. Eq.4.95 shows that each iteration

requires a forward projection (Radon transform) of the current solution, cf. EqA.72. The

quotient in each point between the measured sinogram bi and the forward projected

solution b( , i.e., bq is then backprojected into the image domain. Finally, in EqA.98,

the next estimate of the solution is generated by multiplying for each index}, the current

estimate of the solutionxY-l), e.g., Filtered Backprojection. Note also that the EM

algorithm is nonlinear, hence additive noise in the sinogram will not automatically lead

to an additive noise term in the reconstructed images, as it has been the case for all the

previous methods.

In Algorithms 4.4 and 4.5 are shown the implementation of the EM-algorithm. It has

been split into two parts indicating that the first part has to be calculated once, and the

lastpart can then be used to reconstruct several images with the same geometry.

ALGORIT:-:M 4.4 INITIALIZATION OF EM ALGORITHM

For j=O to J-1
sum=O
For i=o to 1-1
sum=sum+a(i,j)

End

s(j)=sum
End

For j=O to J-1
x(j)=c

End

//For all values of j
//Calculate the values of s(j)
//For all values of I
//Accumulate value

/jStore value

jjFor all values of j
jj1nitialize with a constant

Note that the initialization of the EM-algorithm requires that the system matrix is

generated once in the initialization part, but this can be avoided by initializing the

solution vector as shown in Algorithm 4.6, and then use Algorithm 4.5 for the

remainingiterations. Note that in the first line of the Algorithm 4.5 the counter should

thenbe For k = I to K-1.
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ALGORITHM 4.5 THE EM ALGORITHM

For k=O to K-1
For i=O to I-1

sum=O

For j=O to J-1
sum=sum+a(i,j)*x(j)

End

bq(i)=b(i)/sum
End

For j=O to J-1
sum=O
For i=O to I-1

sum=sum+a(i,j)*bq(i)
End

x (j)=x (j)*sum/ s (j)
End
End

//For K iterations of EM
//For all values of row index

//Initialize scalar product
//For all values of j
//Update scalar product

//St2~e scaled forward projection

//For all values of column index

//Initialize backprojection sum
//For all values of row index
//Accumulate sum

//Update solution

ALGORITHM 4.6 THE FIRST ITERATION OF THE EM ALGORITHM

For i=o to I-1

sum=O

For j=0 to J-1
sum=sum+a(i,j)*x(j)

End

bq(i)=b (i)/sum
End

For j=O to J-1
s (j) =0
sum=O
For i=O to I-1

la=a(i,j)
sum=sum+la*bq (i)
s(j)=s(j)+la

End

x(j)=x(j)*sum/s(j)
End

//For all vales of row index

//Initialize scalar product
//For all values of j
//Update scalar product

//Store scaled forward projection

//For all values of column index
//Initialize s- values
//Initialize backprojection sum
//For all values of row index

//Store value in a simple variable
//Accumulate sum
//Increment s

//Update solution
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CHAPTERS

THREE DIMENSIONAL RECONSTRUCTION

5.1. Lines in a Three Dimesional Space

Lines in a three dimensional space cannot be written in a single form as in the two

dimensional case. Instead a parameter description can be used. In the following a line

description using four parameters is shown. This description is the basis of direct

inversionschemes. In general a line can be described by

r = ro + ST (5.1)

whereS is the free parameter, and ro is an offset vector. The vector 't is a directional

vector,which can be normalized to the unit length, i.e., ITI = 1. The vector can, e.g., be

describedby

[CaSe cas rjJJ
r = sin ~ cos rjJ

smrjJ

(5.2)

Thebase point vector (or offset vector) ro is descried by two parameters u and v using

twodirectional vectors a and ~, both normalized to unit length.

ro=ua+vfJ (5.3)
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Figure 5.1 The (x,y,z) coordinate system and a line lying along to the, axis. The base point vector ra

can be wirtten as a linear combination of a and ~.

It can be chosen that three vectors t, a and ~ form an orthogonal basis, and the last

rotational degree of freedom can be used for specifying that the z- component of a is

zero.In (Clack et al. 1989), a and ~ are defined as

r- sin ()J [- cos () sin ¢J

a = cos () and fJ = - sin () sin ¢

lOcos ¢

(5.4)

It should be mentioned that other symbols of the vectors can be found in the literature,

e.g.,(Orlov 1975a, Orlov 1975b, Nattarer 1986). Following (Clack 1992), line integrals

througha three- dimensional space can be expressed by the symbols defined in Eqs. 5.1

and 5.3.

g(e,¢, ll, v) = [, g(sr + ua + v/3)ds (5.5)

where (e, ¢, u, v) is four dimensional parameter domain. The mapping from the (x,y,z)

domainto (s,u,v) is very useful

r=sr+ua + v/3

[XJ [COS () cos ¢
r = y = sin ~ cos ¢

z sm¢

- sin ()

cos ()

o - cos () sin ¢J[sJ

- sin () sin ¢ u = Q p

cos ¢ v

\ IZMIR YUKSfK Tf~NOlO.jiY~STnOSOREK10RLUGU

I D' B1
, '~;·tuDhting ve Df)kumo ••!lsyon Glfe ~i:"

(5.6)

(5.7)
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Using that the base vectors are orthogonal and normalized to unit length, hence the

rotation matrix Q is unitary i.e.,

0-1 OTp=_ r=~ r (5.8)

One feature of matrix Q is that only two angles are used compared to a general

rotation matrix, '.vhich uses three degrees of freedom, i.e., three angles. The definition of

the line integrals in Eg 5.5 implies that a three dimensional function g(;'(,y,z) is

transformed into a four dimensional parameter domain g(e. ¢, u,v).

It has been chosen to denote the line integrals of g(r) with the symbol g. It can be

argued that Eq. 5.5 is not a radon transform of the function g(x,y,z). It is not, but it can

beseen as a hybrid or generalized Radon transform for lines through dimensional space.

In the following, Eq. 5.5 is called the 3D line Radon transform or simply the Radon

transform. In the rest of this chapter only the 3D line Radon definition will be

considered, and the actual parameters will uniquely determine which type of

transformation used. From the definition of the 3D line Radon transform some basic

rules are derived and shown in APPENDIX A. Additionally, the Radon transform of

simplegeometrical functions are given in the same appendix.

The 3D line Radon transform can be perceived as a convolution between a function

g(r) and a kernel h expressed in the coordinates p for a given combination of the

angles19 and ¢.

h(r) = h(p) = h(s, u, v) = 5(u)5(v) (5.9)

which can be seen from the following, where *** implies a three dimensional

convolutionin the parameters (s, u, v).

g(e,¢,u, v) = g(r) * * * 5(u)5(v)

= [=-00 [=-00 [=-00 g(s' r + u' a + v' jJ)5(u - u')5(v - v')ds' du' dv' (5.10)

= [-00 g(s' r + ua + vjJ)ds'

Besidesthe new integration variable s " the results matches Eq. 5.5.
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At this time it could be appropriate to look back to the two dimensional results. This

can be done by choosing ¢=O, V=Zo , and u=p, thus the line integral reduces to

g(p,O, e) = [~g(s cos e - p sin e, s sin e + p cos e, 20 )ds

5.2. Fourier Slice Reconstruction in 3D
.

(5.11)

From the line integrals defined in Eq. 5.5, the function g(r) can be recovered using

Fourier techniques, and the Fourier Slice Theorem is now derive for 3d line integrals by

applying the two dimensional Fourier Transform to each of the (u, v) planes in Eq.5.5.

G(B,¢, vu' vJ = [, [, g(e,¢,u, v)e- J2Jr(uvu+wu)dudv

= [oo [oo [oog(sr + ua + vjJ)e-J2Jr(uvu+wu)dudvds

(5.12)

which indicates a close connection to the three dimensional Fourier transform of the

function g(r).

G(v) = [[ [~g(r)e-j2nrvdr

g(r) = [, r~[oo G(v)eJ2,"" dv

(5.13)

(5.14)

where v is the three dimensional frequency vector.

Now, the integration parameters in Eq. 5.12. is changed into x, y and z, i.e., r. It is

used that r, a and fJ are orthogonal.

r=sr+ua+vfJ =>

U = ar and v = fJr =>

uVu + vvu = r· (vua + vvfJ) =>

G(B,¢,vu,vJ = [oo [oo [oog(r)e-J2JlT'(vua+v,P)dr

(5.15)

(5.16)

(5.17)

(5.18)

These interesting results shows that the two-dimensional Fourier transform of the

line integrals is the three dimensional Fourier transform of the function to be

reconstructed (Clack 1992).
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(5.19)

which is a Fourier slice theorem for line integrals in a three- dimensional space. It

implies that the function g(r) can be recovered by applying a two dimensional Fourier

transform to the sinogram for all values of (B, ¢), followed by a mapping of the

spectrum, and finally recovering the desired volume by using a three dimensional

inverse Fourier transform.

G(vua+ vj3) = [00 [oog(B,¢,u, v)e-J2;r(uv,+vv,ldudv

g(r) = [[00 [00G(v)eJ2JlTVdv

(5.20)

(5.21)

A non- trivial problem arises when implementing the mapping of the spectrum. Each

frequency point v is mapped into vua + vjJ, but v is three-dimensional vector and

vua + vj3 has four degrees of freedom. This implies that each v matches an infinite set

of parameters (B, ¢,u, v). One possible solution is to use weighted averages of the

possible 4D frequency vectors for each value of v, and this problem is still an area of

activeresearch, though in (Steams 1990) several aspects have been covered.

5.3. The Backprojection Based Inversion of Line Inteerals in 3D

Analogous to the 2D Filtered Backprojection, it is possible to filter the line

projections and thCll make a backprojection of the sinogram into the volume domain

(t,y,z)(Clack 1992). The backprojection operator in 3D is now analyzed from the

transformation of a point source. Again, it is used that any function can be resolved into

aweightedsum (integral) of delta functions.

g(r) = [[ [oog(ro)5(x -xo)5(y - yo)5(z - zo)dxodyodzo

== [g(ro)5(r - ro)dro

Thisimplies that the corresponding Radon transform is given by

j'IIMIR Y!!KSEK rt.KNO!.~.Ii.t~STlTOSU .REKTORlUGU I
I v- L.- I •••., r

(5.22)

(5.23)
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(5.24)

This shows that any function g(r) can be Radon transformed, if the point source can

be transformed. Now this will be done.

gp(r) = 5(r - ro) =>

g(B,¢,u, v) = f"5(sr + ua + v,8 - ro)ds

= [, 5((s - so)r + (u - uo)a + (v - vo),8)ds

= fa, 5(s, + (u - uo)a + (v - vo)P)ds

(5.25)

(5.26)

(5.27)

(5.28)

Here the unambiguous substitution ro = so' + uoa + vo,8 has been used. Using that the

delta function will be non zero if and only if the argument is a zero length vector

implies that the result will be non zero if and only if u = Uo = ro . a and v = va = ro . ,8 ,

and because the base vectors are orthogonal the result can be expressed using the delta

function.

(5.29)

This can also be found directly from Eq. 5.10. It is a very important result, which can

be used to formulate a backprojection operator in 3D (Clack 1992).

g = bg(B,¢,u = r ·a, v = r· ,8)dQ. = [0 (_V'g(B,¢,u = r ·a, v = r· P)cos¢xi¢xiB (5.30)

For convenience the integration over angles is written as a single integral with index

Q. If the geometry is, e.g., Q.IV the integration becomes the last part of Eq. 5.30, where

the term cos~ is the Jacobian, found when converting to spherical coordinates.
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5.4. Filterin~ After Backprojection of Line Inteerals In 3D

Like in two dimensional backprojection algorithms, a high pass filter is needed either

before or after the backprojection (Clack 1992). In this section the aim is to find a
."

condition for the filter used after backprojection, i.e., on the v·olume. It can be derived

by backprojecting the Radon transform of a function g. Inserting in Eq. 5.5. into Eq.

5.30 gives

(5.31)

Now it is utilized that the s- integration can be shifted along the 1:- axis, like it was

done from Eq. 5.27 to 5.28. Here the offset is chosen to r· r .

g(r) = .b [_00 g((r. a)ex + (r' j3)fJ + (r' r)r + sr )dsdQ

= .b [_00 g(r + sr )dsdQ

(5.32)

(5.33)

Which can be recognized to be a convolution, thus a 3D Fourier transform can be

appliedon both sides.

G(v) = 1[_00 [-00 g(r + sr )e-J2JrVrdrdsdQ

= 1[_00 l_oog(r)e-J2JlV(r-sr)ardsdQ

= 1[_00 G( v)eJ2JlSv.rdsdQ

= 1G(v { (~~2JlSv-r ds )dQ

= G(v) .b 5(v· r)dQ == G(v)
Ha (v)

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

This result is a 3D Filtering after Backprojection reconstruction method. The

spectrumof the backprojected sinogram is multiplied with the filter Ha(v), shown in

Eq.5.39. Finally Eq. 5.14 is used to recover the desired volume.
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1
H (v)=----

a 15(v. ,)do
(5.39)

In the geometry fl'[/, the filter can also be found on an analytical form. Several

papers, e.g., (Colsher 1980,Clack 1992), have shown different filters, which again have

been shown to only differ with a normalization constant. Due to the circular symmetry

around z- axis, the filter can be calculated, with Vy, i.e., the y- component of the

frequency vector, set to zero.

1o(v, T)dO = L-'II [oo(v< cose cos¢ + Vz sin ¢)cos¢dfJd¢

= 2 L-'II r~02o(vx cose + Vz tan¢)dfJd¢

r 1 {r = min{IfI,!arctan(v<IvJ}
= 2 ----d¢ where

=-r Ivx sinexl Vx coseo + Vz tan¢ = 0

= 2 f cos¢ d¢
#=-r~v~ - (v~ + v~)sin 2 ¢

(5.40)

(5.41)

(5.42)

(5.43)

The symmetry of the integral is used again to get the general results, i.e., in the last

line lv,I is substituted back to ~v~ + v~ ' and the result is

v

Jr

{ 2 arcsin( ~/~ v; sin ¢] J -,

otherwise
(5.44)

Two things can be noted in Eq. 5.44. First, letting IfI ~ Jr I 2 implies full angular

coverageand Eq. 5.44 becomes very easy, i.e., Ha ( v) = V I, . On the other hand letting

1fI-+ 0 implies that the filter becomes close to Ha (v) = ~v~ + v~ 1(21f1) . Neglecting the

normalizationconstant 2 If/, the filter can be recognized as the filter used in 2D Filtering

afterBackprojection.
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Figure 5.2 Normalized angular part of the filter as a function of ¢v = arcsin(vz /Ivl) for

lfI = 100 ,200 , ••• ,800•

5.5.Filtered Backprojection of Line Inteerals in 3D

Analogous to the two- dimensional Filtered Backprojection method, the filtering can

be done before backprojection of the line integrals in 3D. Here a two dimensional filter

hb(e,¢,u,v)is convolved in the (u,v) plane of the sinogram for each value of (e,¢).

After the filtering shown in Eq. 5.45, the backprojection operator is used as shown in

Eq.5.47.

g(e,¢,u, v) = hb (e,¢,u, v) * *g(e,¢,u, v)

= f=-oo [_00 hb (e,¢,u - u', v - v')g(e,¢,u', v')du' dv'

g(r) = 1gee, ¢, r· a, r· ,B)dQ

(5.45)

(5.46)

(5.47)

The criterion that the filter in 3D Filtered Backprojection will have to satisfy can be

derivedby choosing g(r) as a point source and requiring that Eqs. 5.45 and 5.47 are self-

consistent,i.e.,

g(r) = oCr) ~ gee, ¢, u, v) = 8(u )0(v) ~ (5,48)

. ..

)IZMIR YUKSEK TE~NOlO}iwL.~Sl:rUS"
,.1. ~ J,l' I ;Y

IKuruphnne ve Dokfima,,'QWO~ Dcim p I

(5.49)
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The last equation can also be viewed in the 3D Fourier domain

1 = 1( [ [" [hb (e, ¢,r· a, r· f3)e-J2'TVr dr yo

= 1([" [[ hb(e,¢,u, v)e-J2-T(sv.r+uva+uv{Jldp yo

= 1Hb (e, ¢,v· a, v· /l) [e-J2mVr dsdO

= lHb(e'¢'V'a'V'/l)5(V'r)d0

where 2D Fourier transform of the filter has been used

H (B A. ) - [ [ h (/1 A. )e-J2'T(UVu+vvvlddb ,'f',vu'vv - 00 00 b U,'f',U,V U V

(5.50)

(5.51)

(5.52)

(5.53)

(5.54)

In a given geometry, several filters are valid (Clack 1992), due to the 4D to 3D

transformation during reconstruction. In general, part of the filters belong to a null­

space, which could be used to improve noise performance without altering the signal

reconstruction, though more research is needed to derive appropriate filters.

In (Clack 1992) a criterion is given which makes Filtered Backprojection in a sense

equivalent to Filtering after Backprojection.

H b (v U ' V v) = H a (V u a + v v /l) (5.55)

Defining vr = vuax + vvf3x and vy = vuay + vvf3y, then Eqs. 5.44 and 5.55 imply that

one valid filter is

otherwise (5.56)

In the geometry 0JrI2' the filter is very simple
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The Q,T 2 filter can be validated by inserting Eq. 5.57 in 5.53.

t!Hb(B,¢,v·a,v·fJ)5(v,r)dQ

=~.6 ~(v.a)2 +(v·fJ)25(v·r)dQJr ~!

=~ 1 ~(v.aY +(v·fJY +(v·rY5(v·r)dQ1r ,T 2

=~ 1 IvI5(v.r)dQ=1Jr :r 1

In the last line the result from Eqs. 5.40- 5.44 are used, with lj/ = Jr/2 .

(5.57)

(5.58)

(5.59)

(5.60)

(5.61 )
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CHAPTER 6

IMPLEMENTATION DETAILS

6.1. Numerical Implementation of 2D Direct Reconstruction AI~orithms

In this section the implementation of Filtered Backprojection, Filtering after

Backprojection and The Fourier Theorem are shown. All of these algorithms can be

basedon Fourier transform, which is reviewed in the Chapter 4.

6.1.1.Usin~ the DFT to Approximate the Fourier Transformation

All of the presented direct reconstruction schemes use Fourier transformation, either

for filtering, or for re- mapping of the spectra (Fourier Slice theorem). For digital

signals,the discrete Fourier transform (DFT) can be used to estimate the spectrum, and

inpractise, the spectrum is estimated by the Fast Fourier Transform.

Assume that the one dimensional function, of a continuous variable t, denoted g(t) is

sampled uniformly, i.e., gs(n)=g(n6t).Furthermore, assume that only N values are

non-zero.In this case the Fourier transform can be approximated by the DFT

N-}

G(f)= r g(t)e-j2;rftdt~6tLgs(n)e-j2;rmnIN =Gs(m)~OJ
n:D

hence,Glm) will approximate the continuous spectrum

I::.tG (m)::::: G(~)s N6t

(6.1)

(6.2)

The discrete spectrum is in Eq.6.1 computed using the DFT of gs (n). With the same

approachthe inverse Fourier transform is commonly approximated by
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(6.3)

This technique can easily be generalized to two or more dimensions.

When approximating the Fourier transform by the DFT it should be noted that the

spectrum is available only in discrete samples and the samples represents the Fourier

transform of a periodical repetition of the discrete signal gs (n) with period N.

Furthermore a very important factor is that the discrete spectrum as a function of m

also is periodical with period N, i.e.,

(6.4)

This implies that the maXImum absolute frequency corresponds to

m = N / 2 ~ r = _1_, i.e., the upper frequency fu equals half of the sampling
j 11 2!:lt

frequency. Due to the periodical behaviour of the discrete spectrum, the last half of the

digitalspectrum, i.e., from m = N/2 to m = N-l will correspond to negative frequencies.

6.1.1.1.The FFT Applied for Filterine

Now the practical use of the DFT for implementation of the operator :J~Iwill be

discussed. It is very important to note that the DFT uses an array of signal values g(n),

n=O,l, ...,N-l, where the last half of the array corresponds 0 negative continuous

variable. In this case the relevant signal is the discrete samples of the sino gram for a

certainvalue of Bt, i.e., h(r) = g(Bt. Pr), where the values of P lies symmetrically

aroundO. In order to get the phase of the spectrum correct, the array g(n) used for the

DFTmust be filled as shown in Figure 6.1. Note the wrapping so negative values of P

arefilled into the last half of the array. It is also assumed that the DFT transformation

lengthis a power of two in order to use one of the fast radix-2 FFT algorithms. For the

unknown entries in the middle of the array of g(n) zeros must be filled in. This

operationis called zero padding and this action will affect the spectrum.

A large number of zeros give a more smooth spectrum (due to a denser sampling in

frequencydomain), which can be desired if interpolation in the spectrum is required.
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Thus, the extra zeros padded can help to improve the numerical stability. In Figure 6.2 a

square signal is shown in the left upper corner, and the corresponding spectrum in the

right upper corner. Zeros have been padded, and again the spectrum has been found.

This is shown on the lower part of the figure. Note, that the new spectrum is more

smooth.

g(n)

o 0 0 0 0 Zeros filled into g(n)

Figure 6.1 Filling an array h(n) into a larger array g(n), when using radix- 2 FFT.

As it briefly has been described, the use of DFT to approximate the Fourier transform

also implies that the signal becomes cyclical with the period of the transformation

length.This can lead to problems, as it later will be demonstrated in Subsection 6.1.5.l.

A common strategy to reduce this cyclical influence is to multiply the signal with a

window, i.e., a weight function attenuating the edges of the signal.

A property, which can be used to reduce the computational cost, is based on real

(non-complex) valued signals. Assume a discrete cyclical real valued signal g(n)

G(m) = G(-m)* = G(M - m) * (6.5)

where* denotes the complex conjugate and g(n) = g(n + N ). This symmetry is easily

provedfrom the DFT definition shown in Eq.6.1, and it should be used if only a real

signal is provided, such as a sino gram, which should be filtered (without complex

values).In this way the length of the FFT needed, can be reduced by a factor of two, or

tworeal "alued signals can be transformed with the same FFT.

Numerical algorithms are available in virtually any numerical package for efficient

calculation of the FFT. Several packages furthermore also includes functions for

calculatingthe DFT of a real valued sequence g(n) of length N = 2P, e.g., Numerical

Recipes(Press et al.). Often the FFT-algorithm is a radix-2 algorithm. This restriction is

forreconstruction purposes not harsh, but must be remembered when zeros are padded.
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1l>

l>r--....J

1l>

l>f-------I 1.------1

Figure 6.2 Upper left shows a square and the upper right shows the corresponding absolute
spectrum. The frequency ranges from 0 to the sampling frequency (last half is the negative
frequencies). Lower left shows the square where the zeros have been padded, and the lower right
showsthe corresponding absolute spectrum, which appears more smooth.

In the implementation of Filtered Backprojection a ID filtering of the sinogram is

needed,where the filter is the absolute of the frequency parameter, i.e., Ivl. This filter is

approximated in many ways, but the structure of the FFT based filtering is the same, as

shownin Algorithm 6.1. The algorithm does not demonstrate the implementation of the

extra speedup gained by exploiting Eq.6.5, hence the array g(n) has complex entries.

Notealso that the algorithm does not split the signal values as it was shown in Figure

6.1, because the filtering does not use the actual phase of the spectrum. What matters, is

thatthe filtered result is extracted from the same positions in the array, and is returned

in the original sino gram (g radon (t I r) ) I which is done for sake of memory

efficiency.

The filter calculated in line three of Algorithm 6.1 (sampling of Eq.6.2) is called the

i amp filter or Ram-Lak filter. Often it is multiplied with a weight function or simply

other function in order to get a better signal to noise ratio. The only item all of the

rlters have in common is that they approximate Ivl at low frequencies, and the

86



difference is pronounced as the frequency v approaches half of the sampling frequency,

1
denoted by v =--

" 2!:::.p

//Using radix-2 FFT
//For the radial samples
//Move the real part

//For all angular samples
//For the radial samples
//Move the sinogram values
//For padding
//Pad with zeros

//Using radix2 FFT
//Handle zero

//Multiply with filter
//Positive frequency
//Negative frequency

sampling

frequency

half

//Assuming radix-2 FFT
//Initialize filter

//Approximate filter

//Handling

ALGORITHM 6.1 FILTERING USING DFT

Set P to upper power of two (P>=R)
For r=l to P/2

f(r)=r/(Delta_rho*P)
End

For t=O to T-l
For r=O to R-l

g(r)=g_radon(t,r)
For r=R to P-l

g(r)=O
End

Compute FFT of g(n)
g(O)=O

specially

g(P/2)=g(p/2)*f(p/2)
frequency

For r=l to P/2-1

9 (r)=g (r)*f (r)
g(P-r)=g(P-r)*f(r)

End

Compute inverse FFT of g(r)
For r=O to R-l

g_radon(t,r)=real(g(r))
End

End

End

Some of the filters reported in the literature (Jain 1989) are given below, where it is

only the part below a certain limit frequency VI ~ V u' which is sampled and used. The

reason for using these weight functions also called windows or apodizing functions is to

suppress the influence of noise. It is obvious that the filter Ivl is a high pass filter and it

willattenuate any noise present in the sino gram. Examples of this property will be given

in Subsection 6.1.5.5. Many windows can be presented, but here only four examples are

gIven.

TheCropped Ram- Lak/ Ramp Filter Sample the filter Ivl until VI, i.e., the filter is

(6.6)
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and for v, ~ Ivl < VII the filter is set to zero. The ramp filter is widely used but will

amplify noise if VI is chosen too high.

The Shepp- Logan Filter A sinc window is multiplied to the ramp filter

sin(~J
III 2v,

H(v) Shepp-Logon = V"2 (7rV J2v,

and for VI ~ IVI < VII the filter is set to zero.

The Hann Filter A Harm Window is multiplied to the filter.

andfor v, ~ Ivl < VII the filter is set to zero.

TheGeneralized Hamming Filter

(6.7)

(6.8)

(6.9)

wheretypical values of a are 0.5- 0.54. Again for v, ~ Ivl < VII the filter is set to zero.

Stochastic Filters In Section 10.8 of (Jain 1989), Jain derives a parameterized filter,

whichis shaped to the actual noise level.

Figure 6.3 shows three of the filters. They can all be written as a product of the

theoretical derived ramp filter and an apodizing window, which will influence the

performancein presence of noise. In general, if the apodizing window have a low cutoff

frequencythe resolution gets worse, but the noise suppression can be improved.

In the top part Figure 6.4 is shown the impulse response from the ramp filter. Note

that the lower sub-figure uses logarithmic scale. The figure shows that the impulse

responsehas long tails which implies that a number of zeros, in principle an infinite
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number, ha\'e to be padded to the signal or else the cyclical behavior of the DFT can

influence the filtered signal.

a.ll

a:;

a.1

.1,01-1, ••11-"
..,--

•• 11 ••••••••,,~
~,," Shtpp-Ul[l" lito

112 I1:l 11-'1 11~ a.il 11, l1a 11&
...- •.••I',cp.Kt.,., .••••..•1a""IN Imllhcp.Kt.,.

Figure 6.3 The amplitude of the Ram- Lak filter, the Shepp- Logan filter, and the generalized

Hamming filter using a=O.5, all three as a function of frequency normalized to the upper limit
frequency, VI-

1S11}-20 -1S -11} ·S I}

s

1S

20 ~~~~ ~•.

~~
I}
.2S

• .2i} -1S -11} ·S 1S

Figure 6.4 Upper shows 51 samples of a ramp filter as a function of frequency. Upper right shows
the absolute value of the corresponding spectrum, found from a DFT of the same length. Here no
windowing has been used to reduce the cyclical behaviour of the DFT.

Figure 6.5 shows filtering of a sino gram corresponding to a circular disc in the image

domain. Here a Hann window has been multiplied to the ramp filter. This filtered

sinogram will later, in Figure 6.7, be backprojected to demonstrate the full
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reconstruction algorithm of Filtering after Backprojection. From Figure 6.5 it can be

seen that the spectrum is very localized around zero frequency, and the high-pass filter

will amplify the edges and from the last sub-figure, it can be seen that significant

negative values are found. A small remark is that the data representation' in these

algorithms should include a sign bit.

Si"og r:l rn li'1~ 1 D S p"cl'oJ '"
200

0.8

1so
o.a

I
1000.01

0.2

SO

0

0
·2

·1 0 2·2• 10 2
,It 0

~ oj

A II0 d iz:", d (ik", ,

• ik", ,,,,d S i~ 0 9 r:> '"li~",
0.::1

o .OOS

00.2

·O.OOS

• 0.010.1

- 0.0 1S

/ V \

·0.02

0

1 \
·0.02S- 2

·1 0 2·2• 10 2

~oJ

r., (J

Figure 6.5 Upper left shows the sinogram for a fixed value of e and varying p. Upper right shows
the corresponding discrete spectrum, and it can be noted that there is heavy low frequency
dominance. Lower left shows the filter, which here is the ramp multiplied with a Hann window.
Lower right shows the filtered sinogram part.

It should be mentioned that the complexity of filtering the sinogram is the number of

angular samples times the complexity of the FFT operations (plus some lower order

terms)

DFillering = O(TR log R) (6.10)

where R should be replaced by the smallest power of two larger or equal to R if a

radix-2FFT is used.
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The 10 filtering could also have been done by convolving the sinogram with the

proper impulse response, which is infinitely long as indicated in Figure 6.4, hence

windowing is needed. This approach is fast if the impulse response is truncated into a

short signal, which will somewhat sacrifice the performance in the frequency domain.

This implementation of filtering of the sino gram followed by backprojection is known

as convolution backprojection.

6.1.2. Discrete Implementation of Backprojection

Filtered Backprojection is the easiest inversion scheme to implement. An algorithm

based on Filtered Backprojection will have two parts: A filtering part and an integration

part. The filtering part has been covered in Subsection 6.1.1.1 and in this section the

implementation of the backprojection part is described.

The backprojector operator was found in Eq.4.35.

g(x,y) = r g(xcosB + ysinB,B)dB (6.11)

where g is the filtered sinogram in case of Filtered Backprojection and the original

sinogram in Filtering after Backprojection.

A commonly used approximation ofEq.6.11 is

T-I

g(xm, YII):::= 6BI g(xm cos Bt + YII sin Bt, Bt)
t=O

(6.12)

where a one dimensional interpolation must be used in p direction. Normally, either a

nearest neighbour approximation or a linear interpolation is incorporated. Now the

discreteindices of the sinogram are used.

Nearest Neighbour Approximation

T-I

g(x m , YJ:::= 6.BIg ([r *1 t ),
,=0

(6.13)

where Xm cosBt + Yn sinBt - Pmin
r * (m, n; t) = ----------

6p
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ALGORIT:-!Y1 6.2 INITIALIZATION B:::FORE

rhooff=rho_min/Delta rho
For t=O to T-l
theta=t*Delta theta

costheta(t) =cos (theta)
sintheta(t)=sin(theta)

End

For m=O to M-l

xrel= (x_min+m*Delta_x) IDelta rho
For t=O to T-l

xc(m,t)=xrel*costheta(t)

ys(m,t)=xrel*sintheta(t)-rhooff
End

End

BACKPROJECTION

IICompute offset
IIFor all values of theta

Iitheta is computed
Ilcos(theta) is stored

Ilsin(theta) is stored

IIFor all values of x

Ilcompute x
IIFor all values of theta
IIStore x times cos theta

IIStore y times sin theta

ALGORITHM 6.3 FAST BACKPROJECTION

For m=O to M-l IIFor all values of x

For n=O to M-l IIFor all values of y
sum=O IIInitialize simple variable
For t=O to T-l IIFor all values of theta

rm=xc(m,t)+ys(n,t) IICompute non- integer index
rl=floor(rm) IIFind lower integer
w= (rm-rl) IICompute weight

sum=sum+(l-w)*g_Radon(t,rl)+w*g_Radon(t,rl+l)
End IILinear interpoaltion

finished

g(m,n)=sum*Delta_theta
End

End

Note that, in Algorithm 6.3 it is not checked whether the value of rl correpond to

pixels in the image or not, i.e., 0 ~ rl < R - 1. This operation is very time consuming as

it is evaluated in the most inner core of the loop. Checking can be avoided, if the initial

sinogram is expanded in size in the p direction by padding zeros, in order to fulfil

0< xm cas ()( + YII sin ()t - P:in < R -1
fJ.p

V(Xm, Y II' ()t) ~ R* > J2(Jvf -1) ill + 1 (6.18)
fJ.p

whereR * is the number of samples required in the new sinogram, when using the same

sampling interval fJ.p, and also adjusting the value of Pmin to maintain a symmetrical

samplingof P

. R *-1
POlin = -6.p 2

(6.19)
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The given implementation in Algorithm 6.2 and 6.3 will require two matrices of size

MT and the computational load is lowered significantly.

The discrete implementation of Filtered Backprojection is schematically shown In

Figure 6.6 using first filtering and then backprojection.

.. .. .. .. .. ..

.. .. .. .. .. ..

.. .. .. .. .. .. v

The filter• •• •

.. .. .. .. .. ..

e
t · ·.. .. .. .. .. ..

p

p

t t • • t t t 1D F il te ring
.. .. .. .. .. ..

.. .. .. ..· .,. ...
• • • • •
• • • • • y

• • • • • • • ••••
• • • • • •

e x
Figure 6.6 The discrete implementation of Filtered Backprojection. At the left the sino gram is
filtered and then the filtered sinogram is by backprojection mapped into the reconstructed image.

Now a set of images are shown where a synthetic sinogram, corresponding to a

circular disc in the image domain, must be reconstructed using Filtered Backprojection

with an increasing number of angular samples. Figure 6.5 showed the filtering of the

sinogram, and here the (rotational symmetrical) disc is placed in the middle of the

coordinate system, hence each of one-dimensional the filtered sino gram does not

depend on ()t' From 5 angular samples in the sinogram, i.e., T = 5, Figure 6.7

demonstrates the reconstructed image using Filtered Backprojection. The figure clearly

shows how the 5 sino gram parts are backprojected into the image, and more angular

samplesare obviously needed. In Figure 6.8, only 10 angular samples was used, and the

reconstructed shape of the disc is much better recovered, but large artifacts are still very

visible outside the disc. Increasing to 20 angular samples, as shown in Figure 6.9, the

artifacts are reduced in amplitude compared to Figure 6.8, and with 100 angular

samples,shown in Figure 6.10, the disc is nearly recovered perfectly.
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Figure 6.7 Filtered Backprojection from a
sinogram with 5 angular samples (T=5) Figure 6.8 Filtered Backprojection from a

sino gram with 10 angular samples (T=10)
100 proj~c:tio:ns
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Figure 6.9 Filtered Backprojection from a
sinogram with 20 angular samples (T=20)

Figure 6.10 Filtered Backprojection from a
sinogram with 100 angular samples (T=100)

6.1.3. Implementation of Filterine after Backprojection

Implementation of Filtering after Backprojection requires a discrete implementation

of the backprojection operator, as shown in Section 6.1.2. After the backprojection the

matrixg(m,n) must be high pass filtered. The implementation resembles the one shown

in Subsection 6.1.1.1, but extended to two dimensions.

The spectrum of an image can be obtained in two ways. Either by using one of the

multidimensional FFT algorithms, e.g. (Press et al. 1992), or by using a one

dimensional FFT on first all of the rows and then all the columns of the image, which is

possiblebecause the discrete spectrum can be written

-
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,\/-1 -"-I

G(u, V) = LLg(m,n)e-J2iT(mU/M+nV'N)
m=O n=O

(6.20)

<\/-1[-"-1 ]
= '" '" a(m n)e-J2:rmu/ M e-J2:rnVi NL Lb ,

m::;O n=O

(6.21)

wh~re both image sizes M and N must be powers of two, if using a radix-2 FFT. If this

is not true extra pad image samples at the edges. For filtering the additional samples

should not be can be padded with zeros. Assume that the reconstructed image should

look like a disc. Then the backprojected sino gram (into the image domain) will have

large non-zero values away from the disc, due to the convolution shown in Eq.4.46.

This implies that the filtering in the image domain will meet problem with the cyclical

behavior of the DFT (or FFT). These edge problem must be solved by backprojecting

onto a larger image than necessary (if using radix-2 FFT often to the nearest upper

power of 2), and then filter the expanded image, and cropping values of corresponding

to the specified image size.

Note that the image is considered periodical and the spectrum will have complex

conjugate symmetry for a real valued signal, as shown in

Figure 6.11.

gem, n) = gem + lvI, n) = gem, n + N)

G(u, v) = G(m + M, n) = G(m, n + N)

g(m,n) = gem, n)* => G(u, v) = G( -u,-v)* = G(lvl - u, N - v) *

(6.22)

(6.23)

(6.24)

The symmetry of the spectrum can be exploited for reducing the memory

requirements due to a rather odd storage strategy needed.

gem ,n) real G(u,V) complex

Complex conjugate

u= 7

),.\
\
"

u=O

If= 0
m=O m=7

n= 0 ,--,--r-r--r-T""""1---'--'I-+-+--+--+--t--i--+--i

n=7 L.....J.---'---'---'---'--.L.-L.....J

Figure 6.11 A real valued image gives a spectrum with complex conjugate pairs.
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The 2D filtering is very easy is the spectrum is calculated properly. The complex

spectrum can easily be multiplied by a sampled version of the filter ~ k; + k\~.

k u~-­
x Mt:..x

and
v

k ~--
Y Nt:..x

(6.25)

~k; + k.: ~ ( u )2 + ( V )2MAx NAx
(6.26)

If addressing the negative frequencies k x ! 0, u must be replaced by u-M and if ky<O,

v must be replaced by v-N Symmetry can be used so approximately half of the complex

spectrum is multiplied with the filter and the other half is duplicated from the first due

to the complex conjugate symmetry. After the multiplication of the filter, the inverse

two dimensional DFT (or rather FFT) is used, and the real part of the result is extracted,

and the imaginary part should be zero.

The 2D DFT implementation of the high-pass filter should also incorporate

multiplication by an apodizing window, in order to reduce the edge effects, due to the

periodical behavior of the spectrum. Of the huge amount of windows available, two

relevant choices of windows should be mentioned.

Cropped 2D Ramp Filter Here the theoretically derived 2D ramp filter is cropped at a

certain frequency k{

if ~k2 +e <kx Y ,

else
(6.27)

wherek{ is set below the upper limit frequency in one of the directions, i.e., k, < _1_
2Ax

Hanning Window The 2D ramp filter could also be multiplied by a Hanning window

97



H(kr,k,) =
1 , , [ [~ k; + k ~ JJ
2 ~ k; + k~ 1+ cos TC k,' if

o else

(6.28)

where k, again IS c:e~ below the upper limit frequency in one of the directions, l.e.,

1
k <-­

/ 26.x

The two windows both use a cutoff frequency kj , which can be varied, depending on

the noise- level. A high noise level might call for a low value for k" which implies that

the reconstructed image will be somewhat blurred.

Note again that the mean value of the reconstructed image will always be set to zero.

This value might be estimated in an area of the reconstructed image where some prior

knowledge implies that the value should be, e.g., zero. In brain tomography the relevant

area could be outside the brain.

6.1.4. Implementation of the Fourier Slice Theorem

The basis of the Fourier Slice Theorem is gIven m Section 4.3. In the

implementation, the discrete spectrum of the sino gram is calculated for each of the

angular samples like it was shown in Sub- section 6.1.1.1. Note that here the phase is

important, hence the shifting shown in Figure 6.1 must be considered. This spectrum is

considered as polar samples, and must be mapped onto a quadratic frequency grid, as

shown in Figure 6.12. This operation calls for two-dimensional interpolation in the

frequency domain, an item to be discussed furthermore. Finally, the two-dimensional

quadratic spectrum can be inverted using 2D inverse FFT in order to get the

reconstructed image.
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Figure 6.12 Following from upper left. At first the discrete spectrum is computed. The spectrum is
then considered to be polar, and mapped onto a quadratic grid in the frequency domain using two­
dimensional interpolation. Finally, the 2D spectrum is inverted into the reconstructed image using
2D inverse FFT.

The complexity of this implementation, where the FFT IS used to computing the

spectra is given by

oFor.,ardIDFFTo/Sillogram = O(TR log R)

O'n\'erse2DFFTojSpecrrum = O(M2 10gM)

oFourierSliceTheorem ::::::OeM 2 log M)

(6.29)

(6.30)

(6.31)

where the time used to map the polar spectrum onto the quadratic spectrum has not been

considered, and it will actually be negligible if using nearest neighbour interpolation. In

the last equation it has been assumed that T::::::R ::::::M . In all three equations the values

of Rand M should correspond to the expanded sinogram and image (powers of two), if

using radix-2 FFT. In conclusion, Eq. 6.31 indicates that the implementation of the

Fourier Slice Theorem is of a lower order than Filtered Backprojection and Filtering

afterBackproj ection.

Next some of the problems with this implementation are discussed. If omitting the

important shifting problems, illustrated in Figure 6.1, the polar and the quadratic

spectrum can match in three different ways as shown in Figure 6.13. The boundary

IIMIR YUKSEK TEKNOlOJi fNSll fU~i,

RfKTORlUGU
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corresponds to the maximum frequencies (half of the sampling frequencies). Note that a

square and centered reconstructed image is still assumed 1\1 = N, Xmin = Ymin and Llx=Lly.

V
J

(a)

u

v

(b)

u

V
i

(c)

u

Figure 6.13 Three ways that the polar and the quadratic spectrum can match.

In the first case (a) the quadratic spectrum is too small. Some parts of the polar

spectrum is not mapped onto the quadratic spectrum. This is a very bad situation, and

the result is unreliable when

1 1
maxlk I = - < vmax = - ¢::> & > 6"p

x 2~.x 26"p
(6.32)

In the second case (b) the entire polar spectrum is mapped onto the quadratic

spectrum. This will happen when Llx=Llp. In the final case (c), where the polar spectrum

is fully covered by the quadratic spectrum. This means that the output image in

principle uses all of the spectrum, but the reconstructed image will appear as it was low

pass filtered, because the polar spectrum must be assumed to be equal to zero for

frequencies higher than half of the polar sampling frequency.

Concerning the 2D interpolation, nearest neighbour interpolation is very fast, but the

cost is that artifacts must be expected in the reconstructed image. Another cornmon

choice is instead to use the slower but more stable bilinear interpolation as shown in the

following equations. Figure 6.14 illustrates that the value of each sample in the

quadraticgrid is a weighted sum of the four nearest neighbours in the polar grid. First of

all the frequencies in the quadratic grid are expressed in polar coordinates.
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(~x J = v(c~s~Jkr smB

Then the four nearest neighbours are found.

l-J -

B - B-B
Find the integer t = - ~ B( ::; B < B1+1 and set OJe = 16B 6B

l-J -
" v _ v-v_

Fmd the mteger r = 6v ~ vr ::; v < vr+1 and set OJy 6v r = 6p(V - vr)

(6.33)

(6.34)

(6.35)

where the last formula only is valid for positive frequencies. In case of negative

frequencies, the periodical behavior of the spectrum must be considered and proper

shifting must be used.

Finally, a bilinear interpolation in the polar coordinates of the four values are used

G(kr, ky) = (1- OJe)((1- OJy)G(vr, B1) + OJyG(vr+l, B1))

+ OJe((1- OJy)G(vr, B1+1) + OJyG(vr+l' Bt+J)
(6.36)

The sampling of the output image must furthermore be sufficiently dense to adjust to

the level of information in the polar spectrum, but due to the distribution of polar

samples, with an increased density towards (0,0), a general problem is that the quadratic

spectrum does not exploit the high number of samples near (0,0) leading to aliasing

artifacts. On the other hand for high polar frequencies, the density is low, so the

quadratic spectrum samples the polar spectrum faster than necessary. Note, the angular

distance between samples in the polar grid is LIB, and in the radial parameter v the

1
distance between samples is 6v = --, cf. Eq. 6.2. The distance in each of the

R6p

coordinates in the rectangular gn'd is 6k = M = _1_ If choosing Llp=L1x, cf.
~ x y Mill ~

Eq.632, one criterion is that the sampling interval in the radial parameter s must match

theone in the rectangular grid, which is a reasonable tradeoff, i.e.,

1 1
M =!5.k =--=6v=--~M =R

x y M!1x R6p
(6.37)
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where both M and R should correspond to the expanded values, i.e., being a power of

two ifusing a radix-2 ~FT.

The presented reconstruction algorithm will introduce more noise than accumulated

in the backprojection algorithms. Especially, ringing problems are common. The

problem can be reduced by use of higher-order interpolation and/or use of, e.g. a non­

linear grid in the Radon domain. Note that higher-order filters can provide better

numerical results, but the computational load might increase to an unacceptable level.

Another method (Carlson et al. 1995) illustrated in Figure 6.15 is to distribute each of

the polar samples onto the rectangular map using proper weights, which implies that all

of the polar samples will always be represented in the quadratic grid, but the cost of the

uneven density of samples is that an additional filtering is required.

The 2D interpolation in the frequency domain described in this section is in general

considered the major problem in implementations of the Fourier Slice Theorem, and the

method has apparently found limited success in clinical use.

Figure 6.J.t Strategy 1: A weighted sum of the
four closest polar samples is used to estimate the
spectrum on the quadratic grid.

Figure 6.15 Strategy 2: Any of the samples on
the polar grid are distributed with certain
weights to the quadratic grid.

6.2. Implementation of 3D Direct Reconstruction Aleorithms

Going from 2D to 3D reconstruction one major difference is the size of the inversion

problem. A practical reconstruction program (either iterative or direct) will include

several steps of filtering, Radon transform, and the backprojection is the most time

consummg.

The program will require a uniformly sampled sinogram as it will shown in Eq.6.38,

based on r2't'- geometry and the reconstructed volumes will also be sample uniformly.
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The value of q; is left to the user. The package also includes the program names

"3D_RadonAna" which has been developed for generating a volume and the

corresponding four dimensional sino gram from a set of scaled, rotated, and translated

primitives. This program is based on properties shown in Appendix A. The usage of the

program is shown in Appendix B.

6.2.1. Implementation of the 3D Reconstruction Methods

It has been shown that reconstruction of volumes from 4D line integrals can be done

by filtering, either the projections, cf. Eq.5.56, or the backprojected volume, cf. Eq.5.44.

The implementation is a straight forward generalization of the 2D reconstruction

implementation discussed in Chapter 4, but the filters are not as simple, if the limiting

angle ljI < Jr . Again, apodizing windows should be multiplied to the filters in order to
2

limit the influence of noise.

Here the reconstruction algorithms are based on the geometry Q\jI, and the parameters

in the parameter domain are sampled uniformly

Jr
B=e =[-

t T'

U = Ui = lImin + il1u,

v = v j = V min + j 11v,

p = 0,1,... , P-1

t = 0,1,... , T-1

i= 0,1, ... , I -1
j = 0,1, ... , J -1

(6.38)

2lj1 Jr

where 6.¢=--,l1e=-,emin =0,P-1 T
and ¢min= -ljI have been inserted.

Theparameters of the reconstructed volume are also samples uniformly

x = xk = Xn1ir. + kt1x,

Y = y, = V 0 + 1l1y. mm ,

Z = 2m = ::min+ mt1z,

k = 0,1, , K -1

1= 0,1, ,L-1

m = O,l,...,M -1

----.--~r
I \ZMIR YIJKSfK TEKNOlOJI ENS1ITUSU \

\ REKrORLUGU !

i ,,;o'll(lh()nr. ve OokOmontosyon OOi::.~~.1. --..._---- -

(6.39)
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Note that a measured sinogram must be resampled (rebinned) into this geometry and

missing parts of the sino gram can be estimated using the Kinahan & Rogers

reprojection technique.

§.2.1.1.Implementation of the Backprojection Operator

The backprojection operator can be approximated by a sum, here shown usmg a

nearest neighbour approximation

g(rk.l,m) = [0 I-I" gee, ¢,u = r . a, v = r . {3)cos ¢xi¢xie

P-I T-l [r.a -u ] [r ·13 -v ]
':'::,6.e6.¢Lcos¢pLg(t,p, k.l,m P,I min, k.l.m P.I min)

P;O 1;0 6.u 6.v

(6.40)

(6.41)

In Algorithm 6.4 the implementation of the backprojection operator is shown, when

using nearest neighbour interpolation.

It has been shown that all of the reconstruction methods are heavily based on

projections of the directional vectors a, f3, and T onto the volume coordinates r. In order

to speed up the reconstruction algorithms, the vectors a = (at' a \ ' a = ) T ,

f3 = (f3x ' f3y , {3= ) T, and r = (T x' T y , T z) T, should be computed once, for all values of

(p,t). This can be done rather efficiently and will only require six matrices. In Algorithm

6.4the arrays are assumed given, e.g., alpha x (t i p) = ax (el, ¢p) . For further

optimization, the double loop of all possible angles (fJ, ¢) can be combined into one

loop, and the values of x (k) I Y (1) I and z (m) should be moved to simple variables

before entering the inner loops. In this way many of the array calculations can be

avoided.

For each value of (t,p), Eq.6.40 requires that the u- and the v- values lies within the

bounds shown in Eq.6.38. One scheme to avoid this time-consuming testing is to

expand the sinogram in the u and v direction (by padding with zeros at the edges),

though this might not be desirable, due to the memory requirements For the expansion,

it can easily be shown that
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l- maxir~um1- "m'" J" i "1maxh~:I- u m'" 1

l- maxlr~:I- vm," J" i"l maxh~:I- vm," 1

(6.42)

(6.43)

Another scheme to avoid the index testing, could be to compute the intervals (p,t),

which will give legal values of u and v, cf. Eq.6.40. In principle this is viable, but might

require more computations compared to the reduction being offered by this alteration.

The number of loops shown in Algorithm 6.4 illustrates that the complexity of

backprojection is high, namely

03DBackprojection = O(KLMNPT) (6.44)

Hence, the complexity increases with the number of voxels in the reconstructed

volume times the number of angular samples in the sinogram, and it indicates that the

backprojection operator is a rather demanding operation.

ALGORIT::~ 6.4 BACKPROJECTION OPERATOR IN 3D
For k=O to K-l IIFor all values of x

For 1=0 to L-l IIFor all values of y
For m=O to M-l II For all values of z
sum=O IIInitialize sum

For ~=O to P-l IIFor all values of phi
sump=O IIInitialize sump
For t=O to T-l IIFor all values of theta

u=x(k) *alpha_x(t,p)+y(l) *alpha_y(t,p) +
z(m)*alpha_z(t,p) IICalculate u value

i=round((u-u_min)/Delta_u) IICalculate i index
If O<=i<l

v=x(k)*beta_x(t,p)+y(l)*beta_y(t,p)+
z(m)*beta_z(t,p) IICalculate v value

j=round( (v-v_min)/Delta_v)
If O<=j<J

sum=sum+9_radon(t,P/i,j) IIUpdate sum
End

End
End

sum=sum+sump*cosphi(PI IIUpdate sump
End

9_backproject(k,1,m)=sum*Delta_rho*Delta_phi IIStore result
End

End

End
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6.2.1.2. Implementation of the Radon Transform Operator

An implementation of the Radon transform defined in Eq.5.5 will now be shown.

This operator is needed for the Kinahan & Rogers reprojection methods and for any of

the iterative methods presented in Chapter 4.

where ro =(xo,yo,ZO)T =ua+vf3 (6.45)

(6.46)

In order to avoid the problems with too high slopes, the line integral is projected onto

the axis with maximum absolute component of the directional vector relative to its

sampling interval. Assume that the projection is made onto the x- axis

Then the 3D Radon transform can be written

g(B, ¢, u, v) = [, IT1(I g(x, .xy(X) + y~X) , xz(x) + z~x) )dz

where

(6.47)

(6.48)

(x) fl'
Y =-

'.<

and

and

Y(x) -y _y(X)xo - 0 0

z(x) =z -z(X)xo 0 0

(6.49)

(6.50)

where the exponent (x) merely means with respect to x.

A simple discretization, which will require a few calculations each time, can now be

derived from Eqs.6.39, 6.46, 6.49, and 6.50.
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K [ (x) + (x) _ ] [7(X) (x) _ _ ]

g(e,¢,ll,V):::.6.'Ig(k, XkY Yo Ymin, Xk- +ZO Xmin)
k=O 6.y 6.z

K

= -l'I g(k, [a~.X)k + b~X) 1 (a;X) k + b;X) D
k=O

(6.51)

(6.52)

where a~X) = ~ 6.x and
. 'x 6.y

(xl ': 6.x da_ =-- an

- Lx .6.y

b(X) =~ (Xmin -Xo) + Yo - Yminv

Lx.6.y .6.y

b(x) = Lz (Xmin - XO) + Zo - Zmin

= Lx 6.z .6.:

(6.53)

(6.54)

With respect to the high slope problem, Eq.6.47 implies that la;X) I::::; 1 and la;X) I::::; l,

i.e., a step from k to k+ 1 in the sum shown in Eq.6.52, will not lead to a step in I or m

greater than 1.

The discrete implementation of Radon transform is also quite demanding, due to the

complexity

O)DRadanTransform = O(PTIJK) (6.55)

which accounts for the number of times where the projection is made onto the x- axis.

For projection onto the y and z- axis similar expressions are found, with K substituted

by Land M, respectively.

If either the absolute y- or z-component of l' is the greatest, then it is very easy to

derive almost identical formulas, and the formulas will only require swapping of

symbols compared to the ones shown above. In Algorithm 6.5 the implementation of the

discrete 3D Radon transform is shown using a nearest neighbour approximation. The

algorithm only shows the case where Eq.6.47 is fulfilled. The algorithm uses the

a_z= a;X) , b y=b(X)- y'

algorithms are needed to cover projection onto the Y- axis and the z- axis, respectively.
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valid

valid

IIUpdate Radon domain

TRF.NSFORM

IIFor

allvaluesofphi
IIFor

allvaluesoftheta
IIFor

allvaluesof u
IIFor

allvaluesofv

fulfilled

from Eqs.6.52,6.53
Initialize sum

IIFor all values of x

IICalculate y-index
IICheck if index is
Ilcalculate z-index
IICheck if index is

IIUpdate sum

ALGORITHM 6. 5 D-SC~.ETE 3D RADON

For p=O to P-1
For t=O to T-1
For i=O to I-1

For j=O to J-1
Assuming Eq.6.47 is

Set a_y,b_y,a_z,b_z
sum=O
For k=O to K-1

l=round(a_*k+b_y)
If O<=l<L

m=round(a_z*k+b_z)
If O<=m<M

sum=sum+g(k,l,m)
End

End
End

g_Radon(p,t,i,j)=sum*Delta_x
End

End
End

End

6.3. Examples Usin~ Direct Reconstruction AI~orithms

Here, reconstruction of a phantom is examined. In Figure 6.1 is shown the noise free

sinogram corresponding to the image shown Figure 6.17

G.S t.S"'~"
.2.S

Figure 6.16 Sinogram of the phantom

. ~
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Figure 6.17 The original head phantom
Figure 6.18 The reconstructed head phantom
using filtered backprojection
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Figure 6.19 The reconstructed head phantom
using filtering after backprojection

Figure 6.20 The reconstructed head phantom
using Fourier slice theorem

First, Filtered Backprojection has been used to reconstruct the image as shown in

Figure 6.18. It can be seen that the mean value is displaced, and a ring is visible outside

the head phantom with a radius corresponding to the extension of the sinogram in the p­

direction. When using Filtering after backprojection, as shown in Figure 6.19, the ring

effect has been dissappeared, but otherwise the result appears to be just as good with

respect to edge sharpness.

Finally a nearest neighbour implementation of the Fourier slice theorem has been

used as shown in Figure 6.20. The reconstructed image appears to be comparable to the

two backprojection methods, but more "texture" can be found in the area outside of

head(and inside too).

The sampling parameters of the sinogram are iJp=O.OJ. R=20J, T=200 and for the

image,M=20J and iJx=O.OJ has been used.
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The sampling parameters of the sinogram are iJp=O.Ol, R=201, T=200 and for the

image, M=201 and i1x=O.Ol has been used.

6.3.1. Reconstruction With Varvine Imaee Size

The next example addressees qualification of the reconstruction quality and artifacts

when using a Fourier Slice algorithm, Filtered Backprojection, and Filtering after

Backprojection. From the sino gram in Figure 6.16, image shave been reconstructed

with varying image size, going from M=51 to M=401 in steps of 50 samples (on each

dimension of the reconstructed image), where the sampling distance has been changed

in order to keep the image in focus, as in Figure 6.17.

A modified L' - measure of misfit is given in Eq.6.56.

L2 =
,,( ref - -ref \2L..m,n gm.n - gm.n - g + g J

" (oref _ -ref \2L..m.n bm,n g J

(6.56)

where g:'~~,is the reference image (the original) and the bars indicate the average over

all samples.
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Figure 6.21 L2 error as a function of the reconstructed image size M for Filtered Backprojection,
Filtering after Backprojection, and a Fourier slice implementation.
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Figure 6.21 shows the misfit in this case as a function of the image size M. It can be

seen that here the errors limited, and the Fourier Slice method has the worst error­

measure. For Filtered Backprojection, Figure 6.22 shows that the error has several

reasons. It is obvious that the step edges in the image are not reconstructed perfectly,

due to the use of linear filters. Furthermore, lines are visible in the figure which are due

to aliasing problems. The sino gram should have been sampled more densely. Finally,

the ring also found in Figure 6.18 will also add the total error.
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Figure 6.22 The absolute error between the original image and the reconstructed image using
Filtered Backprojection.

For a Pentium 120 MHz (Linux system) the time needed to reconstruct the images

are shown in Figure 6.23. It is clear the radix-2 FFT used for this implementation

implies that several steps can be seen in the Filtering after Backprojection and the

Fourier Slice implementation. The reason that Filtering after Backprojection is much

slower compared to Filtered Backprojection is that backprojection must be done into a

larger number of samples (power of two) in order to reduce edge effects in the

subsequent filtering. It can be seen that Filtering after Backprojection from image size

151 to 251 gets slightly faster. In this range the use ofradix-2 FFT implies that a 256*

256 image is generated in all three cases (151, 201, 251) when backprojecting, and due

to the implementation, the subsequent cropping becomes slightly faster here.
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This example shows that Filtered Backprojection can be implemented efficiently on a

PC and provide fast reconstruction.
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Figure 6.23 Time usage for reconstructing the sinogram in seconds as a function of the
reconstructed image size M for Filtered Backprojection, Filtering after Backprojection, an da
Fourier Slice Theorem implementation.

6.3.2. Reconstruction into an Oversampled Ima~e

~.I

.6.J

I.So

•••.•.• J

Figure 6.24 Sinogram of a square with R=251, T=200, and Llp=O.0025.

In order to illustrate the problems with the Fourier Slice Theorem if .6.x> 6.p , (cf.

Eq.6.32) a sinogram with R=251, T=200, and Llp=0.0025 has been created. The
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sinogram corresponding to a square in the image domain is shown in Figure 6.24. Then

two reconstruction methods have been used, namely the Fourier Slice Theorem in

Figure 6.25, and Filtering after Backprojection Figure 6.26.
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·0.4

·0";
·0";

Figure 6.25 Reconstructed image with M=lOl and Llx=O.Ol using Fourier Slice Theorem.
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Figure 6.26 Reconstructed image with M=lOl and Llx=O.Ol using Filtering after Backprojection.
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It can be seen that Filtering after Backprojection has no problems. Using Fourier

Slice Theorem severe artifacts can be seen, due to aliasing of the spectrum.

As a result, Filtered Backprojection is normally precise, but somehow slow, with

complexity of OUv13), where M is the number of samples in one direction of the

resulting image. T~e Fourier Slice Theorem gives a fast algorithm, OeM 2 log M), but

does not have the same numerical stability.

6.4.Examples Usin~ Iterative Reconstruction AI~orithms

In this subsection a set of examples are presented when iterative methods have been

used. In Figure 6.27 a sino gram with 281 *336 samples is shown. The sino gram is

reconstructed into an image with 301 *301 samples. The system matrix has

94416*90601 elements of which 0.23% are non- zero when modelling then system

matrix using the Radon transform of a square.

1C~

100

Figure 6.27 A slice of a sinogram of human brain.
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Figure 6.28 The reconstructed image after 10 iterations of EM.
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'igure 6.29 The reconstructed image using Filtered Backprojection with a ramp filter .
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6.5.Examples of 3D Reconstructed Volumes

6.5.1.Reconstruction of a Ball
.

The first example concern reconstruction of a homogeneous ball, cf. A.2.l. In this

case the axial limiting angle tp was set to 90°. Here the reconstructed volume has

51*51 *51 voxels and the sino gram uses P=12, T=10, and 51*51 samples in each of the

(u, v) planes. Both the volume and the sino gram requires MBytes of memory.

Figure 6.30 Reconstructed ball using 3D Filtered Backprojection.

In Figure 6.30, 3D Filtered Backprojection has been used to reconstruct the ball, and

Figure 6.31 3D Filtering after Backprojection. The figures indicate that the ball has

eenrecovered well, though the edges of the ball are blurred. This could be expected,

[ueto low number of samples in both domains.

Next the iterative methods ART and EM have been used to reconstruct the same ball.

'orART some artifacts were found, while EM is successful. Here the figures has been·

itted due to the high similarity shown above.
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Figure 6.31 Reconstructed ball using 3D Filtering after Backprojection

6.5.2. Reconstruction of the Mickey Phantom

In this example, the axial acceptance has been reduced to merely 'F=9°. The volume

has centered around (0,0,0) with L1x=Lly=L1z=O.5 and K=L=!vf=71. which requires

lAMBytes of memory. In the sino gram, T=90, P=ll, I=J=61 and Llu=Llv=l were

used, and the sinogram requires 14.7 MBytes of memory.

Using 3D Filtering after Backprojection, the reconstructed volume can be visualized

with Polyr and Geomview. Figure 6.32 shows the result which looks like original

Mickey Mouse. In Figure 6.33 and Figure 6.34 the reconstructed central (x,y) and (y,z)

planes are shown. The figures use individual color scale according to the minimal and

maximal value. This volume has the value 0.2 inside the "skull" and a small "tumor"-

ball with radius fo 1 and value 0.4 placed at (0,1,0). The tumor is visible but blurred, but

it is clear that the general structures have been recovered .The sino gram was

backprojectde onto a 128*128*128 volume in order to use radix-2 FFT filtering.

Next Filtered Backprojection used to reconstruct the same phantom. Figure 6.35 and

Figure 6.36 show the central (x,y) and (y,z) planes for Filtered Backprojection.

------
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Figure 6.32 The Mickey phantom
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Figure 6.33 Reconstructed phantom in the central (x,y) plane usign Filtered Backprojection.
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Figure 6.36 Reconstructed phantom in the central (y,z) plane using Filtered Backprojection.

Finally, five iterations using EM algorithm has been demonstrated. Figure 6.37 and

Figure 6.38 again show the (x,y) and (y,z) planes. It is obvious that more iterations are

needed, but it is more time consuming.

J~

'" ~
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~.I

I~ J~

Figure 6.37 Reconstructed phantom in the cental (x,y) plane using five- iterations of EM.
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Figure 6.38 Reconstructed phantom in the central (y,z) plane using five iterations of EM.
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CHAPTER 7

RESULTS AND FUTURE WORK

In this work, most prominently, the reconstruction methods of medical Imagmg

modalities such as CT are investigated.

At the beginning of this study, it was planned to have a complete software system,

which performs craniofacial surgical simulation and also planning. While going into

details of the subject, we saw that there are two different steps. The first one is the

reconstruction of medical images and the second and complementary one is to process

these reconstructed images in cooperation with surgeons, who are specialist in

craniofacial surgery.

As was stated before, this thesis although named as " Craniofacial Computer- Aided

Surgical Planning and Simulation", we have worked on just reconstruction step, and a

software package, which consists of implementations of several reconstruction

techniques, was written.

The next step for who plan to work on this subject will be to understand the functions

of structures in the head and face, and the purposes of craniofacial surgery, which is

especially important for planning procedure.

Identification of bones, the interconnections of these bones and the influences on

each other would be included in simulation phase. The definitions, techniques are

briefly described in Chapter 3 for both simulation and planning phases.

Medical image registration may also be viewed as a further work, which provides a

complete image that consists of both hard and soft tissues. In this case, it would be

possible to show the to the patient how hel she would look like after the operation.
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APPENDIX A

A PROPERTIES OF THE 3D LINE NORMAL RADON

TRANSFORM

A.I. Basic Properties of the 3D Line Radon Transform

gee, ¢,u, v) = [g(ST + ua + vj3)ds

A.I.I. Linearitv

The first crucial property is linearity of the transform.

where K, are arbitrary constants.

A.1.2. Translation

It is assumed that

her) = g(r - ro) ~

h(e,¢,u,v)= [g(sT+ua+vj3-ro)ds

Here the translation ro are resolved after the basis vectors, i.e.,

This can be done in an unambiguous way
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(A.4)

(A.S)

A.I



This is insened in Eq.A.3

I~(e .¢, II,v) = Lg((s - s ,Jr + (u - Uo )a + (v - Vo ) j3}is

= [g(sT+(u-uo)a+(v-vo)j3)dS=>

h \ (; . ¢, II. v) = g(e. ¢, u - ro . a, v - ro . 13)

Note that the angular parameters Band ¢ are not changed.

A.I.3. Rotation and Scalin~

(A.6)

(A.7)

(A.8)

Rotation and scaling can be controlled by means of a general transformation matrix A

her) = geAr) (A.9)

The diagonal elements of the 3*3 matrix control the individual scaling and off- diagonal

elements are controlling the rotation. The corresponding Radon transform is given by

1~(e.¢.II.v)= r g(.~(sT+ua+vj3»)ds

= Lg(SAT + uAa + vAfJ)ds

(A.I0)

(A.ll)

This will in general alter the directional vector r of the line, i.e., a new direction vector

is needed

y;::::O (A.12)

The vector T defines cf. Eq.5.2 two corresponding angles B and ¢, which again

defines the two remaining vectors a and jJ , cf. Eq.A.12 is inserted into Eq.A.ll.

1~(e,¢,II. v) = .~ r g(ST + A(ua + vj3))ds,
(A.l3)

A.2



The ne:\t step is to resolve the line offset parameters after the three new tilde vectors,

which again can be done unambiguously.

(A.14)

This implies that the 3D line Radon transform is given by

= ,~ [g(s:r + uii + voiJ)dS
1 --

= - g((} ,¢ ,Lta, va)
y

where four tilde parameters are given by

(A.IS)

(A.I6)

(A.I7)

/I = CI. .. -1. (au + fiv),r = 1·-1d.

r =

- -
cos ¢ cos ()- -
cos ¢ sin ()

3m (/)

1

=-I-,Ar,
rl rl

[ -1 [--J

- sin () - sin ¢ cos ()

a = cos () i and j3 = - sin ¢ ~n ()
o ) cos¢

va = fi .A . (au + fJv)

(A.18)

(A.19)

The matrix A cJ.n be partitioned in three rotational matrices and one scaling matrix

where rI. \ rotates in the y- z coordinates, e.g.

(A.20)

°
cos IfIx

- Sll1lf/, sinOlflxJcos IfIx

(A.2I)

and A, rotates in the x-z coordinates,e.g.
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cosuI)Slll l!/ \'I
I. -I

_I 0

easOw, j
I

! -sinv 0,
(A.22)

and finally .-1: routes in the x-y coordinates, e.g.

cos l!/:S 111 If/ =01

,-I. =

- S1l1 (J/ _cos l!/ =01

0

01)

(A.23)

The scaling matrix S here is chosen to be the lat in Eq.A.20 because the interpretation

of the scaling is by far easier when applied directly on the base function g(r). The

matrix can be chosen to

/

1

I 1
0
0l-

IS
0

1

5 _I
-II

(A.24)-, 5
I

(I ()
:

)\

The scaling p~lrameters in the diagonal are chosen so that they directly relate to

length in the ne\\ function h(r). The total rotation and scaling matrix defined in Eq.A.20

multiplied together becomes

(
I COS If/ \ cos If/v
I

I S, .
i COS If/. SIl1Il1. -"-COS If/ . sm lfI sm lfI

A =i _ . . \ Y z

S,

sm III \ sm lfI: - cos lfI \ cos lfI: sm lfI y

S,

COSlfI y Sill lfIx

Sy. . .
cos lfIx cos lfI z - Sill lfIx Sill lfI y Sill lfI z

Sy

cos lfIx sin lfIx sin lfI y + COS lfIx sin lfI z

Sy

Sill lfIy

Sz

cos lfI y Sill lfI z

Sz

cos lfI y cos lfIx

Sz.

(A.25)
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A.2. Analytical Radon Transform of Primitives

.-\Iong the basic rules of the 3D line Radon transform it is very useful to have a set of

base 3D functions and their corresponding Radon transform. In the following the Radon

tranSf01111 of the unit ball and a Gaussian bell are derived. This can be used to produce

more comple.\: functions written as a weighted sum of shifted, rotated and scaled

pnmll1\es.

A.2.1. The Ball

The first primiti\e is the unit ball, i.e.,

fl for
a (1:1'-)-
o ball . '. , - -10 for

x2 + y2 + Z2 < 1
? ? 2

x- + y- + Z ~ 1
(A.26)

z

Due to the rotational symmetry of the primitive, the corresponding Radon transform

cannot be depend on the two angular parameters Band ¢, thus the Radon transform is

deri\ed in a rOl~l~ed coordinate system with r lying along the x- axis and the vector

ro = UC/. + l'fJ along the 'j- axis. As illustrated in Fig.A.I, the Radon transform is merely

the distance between the two intersection points between the line and the ball.

y

.-------

~- ,I~.. .- I ••••.•I '••
/ -'--'---.

I - - __

r- -.- ~-
I. -. :._ .•.•.-I •__'

~.-\,~.-..
"'.,

-"-.
._-- ..------

Figure A.l The uuit ball with radius 1 and the Radon transform is the length between the two
intersection points between the line and the surface of the ball.
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The length 0 i 1"" is .JU 2 + V2 , which implies that the Radon transform can be

calculated as

(A.27)

A.2.2. The Gaussian bell

for

for

u2+v2<1

u2+v2;:::1
(A.28)

Tlle Gaussian bell is another primitive, where the Radon transform can be found

analytically.

, , ,
g gallss (x, y,.:-) = e"p( -x- - y. - Z") (A.29)

Again the function has rotational symmetry, hence the Radon transform does not

depend on the angular parameters e and r/J, and the Radon transform can, e.g., be derived

as

(A.30)

A.6



APPENDIXB

B THE USAGE OF RECONSTRUCTION TOOLS

A software package has been developed for 3D reconstruction of sinograms (line

integrals), as shown in Chapter 5. The programs described in this Appendix are

compiled both on Linux, and Windows98 operating systems. In Section B.l the

package of "Recon3D" is explained, which can generate a volume and the

corresponding four- dimensional sinogram from a set of scaled, rotated, and

translated primitives.

B.t. The 3D Reconstruction Proeram "Recon3D"

The program "Reocn3D" uses the following parameters

• Sinogram [String] Name of the file containing the 4D sinogram. The file

must have the name same as the .ini file, and the extension .f4f (binary format) or

.a4f (ASCII format).

• OrgFile [String] (optional) Name ofa volume specifying the sampling

parameters of the reconstructed volume. If given, then error measures will be

computed with respect to this volume.

• Volume [String] Name of the volume to be reconstructed. The file must have

the extension .Df (binary format), or .a4f (ASCII format).

• Function [String] Parameter specifying the function to be used.

• FB Direct reconstruction using Filtered Backproj ection, result in Vo1ume .

• FAB Direct reconstruction using Filtering After Backprojection, result III
Volume

• CS Direct reconstruction using Fourier Slice theorem (Experimental). Result in

Volume.

• Forward Radon transform of volume into Sinogram.

• ART Iterative reconstruction using ART. Result in Volume.

• EM Iterative reconstruction using EM. Result in Vol ume.

B.l



• Iterations [Integer] For EM the number of iterations before the iteration

ends. For ART the number of full iterations, i.e., the number of actual ART

iterations are Iterations times the number of rows in the system matrix.

• Iterative Par 1 [Float] In ART the initial weight parameter A..

• Iterat i ve Par 2 [Float] In ART the final weight parameter A..

• Select Par 1 [Integer] In Fourier Slice Reconstruction a value of 0 will

choose a nearest neighbour interpolation in the spectrum, and a value of 1 will chose

tri- linear interpolation technique.

• Xmin [Float] The minimum value of x In the volume. Only needed if

OrgFi 1e is not specified.

• Ymin [Float] The minimum value of Y In the volume. Only needed if

OrgFi 1e is not specified.

• Zmin [Float] The minimum value of Z In the volume. Only needed if

OrgFile is not specified.

• Del taX [Float] The sampling interval of x in the volume. Only needed if

OrgFi 1e is not specified.

• DeltaY [Float] The sampling interval of y in the volume. Only needed if

OrgFile is not specified.

• DeltaZ [Float] The sampling interval of z in the volume. Only needed if

OrgFile is not specified.

• Xsamples [Integer] The number of x samples in the volume. Only needed if

OrgFile is not specified.

• Ysamples [Integer] The number ofy samples in the volume. Only needed if

OrgFile is not specified.

• Zsamples [Integer] The number ofz samples in the volume. Only needed if

OrgFile is not specified.

An example of valid ini- file for "Recon3D" is shown below. The ini- file is used to

reconstruct a sinogram El. ini. f4f into El. ini. FB.f3f with the same

sampling parameters as contained in the El. ini . f 3f. Here the Filtered

Backprojection is used.
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Sinogram=El Sino.f4f

Volume=El Vol.FB.f3f

OrgFile=El_Vol.f3f
Function=FB

Xmin=-2

DeltaX=O.08

XSamples=51

Iterations=5

B.2. The Analvtical Sino~ram Pro~ram "3D RadonAna"

The program "3D_RadonAna" uses the following parameters.

• Xmin [Float] The minimum value ofx in the volume.

• Ymin [Float] (optional) The minimum value ofy in the volume. If not

specified, Xmin is used.

• Zmin [Float] (optional) The minimum value of z in the volume. If not

specified, Xmin is used.

• DeltaX [Float] The sampling interval ofxin the volume.

• DeltaY [Float] (optional). The sampling interval ofy in the volume. If

not specified, Del taX is used.

• DeltaZ [Float] (optional) The sampling interval of z in the volume. If

not specified, Del taX is used.

• XSamples [Integer] The number ofx samples in the volume.

• YSamples [Integer] (optional) The number ofy samples in the volume.

lfnot specified, XSamples is used.

• ZSamples [Integer] (optional) The number of z samples in the volume.

lfnot specified, XSamples is used.

• USamples [Integer] The number ofu samples in the sinogram.

• VSamples [Integer] (optional) The number of v samples m the

sinogram. lfnot specified, USamples is used.
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• DeltaU [FJoat] The sampling interval ofu in the sinogram.

• Del taV [Float] The sampling interval of v in the sinogram. If not specified

Del taU is used.

• PhiSamples [Integer] The number of ~ samples in the sinogram. This

number will be distributed from ¢min = -If/ = -PhiLimit to - ¢min - tj/ = PhiLimit .

• PhiLimit [Float] The axial acceptance angle If/(measured in degrees).

• GenerateVolume If set to 0 then the volume will not be generated, and if 1 it

will be.

• GenerateSinogram If set to 0 then the sinogram will not be generated, and if 1,
then it will be.

• NumberOfShapes Number of primitives used.

The ordering of parameters shown above is arbitrary. After these parameters a

number of lines must follow specifying a scaling, rotation, and shifting parameters of

each primitive. The line uses the following parameters in this order

• Shapei [String] where i is 0 to NumberOfShapes

• Type [Integer] The type of primitive, where

• 1 A ball centered around (0,0) with radius I and uniform signal 1 in the ball.

• 2 A 3D Gaussian bell exp( _x2_y2_Z2)

• offx [Float]Shift of of the primitive in the x-axis.

•
offy [Float]Shift of of the primitive in the y-axis.

•

offz [Float]Shift of ofthe primitive in the z-axis.

•

rotx [Float]Rotation angle of the primitive around the x-axis.

•
roty [Float]Rotation angle of the primitive around the y-axis.

•

rotz [Float]Rotation angle of the primitive around the z-axis.

•

scalx [Float]Scaling of the primitive in direction of x-axis.

•

scaly [Float]Scaling of the primitive in direction of y-axis.

•

scalz [Float]Scaling of the primitive in direction of z-axis.

•

power[Float]Scaling of the value of primitive.
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B.3. The Functions used in "Recon3D"

• Recon3ddeneme2.cpp

This is the central program, which contains routines to call the mam calculation

routines. It reads the specified IniFile.ini file and executes one of the following

functions:

ffl Central Slice (CS) experimental!

ffl Filtered BackProjection (FB).

ffl Filtering after BackProjection (FAB).

ffl Algebraic Reconstruction Technique (ART).

ffl Expectation Maximization (EM).

ffl Convert between ASCII and Binary (Convert).

ffl Numerical Radon Transform (RT).

• CSreconstruct3D

Synopsis

Description

Usage

: void CSreconstruct3D(void)

: The function implements the Fourier Slice Theorem

: CSreconstructO

• FABreconstruct3D

Synopsis

Description

Usage

: void FABreconstruct3D(void)

:The function implements filtering after backprojection.

: FABreconstructO

• FBreconstruct3D

Synopsis

Description

Usage

• ART3D

Synopsis

Description

Usage

: void FBreconstruct3D(void)

: The function implements filtered backprojection.

: FBreconstructO

: void ART3D(void)

: The function implements 3D ART.

: ART3DO
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• EM3D

Synopsis

Description

Usage

• Forward3D

Synopsis

Description

integrals.

Usage

Note

• Convert

: void EM3D(void)

: The function implements 3D EM.

: EM3DO

: void Forward3D(void)

: The function implements a numerical calculation of the line

: Forward3DO

: Uses the OrgFile to specify the 4D Sinogram.

Synopsis : void Convert(void)

Description :The function converts the Volume and Sinogram from ASCII to

binary or opposite depending on the types. The function writes in the same

filenames with opposite extentions.

Usage : Convert()

B.4. Functions Used in "3D RadonAna"

This program generates Volumes and corresponding four-dimensional sinograms of

line integrals.

Currently two basic functions can be used. Either a uniform ball or a Gaussian 3D

bell. Both can be scaled, rotated, and shifted and put together with an arbitrary

number of objects.

• init

Synopsis

Description

• MakeVolume

Synopsis

Description

• MakeSinogram

Synopsis

Description

void init(void)

The function will initialize and read the .ini-file.

void MakeVolume(void)

The function will generate the volume.

void MakeSinogram(void)

The function will generate the 4D-Sinogram.
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Synopsis

B.S. Additional Functions used in both Packaees

• GenerateTrigDef

Synopsis : TrigDef * GenerateTrigDef(

int ThetaSamples, PhiSamples, Usamples, VSamples,

float Thetamin, Phimin, Umin, Vmin,

float DeltaTheta, DeltaPhi, DeltaU, Delta V)

Description : This function retumes a TrigDef with proper trigonometric arrays

defined. The structure is used for 3D reconstruction from line integrals.

Usage

MyTrigDef=GenerateTrigDef(ThetaSamples,PhiSamples, USamples, VSamples,

Thetamin,Phimin, Umin, Vmin, DeltaTheta,DeltaPhi,DeltaU,Delta V);

• GenerateXYZ

: XYZDef * GenerateXYZ(

int Xsamples, YSamples, ZSamples,

float Xmin, Ymin, Zmin,

float DeltaX, Delta Y, DeltaZ)

Description : This function retumes a XZYZDef with proper arrays defined for

sampling the volume domain. The structure is used for 3D reconstruction from line

integrals.

Usage

My XYZDef=GenerateXYZ(XSamples, YSamples,ZSamples, Xmin, Ymin,Zmin,

DeltaX,Delta Y,DeltaZ);

• GenerateXYZ fromMultiStruct

Synopsis

Description

MultiStruct.

Usage

Note

:XYZDef *GenerateXYZ _ fromMultiStruct(

MultiStruct *MyMultiStruct)

The function generates the XYZDef from a three dimensional

: MyXYZ=GenerateXYZ fromMultiStruct(MyMultiStruct);

:See GenerateXYZ.
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• GenerateXYZ fromlniFile

Synopsis : XYZDef *GenerateXYZ_fromlniFileO

Description :The function generates the XYZDef from data from the IniFile

Usage

Note

: MyXYZ=GenerateXYZ fromIniFileO;

:See GenerateXYZ

Synopsis

• GenerateTrigDef_fromMultiStruct

:TrigDef *GenerateTrigDeC fromMultiStruct(

MultiStruct *MyMultiStruct)

Description :The function generates the TrigDef from a four dimensional

MultiStruct.

Usage

Note

:MyTrig=Generate TrigDeC fromM ultiS truct(M yMultiS truct);

:See GenerateTrigDef

:Rec Vol=CSrebin3D TI(Sinogram,MyTrig,My XYZ);

• CSrebin3D TL

Synopsis :MultiStruct * CSrebin3D _TL(MultiStruct*, TrigDef* ,XYZDef*);

Description :Calculates the two-dimensional Fourier transformation of a

sino gram (for each combination of angles). This sino gram is distributed in the

Fourier space of the reconstructed volume with tri linear interpolation. (Central Slice

ifea).

Usage

Reconstructs the volume from the sinogram using central slice theorem for lines in a

three dimensional space.

• CSrebin3D NN

Synopsis MultiStruct * CSrebin3D _NN(MultiStruct*, TrigDef* ,XYZDef*);

Description : Calculates the two-dimensional Fourier transformation of a

sino gram (for each combination of angles). This sinogram is distributed in the

Fourier space of the reconstructed volume. (Central Slice ifea).

Usage : Rec Vol=CSrebin3D NN(Sinogram,MyTrig,My XYZ);

Reconstructs the volume from the sino gram using central slice theorem for lines in a

three dimensional space.

• NumericalRadon3D Restore

Synopsis MultiS truct* NumericaiRadon3 D-Restore(M ultiS truct

*MyRadon, MultiStruct *InVolume, TrigDef*MyTrig)

B.3
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Description :The function will numerically calculate line integrals through a

three dimensional volume. The sampling of the Radon domain is given through

MyTrig.

Usage :NumericaLRadon3D(MyRadon,In Volume,MyTrig);

Note :Uses bilinear interpolation. Requires that the Sinogram

(MyRadon) is allocated. See also NumericalRadon3D.

• NumericalRadon3D

: MyMultiStruct=NumericalRadon3D(In Vo lume,MyTrig);

: See NumericaLRadon3D Restore.

Synopsis :MultiStruct* NumericaLRadon3D(MultiStruct *InVolume, TrigDef

*MyTrig)

Description : The function will numerically calculate line integrals through a

three dimensional volume. The sampling of the Radon domain is given through

MyTrig.

Usage

Note

• NumericalRadon3D_OneSampl_NN

Synopsis : int NumericaLRadon3D-OneSample-NN(VolWeight *,TrigDef

*,XYZdef *, int,int,int,int)

Description :The function will numerically calculate line integrals through a

three dimensional volume ONLY at one samples in the parameter domain. The

function will number of samples and in the fIrst parameter the indices and weight

factors corresponding to the voxels. The sampling of the Radon domain is given

through MyTrig. uuint, wint, thetaint and phiint determines the sample in the

parameter domain. The function will return in VolWeight, which must be extemally

be allocated with at least a length of maxfXSamples, YSamples, ZSamplesg.

Usage :NoOfSamples=NumericaLRadon3D OneSample NN(MyWeight,

MyTrig, MyXYZ, int thetaint, int phiint int uuint, int wint);

Note :Uses currently nearest neighbor interpolation. See also

NumericalRadon3D .

• NumericalRadon3D_OneSample_BL

Synopsis :int NumericaLRadon3D-OneSample-BL(VoIWeight *,TrigDef

*,XYZdef *, int,int,int,int)
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Description :The function will numerically calculate line integrals through a

three dimensional volume ONLY at one samples in the parameter domain. The

function will number of samples and in the first parameter the indices and weight

factors corresponding to the voxels. The sampling of the Radon domain is given

through MyTrig. uuint, vvint, thetaint and phiint determines the sample in the

parameter domain. The function will return in VolWeight, which must be externally

be allocated with at least a length ofmaxfXSamples, YSamples, ZSamplesg.

Usage : NoOfSamples=NumericalRadon3D OneS ample BL(MyWeight,

MyTrig, MyXYZ, int thetaint, int phiint int uuint, int vvint);

Note : Uses bilinear interpolation. See also NumericalRadon3D.

• BackProject3D_Restore

Synopsis : void BackProject3D-Restore(MultiStruct *MyVol,

MultiStruct *My4D, XYZDef *MyXYZ, TrigDef *MyTrig)

Description : The function will backproject a 4D set of line integrals through a

3D volume. (See Chapter 5.)

Usage : BackProject3D Restore(MyVolume,My4D,MyXYZ,MyTrig);

Note :This function requires that the volume has been allocated

elsewhere .

• BackProject3D

Synopsis :MultiStruct *BackProject3D( MultiStruct *My4D, XYZDef

*MyXYZ, TrigDef *MyTrig)

Description :The function will backproject a 4D set of line integrals through a

3D volume. (See Chapter 5)

Usage : My3D=BackProject3D(My4D,MyXYZ,MyTrig);

Note : See also BackProject3D Restore

Searches for an entry 'Function' in IniBuffer, and returns its value in Function .

• MultReStore

Synopsis : void MultReStore(float *p I ,float *p2)

Description : The function will multiply the two complex numbers A and B and

store the result at the location of A. Here A = pl[O] + i pl[l] and B = p2[O] + i p2[1].

Usage : MultReStore(arrl,arr2);

Preforms the multiplication arri =arri *arr2.
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• MultNew

Synopsis : void MultNew(float *pl,float *p2,float *p3)

Description : and B, so that C = AB. The result is stored at the location of C.

Here A = pl[O] + i pl[l], B = p2[O] + i p2[1] and C = p3[O] + i p3[1].

Usage : MultNew(arrl,arr2,arr3);

Preforms the multiplication arr3=arrl *arr2 .

• FindSignalIndexInMultiStruct

Synopsis : int FindSignalIndexInMultiStruct(int *Indices,int *Samples,int

Dimensions)

Description : Returns index in Multi Struct- ?Signal for the multidimensional

element with indices Indices. Applies to MultiStruct of type RealArray.

Usage :Myindex=int FindSignalIndexInM ultiS truct(Indices,Samp les,Dim)

Note : See FindIndicesInMultiStruct for the opposite function .

• FindIndicesInMultiStruct

Synopsis : void FindIndicesInMultiStruct(int *Indices,int *Samples,

int index,int Dimensions)

Description : Returns indeces in for the multidimensional element with index

Index in MultiStruct->Signal. Applies to MultiStruct of type RealArray.

Usage : FindSignalIndexInMultiStruct(Indices,Samples,index,Dim)

Note : See FindIndexInMultiStruct for the opposite function .

• SliceMultiStruct

Synopsis : MultiStruct * SliceMultiStruct(MultiStruct *InMultiStruct,int *

CutVector)

Description : The function returns a slice of InMultiStruct corresponding to

CutVector which is of same dimension. Is the i'th element of CutVector is negative

that dimenion is unchanged. If positive elements with that position is chosen. The

number of non-negative elements determine the dimension of the returned

MultiStruct.

Usage : MyMulti=SliceMultiStruct(InMultiStruct,CutVector)

• SubtractMultiStruct

Synopsis : MultiStruct * SubtractMultiStruct(MultiStruct *,MultiStruct *);

B.II



Description : This function will subtract the second MultiStruct from the first. It

is checked whether the two are of same size.

Usage

• L2 measure

: DitN ewMultiS truct=S ubtractMultiS truct(M yM ult I,M yMult2);

Synopsis : float * L2-measure(MultiStruct *,MultiStruct *);

Description : This function will return the variance estimate of the difference,

i.e., the squareroot of the second order measure of misfit between the two

MultiStructs. It is checked whether the two are of same size.

Usage : MyL2=L2 measure(MyMultl,MyMult2);

• StatMultiStruct

Synopsis : void StatMultiStruct(MultiStruct *,float *, float*);

Description : This function will return the mean estimate and the deviance

estimate of the MultiStruct.

Usage : StatMultiStruct(MyMulti,&MyMean,&MyDev);

where MyMean, MyDev are of type float.

• ReadFIF

Synopsis : Image *ReadFIF(char *FileName);

Description : The function reads a picture in .fif format (raw float with header)

from the file 'FileName.fir. All memory allocation is done internally. A pointer to

the new image is returned.

Usage : Test = ReadFIF("Test");

Reads the image Test.fif and return the pointer in Test.

• WriteFIF

Synopsis : void WriteFIF(Image *MyImage);

Description : The function writes a picture in .fif format. The name of the saved

image is determined by MyImage->FileName. The file extension is appended to

the filenames in all the 'write' routines.

Usage : WriteFIF(Test);

Write the image Test to a .fif file.

• WriteMultiStruct

Synopsis : void WriteMultiStruct(MultiStruct *MyMultiStruct)
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Description :The function will save the MultiStruct to the disc under the

filename contained in the structure. A file extension .f<N>f is added, where <N>

is the dimension.

Usage : WriteMultiStruct(MyMultiStruct);

• ReadMultiStruct

Synopsis

Description

: MultiStruct * ReadMultiStruct(char *FileName,int Dim)

The function will read a MultiStruct with filename

FileName.f<Dim>f.

Usage : MyMultiStruct=ReadMultiStruct("My3D",3);

This will read My3D.f3f.

• Iterative ART 3D

Synopsis :MultiStruct * Iterative-ART-3D(MultiStruct *,XYZDef*,float)

Usage

Description : This function will estimate the reconstructed volume using ART

in a three dimensional version. The function will return the reconstructed volume.

The input parameters are: The 4D sino gram, a XYZDef defining the sampling of the

volume and the last parameter determines the number of iterations relative to the

number of samples in the 4D sino gram.

MultiStruct * Iterative_ART_3D(MultiStruct *MyRadon,

XYZDef *MyXYZ, float maxiterations)

• Iterative EM 3D

Synopsis

Description

: MultiStruct * Iterative_EM_3D(MultiStruct *,XYZDef* ,float)

:This function will estimate the reconstructed volume using EM in

a three dimensional version. The function will return the reconstructed volume. The

input parameters are: The 4D sino gram, a XYZDef defining the sampling of the

volume and the last parameter determines the number of iterations relative to the .

number of samples in the 4D sinogram.

Usage : MultiStruct * Iterative_ART_3D(MultiStruct *MyRadon,

XYZDef *MyXYZ, float maxiterations)

• windowVolume

Synopsis : void WindowVolume(MultiStruct *My3D,int width)
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Description : The function windows a volume with a Hann window in all three

directions. The parameter width determines how many samples are altered measured

from the edges.

Usage : WindowVolume(InVolume,5);

• Filter4DSinogram

Synopsis : void Filter4DSinogram(MultiStruct *My4D, TrigDef *MyTrig,

float PhiMin, int WindowParam, float Relative_filtercutoff)

Description : The function will apply a highpass filter to the images (u,v) for

each (B, ¢). The parameter PhiMin determines the limiting If(angle in the geometry

.Q'P. The parameter windowParam controls the windowing. If set to 0 no

windowing is done. If set to 1 pre-windowing is done. A cubic Hann- window is used

to reduce the edge artifacts.

Usage : Filter4DSinogram(My4D,MyTrig,PhiMin,O);

• FilterVolume

Synopsis : void FilterVolume(MultiStruct *My3D,float psi)

Description : The function will filter a given volume with a high pass filter. The

function is intended for a filtering after backprojecting algorithm.

Usage : FilterVolume(InVolume,-MySinogram->psi_min);

• ComplexNdimFFT

Synopsis : void ComplexNdimFFT(float *data, unsigned long *nn,

int ndim, int isign);

Description Calculates the n-dimensional Fourier transformation of a n­

dimensional data structure in data. (See (Press et a1.1989) pp. 523-524 for a complete

description). Data are stored in sequence in data. The dimensions in dim, where

dim (1] is the size in the first direction, and so on...

Usage : ComplexNdimFFT(&Test(-1],&dim(-1],3, _FFT);

Calculates the 3-dimensional FFT of the image stored in data.

Note :Be sure that dimensions is powers of two. See also NewNdimFFT.

• BoxFilterVolume

Synopsis : void BoxFilterVolume(MultiStruct *My3D,int hwidth)

Description : The function filters a volume with a cubic box filter with width

equal 2*hwidth+ 1 in all three directions.
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: ..W"indowVolume(In Volume,S);Usage

• NdimFFT

Synopsis : void NdimFFT(float *data, int *nn, int ndim, int isign);

Description : Calculates the n-dimensional Fourier transformation of a n-

dimensiona 1 data structure in data. (See (press et al. 1989) pp. 523-524 for a

complete description). Used by FFTImage. Data are stored in sequence in data. The

dimensions in dim, where dim [OJ is the size in the first direction, and so on ... This

function is meant to gIve a simpler interface (no old-fortran shift problem) to

ComplexNdimFFT.

Usage : NdimFFT(Test,dim,3, FFT);

Calculates the 3-dimensional FFT of the image stored in data.

Note : Be sure that dimensions is powers of two. See also

ComplexNdimFFT.
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