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We have presented an integrated approach in retrieving, reconstructing, and

storing images obtained from noisy X-rays in this study. The X-ray images are used to

detect human body's invisible parts. The problem of blurring and uneven illumination is

always faced. Although it is partially solved by the physicians via lighting the X-rays,

this method is not working properly in some cases such as Vesico Ureteral Reflux

disease. This may cause loss of some meaningful part of the information and failure in

diagnosis process. In order to decrease such errors, some computational methods has

been developed by means of image processing. Due to its very nature, reconstruction,

retrieving and registration of x-ray images has been chosen as a subject of this study.

We have begun attacking the problem of reconstruction and extraction, then

started to generate multi-layer hierarchical solutions. We have tried so many different

approaches for each layer in our experiments. In each experiment, some methods

produced accurate results, some methods did not. Thus, we have exerted every effort to

optimize the solution for each layer. Although we have worked with limited number of

sample images,(due to the problem of retrieving x-rays which is seen in this case) the

results show us that, all the samples that we have processed, could have been

reconstructed and stored as we have expected.

Storing of the huge amount of data is an another problem in our area of interest,

because of image characteristics. Every kidney image consists of nearly 120.000 (around

300x400) pixels. However, in our case, the boundaries of kidney region are sufficient

for diagnosis. In other words, storing the boundaries instead of complete image has the

same precision. We detected and stored the kidney's boundary coordinates on both x

and y axis. Although this was sufficient for our study, we have decided to develop a

much more flexible file format by ordering x and y coordinate couples in counter

clockwise direction with the same information for further studies such as computer

aided diagnosis systems.



Bu e;ah~mada, gurultu duzeyleri yiiksek Rontgen filmlerinden elde edilrni~

goruntiilerin saylsal ortama aktanml, yeniden yapllandmlmasl ve saklanmasl uzerine e;ok

katmanh bir yontem sunulmu~tur. insan bedeninin baklldlgmda gozle gorulemeyen

klslmlarmm goruntiilenmesi ie;in kullamlan Rontgen filmlerinde daima duzgun olmayan

1~lk daglhmlan ve bulamk alanlar bulunmaktadlr. Bu sorunlar filmlerin arkadan

aydmlatIlmaSI yontemiyle klsmen e;ozulmu~ olsa da her durumda bu e;ozum yeterli

olmamaktadlr. Bu sorunlann sonucu olarak film uzerindeki anlamh bilgiler ya

gorulememekte veya kaybolmaktadlr. Saydlglmlz bu nedenlerden dolaYI Rontgen

filrnlerinin yeniden yapiiandmimasl bu e;ah~manm konusunu olarak see;ilmj~tir. Yukanda

belirtilen sorunlann tipik bir ornegi olan Veziko Ureteral Refiu (VUR) hastahgma ait

Rontgen filmleri yontemin geli~tirilmesi slrasmda ele almml~ ve uzerinde e;ah~llml~tIr.

<;ah~maya, problemin yeniden yapllandlrma ve goruntulerin anlamh bolumlerin

e;lkanlmasl aC;lsmdanyakla~llml~ ve daha soma c;ok katmanh e;ozumler uretilmi~tir. Her

katman ic;in bir e;ok degi~ik yontem uygulanml~ ve en uygun c;ozum see;ilmi~tir.

Kar~lla~llan diger bir sorun ise katmanlar arasl uyu~mazhklar olmu~tur. Bu problem ise

uretilen butiin c;ozumlerin tek bir sistem olarak ele almdlktan soma katman bazmdaki

e;ozumlerin tekrar gozden gee;irilmesi ve bazllannm degi~tirilmesi yoluyla a~llml~tIr.

Sonue;ta, ele alman butun gbruntiilerin i~lenmesinden soma elde edilen sonue;lar

beklenildigi gibi yeniden yapiiandmiabilmi~tir.

Rontgen filrnleriyle ilgili diger bir sorun da e;ok fazla miktarda veri ie;eren bu

goruntulerin saylsal ortamda saklanmasldlr. <;ah~malanmlz slrasmda gorduk ki, VUR da

hastahgm tanmmasmda kullamlan anlamh veriler ana nesnenin slmrlannda bulunmaktadlr.

Buradan yola e;lkarak, sadece ana nesnenin slmrlann saklamanm butun goriintiiyii

saklamakla te~his ae;lsmdan aym duyarhhga sahip oldugunu gorduk. Sonue; olarak,

elimjzdeki VUR goruntiilerini yakla~lk 1/60 oramnda slkt~tIrml~ olduk. Slkt~tlrma

slrasmda daha ilerideki bilgisayar gorselligi alanmda yapiiacak e;ah~malara yardlmcl

olmasl aC;lsmdan, ana ~ekle ait kenarlan saat yonunun tersinde SIfalayarak sakladlk.
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The problem of detection and reconstruction have conventionally been treated as

separate issues in image processing. The medical image processing concept uses both

issues to provide more clear and meaningful data to the physicians. However, there are

so many different ways to retrieve data from human body's invisible parts, using the

x-rays is the most common approach because of its ease of use and low of cost.

Although, it is so common and used by physicians in many years, it is not sufficient for a

strict diagnosis in some cases. It can be said that uneven illuminations and blurring,

which always occurs, are the drawbacks of this system. This also effects the results of

the diagnosis process. Vesico ureteral reflux (VUR) is a typical case, in which x-rays

are always blurred and low illuminated, so that it is chosen as an object of this study.

We have developed an multi-layered reconstruction system for VUR x-ray images and

furthermore a data storing module has been presented.

The goal of the machine vision system is to create a model of real world from

images. A machine vision system recovers useful information about a scene from its

two-dimensional projections. Since images are two-dimensional projections of the

three-dimensional world, the information is not directly available and must be

recovered. The recovery requires the inversion of a many-to-one mapping. To recover

the information, knowledge about the objects in the scene and projection geometry is

required.

To consider applications of a machine vision system and type of processing

required, let us consider the three images shown in Figures 1-1 to 1-3. These figures

show three different applications of a machine vision system. The information recovered



by the vision system in the three cases is different. In the first figure, results of designed

system diagnosis of a disease using computed tomography images. Machine vision

systems help a physician to recover information by enhancing the images. Quantitative

measurements on regions of interest can also be made easily available. Such systems are

being developed for all imaging modes useful in different aspects of health care. Similar

applications are being developed for inspection of industrial, agricultural, and other

products. Machine vision systems have been used for quality control of products ranging

from pizza to turbine blades, from submicron structures on wafers to auto-body panels,

and froit! apples to oranges.

Figure 1-1 Medical images may be processed by a computer vision system to assist in

diagnosis. This image is a contrast-enhanced CT image of a human liver displayed at the soft

tissue window settings.

Figure 1-2 shows two pairs of images acquired by a mobile robot. Each paIr

represents a stereo pair at a particular time instant. These images are used to recover

three-dimensional structure of the environment by the robot for autonomously navigating

in its environment. The information obtained from stereo and motion is combined to get

a robust map of the environment at a resolution that is sufficient for the task. Such

techniques are useful in autonomous navigation of automobiles, airplanes, tanks and

robots.



Figure 1-2 Two pairs of stereo images acquired by a mobile robot. These wi11 be used in

recovering the layout of the environment by the robot. (Images provided by Robert Bo11es at

SRI.)

Figure 1-3 An image of arctic region. This image should be analyzed to .find age and size of

ice .floes and other objects. (arctic image provided by Jaison Daida at the UniversifcV of

Michigan.)

Figure 1-3 shows an image of an arctic region taken from satellite. Different

regions in the image correspond the ice floes of different age. Such images are routinely

taken by satellites. These images are extremely important in weather forecasting, global

change analysis, agriculture and forestry, and the other applications. Machine vision

system are playing important role in analysis and management of the exceedingly large

volume of data collected by satellites.



Many field are related to machine vision. Techniques developed are used in many

areas for recovering information from images.

Image processing is a well developed field. Image processing techniques usually

transform images into other images; the task of information recovery is left to a human

user. This field includes topics such as image enhancement, image compression, and

correcting blurred or out-of-focus images. On the other hand, machine vision algorithms

take images as inputs but produce other types of outputs, such as representation for the

object contours in an image. Thus, emphasis in machine vision is on recovering

information automatically, with minimal interaction with a human. Image processing

algorithms are useful in early stages of a machine vision system. They are usually used to

enhance particular information and suppress noise.

Computer graphics generates images from geometric primitives such as lines,

circles, and free-form surfaces. Computer graphics techniques playa significant role in

visualization and virtual reality. Machine vision is the inverse problem: estimating the

geometric primitives and other features from the image. Thus, computer graphics is the

synthesis of images, machine vision is the analysis of the images. In the early days of

these two fields, there was not much relationship between them, but in the last few years

these two fields have been growing closer. Machine vision is using curve and surface

representations and several other techniques from computer graphics, and computer

graphics is using many techniques from machine vision to enter models into the computer

for creating realistic images. Visualization and virtual reality are bringing these two

fields closer.

Pattern recognition classifies numerical and symbolic data. Many statistical and

syntactical techniques have been developed for classification of patterns for classification

of patterns. Techniques from pattern recognition play an important role in machine

vision for recognizing objects. In fact, many industrial applications rely heavily on

pattern recognition.

Art~ficial intelligence is concerned with designing systems that are intelligent

and with studying computational aspects of intelligence. Aliificial intelligence is used to

analyze scenes by computing a symbolic representation of the scene contents after the
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images have been processed to obtain features. Artificial intelligence may be viewed as

having three stages: perception, cognition, and action. Perception translates signals from

the world into symbols, cognition manipulates symbols, and action translates symbols

into signals that effect changes in the world. Many techniques from artificial intelligence

play important roles in all aspects of computer vision. In fact, computer vision is often

considered a subfield of artificial intelligence.

Design and analysis of neural networks has become a very active field in the last

decade. Neural Networks are being increasingly applied to solve some machine vision

problenls. Since this field is in it infancy, there are no established techniques for machine

vision yet.

In our study, we will consider one of the subfield of the machine vision, medical

Image processmg. The study covers that the processing of X-ray images for

reconstruction.

The study of medical imaging is concerned with the interaction of all forms of

radiation with tissue and the development of appropriate technology to extract clinically

useful information from observations of this interaction. Such information is usually

displayed in an image format. Medical images can be as simple as a projection or

shadow image -as first produced by Roentgen nearly 100 years ago and utilized today as

a simple chest X-ray- or as complicated as a computer reconstructed image- as produced

by computerized tomography (CT) using X-rays or by magnetic resonance imaging

(MRl) using intense magnetic fields.

Although, strictly speaking, medical Imagmg began in 1895 with Roentgen's

discoveries of X-rays and of the ability of X-rays to visualize bones and other structures

within the living body (Choe et al., 1993) contemporary medical imaging began in the

1970s with the advent of computerized topography (Choe et al., 1993). Early, or what

we call class;cal, medical imaging utilizes images that are a direct manifestation of the

interaction of some form of radiation with tissue. Three examples will illustrate what is

the mean of classical imaging. Fist is the conventional X-ray procedure in which a beam

of X-rays is directed through the patient onto a film. The developed film provides a

shadow the image of the patient which is the direct representation of the passage of X-
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rays through the body. Although such images are not quantitative, they do provide some

measure of the attenuation of X-rays in tissue. Thus a section of soft tissue will appear

darker than an equally thick section of bone, which attenuates more of the X-rays. It

should be noted that even with current technological developments conventional X-ray

imaging still represents the major imaging procedure at most medical facilities.

As a second example of classical imaging, consider a conventional nuclear

medicine procedure. Here a radioactive material is injected into the patient and its

course followed by a detector which is moved over the patient in a specified manner.

Although the image recorded by the detector generally has poor spatial resolution, its

real advantage is that it provides a measure of physiological function from the time

course of the radioisotope uptake. Clearly the conventional nuclear medicine image is a

direct measure of the location and concentration of the radioactive isotope used.

As a final example of classical imaging, consider conventional medical

ultrasound. Here, a pulse of ultrasonic energy is propagated into the patient and the

backscattered echo signal is recorded by the same transducer. By angulating or moving

the transducer( or by using a transducer array) positionally sequential echo signals are

recorded and a cross-sectional image of the subject is displayed directly on a video

monitor. Ultrasound images are really a mapping of echo intensities and are a direct

.result of the interaction of the ultrasound with tissue.

The coverage of medical imaging consist of two different processes: 1. the

collection of data concerning the interaction of some form of radiation with tissue, and 2.

the transformation of these data into an image (or a set of images) using specific

mathematical methods and computational tools. In this study we will examine that the

second part of the medical imaging and more.

The first device capable of producing true reconstructed images was developed

by G.N. Hounsnfield (Choe et aI., 1993) in 1972 at EMI in England. Hounsnfield's X-ray

computerized tomography device was based in part on mathematical methods developed

by A.M. Cormack (Choe et aI., 1993) a decade earlier. For their efforts Hounsnfield

and Cormack were awarded the Nobel Prize in medicine in 1979. Put quit simply, CT

imaging is based on the mathematical formalism that states that if object is viewed from a

number of different angles, then a cross-sectional image of it can be computed (or

reconstructed). Thus X-ray CT yields an image that is essentially a mapping of X-ray

attenuation tissue density.



2-D Projection Parallel-Beam Mode
Reconstruction Fan-Beam Mode

2-D and 3-D 3-D Projection
Projection Reconstruction Parallel-Beam Mode

Reconstruction
Cone-Beam Mode

Algebraic Reconstruction Technique (ART)
Iterative Method Maximum Likelihood Reconstruction (MLR)

or Expectation Maximization (EM)

Fourier Direct Fourier Reconstruction (DFR)
Reconstruction Direct Fourier Imaging (DFI) in NMR

The introduction of X-ray CT in 1972 represents the real beginning of modern

imaging and has altered forever our concept of imaging are merely taking a picture. It

has also led to the development of 3-D imaging and is making quantitative imaging a

reality. The application of reconstructive tomography to conventional nuclear medicine

imaging has led to the development of two new imaging modalities: single photon

emission computed tomography (SPECT) and positron emission tomography (PET).

Similar applications to the laboratory technique of nuclear magnetic resonance (NMR)

has led to the magnetic resonance imaging (MRI). The CT concept is currently being

extended to 3-D magnetoencephalography, electrical impedance tomography, and

photon migration tomography, to name a few. Inherent to the development of these

imaging modalities has been the development of new reconstruction techniques, which

are detailed in Table 1-1.

This study presents an integrated approach in detection and reconstruction of

2-D x-ray images. We begin by conducting a close examination on image enhancement,

and medical image nature. This yields an advanced understanding of the various aspects

of medical image reconstruction which lights our way in development of our study. We

then proceed to formally develop the system for the solution reconstruction and storing

of VUR x-ray images. The VUR x-rays supplied from Dokuz Eyh.il University School of

Medicine Department of Pediatric Surgery, has been used overall study. At the end of



the study, regarding the system developed, a Motif based X-Windows application has

been developed to help to the physicians in their work.

We organize this thesis as follows:

• Chapter 1 presents a brief introduction to the study

• Chapter 2 covers literature survey on image processing .
.'
• Chapter 3 includes fundamentals of early image processing and modeling of

gray scale Images.

• Chapter 4 introduces Image enhancement, reconstruction and converting

techniques.

• Chapter 5 presents most common edge detection approaches in detailed.

• Chapter 6 presents our study in both experimental and application framework

ways.

• Chapter 7 includes conclusion and future works

• Appendix A includes the application framework and images.

In the first chapter we have briefly introduced the problem and than explained

why we have exerted all of our efforts on this subject. This chapter has also includes

introducing to image processing and medical imaging. At the end of the chapter, the

structure of overall study is placed.

Since, the power of computers are growing tremendously, image processing

concepts are being used in many applications. It can also be implemented as an

interdisciplinary framework. The reasons above have made it very popular in recent

days. In this chapter, it is presented some of application and a literature survey on

computer vision and image reconstruction.

The third chapter models and processing algorithms that rely significantly on

image gray-value or intensity variation are considered. The algorithms developed in this

chapter are seldom used alone to achieve a system goal (such as object inspection), but

rather are often the initial preprocessing of a gray-level image.

In the fourth chapter, it is focused that the enhancement, reconstruction and

image converting techniques. There were so many different approaches stated in the



literature. So best one must be selected which produces the best results. The most of

techniques presented in this chapter has been used in the process of reconstruction.

The early stages of vision processing identifY features in images that are relevant

to estimating the structure and properties of objects in a scene. Edges are one such

feature. Edges are significant local changes in the image and are important features for

analyzing images. Edges typically occur on the boundary between two different regions

in an image. Edge detection is frequently the first step in recovering information from

images. In the fifth chapter, all the terms above are inspected in detailed fashion.

'All the chapters above are considered for only one reason which involves

reconstruction of medical images The sixth chapter, includes all of our efforts from the

starting point of the project to the completion. It has mainly two different parts. The

first one considers retrieving and preprocessing of medical images. The another part

includes reconstruction process and the storing information.



IMAGE PROCESSING CONTEXT AND

ITS INTERESTING AREAS

As the speed, capability, and economic advantages of modern signal processing

devices continue to increase, there is simultaneously an increase in efforts aimed at

developing sophisticated, real-time automatic systems capable of emulating human

abilities. The area of image processing and computer vision are growing rapidly, so that

it is not possible to define or describe it in a simple phrase. The section below presents

the detailed information which covers the main aspects, application areas, and literature

The classification of image processing applications is more than a study. In this

section, it has been shown that some of the selected applications can be recognized as the

edge points of this area. They are very important from the point of imaging, because all

the applications below has found a place for themselves in human life. In other words, if

there exists a theory which can not be implemented so as to make life easy, has no

meaning more than being a theory by itself.

Robotics covers that industrial inspection, surface measurement or mappmg,

manipulator guidance, and vehicle guidance. Inspection using machine vision, in some

applications, has been shown to be more reliable than human visual inspection.

Inspection of printed circuit boards can be given as an example of this case. Surface

measurement or mapping interests in if the parts has been produced within the

tolerances. It is fairly common for factory robotics applications to require that the

manipulator device identify, move to, grasp, and than move an object in a cluttered



workspace using visual guidance. Part of this process involves the determination of the

part orientation such that the part may be in an acceptable manner. The need for

autonomous vehicle systems becomes apparent in the need to free human drivers from

hazardous environments. The term 'fire and' forget describes weapons delivery systems

that contain a built-in capability to adjust their trajectory on the basis of continuously

acquired image information.

Image compression and enhancement is another area of interest of image

processing. The image compression applications are dedicated to provide transferring

and storing of more data with low cost. This also means that much faster

communication medium. Image enhancement is another area where results are viewed

subjectively. Given imagery degraded by the imaging environment (e.g., atmospheric

distortion or insufficient scene illumination) or the transmission medium (e.g., significant

electrical noise has now been added to the image data) , it is necessary to characterize

this distortion and then attempt to process the imagery so that the visual effect of this

distortion is minimized.

Medical applications which we are also interested in and chosen as a subject of

our study, are widely used in medical environment. Energy sources that interact with

biological mechanism generate image-like entities. This includes X-rays, radio

frequency, magnetic, and ultrasonic energy used by physicians for medical diagnosis.

The processing of these images in digital form may improve their subjective appearance

and consequent utility.

Wang and Rao (Wang and Rao, 1996) have directed their efforts on optical

ramp edge detection. They have used expansion matching approach (EXM) which

optimizes a novel matching criterion called Discriminative Signal-to-Noise Ratio

(DSNR) and has been shown to robustly recognize templates under conditions of noise,

severe occlusion, and superposition.

Law (Law, 1996) has used fuzzy reasoning for image filtering, edge detection

and edge tracing. He has filtered the images by applying fuzzy reasoning based on local

pixel characteristics to control the degree of Gaussian smoothing. Filtered images are

then subjected to a simple edge detection algorithm which evaluates the edge fuzzy
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membership value for each pixel, based on local image characteristics. Finally, pixels

having high edge membership are traced and assembled into structures, again using fuzzy

reasoning to guide the tracing process.

The detection of lines in satellite images has drawn a lot of attention. Merlet and

Zerubia ( erlet and Zerubia 1996) have involved the problems of resolution, noise,

and image understanding. Then they have used algorithm of Fischler, which achieves

robustness, rightness, and rapidity. They have presented a mathematical formalization of

the Fishier algorithm, which allows them to extend the c~ both to cliques of more than

two po·ints, and to neighborhoods of size larger than one (to take into account the

curvature). Thus, all the needed· information (contrast, gray-level, curvature) is

synthesized in a unique cost function defined on the digital original image. This cost is ~)
-==::=:::-

used to detect roads and valleys in satellite images (SPOT).

Zhu and Chirlian (Zh~ and ~1995) hilVe presented a nonlinear algorithm

for critical point detection of 2D digital shapes. Their algorithm eliminates the problems

arising from curvature approximation and Gaussian filtering in the existing algorithms.

By quantifying the critical level to the modified area confined by three consecutive

"pseudocritical points," a simple but very effective algorithm is developed. The

comparison of their experimental results with those of many other CPD algorithms

shows that the proposed algorithm is superior in that it provides a sequence of figures at

every detail level, and each has a smaller integral error than the others with the same

number of critical points.

Image segmentation based upon contour extraction usually involves three stages

of image operations: feature extraction, edge detection and edge linking. Heijden

(Heijden, 1995) has studied to the first stage: a method to design feature extractors used

to detect edges from noisy and/or blurred images. The method relies on a model that

describes the existence of image discontinuities (e.g. edges) in terms of covariance

functions. The feature extractor transforms the input image into a "log-likelihood ratio"

image. Applications on real world images are presented showing the capability of the

covariance model to build edge and line feature extractors. Finally he has shown that the

covariance model can be coupled to a MRF-model of edge configurations so as to arrive

at a maximum a posteriori estimate of the edges or lines in the image.

Humans have a well developed ability to detect curvilinear structure In nOIsy

Images. Good algorithms for performing this process would be very useful in machine
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vIsIon for image segmentation and object recognition. Gigus and Malik (Gigus and

Malik, 1991) have developed a simple feedforward and parallel approach to this problem

based on the idea of developing filters tuned to local oriented circular arcs. This provides

a natural second order generalization of the idea of directional operators popular for

edge detection. Curve detection can then be done by methods very similar to those used

for edge detection.

Nordstrom (Nordstrom, 1989) present and analyze a global edge detection

algorithm based on variational regularization. The algorithm can also be viewed as an

anisotropic diffusion method. This puts an isotropic diffusion, as a method in early

vision, on more solid grounds; it is just as well-founded as the well-accepted standard

regularization techniques. The unification also brings the anisotropic diffusion method an

appealing sense of optimality, thereby intuitively explaining its extraordinary

performance.

When computing descriptors of image data, the type of information that can be

extracted may be strongly dependent on the scales at which the image operators are

applied. Lindeberg (Lindeberg, 1996) have presented a systematic methodology for

addressing this problem. A mechanism is presented for automatic selection of scale levels

when detecting ID image features, such as edges and ridges. A nonadaconcept CVAP/of

a scale-space edge is introduced, defined as a connected set of points in scale-space at

which: (i) the gradient magnitude assumes a local maximum in the gradient direction, and

(ii) a normalized measure of the strength of the edge response is locally maximal over

scales. An important consequence of this definition is that it allows the scale levels to

vary along the edge. For a certain way of normalizing these differential descriptors, by

expressing them in terms of so-called gamma-normalized derivatives, an immediate

consequence of this definition is that the edge detector will adapt its scale levels to the

local image structure. Since the scale-space edge is defined from the intersection of two

zero-crossing surfaces in scale-space, the edges will by definition form closed curves.

Stone and Isard (Stone and Isard 1995) have proposed a general method for

obtaining shape from texture. Their approach is based on adaptive scale filtering which

is a general method for deriving shape from texture under perspective projection

without recourse to prior segmentation of the image into geometric texture elements

(texels), and without thresholding of filtered images. Due to their assumptions, if texels



on a given surface can be identified in an image then the orientation of that surface can

be obtained.

Han et al (Han, 1995) have described and compared the techniques of a

posteriori image restoration and iterative image feature extraction. Image feature

extraction methods known as Graduated Nonconvexity (GNC), Variable Conductance

Diffusion (VCD), Anisotropic Diffusion, and Biased Anisotropic Diffusion (BAD),

which extract edges from noisy images, are compared with a restoration/feature

extraction method known as Mean Field Annealing (MFA). This equivalence shows the

relation'Ship between energy minimization methods and spatial analysis methods and

between their respective parameters of temperature and scale. As a result of the

equivalence, VCD is demonstrated to minimize a cost function, and that cost is specified

explicitly.

Liu and Ehrich (Liu and Ehrich, 1995) have concerned the problem of obtaining

subpixel estimates of the locations of straight edges in binary digital images using

dithering. By adding uniformly distributed independent random noise it is shown that

estimation bias may be removed and that the estimation variance is inversely proportional

to the length of the line segment.

In most systems the first step in tracking objects is to separate the foreground

from the background. This means to detect the regions (apparent shape) of independently

moving objects regardless of their speed, direction or texture. Ridder et al (Ridder, 1995)

have directed their efforts to solve this problem and presented an algorithm to handle

illumination changes by using a Kalman-filter system for each pixel of a frame. Each filter

predicts the grey values in the following frame, compares the prediction with the present

value and obtains an estimation of the background pixel value. The illumination changes

are quickly adapted in the background sequence in contrast to a slow adaption in the

regions that include the moving objects.

It is the another interesting area of image processing is data analysis. Chien and

Mortensen (Chien and Mortensen, 1996) have proposed Multimission VICAR Planner

(MVP) system. It was an AI planning system which uses knowledge about image

processing steps and their requirements to construct executable image processing scripts

to support high-level science requests made to the Jet Propulsion Laboratory (JPL)

Multimission Image Processing Subsystem (MIPS). This article describes a general AI

planning approach to automation and application of the approach to a specific area of

14



Image processmg for planetary sCience applications involving radiometric correction,

color triplet reconstruction, and mosaicing in which the MVP system significantly

reduces the amount of effort required by image processing experts to fill a typical

request.

One of the most important part of terrestrial navigation systems is where the

roads are located and how they are composed. Barzohar and Cooper (Barzohar and

Cooper, 1996) have developed a system to find main roads using aerial images. They

have used geometric-stochastic models for road image generation. They have used Gibbs

Distribl1tions. The map estimation is handled by partitioning an image into windows,

realizing the estimation in each window through the use of dynamic programming, and

then, starting with the windows containing high confidence estimates, using dynamic

programming again to obtain optimal global estimates of the roads present.

Until the point of start, the conventional methods have found themselves a wide

application areas in computer vision. Object recognition is one of them. Iverson and

Zucker (Iverson and Zucker, 1995) have added another milestone on this way. They

have proposed a language for designing image measurement operators suitable for early

vision. They refer to them as logical/linear (LIL) operators, since the operators unify

aspects of linear operator theory and Boolean logic. They have proposed that a family of

these operators appropriate for measuring the low-order differential structure of image

curves is developed. The resulting operators allow for coarse measurement of curvilinear

differential structure (orientation and curvature) while successfully segregating edge-and

line-like features. By thus reducing the incidence of false-positive responses, these

operators are a substantial improvement over (thresholded) linear operators which

attempt to resolve the same class of features.

The problem of segmenting an image into separate regions and tracking them

over time is one of the most significant problems in vision. Geiger et al (Geiger, 1995)

propose a method to further explore the information provided by the user's selected

points and apply an optimal method to detect contours which allows a segmentation of

the image. The method is based on dynamic programming (DP), and applies to a wide

variety of shapes. It is exact and not iterative.

Greisen et al (Greisen, 1988) has designed the Astronomical Image Processing

System, AlPS for short. It is the National Radio Astronomy Observatory's contribution

to the class of major image processing systems. It was one of the earliest of these
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systems and most widely used in astronomy. That success is due in large part to the

scientific success of the telescope it was created to support, namely the Very Large

Array (VLA) , built and operated by the NRAO.



IMAGE GREY-LEVEL MODELING AND EARLY

PROCESSING FUNDAMENTALS

In this chapter models and processing algorithms that rely significantly on image

gray-value or intensity variation are considered. The algorithms developed in this

chapter are seldom used alone to achieve a system goal (such as object inspection), but

rather are often the initial preprocessing of a gray-level image.

We have started our study with examination of gray-level dependent image

models and corresponding processing algorithms. Schalkoff (Schalkoff, 1989) has

considered these models and algorithms into four subdivisions which are also examined

below.

1. Stochastic (probabilistic) models that have no geometry dependence. An

example is the use of image intensity histograms for enhancement purposes (histogram

equalization) .

2. Deterministic models that rely on local gray-value variations. An example

edge enhancement algorithms.

3. Stochastic models that rely on local gray-value dependence. An example is the

use of co-occurrence matrices.

4. Deterministic models that rely on global image properties, both geometric and

intensity based. An example is the use of a new set of basis function to represent the

entire images. This introduces image transforms and is our first objective.

Firstly, we have studied the concept of a basis function matrix for the

representation of descritized image data. The use of a separable linear transform,

implemented as pre-and post multiplication of the image function by transform matrices,



is used to facilitated a change of basis functions. Examples of this type of transform are

the Discrete Fourier Transform and the Hadamard Transform (Ryser, 1963), (Pratt,

1978). Implicit in the use of such transformation is the assumption that the underlying

image possesses some characteristics that may be related to the transform image basis

functions. In other words, the image intensity array has some properties that are more

clearly discernible or extractable in the transformed representation. If the image has a

significant contribution due only to a few basis functions, the resulting transform matrix

will be sparse, which leads to a strategy for compression or encoding of image data.

Furtherlnore, the transform approach may be of use in the development of algorithms for

image classification and feature extraction.

The I-D Fourier Transform is reviewed first and the discrete version of this I-D

transform is represented in matrix vector notation. Properties all the complex matrix

used to achieve this transform explored. This make sense, since the 2-D Discrete Fourier

Transform (DFT) may be expressed using this matrix and calculated using the I-D DFT.

The 2-D DFT then follows. Its shown that the structure and visualization of this

transform is related to a larger class of linear separable transformations. Studying

transforms as basis function changes allows inside in to the transform properties and

utility. Following development of the 2-D DFT, a broader class of transforms is

considered in several representative transforms and their basis functions and properties

are studied.

The fundamental concept of global versus local model applicability enters into the

selection of image models and subsequent design of processing algorithms. Therefore, it

is important to understand the representational imitations of a specific model. For

example, many global approaches employing global information representations (e.g.,

moments, Fourier transforms) must assume that there is a single object that is completely

visible in the image.

Applying a moment-based modeling approach, for example, to an image

consisting of a group of overlapping parts most likely produces a set of features (i.e.,

transform coefficients) that a relatively little in common with in individual part features.

Clearly there is a regionally varying or local information about needs to be modeled and
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extracted first, followed by a globally based model and corresponding algorithm to

interpret the determine the significance of the local model information. A more

"intelligent" algorithm would then be used to infer a more global assessment of the

image(s) content; for example, a set of object production rules may be used to determine

if non objects are parts thereof are present.

Let us postpone temporarily our concern for the quantitative and qualitative

effects of a sampling a continuous 2-D functionf(~), and assume that a matrix of image

intensities, f (Xl' x2) is available. We are interested in developing a methodology that

allows straightforward analysis and visualization of the plethora of avaiable2-D

transforms. Our effort is concentrated on linear separable transforms, which are written

in the form

where [f] is an N x N image function matrix, and U and V are matrices that effect the

appropriate transform (at this point we assume they are real matrices). An image

function matrix may be written in terms of "basis function matrices" as

fl} f]2 fiN
f2]

[f] =

fNI fN2 f NN

1 0 0
o



+.............+

0 0 0

0

fNN

0 0 1

N N

[f] = L LfmnEmn
m=! n=1

Hereafter, these matrices are referred to as basisfunction matrices.

Referring to Eq. 3-1, observe that the associatively property of matrix

multiplication allows us to write the k, Fll element of F as

N N

Fkl = L LUmk fmnvnl
m=1 n=1

N N

=L L

matrix formed as the outer product of the k III column of U and the I'll column of V.

Writing U and Vas

we form the (k,l)th element of [F], Fkl, in Eq. 2-1 by writing Eq. 3-4 as
t 111' In "I ·,r r'

,.,d\! ?'.,:";( \." :.

r
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Fkl = L:[f]0uk v!,
all elements
in product

where ° operator denotes a product of two matrices formed by a point-by-point

multiplication of corresponding elements. An alternative view of Eq. 3-6 is that Fk1 is

formed by correlating [I] with !:!k ,~~. Denoting the outer product operation of !:!k and

More important, the entire separable linear transform in Eq. 3-1 is achieved by projecting

the image function matrix, [1], onto the N 2 basis functions of the transform as indicated

by Eq. 3-6. Thus, Eq. 3-2 or Eq. 3-3 may be viewed as a "transform" whose i,j'''

and ~i is a vector whose elements are zero except for the it" element, which equals

1. The reader is encouraged to show that this results in "transform" matrices

where I is an NxN identity matrix.

The inverse of Eg. 3-1 is now considered .. For practical reasons as well as ease

of presentation, it is assumed that U and V are orthogonal matrices, (i.e., they are

composed of orthonormal column vectors); therefore [I] may be recovered by

computing the inverse transform as

[f] = [U][F][V]T

Decomposed the transformed function [F], as in Eq. 3-2, yields

F11 0 0 0 FI2 0 0

0 0

[F] = +

0 0 0 0 0

(3-9)



o 0

o

It is left for the reader to show that Eq. 3-10 and the decomposition of [I'J in Eq.3-9

yield

N N

[.I] = L LFkl!:!k ~l
k=1 1=1

recovered by summing the transform basis functions weighted by the corresponding

projection. This is shown in Figure 3-1. This result, although intuitively appealing, also

suggests applications, since:

1. In the process of identifying certain image features, it may be appropriate

to choose these features as basis functions, compute the transform, and

thereby determine the content of each of these features in the image.

2. Images (or ensembles of images) that may be represented or approximated

by the weighted sum of a small number of the basis functions of a particular

transform may be efficiently stored and/or transmitted in transformed form



We define a transform of a I-D function whose argument is an integer ranging

from 0 to N-l. Such functions may be N samples of a continuous function, but it is not

necessary. The Discrete Fourier Transform (OFT) of this I-D function is defined as

N-I [ ]
F(u) = t:I(k) exp - j 2: uk

IN-I [211:]
I(k) = N ~ F(u) exp j N uk

Matrix-vector representation facilitate analysis of this transform.

variable z as

I 1

Z Z2
Z2

z= (3-15)

Z(N-I)2

ZN--I



F(O)
F(l)

frO)
f(l)

The relationship in Eq. 3-16 is important because it represents a change of basis vectors

for our representation of f, achieved in this case as a change of coordinates. The original

basis function set was the columns of the NxN identity matrix. I, whereas in the

transform the new basis vectors for the representation are the columns of Z. It is also

important to note that N is not only even, but also a power of 2. This is useful in "fast"

transform implementations mentioned subsequently.

A complex matrix, F, with complex conjugate matrix F· may be said to be

1. Hermitian, if

In dealing with real matrices, Case 2 corresponds to the case of an orthogonal matrix.

Finally, recall that if~ and yare complex vectors, their inner product,

and if <~, y,> = 0, the vectors are said to be orthogonal.

Referring to the definition of the complex variable Z, we note



ZN =1

ZN!2 =-1

ZN!4 = _ j

Z3N!4 = j

With this, notice the Z matrix has the following properties:

1. Z = ZT

2. the columns (or rows) of Z are orthogonal

3. the inner product ofa column (or row) with itself= N.

This yiel~s the important result

[Z· r Z = NJ

Thus, Z is an "almost unitary" matrix.

On the basis of the above, we may form the DIFT in vector matrix notation as

f=rlF- -

f = ~Z· F
- N -

The significance of this result is that the original functions may be recovered from

the transformed version (without the need for matrix inversion). This is a property

which is especially useful in computation of 2-D transforms, where the transform

matrices may be quite large and therefore the computation of general inverses is

impractical.

Elementary 2-D functions. The utility of mathematically characterized as a 2-D

delta function is. identical to its I-D counterpart, namely, it yields a technique to

characterize 2-D systems via impulse response or point-spread functions. It also has

significant utility in our modeling of the reconstruction process.

Defining a 2-D function rect(x,y), as follows:



rect(x,y) = {I Ixl ~ k
o elsewhere

1
and Iyl ~-

2

allows us to define the 2-D delta function through a limiting process. Letting

o,,(x,y) = n2 rect(llx,ny) n >0

( ) {
oo at (0,0)

5 x y =
, 0 elsewhere

Note that o(x,y) also retains the 2nd property cited above, namely

cof o(x,y)dxdy =1.0

Several additional properties of o(x,y) are note worthy:

Note the integrated quantity above represents the average value of g(x,y) over a l/llXl/ll

window centered at (0,0).

The above expression may be generalized to:
co

f f g(x,y)o,,(x-a,y- ~)dxdy ~ g(a,~)

00

f f exp[j21t(ux+ vy)dxdy]dudv = o(x,y)

cof f o(x,y)exp[j21t(ux+ ly)dxdy]dudv =1.0



This relationship may be shown by either invoking the sifting property, or using the rect

function, computing the transformation indicated by Eq. 3-34b, and applying the limiting

process.

One of the most frequently encountered and useful transform pairs is based upon

the rect function. If

f(x,y) = rect(x,y)

'"
Freel (U, V) = f f rect(x,y)exp[- .i2n(UX+ uy)]dxdy

t::.

= sin c(u, V)

Linear Operations and Convolution. The linearity concept for 2-D functions and

their operations may be defined by considering two image functions fl (.~) and f2 (.~) .

And operator, a, is said to be linear if

1. The concept of linearity should be distinguished from other independent

concepts such as time or space-varying; and

2. Alternately, a linear operator is one which superposition (indicated above)

holds.

By representing an image function using the sifting property of the <5function, we arrive

it:
co

fl(x,y) = f ffl(~,ll)<5(x-~,y-ll)d~dll

Suppose an output image function, f2 C~)is obtained by a linear operator on fl (~J,i.e.,

f2 (x,y) = a{fl (x,y)}



The concepts of a linear operator and the above decomposition of f1 allows us to

expand (3-38) as:

00

fl (x,y) = f f f1 (~, l1)cr(x- ~,Y-11)d ~ d 11

where the second term in the above integral is defined as the impulse response function

or point-spreadfunction of the linear system, i.e.,

6

cr{o(x- ~,Y-11)}=h(x,y,~, 11)

is the response of the system, at (x,y), to a 2-D point source applied at (~, 11). If the

system is space (or sh?ft) invariant, then

h( x, y,~, 11) = h(x- ~, y- 11)

that is, the response is only a function of the (vector) d~fference between the point of

application and response, not the absolute locations.

Applying the result ofEq. 3-41 to Eq. 3-39 yields
00

f2 (x,y) = f f fl (~, l1)h(x- ~,y-11)d ~d 11

The formulation of Eq. 3-42 spawns two associated and similar operations -

namely, correlation and matchedfiltering.

2-D and higher dimensional convolution is merely an extension of Eq. 3-42 is

formulated with the input image function, fl' and the system impulse response function,

h, expressed in terms of the (8,11) coordinate system. Without loss of generality,

assume that coordinate system origin is chosen such that both functions are centered

about (0,0). Note also that typically (or partially) the system impulse response, h, is only

nonzero over a finite region in the (8,11) plane, denoted R , and therefore the infinite

limits in Eq. 3-42 are only of theoretical significance. As a practical matter, the amount

of computation required to form the output image, f2, is related to the nonzero extent



interpretation of the convolution operation of Eq. 3-42 leads to a graphical

interpretations as follows:

1. Rotate h (E,11) about the origin by 1800 in the (E,11) plane. This is a reflection

of h about both the E and 11 axes. This forms h (-E, -11) .

2. Translated the rotated or reflected h by an amount (x, y) with respect to

fl (E,11) in the (E,11) plane. This forms h (x - E,Y- 11) . For example, the value

of h(O,O) is now at location (x,y). This makes intuitive sense, since one

contribution to f2 at (x,y) should be due to the response to an impulse at this

point in the input image. This is determined by h(O,O).

3. Integrate fl (E,11) h (x - E,Y- 11) over the region in which both functions are

This is shown graphically in Figure 3-2a.

Through a change of variables, the convolution expression of Eq. 3-42 may be

reformulated as

x

f2(X,y)= f ffl(x-E,y-11)h(E,11)dEd11

x

f2 (x, y) = f f fl (E,11)h( E + x, 11+ y)dEd11

x

f2(X,y)= f ffl(E-x,11-y)h(E,11)dEd11

Note that the operations of convolution and correlation d?ffer only in the 1800

rotation (or reflection) of h(E,11). If h(E,11) is symmetric with respect to the E and 11

axes, these operations yield the same result. Due to symmetry h( E, 11), many

formulations used for enhancement and restoration often refer to these operations as

either correlation and convolution. A graphical view of correlation is shown in

figure 3-2b.



Figure 3-2

(a) Graphical view oI convolution Irom (3-42)

(i) Function I and h (nonzero regions oI support shown)

(ii) The convolution result (integral of product in shaded region)
(b) Graphical view of correIation I rom (3-42c)

(i) Image oII and template h

(ii) Correlation off and h at location x

Finally, we remark that the operations of convolution in Eq. 3-42 and correlation

in Eq. 3-42c may be viewed alternately as the equivalent processes of matchedfiltering

and template matching, respectively. Both operations are used to find regions in the

image function. fl (E, 11), which closely match a function termed the template. In the

case of matched filtering, h( E, 11) is chosen to be 1800 -rotated version of the template,

whereas in correlation we use the value of the template for h( E, 11).



The discrete versIOn of convolution and correlation follow from the analog

formulations. The discrete convolution of functions fl and h, to produce /2', may be

M-IN-I

.f~(111.11)= L LII (i,.1)h(l11- i.J1-.1)
;~n j~O

where the limits on the summation are due to the assumed rectangular region of support

(or an MxN "window") of h. In contrast with Eg. 3-42e, "periodic" convolution of the

functionsf and h is defined as

M-1N-1

/2 (m.n) = LLfJi ..1)h([m- i]'[n- iD
i~O j~O

[m- i] = (111-i)

[n- i] = (n- i) mod N

II is also assumed periodic. This assumption poses a small dilemma, since neither

function, practically speaking, is periodic. To overcome this dilemma, and therefore be

able to use the frequency domain analysis tools, we assume that II and h are defined

over larger sampling lattices whose corresponding extends are much greater than the

regions of support of II and h. This is accomplished in practice byforming the larger

arrays by padding f and h in two dimensions with zeros to achieve the larger extent.

Similarly, the discrete correlation of II and h may be written by analogy with

M-IN-I

I2 (m.n) = L LII (i..i)h(m+ i.n+ i)
;=0 j=O



The graphical interpretation for these operations usmg discrete functions are

analogous to their continuous counterparts.



A number of low level algorithmic approaches for the enhancement or

restoration of images are developed, the majority of which are related to image "edge"

information. It is difficult to underestimate the utility of reliable edge extraction,

particularly as a precursor to higher-order image processing operations. In addition,

several additional model-based approaches are used for image conversion. This includes

halftones renditions of images and the reconstruction of image data from projections.

Input

5(x,y)

For a linear system, when the input to the system is an impulse 5(x,y) centered

at the origin, the output g(x,y) is the system's impulse response. Furthermore a system

whose response remains the same irrespective of the position of the input pulse is called

a space invariant system:

Input

5(x-xo,y- Yo)
Linear space

invariant system

Output

g(x - xo,y -Yo)



A linear space invariant (LSI) system can be completely described by its impulse

response g(x,y) as follows:

Input
./(x,y) ~I L_S_I_sy_s_te_ID_f-----_~ Output

. g(x.y) h(x,y)

where./(x,y) and h(x,y) are the input and output images, respectively. The above system

must satisfY the following relationship:

where ./1 (x,y) and f2 (x,y) are the input images, and a and b are constant scaling

factors. .
For such a system, the output h(x,y) is the convolution of f(x,y) with the impulse

response g(x,y) and is defined as:

h(x,y) = f(x,y)* g(x,y)
00 00

= f ff(x' ,y')g(x - x',y - y')dx'dy'

h[i,j] = f[i,J]* g[i,j]
11 m

=L Lf[k, I]g[i - k,j -I]
k=l 1=1

- -=.A B C - >--
I-

D E F
L-o r;~ ~ h[i,j]

-.....

G H I ""' -- ---- ---- r--.....
L-

.~

Figure 4-1 An example of a 3 x 3 convolution mask. The origin of the convolution mask

corresponds to location E and the weights A.B .... ,J are the values of g[-k.-I].k. 1=-1, O. +1.



Iff and h are images, convolution becomes the computation of weight d sums of

the image pixels. The impulse response, g[i,.i], is referred to as a convolution mask.

For each pixel [i,j] in the image, the h[i,.i] is calculated by translating the convolution

mask to pixel [i,j] in the image, and then taking the weighted sum of the pixels in the

neighborhood about [i,j] where the individual weights are the corresponding values in

the convolution mask. This mask illustrated in Figure 3-1 using a 3 x 3 mask.

Convolution is a linear operation, since

g[i ,.i]* {a\hj [i ,.i] + azhz [i,.in = a1 {g[i, .i]* hj [i,.in +az {g[i, .i]* hz [i,.in (4-4)

for any constants aj and az. In other words, the convolution of a sum is the sum of the

convolutions, and the convolution of a scaled image is the scaled convolution.

Convolution is a spatial invariant operation, since the same filter weights are used

throughout the image. However, a spatially varying filter requires different filter weights

in different parts of the image.

The analysis must be started with the formulation and analysis of several simple

operators. Local linear operators are considered first. These operators form the output

pixel intensity at (x,y) from a weighted summation of input pixel intensities in the

neighborhood of (x,y). This is accomplished via a window kernel which is convoluted

with the image intensities in the local region. Figure 4-1 illustrates this operation. The

corresponding frequency domain ramification of this type of gray-level operator are

significant.

Spatial smoothing filters are typically used for noise removal and the reduction of

effects due to undersampling. The simplest example of a smoothing filter is one that

employs spatial neighborhood averaging and may be formulated as a linear operation on

the input image of the form g(x,y) = O[f(x,y)], which may be quantified

mathematically as



1 " .g(x,y) = M L.:f(m,n)

where S is an M-pixel neighborhood of points surrounding (and perhaps including) the

point (x,y). Often, S is a rectangular neighborhood of (x,y) -for example, an n x n

square. The smoothing operator ofEq. 4-7 for the case of 11 x 11 "window" is formulated
1112 1112

g(x,y) = L LhsmU,j)f(x +i,y +j)
;=-1112 j=-1112

-----------1
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Figure 4-2 Filtering as a "window" operator

where hsm(i,j) is the smoothing function, whose nonzero values in region S are given by

h ( .. ) 1
sm 1,] =-2

11

Often we may use a change of variables to rewrite Eq. 4-8 in a more useful form.

Note that Eq. 4-8 is in convolution (or correlation) form.

In the case of n = 3, the output image function is then the correlation of the

3 x 3 window function

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

with the image function f(x,y) for all (x,y) locations (neglecting "edge" effects in the

image plane).



Note that n is often chosen to be odd in order for the window center to be on the

sampling grid. It is often convenient to shift the origin of the window using

k =i+nI2

1 n-I n-l

Hsm(u, v) = -LLhsm(k,/)exp(- j2Tr(uk +vl)1 N]
N k=O 1=0

where the scaling term (11 N 2) has been distributed between the forward and inverse

transforms. Using Eg. 4-9, Eg. 4-10 reduces to
1 n-I n-I

H.,m(11, v) = - L L(1I n2 )h'm(k, I) exp[ -j2wk I N] exp[ -j2m11 I N]
N k=O 1=0

Equation 4-12 represents a separable transform. Hereafter, we ignore the (11N) scaling

term and illustrate the properties of this transform by computing the first term; that is,
n-I

HI (u) = II nLexp[ -j2mtk I N]
k=O

z = exp[j2Tru I N]

Eg. 4-13 may be rewritten (scaled by 1/n) as
n-l

HI (u) = 11 nLz-k

k=O

Tills type of summation occurs frequently in the derivation of Z-transforms, and may be

rewritten as
,,-1 00

H] (u) = Lz-k
- Lz-k

k=O k=n

Equation 4-11 may be viewed as the difference of the z-transforms of two unit step

functions, one occurring at k = 0 and the other ( a negative step) at k = n.

Recalling the definition of z in Eq. 3-14, Eg. 3-17 becomes

1 -n 2 nl2 -n12

( )
- z _ -(n-l) Z - Z

HI U = _] - Z 1/2 -1/21-z· z -z

H] (U) = exp[-jml(n -1)1 N]sin(mtnl N)I sin(mtl N)



for n ~ 1. Note the effect of the shift due to Eq. 4-10 is a phase term in 4-19.

A similar derivation may be made for H2 (v). Notice from Eq. 4-19 that this

separable frequency response function has low-pass characteristics, as shown by the

magnitude plot in Figure 4-3. This figure shows the effect of varying the window size

from 3 x 3 to 9 x 9. Note the corresponding narrowing of the filter frequency response,

as expected. This plot is analogous to the ( phase shifted) sine function that would have

been obtained in the continuous case.

An example of an image processed with this smoothing filter for the case 11 = 3 is

shown Figure 4-4. Note the somewhat blurred appearance of the output image. This

blurring is an undesirable side effect of the filter.
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Figure 4-4 Smoothed images

(0) Original

(b) Corrupted image

(c) Smoothed using 3 x 3 window (note loss of edge sharpnes:;)

Properties of 2-D linear class of filters are often inferior to a wider class of filters

which, although defying detailed theoretical analysis, often yield superior results for a

given image degradation model or application. For example, the smoothing operator

reduces image noise but blurs edges. This is an undesirable side effect and spawns a

search for alternative smoothing approaches. Similarly, the sharpening operator sharpens

edge information but also introduces sensitivity to ( high frequency) noise and "ringing."

The main problem with local averaging operations is that they tend to blur sharp

discontinuities in intensity values in a~ image. An alternative approach is to replace each

pixel value with the median of the gray values in the local neighborhood. Filters using

this technique are called median filter.

. Median filters are a subset of the class of rank filters where the output image

intensity at spatial location:! = (x,yf is chosen on the basis of the relative rank or

intensity of pixels in the neighborhood of !.. Given a set of N pixel intensities obtained

over a local image region. S, denoted simply as f, i = 1,2, .... , N, an ordering of these

values in increasing values, i.e.,



.1; ~ I;+1 (4-20)

may be used to derive the rank filter operation. The output image intensity, g(~) is

where the Rank; is the intensity of the output intensity at position ,or rank, j in R(.!).
For example, choosing j = 1 yields the min filter, where the first element of R(.!) is

chosen;-that is,

where S is the chosen neighborhood of .!. Alternately, the max filter is derived from

choosingj = N and yields

g(!) = min Rank]

= min{I(!)}I.! E S } (4-23)

The most popular rank filter is derived for the case of N odd, and is based on

choosing the filter output to be In! where m is the median intensity; that is, for N

intensity samples the position

m = (N + 1) / 2 (4- 24)

is the median. Thus, Im is the pixel intensity in the ordered sample set that is greater

than (N - 1)/2 of the samples. We denote the median operator on a sequence of

samples as

med (R(.!)) = RankN_1 (RC~J)
2

For example, suppose an image with assumed smooth gray-value variations were

corrupted by an impulse or "spike" -like noise. Low-pass filtering (smoothing) would

tend to distribute this noise intensity over the pixels surrounding the noise spike. In

contrast, the median filter usually removes this type of image noise without other

degradation. The following example illustrates the approach.



Suppose we obtain N = 5 image intensity samples in a neighborhood of pixel

location (x,y) that yield R(~) = {100,110,120,130,240}. Clearly the pixel intensity value

of 240 is either a noise spike or an image feature. In this case, the output of the rank

filter yields g(~) = 120.

The neighborhood, or window shape, chosen for the median filter greatly affects

its filtering effects. The median filter may take an assortment of shapes. Examples are

shown in Figure 4-5. The shape chosen for the window may be based on a priori

knowledge of the image noise characteristics, such as horizontal or vertical orientations.

Median.filter window shapes

(a) n x n window

(b) n x n cross

(c), (d) Horizontal and vertical strips

To avoid the computational expense of sorting large arrays of numbers, median

filters often are implemented with small size window. The image may be repeatedly

filtered with multiple passes of this window.

The median operator is obviously a nonlinear filter, because, given two image

functions yielding sample sequences R] (~) and R2 (~).

Surprisingly, however, a number of properties of the median filter allow a limited

quantitative analysis. For example, given a constant K and sequence R(~),

med( KR(~)) = K medR(~)

med( K + R(~)) = K + medR(~)



Schalkoff (Schalkoff, 1989) has implied that the median filter has a number of

other interesting properties.

1. The median filter reduces the variance of the intensities in the image. This

shown pictorially in the input and output "noise" images and corresponding histograms

in Figure 4-6. Thus, the median filter has a capability to significantly alter image texture.

2. Intensity oscillations with a period less than the window width are smoothed.

This property is significant when considering multipass implementations of a fixed size

median filter. In general, regIOns unchanged by the filter in a given pass are left

unchanged in future passes.

3. Median filters wW change the image intensity mean value if the spatial noise

distribution in the image is not symmetrical within the window.

4. Median filters preserve certain edge shapes. This is shown by the series of

the examples in Figure 4-7. This is important in multipass median filtering

implementations, because the fixed points of a median filter are primarily edges and

regions of monotonic slope.

5. Given a symmetrical window shape, the median filters preserves the location

of edges. This is also verified in Figure 4-7.

6. In the application of a median filter, no new gray-values generated. Binary

images remain binary, and the dynamic range of a median filtered image cannot exceed

that of the input image.

7. The shape chosen for a median filter may affect the processing results. This

is shown in Figure 4-8.



Median jilter statistical e.ffects

(a) Input "noise" image

(h) Histogram (normalized) of "noise"

(c) Medianfiltered "noise" image

(d) Median jiltered "noise" histogram

Median Filter Practical Implementation and "Fast" Algorithms. Unlike linear

filters, which involve multiplication and summation computations, the median .filter

computation requires the sorting of a list of numbers. For large window sizes, this may

several ways. One efficient approach for neighboring window locations (e.g., (x,y) and

(x+ l,y)) is based on adjustment and modification of the sorted list at the previous

location, (x,y). As we move the n x m window we discard n points, add n new points,

and leave the remaining mxn -2n points unchanged. This approach is only efficient if the

amount of common image intensity data is significantly large from one position to the

A clever alternate approach, based on list sorting, is to calculate the median of

R(~) iteratively, by bit position, starting with the MSB. After the median bit (0 or 1)

for a bit position is determined, only intensity values with this bit value are retained for

subsequent calculations. Notice that the procedure terminates, for n-bit data, after n

iterations, regardless of the size of the window.
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Median filters are very effective in removing salt and pepper and impulse noise

while retaining image details because they do not depend on values which are

significantly different from typical values in the neighborhood. Median Filters work

successive image windows in a fashion similar to linear filters. However, the process is

no longer a weighted sum. For example, take a 3 x 3 window and compute the median

of the pixels in each window centered around [i,j]:

1. Sort the pixels into ascending order by gray level.

2. Select the value of the middle pixel as the new value for pixel [i,j].

This process is illustrated in Figure 4-9. In general, an odd-size neighborhood is used

for calculating the median. However, if the number of pixels is even, the median is taken

as the average of the middle two pixels after sorting.
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The Gaussian smoothing filter is a very good filter for removing noise drawn

from a normal distribution. The zero-mean Gaussion function in one dimension is

g(x) = e 20-
2

where the Gaussian spread parameter () determines the width of the Gaussian. For

image processing, the two-dimensional zero-mean discrete Gaussian function,

(hj2)
g[i,j]=e-~

is used as a smoothing filter. A plot of this function is shown in Figure 4-10.

Gaussian functions have five properties that make them particularly useful in

early vision processing. These properties indicate that the Gaussian smoothing filters

are effective low-pass filters from the perspective of both the spatial and frequency

domains, are efficient to implement, and can be used effectively by engineers in practical

vision applications. The five properties are summarized below.

1. In two dimensions, Gaussian functions are rotationally symmetric. This means

that the amount of smoothing performed by the filter will be the same in all directions. In

general, the edges in an image will not be oriented in some particular direction that is

known in advance; consequently, there is no reason a priori to smooth in one direction



I

than in another. The property of rotational symmetry implies that a Gaussian smoothing

filter will not bias subsequent edge detection in any particular direction.

2. The Gaussian function has a single lobe. This means that a Gaussian filter

smoothes by replacing each image pixel with a weighted average of neighboring pixels

such that the weight given to a neighbor decreases monotonically with distance from the

central pixel. This property is important since an edge is local feature in an image, and a

smoothing operation that gives more significance to pixels farther away will distort the

features~

3. The Fourier transform of a Gaussian has a single lobe in the frequency

spectrum. This property is straightforward collary of the fact that the Fourier transform

of a Gaussian is itself a Gaussian, as will be shown below. Images are often corrupted

by undesirable high-frequency signals (noise and fine texture). The desirable image

features, such as edges, will have components at both low and high frequencies. The

single lobe in the Fourier transform of a Gaussian means that the smoothed image will

not be corrupted by contributions from unwanted high-frequency signals, while most of

the desirable signals will be retained.

4. The width, and hence the degree of smoothing, of a Gaussian filter is

parameterized by (J , and the relationship between (J and the degree of smoothing is

very simple. A larger (J implies a wider Gaussian filter and greater smoothing.

Engineers can adjust the degree of smoothing to achieve a compromise between

excessive blur of the desired image features (too much smoothing) and excessive

undesired variation In the smoothed image due to noise and fine texture (too little

smoothing).

5. Large Gaussian filters can be implemented very efficiently because Gaussian

functions are separable. Two-dimensional Gaussian convolution can be performed by

convolving the image with one-dimensional Gaussian and then convolving the result

with the same one-dimensional filter oriented orthogonal to the Gaussian used in the

first stage. Thus, the amount of computation required 2-D Gaussian filter grows linearly

in the width of the filter mask instead of growing quaratically.



The rotational symmetry of the Gaussian can be shown by converting the

function from rectangular to polar coordinates. Since the radius in polar coordinates is

given by r 2 = i 2 +f, it is easy to see that the Gaussian function in polar coordinates,

g[r, 0] = e 2cr
2

does no depend on the angle 0 and consequently is rotationally symmetric. It is also

possible to construct rotation ally nonsymmetric. Gaussian functions if they are required

for an application where it is known in advance that more smoothing must be done in

some specified direction. Formulas for rotationally nonsymmetric. Gaussian functions

are provided by Wonzencraft and Jacobs, where they are used in the probabilistic

analysis of communication channels.

The Gaussian function has the interesting property that its Fourier transform is

also a Gaussian function. Since the Fourier transform of a Gaussian is real function, the

Fourier transform is its own magnitude. The Fourier transform of a Gaussian is

computed by



'"
F{g(x)} = f g(x)e-iilltdx

00 X2

= fe-20-2e-iilltdx·

co J.?

= fe-20-2(coswx+jsinwx)dx

00 Xl ~ X

= f e - 2(12 coswxdx +.i f e --20-2sin wxdx

The gaussian is a symmetric function and the sine function is a anti symmetric so the

integrated in the second integral is anti symmetric. Therefore, the integral must be zero,

and the Fourier transforms simplifies to:
2

'" x
F{g(x)}= fe-20-2 coswxdx

The spatial frequency parameter is OJ, and the spread of the Gaussian in the frequency

domain is controlled by v, which is the reciprocal of the spread parameter (J in the

spatial domain. has a wider spectrum, and a wider Gaussian function in the spatial

domain has a narrower spectrum. This property relates to the noise suppression ability

of a Gaussian filter. A narrow-spatial-domain Gaussian does less smoothing, and in the

frequency domain its spectrum has more bandwidth and passes more of the high-

frequency noise and texture. This simple relationship between spatial-domain Gaussian

width and frequency-domain spectral width enhances the ease of use the Gaussian filter

in practical design situations. The Fourier transform duality of Gaussian functions also

explains why the single-lobe property in the spatial domain carries over into the

frequency domain.

Another useful property of the Gaussian functions IS their seperability. The

seperability of Gaussian filters is easy to demonstrate:
m 11

g[i,j] * f[i,j] = LLg[k,l]f[i - k,j -I]
k=! 1=1



The summation in brackets is the convolution of the input image f[i,.J] with a vertical

one-dimensional Gaussian function. The result of this summation is a two-dimensional

image, blurred in the vertical dimension, that is then used as the input to a second

convolution with a horizontal one-dimensional Gaussian that blurs the image in the

commutative, the order of the convolutions can be reversed so that the horizontal

convolution is performed first and the vertical convolution is performed on the result of

the horizontal convolution.

This method can be implemented usmg the composition of two horizontal

convolutions and a single horizontal convolution mask. The input f[i,.J] is first

convolved with a horizontal Gaussian, and the result is placed in a temporary array in

its transposed position. The temporary array is then used as input to the same

convolution code so that the vertical convolution is performed by horizontal convolution.

The output data from second convolution is again transposed as the convolution is

performed so that the data is restored to its proper (original) orientation.
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Figure 4-11 An example of the seperability of Gaussian convolution. Left: Convolution with

the vertical mask. Right: Convolution with the horizontal mask. Note that the origin of each

mask is shaded.



The samples of a Gaussian filter, or the coefficients obtained from the binominal

expansion, form a Gaussian filter. When discrete Gaussian filters are convolved, the

result is a larger discrete Gaussian filter. If an image is smoothed with an n x n discrete

Gaussian filter, and this intermediate result is smoothed by m x m discrete Gaussian filter,

then the result is exactly the same if the original image had been smoothed by an

(n+m-1) x (n+m-1) discrete Gaussian filter. In other words, convolving row n In

Pascal's triangle with row m yields row n+m-1 in Pascal's triangle.
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An image contains a continuum of intensity values before it is quantized to obtain

a digital image. The information in an image is in these gray values. To interpret an

image, the variations in the intensity values must be analyzed. The most commonly used

number of quantization levels for representing image intensities is 256 different gray

levels. It is not uncommon, however, to see digital images quantized to 32, 64, 128, or

512 intensity levels for certain applications, and even up to 4096 (12 bits) are used in

medicine. Clearly, more intensity levels allow better representation of the scene at the

cost of more storage.

In the early days of machine vision, the memory and computing power available

was very limited and expensive. These limitations encouraged designers of vision

applications to focus their efforts on binary vision systems. A binary image contains only-_ .•.----. ~.
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two gray level. The difference this makes in the representation of a scene is shown in

Figure 4-13.

In addition, designers noted that people have no difficulty in understanding line

drawings, silhouettes, and other images formed using only two gray levels. Encouraged

by this human capability, they used binary images in many applications.

Even though computers have become much more powerful, binary vision systems

are still useful. First of all, the algorithms for computing properties of binary images are

well understood. They also tend to be less expensive and faster than vision systems that

operate" on gray level or color images. This is due to the significantly smaller memory

and processing requirements of binary vision. The memory requirements of a gray level

system working with 256 gray levels will be eight times that of a system working with a

binary image of the same size. The storage size may be reduced by using techniques

such as run-length encoding. The processing time requirements are lower because many

operations on binary images may be performed as logical operations instead of integer

mathematical operations.

Smaller memory requirements and faster execution times are not the only

reasons for studying binary vision systems. Many techniques developed for these

systems are also applicable to vision systems which use gray scale images. A convenient

way to represent an object in a gray level or color image is to use its masks. The mask

of an object is a binary picture in which the object points are 1 and other points are O.

After an object has been separated from the background, its geometric and topological

properties may be required in decision making. These properties can be computed from

its binary image.

In general, binary vision systems are useful in cases where a silhouette contains

enough information to allow the recognition of an object and where the environment can

be adequately controlled. To obtain a good silhouette, the objects must be easily

separated from background. This can be achieved by using special illumination

techniques and by having only a few objects in the scene. There are many industrial

situations that fulfill these requirements. For example, binary vision systems have found

application in optical character recognition, chromosome analysis, and recognition of

industrial parts. In these cases, the binary vision system usually uses a threshold to

separate objects from the background. The proper value of this threshold depends on

illumination and on reflectance characteristics of objects. The resulting binary picture
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allows computation of geometric and topological properties (features) of objects for the

given mask. In many applications, these characteristics are enough for recognition of

objects.

It should be mentioned here, however, that with the increase in the complexity of

applications, more and more vision systems are using gray scale images. This is due to

the fact that in many material handling and assembly tasks, the illumination cannot be

controlled to obtain good contrast between objects and background. Care has to be

exercised to make the system insensitive to small changes in illumination and reflectance

characteristics of other objects in a scene. In many applications, this becomes a

formidable task. Similarly, in inspection tasks, it may not be possible to recover subtle

information using only two intensity levels. Internal details of an object may be lost in

thresholding and may make the task of detecting surface defects very difficult.

Objects pixels will have the value 1 and background pixels will have o. In

displaying pictures, 0 is white and 1 is black; thus; in binary images, the background is

white and objects are black. We will also assume that pictures are of size 11 x m pixels

and are represented in a computer as a two-dimensional array. This representation

allows us to visualize images with the spatial relationships between points maintained in

the form familiar to people.

Conversion of gray-level Images to binary representation IS important for a

number of reasons:

1. To identify the extend of objects, represented as a region in the image. For

example, we may wish to separate a visual target from its background.



2. To concentrate on shape ( or morphological) analysis, in which case the

intensities of pixels are less significant than the shape of a region.

3. To display an image on an output device which has only one bit intensity

resolution, that is, a binary or two-level display device, such as printer. The

objective is to convert the gray-level image so that the subjective appearance is

that of a multi-intensity image. The advent of desktop publishing makes this

an area of growing significance.

4. To convert an edge-enhanced image to a line drawing of a the imaged scene.

It is necessary to distinguish strong edges that correspond to object outlines (and

features) from weak edges due to illumination change, shadows, etc.

One of the most important problems in a vIsion system IS to identify the

subimages that represents objects. This operation, which is so natural and so easy for

people, is surprisingly difficult for computers. The partitioning of an image into regions

is called segmentation. Ideally, a partition represents an object or part of an object.

Formally, segmentation can be defined as a method to partition an image, F[i,j], into

sub images, called regions, ~, ... , Pk, such that each subimage is an object.

• U~=lP; = Entire image ({ P;} is an exhaustive partitioning.)

• P;nPj = 0, i ~ j ({ P;} is an exclusive partitioning)

• Each region P; satisfies a predicate; that is, all points of the partition

have some common property.

• Pixels belonging to adjacent regions, when taken jointly, do not satisfy

the predicate.

As shown above, a partition satisfies a predicate. This predicate may be as simple

as has uniform intensity but is more complex in most applications. Segmentation is a

very important step in understanding images.

A binary image is obtained using an appropriate segmentation of a gray scale

image. If the intensity values of an object are in an interval and the intensity values of the

background pixels are outside this interval, a binary image can be obtained using a

thresholding operation that sets the points in that interval to 1 and points outside that



range to O. Thus, for binary vision, segmentation and thresholding are synonymous.

Many cameras have been designed to perform this thresholding operation in hardware.

The output of such a camera is a binary image. In most applications, however, cameras

give a gray scale image and the binary image is obtained using thresholding.

Thresholding is a method to convert a gray scale image into a binary image so

that objects of interest are separated from the background. For thresholding to be

effective in o~ject-background separation, it is necessary that the objects and

background have sufficient contrast and that we know the intensity levels of either the

objects or the background. In a fixed thresholding scheme, these intensity characteristics

determine the value of the threshold.

Let us assume that a binary image B[i,}] is the same as a thresholded gray

imageFT [i,}] which is obtained using a threshold T for the original gray image F[i,}].

Thus,

B[i,}] = }~[i,j]

[. .] {I - ifFT 1, I = .
. 0 otherwise.

If it is known that the object intensity values are in a range [1;,1;], then we may use

.. {I ifFT 1,J =
[ ] 0 othen1!ise.

A general thresholding scheme in which the intensity levels for an object may come from

several disjoint intervals may be represented as

[. .] {I ifFT 1,} = o othen1!ise

where Z is a set of intensity values for object components.

Note how knowledge about the application domain IS incorporated into the

thresholding algorithm. It has, in fact, been tailored for the domain; therefore, the same

threshold values may not work in a new domain. The threshold is usually selected on the

basis of experience with the application domain. In some cases, the first few runs of the

system may be used for interactively analyzing a scene and determining an appropriate

value for the threshold.



Automatic thresholding of images is often the first step in the analysis of images

In machine vision systems. Many techniques have been developed for utilizing the

intensity distribution in an image and the knowledge about the objects of interest for

selecting a proper threshold value automatically.

To make segmentation more robust, the threshold should be automatically

selected by the system. Knowledge about the objects in the scene, the application, and

the environment should be used in the segmentation in a form more general than a fixed

threshold value. Such knowledge may include

• Intensity characteristics of objects

• Sizes of the objects

• Fractions of an image occupied by the objects

• Number of different types of objects appearing in an image

A thresholding scheme that uses such knowledge and selects a proper threshold value for

each image without human intervention is called an automatic thresholding scheme.

Automatic thresholding analyzes the gray value distribution in an image, usually by using

a histogram of the gray values, and uses the knowledge about the application to select

the most appropriate threshold. Since the knowledge employed in these schemes is more

general, the domain of applicability of the algorithm is increased.

suppose that an image contains n objects 0, ,02" .. ,0", including the background,

and gray values from different populations 7r 1>"" 7r" with probability distributions

PI (z), ... ,P" (z). In many application, the probabilities PI"'" P" of the objects appearing

in an image may also be known. Using this knowledge, it is possible to rigorously

formulate the threshold selection problem. Since the illumination geometry of a scene

controls the probability distribution of intensity values Pi (z) in an image, one cannot

usually precompute the threshold values. Most methods have been developed for

automatic threshold selection use the size and probability of occurrence and estimate

intensity distributions by computing histograms of the image intensities.

Many automatic thresholding schemes have been used in different applications.

To simplify the presentation, we will follow the convention that objects are dark against



a light background. In discussing thresholds, this allows us to say that gray values below

a certain threshold belong to the object and gray values above the threshold are from the

background, without resorting to more cumbersome language. Some algorithms can be

generalized to handle object gray values from an arbitrary set of pixel values.

The p-tile method uses knowledge about the area or size of the desired object to

threshold an image. Suppose that in a given application objects occupy about p percent

of the image area. By using this knowledge to partition the gray value histogram of the

input image, one or more thresholds can be chosen that assign p percent of the pixels to

the object. Figure 4-14 gives an example of a binary image formed using this technique.

Image
100% 'i Intensities

Figure 4- J 4 The shaded areas in the histogram represent p percent of the image area. The

threshold is selected so that p percent of the histogram is assigned to the object.

Clearly, this method is of very limited use. Only a few application, such as page

readers, allow such an estimate of the area in a general case.

If the objects in an image have the save gray value, the background has a

different gray value, and image pixels are affected by zero-mean Gaussian noise, then we

may assume that the gray values are drawn from two normal distributions with

parameters (,ul,U1) and (,u2,U2). The histogram for an image will the show two



separate peaks, as shown in Figure 4-14. In the ideal case of constant intensity values

() t = () 2 = 0, there will be two spikes in the histogram and the threshold can be placed

anywhere between the spikes. In practice, the two peaks are not so well separated. In

this case, we may detect peaks and valleys in the histogram, and the threshold may be set

to the pixel value corresponding to the valley. It can be shown that the probability of

misclassification is minimized by this choice of the threshold when the size of the object

is equal to that of the background. In most applications, since the histogram is sparsely

populated near the valley, the segmentation is not sensitive to the threshold value.

Figure 4-15 Ideally, the intensities of the background and objects will be wide~y separated.

In the ideal case, the threshold T can be anywhere between the two peaks, as shown in (aJ.

Inmost images, the intensities will overlap, resulting in histograms as shown in (b).

The determination of peaks. and valleys is a nontrivial problem, and many

methods have been proposed to solve it. For an automatic thresholding scheme, we

should have a measure of the peakness and valleyness of a point in a histogram. A

computationally efficient method is given in Algorithm 4-1. This method ignores local

peaks by considering peaks that are at some minimum distance apart. The peakness is

based on the height of the peaks and the depth of the valleys; the distance between the

peeks and valleys is ignored.

This approach can be generalized to images containing many objects with

different mean gray values. Suppose there are n objects with normally distributed gray

values with parameters .(,ut , () I)' (,u2, () 2)"", (,un' CJn)' and the background is also

normally distributed wit parameters (,uo, CJ 0)' If the means are significantly different, the

variances are small, and none of the objects is very small in size, then the histogram for



the image will contain n+1 peaks. The valley locations 1;,1;, ... , 1~Jcan be determined,

and pixels with gray values in each interval (1; ,1;+1] can be assigned to the

corresponding object (Figure 4- 16).

1. Find the two highest local maxima in the histogram that are at some

minimum distance apart.

2. Find the lowest point gk in the histogram H bellveen g; and g)"

3. Find the peak ness, defined as min(H(g;),H(gj))I H(gk)'

4. Use the combination (g;, gj' gk) with highest peakness to threshold the

image. The value gk is a good threshold to separate o~iects

corresponding to g; and gj"

Morphology is the science of form and structure. In computer vision it is about

regions or shapes-how they can be changed and counted, and how their areas can be

evaluated.



Although, morphological filters can be used to perform so many different tasks,

Low (Low, 1991) has classified its application areas under four main titles as below:

1. Smoothing the edges of a region. This is useful if, say, it is required to

create a line drawing of a face from image. Using standard segmentation

techniques, the edges will be noisy because the lighting or capture equipment

makes the outline inaccurate. Morphology can not add information to this, but

since it is known that the edges of a face are normally curved, then the unlikely

hills and valleys can be smoothed away.

2. Forcing shapes onto region edges. Instead of edges being curved it may

be that prior knowledge is available that regions are square-e.g., in the image of

chessboard. Morphology can be used to force a shape onto a region so that

where it was noisy and approximately square it becomes more square and less

nOIsy.

3. The same morphological operations can be used to count regions (or

granules in morphological terms). For example, how many dark cells are there in

the image? Using morphological operations is just way of region of granule

counting.

4. Morphological operations can be used to estimate SIzes of regIons

(or granules). This is clearly essential as a tool for the image processor.

Morphological operations are most easily seen on binary images (that is 1s and Os

only). Indeed, the early mathematics of morphology was concerned purely with position

rather than intensity.

10101
o 1 0 1 0

10101
This could effectively be represented as a set ( in mathematical terms) of all those pixels

in 5 x 3 image that have value' 1" namely



{(0,0),(0,2),(0,4),(1, 1),(1 ,3),(1 ,5),(2,0),(2,2),(2,4)}

And now it is possible to do set operations on images

1 0 1 0 1 0 0 0 1 1
A=O 1 0 1 0 B=O 0 0 1 1 (4-42)

1 0 1 0 1 0 0 0 1 1

Giving

1 0 1 1 1
AuB (A union B)= 0 1 0 1 1 (4-43)

1 0 1 1 1

0 0 0 0 1
AnB (A intersection B)= 0 0 0 1 0 (4-44)

0 0 0 0 1

Note here that the matrix really represents a set of known pixels (value' 1') in among a

set of unknown pixels (represented by '0'). The set of unknown pixels theoretically

extends infinitely up, down, left, and right so that image A above could also be written as

follows:

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 1 0 0 0

0 0 0 0 1 0 1 0 0 0 0

0 0 0 1 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

where the circle around the top left 1 indicates the position of the origin.

Two set operations (using an image and template) that are fundamental are called

dilation and erosion. The first has the effect of filling in the valleys between spiky

regions edges, while the second has the effect of deleting spiky edges. These operations

derive from Minkowski addition and Minkowski subtraction (Low, 1991) respectively,

and are defined as follows.

I !Z!:IR YUKStK TCKNOlWI f.'~,,,,\;..
RtKTURLC~O



A template (made from Is and Os) is created with a known origin, denoted by a

circle around it.

The origin of this template is stepped over every element in the whole of the

image. Where the origin of the template corresponds to a 1 in the image, the template is

'unioned' with that part of image. The resulting template-sized results using their

original image positions and giving a resulting image that is larger (unless the template is

1 xl) than the original.

0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 1 0 0 0 1

0
0 0 0 0 0 1 1 0 1 1 0

0 0 0 0 1 1 1 1 1 1 1 ([) 0

0 0 0 0 1 1 1 1 1 0 1

0 0 0 0 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 1 1 1

The 'first' 1 in the image on the top line

00000010010

When the template is applied to this 1, the following results:

o 0 0 0 0 0 1 0 0.0 0

o 0 0 0 0 0 1 1 01 0

And then application of the template to the second gives

00000010010

00000011011



a a a a a a 1 a a 1 a a ~ new row
a a a a a a 1 1 a 1 1 a
a a a a a 1 1 1 1 1 1 1
a a a a 1 1 1 1 1 1 1 1

a a a a 1 1 1 1 1 1 1 1
a a a a 1 1 1 1 1 1 1 1
a a a a 1 1 1 1 1 1 1 1
a a a a 1 1 1 1 1 1 1 1

t new column

Continually applying this to the image fills out all the holes and makes the image

grow, one row and one column at a time.

This operation removes spikes from the edges of the region. This performs with

the template which is created for each dilation. The template is stepped over the image

but this time only in positions where the whole of the template lies on the top of the

image, i.e. it is now allowed to go off the edge. This means that the resulting matrix will

be smaller than the image (unless the template is 1 xl).

For every stepped position in the image the template is compared with the

corresponding window to the image.' If the template is exactly the same as the image

window, then the element corresponding to the origin in the resulting matrix is set to a 1.

This is particularly useful when the template is all 1s. It is also effectively

equivalent to correlation. This is clear with a template containing a a as follows:

.·.0 .0 ••.0
000

O. 00
·0 0.0

o O· 0
..0< 0

·.0 b ··0

.010
001

IT5rlm~l·
:m~l:
1111



The first 'match' is at (6,3), there being only two other matches, so the result is:

0 0 0 0 0 0 0 0 0 0 0 ~ Unused row
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 I 0 0
,0 0 0 0 0 0 0 0 0 0 0

t Unused column

This shows that the template matches the image in only three places. However,

with a 'all 1s' template the spike removal becomes apparent. For example, with the same

image and the template

the result is

0 0 0 0 0 0 0 0 0 0 0 ~ Unused row
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 1 0 0

0 0 0 0 1 1 1 1 1 0 0

0 0 0 0 1 1 1 1 0 0 0

0 0 0 o . 1 1 1 1 1 1 0

t Unused column

This clearly reduces the image, cutting out the spiky edges.

The techniques above have been applied to normal gray-level images. One way is

to associate all the elements that have a constant gray-level value with binary 1 and all

other pixels with 0, A better approach uses the actual values in gray-level



morphological operations defined slightly differently to the binary/unary operations

defined above.

It is used for flattening and filling valleys on region edges in gray-level images.

Let I(x,y) be an image of gray levels and R(x,y) be the resulting image after I(x,y) has

been dilated/eroded with m x n template l'(x,y).

Gray level dilation is defined as

R(x,y) = maximum{I(x - i,y - .1)+ 1(i,.1)}
O$,$nz-I
0$j$I1-1

and gray level erosion is

R(x,y) = minimum{I(x + i,y + .1)- T(i,.1)}
O$,$m-I .
O$j$I1-1

Both of the above definitions use locations outside of an M x N image, so where I (x,y) is

not defined, for the purposes of implementing the above calculations I (x,y)=O.

The dilation example uses (x-i,y-j) coordinates, which are not ideal in that the

template is effectively rotated about both diagonals and then operates on the elements to

the left and above the 'home' position. This can be avoided by defining the coordinates

on the template to be 0 ~ i ~ m - 1, and 0 ~ .1 ~ n - 1.

Note that dilation is precisely the dual of the erOSIOn operation. In some

circumstances this mathematical relationship is important.

Consider the following initial image:

0 0 0 0 0 0 0 0

0 0 2 4 4 2 0 0

0 0 4 8 8 4 0 0

0 0 2 4 4 2 0 0

0 0 0 0 0 0 0 0



1 1
1 1

gives

1 1 1 1 1 1 1 1
1 1 3 5 5 5 3 1

1 1 5 9 9' 9 5 1
1 1 5 9 9 9 5 1
1 1 3 5 5 5 3 1
1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0
0 0 2 4 4 4 2 0

0 0 4 8 8 8 4 0

0 0 4 8 8 8 4 0

0 0 2 4 4 4 2 0
0 0 0 0 0 0 0 0

Showing that dilation with a constant (all 1s) template is equivalent to a stepping spatial

operation that takes the maximum of a pixel window.

Conversely, eroding by the same template gives

-1 -1 -1 -1 -1 -1 -1 -1

-1 -1 1 3 1 -1 -1 -1

-1 -1 1 3 1 -1 -1 -1

-1 -1 1 3 1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1

or if 1 is subtracted throughout



0 0 0 0 0 0 0 0
0 0 2 4 2 0 0 0
0 0 2 4 2 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Showing that erosion with a constant template is equivalent to taking a spatial minimum.

The values in the template (or structuring element) effectively define the set of pixels

which are searched for the maximum (dilation) or the minimum (dilation).

Note that dilation gives a larger image, while erosion gives a smaller image; in

both cases, however, the original structure of the image is maintained.

If the template is not constant, say

1 0
o 1

Original Dilated - 1 Eroded + 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 4 4 2 0 0 0 0 2 4 4 3 1 0 0 0 2 4 3 0 0 0

0 0 4 8 8 4 0 0 0 0 4 8 8 7 3 0 0 0 3 4 2 0 0 0

0 0 2 4 4 2 0 0 0 0 3 7 8 8 4 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 3 4 4 2 0 0 0 0 0 0 0 0 0

Showing how dilation skews the image in favor of the higher values in the template. If

the range of values in the template is small the shape of the template has much less

effect on the final result than if the range is large, e.g. 0 to 100. Generally, if T is the

template used for dilation and erosion, D(I) is the dilated image of I, and £(1') is the

eroded image of I, then

i.e., the result of eroding and then dilating a previously dilated image is a return to that

original dilated image.

Similarly



The early stages of vision processing identify features in images that are relevant

to estimating the structure and properties of objects in a scene. Edges are one such

feature. Edges are significant local changes in the image and are important features for

analyzing images. Edges typically occur on the boundary between two different regions

In an Image. Edge detection is frequently the first step in recovering information from

Images.

An edge in an image is a significant local change in the image intensity, usually

associated with a discontinuity in either the image intensity or the first derivative of the

image intensity. Discontinuities in the image intensity can be either (1) step

discontinuities, where the image intensity abruptly changes from one value on one side

of the discontinuity to a different value on the opposite side, or (2) line discontinuities,

where the image intensity abruptly changes value but then returns to the starting value

within some short distance. However, step and line edges are rare in real images.

Because of low-frequency components or the smoothing introduced by most sensing

devices, sharp discontinuities rarely exist in real signals. Step edges become ramp edges

and line edges become roof edges, where intensity changes are not instantaneous but

occur over a finite distance. Illustration of these edge profiles are shown in Figure 5-1.
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It is also possible for an edge to have both step and line characteristics. For

example, a surface that changes orientation from one flat surface to another will produce

a step edge; but if the surface has a specular component of reflectance and if the surface

corner is rounded, there can be highlight due to the specular component as the surface

orientation of the rounded corner passes the precise angle for specular reflection. The

edge profile generated by such a situation looks like a step edge with a superimposed

line edge. There also edges associated with changes in the first derivative of the image

intensity. For example, mutual reflection from the sides of a concave corner generate

roof edges. Edges are important image features since they may correspond to significant

features of objects in the scene. For example, the boundary of an object usually

produces step edges because the image intensity of the object is different from the image

intensity of the background.

The profile of an ideal step edges are displayed in Figure 5-2. By definition, an

edge is a significant local change in the image intensity. The plot shows step changes in

image intensity that are edges because the changes are significant and local. The plot

also shows changes that are not edges, because they violate part of the definition. The

changes due to noise are not edges even though the changes are local, because the

changes are not significant. The changes due to shading, such as the ramp on the right

side of the plot, are not edges even though the changes are significant, because the



changes are not local. Real images are very noisy. It is difficult to develop an edge

detection operator that reliably finds step edges and immune to noise.

The coordinates of an edge point may be the integer row and column indices of

the pixel where the edges was detected, or the coordinates of the edge location at

subpixel resolution. The edge coordinates may be in the coordinate system of the

original image, but more likely are in the coordinate system of the image produced by the

edge detection filter since filtering may translate or scale imaging. An edge fragment

may be conceptualized as a small line segment about the size of a pixel, or as a point with

an orientation attribute. The term edge is commonly used for either edge points or edge

fragments.

(b)

Figure 5-2 (a) The top half of the connecting rod image. (b) The profile of an ideal step

change in image intensity is plotted to show that the edges are not perfectly sharp and the

image is corrupted by noise. The plot is horizontal slice through the circular portion of the

The edge set produced by an edge detector has been partitioned into two subset

by Jain et al. (Jain et aI., 1995): correct edges, which correspond to edges in the scene,

and false edges, which not correspond to edges in the scene. A third set of edges can be

defined as those edges in the scene that should have been detected. This is the set of

70



missing edges. The false edges are called false positives, and the missing edges are,
called false negatives.

The difference between edge linking and edge following is that edge linking takes

as input and unordered set of edges produced by an edge detector and forms an ordered

list of edges. Edge following takes as input an image and produces an ordered list of

edges. Edge detection uses local information to decide if a pixel is an edge, while edge

following can use global information.

Edge detection is essentially the operation of detecting significant local changes

in an image. In one dimension, a step edge is associated with a local peak in the first

derivative. The gradient is a measure of change in a function, and image can be

considered to be an array of samples of some continuous function of image intensity. By

analogy, significant changes in the gray values in an image can be detected by using a

discrete approximation to the gradient. The gradient is the two-dimensional equivalent

of the derivative and is defined as the vector

G[f(x,y)] points in the direction of the maximum rate of increase of the function

f(x,y) , and (2) the magnitude of the gradient, given by

G['f(x,y)] = ~G.~+ G~

equals the maximum rate of increase of f( x, y) per unit distance in the direction G. It is

common practice, however, to approximate the gradient magnitude by absolute values:



·( 1
a(x,y) = tan-Il~:j

where the angle a is measured with respect to the x axis.

Note that the magnitude of the gradient is actually independent of the direction of the

edge. Such operators are called isotropic operators.

For digital images, the derivatives in Equation 5-1 are approximated by

differences. The simplest gradient approximation is

Remember that j corresponds to the x direction and i to the negative y direction. These

can be implemented with simple convolution masks as shown below:

When computing an approximation to the gradient, it is critical that the x and y

partial derivatives be computed at exactly the same position in space. However, using the

above approximations, G is actually the approximation to the gradient at the interpolated

point [i,j + -] and G, at [i + y, j] . For this reason, 2 x 2 first differences, rather than 2 x

1 and 1 x 2 masks, are often used for the x and y partial derivatives:

Now, the positions about which the gradients in the x and y directions are calculated are

the same. This point lies between all four pixels in the 2 x 2 neighborhood at the

interpolated point [i + 1/ 2,j + 1/ 2] . This fact may lead to some confusion. Therefore,

an alternative approach is to use a 3 x 3 neighborhood and calculate the gradient about

the center pixel.



Algorithms for edge detection contain three steps:

Filtering: Since gradient computation based on intensity values of only two points

are susceptible to noise and other vagaries in discrete computations, filtering is

commonly used to improve the performance of an edge detector with respect to

noise. However, there is a trade-off between edge strength and noise reduction.

More filtering to reduce noise results in a loss of edge strength.

Enhancement: In order to facilitate the detection of edges, it is essential to

determine changes in intensity in the neighborhood of a point. Enhancement

emphasizes pixels where there is a significant change in local intensity values and is

usually performed by computing the gradient magnitude.

Detection: We only want points with strong edge content. However, many points

in an image have a nonzero value for the gradient. and not all of these points are

edges for a particular application. Therefore, some method should be used to

determine which points are edge points. Frequently, thresholding provides the

criterion used for detection.

Many edge detection algorithms include a fourth step:

Localization: The location of the edge can be estimated with subpixel resolution if

required for the application. The edge orientation can also be estimated.

It is important to note that detection merely indicates that, an edge is present near a

pixel in an image, but does not necessarily provide an accurate estimate of edge location

or orientation. The errors in edge detection are errors of misclassification: false edges

and missing edges. The errors in edge estimation are modeled by probability distributions

for the location and orientation estimates. We distinguish between edge detection and

estimation because these steps are performed by different calculations and have different

error models.

Many edge detectors have been developed in the last two decades. Here we will

discuss some commonly used edge detectors. As will be clear, edge detectors differ in

use of the computational approach in one or more of the above three steps.



The Roberts cross operator provides a simple approximation to the gradient

magnitude:

As with the previous 2 x 2 gradient, operator, the differences are, computed at,

the interpolated point [i + 1/ 2,j + 1/2]. The Roberts operator is an approximation to

the continuous gradient at that point and not at, the point [i, j] as might the, expected.

As mentioned previously, a way to avoid having the gradient calculated about an

interpolated point between pixels is to use a 3 x 3 neighborhood for the gradient

calculations. Consider the arrangement of pixels about the pixel [i, j] shown in

Figure 5-3. The Sobel operator is the magnitude of the gradient computed by

Sx = (az +ca3 +aJ -(ao +ca7 +a6)

Sy =(ao+ca, +GZ)-(a6+caS+aJ

(5-14)

(5-15)

with the constant c=2.

Like the other gradient operators, s. and Sy can be implemented usmg



1-1 0 Il
Sx = Il-20 2JI

-1 0 1

11 2 Il
I 0 0 0 I

Sy =l J
-1 -2 -1

Note that this operator places an emphasis on pixels that are closer to the center

of the mask. The Sobel operator is one of the most commonly used edge detector.

Hence, it can be found so many issues in literature about this operator. Picton (Picton,

1984) has studied on this subject, to be optimized the operator, can be given as an

example to emphasize its popularity.

the constant c = 1. Therefore:

1-1 0 Il I1 1 1 l
I 0 1 I I 0 o I (5-17)

S =l-l S =l 0x

1J
y

-lJ-1 0 -1 -1

Note that, unlike the Sobel operator, this operator does not place any emphasis

on pixels that are closer to the center of the masks.

The edge detectors discussed earlier computed the first derivative and, if it was

above a threshold, the presence of an edge point was assumed. This results in detection

of too many edge points. (Notice the thick lines after thresholding in Figures 5-4 to 5-7.)

A better approach would be to find only the points that have local maxima in gradient

values and consider them edge points, as shown in Figure 5-8. This means that at edge

points, there will be a peak in the first derivative and, equivalently, there will bea zero



crossing in the second derivative. Thus, edge points may be detected by finding the zero

crossings of the second derivative of the image intensity.

There are two operators in two dimensions that correspond to the second

derivative: the Laplacian and second directional derivative.

The second derivative of a smoothed step edge is a function that crosses zero at

the location of the edge (see Figure 5-8). The Laplacian is the two-dimensional

equivalent of the second derivative. The formula for the Laplacian of a functionf (x, y) is

with the constant c = 2.

{}2f {}2f

\l2f = at> + 0>
The second derivatives along the x and y directions are approximated uSing

(}2 f GG
x-----ce - ax:

{}(f[i,) + 1) - f[i,}])
= ax:

if[i,} + 1]
= 8:

= (f[i,) + 2)-- f[i,} + 1]) - (I[i,) + 1] - f[i,}])

= f[i,} + 2] - 2f[i,}] + f[i,}]

(5-22)

(5-23)

However, this approximation is centered about the pixel [i,} + 1]. Therefore, by

replacing} with} - 1, we obtain

{}2f
{}> = f[i,} + 1] - 2f[i,}] + f[i,} -1]
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Figure 5-4 A comparison o/various edge detectors. (a) Original image. (b) Filtered image

(c) Simple gradient using J x 2 and 2 x J masks, 1'=32. (d) Gradient using 2 x 2 masks, 1'=64.

(e) Roberts cross operator, 1'=64. (f) Sobel operator, 1'=225. (g) Prewitt operator, 1'=225.



Figure 5-5 A comparison o.fvarious edge detectors without filtering. (a) Original image

(b) Filtered image (c) Simple gradient using J x 2 and 2 x J masks, T=32. (d) Gradient using

2 x 2 masks, T=64. (e) Roberts cross operator, T=64. (f) Sobel operator, T=225. (g)

Prewitt operator, T=225.



Figure 5-6 A comparison o/various edge detectors on a noisy image. (a) Original image

(b) Filtered image (c) Simple gradient using J x 2 and 2 x J masks. T=32. (d) Gradient using 2 x 2

masks. T=64. (e) Roberts cross operator. T=64. (f) Sobel operator. T=225. (g) Prewitt operator.

T=225.



Figure 5-7 A comparison o/various edge detectors on a noisy image without filtering. (a) Original

image (b) Filtered image (c) Simple gradient using I x 2 and 2 x I masks, T=32. (d) Gradient using 2

x 2 masks, T=64. (e) Roberts cross operator, T=64.(f) Sobel operator, T=225. (g) Prewitt operator,

T=225.



f(x,y)

x

f(x,y) threshold

x
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a b

x

Figure 5-8: If a threshold is used jor detection of edges, all points between a and b will be

marked as edge pixels. However, by removing points that are not a local maximum in the/irst

derivative, edges can be detected more accurate~y. This local maximum in thefirst derivative

corresponds to a zero crossing in the second derivative.

which is the desired approximation to the second partial derivative centered about [i, j].

Similarly,

By combining these two equations into a single operator, the following mask can

be used to approximate the Laplacian:

Sometimes it is desired to gIve more weight to the center pixels In the

neighborhood. An approximation to the Laplacian which does this is

4 II
-20 41

4 IJ



The Laplacian operator signals the presence of an edge when the output of the

operator makes a transition through zero. Trivial zeros (uniform zero regions) are

ignored. In principle, the zero crossing location can be estimated to subpixel resolution

using linear interpolation. but the result may be inaccurate due to noise.

Consider the example shown in Figure 5-9. This figure shows the result of the

Laplacian on an image with a. simple step edge. A single row of the resulting image is:

[0 0 0 6 -6 0 0 ~

In this example, the zero crossing, corresponding to the edge in the original

image, lies halfway between the two center pixels. The edge should be marked at either

the pixel to the left, or the pixel to the right of the edge, as long as it is marked

consistently throughout the image. In most, cases, however, the zero crossing rarely lies

exactly between two pixels, and the actual edge

12 2 2 2 2 8 8 8 8 8l
12 2 2 2 2 8 8 8 8 81I
12 2 2 2 2 8 8 8 8 81
12 2 2 2 2 8 8 8 8 81
I 1

1
2 2 2 2 2 8 8 8 8 81
L2 2 2 2 2 8 8 8 8 8J

A sample image containing a vertical step edge

10 0 0 6 -6 0 0 ol
'0 0 0 6 -6 0 0 01
I I
10 0 0 6 -6 0 0 01
Lo 0 0 6 -6 0 0 oj

crossmg.

Now consider the example in Figure 5-10. This figure shows the response of the

Laplacian to a ramp edge. A single row of the output of the Laplacian is

[0 0 0 3 0 - 3 0 0]



The zero crossing directly corresponds to a pixel in the image. Again, this is an

ideal situation, and the actual edge location should be determined by interpolation.

The second directional derivative is the second derivative computed In the

direction of the gradient. The operator is implemented using the formula

82 fx2 f xx + 2fxfyf xy + fy2 f yy
(5-28)0112 - [2 + [2

. x . y
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1 1
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12 2 2 2 2 5 8 8 8 81
I 1

1
2 2 2 2 2 5 8 8 8 81
L2 2 2 2 2 5 8 8 8 8J

A sample image containing a vertical ramp edge.

10 0 0 3 0 -3 0 ol

\0 0 0 3 0 -3 0 01

1
10 0 0 3 0 -3 0 01
lo 0 0 3 0 -3 0 oj

The Laplacian and second directional derivative operators are not used frequently

in machine vision since any operator involving two derivatives is affected ..by noise more

than an operator involving a single derivative. Even very small local peaks in the first

derivative will result in zero crossings in the second derivative. To avoid the effect of

noise, powerful filtering methods must be used. In the following section, we discuss an

approach which combines Gaussian filtering with the second derivative for edge

detection.



As mentioned above, edge points detected by finding the zero crossings of the

second derivative of the image intensity are very sensitive to noise. Therefore, it is

desirable to filter out the noise before edge enhancement. To do this, the Laplacian of

Gaussian (LoG) combines Gaussian filtering with the Laplacian for edge detection.

The fundamental characteristics of the Laplacian of Gaussian edge detector are

1. The smoothing filter is a Gaussian.

2. The enhancement step is the second derivative (Laplacian in two dimensions).

3. The detection criterion is the presence of a zero crossing in the second derivative

with a corresponding large peak in the first derivative.

4. The edge location can be estimated with subpixel resolution usmg linear

interpolation.

In this approach, an image should first be convoluted with a Gaussian filter. This

step smoothes an image and reduces noise. Isolated noise points and small structures will

be filtered out. Since the smoothing will result in spreading of edges, the edge detector

considers as edges only those pixels that have locally maximum gradient. This is achieved

by using zero crossings of the second derivative. The Laplacian is used as the

approximation of the second derivative in 2-D because it is an isotropic operator. To

avoid detection of insignificant edges, only the zero crossings whose corresponding first

derivative is above some threshold are selected as edge points.

The output of the LoG operator, h(xy),is obtained by the convolution operation

(
2 2_2 '2J (x2

+y2)
2 ( ) x +y (J 7 2V g x,y = . 4 .e 20"

(J

IS commonly called the Mexican hat operator (shown m Figure 5-11). Thus, the

following two methods are mathematically equivalent:



1. Convolute the image with a Gaussian smoothing filter and compute the

Laplacian of the result.

2. Convolute the image with the linear filter that is the Laplacian of the

Gaussian filter.
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Figure

5-13 shows the result of applying the Laplacian of Gaussian operator and detection of

zero crossmgs. For a discussion on efficient methods to implement the Laplacian of

Gaussian.

Filtering (usually smoothing), enhancement, and detection were the three steps in

edge detection. This is still true for edge detection using the Laplacian of Gaussian.

Smoothing is performed with a Gaussian filter, enhancement is done by transforming

edges into zero crossings, and detection is done by detecting the zero crossings.

It can be shown that the slope of the zero crossing depends on the contrast of the

change in image intensity across the edge. The problem of combining edges obtained by

applying different-size operators to images remains. In the above approach, edges at a

particular resolution are obtained. To obtain real edges in an image, it may be necessary

to combine information from operators at several filter sizes.
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17 x 17 Laplacian of Gaussian mask

0 0 0 0 0 0 -1 -1 -I -I -I 0 0 0 0 0 0
0 0 0 0 -1 -1 -I -I -I -I -I -I -I 0 0 0 0
0 0 -1 -1 -1 -2 -3 -3 -3 -3 -3 -2 -1 -I -I 0 0
0 0 -1 -1 -2 -3 -3 -3 -3 -3 -3 -3 -2 -I -1 0 0
0 -1 -1 -2 -3 -3 -3 -2 -3 -2 -3 -3 -3 -2 -1 -1 0
0 -1 -2 -3 -3 -3 0 2 4 2 0 -3 -3 -3 -2 -1 0
-1 -1 -3 -3 -3 0 4 10 12 10 4 0 -3 -3 -3 -I -I
-1 -1 -3 -3 -2 2 10 18 21 18 10 2 -2 -3 -3 -1 -1
-1 -1 -3 -3 -3 4 12 21 24 21 12 4 -3 -3 -3 -1 -1
-1 -1 -3 -3 -2 2 10 18 21 18 10 2 -2 -3 -3 -1 -1
-1 -1 -3 -3 -3 0 4 10 12 10 4 0 -3 -3 -3 -1 -1
0 -1 -1 -3 -3 -3 0 2 4 2 0 -3 -3 -3 -2 -1 0
0 -1 -1 -2 -3 -3 -3 -2 -3 -2 -3 -3 -3 -2 -] -] 0
0 0 -] -1 -2 -3 -3 -3 -3 -3 -3 -3 -2 -1 -] 0 0
0 0 0 0 -1 -1 -1 -] -] -1 -1 -1 -1 0 0 0 0
0 0 0 0 0 0 -] -1 -1 -1 -] 0 0 0 0 0 0

Figure 5-12: Some useful Laplacian of Gauss inan masks



The essential idea in detecting step edges is to find points in the sampled image

that have locally large gradient magnitudes. Much of the research work in step edge

detection is devoted to finding numerical approximations to the gradient that are suitable

for use with real images. The step edges in real images are not perfectly sharp since the

edges are smoothed by the low-pass filtering inherent in the optics of the camera lens and

the bandwidth limitations in the camera electronics. The images are also severely

corrupted by noise from the camera and unwanted detail in the scene. An approximation

to the image gradient must be able to satisfY two conflicting requirements: (1) the

approximation must suppress the effects of noise, and (2) the approximation must locate

the edge as accurately as possible. There is a trade-off between noise suppression and

localization. An edge detection operator can reduce noise by smoothing the image, but

this will add uncertainty to the location of the edge; or the operator can have greater

sensitivity to the presence of edges, but this will increase the sensitivity of the operator to

noise. The type of linear operator that provides the best compromise between noise

immunity and localization, while retaining the advantages of Gaussian filtering, is the first

derivative of a Gaussian. This operator corresponds to smoothing an image with a

Gaussian function and then computing the gradient. The gradient can be numerically

approximated by using the standard finite-difference approximation for the first partial

derivatives in the z and y directions. The operator that is the combination of a Gaussian

smoothing filter and a gradient approximation is not rotationally symmetric. The operator

is symmetric along the edge and anti symmetric perpendicular to the edge (along the line

of the gradient). This means that the operator is sensitive to the edge in the direction of

steepest change, but is insensitive to the edge and acts as a smoothing operator in the

direction along the edge.

The Canny edge detector is the first derivative of a Gaussian and closely

approximates the operator that optimizes the product of signal-to-noise ratio and



localization. The Canny edge detection algorithm is summarized by the following

notation. Let l[i, )] denote the image. The result from convoluting the image with a

Gaussian smoothing filter using separable filtering is an array of smoothed data,

Sri,)] = G[i,);o}l[i,j]

where CY is the spread of the Gaussian and controls the degree of smoothing.

The gradient of the smoothed array S [I, )] can be computed using the 2 x 2 first-

difference approximations to produce two arrays P[i,)] and Q[i,)] for the x and y partial

derivatives:

p[ i, )] ~ (S[i, j + 1]- S[i, )] + S[i + 1,) + 1]- S[i + 1,)]) / 2

Q[i,)] ~ (S[i, j] - Sri + 1,)] + S[i,) + 1]- Sri + 1,j + 1]) /2

(5-33)

(5-34)

The finite differences are averaged over the 2 x 2 square so that the x and y

partial derivatives are computed at the same point in the image. The magnitude and

orientation of the gradient can be computed from the standard formulas for rectangular-

to-polar conversion:

M[i,)] = ~P[i,)] 2 + Q[i ,)] 2

e[i,)] = arctan(Q[i,j], P[i,)]),

(5-35)

(5-36)

where the arctan function takes two arguments and generates an angle over the entire

circle of possible directions listed in algorithm 5.1. These functions must be computed

efficiently, preferably without using floating-point arithmetic. It is possible to compute

the gradient magnitude and orientation from the partial derivatives by table lookup. The

arctangent can be computed using mostly fixed-point arithmetic with a few essential

floating-point calculations performed in software using integer and fixed-point

arithmetic.

The magnitude image array M[i, )] will have large values where the image

gradient is large, but this is not sufficient to identify the edges, since the problem of

finding locations in the image array where there is rapid change has merely been

transformed into the problem of finding locations in the magnitude array M[i, j] that are

local maxima. To identify edges, the broad ridges in the magnitude array must be thinned



so that only the magnitudes at the points of greatest local change remain. This process is

called nonmaxima suppression, which in this case results in thinned edges.

Nonmaxima suppression thins the ridges of gradient magnitude in M [i, j] by

suppressing all values along the line of the gradient that are not peak values of a ridge.

The algorithm begins by reducing the angle of the gradient e [i, j] to one of the four

sectors shown in Figure 5-14,

The algorithm passes a 3 x 3 neighborhood across the magnitude array M [i, j], At each

point, the center element M[i, j] of the neighborhood is compared with its two neighbors

along the line of the gradient given by the sector value ~ [i, j] at the center of the

neighborhood. If the magnitude array value M[i, j] at the center is not greater than both

of the neighbor magnitudes along the gradient line, then M [i, j] is set to zero. This

process thins the broad ridges of gradient magnitude in M [i, j] into ridges that are only

one pixel wide. The values for the height of the ridge are retained in the nonmaxima-

suppressed magnitude. Let

denotes that the process of nonmaxima suppression. The nonzero values in N[i, j]

correspond to the amount of contrast at a step change in the image intensity. In spite of

the smoothing performed as the first step in edge detection, the nonmaxima-suppressed

magnitude image N[i, j] will contain many false edge fragments caused by noise and fine

texture. The contrast of the false edge fragments is small.
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Figure 5-14: The partition of the possible gradient orientations into sectors for nonmaxima

suppresion is shown. There are four sectors, numbered 0 to 3, corresponding to the four

possible combinations of elements in a 3 x 3 neighborhood that a line must pass through as it

passes through the center of the neighborhood. The divisions of the circle ofpossible gradient

line orientations are labeled in degrees.

The typical procedure used to reduce the number of false edge fragments in the

nonmaxima-suppressed gradient magnitude is to apply a threshold to N[i, j]. All values

below the threshold are changed to zero. The result of applying a threshold to the

nonmaxima-suppressed magnitude is an array of the edges detected in the image l[i, j].

There will still be some false edges because the threshold , was too low (false

positives), and portions of actual contours may be missing (false negatives) due to

softening of the edge contrast by shadows or because the threshold , was too high.

Selecting the proper threshold is difficult and involves some trial and error. A more

effective thresholding scheme uses two thresholds.

The double thresholding algorithm takes the nonmaxima-suppressed image, N[i,

j], and applies two thresholds '1 and l"2 with, '2 ~ 2'1 to produce two thresholded

edge images 1; [i, j] and 1; [i, j]. Since image 1; was formed with a higher threshold, it

will contain fewer false edges; but 1; may have gaps in the contours (too many false

negatives). The double thresholding algorithm links the edges in 1; into contours. When

it reaches the end of a contour, the algorithm looks in 1; at the locations of the 8-

neighbors for edges that can be linked to the contour. The algorithm continues to gather

edges from 1; until the gap has been bridged to an edge in 1;. The algorithm performs

90



edge linking as a by-product of thresholding and resolves some of the problems with

choosing a threshold. The Canny edge detection algorithm is outlined in Algorithm 5.1.

J. Smooth the image with a Gaussian filter.

2. Compute the gradient magnitude and orientation using finite-difference

approximations for the partial derivatives.

3. Apply nonmaxima suppression to the gradient magnitude.

4. Use the double thresholding algorithm to detect and link edges.



In medical environment, the x-ray images are very much helpful to the physician in

the process of diagnosis and medical treatment. Although it provides to detect human

body's invisible parts, blurring and uneven illumination is always occurs. This problem is

partially solved by the physicians by lighting the x-rays. Generally, this method is working

properly except some cases such as Vesico Ureteral Reflux disease. This may cause loss of

some meaningful part of information and failure in diagnosis process. In order to avoid

decrease such errors, some computational methods has been developed by means of image

processing. Due to its importance, reconstruction of vesicle ureteral reflux disease x-ray

images has been chosen as an object of this study.

For analyzing the problem properly, about the disease discussed above, a brief

description of it must be done. Aktug (Aktug, 1995) has briefly described the disease as:

The vesica ureteral reflux is the declining of the complex vesicle ureteral valve mechanism

which lets the urine enter into the bladder but it stops the urine go backwards.

Malfunctioning of vesico ureteral reflux system causes some deformations on

calyxes which are the parts of kidney and located inside of it. The disease appears as shape

changing on calyxes. Level of changing is related with grade of the disease. This can be

seen clearly in Figure 6-2 which has been taken from King's (King, 1994) study. In

Figure 6-1 the cross section of kidney is shown.
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The object of the study is reconstruction of vesico ureteral reflux disease x-ray

images as mentioned above. In medical environment, disease is detected from x-rays which

is produced from human's body using the technique voiding cystography. In order to

process this materials x-rays must be digitized. Digitizing by using conventional scanners

performance is not sufficient because of low of illumination level. Adding some external

light sources has solved the problem. Figure 6-3 is illustrating this process.



The processed x-rays 10 the study are supported by Dokuz Eylul University ,

Faculty of Medicine, Pediatric Surgery Department. In Figure 6-4, it is shown that the

digitized form of X-rays.



All the digitized images are shown above has 8-bit depth. In other words, all of

them are one of the combination of 256 different gray levels. Therefore, all of procedures

that will be explained below has been performed 8-bit based image processing.

At the beginning of this chapter, we have discussed the difficulties of processing of

medical images. As it is mentioned before, this is caused by uneven illuminations. In this

section, some image reconstruction techniques for preparing images for further stages are

explained.

There has not been only four different stages in preprocessing of medical images,

but also all stages use output of previous stage as input. It consists of histogram

modification, contrast stretching, exponential filtering, and thresholding.

In an image processmg context, the histogram of an image normally refers to a

histogram of the pixel intensity values. This histogram is a graph showing the number of

pixels in an image at each different intensity value found in that image. For an 8-bit

greyscale image there are 256 different possible intensities, and so the histogram will

95
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Histograms have many uses and contain meaningful information. One of most

common is what values are mostly being in image. We have seen that images must have

two or three different significant points to process properly. Those points are significant

because all of them have a particular information. For example, the point that is next to the

intensity value "0", most cases point the background. Similarly, the other(s) indicates the

foreground. This was our expectation at the starting point of the study, but it was not. Our

researches show us that many of images we have worked on have more than three peaks on

their histograms as shown in Figure 6-5.a. Another point that we have detected is the

distance between intensity values that refer background is not closed to foreground intensity

values. Under the light of this information, we have decided to shift all pixel values with

adding a constant value. Let us assume that all pixel values are the result of an exact

function f (x) and g(x) denotes that their converted values. The relation between f (x) and

g(x) is shown in (6-1).

Os f(x) s 255

Os g(x) s 255

Oscs255



· As shown in Figure 6-5.b, shifting operation not only reduces peak number, also

makes an artificial edge point next to intensity value "255." The shifting constant c is

determined from by using mean intensity value of the image. Because of this, sometimes its

value is very close to zero and, sometimes it could be 100 or higher.

In our study, histogram modification is not enough for preparing images to further

stages generally. However, this does not mean it is not necessary. Quantizing (Teuber,

1989) is one of the method that we have utilized for enrichment of images. Although it is

applicable some cases, the results that it has produced is not sufficient in our study. Another

comprised operator of the process is called contrast stretching, and can be recognized as an

additional step for obtaining the best results. As it is mentioned below, the contrast

stretching (often called normalization) operator was used in our study to improve the

contrast values of some of modificated images.

Contrast stretching is a simple image enhancement technique that attempts to

improve the contrast in an image by 'stretching' the range of intensity values it contains to

span a desired range of values, e.g. the full range of pixel values that the image type

concerned allows. It differs from the more sophisticated histogram equalization in that it can

only apply a linear scaling function to the image pixel values. As a result the 'enhancement'

is less harsh. (Most implementations accept a greylevel image as input and produce another

graylevel image as output.)



Before the stretching can be performed it is necessary to specify the upper and lower

pixel value limits over which the image is to be normalized. Often these limits will just be

the minimum and maximum pixel values that the image type concerned allows. For example

for 8-bit graylevel images the lower and upper limits might be 0 and 255. Call the lower and

the upper limits a and b respectively.

The simplest sort of normalization then scans the image to find the lowest and

highest pixel values currently present in the image. Call these c and d. Then each pixel P is

scaled using the following function:

(b -a)POIII = (P;n - c) d _ c + a

The problem with this is that a single outlying pixel with either a very high or very

low value can severely affect the value of c or d and this could lead to very unrepresentative

scaling. Therefore a more robust approach is to first take a histogram of the image, and then

select c and d at, say, the 5th and 95th percentile in the histogram (that is, 5% of the pixel in

the histogram will have values lower than c, and 5% of the pixels will have values higher

than d). This prevents outliers affecting the scaling so much.

Another common technique for dealing with outliers is to use the intensity histogram

to find the most popular intensity level in an image (i.e. the histogram peak) and then define

a cutoff fraction which is the minimum fraction of this peak magnitude below which data

will be ignored. In other words, all intensity levels with histogram counts below this cutoff

fraction will be discarded (driven to intensity value 0) and the remaining range of intensities

will be expanded to fill out the full range of the image type under consideration.

Some implementations also work with color images. In this case all the channels will

be stretched using the same offset and scaling in order to preserve the correct color ratios.

Normalization is commonly used to improve the contrast in an image without

distorting relative graylevel intensities too significantly.

We begin by considering an image which has histogram below



which can easily be enhanced by the most simple of contrast stretching implementations

because the intensity histogram forms a tight, narrow cluster between the graylevel intensity

values of 0 - 255 . After contrast stretching, using a simple linear interpolation between

c = 0 and d = 255, we obtain

While this result is a significant improvement over the original, the enhanced image itself

still appears somewhat flat. Histogram equalizing the image increases contrast dramatically,

but yields an artificial-looking result.

We can achieve better results by contrast stretching the image over a more narrow

range of graylevel values from the original image. This operation has effectively spread out

the information contained in the original histogram peak (thus improving contrast in the

interesting face regions) by pushing those intensity levels to the left of the peak down the

histogram x-axis towards O.

The minimum and maximum values in 8-bit images are 0 and 255 respectively, and

so straightforward normalization to the range 0 - 255 produces absolutely no effect.

However, we can enhance the picture by ignoring all pixel values outside the 1% and 99%

percentiles, and only applying contrast stretching to those pixels in between. The outliers

are simply forced to either 0 or 255 depending upon which side of the range they lie on.



Normalization can also be used when converting from one image type to another,

for instance from floating point pixel values to 8-bit integer pixel values. As an example the

pixel values in the floating point image might run from 0 to 5000. Normalizing this range to

0-255 allows easy conversion to 8-bit integers. Obviously some information might be lost in

the compression process, but the relative intensities of the pixels will be preserved.

Stretched values of the image has been used as input to exponential operator during the

overall operation.

Although all the operations explained above are used m study to improve the

images, it is a common problem that increasing the number of intensity levels in an image

makes harder segmentation process. In our case, it shows that only two regions is sufficient

to represent original image without any loss. Another word, it is enable to reconstruct

kidney's image with two different graylevel. Although it is not common rule for all medical

images, it seems to be an applicable way to solve our problem. In the process of our study

we have implemented so many well-known Image converting algorithms such as

thresholding, linear and nonlinear operators. The results show us that the most

appropriate approach to change the type of images is exponential operator.

The exponential and 'raise to power' operators are two anamorphosis operators

which can be applied to grayscale images. Like the logarithmic transform, they are used to

change the dynamic range of an image. However, in contrast to the logarithmic operator,

they enhance high intensity pixel values.

The exponential operator is a point process where the mappmg function is an

exponential curve. This means that each pixel intensity value in the output image is equal to

a basis value raised to the value of the corresponding pixel value in the input image. Which

basis number is used depends on the desired degree of compression of the dynamic range. In

order to enhance the visibility of a normal photograph, values just above 1 are suitable. For

display, the image must be scaled such that the maximum value becomes 255 (assuming an

8-bit display). The resulting image is given by Perkins and Fisher {Perkins and Fisher, 1996)

as



where P and Q are the input and output images, respectively, b is the basis and c is the

scaling factor. As we can see from the formula, Q = 0 yields P = c. To avoid the resulting

offset, many implementations subtract 1 from the exponential term before the scaling.

Hence, Perkins and Fisher have iterated equation (6-3) to get the following formula:

Q(i,j) = C.(bP(i.j) -1)

100 150
P(iJ)

We can see from the figure that the curvature of the base 10 exponential function is

far too high to enhance the visibility of normal image. We can control the curvature of the

mapping function either by choosing the appropriate basis or by scaling down the image

prior to applying the exponential operator. This is because, over a low range of input

values, an exponential function with a high basis has the same shape as an exponential

function with smaller basis over a larger range of input values.

In the case of the' raise to the power' operator, the pixel intensity values in the input

image act as the basis which is raised to a (fixed) power. The operator is defined by the

following formula:



Q(i,j) = c. P(i,jY .

If r > 1, the' raise to power' operator is similar to the exponential operator in the sense that

it increases the bandwidth of the high intensity values at the cost of the low pixel values.

However, if r < 1, the process enhances the low intensity value while decreasing the

bandwidth of the high intensity values. This is similar to the effect achieved with the

logarithmic transform.

Examples for r = 0.5, r=2 and r=6 can be seen in Figure 6-9 .
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Figure 6-9 Jvfapping function of 'raise to power' operator for r=O.5 (dashed line), r = 2 (solid line) and

r=6 (dotted line).

The exponential operator is the dual of the logarithmic transform. Hence, one

application of the exponential operator is to undo changes originating from the logarithmic

operator. In this case, the basis for the exponential operator should be the same as it was for

the logarithmic transform. The reason for this is summarized in the equation below:



where P is the original image, QI is the image after the logarithmic transform and Q2 is the

final result.

Like the logarithmic operator, the exponential and 'raise to power' operators might

be used to compress the dynamic range or generally enhance the visibility of an image.

Because they can be used to enlarge the range of high intensity pixel values relative to the

range of the low intensity values, these operators are suitable for enhancement of images

containing details represented by a rather narrow range of high intensity pixel values.

It can easily seen that the contrast in the high pixel values has been increased at the

cost of the contrast in the low pixel values. We can see that both exponential and 'raise to

power' operator perform similarly at this (rather low) rate of compression. One difference,

however, is that the' raise to power' operator does not depend on the scale of the image.

The exponential operator, on the other hand, compresses the dynamic range more if the

image contains pixels with very high intensity values (e.g. an image in floating point format

with high pixel intensity values).

The operators above have been used by Aka et aI. (Aka et aI., 1996) and image

produced by using exponential operator and its previous state are shown in Figure 6-10.

Figure 6-10 (a) Original image, (b) where b= 2.718282, c=255 and

P(i,j) = (-l)[P(i,j) * P(i,j)/12058 ]



The point that we have reached shows us that it is not sufficient to use low level

algorithms , as we have implemented, without any complementary high level image

processing units. All stages that has been explained until now are performed so as to be a

basis for the further stages of the processing of medical images.

At the first look both low and high image processing concepts seems to be have the

same basis. The difference between them is their area of interest. In general, low level

image processing techniques are used for normalization, converting and etc. Rule based

segmentation, contour modeling and texture analysis can not be performed with it. At this

point, high level image processing methods makes enable to solve this kind of problems.

In the case of our study, although all the procedures we have implemented generates

two bit depth black and white images, the chest or the other part of the human body may

occurs in the scene and appears as a part of the kidney. It is clearly seen that there is an

exact segmentation problem which must be solved. In order to eliminate the segmentation

problems we have used advanced image processing techniques. In Figure 6-11 it is shown

that preprocessed kidney image.

The algorithm that we have developed which is shown below is explaining our

approach. This algorithm is also used in (Guzel et al. ,1996a). It has mainly two different

stages. First of all, the algorithm determines the boundaries of kidney and the last recreates

of it.



Background cancellation algorithm:

1. Find all edges of the M x N matrix A by using Laplace Edge Detector.

2. Create an another matrix B have an same dimensions ( M x N ) and assign

white color's numerical value to its all elements (pixels).

3. Select a point in the main image which is inside of disease part.

4. If the selected point is black then set pixel which is in the other matrix and

located at same coordinates, black.

S. Repeat step 4 recursIvely until no black pixel traced in the main image

The first step of algorithm is used for to determine the boundaries of different

regions located in current image. The result of applying first step to Figure 6-11 is shown

in Figure 6-12.
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Laplace Edge Detector
[A] x [Laplace]

Creation of M x N
Matrix B

\:.Ix E B; x = 255 (white)

Selection of starting point
from A

Assign pixel value as black
x E B;x = 0 (black)

1 (x,y) = A(xj+1 'Yj+l)

A2(x,y) = A(xj+I'Yj)

A3 (x,y) = A(xj'Y j+l)

A4 (x,y) = A(xj_1 'Yj+l)

A5(x,y) = A(xi+I'Yj_l)

A6 (x,y? = A(xj_1 'Yj_l)

A7(x,y) = A(xj 'Yj_l)

(x,y) = A(xi_l 'Yj)



The Figure 6-12 indicates that not only kidney region's boundaries are located, but

also two different regions and background noises. Instead of processing the same image,

it seems more feasible to create a new image (matrix) that have the same size and to paste

the releated area located in the main image onto new scene.

As it is illustrated in Figure 6-13, our approach has performed its tasks perfectly as

we expected. The product of using background cancellation algorithm can be seen in

Figure 6-14.

Our area of interest in medical image processing has so many different approaches.

Above all, we have focused on the part which covers retrieving corrupted data from x-ray

images and generating more clear ones.

Storing of huge amount of data is an another problem in our area. There are so

many proposed methods such as Discrete Cosine Transform, Discrete Fourier Transform ,

etc., which are now being used. These are both subdivisions of digital image compression.

Digital image compression handles every kind of image as an object with a consistent

invariant approach. This makes a very flexible environment for researchers much of cases.

Although its facilities, it has some trades off. The result of digital image compression

techniques always effect as an image, and every image has a header. This makes loss of

space on storage device. It is another disadvantage of using these approaches , always



some of the data is lost during the compression process. When we consider the problem

from our point of view, it is not very suitable to use digital image compression approach

for achieving the best results.

Every kidney image consists of nearly 120.000 pixels and a 1 Kb header (for

bitmaps). With a rough estimation, 121 Kb storage device space must be used for every

image. This means at least 250 Kb disk space is necessary for every patient. However,

in our case, the boundaries of kidney region are sufficient for diagnosis. In other words,

storing the boundaries instead of complete image has the same precision. Under the light

of this, we have assumed that if we detect and store the kidney's boundary coordinates on

both x and y axis, then we can easily reconstruct the same image whenever we want.

Although this was sufficient for our study, we have decided to develop a much more flexible

file format by ordering x and y coordinate couples in counter anti-clockwise direction with

the same information for further studies such as computer aided diagnosis systems. Giizel

et al. (Giizel et aI., 1997), have developed a system which classifies grades of VUR disease,

can be given as an example.

In order to perform the things above, we have developed an algorithm which has

two distinct parts, one of them is edge detection and the other is edge tracing. We have

used Laplace edge detection filter for obtaining the boundaries with one pixel width.

Although the part of this study will not be explained in this section in order to avoid the

repetition, the result of applying this process to Figure 6-14 can be seen in Figure 6-16.

The image produced by Laplace Edge Detector is traversed by a new tracing algorithm

which is also developed by ourselves. This method includes several steps which can be seen

above.

1. Trace the image contours in an ordered manner (anti-clockwise) and find the

first white pixel

2. Assign the black value to the found pixel (x[m], y [m] )

3. Search the 8 neighborhoods of the found pixel

4. Set the first found neighbor as an initial point and repeat 2 and 3 steps.

5. If no white pixel is left then stop the process.



(START)

Find first white pixel
and assign it as an initializing

point (x[m], y [m] )

Set A(x,y) new
initializing point

Set (x[m], Ylm] )=0,
write (x[m], y [m] ) to

pointer



We have experimented on several kidney images for testing the robustness of this
approach. Our experiments show us that although the algorithm has worked correctly, it has
some trades off. The most important thing at the initializing point so as to eliminate these
trades off, focused object's boundary edge points must be in the form of closed curve and
edges must be one pixel thickness. Otherwise, the algorithm does not work as it is expected.
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We have presented an integrated approach in retrieving, reconstructing and
storing kidney images achieved from noisy X-rays. We have begun by defining the
problem of extraction, then started to generate multi-step solutions. We have
experimented so many different approaches for every single step. In each experiment,
sometimes we have reached to a better solution and sometimes we have not. Thus, we
have exerted every effort to optimize the solution for each step. Although we have done
our best, as it is always faced in multi-functional systems, some of the steps have not
been compatible to the others. So, we have applied many different combinations of
these solutions to achieve a complete system. Although we have worked with limited
sample images, due to the problem of retrieving x-rays which is seen in our case, the
results show us that, all the samples that we have processed, could have been
reconstructed and stored as we have expected.

At the stage of thresholding, we have applied so many different algorithms.
Because of uneven illuminations occurred on the images, it has appealed that the
conventional threshold, which is one of the filter that we have used, is not appropriate
for our case. Adaptive thresholding is another method we have applied, although it has
generated more clear images, some of cases it has failed due to the smoothness located
at the edges. As we have mentioned before, we have obtained the best results with
using the exponential filters.

Another problem which must have been solved, is the thickness of edges during
the process of edge detection. There were several edge detection filters we have used to
obtain the best result, which means one pixel thickness edge point, in our case.
Although the Sobel operator is one of these and has generated edge points very clearly,
it has produced edges with two pixel of thickness. So it was not an appropriate
approach for us. We have also applied Laplacian of Gaussian second derivative edge
detection operator. Although it has performed its task perfectly, it has required so much
processing time due to its complexity. At last, we have focused on Laplace edge
detector, which is also a second derivative operator. The results that it has produced
were very similar to the Laplacian of Gaussian, but its performance time was nearly half
of that.

The other parts of the system has designed to perform their tasks according to
outputs of steps discussed. For example, developed edge tracing algorithm although
perform its task as it is expected, also has some trades off. As it is discussed at last
chapter, it uses the one-thickness pixels. This property of it sometimes makes tracing
hardener. Another way, it has a step approach which enables to find next boundary pixel
at the next of the current. If it is not, the algorithm recognizes that the process has been
completed. This property also has an inheritance of that the pixels located on the



boundary must be in the form of an closed curve. It is very important that the terms last
we have discussed at the point of system integrity. That is why we had always
mentioned that the all layers must be compatible.

A system which reconstructs X-ray images has been developed through this study.
The subject which has been focused on was the X-rays of vesicle ureteral reflux disease.
Storing X-ray data and patient data has been worked on although they were not the
focus points of this study. From this point of view, an object oriented multimedia
database can be developed to store and query these kinds of data. Such systems may
supply physicians with a data pool. This study also provides educational advantages. If
the designed database is opened to the Internet or intranet, millions of medical students
can have access to these data (in the course of this study it has been observed that
finding V.U.R. data is too difficult) and, they can improve their abilitY'of diagnosis on
this disease. What is more, detecting human face contours and profiles might be
another application area of this study, and this might contribute to plastic surgery
operations, too.
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In this part of the study, you will find ProVISION which is developed for
physicians by us to help them in their diag~osis process. OSFlMotif and C programming
languages have been used onto IBM AIX operating system during the development of
this project. It consists of medical imaging and patient registration tools. In Figure A-
1, it can be seen that the security frame of the application. It is for to protect the
patients data from unauthorized persons. It provides two-layered protection;
Application register no and password.



The main frame consists of five different pull-down menu item. File menu is used
for all file operations such as open, close, save and exit. Figure A- 2 shows the main
frame and file opening process. It must be noticed that this is an prototypye and can
only open and save bitmap formatted images. A sample view of an openned image can
be seen in Figure A-3.

It provides to end users two different way to reconstruct or to change their
images. They can use Image menu's different submenus which provides them freely
process their images or Generate Data menu's Process Image option.
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As we have pointed that, Pro VISION is not only an image reconstruction tool
but also has the registration facility. It stores two different information about every
image. The first one is stored for to rebuild handled image. This information is strored
as an text file includes x and y coordinates for every different image. The other is used
for to associate with the paitent's personel info and processed x-ray image. This is an
indexed file and includes all the patients personel data.
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