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ABSTRACT 
 

The optical and electronic properties of hydrogenated microcrystalline silicon 

films deposited by HWCVD method were investigated using steady state 

photoconductivity (SSPC), dual beam photoconductivity (DBP) and transmission 

spectroscopy methods to understand the effects of deposition conditions such as silane 

concentration and filament temperature on the low absorption coefficient spectrum, α 

(hν). The α (hν) spectrum obtained from the detailed optical calculation using the 

relative DBP and transmission spectra were compared with that independently 

measured on the same samples using photothermal deflection spectroscopy (PDS) and 

constant photocurrent method (CPM) techniques. The results were found to be in 

agreement with those of PDS and CPM at higher energy part of spectrum. On the other 

hand some differences exist among the spectra at lower energies. These differences 

were discussed to be consistent with underlying the physics of these methods.   

The effect of silane concentration on the sub-bandgap α (hν) spectrum was 

found to be substantial. At highest SC of 10% the α (hν) spectrum similar to that of a-Si: 

H is obtained. As SC decreases to 7%, microcrystalline phase becomes dominant. 

Further decrease of SC, the low energy α (hν) decreases and given a minimum around 

SC of 5%. For the lower SC’s, highly crystalline µc-Si: H films are obtained but the α 

(hν) values increases to higher values indicating an increase in the defect densities 

present in the microstructure.  

The effect of filament temperature was investigated for a constant SC of 10%. It 

was found that at 1700ºC and 1800ºC, fully amorphous films are obtained but 1800ºC 

results in higher α (hν) values at lower energies. At 1880ºC, microcrystalline phase 

becomes dominant and the α (hν) spectrum becomes similar to that of single crystal 

silicon.  

Finally, due to inhomogeneous microstructure of µc-Si: H, there are left fringes 

on calculated α (hν) spectrum on same samples. The degree of the inhomogeneity was 

investigated by front and back ac illumination of DBP measurements. It was found that 

there exists a substantial differences on the spectra measured on the same sample 

indicating importance of inhomogeneous film growth on optoelectronic measurements 

and its evaluation.  
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ÖZET 
 

HW-CVD methodu ile büyütülmüş mikrokristal silisyum filmlerin optik ve 

elektronik özellikleri durağan hal ışıl iletkenlik, iki demetli ışıl iletkenlik (DBP) methodları 

kullanılarak incelenmiş ve hazırlık koşullarının mikrokristal  silisyum fılmlerin düşük 

enerjilerdeki ışıl soğurma katsayısına etkileri anlaşılmaya çalışılmıştır. Girişim saçaksız ışıl 

soğurma katsayısı spektrumu iki demetli ışıl iletkenlik (DBP) kullanılarak elde edimiş ve 

elde edilen sonuçlar bağımsiz olarak ışıl ışın saptırma izgegözlem (PDS) ve sabit ışılakım 

(CPM) teknikleri kullanılarak elde edilen sonuçlarla karşılaştırılmıştır. PDS, CPM ve DBP 

methodlarından elde edilen soğurma spektrumun bant enerjisine kadar uyumlu olduğu 

gözlenmiş ve bant enerjisinin altında meydana gelen farklılıklar ise tekniklerin farklı  

fiziksel yapıya sahip oluşuyla açıklanmıştır. 

Silane konsantrasyonunun düşük enerji bölgesinde elde edilen soğurmaya 

önemli etkileri olduğu gözlenmiştir. Yüksek silane konsantrasyonunda elde edilen 

soğurma katsayısı spektrumunun a-Si:H fılmlerin sahip olduğu soğurma spektrumuna 

benzer olduğu ve silane konsantrasyonunun azalması ile malzemenin yapısında 

mikrokristal fazın baskın hale geldiği gözlenmiştir. Silane konsantrasyonunun daha 

fazla azaltılması ile düşük enerji bölgesinde elde edilen soğurma katsayısının azaldığı 

ve SC=5% olduğunda en düşük değeri verdiği gözlenmiştir. En düşük silane 

konsantrasyon değerinde ise yüksek kristal yapıya sahip filmler elde edilmiş fakat elde 

edilen yüksek soğurma katsayı değerleri mikro yapının içerisinde bulunan kusur 

yoğunluğunun artması ile ilişkilendirilmistir.  

Filament sıcaklığının soğurma katsayısına etkileri sabit silane 

konsantrasyonunda (SC=10%) büyütülmüş filmler kullanılarak incelenmistir. 1700ºC ve 

1800ºC fılament sıcaklıklarında büyütülmüş filmlerin amorf yapıda olduğu anlaşılmış 

fakat 1800ºC filament sıcaklığında büyütülmüş filmin düşük enerji bölgesinde yüksek 

soğurma verdiği gözlenmiştir. 1880ºC filament sıcaklığında ise micro yapıda 

mikrokristal fazın baskın olduğu ve elde edilen soğurma spektrumun tek kristal yapıdaki 

silisyumun soğurma spektrumuna benzer olduğu gözlenmiştir.  

İncelenen mikrokristal silisyum filmlerin çoğu için elde edilen soğurma 

spektrumlarında kalıcı saçaklar gözlenmiş ve bu saçaların oluşması malzemenin homojen 

olmayan yapısı ile ilişkilendirilmiştir. Homojen olmayan yapının etkilerinin incelenmesi 

için DBP deneyleri tekrenk ışık ön ve alttabaka cam tarafından geçecek şekilde yapılmıştır.  
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CHAPTER 1 

 

INTRODUCTION 

 
Hydrogenated microcrystalline silicon (µc-Si: H) is a material that has recently 

become of prime interest for thin film solar cells, flat panel, optical sensors and other 

thin film devices because of its properties such as a larger long-wavelength response, 

high stability against light-induced degradation, higher conductivities and mobilities 

which are important for technological applications when compared to hydrogenated 

amorphous silicon (a-Si: H) (Vetterl et al 2002a, Shah et. al 2003a, Klein et. al 2004a). 

One of the most used approaches to grow device quality hydrogenated microcrystalline 

silicon layers at low substrate temperature and on very cheap materials is Plasma 

Enhanced Chemical Vapor Deposition (PECVD) (Vetterl et. al 2002a, Klein et. al 

2004a, Carius et al 2003a). Radio Frequency Plasma Enhanced Chemical Vapor 

Deposition (RF-PECVD) technique produces electronic quality of µc-Si: H thin films in 

lab scale, however, large area fabrication can not be possible in this technique. The 

standard excitation frequency of plasma is 13.56 MHz but with increasing frequency of 

the plasma higher deposition rates and better film properties can be acquired. Therefore, 

Very High Frequency Plasma Enhanced Chemical Vapor Deposition (VHF-PECVD) 

technique has become popular for thin films device technologies. However, in this 

technique created ions play important role on the nature of the films (Rath 2001). On 

the other hand, Hot Wire Chemical Vapor Deposition (HWCVD) (Yamamoto et. al 

2002, Schroop 2004, Klein et. al 2001b) has been attracted considerable attention in 

recent years as an alternative deposition method for hydrogenated microcrystalline 

silicon (µc-Si: H) thin films because of satisfying high quality solar cells at high 

deposition rates, and large area fabrication. 

 Hydrogenated microcrystalline silicon (µc-Si: H) shows different 

morphological microstructures from the crystalline silicon (c-Si) and amorphous silicon 

(a-Si: H). The microstructure of µc-Si: H consists of randomly oriented crystalline 

grains, varied volume fractions of amorphous phase, grain boundaries and voids which 

depend critically on deposition conditions and are important for understanding the 

electronic and optical properties of µc-Si: H. Using a special kind of plasma deposition 
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technique, hydrogenated microcrystalline silicon (µc-Si: H) was first fabricated  in 1968 

by Veprek and Maracek (Veprek et. al 1986a). Since then, using a strong dilution of 

silane (SiH4) in hydrogen as an original source gas so as to activate formation of a 

microcrystalline growth rather than amorphous silicon. µc-Si: H microcrystalline silicon 

layers have been obtained by radio frequency glow discharge technique reported by 

some groups (Usui et. al 1987). The deposition rates were achieved well below 1 Å/s in 

these experiments. 

 Hydrogenated microcrystalline silicon (µc-Si: H) has a relatively low 

absorption coefficient than that of hydrogenated amorphous silicon (a-Si: H) in the 

visible part of solar spectrum due to its indirect bandgap. The absorption coefficient of 

µc-Si: H is very high in high energy region when compared crystalline silicon (c-Si). 

µc-Si: H also exhibits significant absorption well below the bandgap of crystalline 

silicon than that of crystalline silicon. To acquire sufficient absorption and 

photogeneration in the corresponding wavelength range, the required thicknesses of µc-

Si: H layers can be kept a few µm. As well as above reason, poor grain boundary 

passivation in the material is considered to be a main obstacle for electronic transport in 

microcrystalline silicon layers. Because of above reasons, using hydrogenated 

microcrystalline silicon as an active photogeneration layer within a thin film silicon 

solar cells took several years (Shah et. al 2003a). First attempts results were reported by 

Lucovsky et al. (Lucovsky et. al 1991), and Faraji et al. (Faraji et. al 1992). Afterward, 

using the very high frequency (VHF) glow discharge method, completely 

microcrystalline p-i-n and n-i-p type-silicon solar cells were fabricated (Meier et. al 

1994, Fluckiger et. al 1992, Feitknecht et. al 2001). To obtain higher efficiencies, very 

high frequency PECVD (Vetterl et. al 2002a, Shah et. al 2003a, Finger et. al 1994a), 

RF-PECVD (Nasuno et. al 2000) and Hot Wire CVD (Schroop et. al 2004, Klein et. al 

2004a, Klein et. al 2001b, Carius et. al 2003a) techniques were used. Combining the 

advantageous of microcrystalline silicon (µc-Si: H) and amorphous silicon (a-Si: H) in a 

tandem concept, micromorph solar cell has been achieved (Meier et. al 1994). Thus far, 

micromorph tandem cell efficiencies in the range of 10-14% which are higher than that 

of single junction solar cells have been reported (Proceedings, Vetterl et. al 2002a). 

Because of its excellent and sufficient properties, hydrogenated microcrystalline silicon 

has received growing attention in the field of thin film semiconductor technology.  
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 A broad variety of methods has been applied to investigate unpredictable 

physical properties of µc-Si: H, which was not straightforward to determine till now. 

The microstructure of µc-Si: H is the most important consideration for determining its 

properties. It consists of crystalline and amorphous phases, grain boundaries, cracks, 

voids, etc. The most common parameter to control the microstructure of µc-Si: H is 

silane concentration (SC= [SiH4]/ [SiH4+H2]), which has a universal influence on the 

material properties. Depending on decreasing or increasing of silane concentration in 

whatever deposition process such as PECVD (Plasma Enhanced Chemical Vapor 

Deposition) or HW CVD (Hot Wire Chemical Vapor Deposition) is known to cause 

changing in the microstructure of µc-Si: H from the growth of amorphous to 

microcrystalline material (Matsuda 1983). If the silane concentration (SC) is decreased, 

the crystalline growth starts. Afterward, with further decrease of silane concentration 

(SC), the crystalline volume fraction increases and morphological transitions from 

amorphous to microcrystalline are observed. Optical, structural and electrical properties 

of µc-Si: H thin films deposited by HW CVD method are changed not only by silane 

concentration (SC) but also by other deposition conditions such as filament temperature, 

deposition rate and substrate temperature.  One of the most important process parameter 

in HW CVD method is filament temperature which affects both the deposition rate and 

optical and structural properties of the films. For the silane concentration in amorphous 

region, at higher filament temperature an amorphous to microcrystalline transition is 

observed (Jadkar et. al 2003).  

The changes in the structural properties of µc-Si: H thin films are characterized 

by Raman spectroscopy (Vetterl et. al 2002a, Ray et. al 2002, Neto et. al 2002, 

Luysberg et. al 1997, Klein et. al 2004a, Houben et. al 1998). Focusing on inelastic 

scattering of photons caused by interaction of photons and phonons (lattice vibration) is 

the basic principle of this technique for investigation of the properties of materials. The 

measurements are generally functioned in the back-scattering configuration. For 

excitation, 514 nm line of an Ar laser strongly absorbed or 633 nm line of a HeNe laser, 

less absorbed, is used as the excitation source (Houben et. al 1998, Carius et. al 2001b). 

The Raman spectrum of a- Si: H films with a width (full width at half maximum; 

FWHM) of 60 cm-1 centered at 480 cm-1 are used. The symmetric and narrow spectrum 

of c- Si film is located at about 520 cm-1 with a FWHM of about 3.5 cm-1. The µc- Si: H 

film exhibits an asymmetric spectrum centered at 518 cm-1 with a FWHM of 12 cm-1 
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and a tail interpreted as an amorphous phase in the material. With changing silane 

concentration the Raman spectra of the material alters. Depending on the differences 

between the absorption of amorphous and crystalline phases and the Raman cross 

sections, a unique measurement of the structure of films can not obtained by the Raman 

spectra (Ossadnik et. al 1999, Carius et. al 2001b). The ratio of the integrated scattering 

intensity of the crystalline phase to the total scattering intensity given ICRS = IC/ (IA+IC) 

(where Ic=I520+I500 and Ia= I480 and I denotes the area of Gaussian peaks that were fitted 

to the spectra), can be considered as a semiquantitative measure for the crystalline 

volume fraction. 

  To obtain information about the crystalline structure and phase content of µc-Si: H thin 

films, X– Ray Diffraction (XRD) is also used (Houben et. al 1998, Carius et. al 2001b). 

The diffractograms of microcrystalline silicon thin films can be characterized by sharp 

peaks at diffraction angles 2 Θ hkl = 28.4 º, 47.30 º and 56.1º corresponding to {111}, 

{220} and {311} lattice plane reflections from crystalline silicon. Amorphous silicon 

can be characterized by two board peaks centered at slightly lower angle than the 

position of {111} reflection and in between the {220} and {311} reflections. The 

crystalline volume fraction of the microcrystalline silicon thin films can be determined 

by the scattering intensities of amorphous and crystalline peaks (Carius et. al 2001b). 

With increasing silane concentration the amorphous phase dominates in the spectra.  

 The microstructure of µc-Si: H thin films can be investigated, by using the 

diffraction of high energy electrons, by transmission electron microscopy (TEM). The 

TEM results show that crystal nucleation and grain growth and also the evolution of 

microstructure of µc-Si: H thin films can be affected by changing the silane to hydrogen 

ratio in the plasma (Shah et. al 2003a, Houben et. al 1998, Carius et. al 2001b). At lower 

hydrogen dilution, at high silane concentration, the crystalline growth begins at 

nucleation centers. During the growth, the size of crystalline grains strongly depend on 

the deposition parameters and the substrate increase. As a result, the crystalline grains 

occur in a conical shape near the substrate surface. However, these crystalline grains are 

not perfectly single crystalline, they show a large number of twin defects (Houben et. al 

1998). Either amorphous or voids can fill the space between the crystalline columns. A 

disordered phase can only be found in the shape of grain boundaries between the 

crystalline columns. Thus, the volume fraction of amorphous is low. In the transition 

from crystalline to fully amorphous growth, the diameter of crystalline grains decreases 
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when amorphous phase dominates. The microstructure of hydrogenated microcrystalline 

silicon thin films is altered by varying of deposition parameters. Silane concentration 

plays an important role to determine the electronic, optical and structural properties of 

material. 

 The optical absorption coefficient is one of the main quality properties of the 

PV materials. Absorption studies show that the measured optical absorption of 

microcrystalline silicon thin films is in general higher than that of crystalline silicon thin 

films in visible region of solar spectrum (Vanacek et. al 1998, Shah et. al 2000b). The 

enhanced absorption at higher energies (hν >1.8 eV) is mainly due to light scattering by 

the rough surface of the µc-Si: H layers, also a contribution from the amorphous phase 

at high amorphous volume fractions present in the µc-Si: H thin films (Poruba et. al 

2000). The absorption coefficient at energies below the 1. 8 eV down to bandgap of 

silicon (1.12 eV) is commonly attributed to strain effects in the grain and grain 

boundaries (Jun et. al 2002). In this region it gives higher absorption coefficient 

spectrum higher than that of pure amorphous silicon. The sub-bandgap absorption (at 

photon energies < 1.2 eV) of microcrystalline silicon thin films can be attributed to the 

defect densities in the material. 

 Hydrogenated microcrystalline silicon is an inhomogeneous thin film material 

consisting of highly disordered morphology reflected by several localized bandgap 

states. These states are tail states which are present in high concentration in energetic 

proximity to the band edges and deep band gap states are included by silicon dangling 

bonds. A variety of techniques have been used to investigate these electronic states in 

the mixed-phase material hydrogenated microcrystalline silicon. These techniques are 

electron spin resonance (ESR), steady state photoconductivity, dark conductivity and 

optical absorption measurement techniques especially photothermal deflection 

spectroscopy (PDS), constant photocurrent method (CPM) and dual beam 

photoconductivity method (DBP).  

To obtain valuable information about charge carrier recombination process of the 

electronic states, in particular defect states, present in µc-Si: H thin films, electron spin 

resonance method (ESR) has been used successfully in recent year. Extended 

investigations by ESR techniques have been performed by many research groups to 

determine the paramagnetic defects present in µc-Si: H thin films (Neto et. al 2002a, 

Lips et. al 2003, Lima et. al 2002, Finger et. al 1998b, Finger et. al 2004c, Boehme et. al 
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2004).  The ESR measurements show that µc-Si: H reveals a signal with an asymmetric-

line shape associated with the presence of two different centers. One of them is 

supposed to be a silicon dangling bond (Si DB) with a g value (gyromagnetic ratio) of 

2.0052. The other center with g value of 2.0043 is explained by the electrons trapped in 

the conduction band tails of the amorphous phase, but this center is a puzzling 

phonemenon for researchers. The g- value is given by g=hυ/µbB where h is the Planck 

constant, υ is the microwave frequency at resonance, µb is the Bohr magneton and B is 

the magnetic field at resonance. The signal of µc-Si: H is very different from that of a-

Si: H (Lima et. al 2002, Finger et. al 2004c). There is another important signal observed 

in µc-Si: H with g value of 1.998 is ascribed to free electron in the crystalline region in 

the material. 

Three optical absorption measurement techniques, namely photothermal defection 

spectroscopy (PDS) (Jackson et. al 1981a, Jackson and Amer 1982b), constant 

photocurrent method (CPM) (Vanacek et. al 1995b) and dual beam photoconductivity 

(DBP) (Wronski et. al 1982, Lee et. al 1998, Gunes and Wronski 1992a) are commonly 

used to measure the absolute optical absorption coefficient, (α), in the visible and 

infrared region. Photothermal deflection spectroscopy (PDS) is based on the heating of 

a sample by the absorbed light energy and has been used as complementary technique to 

obtain the absorption coefficient spectrum of µc-Si: H thin films (Klein et. al 2001b, 

Poruba et. al 2000b). Although PDS can give information about surface states, it can not 

allow acquiring information about the accurate absorption coefficient below the 

bandgap energy of microcrystalline silicon thin films because of substrate absorption 

effect. Constant photocurrent method (CPM), both in standard and absolute mode 

(Vanacek et. al 1983c) has also been used to obtain absolute absorption coefficient 

spectrum of µc-Si: H thin films (Beck et. al 1996).  In CPM, only the electron occupied 

defect states below the Fermi level can be detected because of using low generation rate 

of monochromatic light which satisfies the lifetime of the electron is almost constant. 

Dual beam photoconductivity (DBP) method is another relative method to derive the 

absorption coefficient spectrum from the photoconductivity spectrum like CPM. Using 

two different bias light intensities in DBP can satisfy to detect gap states because DBP 

spectrum at low energies depends on the bias light intensity used during the 

measurements. Increasing bias light intensities more information about the defect states 

in the gap of µc-Si: H thin films can be obtained compared to CPM. 
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1.1 Thesis Objectives  
 

Hydrogenated microcrystalline silicon (µc-Si: H) has attracted considerable 

attention as a device quality material for solar cells and thin film device technology due 

to some of its unique properties. Monitoring the changes of material parameters such as 

an optical absorption coefficient spectrum and defect states in the material with filament 

temperature and silane concentration is important from a practical point of view. 

The objective of this thesis is to understand the effects of deposition parameters, 

especially filament temperature and silane concentration, and to learn the effect of 

inhomogeneous structure of material on the low energy absorption coefficient spectrum 

of µc-Si: H thin films deposited HW-CVD method. Especially, the α (hν) at sub-

bandgap energies are taken as a comparison criteria for the effect of deposition 

parameters on the defect states present in the material. In this study, steady state 

photoconductivity (SSPC), dual beam photoconductivity (DBP) and transmission 

spectroscopy will be used to investigate the effects of deposition conditions on the 

microstructure of the material. DBP and transmission spectra have been used to obtain 

interference fringe free absolute absorption coefficient spectrum using Ritter and Weiser 

theory (Ritter and Weiser 1986). Then the resulting absolute absorption coefficient 

spectrum will be compared with those independently measured PDS and CPM methods.  

To understand the effect of silane concentration on sub-bandgap absorption 

coefficient spectrum, µc-Si: H thin films deposited with different silane concentrations 

and at filament temperature 1700ºC will be used. By changing silane concentration, the 

substantial differences in the microstructure of the material will be investigated.  

The effect of filament temperature on sub-bandgap absorption coefficient 

spectrum was investigated for a constant SC of 10% with filament temperature 

changing between 1700-1880ºC. The behaviors of the material will be investigated by 

changing filament temperature.  

   Finally, to investigate the effects of inhomogeneous structure of material on the 

sub-bandgap absorption coefficient spectrum, DBP measurements will be carried out by 

illuminated ac monochromatic light through the film and the substrate side at the same 

dc bias light intensity.  The interference fringes left on the α (hν) spectra will be 

attributed to inhomogeneous structure of microcrystalline silicon thin films.  
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CHAPTER 2 

 

EXPERIMENTAL 

 

2.1 Sample Preparation 
 

Hydrogenated microcrystalline silicon (µc-Si: H) thin films have been deposited 

by several fabrication techniques such as radio frequency (RF) plasma enhanced 

chemical vapor deposition at 13 MHz, very high frequency plasma enhanced chemical 

vapor deposition (VHF-PECVD) (Kondo 2003), and hot wire chemical vapor deposition 

technique (HW-CVD) (Schroop 2004).  

RF-PECVD has been widely employed for the fabrication of µc-Si: H thin films. 

In RF-PECVD system, an rf voltage is applied between two parallel electrodes and the 

substrate is located at the grounded electrode. The standard frequency is 13.56 MHz and 

the silane (SiH4) diluted by hydrogen has been used as a source gas for µc-Si: H 

fabrication. For large area deposition RF-PECVD is preferred since it provides better 

thickness uniformity than that of VHF-PECVD.  

  VHF-PECVD, in the range between 13.56-110 MHz, has become so popular because 

of creating a high hydrogen density in the plasma, which is very important for the 

growth of µc-Si: H thin films (Rath 2002).  VHF-PECVD technique is one of the most 

used approaches to grow device quality material within a short fabrication time. 

However, this technique has difficulties for large area deposition because of wavelength 

comparable to the cell size.   

HW=CVD is a new developed method to fabricate device quality µc-Si: H thin 

films (Matsumura 1986, Mahan et. al 1991). In HW-CVD process, the source gases are 

effectively cracked into atomic radicals at the surface of the filament. Especially, 

tungsten or tantalum wires are used as filaments. The temperature of the filament is held 

at higher than 1500 º C in the system. The decomposed radicals of the silane gas 

thermally diffuse to and are deposited on the substrate. Thus, the filament is one of the 

most important process parameters in the HW-CVD system to determine the optical and 

electronic properties of the deposited thin films. Compared to PECVD technique, HW-

CVD technique has some important advantages. First of all, there is no plasma, so there 
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is no dust in HW-CVD system. Secondly, no ions are created in the system so there are 

no ionic species to disturb the nucleation process. Finally, very efficient radical 

production can be obtained in HWCVD system which leads to a high deposition rate 

(Schroop 2004).The large area capabilities can be physically determined in HWCVD 

technique by increasing the number of wires in the system. In addition, it is a low cost 

production method for silicon based thin films. 

The deposition parameters, especially filament temperature, silane concentration 

(SC), and substrate temperature affect the deposition rate, the crystalline volume 

fraction, and optical and electronic properties of HW-CVD deposited µc-Si: H thin 

films (Schroop 2004). The crystalline volume fraction depends on the silane 

concentration. The Raman and XRD measurements show that with increasing the silane 

concentration the crystalline volume fraction decreases (Houben et. al 1998, Carius 

2002a). At higher SC’s, amorphous phase is dominant in the structure. As the silane 

concentration decreases, the crystalline regions increase and for very low silane 

concentration, highly crystalline intrinsic films are grown in a columnar structure 

(Vetterl et. al 2002b). Thus, the complex structure of the microcrystalline silicon 

containing the crystalline grains and amorphous region occurs (Houben et. al 1998). 

The deposition rate increases with increasing the filament temperature because the 

filament temperature plays important role on the breaking of the silane molecules. At 

higher silane concentration and at higher filament temperature a transition from 

amorphous to microcrystalline is observed (Jadkar et. al 2003). 

In this thesis, hydrogenated microcrystalline silicon (µc-Si: H) thin films were 

prepared using hot-wire chemical vapor deposition (HW-CVD) system at Research 

Center Jülich, Germany, on a borosilicate glass substrates, with varying silane 

concentration (SC) (gas flow ratio, SC= [SiH4] / [SiH4 + H2]) from 2% to 10% and 

with different filament temperatures. Samples are typically 554 -1100 nm thick were 

used in this study. Coplanar Ag electrodes 0.5 mm wide and 0.5 cm long were 

evaporated on the µc-Si: H samples. For the hot wire 2-3 tantalum filaments with 0.5 

mm diameter were used. The filament temperatures  were  between 1700  and  1880 ºC  

and  the substrate temperature was mainly kept unchanged around 220 ºC±10 ºC. 

Coplanar µc-Si: H samples were used to measure dark and photoconductivity, constant 

photocurrent  method,  and  dual beam  photoconductivity  spectrum.  To  measure  PDS 
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Table 2.1 Deposition parameters and thickness of µc-Si: H thin films deposited with   

1700ºC, 1800 ºC, and 1880 ºC filament temperatures used in this thesis. 

 

    
 

   

    

      

    

    

    

    

       

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1  a) Sample geometry for DBP measurement is shown. b) The top view of the 

sample geometry is shown. c) Sample geometry for PDS measurement is 

shown. 
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spectrum, samples deposited on glass substrate without Ag contacts were used. 

Hydrogenated microcrystalline silicon thin films used in this thesis listed in Table 2.1. 

The sample geometries for DBP and PDS system are given in Figure 2.1.  

 

2.2 Characterization Techniques 

 
   In this thesis, the effects of deposition conditions on the electronic and optical 

properties of intrinsic hydrogenated microcrystalline silicon thin films are characterized 

using steady state photoconductivity (SSPC), dual beam photoconductivity (DBP), and 

optical transmission spectroscopy techniques. The absolute absorption coefficient 

spectrum at wider energy region is obtained using the relative DBP and transmission 

spectra measured on the same sample. Then, the resulting absolute α (hν) spectrum is 

compared with those measured by photothermal deflection spectroscopy (PDS), and 

constant photocurrent method (CPM).  

 

2.2.1 Steady State Photoconductivity  

 
Steady state photoconductivity is a complex process of carrier generation across 

the bandgap, carrier transport of the band edges and recombination of photogenerated 

carriers through the defect states present in the bandgap of semiconductor. It is 

generally expressed as a function of the electron and hole concentrations and mobilities.   

    

                                            pqnq pnph µµσ +=      ( ) 1−Ωcm    ( )1.2  

   
where n and p are the densities of free electrons and holes in the conduction band  (CB) 

and the valance band (VB), respectively, µn and µp are electrons and holes mobilities. In 

intrinsic microcrystalline silicon thin films, the mobility lifetime product of holes are 

much smaller than that of electrons (Wyrsch et. al 1995a). Therefore photoconductivity 

is dominated by a single carrier electron.  Thus, the photoconductivity formula can be 

written as,   

    

                                                      nq nph µσ ≅   ( ) 1−Ωcm     ( )2.2  
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where n is the free electron carrier density obtained from the generation rate of the 

monochromatic light as follows,  

 

                                                          nGn τ=     ( ) 1−cm     ( )3.2  

 
where G is the generation rate of electron-hole pairs across the bandgap and τn is the 

lifetime of free electrons. The generation rate, G, can be calculated as a function of flux 

of incident light, thickness of the sample, absorption coefficient at excitation energy, 

and the reflectivity of the material. 

 

                                     
( ) ( )[ ]

t
tRFG αexp11 −−

=
   ( )13 −− scm    ( )4.2  

 
where α is the absorption coefficient, t is the thickness of the sample, R is the  

reflectivity of the material, and F is the incident flux. Flux is calculated using the 

calibrated p-i-n photodiode as 

 

                                           
( ) ( )

( )qhAQE
hI

hF ph

ν
ν

ν =
  ( )13 −− scm     ( )5.2  

 
where QE (hν) is the quantum efficiency of photodiode at a given wavelength, A is the 

area of the detector,  Iph is the measured photocurrent using the p-i-n photodiode at the 

photon energy hν. 

Using equations (2.2) and (2.3), the mobility-time product, µnτn, also called 

photosensitivity of the material, can be obtained. Photosensitivity is important 

information about the photoconductivity material. 

   

                                                          qG
phσ

µτ =
  ( )12 −Vcm     ( )6.2  
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   For steady state condition, the photoconductivity, σph , is calculated from the 

experimental parameters using the Ohm’s law. 
   

                                            Vtl
dI ph

ph =σ
  ( ) 1−Ωcm     ( )7.2  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2  The steady state photoconductivity measurements system. (Source: Akdas 

2002) 

 

where Iph is photocurrent, d is separation of electrodes, t is the thickness of the sample, l 

is the length of the electrodes, and V is applied voltage as shown in Figure 2.1.  

   Steady state photoconductivity shows a non- integer law dependence on the light 

intensity F or generation rate G. Also it can be expressed as follows, 

   

            
γσ Gph ∝      ( ) 1−Ωcm    ( )8.2  
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and µτ product can also be written as , 

   
1−∝ γµτ G    ( )12 −Vcm  

 

where γ is the exponent and related to recombination kinetics in the photoconductive 

thin films. For defective amorphous and microcrystalline silicon semiconductor thin 

films, the value of γ is lower than unity and changes between 0.5 and 1.0 and there is no 

direct relation to the distribution of defect states present in the bandgap of the 

semiconductor.  

   For the photoconductivity measurements, a homemade steel box was used. The 

system is shown in Figure 2.2. In the steel box, an Osram 250 W ENH lamp is used as a 

white light source and a fan was used to cool the lamp. To obtain high intensity 

monochromatic light, 800-750-690 nm interference filters and RG-610 bandpass filter 

were used. To adjust the monochromatic light intensity to lower flux values, neutral 

density filters transmitting  0.1%, 1%, 10%, and 50% of incoming light, were used. 

Constant voltage was applied, dark and photo currents were measured by using Keitley 

6517 A Electrometer. For respective photon energies, the incident white light was 

calibrated using a p-i-n photodiode having a 14.5 mm2 active area and known quantum 

efficiency values. Using the measured flux value and film geometries, generation rate of 

excitation light is calculated at each light intensity. Finally, measured σph and µnτn–

product results were presented as a function of generation rate for comparison of 

different µc-Si: H thin films. 

 

2.2.2 Dual Beam Photoconductivity Spectroscopy 

 
  The dual beam photoconductivity method (DBP) (Wronski et. al 1982, Lee et. al 

1998, Gunes and Wronski 1992a, Gunes et. al 2003b) is generally used to measure ac 

photoconductivity of the sample as a function of incident monochromatic light energy.  

DBP technique involves the use of two light beams, a dc bias light beam and a 

monochromatic chopped ac light beam with 13 MHz. The generation rate of the 

modulated monochromatic ac light is lower than that of the dc light beam. The main 

idea of using high generation rate dc bias light is to keep the free carrier lifetime 
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constant during the measurements. This means that dc bias light keeps the electron and 

hole quasi Fermi levels constant during the measurement. This provides a constant 

distribution of occupied defect states in the bandgap. On the other hand, low generation 

rate monochromatic ac light beam does not affect the quasi Fermi levels. Thus, a.c 

photoconductivity linearly depends on monochromatic ac light intensity. This implies 

that no changes can be observed in the mobility lifetime product of dc light due to 

additional ac monochromatic light coming on the sample. Therefore, the statistics of 

occupied defect states will be unchanged during the measurements. Then, the 

monochromatic a.c light plays a role to excite the electrons from occupied defect states 

into conduction band. The excited electrons in the conduction band are detected as ac 

photocurrent. As a result, the photoconductivity spectrum is a reflection of the occupied 

defect states in the bandgap of the material. 

   The photoconductivity is derived previously as a function of the free majority carrier 

density and electron mobility as,  

    

                                                    nq nph µσ =    ( )9.2  

 
As mentioned in equation 2.3, the number of electrons equals to product of lifetime and 

generation rate.  Thus, the sub-bandgap photoconductivity arising from the 

monochromatic beam can be written as follows,  

   

                                           ( ) ( )ντµσ hgqac nnph =    ( )10.2  
   

To obtain photoconductivity in the low absorption region, the product of absorption 

coefficient and thickness of the film, (αt), must be smaller than unity. For this reason, 

the exponential term can be neglected in equation for generation rate. Then, the 

generation rate can be derived as, 

   

                                    ( ) ( )( )( ) teRhFhg t /11 ανν −−−=     ( )11.2  
 

for αt<<1 

                                   ( ) ( ) ( )( ) ( )ναννν hhRhFhg ac −= 1    ( )12.2  
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As a result, using the equation 2.10 the photoconductivity can be written as,  

   

                            ( ) ( ) ( )( ) ( )νανντµσ hhRhFqac acnnph −= 1     ( )13.2  

   
The DBP yield spectrum explained as photoconductivity divided by the incident flux, 

YDBP, is 

   

                                 

( )
( ) ( ) ( )[ ]ναµτ

ν
σ

hRq
hF
ac

Y
ac

ph
DBP −== 1

   ( )14.2  
   

if 

   

( )[ ] CRq =−1µτ  
   

where C is a constant. α (hν) is obtained by multiplying the YDBP  by a constant C which 

is carried out by normalizing DBP yield spectrum to absolute absorption coefficient 

spectrum obtained by other techniques such as, PDS or Transmission / Reflection 

measurements. Therefore, DBP yield is  

   

                                                   ( )να hYDBP ∝    ( )15.2  
   

or  

( ) DBPCYh =να   ( )16.2  
    
As seen in the equation 2.15 or equation 2.16, DBP yield is proportional to the 

absorption coefficient of the material. Since DBP is a relative measurement method thus 

the obtained spectrums are in relative scale, the absolute absorption coefficients can not 

be directly obtained by DBP method. Generally, to acquire absolute absorption 

coefficient spectrum of the sample at low energies, DBP spectrum is normalized to the 

absolute absorption coefficient spectrum obtained from transmission and reflection 

(Cody et. al 1980) or from PDS (Gunes et. al 2003b). The interference fringes in DBP 
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spectrum are generally removed using fast Fourier transform (FFT) (Wiedeman et. al 

1987), but a significant error can be introduced in this procedure for acquiring the fringe 

free absorption coefficient spectrum. In this thesis, absolute absorption coefficient 

spectrum is calculated from the YDBP and transmission spectra of the same sample using 

the detailed optical equations defined by Ritter and Weiser (Ritter and Weiser 1986), 

which was applied by Goktas in his thesis. This procedure is explained in detail in the 

following section. 

   Experimental dual beam photoconductivity (DBP) system is shown in the Figure 

2.3. In DBP system, a Quartz Tungsten Halogen (QTH) lamp controlled by 300 W 

Radiometric power supply is used as a white light source. The lamp is located in an 

Oriel 66182 model lamp housing. A 0.2 nm sensitivity Oriel monochromator with a 

600-lines/mm grating controlled by an Oriel monochromator driver was used in this 

system. As a dc bias light source, red light emitting diodes (LED) combination was 

used. Generally, 13 Hz was used as a chopping frequency during the DBP 

measurements. To chop monochromatic white light, a chopper controlled by a chopper 

controller was used. At the exit slit of the monochromator, a filter driver containing 

three long pass filters of 500 nm, 700 nm, 900 nm, and a single crystalline silicon with 

wavelength of 1100 nm was located to cut-off second and higher order wavelengths. In 

order to change filters during the measurements, Oriel filter driver controller was used. 

A homemade sample holder was used with BNC connection to hold samples and 

pyroelectric detector. In order to calibrate the flux of monochromatic white light, a 

pyroelectric detector was used. A Keithley 6517A Electrometer was used to apply 

external d.c bias voltage between two coplanar electrodes during the measurements and 

to measure dark and photo currents. To detect the ac signals coming from the sample, a 

SR830 lock-in amplifier was used. All system was located on the Oriel optical table in a 

closed box to provide a dark room to prevent from unwanted signals. 

To control the DBP system a computer program written using Objectbench 

software was used. SR830 Lock-in amplifier, monochromator and filter drivers are 

connected to Keitley IEEE 488 card in order to provide General Purpose Interface Bus 

(GPIB) protocol.  After initializing devices, putting the sample on the sample holder, 

and adjusting   
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Figure 2.4 Flux spectrum of white light obtained using pyroelectric detector. 

 

some parameters such as number of measurements for each energy, initial energy and 

energy step, the program is started to run the DBP measurements. The long pass filters 

are altered at certain energy values by the program or manual. The raw current and 

phase of signal were measured by lock-in amplifier. The average current values were 

divided by the corresponding flux data to normalize the spectrum and recorded to data 

file.  

 

2.2.2.1 Flux Calibration  

 
   A Quartz Tungsten Halogen lamp used as a white light source in the system 

does not have a flat flux spectrum. For carrying out the flux calibration, a pyroelectric 

detector was used in the system. Pyroelectric detectors are thermal type infrared 

detectors and it is sensitive to a wide range (0.1µm-100µm) of the optical spectrum. 

Flux calibration is necessary because it is a very important step in order to obtain the 

DBP measurements. It is used to normalize raw current and transmission data.  

   As an example of the flux spectrum monochromatic white light source, Quartz 

Tungsten Halogen lamp, measured using a photodetector is shown in Figure 2.4. To 
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eliminate possible flux change of the lamp with time, flux calibration was carried out 

before the performing each measurements.  

 

2.2.2.2 Transmission Spectrum  

 
   Transmission spectrum plays important role in the DBP system. Transmission 

data were used to calculate thickness of the film using two energy values corresponding 

to two maximum or minimum peaks in the transmission spectrum in the low energy 

region and the refraction index of silicon. Moreover, transmission spectrum was used to 

calculate the fringe free absolute absorption coefficient spectrum of the material. 

Transmission spectrum was measured using the pyroelectric detector. The film is placed 

just in front of the pyroelectric detector.  

    In Figure 2.5 the transmission spectrum of µc-Si: H thin films were exhibited. 

Because of the high absorption in the high energy region, transmission goes to zero. 

With decreasing energy the absorption of the sample decreases. Therefore, transmission 

gradually increases and the interference fringes are observed in the low energy regions 

due to multiple reflections at film-substrate interface. 
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Figure 2.5 A typical transmission spectra of a µc-Si: H thin film. 
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2.2.2.3 Dual Beam Photoconductivity Yield Spectrum, YDBP  

 
   Dual beam photoconductivity (DBP) is a relative measurement technique therefore the 

absolute absorption coefficient spectrum can not be obtained using this method.  In Figure 

2.6, a typical raw and normalized photocurrent spectrum for a µc-Si: H thin film is shown. 

By changing the energy of the incoming light, the raw photocurrent spectrum is obtained. 

To acquire normalized photocurrent spectrum, the raw photocurrent spectrum is divided by 

the relative flux data since the incoming light does not give a flat flux spectrum.  The 

resulting spectrum is called DBP yield spectrum, YDBP and it is proportional to the absolute 

absorption coefficient spectrum of µc-Si: H thin films as explain in the previous section. 

Consequently, if the required conditions are satisfied in DBP system, the absolute 

absorption coefficient spectrum can be obtained using the photocurrent spectrum. One of 

the requirements of the obtaining absorption spectrum using DBP method is to satisfy the 

constant µτ product of the majority carrier during the measurements. 
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Figure 2.6  Normalized photocurrent and raw spectra of µc-Si: H thin films measured by 
DBP method. 
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As mentioned before, because of high generation of dc bias light than that of ac 

monochromatic light, the quasi Fermi levels are fixed by the dc bias light in DBP. Thus, 

Idc/ Iac ratio, where Idc is dc photocurrent arising from applied dc bias light and Iac is ac 

photocurrent measured by lock-in amplifier, is much higher than unity (Idc / Iac >> 1) 

due to the high generation rate of dc bias light. This result shows that µτ product of the 

majority carrier does not change during the measurements. On the other hand, for low 

generation rate of dc bias light this condition is not satisfied at all energies. To get ride 

of this situation, the section of photocurrent satisfying Idc / Iac >> 10 were taken as the 

reliable photocurrent spectrum.  
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Figure 2.7 DBP yield spectra of a µc-Si: H thin film deposited HWCVD method for 

high and low dc bias light intensities. 
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The other condition which must be satisfied in DBP system to obtain absorption 

spectrum is uniform absorption of light. The absorption coefficient of µc-Si: H thin film 

is in the order of 103 cm-1 and thickness of µc-Si: H thin films are generally 0.5-0.9 µm. 

The absorption and thickness (αt) product is smaller than unity for µc-Si: H thin films. 

As a result, the condition is satisfied for DBP system.  

  In DBP, the bias light controls the quasi Fermi levels and changes the occupation of 

defect states. Because of increasing bias light intensity, more defect states above the 

Fermi level are occupied by electrons. Therefore, the transitions from these occupied 

states into conduction band exist. In Figure 2.7, typical DBP yield spectrum of µc-Si: H 

thin films measured at high and low bias light intensities are shown. In high energy 

region there is no differences between two spectra because bias light intensity does not 

affect the DBP yield spectrum in this energy region however deviation of the spectra 

begins at the bandgap energy. Changing intensity of bias light is seen as a deviation of 

the spectra below the bandgap, which is associated with the increased occupation of 

defect states in the midgap. Thus, the DBP spectra will be used to control the occupied 

defect distribution manually and information about the defect states present in the 

bandgap of the µc-Si: H thin films can be obtained.  

 

2.2.3 Fringe Free Optical Absorption Coefficients Spectrum from DBP 

Yield Spectrum 

 
The optical absorption coefficient, α (hν), of microcrystalline silicon (µc-Si: H) 

thin films is important, because it primarily determines the spectral response of solar 

cells and other opto-electric devices. In addition, the α (hν) values at sub-bandgap 

energies are related to the defect states present in the material which act as 

recombination center for free carriers. In order to obtain accurate absorption coefficient 

spectrum of the film, a number of studies were done. Usually, interferences fringes in 

the absorption and transmission spectrum were averaged to obtain the real spectrum 

(Cody 1984b). Firstly, Ritter and Weiser (Ritter and Weiser 1986) reported that the 

interference fringes are eliminated using the normalization of the absorbance (A) and 

transmission (T) spectrum, A/T, of the films (Vanecek et. al 1995b). For homogenous 

films the maxima and minima of transmission and the absorbance take place 

approximately in the same energy of the spectrum. Therefore, the obtained spectrum is 
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free of fringes. A/T was used for “absolute” CPM method to calculate the absorption 

coefficient spectrum of samples and it gives more accurate results than that of averaging 

procedure (Vanacek et. al 1995b).  

  For the first time, the procedure to obtain fringe free absolute absorption coefficient 

spectrum using A/T was presented for DBP (Goktas 2004a). As mentioned before, DBP 

is a relative ac photoconductivity measurement thus obtained absorbance and 

transmission spectrums are in relative scale. To obtain real absolute absorption 

coefficient, absorbance and transmission spectrum must be in absolute scale.  For 

setting A/T in absolute scale, first step is setting the transmission spectrum in absolute 

scale. The transmittance maximum is written as a function of the optical refraction 

index, ns, (Swanepoel 1983).  

 

                                                     
1

2
2max +

=
s

s

n
nT    ( )17.2  

   

For the Corning glass 7059, Tmax is approximately 0.92. Tmax in the transmission 

spectrum is set to this value. Therefore, the absolute transmission spectrum is obtained. 

The second step is setting A/T in absolute scale. In order to obtain absolute A/T, one 

reference energy point Ex is chosen in high energy region of the transmission spectrum 

where T is free from the interference fringes. A good transmission value TX is taken as 

0.05 at this energy point Ex. Reflectance values, Rx= 0.41 and Rx= 0.26 when film is 

illuminated from film and substrate side, are also free from interference fringes. These 

reflectance values are taken for amorphous silicon but the results which are in 

agreement with those of PDS will show that these values can be used for 

microcrystalline silicon as well as. The sum of the absorbance, reflectance, and 

transmittance is unity (A+R+T=1). Using the reflectance value and transmittance value 

in relation A+R+T=1, the absorbance value, Ax, can be calculated at this reference 

energy point. After finding Ax, the relative absorbance values set to this value at the 

reference energy, therefore whole absorbance spectrum is obtained in absolute scale.  

  In DBP system, the absorbance of the films can not be obtained. Therefore, to obtain 

the optical absorption coefficient spectrum from DBP measurements, YDBP can be used. 

Since the photoconductivity can be written as a function of absorbance,  
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                                          ( ) ( ) ( ) ( )EtAh
t

hFqac nn
ph ,νηντµσ ⎥⎦

⎤
⎢⎣
⎡=     ( )18.2  

   

where, η(hν) is generation efficiency, t is the thickness of the films, and  A(t, E) is the 

absorbance. Therefore the YDBP is obtained by dividing photoconductivity to incident 

flux; 

 

                                 ( )
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t
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hF
h

Y nnph
DBP ,νητµ
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⎤
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t

q nn =⎟
⎠
⎞

⎜
⎝
⎛ ητµ  

   

Therefore, YDBP is proportional to the absorbance given as follows,  

  

                                                 ( )EtCAYDBP ,=    ( )20.2  

   
Therefore, the absolute optical absorption coefficient, α (hν), spectrum in absolute scale 

calculated from the absolute A/T spectrum using the Ritter and Weiser formula is given 

by,  

 

                    ( ){ ( ) ( )( )[ ] )2/1

2
2

22 4/11/115.0ln RTARTARt ++−++−=α     ( )21.2  
 
where t is the film thickness, R2 is the reflectance, T is transmission and A is the 

absorbance of the film. Since YDBP is proportional to the absorbance of the films, the 

Ritter and Weiser formula can be written in terms of YDBP. Therefore, the rearranged 

formula which can be used to obtain absolute absorption coefficient from DBP 

measurements is given as, 

 

( )( ( ) ( )( ) ( ) ( ) ( )( )[ ] }2/1
222 4/11/115.0ln RhTabYRhTabYRt abDBPabDBP ++−++−= ννα  

( )22.2    

 



 26

The results obtained using the Ritter and Weiser formula given in equation 2.22 are in 

agreement with those of PDS and CPM. In Figure 2.8, the absolute absorption 

coefficient spectrum, α (hν), obtained using PDS, CPM, and DBP method are shown. It 

is obviously seen that the absolute α (hν) spectra overlaps above the bandgap. On the 

other hand, the deviation among three spectra below the bandgap energy will be 

explained in detail in next section. 
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Figure 2.8 The calculated absolute α (hν) spectra of a µc-Si: H thin film deposited by 

HW-CVD method obtained from PDS, CPM, and  DBP measurements. In 

the inset the corresponding transmission  spectra of three methods are 

shown. 
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2.2.4 Photothermal Deflection Spectroscopy  

 
   Photothermal deflection spectroscopy (PDS) was first invented by Jackson et. al 

in 1982 to measure low-energy absorption coefficient spectrum of hydrogenated 

amorphous silicon thin films (Jackson  et. al 1981a, Jackson  and Amer 1982b). This 

technique is very powerful for measuring absorption coefficient spectrum of conductive 

and non-conductive thin films deposited on transparent substrates.  

In this technique, sample is placed in CCl4, good thermal conductivity and 

transparent medium. Monochromatic ac light chopped at a certain frequency is absorbed 

by the sample and causing a periodic heating of the sample due to excitation of 

electrons from occupied states into empty states of the band structure. Generated heat is 

transferred to the thermally good conducting CCl4 medium. The refractive index of the 

medium at the sample surface is modulated with the frequency of the monochromatic 

light. As second light beam, a laser light focused on the sample surface is sent at a 

grazing angle on the sample surface and dropped on a position detector. When 

absorption of ac monochromatic light changes, the resulting deflection of laser beam is 

directly proportional to the absorption of the monochromatic ac light beam. By using 

the PDS deflection signal and transmitted light spectrum , the absolute absorption 

coefficient spectrum of the conducting or non-conducting thin films deposited on 

transparent substrate is obtained reliably. It is a routine technique for qualitative and 

quantitative investigation of electronic quality thin films deposited under various 

preparation conditions. 

  Experimental setup of PDS is shown in Figure 2.9. Because of having a low 

absorption and not changing the properties of µc-Si: H thin films, carbon tetrachloride 

(CCl4) used as a deflection medium (Jackson and Amer 1982b). The PDS measurements 

should be performed on the optical table in order to avoid the vibration effects. The 

laser beam should be just above the sample surface and well focused on the sample. The 

effect of air currents should be eliminated. In PDS setup, a 20 mW HeN laser was used 

as laser beam. In order to attenuate laser beam intensity %1 neutral density filter is 

located in front of the laser. Two convex lenses having a focal length of 5 cm and 10 cm 

were used. One of them was centered in front of the monochromatic light beam so as to 

focus light beam on the sample. The other one is placed in way of the laser beam to 

graze the sample surface  



 28

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P
ow

er
P

ow
er

S
up

pl
y

S
up

pl
y

La
m

p
La

m
p

H
ou

si
n

H
ou

si
n gg

C
h

o
p

p
e

r
C

h
o

p
p

e
rFi

lt
er

Fi
lt

er
dr

iv
er

dr
iv

er

M
on

oc
hr

om
at

or
M

on
oc

hr
om

at
or

S
am

pl
e

S
am

pl
e

H
ol

de
r

H
ol

de
r

M
on

oc
M

on
oc

..
D

ri
ve

r
D

ri
ve

r

Lo
ck

Lo
ck

-- ini
n

A
m

pl
if

ie
r

A
m

pl
if

ie
r

C
om

pu
te

r
C

om
pu

te
r

C
ho

pp
C

ho
pp

ee r
r

C
on

tr
ol

le
r

C
on

tr
ol

le
r

F.F
. w

he
el

w
he

el
C

on
tr

ol
le

r
C

on
tr

ol
le

r

S
am

p
S

am
p ll

ee P
os

it
io

n 
D

et
ec

to
r

C
C

l 4

La
se

r

Fi
gu

re
 2

.9
  P

ho
to

th
er

m
al

 d
ef

le
ct

io
n 

sp
ec

tro
sc

op
y 

(P
D

S)
 m

ea
su

re
m

en
t s

ys
te

m
.

P
ow

er
P

ow
er

S
up

pl
y

S
up

pl
y

La
m

p
La

m
p

H
ou

si
n

H
ou

si
n gg

C
h

o
p

p
e

r
C

h
o

p
p

e
rFi

lt
er

Fi
lt

er
dr

iv
er

dr
iv

er

M
on

oc
hr

om
at

or
M

on
oc

hr
om

at
or

S
am

pl
e

S
am

pl
e

H
ol

de
r

H
ol

de
r

M
on

oc
M

on
oc

..
D

ri
ve

r
D

ri
ve

r

Lo
ck

Lo
ck

-- ini
n

A
m

pl
if

ie
r

A
m

pl
if

ie
r

C
om

pu
te

r
C

om
pu

te
r

C
ho

pp
C

ho
pp

ee r
r

C
on

tr
ol

le
r

C
on

tr
ol

le
r

F.F
. w

he
el

w
he

el
C

on
tr

ol
le

r
C

on
tr

ol
le

r

S
am

p
S

am
p ll

ee P
os

it
io

n 
D

et
ec

to
r

C
C

l 4

La
se

r

Fi
gu

re
 2

.9
  P

ho
to

th
er

m
al

 d
ef

le
ct

io
n 

sp
ec

tro
sc

op
y 

(P
D

S)
 m

ea
su

re
m

en
t s

ys
te

m
.



 29

where monochromatic light focused. To detect deflecting laser beam a position sensitive 

detector is connected to a lock-in amplifier and all parts of the system is controlled by a 

computer. A computer program written in Objectbench was used for data collection and 

acquisition. That system is tested for a few samples in IYTE, but mainly PDS 

measurements done in Jülich Research Center are used for comparison of spectra. 

 

2.2.5 Constant Photocurrent Method  

 
   Constant photocurrent method has been widely used to derive absorption 

coefficient spectrum of photoconducting thin films deposited on transparent substrate 

from the ac photoconductivity spectrum. The optical absorption coefficient at low 

energies gives information about the defect states present in the material. 

 In CPM method, the ac photoconductivity due to photoexcitation of electrons 

from defects states to the conduction band is proportional to the absorption coefficient, 

α. The photoconductivity can be written in the simple form as follows,  

 

                                         ( ) nph nqac µσ =     ( )23.2  

   

where n is the density of photoexcited electrons and µn is the mobility of electrons.  As 

mentioned in equation 2.3, generation rate of photoexcitation G  and electron lifetime τ 

product is equal to the photoexcited electron density ( )nGn τ= . The generation rate of 

photoexcited electrons can also be written as follows,   

    

                                 ( )( )( ) teRhFG t /11 αν −−−=    ( )24.2  
   

where F is the flux, R is the refractive index, t is the thickness of the films. Using this 

equation photoconductivity can be written as  

   

                       ( )( )( ) teRhFqGq t
nnnnph /11 αντµτµσ −−−==    ( )25.2     
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The equation can also be rewritten as for αt<<1  

    

                          ( ) ( ) ( ) ( )[ ]ννατµσ hFhRqac nnph −= 1    ( )26.2  
    

 and this equation also can be written in another form  

   

                                ( ) ( )[ ] ( )νατµ
ν

σ
hRq

hF nn
ph −= 1

   ( )27.2  
 

If σph = constant for each E= hν. Then, ( )[ ]Rq nn −1τµ   is maintained as a constant. For 

the our purpose F(hν) is adjusted to keep σph (hν) constant at every energy. Then 

resulting 1/ F(hν) spectrum is proportional to α (hν) given in equation 2.14 . 

    

                                         
( ) ( )hvF
h 1

∝να
   ( )28.2  

    

In literature, there are a few approaches to obtain absolute α (hν) spectrum from CPM 

measurements. One of the most important approaches to obtain α (hν) spectrum is CPM 

measurements are normalized to optical absorption coefficient obtained from 

transmission. However, a number of methods are used to calculate the absolute α (hν) 

spectrum from CPM measurements without any normalization (Wyrsch et. al 1991b, 

Vanecek et. al 1995b, Jensen 1990). In this technique, to keep the photocurrent constant 

during the measurements; a number of photon is measured using detector. This 

measurement gives a spectrum, which is proportional to the absorptance A. The 

obtained A spectrum is also in relative scale. As some approximations are considered in 

Beer’s law ( )( )( )deRA α−−−= 11 1 , α (hν) spectrum can be obtained as proportional to the 

absorptance spectrum. The measured absorptance spectrum exhibits the interference 

fringes. The interference fringes must be removed in the CPM spectrum. To do this, 

transmission spectrum obtained using photon detector behind the sample is used, since 

as noted for the first time by Ritter and Weiser, the maxima and minima occur at the 

same energy in both spectra. This means that the absorptance to transmission ratio A/T 

is free of interference fringes. However, the calculated A/T is still in relative scale. 



 31

Therefore, transmission and absorptance must be set in absolute scale because the real 

absorption coefficient spectrum is in absolute scale. First of all, to set transmission 

spectrum in absolute scale, simple procedure is used. Basically, the transmittance 

maximum is written as a function of the optical refraction index, ns, (Swanepoel 1983).  

   

                                                  1
2
2max +

=
s

s

n
nT

   ( )29.2  

   

Using the refraction the Corning glass 7059 is 1.5, the found Tmax is approximately 0.92.  

Therefore, the Tmax value of transmission spectrum sets to 0.92 then the obtained 

transmission spectrum is in absolute scale. After setting transmission spectrum in 

absolute scale, the absorbance can be set in absolute scale. To do this, a reference 

energy Ex in the high photon energy of the calculated absolute transmission spectrum is 

chosen. Tx =0.05 is a good choice since transmission spectrum is free of fringes at this 

point. Also as the reflectance values Rx= 0.41 and Rx= 0.26 are used, which are also 

taken for calculating the absorption spectrum of amorphous silicon. The sum of 

transmission, reflectance and absorptance is equal 1. Using absolute transmission and 

reflectance value, the absolute absorptance value at the reference energy can be 

obtained.  Then, the whole spectrum can be set in absolute scale. After obtaining 

absorptance spectrum in absolute scale, the Ritter and Weiser formula is used to 

calculate the absolute absorbance spectrum of the sample from CPM method. The 

formula was given in section 2.3, in the details of calculation of absolute absorption 

spectrum from DBP.   
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CHAPTER 3 

 

EXPERIMENTAL RESULTS IN HYDROGENATED 

MICROCRYSTALLINE SILICON THIN FILMS 

DEPOSITED BY HWCVD METHOD 

 

3.1 Introduction 
 
 

Hydrogenated microcrystalline silicon (µc-Si: H) is a promising material for 

device application such as solar cell and large area electronics. The relationship between 

its electronic and microstructure properties has been the subject of research activities in 

recent years. In order to improve deposition rate, the stability and quality of µc-Si: H 

thin film, hot wire chemical vapor deposition (HW-CVD) has attracted attention for the 

last decade. In this study, the optical and electronic properties of hydrogenated 

microcrystalline silicon thin films deposited by HW-CVD method are investigated 

using steady state photoconductivity (SSPC), dual beam photoconductivity (DBP), and 

optical transmission methods to understand the effects of deposition parameters such as 

silane concentration (SC) and filament temperature (TF) on absorption coefficient 

spectrum. Finally, optical absorption coefficient spectrum obtained from the detailed 

optical calculations using the relative DBP yield spectrum and optical transmission 

spectra are compared with that independently measured on the same samples using 

photothermal deflection spectroscopy (PDS) and constant photocurrent method (CPM). 

 

3.2 The Effects of Silane Concentration 

  
Deposition of microcrystalline silicon thin films strongly depends on the silane 

concentration in gas mixture of silane-hydrogen gas in HW-CVD deposition process. 

The ratio of crystalline phase to amorphous phase present between the crystalline grains 

increases with decreasing silane concentration. Therefore, properties of resulting films 

show strong dependence on the changing microstructure.  
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In this section, steady state photoconductivity (SSPC), DBP and optical 

transmission measurements were used to investigate the effects of silane concentration 

on the microstructure of microcrystalline silicon thin films deposited by HWCVD 

methods at 1700 ºC filament temperature with varying silane concentrations. In SSPC, 

majority carrier electron mobility-lifetime product (µnτn) is obtained quantitatively. 

Absolute absorption coefficient spectrum is obtained from the relative DBP and optical 

transmission spectra. The effect of silane concentration on low energy absorption 

coefficient is taken as a comparison criteria among the films. 
 

3.2.1 Steady State Photoconductivity Results  

 
Photoconductivity is an important property used in solar cells application. 

Steady state photoconductivity is a complex mechanism divided into three parts, 

generation of free electron-hole pairs, recombination of excess free carriers through the 

defect states, and transport of mobile carriers at the conduction band mobility edge. 

Therefore, absorption coefficient α (hν), density and nature of recombination centers in 

the bandgap and free carrier mobility at the extended states are involved in steady state 

photoconductivity mechanism. Thus, the direct quantitative information about the 

material can be obtained using steady state photoconductivity. It exhibits a non integer 

power-law dependence on light intensity ( γσ Gph ∝ ), which is important physical 

feature to obtain information about recombination kinetics between photogenerated 

electrons and holes. Using steady state photoconductivity measurements quantitative 

information about the mobility-lifetime product (µnτn) of majority carriers is obtained, 

which is called as “photosensitivity” and one of required parameter for photoactive 

semiconductor thin films.  

Experimental steady state photoconductivity results are shown in Fig 3.1a as a 

function of generation rate for intrinsic microcrystalline silicon thin films deposited at 

filament temperature of 1700 ºC with different silane concentrations. Majority carrier 

µnτn- products calculated from the results in Figure 3.1a are presented in Figure 3.1b as a  
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Figure 3.1  a) σph versus generation rate for µc-Si: H thin films deposited by HWCVD 

method at filament temperature 1700 ºC. b) µnτn - product versus generation 

rate of the same µc-Si: H thin films. 
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function of generation rate. A linear dependence of photoconductivity on generation rate 

can be seen for all the samples. However, a difference exists in the slope as a major 

change in the microstructure exists. Photoconductivity versus generation rate obeys the 

expected non-integer power dependence rule γσ Gph ∝ . For high silane concentration, 

SC= 10%, the microstructure is mainly dominated by amorphous phase and very small 

crystalline regions occur in the matrix. Therefore, the slope γ is equal to 0.9, which is 

close to unity, observed for most amorphous silicon thin films in the literature. As the 

SC decreases, the slope γ decreases towards 0.7 of which generally observed for 

undoped microcrystalline silicon thin films (Gunes et al. 2005c). For lowest SC=2% 

film, the slope reaches to 0.5, which is the value seen for crystalline Si. The meaning of 

the γ=0.5 is that photogenerated electrons in the conduction band extended state 

recombine directly with holes in the valence band extended states. However, for 

amorphous like film with SC=10% and other films with γ value around 0.7, 

photogenerated free electrons in the conduction band extended states recombine with 

holes in the valance band through the defect states present in the bandgap of 

microcrystalline silicon.  

In addition, magnitude of σph is also affected by the SC as seen in Figure 3.1a. 

For the highest SC=10%, amorphous phase with high defects dominates in the bandgap 

reduces the electron lifetime. Thus, the lowest values of σph are obtained for amorphous 

like film. As SC decreases, the crystalline regions increases and σph values increases and 

highest σph values are obtained for the films prepared with SC around 5-6% film. 

However, as the SC=2%, for the highly crystalline film, σph decreases again due to 

increasing defects on the walls of grain boundaries. Thus, µnτn- product becomes 

strongly dependent on the generation rate as shown in figure 3.1b. 

 

3.2.2 Sub-Bandgap Absorption Spectrum  

 
The optical absorption coefficient, α (hν), of hydrogenated microcrystalline 

silicon (µc-Si: H) thin films is important to obtain information about spectral response 

of optoelectronic devices. This means that the optical and electronic properties of the 

materials can be characterize using α (hν) of material. In this section, the effect of silane 

concentration on the absorption coefficient spectrum in wide energy region, especially 

at low energies was investigated using DBP and optical transmission techniques. 
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Absolute α (hν) spectrum was calculated from the relative DBP and optical transmission 

spectra and finally compared with those independently measured by PDS and CPM. 

 An example of DBP yield spectra for high and low bias light intensities is 

shown for a µc-Si: H thin film deposited using HW-CVD method at Tf= 1700 ºC with 

SC=10%. At this silane concentration, sample exhibits amorphous-like characteristic 

since band edge extends to higher energies and exponential tail absorption is clearly 

observed. In these spectra, the interference fringes are observed because of the multiple 

reflection of incoming light at film-substrate interface. It is also clearly seen that in low 

energy region, the DBP spectrum is affected by the bias light used during the 

measurements. The deviation between two spectra can be explained with the changes in 

the occupation of defect states in the bandgap.  With increasing bias light intensity the 

occupation of defect states above the dark Fermi level increases. This means that 

transition of excited electrons from these occupied defect states to the conduction band 

increases. Therefore, only an increase in DBP yield spectrum is obtained for high bias 

light intensity in low energies. In Figure 3.2b, optical transmission spectrum for the 

same sample is shown. The maxima and minima of the transmission and DBP yield 

spectra take place at the same energies, indicating that a uniform absorption of light 

throughout the material. Using the transmission fringes at lower energies, the exact 

thickness of the sample is calculated using the interference fringe equation. This 

thickness value was used for accurate calculation of the steady state photoconductivity 

and µnτn- products of majority carriers presented in previous section.   

As mentioned in chapter 2, when certain required conditions are satisfied, the 

DBP yield spectrum becomes proportional to the absorption coefficient spectrum. This 

means that the absorption coefficient spectrum can be obtained from the DBP yield 

spectrum. However, in DBP yield spectrum, there are interference fringes which must 

be removed to acquire fringe free absorption coefficient spectrum. The fast Fourier 

transforms method (Wiedeman et al. 1987) is commonly used to eliminate these fringes 

in DBP yield spectrum. In order to achieve this, fringe removed DBP yield spectrum is 

normalized to absolute values obtained from T&R or PDS measurements (Wronski et 

al. 1982, Gunes and Wronski 1992a). However a large error into shape and magnitude 

of the spectrum can  be  introduced  for  the  thin  films  less than 1µm.  Therefore, some 
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Figure 3.2  a) DBP yield spectrum for high and low bias light intensities for µc-Si: H 

thin films deposited by HW-CVD method with SC=10% and 1700 ºC. The 

phases of both measurements are shown. b) Corresponding transmission 

spectrum is exhibited. 
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 important information can be lost during the fringe removing Fourier transform 

procedure. On the other hand, in this thesis, fringe free absorption coefficient spectrum 

is calculated from DBP yield and transmission spectra given in Figure 3.2a and Figure 

3.2b using the detailed optical equations given by Ritter and Weiser (Ritter and Weiser 

1986).  

Fringe free absolute α (hν) spectrum obtained for high and low bias light DBP 

measurements are shown in Figure 3.3. A good overlap exists in the absolute α (hν) 

spectrum obtained for both bias light DBP measurements at higher energies, down to 

the exponential valance band tail state observed in amorphous silicon thin films. On the 

other hand, in low energy region high bias light α (hν) spectrum gives higher values 

than low bias light α (hν) spectrum. The physical reason for the increase is that higher 

bias light intensity increases the separation of quasi Fermi levels in the bandgap, the 

electron quasi Fermi level moves closer to the conduction band edge and hole quasi 

Fermi level moves closer to the valance band edge. Therefore, the density of electron 

occupied defect states above the dark Fermi level increases. Monochromatic probe 

beam of DBP excites more electrons from the occupied states into conduction band at 

lower energies. This results in an increase only in the α (hν) spectrum at lower energies 

since there is no change in the occupation of states at higher energies. 

Accuracy of the absolute α (hν) spectrum obtained from detailed calculation of 

DBP and optical transmission spectra has been carried out by comparing the α (hν) 

spectrum of the sample measured independently using the PDS method carried out in 

Research Center Jülich, Germany. In Figure 3.4, the absolute α (hν) spectrum of DBP 

low bias light and that of PDS measurement are shown for the same sample.  It is 

clearly seen that, a perfect overlap in the absolute α (hν) spectra independently obtained 

from PDS and DBP low bias light measurements is seen at energies above the 1.4 eV. 

On the other hand, at low energy regions, there is a difference between PDS and DBP 

spectra. Generally, the PDS measurements give noisy signal at lower energies; however 

in that region DBP spectrum is a smooth curve that it is relatively noise free. At 

energies below the 1.4 eV, the absolute α (hν) spectrum of PDS is higher than those of 

low bias DBP measurements, which can be attributed to the substrate absorption and 

that of highly defective surface layer. The effects of substrate absorption can also be 

seen in the phase of  PDS given  in  the  inset  of  the  Figure  3.4. Conversely,  the shift 
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Figure 3.3  The calculated absolute α (hν) spectra of DBP for high and low bias light 

measurements of µc-Si: H thin films deposited by HW-CVD method with 

SC=10%. 

 

in phase signal of DBP can be explained by changing the recombination kinetics of 

defect states present in the bandgap. In addition, modulation in the phase signals of 

DBP is seen in the inset of Figure 3.4. This modulation is due to the degree of 

inhomogeneous absorption of light because of inhomogeneity present in the µc-Si: H 

thin films. The results in the Figure 3.4 indicate that reliable and accurate absorption 

coefficient spectrum at lower energies can be obtained using the low bias light DBP 

measurement together with optical transmission spectrum. Even though PDS is a 

routine technique to obtain qualitative information on the deposited thin films, it 

overestimates the absolute α (hν) values of bulk sample due to highly defective surface 
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layer absorption and substrate absorption. At higher energy part of spectrum, both 

method probe the same distribution of defect states and give exactly the same α (hν) 

values. In this thesis, the absolute α (hν) values at low energy region are called sub-

bandgap absorption coefficient and used to compare the samples deposited under 

different conditions. 

The effect of SC on the sub-bandgap absorption of µc-Si: H thin films have been 

investigated for films deposited at silane concentrations lower than 10%. In the growth 

of microcrystalline silicon, microcrystalline phase becomes dominating as the SC 

decreases. The results of DBP and optical transmission measurements presented in 

Figure 3.5 for µc-Si: H film deposited with the SC=7% at filament temperature of 1700 

ºC. In Figure 3.5a, raw DBP yield spectrum measured with high and low bias light 

intensities are shown. In the inset, the phases of both spectra are illustrated. 

Modulations on the both spectra are clearly observed. Corresponding transmission 

spectrum of the sample is shown in the Figure 3.5b. Similarly, fringe free absolute α 

(hν) spectrum is calculated using the DBP and optical transmission spectra as carried 

out in the previous section. The resulting calculated α (hν) spectrum for high and low 

bias light measurements are shown in Figure 3.5c. Even though, fringe free calculation 

of α (hν) spectrum has been used, there are observable fringes left on the α (hν) 

spectrum. Physical reason of the left fringes on the spectrum is the nonuniform 

absorption of monochromatic light due to inhomogeneous structure of µc-Si: H thin 

film. Another main differences of the α (hν) spectrum from that of SC=10% sample is 

the shape of α (hν) spectrum, which is shifted to lower energies and becomes more like 

that of crystalline silicon. Comparison of the absolute α (hν) spectrum of SC=10% and 

SC=7% samples are given in Figure 3.5d. It clearly indicates that microcrystalline phase 

becomes dominating the microstructure and substantially changes the absolute α (hν) 

spectrum. At high energy region, α (hν) has lower values like that of c-Si: H. For this 

sample, independently measured α (hν) spectrum using the PDS method is not available 

for direct comparison. 
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Figure 3.4  The calculated absolute α (hν) spectra of PDS and DBP for high and low 

bias light measurements of µc-Si: H thin films deposited by HW-CVD 

method with SC= 10%. In the inset, the phase of PDS, DBP are presented.  
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Figure 3.5  a) Yield DBP signals measured at two different dc bias light intensities are 

shown. In the inset the phase of DBP signals are shown. b) The 

corresponding transmission spectrum is given for a µc-Si: H thin film 

deposited with SC=7%. 
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Figure 3.5  c) The calculated absolute α (hν) spectra of DBP for high and low bias light 

measurements of µc-Si: H thin films deposited by HW-CVD method with 

SC=7%. 

 
 

 

 

 

 

 

 



 44

Energy (eV)
0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

10-2

10-1

100

101

102

103

104

105

106

DBP Low  Bias Light Spectra of 
      SC= 7% & SC=10%

SC =7%

SC=10%
like a -Si:H

like µc-Si:H

 
 

Figure 3.5  d) The calculated absorption coefficient spectra obtained from DBP low bias 

light intensity for two µc-Si: H thin films deposited by HW-CVD with 

SC=10% and SC=7%. 

 

As the SC is decreased further, the crystalline volume fraction in the sample 

increases as reported in the literature (Carius 2001b). The samples deposited at lower 

SC’s are also investigated using same procedures. The results of the other samples are 

shown in Figure 3.6, Figure 3.7, and in Figure 3.8, for the films deposited with SC=6%, 

5%, and  2%, respectively. In each figure, in (a), raw DBP results, in (b), optical 

transmission spectrum, in (c), calculated absolute α (hν) spectra, and in (d), comparison 

of α (hν) spectrum obtained from DBP and PDS methods are shown for each sample. It 

is clearly seen that all of these sample exhibit similar α (hν) spectrum, which is 
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microcrystalline like in nature. However, some of samples have left fringes after fringe 

free calculation of the absolute α (hν) spectrum such as SC=6% and SC=2% films. The 

samples with SC=5% has still very small fringes left on the spectrum. These results 

indicate that in the growth of microcrystalline silicon, inhomogeneous microstructure 

grows on the substrate, an initial more defective layer and rough surface layer at the top 

can also form for some of the samples. In these measurements, these effects are clearly 

observed in both DBP and PDS measurements. 

To investigate the effects of the SC on the sub-bandgap absorption coefficient, the α 

(hν) values at lower energies has been generally taken as a comparison criteria for 

different samples. Because the absolute α (hν) values at the low energies are due only to 

the defect states present in the bulk of the thin film material. In this thesis, the α (hν) 

values at 0.8 eV measured with low bias light DBP is taken as a comparison criteria for 

µc-Si: H thin film deposited with different SC’s. For some samples, those values at 0.8 

eV are also represented to show how two different methods estimate the α (hν) values 

due to defect states presented in the material. The effects of the SC’s on the α (0.8 eV) 

is shown in Figure 3.9 for both PDS and DBP measurements. It is seen that PDS values 

are always higher than those of DBP results. For SC=10% sample, amorphous silicon 

with very small crystallites show amorphous like spectrum. It has different result. 

However, at SC=7%, the α (hν) is higher and decreases as SC decreases. It reaches to a 

minimum around SC=5%. As the SC is decreased further, the α (0.8 eV) values starts to 

increase again even though more crystalline phase grows in the film. This indicates that 

film becomes more defective in highly crystalline films. For these films, it is claimed 

that defects occur on the grain boundary walls of the crystalline regions, which is also 

confirmed by the electron spin resonance (ESR) experiments (Finger et al. 2004c).  As a 

result, these results indicate that lowest defect density films can be deposited with the 

SC’s of around 5% at 1700 ºC filament temperature. These results are also consistent 

with our previous study reported by Goktas on HW-CVD films deposited at lower 

filament temperatures (Goktas et al. 2005b). 
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Figure 3.6  a) Yield DBP signals measured at two different dc bias light intensities are 

shown. In the inset the phase of DBP signals are  shown. b) The 

corresponding transmission spectrum is given for a µc-Si: H thin film 

deposited with SC=6%. 
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Figure 3.6 c) The calculated absolute α (hν) spectra of DBP for high and low bias light 

measurements of µc-Si: H thin films deposited by HW-CVD method with 

SC=6%. 
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Figure 3.6  d) The calculated absolute α (hν) spectra of PDS and DBP for low bias light 

measurements of µc-Si: H thin films deposited by HW-CVD method with 

SC=6%. In the inset, the phase of PDS, DBP are presented. 
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Figure 3.7 a) Yield DBP signals measured at two different dc bias light intensities are 

shown. In the inset the phase of DBP signals are shown. b) The 

corresponding transmission spectrum is given for a µc-Si: H thin film 

deposited with SC=5%. 
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Figure 3.7  c) The calculated absolute α (hν) spectra of DBP for high and low bias light 

measurements of µc-Si: H thin films deposited by HWCVD method with 

SC=5%. 
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Figure 3.7  d) The calculated absolute α (hν) spectra of PDS and DBP for low bias light 

measurements of µc-Si: H thin films deposited by HWCVD method with 

SC=5%. In the inset, the phase of PDS, DBP are presented. 
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Figure 3.8  a) Yield DBP signals measured at two different dc bias light intensities are 

shown. In the inset the phase of DBP signals are shown. b) The 

corresponding transmission spectrum is given for a µc-Si: H thin film 

deposited with SC=2%. 
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Figure 3.8 c) The calculated absolute α (hν) spectra of DBP for high and low bias light 

measurements of µc-Si: H thin films deposited by HWCVD method with 

SC=2%. 
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Figure 3.8 d) The calculated absolute α (hν) spectra of PDS and DBP for low bias light 

measurements of µc-Si: H thin films deposited by HWCVD method with 

SC=2%. In the inset, the phase of PDS, DBP are presented. 
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Figure 3.9 Absolute absorption coefficients versus the SC measured by PDS and DBP 

front ac illumination (low bias light) for µc-Si: H thin films prepared using 

HWCVD method at filament temperature 1700 ºC. 

 

 

3.2.2.1 Comparison of PDS, DBP, and CPM absolute absorption 

coefficient spectra 

 
The optical absorption spectrum of the µc-Si: H thin films is also commonly 

measured using the constant photocurrent method (CPM) that is also an alternative 

photoconductivity method to derive the α (hν) spectrum. The principle of the CPM is 

similar to that of DBP; however, there are major differences in measuring the 

photoconductivity spectrum as explained in chapter 2. The validity of the absolute α 

(hν) spectrum of µc-Si: H thin films are also confirmed for a few samples using the 

CPM measurements carried out in Research Center Jülich, Germany. In CPM, very low 

generation rate monochromatic light is used to excite electrons from the occupied defect 

states in the bandgap. Therefore, occupation of the defect states in the dark is very 
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slightly modified by the ac monochromatic light. There is no bias light used in CPM. 

However, the µnτn- product of electrons is maintained constant by keeping the 

photocurrent constant at each photon energy by adjusting the flux of the ac 

monochromatic light. 

Comparison of the α (hν) spectra measured by DBP, PDS, and CPM for the samples 

deposited with the SC=6% and SC=10% are shown in Figure 3.10 and Figure 3.11., 

respectively. For SC=6% sample, three method result in  α (hν) spectrum with exactly 

the same shape and left over fringes on the spectrum. Therefore, present inhomogeneity 

in the sample shows its effect in each characterization method. The α (hν) spectrum 

overlap very well at higher energy part of the spectrum. However, at low energy part, 

the CPM shows the lowest values. Even though low bias light is used in DBP 

measurements, it is sufficiently higher than the generation rate of CPM ac 

monochromatic light and results in higher α (hν) values in the lower energies. Similar 

effect is also observed for SC=10% sample shown in Figure 3.11. All three spectra 

overlap very well energies above 1.4 eV, but differences exists below 1.4 eV energies. 

The CPM spectrum is the lowest among the three and PDS is always much higher at 

lower energies. To obtain DBP spectrum closer to that of CPM spectrum, the intensity 

of bias light must be decreased further. For some sample, this has been successfully 

carried out. But for most of the samples, the signal at lower energies is very low and 

noise dominates the measurement. Because of this effect, the intensity of bias light has 

been kept as low as possible until reliable noise free measurement is obtained. The α 

(hν) values of low bias light DBP are slightly higher than those of measured by the 

CPM measurements.  

Finally, the α (hν) spectrum independently obtained by three different method 

agrees very well at higher energy part of spectrum, differences at lower energies involve 

important information about the absorption of light  by the defect and must be carefully 

evaluated for each measurement technique. 
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Figure 3.10  The calculated α (hν) spectra independently obtained the PDS,  CPM, and 

low bias light DBP measurements for a µc-Si: H thin film deposited with 

SC=6%. In the inset the phase of PDS, CPM, and DBP low bias light 

signals are shown. 
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Figure 3.11  The calculated α (hν) spectra independently obtained the PDS, CPM, and 

low bias light DBP measurements for a µc-Si: H thin film deposited with 

SC=10%. In the inset the phase of PDS, CPM, and DBP low bias light 

signals are shown. 

 

3.3 The Effects of Filament Temperature 

 
The filament temperature is another important process parameter in HW-CVD 

process. The electronic and optical properties of µc-Si: H thin films deposited by HW-

CVD method strongly depend on the filament temperature, which affects the deposition 

rate and microstructure of the materials. The effect of filament temperature exists as a 

change in the breaking of the silane gas (SiH4) molecules during the deposition, which 



 59

is used as a main source gas in the HW-CVD process to grow the µc-Si: H thin films. 

As the filament temperature increases, the efficiency of breaking of silane molecules 

increases. This increases the density of atomic H. The atomic hydrogen effectively 

etches Si atoms. Therefore, with increasing filament temperature, a transition from 

amorphous to microcrystalline occurs. The transition is only observed on the films 

deposited with higher SC and higher filament temperature.  

In this section, the effects of filament temperature on microstructure of 

microcrystalline silicon thin films deposited by HWCVD method has been investigated 

with constant SC=10% by changing the filament temperatures from 1700 ºC to 1880 ºC. 

Steady state photoconductivity, dual beam photoconductivity, and optical transmission 

measurements were used to see its effect on microstructure.  

 

3.3.1 The Effect on Steady State Photoconductivity  

 
In order to see the effect of filament temperature on steady state 

photoconductivity measurements giving quantitative information about the material, the 

filament temperature was increased from 1700 ºC to 1880 ºC and silane concentration 

was kept constant at 10%.  

As an example, the photoconductivity σph versus generation rate spectra for three 

microcrystalline silicon thin films deposited at filament temperatures of 1700 ºC, 1800 

ºC, and 1880 ºC with constant SC=10% are shown in Figure 3.12a. A linear dependence 

of photoconductivity on generation rate is clearly seen for three samples. In general, for 

the samples deposited with higher silane concentration, the amorphous phase dominants 

in the microstructure of material. However, with increasing filament temperature the 

behavior of the materials deposited with the same SC changes. For high filament 

temperature, Tf=1880ºC, the slope γ is equal to 0.96, which is very close to unity. In 

literature, this slope value is observed for most amorphous silicon materials. However, 

the photoconductivity versus generation rate spectrum indicates that this film shows 

higher σph values than those of other samples. The increase in σph values show that the  

microcrystalline region increases in the microstructure of the material. For the filament 

temperature, Tf=1800 ºC, the slope decreases and reaches to 0.76 which is the value 

generally seen for the undoped microcrystalline silicon. However, the σph values 

decrease due to increasing defect states and dominating amorphous phase in the 
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Figure 3.12  a) σph versus generation rate for µc-Si: H thin films deposited by HWCVD 

method at filament temperatures 1700 ºC, 1800 ºC, and 1880 ºC with 

SC=10%. b) µnτn -product versus generation rate of the same µc-Si: H thin 

films. 
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material. For the lowest Tf=1700 ºC film, the slope γ increases again, which reaches to 

0.9 which is close to unity and also observed for amorphous silicon. The σph values 

indicate that this film exhibits amorphous like characteristic as expected. In addition, 

the majority carrier µnτn products calculated using the σph values given in Figure 3.12a 

are presented as a function of generation rate in Figure 3.12b.  

 

3.3.2 The Effect on the Sub-Bandgap Absorption Spectrum 

 
The effects of filament temperature (Tf) on the electrical, optical and structural 

properties of µc-Si: H thin films deposited by HWCVD technique at filament 

temperatures of 1700 ºC, 1800 ºC, and 1880 ºC with SC=10% were investigated using 

the sub-bandgap absorption coefficient spectrum. The filament temperature affects the 

microstructure of the material. The films deposited at higher filament temperature 

exhibits a transition from amorphous to fully microcrystalline growth (Jadkar et al 

2003). The transition only is observed for the films deposited with higher silane 

concentration.  

DBP yield spectrums for high and low bias light intensities are shown for µc-Si: 

H thin films deposited by HWCVD method at filament temperature Tf=1700 ºC with 

SC=10% in Figure 3.13. The DBP yield spectra for high and low bias light intensities 

exhibit amorphous like characteristics. The effect of bias light intensity is seen in the 

low energy region. The spectrum obtained from high bias light intensity shows higher 

values than those of low bias light intensity in the low energy region. The corresponding 

transmission spectrum is shown in Figure 3.13b. Generally, with increasing filament 

temperature, the microcrystalline region increases in the microstructure of the material. 

For the filament temperature Tf=1800 ºC, the obtained DBP yield spectra for high and 

low bias light intensities are exhibited in Figure 3.14. Even though the investigated film 

deposited at higher filament temperature similar to that of presented in Figure 3.13, the 

film exhibits amorphous like characteristics. On the other hand, for higher filament 

temperature Tf=1880 ºC, the obtained DBP yield spectrums for high and low bias light 

intensities given in Figure 3.15a indicate that the film shows microcrystalline silicon 

like characteristics. There is no big difference observed between the spectra for high and 

low bias light intensities. The optical transmission spectrum is also exhibited in Figure 

3.15b.  
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The absorption coefficient spectra calculated using DBP yield spectra for low 

bias light intensity obtained for the same µc-Si: H thin films illustrated in Figure 3.16. 

As mentioned before the amorphous phase dominants in the microstructure of the thin 

films deposited at lower filament temperatures. This result is also observed in the 

absorption coefficient spectrums obtained for the filament temperatures Tf=1700 ºC and 

Tf=1800 ºC. The filament temperature effect on the microstructure of the material is not 

observed between two spectrums. However, the absolute absorption coefficient 

spectrum for Tf=1800 ºC exhibits some remaining fringes attributed to the 

inhomogeneity present in the bulk of the film. On the other hand, for the filament 

temperature Tf=1880 ºC, the microcrystalline like characteristics is observed in the 

absolute absorption coefficient spectrum. Even though both films deposited with 

filament temperatures of Tf=1700 ºC and Tf=1800 ºC exhibit amorphous like 

characteristics, microcrystalline like characteristic is observed in the films deposited 

with Tf=1880 ºC. This means that the films deposited at higher filament temperature 

shows a transition from amorphous to fully microcrystalline growth. 
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Figure 3.13  a) DBP yield spectrum for high and low bias light intensities for µc-Si: H 

thin films deposited by HWCVD method with SC= 10% and filament 

temperature of 1700 ºC. b) Corresponding transmission spectrum is 

exhibited. 
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Figure 3.14 a) DBP yield spectrum for high and low bias light intensities for µc-Si: H 

thin films deposited by HW-CVD method with SC=10% and filament 

temperature of 1800ºC. b) Corresponding transmission spectrum is 

exhibited. 
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Figure 3.15  a) DBP yield spectrum for high and low bias light intensities for µc-Si: H 

thin films deposited by HWCVD method with SC= 10% and filament 

temperature of 1880 ºC. b) Corresponding transmission spectrum is 

exhibited. 
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Figure 3.16 The calculated absolute α (hν) spectra obtained from DBP low bias 

intensities for three thin films deposited at filament temperatures of 1700 

ºC, 1800 ºC, and 1880 ºC. 
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3.4 The Effects of Microstructure on Dual Beam Photoconductivity 

Method 

 
In the analysis of the DBP and optical transmission spectra, for the some films, 

there was interference fringes left on the absolute α (hν) spectrum after carrying out the 

fringe free calculation of α (hν) spectrum. That was an indication of inhomogeneous 

absorption of monochromatic light in the material. In order to investigate the effects of 

inhomogeneity present in µc-Si: H thin films, DBP measurements were carried out by 

illuminated ac monochromatic light through film side (front) and substrate side (back) 

at the same dc bias light intensity. An example of DBP yield spectra obtained for front 

and back ac illuminations are shown for sample with SC=10% and filament temperature 

of 1700 ºC in Figure 3.17. The measurements conditions are the same for both front and 

back ac illuminations but only the direction of the ac light is different. As clearly seen, 

in high energy region (above 1.2eV) the interference fringes of both spectrums are at the 

same energy values; however the shift begins in back ac illumination below 1.2 eV. 

This indicates that light is not uniformly absorbed throughout the material. The optical 

transmission spectrums obtained for both front and back ac illumination was found to be 

identical as shown inset of Figure 3.17. The resulting α (hν) spectra calculated for front 

and back ac illumination are presented in Figure 3.17b. It is clearly seen that the 

interference fringes remain on absolute absorption spectrum from back ac illumination. 

The reason of remaining fringes in α (hν) spectrum is the non-uniform absorption of the 

monochromatic light due to inhomogeneous structure of µc-Si: H thin film. This 

indicates that there exists a defective interfacial layer which affects the optical and 

electric properties of samples. The defective layer observed in this sample is closer to 

the substrate of material. The phase signals of front and back ac illuminations 

measurements are also shown inset of Figure 3.17b. 

In Figure 3.18, another results of the DBP measurements obtained for front and 

back ac illuminations are shown for sample with SC=6% and filament temperature of 

1700 ºC. It is clearly seen that the interference fringes take place at the same energy 

values in both DBP yield spectrums for front and back ac illumination. However, the 

depth of fringes observed for front ac illumination is higher than that of back ac 

illumination. 
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Figure 3.17  a) DBP yield spectra for µc-Si: H thin film with SC=10% for ac light 

incident from film side and substrate side. Inset of the figure, transmission 

spectrums of both measurements are shown. b) The calculated absolute α 

(hν) spectrum of both measurements are shown. In the inset, the phases of 

both measurements signals are presented. 
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Figure 3.18  a) DBP yield spectra for µc-Si: H thin film with SC= 6% and filament 

temperature 1700 ºC for ac light incident from film side and substrate side. 

Inset of the figure, transmission spectrum of the sample is shown. b) The 

calculated absolute α (hν) spectrum of both measurements are shown. In 

the inset, the phases of both measurements signals are presented. 
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The corresponding transmission spectra obtained for both measurements agree with 

each other given in the inset of Figure 3.18a. Using measured optical transmission and 

DBP yield spectra, the calculated absorption coefficient spectra were presented in 

Figure 3.18b. The calculated absolute α (hν) spectrum for back ac illumination is almost 

free of fringes and has higher α (hν) values at energies below the 1.8 eV. However, 

some interference fringes are observed in the calculated absolute α (hν) spectrum for 

front ac illumination. The remaining fringes indicate that the inhomogeneous defective 

layer can exist through the bulk of the material. On the other hand, at lower energies, 

the absolute α (hν) spectrum for back ac illumination gives higher values. This indicates 

that DBP back illumination probes slightly higher defective layer. Therefore, there is no 

clear information about where the defective layer takes place.  

The similar effect about the inhomogeneity is presented in Figure 3.19 for highly 

crystalline film with SC=2%. The differences between DBP yield spectra for front and 

back ac illuminations are presented in the Figure 3.19a. The interference fringes take 

place at the same energies in both spectra. On the other hand, the modulation depth is 

smaller for back illumination. It is clearly seen in the calculated absolute α (hν) spectra 

for both measurements; some interference fringes remain in the absolute α (hν) spectra 

of front and back ac illumination measurements which can be attributed to the 

inhomogeneous absorption of light during the measurements. However, the depth of 

fringes is higher for front ac illumination. The calculated α (hν) spectrum for front ac 

illumination indicates that the inhomogeneous defective layer can exist closer to the 

bulk of the material.  

As a result, this kind of structural inhomogenities can exist on the surface or 

through the bulk, at the film- substrate interface or combination of all as inferred from 

the calculated absolute α (hν) spectrum for front and back ac illuminations. 
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Figure 3.19  a) DBP yield spectra for µc-Si: H thin film with SC=2% and filament 

temperature 1700 ºC for ac light incident from film side and substrate side. 

Inset of the figure, transmission spectrum of the sample is shown. b) The 

calculated absolute α (hν) spectrum of both measurements are shown. In 

the inset, the phases of both measurements signals are presented. 
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3.5 Conclusions 

 
In this thesis, the effect of silane concentration and filament temperature of the 

hot wire CVD deposited microcrystalline silicon thin films on the optical and electronic 

properties have been investigated. Majority carrier electron µnτn products and sub-

bandgap absorption coefficient spectrum are used for the comparison of different µc-Si: 

H thin films deposited under different conditions. Sub-bandgap absorption coefficient 

spectrum is calculated from DBP yield and optical transmission spectra and finally 

compared with those independently measured using PDS and CPM methods. 

The effect of silane concentration on steady state photoconductivity indicates 

that amorphous silicon films are deposited at SC=10%. They have lower 

photoconductivity and have exponent γ close to unity as reported for a-Si: H films. As 

the silane concentration decreases, σph increases in magnitude and its exponent 

decreases to values around 0.7, which is an indication of recombination process of 

electrons and holes through defect states in the bandgap of thin film silicon. For the 

lowest silane concentration of SC=2%, highly crystalline film is prepared. Magnitude of 

photoconductivity decreases substantially and its exponent becomes 0.5. The exponent 

γ=0.5 is generally observed in crystalline silicon meaning that photogenerated electrons 

recombine directly with holes, no defect states in the bandgap is involved in the 

recombination process.  

The effect of the silane concentration on the sub-bandgap absorption coefficient 

spectrum as determined from the DBP and optical transmission measurements indicate 

that at the SC=10% amorphous structure dominates the characteristics. The α (hν) 

spectrum similar to that of a-Si: H is measured for SC=10% (Klein et al. 2004a). As SC 

decreases, the ratio of the crystalline region to that of amorphous region increases, the 

shape of the α (hν) spectrum becomes similar to that of crystalline silicon. But at lower 

energies, the α (hν) due to defect states present show a variation among the films. The 

degree of defect states present is represented by the α (hν) at 0.8 eV and compared as a 

function of silane concentration. In the microcrystalline growth regime, the α (hν) 

decreases as silane concentration decreases down to 5% value. Further decrease of the 

SC produce highly crystalline in µc-Si: H thin films but the α (hν) starts increasing 

again. The lowest α (hν) values are obtained for films deposited under the SC around 

5%.  
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The α (hν) spectrum of the samples were also compared with those 

independently measured by PDS and CPM measurements. At higher energy region, 

three methods give consistent absorption coefficient spectrum. However, the differences 

in the lower energies are due to differences in the principle of three methods. In 

addition, for some sample there exist interference fringes left on the fringe free 

calculated α (hν) spectrum. These fringes are the indication of inhomogeneous growth 

of µc-Si: H thin film which results in inhomogeneous absorption of light in the sample 

and affects the experimental results of different methods, these effects can be used as a 

probe for the inhomogeneity of sample growth.  

Another deposition condition of the µc-Si: H growth was investigated by 

changing the filament temperature in the HW-CVD deposition process. To see the 

effect of Tf, the highest silane concentration is considered. For SC=10%, Tf is changed 

from 1700 ºC to 1880 ºC. For 1700 ºC and 1800 ºC, still an amorphous structure 

dominates the α (hν) spectrum. However, microcrystalline phase becomes dominant at 

1880 ºC and α (hν) shows a shift to microcrystalline silicon spectrum.  

Finally, the effect of inhomogeneous microstructure in the sample was 

investigated using front and back ac illumination of DBP measurements and absolute α 

(hν) spectra were calculated. It is clearly seen that, for some samples, front and back α 

(hν) spectra show substantial differences due to different absorption path of light in the 

material. A careful evaluation of the results must be carried out for such situations.  
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CHAPTER 4 

 

DISCUSSIONS AND CONCLUSIONS 

 
 

Hydrogenated microcrystalline silicon (µc-Si: H) is a promising thin film 

material for technological applications such as solar cells, flat panel, and optical 

sensors. Its unique properties can be shown as reasons of this popularity. As compared 

with its amorphous and single crystalline from, it has higher optical absorption 

coefficient spectrum in the visible region than single crystalline silicon and it has higher 

optical absorption coefficient spectrum in the infrared region than amorphous silicon. In 

addition, it has higher free carrier mobility values than those of amorphous silicon. 

Furthermore, µc-Si: H does not suffer from the light-induced degradation (known as 

Staebler-Wronski effect), which is a main problem for hydrogenated amorphous silicon 

(a-Si: H) in PV applications. However, its electronic and optical properties strongly 

depend on its microstructure. Therefore, the microstructure is one of the most 

considered properties of µc-Si: H because of showing varying properties under the 

different deposition conditions especially silane concentration and filament temperature 

for HW-CVD prepared thin films.  For such kind of candidates for the photovoltaic 

applications, photosensitivity and the level of defect states present in the material are 

two of the most important fundamental properties of photovoltaic materials. 

Photosensitivity, µnτn–product, was obtained form the steady state photoconductivity 

and the level of defect states are generally estimated from the optical absorption 

coefficient values at lower energies. In this thesis, to understand the optical and 

electronic properties of µc-Si: H thin films deposited by HW-CVD method as a function 

of silane concentration and filament temperature, steady state photoconductivity 

(SSPC), dual beam photoconductivity (DBP), and optical transmission methods were 

used. Absolute absorption coefficient α (hν), spectrum was calculated from DBP and 

optical transmission spectra to see the effect of microstructure on the low energy sub-

bandgap absorption coefficient values. Finally, the absolute α (hν) results are compared 

with those of photothermal deflection spectroscopy (PDS), constant photocurrent 

method (CPM). 
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Steady state photoconductivity measurements were carried out in order to 

investigate the photosensitivity of µc-Si: H thin films due to changing silane 

concentration during the deposition process of HW-CVD method. Log-log plot of 

photoconductivity, σph, versus generation rate results show a linear dependence on the 

generation rate, G, meaning that σph versus generation rate obeys the non-integer power 

law, γσ Gph ∝ .The exponent γ gives direct information about recombination kinetics 

between photogenerated electrons and holes. The value of exponent γ was found to be 

between 0.5-1.0. The obtained exponent values indicate that for higher silane 

concentration, photogenerated free electrons in the conduction band recombine with 

holes in the valence band through the defect states present in the bandgap of µc-Si: H 

thin films, however, for highly crystalline films deposited with lowest silane 

concentration, photogenerated electrons in the conduction band recombine directly with 

holes in the valence band extended states for which the exponent is equal to 0.5. In 

addition, the quantitative information about the mobility lifetime product, µnτn –product, 

of majority carriers is obtained using steady state photoconductivity measurements. The 

obtained results indicate that the µnτn–product decreases with increasing G. For higher 

SC=10%, the lowest µnτn –product values around 10-6 was obtained indicating that 

amorphous phase with highest defects dominates in the bandgap which reduces the 

electron lifetime. Thus, the lowest values of µnτn –product are generally obtained for 

amorphous like film.  As SC decreases, µnτn –product increases and show maximum 

values for films deposited at SC=6%. This region is called as a transition from 

microcrystalline to amorphous structure (Vetterl et. al 2000a, Klein et. al 2004a, Goktas 

et. al 2005b). Further decrease of the SC does not improve the µnτn –products but a 

decrease in photosensitivity is observed for highly crystalline film deposited at SC=2%. 

This indicates that life time of free carriers is reduced due to increased recombination 

centers present on the walls of the crystalline grain boundaries. Such increases in defect 

states are also reported by ESR measurements (Finger et. al 1998b). 

The optical absorption coefficient, α (hν), spectrum of µc-Si: H thin film is 

important to obtaining the information about the electronic and optical properties of the 

material. In addition, at lower energies, the absolute α (hν) values has been taken as a 

comparison criteria for different samples, since it gives information about the level of 

defect states present in the bandgap of the material. Therefore, the sub-bandgap 
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absorption coefficient spectrum is used to compare different materials prepared under 

different deposition conditions.  

Since DBP is a relative photoconductivity measurement technique, the absolute 

absorption coefficient is not directly obtained from DBP measurements. In literature, 

the obtained DBP yield spectrum has been normalized to T&R or PDS spectrum in 

order to obtain the optical α (hν) spectrum in absolute scale. In addition, DBP yield 

spectrum has interference fringes. The fringes in the spectrum must be eliminated using 

fast Fourier Transform, since the absolute absorption coefficient spectrum is free of 

fringes. On the other hand, some important information can be lost during this process 

since these fringes are not only due to interference of light but also due to 

inhomogeneity of the material (Amato et. al 1990). However, in this thesis, to get ride 

of these interference fringes on DBP yield spectrum and the fringe free absolute α (hν) 

spectrum from DBP and optical transmission spectra, a procedure based on Ritter and 

Weiser formula (Ritter and Weiser 1986) was used as explained chapter 2. Using this 

procedure, no information about the inhomogeneity of material lost. Therefore, it gives 

information about the structure of the material as well. The resulting absolute α (hν) 

spectrum are compared with those independently measured by PDS method. In high 

energy region, a perfect overlap was observed in the absolute α (hν) spectra of PDS and 

DBP; however some differences were observed among three spectra for µc-Si: H thin 

films at the lower energy region. It is found that the absolute α (hν) spectrum calculated 

from the raw PDS spectrum is higher than those of DBP, also very noisy at sub-bandgap 

energies. This higher absorption of PDS can be attributed to the substrate absorption 

and higher defective surface layer. On the other hand, the absolute α (hν) spectrum of 

DBP is noisy free and reflects the defect of bulk material. The absolute α (hν) values of 

DBP spectrum in the sub-bandgap energies does not results in absolute absorption 

coefficient. However it reflects the occupied defect states present in the material. This 

situation can be attributed to DBP measurement dependence on the bias light intensities. 

The DBP measurements obtained using low bias light intensity probes the distribution 

of occupied defect states which are very close to that in dark condition. With increasing 

bias light intensity, the density of occupied defect states above the Fermi level 

increases. Therefore, more transitions form these occupied defect states to conduction 

band at bandgap energies occur. As a result of these transitions, the absolute α (hν) 

values show an increase in the spectrum at low energies.  



 77

 At lower energies, the absolute α (hν) values measured by low bias light DBP 

are lower than those obtained from PDS measurements. These differences between PDS 

and DBP spectrums can be attributed to the nature of both methods. This means that 

PDS probes all transition from occupied states to empty states, on the other hand only 

the transition from occupied defect states into empty conduction band extended states 

can be probe by the low bias light DBP measurement. For this reason, the absorption 

coefficient values in the sub-bandgap region are used as a comparison of different 

materials. The obtained results from DBP method were also compared with those of 

constant photocurrent method (CPM). Even though in high energy region, the absolute 

α (hν) spectrums obtained from both methods are in agreement with each other, at low 

energies below the 1.4 eV, some differences between two absolute α (hν) spectrums are 

observed. Since only low generation rate ac monochromatic light used in CPM, which is 

significantly lower than the low bias dc light intensity used in DBP, the obtained CPM 

spectrum shows lower values than low bias light DBP. In order to obtain DBP spectrum 

closer to that CPM spectrum, the intensity of the bias light must be decreased further. 

This has been carried out successfully for some samples. As a result, the absolute 

absorption coefficient spectra obtained from two methods agree very well at all 

energies.  Finally, absolute α (hν) spectrum obtained by three different methods are 

agree very well at higher energies for all the samples indicating that three methods  

probe the same distribution of states. However, at lower energies, sub-bandgap 

absorption results must be carefully evaluated to understand the effects of deposition 

conditions. 

The absolute α (hν) values at 0.8 eV measured by both PDS, and DBP low bias 

light intensity were used to investigate the defect states present in the material. As PDS 

and low bias light DBP methods compared, PDS always results in higher sub-bandgap 

absorption coefficients. However, both methods indicate the similar functional 

dependence on the SC as shown in Figure 3.9. It is found that the µc-Si: H thin films 

deposited at lower silane concentration show higher absorption α (hν) values at 0.8 eV. 

It can be inferred that highly crystalline µc-Si: H thin films contain high defect density. 

As silane concentration increases the absolute α (hν) values at 0.8 eV decrease and give 

minima at around 5% of SC. At this critical value of silane concentration (SC=5%), a 

transition from microcrystalline to fully amorphous phase has been observed. The 

absolute α (hν) values at 0.8 eV tend to increase as silane concentration further 

increases. These results show that the µc-Si: H thin films deposited in the transition 
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region have lowest defect density and will result in a better performance in solar cells. 

As we have discussed in previous section, these films show the highest photosensitivity 

consistent with α (hν) results. 

Moreover, the defect states inferred from absolute α (hν) values at 0.8 eV 

obtained from PDS and low bias DBP measurements is also consistent with the defect 

density measured by ESR method (Yamamoto et. al 2002, Vetterl et. al 2002, Shah et. 

al 2000b, Mai et. al 2004, Klein et. al 2003c, Gross et. al 2001). Higher defect densities 

are measured by the ESR measurements for highly crystalline µc-Si: H thin film. On the 

other hand, ESR measurements give information about only three paramagnetic defects 

in undoped µc-Si: H, which gives resonance at g= 2.0052, g= 2.0043. These two defects 

represent the majority of deep defects in the gap of µc-Si: H and in addition, defects 

with g= 1.996-1.998 are also observed. The resonance at 2.0052 is attributed to Si 

dangling bonds (db’s). The resonance at 2.0043 is still unclear, but the speculations in 

the literature show that this resonance is caused by Si db’s in oxygen rich regions.  The 

last measured resonance at 1.996-1.998 is attributed to conduction electrons (CEs) in 

the crystalline regions of the material. Although ESR senses only the paramagnetic 

defects, DBP can probe not only paramagnetic defect states but also non-paramagnetic 

(charged) defect states. The non-paramagnetic defect states consist of doubly occupied 

Si dangling bonds (negatively charged) and unoccupied Si dangling bonds (positively 

charged).  These defect states are most common defects in a-Si: H films and affect high 

and low bias DBP measurements. Therefore, it is impossible to identify which defects 

cause the sub-bandgap absorption coefficient measured at lower energies.  

The effect of silane concentration on the absolute absorption coefficient 

spectrum calculated using DBP and optical transmission spectra were investigated for 

µc-Si: H deposited by HW-CVD with filament temperature of 1700 ºC. For higher 

silane concentration SC=10% film, the obtained absolute α (hν) spectrum is similar to 

that of a-Si: H films. This means that the film exhibits amorphous like characteristics. 

As SC decreases, the crystalline region increases and the shape of the absolute α (hν) 

spectrum becomes similar to that of crystalline silicon. For SC=7%, it is clearly seen 

that the shape of the absolute α (hν) spectrum becomes more like that of crystalline 

silicon due to dominating microcrystalline phase in microstructure. As crystalline phase 

increases with decreasing SC, the microstructure substantially changes the absolute α 

(hν) spectrum. The α (hν) decreases as SC decreases and given a minimum around 

SC=5%. As SC decreases further, highly crystalline microcrystalline silicon thin film is 
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produced. However, the absolute α (hν) values starts increasing again. It indicates that 

the defect density present in the material increases. Therefore, the lowest α (hν) values 

are obtained for film deposited under the SC around 5%. These observations are 

consistent with photosensitivity results of the same samples, where highest µnτn –

products are obtained for sample SC=5-6% and lowest µnτn –products values are 

obtained for highly crystalline and amorphous sample. These results indicate that solar 

cells prepared with absorber layers in the SC=5-6% region will exhibit the band solar 

cell characteristics. Such results have already reported for the µc-Si: H solar cells by 

several groups (Vetterl et. al 2000a, Klein et. al 2004a, Goktas et. al 2005b). 

The microstructure of µc-Si: H deposited by HWCVD method strongly depends 

on another deposition condition, filament temperature. Therefore, the effect of filament 

temperature on the microstructure of µc-Si: H deposited using HWCVD method at 

filament temperature between 1700 ºC-1880 ºC with constant silane concentration 

SC=10% was investigated. Steady state photoconductivity measurements indicate that 

for higher filament temperature Tf=1880 ºC, the slope γ is equal to 0.96, which is very 

close to unity and generally observed for amorphous silicon. However, the results 

indicate that the film deposited at Tf=1880 ºC shows higher photoconductivity values 

which is related to the increasing microcrystalline region in material. With decreasing 

filament temperature, the amorphous phase dominates in the microstructure. Therefore, 

the growths of films at lower filament temperature exhibit amorphous like 

characteristics.  

The effects of filament temperature on the absolute α (hν) spectrum obtained 

were investigated for µc-Si: H thin films deposited at constant SC=10% with changing 

filament temperature between 1700-1880 ºC. For filament temperature of 1700 ºC, the 

obtained absorption coefficient spectrum exhibits amorphous like characteristics. As 

filament temperature increases to 1880 ºC, the α (hν) spectrum is similar to that 

measured for Tf=1700 ºC, i.e. microstructure is still amorphous in nature. When 

filament temperature increases to 1880 ºC, there exists a substantial change in the α (hν) 

spectrum and it becomes similar to that of crystalline silicon. This indicates that growth 

of microcrystalline phase becomes dominant and absorption edge shifts to lower 

energies (Jadkar et. al  2003). 

The effect of filament temperature in microcrystalline growth regime is also 

interesting note. However, a complete set for silane concentration from each filament 
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temperature was not available. Therefore, there is no comparison can be done for such 

series of µc-Si: H films. 

 Finally, it was found that for most film, obtained calculation of absorption 

coefficient spectrum exhibited interference fringes left on the fringe free calculated α 

(hν) spectrum. There is an indication of inhomogeneous absorption of light due to 

defective layer on the surface, at the substrate- film interface or inhomogenities 

throughout the bulk (Goktas et. al 2005b). In the microcrystalline growth, it generally 

exists a defective amorphous layer on the glass substrate than columnar crystalline 

regions forms on film growth. In addition, at the top surface, rough defective surface 

layer also exists. In order to investigate the level of inhomogeneity and its effect on the 

α (hν) spectrum, DBP measurements were carried out by ac monochromatic light 

through film and through substrate side. It is found that there exists difference between 

spectra measured through film and substrate side for the same sample. The level of 

interference fringes left on the α (hν) spectrum changes and magnitude of α (hν) 

generally is higher for back ac measurements for most of the samples. A highly 

defective interface layer at the film substrate interface and/or inhomogeneity throughout 

the bulk exists. They affect optical measurements and care must be taken in evaluation 

of real α (hν) spectrum. This effect exists exactly same in nature for α (hν) spectrum 

measured by three different absorption spectroscopy methods, resulting in exactly the 

same shape and magnitude of interference fringes left on the fringe free calculated α 

(hν) spectrum. For the future study, the nature and degree of the inhomogeneity should 

be investigated in detailed when sample is in high vacuum environment and for 

different temperature regimes.   
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APPENDIX A 

 
COMPUTER PROGRAM USED FOR DBP 

MEASUREMENTS 
 

 
This program used for DBP measurements was written in ObjectBench software. 

It was first written by D. Akdas on this system and improved during the previous and 

this thesis study. It used to control lock-in amplifier, monochromator driver, and filter 

driver and for data acquisition between computer and lock-in amplifier. The commands 

are written in regular fonts and explanations are written in italic fonts. 

start: the main loop  

graphcomment$="Comments about the graph "  

sensflag=0:timeflag=0.3:oldflag=0.3  

dir$="D: \" Defines the directory that data willl be stored  

input "sample name",sampname$: filecomment$=sampname$  

rem ***********************************  

input "data file name",dbs$  

format #1,energy["energy=","eV"],average["average 

current=","A"],avgdevia["angle=",""],-  

ratio["dc/ac=",""],absorp["absorp. coeff.=",""]  

format #2,energy["energy=","eV"],curr[" current=","a"],avgdevia["angle=",""]  

format #3,energy["energy=","eV"],Logaverage["average 

current=","A"],avgdevia["angle=",""],Logratio["dc/ac=",""],Logabsorp["absorp. 

coeff.=",""]  

open #1, file= dir$+dbs$+".dat",desc$,overwrite  

rem open #1, file= dbs$+".dat",desc$,overwrite  

open #2, file= "v"+dbs$+".dat",desc$,overwrite  

open #3, file= "graph_f.dat",desc$,overwrite  

open #3, graph= "dualbeam",overwrite  

open #3, screen  

 

The files to store data and to use screen are defined  

rem ***********************************  
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input "first value of energy",start Initial values are defined  

input "step value for energy",step  

input "input number of measurements for each energy",n  

input "enter dc current dueto bias light(format 1e-5 )",dcac  

rem ******************************************

 

rem ******************************************  

gosub fluxRead Flux file will be read and will be used to normalize raw current  

rem*********************************************  

Lock-in amplifier will be initialized  

gpibwrite(8,"OUTX 1,OVRM 1"):gpibwrite(8,"*RST"):gpibwrite(8,"*CLS"):  

gpibwrite(8,"FMOD 0"):gpibwrite(8,"DDEF 1,1,0"):gpibwrite(8,"DDEF 2,1,0"): 

gpibwrite(8,"ICPL 0"):gpibwrite(8,"ISRC 2"):gpibwrite(8,"OFSL 3")  

gpibwrite(8,"IGND 1"):rem gpibwrite(8,"SENS 23"):gpibwrite(8,"SYNC 1")  

gpibwrite(8,"OFLT 9"):gpibwrite(8,"AGAN"):gosub delay4:gosub delay4  

gpibwrite(8,"ARSV"):gosub delay4:gosub delay4:gpibwrite(8,"APHS")  

gosub delay4:gosub delay4:gosub delay4:gpibwrite(8,"RMOD 1")  

gosub delay4:gosub delay4:gosub delay4:  

rem  

energy=start the initial energy value is defined  

wl=6200/energy: fark=(2.5-start) : fark=fark/(0.02) : bbb$=str$(fark) : 

z=val(mid$(bbb$,1,2))  

loop: the main loop of the measurement  

sum=0: dvsum=0: r=0: z=z+1  

rem **********************************  

loopa:  

r=r+1  

 

The value of CH1 and CH2 will be read  

gpibwrite(8,"OUTR? 1") : a$=gpibread$(8) : gpibwrite(8,"OUTR? 2") : 

j$=gpibread$(8)  

curr=val(mid$(a$,1)) : standdev(r)=curr : ? "current=",curr," A" : devia=val(mid$(j$,1))  

angldev(r)=devia : ? devia : sum=sum+curr : dvsum=dvsum+devia  

rem **************  
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write #2 The value of CH1 and CH2 wil be stored for temporary use  

if timeflag=0.3 then gosub delay3msec Here the appropriate delay is set  

if timeflag=1 then gosub delay1sec  

if timeflag=3 then gosub delay3sec  

if timeflag=10 then gosub delay10sec  

if timeflag=30 then gosub delay30sec  

rem ************************* 

 

if r<n then goto loopa For each energy value n data will be read  

average=sum/n : avgdevia=dvsum/n The current and phase averaged  

rem *************************************  

b$=str$(wl) : wv=val(mid$(b$,1,5)) : realw=2*wv  

ratio=dcac/average the value of dc current over ac current is calculated  

absorp=average/y(z) the average raw current is divided to flux value to normalize it  

Logabsorp=0.43429489*log(absorp) To show data on the screen in log scale  

Logaverage=0.43429489*log(average) To show data on the screen in log scale  

Logratio=0.43429489*log(ratio) To show data on the screen in log scale  

Write #1 The raw current, phase, dc over ac ratio and normalized current is stored  

write #3 The data is written on the screen in log scale  

if z=94 then goto bitti  

Monochromator will be set to next energy value (wavelenght)  

energy=energy-step  

wl=6200/energy : c$=str$(wl) : wk=val(mid$(c$,1,5)) : filterw=2*wk  

kf=wk-wv : d$=str$(kf) : kw=0.5*kf : f$=str$(kw) : wt=val(mid$(f$,1,3))  

i$=str$(wt) : kg=0.3*kf : g$=str$(kg) : wy=val(mid$(g$,1,3)) : h$=str$(wy)  

rem -------------------------------  

if energy=1.86 then gosub ttl Filters willl be changed  

if energy=1.36 then gosub ttl Filters willl be changed  

if energy=1.0 then gosub ttl Filters willl be changed  

gosub delay2  

gpibwrite(14,"C") : gpibwrite(14,"E")  

if energy>=0.9 then gosub shortw  

if energy<0.9 and energy>0.8 then gosub midw  

if energy<=0.8 then gosub longw  
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gosub delay  

rem ********************  

The fallowing delay is used to wait for saturation of signal after monochromator 

changed the next energy value  

if timeflag=0.3 then gosub delay1sec : if timeflag=0.3 then gosub delay1sec  

if timeflag=1 then gosub delay1sec : if timeflag=1 then gosub delay1sec  

if timeflag=1 then gosub delay1sec : if timeflag=3 then gosub delay3sec  

if timeflag=3 then gosub delay3sec : if timeflag=3 then gosub delay3sec 

if timeflag=3 then gosub delay3sec : if timeflag=10 then gosub delay10sec  

if timeflag=10 then gosub delay10sec : if timeflag=10 then gosub delay10sec  

if timeflag=10 then gosub delay10sec : if timeflag=10 then gosub delay10sec  

if timeflag=30 then gosub delay30sec : if timeflag=30 then gosub delay30sec  

if timeflag=30 then gosub delay30sec : if timeflag=30 then gosub delay30sec  

if timeflag=30 then gosub delay30sec  

gosub bosoku  

xxx=1 The value of ac current will be read to set lock-in amplifier to the appropriate 

sensitivity and time constant  

lopsens:  

gpibwrite(8,"OUTR? 1") : a$=gpibread$(8)  

gpibwrite(8,"OUTR? 2") : j$=gpibread$(8)  

curr=val(mid$(a$,1)) : ? "current=",curr," A"  

devia=val(mid$(j$,1)) : average=average+curr  

xxx=xxx+1  

if xxx<6 goto lopsens  

average=average/5  

gosub delay : gosub delay  

Lock-in amplifier will be set to the appropriate sensitivity and time constant will be set 

depending on the value of signal  

if 4.9e-7<=average and average<1e-6 then gosub sensita :  

if 1.9e-7<=average and average<4.9e-7 then gosub sensitb  

if 9e-8<=average and average<1.9e-7 then gosub sensitc  

if 4.5e-8<=average and average<9e-8 then gosub sensitd  

if 1.5e-8<=average and average<4.5e-8 then gosub sensite  

if 8e-9<=average and average<1.5e-8 then gosub sensitf  
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if 4e-9<=average and average<8e-9 then gosub sensith  

if 1.5e-9<=average and average<4e-9 then gosub sensitk  

if 7.5e-10<=average and average<1.5e-9 then gosub sensitl  

if 3.5e-10<=average and average<7.5e-10 then gosub sensitm  

if 1.5e-10<=average and average<3.5e-10 then gosub sensitn  

if 7.5e-11<=average and average<1.5e-10 then gosub sensito  

if 3.5e-11<=average and average<7.5e-11 then gosub sensitp

if 1.5e-11<=average and average<3.5e-11 then gosub sensitr  

if 7.5e-12<=average and average<1.5e-11 then gosub sensits  

if 3.5e-12<=average and average<7.5e-12 then gosub sensitt  

if 1.5e-12<=average and average<3.5e-12 then gosub sensitab  

if 6.5e-13<=average and average<1.5e-12 then gosub sensitac  

if 2.5e-13<=average and average<6.5e-13 then gosub sensitad  

if 8e-14<=average and average<2.5e-13 then gosub sensitae  

if 1e-14<=average and average<8e-14 then gosub sensitaf  

if average<=1e-14 then gosub sensitag  

if sensflag>=15 then gosub tflag300msec : if sensflag=14 then gosub tflag1sec  

if sensflag=13 then gosub tflag3sec : if sensflag<13 and sensflag=>10 then gosub 

tflag10sec  

if sensflag<10 then gosub tflag30sec  

if sensflag>=15 and oldflag<>timeflag then gosub tcons300msec  

if sensflag=14 and oldflag<>timeflag then gosub tcons1sec  

if sensflag=13 and oldflag<>timeflag then gosub tcons3sec  

if sensflag=12 and oldflag<>timeflag then gosub tcons10sec  

if sensflag=11 and oldflag<>timeflag then gosub tcons10sec  

if sensflag=10 and oldflag<>timeflag then gosub tcons10sec  

if sensflag<10 and oldflag<>timeflag then gosub tcons30sec  

rem *****************************  

if timeflag=0.3 then gosub delay1sec : if timeflag=0.3 then gosub delay1sec  

if timeflag=1 then gosub delay1sec : if timeflag=1 then gosub delay1sec  

if timeflag=1 then gosub delay1sec : if timeflag=1 then gosub delay1sec  

if timeflag=1 then gosub delay1sec  

if timeflag=3 then gosub delay3sec : if timeflag=3 then gosub delay3sec  

if timeflag=3 then gosub delay3sec : if timeflag=3 then gosub delay3sec  
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if timeflag=3 then gosub delay3sec : if timeflag=3 then gosub delay3sec  

if timeflag=10 then gosub delay10sec : if timeflag=10 then gosub delay10sec  

if timeflag=10 then gosub delay10sec : if timeflag=10 then gosub delay10sec  

if timeflag=10 then gosub delay10sec : if timeflag=10 then gosub delay10sec  

if timeflag=30 then gosub delay30sec : if timeflag=30 then gosub delay30sec  

if timeflag=30 then gosub delay30sec : if timeflag=30 then gosub delay30sec  

if timeflag=30 then gosub delay30sec : if timeflag=30 then gosub delay30sec  

if timeflag=30 then gosub delay30sec : 

 

if z<=93 then goto loop  

bitti:  

gosub delay  

? "Wait 30 seconds to finish the experiment"  

gosub delay  

gosub back Monochromator will be set to the initial energy value  

close #1 : close #3 : stop  

read dbs$+".dat",d : print d.time$  

if not yesnobox("Okey?") then goto start  

stop  

bosoku:  

gpibwrite(8,"OUTR? 1") : abc$=gpibread$(8) : gpibwrite(8,"OUTR? 2") : 

jbc$=gpibread$(8)  

return  

ttl:  

gpibwrite(8,"AUXV 1,1.4") : gpibwrite(8,"AUXV 1,0.8")  

return  

sensita: : gpibwrite(8,"SENS 26") : sensflag=26 : return  

sensitb: : gpibwrite(8,"SENS 25") : sensflag=25 : return  

sensitc: : gpibwrite(8,"SENS 24") : sensflag=24 : return  

sensitd: : gpibwrite(8,"SENS 23") : sensflag=23 : return  

sensite: : gpibwrite(8,"SENS 22") : sensflag=22 : return  

sensitf: gpibwrite(8,"SENS 21") : sensflag=21 : return  

sensith: gpibwrite(8,"SENS 20") : sensflag=20 return  

sensitk: gpibwrite(8,"SENS 19") : sensflag=19 : return  
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sensitl: gpibwrite(8,"SENS 18") : sensflag=18 : return  

sensitm: gpibwrite(8,"SENS 17") : sensflag=17 : return  

sensitn: gpibwrite(8,"SENS 16") : sensflag=16 : return  

sensito: gpibwrite(8,"SENS 15") : sensflag=15 : return  

sensitp: gpibwrite(8,"SENS 14") : sensflag=14 : return  

sensitr: gpibwrite(8,"SENS 13") : sensflag=13 return  

sensits: gpibwrite(8,"SENS 12") : sensflag=12 return  

sensitt: gpibwrite(8,"SENS 11") : sensflag=11 : return  

sensitab: gpibwrite(8,"SENS 10") : sensflag=10 : return  

sensitac: gpibwrite(8,"SENS 9") : sensflag=9 : return 

sensitad: gpibwrite(8,"SENS 8") : sensflag=8 return  

sensitae: gpibwrite(8,"SENS 7") : sensflag=7 return  

sensitaf: gpibwrite(8,"SENS 6") : sensflag=6 return  

sensitag: gpibwrite(8,"SENS 5") : sensflag=5 return  

shortw: gpibwrite(14,"V100,S") : gosub delay : gpibwrite(14,"G+"+d$+",S"): return  

midw: gpibwrite(14,"V100,S") : gpibwrite(14,"G+"+d$+",S") : return  

longw: gpibwrite(14,"V100,S") : gpibwrite(14,"G+"+d$+",S") : return  

rem *********************************  

tflag300msec: timeflag=0.3 : return  

tflag1sec: timeflag=1 : return  

tflag3sec: timeflag=3 : return  

tflag10sec: timeflag=10 : return  

tflag30sec: timeflag=30 : return  

tcons300msec: gpibwrite(8,"OFLT 9") return  

tcons1sec: oldflag=timeflag : gpibwrite(8,"OFLT 10") return  

tcons3sec: oldflag=timeflag : gpibwrite(8,"OFLT 11") : return  

tcons10sec: oldflag=timeflag : gpibwrite(8,"OFLT 12") : return  

tcons30sec: oldflag=timeflag :gpibwrite(8,"OFLT 13") return  

back: gpibwrite(14,"V120,S") : gpibwrite(14,"G-7208,S") :return  

rem ---------------------------------  

delay0: t=time delay01:if time-t<500 then goto delay01 : return  

delay: t=time delay0a1:if time-t<1000 then goto delay0a1 : return  

rem --------------------------------------  

delay3msec: t=time : delay111:if time-t<1000 then goto delay111: return  
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delay1sec: t=time : delay1sa:if time-t<1000 then goto delay1sa  

return  

delay3sec: t=time : delay1:if time-t<3000 then goto delay1 : return  

delay10sec: t=time : delay133:if time-t<10000 then goto delay133 : return  

delay30sec: t=time : delay1a1:if time-t<30000 then goto delay1a1 : return  

delay4: t=time : delay5:if time-t<6000 then goto delay5 : return  

delay2: t=time: delay5ed:if time-t<3 then goto delay5ed : return  

delayshort: t=time : delayshrt:if time-t<10000 then goto delayshrt : return  

delaymidle: t=time : delaymid:if time-t<60000 then goto delaymid : return  

delaylong: t=time : delayl:if time-t<150000 then goto delayl :return

 

arabek: t=time : delayl123:if time-t<6000 then goto delayl123 :return  

fluxRead: flux file is to be read into y variable  

dim y(94) : m=0 : read "D:\name ",oku  

k=0 : okut: k=k+1 : y(k)=oku(k,3) :rem print "y(",k,")",y(k)  

if k<94 then goto okut : return  
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APPENDIX B 

 

COMPUTER PROGRAM FOR CALCULATION OF α(hν) 

SPECTRUM 

 
This program was written by O. Goktas in ObjectBench software and is used to 

calculate absolute absorption coefficient from DBP yield spectrum. It calculates the 

absorption coefficient based on the procedure discussed in Chapter 2. 

 

filecomment$="Comments about the data" 

input "data file name",dbs$ 

input "tickness",d 

format #1,energy["energy","eV"],alfa["absolute alfa","cm^-1 "], abstr["absolute tr", " "] 

open #1,file="folder name\"+dbs$+".dat",desc$,overwrite 

format #2,energy["energy","eV"],absalfa["absolute alfa","cm^-1 "], abstr["absolute tr", 

" "] 

 open #2,file="alfatr.dat",desc$,overwrite 

format #3,energy["energy","eV"],alfalog["absolute alfa","cm^-1 "], abstr["absolute tr", 

" "] 

open #3,file="g123.dat",desc$,overwrite 

open #3, graph= "alfa tr",overwrite 

 

Rxf=0.41 

Tx=0.05 

gosub troku 

gosub dbpoku 

maxbul: 

dim z(94) 

temp=0 

trmax=0 

? "max bulunuyor" 
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k=0 

kars: 

k=k+1 

t(k)=oku(k,4) 

if t(k)>trmax then gosub degistir 

rem print k,t(k) 

if k<boyut then goto kars 

? "trmax",trmax 

absolutetr: 

k=0 

trfark=1000 

tx=0.05 

kkk2: 

k=k+1 

t(k)=t(k)*0.92/trmax 

 

rem print k,t(k) 

fark=abs(t(k)-tx) 

if fark<trfark then gosub exbul 

if k<boyut then goto kkk2 

? trmax 

? ex 

? trfark 

rem burdan sonra Ax=1-Tx-Rx formulunden absolute A 

rem  bulunacak 

Ax=1-Tx-Rxf 

gosub absoltealfa 

gosub alfahesapfront 

gosub dosyayaz  

rem **** absolute alfa hesaplaniyor***** 

stop 

 

alfahesapfront: 

r2=0.10 
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dim alfa(boyutdbp) 

k=0 

hh: 

k=k+1 

alfa(k)=(1/d)*(ln(0.5*((1-r2)*(1+Alf(k)/T(k))+sqrt((1-r2)*(1-

r2)*(1+Alf(k)/T(k))*(1+Alf(k)/T(k))+4*r2)))) 

if k<boyutdbp then goto hh 

return 

 

degistir: 

trmax=t(k) 

return 

troku: 

m=0 

? "transmission okunuyor" 

read "*.*",oku  

boyut=oku.rows  

? boyut 

input akl$ 

dim t(boyut) 

dim z(boyut) 

k=0 

 

okut: 

k=k+1 

t(k)=oku(k,4) 

rem print k,t(k) 

if k<boyut then goto okut 

return 

 

dbpoku: 

? "DBP file  okunacak" 

read "c:\OB\Data\absolutedeneme\*.*",okudbp  

boyutdbp=okudbp.rows  
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? boyutdbp 

input akl$ 

dim A(boyutdbp) 

k=0 

 

okut23: 

k=k+1 

A(k)=okudbp(k,5) 

rem print k,A(k) 

if k<boyutdbp then goto okut23 

return 

 

exbul: 

trfark=fark 

ex=k 

return 

 

absoltealfa: 

dim Alf(boyutdbp) 

? "absolute alfa hesaplanacak" 

k=0 

c=ex 

okut23c: 

k=k+1 

Alf(k)=A(k)*Ax/A(c) 

rem print k,Alf(k) 

if k<boyutdbp then goto okut23c 

return 

 

dosyayaz: 

k=0 

kkk123: 

k=k+1 

energy=okudbp(k,1) 
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absalfa=Alf(k) 

abstr=t(k) 

alfa=alfa(k) 

write #1 

alfalog=log(alfa(k)) 

write #2 

write #3 

if k<boyutdbp then goto kkk123 

return 

 


