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ABSTRACT

CLASSICAL AND QUANTUM EULER EQUATION

In the present thesis we give generalization of analytical mechanics to describe dy­

namical systems with dissipation. The Lagrangian function in this case is determined by

non­stationary pseudo­Riemannian metric for the kinetic energy, and by general quadratic

form, non­diagonal in the generalized coordinates and velocities. Skew symmetric non­

diagonal terms in our approach play the role of dissipation coefficients. As an application

we study in details the classical damped harmonic oscillator. We show that two known

formulations of this oscillator, the Bateman dual and the Caldirola­Kanai formulations are

particular realizations of our general approach. The Hamiltonian formulation and quan­

tization of the model in both representations are given. Moreover Ostrogradsky general­

ization of Lagrangian and Hamiltonian formalism for description of systems with higher

order derivatives and its application to the constant coefficient equations of an arbitrary

order are considered. We construct related with the last one the Euler differential equa­

tion of an arbitrary order and its Lagrangian and Hamiltonian structure. Quantum Euler

systems are introduced and solved for the stationary Schrödinger picture. Non­stationary

nonlinear quantum models corresponding to arbitrary Euler Hamiltonian are solved ex­

actly in the Heisenberg picture.
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ÖZET

KLASİK VE KUANTUM EULER DENKLEMİ

Bu tezde, dağılımlı dinamik sistemlerin tarifi için analitik mekanikte bir genelleme

verilmiştir. Bu durumda, Lagrangianın kinetik kısmı durağan ve köşegen olmayan Rie­

mannianımsı (pseudo­Riemannian) metrik ile genelleştirilmiş koordinatlarda ve hızlarda

os gılma kat­belirlenmiştir. Yaklaşımımızda simetrik ve k¨ ¸egen olmayan terimler da˘

sayısı rolü oynamıştır. Bir uygulama olarak klasik sönümlü harmonik salınıcı detaylıca

çalışılmıştır. Bu salınıcının iki bilinen formulasyonunun; Bateman dual formulasyonu

ve Cardirola­Kanai formulasyonu, genel yaklaşımımızın ozel durumları olarak ortaya¨

konulmuştur. Her iki modelin temsilinde de Hamiltonian formulasyonu verilmiş, ayrıca

kuantizasyon yapılmıştır. Yüksek dereceden türevli sistemlerin tanımı için Lagrangian

ve Hamiltonian formalisimlerinin Ostogradski genellemesi verilmiş ve bunun gelişigüzel

sabit katsayılı denklemlere uygulaması yapılmıştır. Son olarak gelişigüzel dereceli Euler

differansiyel denklemini veren Lagrangian ve Hamiltonian yapıları çalışılmıştır. Kuan­

gan Schr¨ ¸ ¨ umlenmiştir.tum Euler sistemleri tanıtılmış ve dura˘ ondinger resmi için coz¨

Gelişigüzel Euler Hamiltoniana karşılık gelen durağan olmayan lineer olmayan kuantum

modelleri Heisenberg resminde tam olarak coz¨ us ur.¸ ¨ ulm¨¸t¨
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CHAPTER 1

INTRODUCTION

The quantum damped oscillator has been studied to understand dissipation in

quantum theory since the damped harmonic oscillator is one of the simplest quantum

systems displaying the dissipation of energy.

Quantum damped harmonic oscillator is studied within two model oscillators. One

representation is the Bateman-Feshbach-Tikochinsky oscillator (Bateman oscillator) as a

closed system with two degrees of freedom. The other representation is Caldirola-Kanai

oscillator as an open system with one degree of freedom.

The Bateman-Feshbach-Tikochinsky damped harmonic oscillator described as an

open system in which energy is dissipated by interaction with a heat bath. This is when

quantization of a damped harmonic oscillator leads to so called Bateman’s dual system.

Bateman has shown that to apply the standard canonical formalism of classical mechanics

to dissipative systems, one can double the numbers of degrees of freedom. The new

degrees of freedom are assumed to represent a reservoir, also called heat bath. Applying

this idea to damped harmonic oscillator one obtains a pair of damped oscillators ,so called

Bateman’s dual system (Bateman 1931). This system includes a primary one and its time

reversed image. The Bateman dual Hamiltonian has been rediscovered by Morse and

Feshbach and the detailed quantum mechanical analysis was performed by Feshbach and

Tikochinski (Feshbach and Tikochinsky 1977). The quantum Bateman system was then

analyzed by many authors, for review and references (Dekker 1981, Um et al. 2001 ).

Caldirola - Kanai model is a one-dimensional system with an exponentially in-

creasing mass (Caldirola 1941, Kanai 1948) and the corresponding Lagrangian given by

Bateman (Bateman 1931). This oscillator is an open system because its parameters such

as mass or frequency depend explicitly on time. The fact that it’s classical motion de-

scribes a damping motion has motivated the investigation of the Caldirola-Kanai Hamil-

tonian as a quantum damped system. The connection between two models has been found

(Dekker 1981).

The goal of the present thesis is to study damped harmonic oscillator in the clas-

sical and quantum mechanical frames and then to show the relation with Euler equation
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again classical and quantum cases. This is why we divide this thesis into two parts.

In the first part, we consider dissipation in analytic mechanics and quantum me-

chanics. In chapter 2 we give the basic notions in analytic mechanics. In section 2.1 we

introduce the basic postulates of analytic mechanics. In section 2.2 Lagrangian formu-

lation is shortly reviewed.The Legendre transformation, Hamiltonian formalism, Poisson

brackets and canonical transformations are studied in section 2.3.

In chapter 3 we give a generalization of analytical mechanics and dissipation. In

section 3.1 we consider the standard approach to dissipation and show it is not suitable

for Hamiltonian formalism. In section 3.2 we give generalized Lagrangian formalism for

dissipative linear oscillations which allows to study dissipative systems. This is why we

start from linear oscillations in quadratic form, then give a formulation with dissipation.

After that, some examples are considered for dissipative Lagrangian. Also Hamiltonian

formulation of generalized analytical mechanics is discussed.

In chapter 4 we study the classical damped harmonic oscillator. In section 4.1

Damped harmonic oscillator problem is solved. Then we show reduction of the damped

harmonic oscillator equation from the telegraph equation. Bateman’s formalism for

damped harmonic oscillator is given in section 4.2 and Caldirola-Kanai formalism is

given in section 4.3. We show in section 4.4 how to pass from Bateman’s formalism to

the Caldirola-Kanai formalism. In section 4.5, the hyperbolic form of Bateman’s damped

harmonic oscillator is discussed.

Chapter 5 is devoted to the quantum damped harmonic oscillator. In section 5.1

Hamiltonian formulation and canonical quantization are constructed. Then in sections 5.2

and 5.3 quantization of the Batemans and Caldirola-Kanai’s damped harmonic oscillators

are shown.

In the second part, we discuss the Euler equation as follows: In chapter 6 we con-

sider generalized analytical mechanics with higher derivatives. In section 6.1 we give the

generalization of analytical mechanics for higher derivatives. In section 6.2 the general-

ized Lagrange and Hamiltonian formalisms for higher degrees are shown. In section 6.3

the generalized form of Bateman’s Lagrangian is given.

In chapter 7 we deal with the Euler equation. In section 7.1 we discuss how the

Euler equation appears in physical and mathematical problems. We solve Dirichlet prob-

lem for a circular disk as a mathematical example and a particle in a sphere is considered

2



as a physical example as a third example we gave the Euler equation for radiation damp-

ing. In section 7.2 the Lagrangian formalism of the Euler equation for N = 2 is discussed

with the concept of self-adjoint differential operators . In section 7.3 the Lagrangian for-

mulation of the Euler equation for the special case, N = 2l is given and then several

examples of the Euler equation are studied.

In chapter 8 quantum Euler equation is studied. In section 8.1 quantum Euler

equation is discussed in the stationary case. Furthermore in the subsections, the Euler

Equation in Heisenberg-Weyl and Fock-Bargmann representations are given and Euler

Hamiltonian in terms of the standard harmonic oscillator Hamiltonian is formalized. In

section 8.2 quantum Euler equation in the non-stationary case is studied with the exact

solutions for non-linear Heisenberg equations. In section 8.3 quantum Euler equation for

N = 2 is given in Schrödinger picture.

In conclusion we discuss the classical and quantum aspects of the Euler equation

and its relation with damped harmonic oscillator. In Appendix A solution of the constant

coefficient equation is discussed in detail. In Appendix B the integrating factor is found

for self-adjoint differential equation . In Appendix C quantum fundamentals including

postulates of quantum mechanics, Heisenberg uncertainty principle, Hilbert space, linear

operators etc. are given. In Appendix D the stationary Schrödinger equation for the stan-

dard harmonic oscillator is solved and Hermite polynomials are presented. In Appendix

E, constant relations of the Euler equation are given in two different ways. In Appendix

F quantum dynamics is discussed. Dynamical behavior of a quantum system is given by

the the Schrödinger picture and the Heisenberg picture.
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Part I

DISSIPATION IN ANALYTICAL

MECHANICS AND QUANTUM

MECHANICS
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CHAPTER 2

FUNDAMENTAL CONCEPTS OF ANALYTICAL

MECHANICS

2.1. Basic Postulates of Analytical Mechanics

Definition 2.1 The number of independent quantities which must be specified in order to

define uniquely the position of any system is called the number of degrees of freedom.

Definition 2.2 Any n quantities q1, ..., qn which completely define the position of a system

with n degrees of freedom are called generalized coordinates of the system. The deriva-

tives q̇1, ..., q̇n are called generalized velocities of the system.

Postulate 2.1 The state of a mechanical system with n degrees of freedom at time t is

characterized by the point (q1, ..., qn, q̇1, ..., q̇n) in 2n dimensional space.

Postulate 2.2 Every mechanical system is characterized by a defined function

L(q1, ..., qn, q̇1, ..., q̇n, t) called the Lagrangian function (functional) of the system.

The Lagrangian formulation of mechanics is based on the observation that there are vari-

ational principles behind the fundamental laws of force balance as given by Newton’s law

F = ma. One chooses a configuration space Q with coordinates qi, (i = 1, ..., n) that de-

scribe the configuration of the system under study (Marsden 2002). Then one introduces

the Lagrangian L(qi, q̇i, t). Its definition is

L ≡ T − U (2.1)

where T is the kinetic energy and U is the potential energy of the system.

Postulate 2.3 (Hamilton’s least action principle), the system with Lagrangian function L

moves between positions qi(t1) and qi(t2) in such a way that the integral

S =

∫ t2

t1

L(qi, q̇i, t)dt (2.2)

takes the least possible value. Integral S is called the action.

5



2.2. Lagrangian Formulation

The variational principle of Hamilton states

δ

∫ b

a

L(qi, q̇i, t)dt = 0 (2.3)

In this principle, we choose curves qi(t) joining two fixed points in Q over a fixed time

interval [a, b] and calculate the integral regarded as a function of this curve. Hamilton’s

principle states that this function (2.2) has a critical point at a solution within the space of

curves. If we let δqi be a variation, that is, the derivative of a family of curves with respect

to a parameter, then by the chain rule, (2.3) is equivalent to

n∑
i=1

∫ b

a

(
∂L

∂qi

δqi +
∂L

∂q̇i

δq̇i

)
dt = 0 (2.4)

for all variations of δqi. Since

δq̇i =
d

dt
δqi

one can integrate the second term of (2.4) by parts, and employing the boundary condi-

tions δqi = 0 at t = a and b, (2.4) becomes

n∑
i=1

∫ b

a

(
∂L

∂qi

− d

dt

∂L

∂q̇i

)
δqidt = 0 (2.5)

Since δqi is arbitrary (being zero at the endpoints), (2.5) is equivalent to the Euler-

Lagrange equations
∂L

∂qi

− d

dt

∂L

∂q̇i

= 0, (i = 1, 2, ..., n). (2.6)

Remark 2.4 If L(q, q̇, t) is Lagrangian and F (q, t) is any differentiable function of the

generalized coordinates and time, then

L(q, q̇, t) = L(q, q̇, t) +
dF

dt
(2.7)

is a Lagrangian resulting in the same equations of motion.

6



2.3. Hamiltonian Formalism

In the Hamiltonian formalism the state of the mechanical system with n degrees

of freedom, is determined by n coordinates q1, q2, ..., qn and n momenta p1, p2, ..., pn.

Evaluation of the system is determined by a function H(q, p) which is called the Hamil-

tonian function. Transformation from old variables (q, q̇, L) to the new one (q, p,H) is

implemented by the Legendre transformation.

2.3.1. Legendre Transformation

Definition 2.3 The Legendre transformation changes a given function of a given set of

variables into a new function of a new set of variables. The old and new variables are

related to each other by a point transformation. (Lanczos 1957)

Let F be a given function of n variables u1, ..., un,

F = F (u1, ..., un). (2.8)

We introduce a new set of variables v1, ..., vn, by means of the following transformation:

vi =
∂F

∂ui

i = 1, ..., n. (2.9)

The previous transformation is only solvable for the ui as functions of the vi when Hessian

condition is satisfied. According to the condition the determinant formed by the second

partial derivatives of F , assumed to be different from zero,

∂vi

∂uj

=
∂2F

∂ui∂uj

=
∂vj

∂ui

,

=
∂vj

∂ui

= hij = hji

det hij = h 6= 0 (2.10)

guaranteeing the independence of the n variables vi.

We now define a new function G as follows:

G =
n∑

i=1

uivi − F. (2.11)

Expressing ui as ui = ui(v1, ..., vn) and substituting in (2.11) we have

G = G(v1, ..., vn) (2.12)

7



We now consider the infinitesimal variation of G produced by arbitrary infinitesimal vari-

ations of the vi. The combination of Eq.(2.11) and Eq. (2.12) gives

δG =
n∑

i=1

∂G

∂vi

δvi

=
n∑

i=1

(uiδvi + viδui)− δF

=
n∑

i=1

[
(uiδvi +

(
vi − ∂F

∂ui

)
δui

]
.

Because of Eq.(2.9) the coefficient of δui is zero, so ui can be expressed in terms of the

variations of the vi,

ui =
∂G

∂vi

(2.13)

This result express duality of Legendre transformations. The following scheme brings out

this duality:

Old system New system

variables: u1, ..., un ; v1, ..., vn.

function: F = F (u1, ..., un) ; G = G(v1, ..., vn).

Transformation

vi = ∂F
∂ui

, ui = ∂G
∂vi

,

G =
∑

uivi − F, F =
∑

uivi −G,

G = G(v1, ..., vn), F = F (u1, ..., un).

This transformation is symmetrical in both systems and the same transformation that leads

from the old to the new system leads back from the new to the old system.

2.3.2. Legendre Transformation Applied to the Lagrangian Function

Legendre transformation can be applied to the Lagrangian function L. By this

transformation the velocities are transformed into the momenta; the Lagrangian function

is transformed into the Hamiltonian function.

8



Legendre transformation is proceeded in three steps.

Step 1. We introduce new variables, momenta, denoted by pi:

pi ≡ ∂L

∂q̇i

. (2.14)

Step 2. We introduce a new function, denoted by H:

H ≡
n∑

i=1

piq̇i − L. (2.15)

where H is the energy function.

Step 3. We express new function H in terms of new variables pi by solving (2.14) for q̇

and substituting in (2.15). We thus obtain

H = H(q1, ..., qn; p1, ..., pn; t) (2.16)

H is now called ”Hamiltonian function” on the phase space (q1, ..., qn; p1, ..., pn). The

basic features of the transformation are as follows:

Old system New system

variables: velocities ; momenta.

function: Lagrangianfuncion L ; Hamiltonianfunction H

Transformation

q̇i = ∂H
∂pi

, pi = ∂L
∂q̇i

,

L =
∑

piq̇i −H, H =
∑

piq̇i − L,

L = L(q1, ..., qn; q̇1, ..., q̇n; t). H = H(q1, ..., qn; p1, ..., pn; t),

Transformation of Lagrangian Equations of Motion

The Lagrangian equations of motion are differential equations of the second order in

time. However, they can be written as differential equations of the first order if we

introduce momenta pi, defined by

9



pi =
∂L

∂q̇i

. (2.17)

The Lagrange equations can then be written in the form

ṗ =
∂L

∂qi

(2.18)

To construct canonical equations of Hamilton. We now we apply Legendre transformation

H(qi, pi, t) =
n∑

j=1

pj q̇j − L(qi, q̇i, t). (2.19)

Writing the total differentials forms of H and L we get

dH =
∑

pidq̇i +
∑

q̇idpi − dL. (2.20)

dL =
∑ ∂L

∂qi

dqi +
∑ ∂L

∂q̇i

dq̇i +
∂L

∂t
dt. (2.21)

Inserting equations (2.17) and (2.18) into equation (2.21) yields

dL =
∑

ṗidqi +
∑

pidq̇i +
∂L

∂t
dt. (2.22)

Substitution of dL into equation (2.20) follows that

dH =
∑

q̇idpi −
∑

ṗidqi − ∂L

∂t
dt. (2.23)

Therefore H = H(qi, pi, t), and we have

dH =
∑ ∂H

∂qi

dqi +
∑ ∂H

∂pi

dpi +
∂H

∂t
dt. (2.24)

Comparing the last two equations we can write Hamilton equations of motion:

q̇i =
∂H

∂pi

, ṗi = −∂H

∂qi

,
∂H

∂t
= −∂L

∂t
. (2.25)

2.3.3. Poisson Brackets

Definition 2.4 Poison bracket of two functions u = u(p, q), v = v(p, q) with respect to

the canonical variables q, p is introduced as,

{u, v} ≡
n∑

i=1

(
∂u

∂qi

∂v

∂pi

− ∂u

∂pi

∂v

∂qi

)
. (2.26)

10



Properties of The Poisson Bracket:

Let u, v, and w be functions of position and momentum, and c is independent of position

and momentum. the poisson brackets satisfies following conditions

i) Antisymmetry:

{u, v} = −{v, u}

ii)Bilinearity:

{u, v + w} = {u, v}+ {u,w}
{u + v, w} = {u,w}+ {v, w}

{u, cv} = c {u, v}
{cu, v} = c {u, v}

iii)The Leibniz rule:

{uv, w} = u {v, w}+ v {u, w}

iv) Jacobi’s identity:

0 = {u, {v, w}}+ {w, {u, v}}+ {v, {w, u}}

Lemma 2.5 Poisson brackets are invariant under canonical transformation.(Goldstein

1980)

Poisson Brackets Formalism and Hamilton’s Equations:

Hamiltonian mechanics can be restated in terms of Poisson brackets. As a result of canon-

ical invariance of the Poisson brackets, the relations so obtained will also be invariant in

form under a canonical transformation. Suppose we look for the total time derivative

of some function of the canonical variables and time , u(q, p, t) by use of Hamilton’s

equations of motion:

du

dt
=

n∑
i=1

(
∂u

∂qi

q̇i +
∂u

∂pi

ṗi

)
+

∂u

∂t
=

n∑
i=1

(
∂u

∂qi

∂H

∂pi

− ∂u

∂pi

∂H

∂qi

)
+

∂u

∂t
, (2.27)

or
du

dt
= {u,H}+

∂u

∂t
. (2.28)

Equation (2.28) may be looked upon as the generalized equation of motion for an arbitrary

function u in the Poisson bracket formulation. It contains Hamilton’s equations as a

special case when we substitute one of the canonical variables, (Goldstein 1980)

q̇i = {qi, H} , ṗi = {pi, H} (2.29)
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Poisson Brackets Formalism and Constants of the Motion:

Theorem 2.6 A constant of motion is a quantity that is conserved throughout the motion,

imposing in effect a constraint on the motion.(Goldstein 1980)

Theorem 2.7 If u is a constant of the motion, then Eq. (2.28) says it must have the

property (Goldstein 1980)

{H, u} =
∂u

∂t
. (2.30)

All functions that obey (2.30) are constants of the motion, and conversely the Poisson

bracket of H with any constant of the motion must be equal to partial time derivative of

the constant function.(Goldstein 1980)

Remark 2.8 (Poisson theorem) The Poisson bracket of any two constants of the motion

is also a constant of the motion. (Goldstein 1980)

2.3.4. Canonical Transformations

A canonical transformation is a change of canonical coordinates

(q, p, t) −→ (Q,P, t) that preserves the form of Hamilton’s equations, although it might

not preserve the Hamiltonian itself.

Let there exist some function K(Q,P, t) such that the equations of motion in the

new set are in the Hamiltonian form

Q̇i =
∂K

∂Pi

, Ṗi = − ∂K

∂Qi

(2.31)

Here function K plays the role of the Hamiltonian in the new coordinate set. If Qi and Pi

are to be canonical coordinates, we can write for them the Hamilton’s principle so we can

put them in the following form

δ

∫ t1

t2

∑
i

(PiQ̇i −K(Qi, Pi, t))dt = 0. (2.32)

From another side the old canonical coordinates satisfy a similar principle:

δ

∫ t1

t2

∑
i

(piq̇i −H(qi, pi, t))dt = 0. (2.33)

Since the two expressions (2.32) and (2.33) are equal both statements will be satisfied.

We can say if the integrands are connected by a relation of the form

λ(piq̇i −H) = PiQ̇i −K +
dF

dt
(2.34)
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where λ is a constant and F is any function, with continuous second derivatives, called

the generating function that acts as a bridge between the two sets of canonical variables.

A transformation of canonical coordinates for which λ 6= 1 will be called an

extended canonical transformation. If λ = 1 and Eq.(2.34) holds then it is a canonical

transformation.

Given a canonical transformation which maps (q, p) into (Q,P ), we define four

kinds of generating functions:

• The generating function of the first kind, F1(q,Q, t) which satisfies:

p =
∂F1

∂q
(q,Q, t),

P = −∂F1

∂Q
(q, Q, t).

• The generating function of the second kind, F2(q, P, t) which satisfies:

p =
∂F2

∂q
(q, P, t),

Q = −∂F2

∂P
(q, P, t).

• The generating function of the third kind, F3(p,Q, t) which satisfies:

q = −∂F3

∂p
(p, Q, t),

P = −∂F3

∂Q
(p, Q, t).

• The generating function of the fourth kind, F4(p, P, t) which satisfies:

q = −∂F4

∂p
(p, P, t),

Q =
∂F4

∂P
(p, P, t).

13



CHAPTER 3

GENERALIZATION OF ANALYTICAL MECHANICS

AND DISSIPATION

At this chapter first we briefly review approach to dissipation and then will give

generalized Lagrangian and Hamiltonian formulations for dissipative oscillations.

3.1. Standard Approach to Dissipation

Velocity Dependent Potentials and Conservative Forces

Definition 3.1 Conservative forces F can be derived from a potential U(q, t) as

F (q, t) = −OU(q, t), (3.1)

where potential U(q, t) is a function of the position and time.

In some physical systems F and U can be functions of q̇. For example the Lorentz

force

F = q

(
E +

1

c
(v ×B)

)

which acts on a charged particle in the electromagnetic field is velocity-dependent . When

F is a function of q̇, F can be expressed by a potential U that depends on the generalized

coordinates qj , the generalized velocities q̇j and the time t, according to

Qj = −∂U

∂qj

+
d

dt

∂U

∂q̇j

(3.2)

with U = U(qj, q̇j, t). Also Qj is called generalized force (Greiner 2003).

Remark 3.1 This velocity-dependent potential is sometimes called the generalized po-

tential .

Non-conservative Forces

We now consider systems with nonconservative forces. Such systems are systems with

friction. Their Lagrange equations take the form
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Qj = −∂T

∂qj

+
d

dt

∂T

∂q̇j

. (3.3)

We can split the generalized forces Qj in a conservative part Q
(c)
j and a nonconservative

or friction part Q
(f)
j , so that

Qj = Q
(c)
j + Q

(f)
j (3.4)

Using Eq. (3.2 ) for Q
(c)
j and the definition of the Lagrangian L = T −U , Eq. (3.3) leads

the form ,
d

dt

∂L

∂q̇j

− ∂L

∂qj

= Q
(f)
j , j = 1, 2, ..., n. (3.5)

We can write dissipative forces as

Q
(f)
j = −

n∑

k=1

fjkq̇k (3.6)

where the fjk are the friction coefficients. If the friction tensor fjk is symmetric,

fjk = fkj , the friction forces Q
(f)
j can be obtained by partial derivation with respect

to the generalized velocities q̇j from the function (Greiner, 2003)

D ≡ 1

2

n∑

k,l=1

fjkq̇kq̇l (3.7)

according to

Q
(f)
j = −∂D

∂q̇j

(3.8)

D is called the dissipation function (friction function). The Lagrange equations (2.6) can

now be written as
d

dt

∂L

∂q̇j

+
∂D

∂q̇j

− ∂L

∂qj

= 0 (3.9)

This formalism is the standard approach for dissipative systems in analytic me-

chanics. But this approach, based on dissipation function (3.7) is not suitable. The reason

is that, Eq. (3.9) results by adding a dissipative term to Euler-Lagrange equation not from

Lagrangian function. So it violates the postulates of analytic mechanics and this is why

it can’t be considered as the proper solution of the problem. The Lagrangian formal-

ism is important in connection with Hamiltonian formalism and canonical quantization of

the system. In the next section we consider generalized approach to the dissipation into

Lagrangian formalism.
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3.2. Generalized Lagrangian Formalism for Dissipative Linear Oscil-

lations
In this section we consider the generalization of the Lagrange function which al-

lows to a treatment dissipative systems. For this aim we start from the linear oscillations

in quadratic form, then we formulate linear oscillations with dissipation. After this for-

mulation we give specific examples of dissipative Lagrangian. At the last section we

introduce corresponding Hamiltonian formulation for the system.

3.2.1. Linear Oscillations

At analytical mechanics to describe Linear oscillations with s degrees of freedom

and generalized coordinates q1, ..., qs, Lagrangian function is given by the quadratic form

L =
1

2

s∑
ij

aij(q)q̇iq̇j − 1

2

s∑
ij

kijqiqj, (3.10)

where symmetrical matrix aij = aji is positive definite (signature aij = (+, +, ..., +)).

By diagonalization, this system can be reduced to the diagonal form (Landau and Lifshitz

1980)

L =
1

2

∑
i

mi(Q̇
2
i − ω2

i Q
2
i ), (3.11)

with equations of motion

Q̈i + ω2
i Q

2
i = 0, (3.12)

where ωi are called characteristic frequencies or eigen-frequencies of the system and Qi

called normal coordinates of the system.

To generalize this Lagrangian to dissipative linear systems, first of all we will

specify the geometrical character of the kinetic term as a metric in a Riemannian space.

3.2.2. Riemannian Metric and Kinetic Energy

To represent kinetic energy in terms of Riemannian metric first we introduce one

single differential quantity called ”the line element” ,ds.

Definition 3.2 The line element, expressed in terms of the coordinates and their differ-

entials, is the distance between two neighboring points of space, where the square of the
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line element is given by the expression

ds2 =
n∑

i,j=1

gijdxidxj (3.13)

where gij is a symmetric tensor (gji = gij), called the Riemannian metric .

As an example, we can consider the line element in cartesian coordinates (Dubrovin et al.

1984)

ds2 = dx2 + dy2 + dz2.

Definition 3.3 Kinetic energy in non-relativistic classical mechanics for a particle of

mass m, is defined as a positive, diagonal quadratic form in n dimensional space

T =
m

2

n∑
i=1

v2
i . (3.14)

Since, velocity vi = dxi

dt
, this form can be re-written in terms of the line element

T =
m

2

n∑
i=1

dxi

dt

dxi

dt

=
m

2

(
ds

dt

)2

(3.15)

where

ds2 =
n∑

i=1

dxidxi = dx2
1 + ... + dx2

n. (3.16)

Representing the system in terms of generalized coordinates q1, ..., qs and velocities, ac-

cording to

xi = xi(q1, ...qs), i = 1, ..., n (3.17)

this kinetic energy becomes the symmetric quadratic form

T =
1

2

s∑
i,j=1

aij(q)q̇iq̇j (3.18)

and for m = 1, aij are functions of q which determine the line element

ds2 =
s∑
ij

aij(q)dqidqj. (3.19)

Comparing quadratic forms for the line elements Eq.(3.16) and Eq.(3.19), we

notice that in cartesian coordinates (x1...xn), it is Euclidian metric in Rn while in terms

17



of generalized coordinates in general it is a Riemannian metric. (For s < n it is the

induced metric on hyper-surfaces determined by Eqs.(3.17)).

In summary, the kinetic energy in analytic mechanics is a quadratic form in ve-

locities having the properties: (a) symmetry property, aij = aji (b) positive definiteness,

a > 0 which allows us to interpret aij as a second rank metric tensor in Riemannian space

with coordinates (q1, ..., qs).

3.3. Dissipation and Generalized Analytical Mechanics for Linear Os-

cillations
For the linear systems with generalized coordinates q1...qs the Lagrangian function

is given by the quadratic form (3.10). However it is not sufficiently general to include

dissipation. We propose to generalize this function in the next quadratic form

L =
s∑
ij

(
1

2
aij(q, t)q̇iq̇j + bij q̇iqj − 1

2
kij(t)qiqj

)
(3.20)

where matrices aij = aji and kij = kji are symmetrical functions of q1, ..., qs and time t,

which are not in general positive definite.

Comment: Most general case includes bij = bij(q, t). But for our purpose it is sufficient

to consider bij as a constant metric.

3.3.1. Kinetic Energy as Non-Stationary Pseudo Riemannian Metric
Due to the properties;

1) Symmetry property, aij = aji

2) Signature, aij = (+, ..., +︸ ︷︷ ︸
l

,−, ...,−︸ ︷︷ ︸
m

); l + m = n

aij determine the line element ds2 = aijdqidqj in non-stationary pseudo-Riemanian space

with signature (+, ..., +︸ ︷︷ ︸
l

,−, ...,−︸ ︷︷ ︸
m

) and coordinates q1, ..., qn.

According to the inertia theorem from the linear algebra we can chose new coordinates

Qi, to diagonalize aij in the canonical form,

T =
1

2

∑
aij(q, t)q̇iq̇j

=
1

2

(
m1Q̇

2
1 + m2Q̇

2
2 + ... + mlQ̇

2
l −ml+1Q̇

2
l+1 − ...−mnQ̇

2
n

)
.
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Proposition 3.1 In generalized Lagrangian (3.20), we can restrict the matrix bij to be

skew-symmetric bij = −bji.

Proof. ∀ bij = bs
ij + bss

ij , where

bs
ij =

bij + bji

2
= bji,

bss
ij =

bij − bji

2
= −bji

(3.21)

and

∑
bs
ij q̇iqj =

∑
bs
jiq̇jqi, (3.22)

=
1

2

∑
bs
ij(q̇jqi + qiq̇j), (3.23)

since
1

2

∑
bs
ij(q̇jqi + qiq̇j) =

d

dt

(
1

2

∑
ij

bs
ijqiqj

)
, (3.24)

the last term is total time derivative and can be omitted in Lagrange function. This shows

that only skew-symmetric part of metric bij contributes to the Euler-Lagrange equation.

According to above proposition we can write our generalized Lagrangian in the form,

L =
1

2

∑
ij

aij(q, t)q̇iq̇j +
1

2

∑
ij

bij(q̇iqj − qiq̇j)− 1

2

∑
ij

kij(t)qiqj. (3.25)

Examples :

Systems with one degree of freedom.

1) In this example n = 1 and the coefficients ai,j(q, t), ki,j(t) are considered as constant,

L = aq̇2 − kq2, (3.26)

the middle term 1
2

∑
bij(q̇iqj − qiq̇j) in Eq. (3.25) is absent. Eq.(3.26) corresponds to

classical non-dissipative Lagrangian.

2) Let’s consider n = 1 case when bi,j = 0 but a(q, t), k(t) depend on time,

a(t) =
m

2
f(t), k(t) =

mw2

2
f(t).

The Lagrangian,

L = f(t)

(
m

2
q̇2 − mw2

2
q2

)
. (3.27)
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describes non-relativistic oscillator with time dependent mass m(t) = mf(t).

Substituting (3.27) into the Euler-Lagrange equations we get the equation of mo-

tion for a damped harmonic oscillator

q̈ + Γq̇ + w2q = 0 (3.28)

where Γ(t) = ḟ(t)
f(t)

characterizes the dissipation rate.

If Γ is a constant, then

f(t) = f0e
Γt, Γ =

γ

m
(3.29)

This case will be considered in the following chapters as the Caldirola-Kanai formalism

for damped oscillator. The Caldirola-Kanai Lagrangian is given by,

L = e
γ
m

t

(
m

2
q̇2 − mw2

2
q2

)
.

Systems with two degrees of freedom.

3)In this example to treat dissipation we extend the system to two degrees of freedom,

described by generalized coordinates q1 , q2 and generalized velocities q̇1 , q̇2, where

coefficients aij(q, t) = aij, kij(t) = kij are considered as a constant . Then Lagrangian is

given by

L =
1

2
a11q̇

2
1 + a12q̇1q̇2 +

1

2
a22q̇

2
2 +

+
1

2
b(q̇1q2 − q1q̇2)−

(
1

2
k11q

2
1 + k12q1q2 +

1

2
k22q

2
2

)
(3.30)

In particular case when diagonal elements aii = 0, kii = 0 vanish

L = a12q̇1q̇2 + b(q1q̇2 − q̇1q2)− k12q1q2 (3.31)

From the Euler-Lagrange equations we get equations of motion,

a12q̈1 − 2b2q̇1 + k12q1 = 0 (3.32)

a12q̈2 + 2b2q̇2 + k12q2 = 0 (3.33)

The first equation is damped harmonic oscillator, while the second one can be

considered as its time-reversed image.

From examples 2. and 3. we have two possibilities for description of damped

oscillator. In the first case we have time dependent parameters, while in the second case

extended system with additional degrees of freedom.
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In the next section we give Hamiltonian formulation for generalized analytical

mechanics.

3.3.2. Hamiltonian Formulation of Generalized Analytical Mechanics
In the previous section we have formulated generalized analytical mechanics by

Lagrangian (3.25) with non-stationary pseudo-Riemannian metric. Now we introduce

corresponding Hamiltonian formulation of the system. By using the Legendre transfor-

mation to pass from (q, q̇) to (q, p)

pi =
∂L

∂q̇i

= aij q̇j + bijqj (3.34)

we get the linear system of equations for q̇j;

aij q̇j = pi − bijqj. (3.35)

When det aij 6= 0 (the non-degenerate case), we can write q̇j as

q̇j = fj(q, p, t). (3.36)

Then the Hamiltonian is

H =
∑

q̇ipi − L,

= H(q, p, t)

and Hamilton equations of motion can be written as

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
(3.37)

Concrete applications will be in the next chapter
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CHAPTER 4

CLASSICAL DAMPED HARMONIC OSCILLATOR

4.1. Damped Harmonic Oscillator

The Classical Damped Harmonic Oscillator is described by x(t) subject to the 2nd

order linear ordinary differential equation with constant coefficients, where coefficient

γ > 0 for the first derivative term is called damping coefficient and k is the harmonic

coefficient

mẍ + γ ẋ + kx = 0 (4.1)

The characteristic equation of the differential equation is

mλ2 + γλ + k = 0.

Depending on the relation between damping and harmonic coefficients we have three

different cases as shown in Figure 4.1.

Case I : The under-damping case; γ2

4m2 < k
m

Ω2
u =

k

m
− γ2

4m2
(4.2)

x(t) = e−
γt
2 [A cos Ωut + B sin Ωut]

CaseII : The over-damping case; γ2

4m2 > k
m

Ω2
o =

γ2

4m2
− k

m
(4.3)

x(t) = e−
γt
2 [A cosh Ωot + B sinh Ωot]

Case III : The critical-damping case; γ2

4m2 = k
m

x(t) = Ae
−γt
2 + Bte

−γt
2 (4.4)

When γ = 0 we have the standard harmonic oscillator equation. Classical damped

harmonic oscillator is a dissipative system where the energy is not conserved. For such

systems the variational principle leading to the Euler-Lagrange equations fails. But to get

the canonical formalism for dissipative systems we need Lagrangian-Hamiltonian forms.

Batemans formulation solves this problem for the classical theory.
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Figure 4.1. Damped Harmonic Oscillator

4.2. Bateman Dual Oscillator Formalism

In 1931, Bateman presented (Bateman 1931) the so-called dual or mirror image

formalism for damped oscillator. According to this, the energy dissipated by the oscillator

is completely absorbed at the same time by the mirror image oscillator, and thus the energy

of the total system is conserved. The dual system is

mẍ + γ ẋ + kx = 0, (4.5)

mÿ − γ ẏ + ky = 0. (4.6)

Here the second equation describes time reversal process to the first equation and together

they represent so called dual damped oscillator system. Since the energy of the total

system is constant, the system of damped harmonic oscillator and its time-reversed image

is then a closed system described by the Lagrangian

L = mẋẏ +
γ

2
(xẏ − yẋ)− kxy (4.7)

The canonical momenta for this dual system can be obtained from Eq. (4.7) by using the

following formulas

px =
∂L

∂ẋ
= mẏ − γ

2
y, py =

∂L

∂ẏ
= mẋ +

γ

2
x. (4.8)
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Clearly, these differ from the oscillator’s mechanical momenta.

To reach The Bateman’s dual Hamiltonian we can use Legendre transformation;

H = ẋpx + ẏpy − L,

then we get the Bateman Hamiltonian in the following form

H =
pxpy

m
+

γ

2m
(ypy − xpx) + (k − γ2

4m
)xy. (4.9)

We can write the canonical equations of Hamilton as follows,

ẋ =
∂H

∂px

=
py

m
− γ

2m
x, ẏ =

∂H

∂py

=
px

m
+

γ

2m
y, (4.10)

ṗx = −∂H

∂x
=

γ

2m
px − (k − γ2

4m
)y, ṗy = −∂H

∂y
= − γ

2m
py − (k − γ2

4m
)x. (4.11)

Hamilton equations of motion reproduce correctly the doubled system.

The brackets of the system are

{x, px} = 1, {y, py} = 1, {x, py} = 0, {y, px} = 0, (4.12)

{x, y} = 0, {px, py} = 0. (4.13)

The Poisson bracket formulation of Hamilton’s equations is

ẋ = {x,H} , ẏ = {y, H} , ṗx = {px, H} , ṗy = {py, H} . (4.14)

If a Poisson bracket of a quantity with H is equal to zero, then we call this quantity

a constant of the motion, so we can say that the Hamiltonian is a constant of the motion

since {H,H} = ∂H
∂t

= 0.

As a conclusion, the energy dissipated by the original oscillator is completely

absorbed by the dual of the system.

In the next section we consider how damped oscillator appears from the telegraph

equation.

4.3. Reduction of the Damped Harmonic Oscillator Equation from the

Telegraph Equation
The linear telegraph equation is

Uxx = aUtt + bUt + cU. (4.15)
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Using variational principle for the telegraph equation, in which both U and V are

to be varied,

δ

∫
V (aUtt − Uxx + bUt + cU)dxdt = 0 (4.16)

one can find it’s complementary equation;

Vxx = aVtt − bVt + cV. (4.17)

Using traveling wave substitution one can reduce the telegraph equation to the

damped harmonic oscillator. Let

U(x, t) = U(x− vt) = U(ξ), V (x, t) = V (x− vt) = V (ξ). (4.18)

Differentiating U with respect to ξ = x− vt

Ut = (−v)U
′
, Utt = (v2)U

′′
, Uxx = U

′′
, (4.19)

where U
′
= dU/dξ . Differentiating V in the same way

Vt = (−v)V
′
, Vtt = (v2)V

′′
, Vxx = V

′′
, (4.20)

From the telegraph equation ant it’s mirror image one may get;

U ′′ = av2U ′′ − bvU ′ + cU, (4.21)

V ′′ = av2V ′′ + bvV ′ + cV. (4.22)

Rewriting

(av2 − 1)U ′′ − bvU ′ + cU = 0 (4.23)

(av2 − 1)V ′′ + bvV ′ + cV = 0 (4.24)

and setting the correspondence;

(av2 − 1) ⇒ mass, bv ⇒ γ, c ⇒ k

one can find damped harmonic oscillator equation and its mirror image;

mU ′′ − γU ′ + kU = 0, (4.25)

mV ′′ + γV ′ + kV = 0. (4.26)

To avoid extension of the damped system by time-reversal image in 1941 Caldirola

developed (Caldirola 1941) another alternative approach. In his approach mass and fre-

quency are time dependent.
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4.4. Caldirola-Kanai Formalism

Caldirola (Caldirola 1941) and Kanai (Kanai 1948) introduced a new Lagrangian

function. That is known as Caldirola-Kanai Lagrangian. According to Caldirola-Kanai

approach; a harmonic oscillator can be considered as a standard oscillator with exponen-

tially growing time dependent mass.

L = e
γt
m

m

2
(ẋ2 − ω2x2), (4.27)

introducing m(t) = me
γt
m ,

L = m(t)

(
ẋ2

2
− ω2x2

2

)
. (4.28)

Physically, the situation described by the Lagrangian (4.27) might be realized for example

by a frictionless pendulum consisting of a pail collecting rain.

Using Legendre transformation Caldirola-Kanai Hamiltonian is

H = e−
γt
m

p2

2m
+ e

γt
m

1

2
mω2x2 (4.29)

It leads to classical equation of motion for damped oscillator;

ẍ +
γ

m
ẋ + ω2x = 0.

4.5. From Bateman to Caldirola-Kanai

We are going to establish the relation between Bateman’s and Caldirola’s- Kanai’s

form (Dekker 1981). We expect that proper exclusion of the y component will lead dou-

bled Bateman Hamiltonian to the Caldirola Hamiltonian formalism.

The explicit solution of Hamilton’s equations (4.10), (4.11) for the under-damped

case are

x(t) = e−
γ

2m
t

{
x(0) cos Ωt +

py(0)

mΩ
sin Ωt

}
,

y(t) = e
γ

2m
t

{
y(0) cos Ωt +

px(0)

mΩ
sin Ωt

}
, (4.30)

px(t) = e
γ

2m
t {px(0) cos Ωt−mΩy(0) sin Ωt} ,

py(t) = e−
γ

2m
t {py(0) cos Ωt−mΩx(0) sin Ωt} ,

where Ω2 = k
m
− γ2

4m2 .
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Now we apply a canonical transformation. Generating function of the transforma-

tion is F = F (x, y, Px, Py), where

F = xPxe
γ

2m
t + yPye

− γ
2m

t.

We find

X =
∂F

∂Px

= xe
γ

2m
t, px =

∂F

∂x
= Pxe

γ
2m

t, (4.31)

Y =
∂F

∂Py

= ye−
γ

2m
t, py =

∂F

∂y
= Pye

− γ
2m

t. (4.32)

Substituting new variables into the Hamiltonian at Eq. (4.9) we get

H =
PxPy

m
+

γ

2m
(Y Py −XPx) + (k − γ2

4m
)XY.

New hamiltonian, let’s call it H ′ = H + ∂F
∂t

is,

H ′ =
PxPy

m
+ mΩ2XY (4.33)

This Hamiltonian describes undamped oscillations at the frequency mΩ2 = (k − γ2

4m
).

We can see this also if we substitute Eq. (4.31) into Eq. (4.30). The e±
γ

2m
t terms at

Eq. (4.33) disappear and they reduce to undamped oscillator. Also H is a constant of

the motion, equal to its initial value H ′(0) = Px(0)Py(0)

m
+ mΩ2X(0)Y (0), satisfying

Px(0) = Py(0) and X(0) = Y (0). Because of the time-reversible nature of the new

solutions, this suggests Px(t) = Py(t) and X(t) = Y (t).

Now we want to extend the real coordinates and momenta into the complex plane

and to introduce a canonical transformation from X, Y, Px, Py to Q, Q̄, P, P̄

X =
1

2

(
Q + Q̄

)
+

i

2Ωm

(
P − P̄

)
, Y =

1

2

(
Q + Q̄

)− i

2Ωm

(
P − P̄

)
, (4.34)

Px =
1

2

(
P + P̄

)
+

iΩm

2

(
Q− Q̄

)
, Py =

1

2

(
P + P̄

)− iΩm

2

(
Q− Q̄

)
. (4.35)

where the new variables can be taken to be real. In the end one only considers those

solutions for which Q̄0 = Q0 and P̄0 = P0, which confines the original variables again to

real phase space.

Writing Eq. (4.33) in terms of the new coordinates we get

H ′ =
(

P 2

2m
+

mΩ2

2
Q2

)
+

(
P̄ 2

2m
+

mΩ2

2
Q̄2

)
(4.36)

This Hamiltonian represents the energy of two independent identical oscillators,

because of this we will only concentrate on one oscillator, the Q− P system.
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The canonical generator of the system is,

F = ΠQ +
1

2

γ

2
Q2. (4.37)

Then transforms Q,P into Z, Π, we find

P =
∂F

∂Q
= Π +

γ

2
Q, Z =

∂F

∂Π
= Q (4.38)

We can write H ′ in terms of new variables,

H ′ =
Π2

2m
+

γ

2m
ΠZ +

1

2
kZ2 (4.39)

We will make one more transformation from ZΠ to zπ generated by

F = πZe−
γ

2m
t, (4.40)

where

Π =
∂F

∂Z
= πe−

γ
2m

t, z =
∂F

∂π
= Ze−

γ
2m

t (4.41)

Since we can write H ′′ = H ′ + ∂F
∂t

, we get our new Hamiltonian,

H ′′ =
π2

2m
e−

γ
m

t +
k

2
z2e

γ
m

t (4.42)

This Hamiltonian is the Caldirola-Kanai Hamiltonian.

4.6. Hyperbolic Form Of Bateman’s Damped Harmonic Oscillator

In doubled formalism H has an unusual form for quantization which is why

we will re-write it in the so called hyperbolic form (Blasone et al. 1996), (Pashaev

unpublished). We use hyperbolic coordinates x1(t) and x2(t):

x(t) =
x1(t) + x2(t)√

2
, y(t) =

x1(t)− x2(t)√
2

,

in terms of x1 and x2 the Lagrangian (4.7) can be written as

L = (
m

2
ẋ1

2 − k

2
x1

2)− (
m

2
ẋ2

2 − k

2
x2

2) +
γ

2
(ẋ1x2 − ẋ2x1)

Here the dissipative term plays a role of a coupling between oscillators x1 and x2 on the

hyperbolic plane. The momenta are

p1 = mẋ1 +
γ

2
x2, p2 = −mẋ2 − γ

2
x1. (4.43)
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The equations of motion corresponding to the set are

mẍ1 + γẋ2 + kx1 = 0, (4.44)

mẍ2 + γẋ1 + kx2 = 0. (4.45)

In hyperbolic coordinates, the Hamiltonian at (4.9) becomes

H =
1

2m
(p1 − γ

2
x2)

2 +
k

2
x1

2 − 1

2m
(p2 +

γ

2
x1)

2 − k

2
x2

2.

In this form it looks like as the difference of two oscillators H = H1 − H2. Also the

damping term acts as a correction in the kinetic energy for both oscillators.

Now we will write the canonical brackets of the system. The canonical commutation

relations are

{xi, pj} = δij, {xi, xj} = {pi, pj} = 0. (i, j = 1, 2)

The Hamilton equations are

ṗi = {pi, H} , ẋi = {xi, H} , (i = 1, 2)

or

ṗ1 =
γ

2m
(p2 +

γ

2
x1)− kx1, ṗ2 =

γ

2m
(p1 − γ

2
x2) + kx2, (4.46)

ẋ1 =
1

m
(p1 − γ

2
x2), ẋ2 = − 1

m
(p2 +

γ

2
x1). (4.47)

If we write the equations in terms of x+ and x− , where

x± = x1 ± x2, p± = p1 ± p2, (4.48)

we get the form

ṗ+ = +
γ

2m
p+ + (

γ2

4m
− k)x−, (4.49)

ṗ− = − γ

2m
p− + (

γ2

4m
− k)x+, (4.50)

ẋ+ = − γ

2m
x+ +

1

m
p−, (4.51)

ẋ− = +
γ

2m
x− +

1

m
p+, (4.52)

Now we have three cases depending on the relation between damping and harmonic co-

efficients

Case I: The under damping ; k > γ2

4m

Ωu
2 =

k

m
− γ2

4m2
, (4.53)
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x+(t) = e−
γ

2m
t{x+(0) cos Ωut +

p−(0)

mΩu

sin Ωut} (4.54)

x−(t) = e+ γ
2m

t{x−(0) cos Ωut +
p+(0)

mΩu

sin Ωut} (4.55)

p+(t) = e+ γ
2m

t{p+(0) cos Ωut−mΩux
−(0) sin Ωut} (4.56)

p−(t) = e−
γ

2m
t{p−(0) cos Ωut−mΩux

+(0) sin Ωut} (4.57)

Case II: Aperiodic case (over-damping); k < γ2

4m

Ωo
2 =

γ2

4m2
− k

m
, (4.58)

x+(t) = e−
γ

2m
t{x+(0) cosh Ωot +

p−(0)

mΩo

sinh Ωot} (4.59)

x−(t) = e+ γ
2m

t{x−(0) cosh Ωot +
p+(0)

mΩo

sinh Ωot} (4.60)

p+(t) = e+ γ
2m

t{p+(0) cosh Ωot + mΩox
−(0) sinh Ωot} (4.61)

p−(t) = e−
γ

2m
t{p−(0) cosh Ωot + mΩox

+(0) sinh Ωot} (4.62)

Case III: Critical case ; k = γ2

4m

Ω = 0,

x+(t) = x+(0)e−
γ

2m
t +

p−(0)

m
te−

γ
2m

t (4.63)

x−(t) = x−(0)e
γ

2m
t +

p+(0)

m
te

γ
2m

t (4.64)

p+(t) = p+(0)e
γ

2m
t (4.65)

p−(t) = p−(0)e−
γ

2m
t (4.66)

In this chapter we introduced classical damped harmonic oscillator in Bateman

and Caldirola-Kanai formulations. We found Lagrangian and corresponding hamiltonian.

Now at the next chapter we pass to quantum frame in order to understand dissipation in

quantum theory.

30



CHAPTER 5

QUANTUM DAMPED HARMONIC OSCILLATOR

5.1. Hamiltonian Formulation and Canonical Quantization

In 1925, P. A. M. Dirac observed that various quantum mechanical relations can

be obtained from the corresponding classical relations just by replacing classical Poisson

brackets by commutators, as follows:

{, } → 1

i~
[, ]

where the classical Poisson brackets for functions of a(p, q) and b(p, q) as are defined as

{a, b} =
∂a

∂q

∂b

∂p
− ∂a

∂p

∂b

∂q
(5.1)

Now we can pass from the classical formalism to the quantum formalism by replacing the

classical dynamical variables p, q, a, b, etc., by the operators p, q, A, B, etc., in Hilbert

space (see Appendix C ) of states in such a way that Poisson bracket is replaced by the

quantum commutator,

[A,B] = AB −BA. (5.2)

Poisson brackets and quantum-mechanical commutators satisfy similar algebraic proper-

ties,

• [A,A] = 0

• [A,B] = −[B, A]

• [A, c] = 0

• [A + B, C] = [A,C] + [B,C]

• [A,BC] = [A,B]C + B[A,C]

• [A, [B, C]] + [B, [C, A]] + [C, [A,B]] = 0
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where c is a number. The last relation is known as the Jacobi identity.

Also the equation of motion for a dynamical variable A reads

dA

dt
=

1

i~
[A,H] +

∂A

∂t
(5.3)

where H is the Hamiltonian operator corresponding to the classical Hamiltonian function

H(p,q). (For details see Appendix F)

5.2. Quantization of the Bateman’s Damped Harmonic Oscillator

In this section we are going to quantize the motion of Bateman’s damped har-

monic oscillator. We will follow the Feshbach and Tikochinsky approach. (Feshbach and

Tikochinsky 1977)

Now we are going to write the Hamiltonian operator of the quantum damped har-

monic oscillator. For this aim we shall change the classical Hamiltonian equation (4.9) to

the Hamiltonian operator,

H =
pxpy

m
+

γ

2m
(ypy − xpx) + (k − γ2

4m
)xy. (5.4)

Here x, y, px, py are all operators in a linear space satisfying the Heisenberg commutation

relation rules:

[x, y] = [px, py] = 0

[px, x] = [py, y] = −i~

Then we can introduce the following annihilation and creation operators:

a =
1√
2~Ω

(
px√
m
− i
√

mΩx

)
, b =

1√
2~Ω

(
py√
m
− i
√

mΩy

)
, (5.5)

a+ =
1√
2~Ω

(
px√
m

+ i
√

mΩx

)
, b+ =

1√
2~Ω

(
py√
m

+ i
√

mΩy

)
(5.6)

where a+, b+ are the Hermitian conjugates of a, b and also

Ω =

√
k

m
− γ2

4m2
,

is the common frequency of the two oscillators ( Eq. (5.5) and Eq. (5.6)), assuming Ω

is real k
m

> γ2

4m2 (i.e. under damping). The commutation relations that corresponds to the

set are

[a, a+] = [b, b+] = 1, [a, b] = [a, b+] = [a+, b+] = 0. (5.7)
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Now the Feshbach and Tikochinsky quantum Hamiltonian becomes

H = ~Ω[a+b + b+a]− iγ~
4m

[(a2 − a+2
)− (b2 − b+2

)]. (5.8)

By using a further linear unitary transformation in complex operator space:

a =
1√
2
(A + B), b =

1√
2
(A−B),

a+ =
1√
2
(A+ + B+), b+ =

1√
2
(A+ −B+), (5.9)

These new operators obey the same algebra with Eq. (5.7),

[A,A+] = [B,B+] = 1, (5.10)

the other commutators are zero. The new variables A and B can be written in terms of

the old ones as follows

A =
a + b√

2
, , B =

a− b√
2

(5.11)

Also the variables A and B are written in terms of x,y and px,py as,

A =
1

2
√
~Ω

[
1√
m

(px + py)− i
√

mΩ(x + y)

]
, (5.12)

B =
1

2
√
~Ω

[
1√
m

(px − py)− i
√

mΩ(x− y)

]
. (5.13)

Then transformed H is written as

H = H0 + H1, (5.14)

H0 = ~Ω[A+A−B+B], (5.15)

H1 =
iΓ

2
[A+B+ − AB] (5.16)

where Γ = ~γ/m.We see that [H0, H1] = 0, this is why they have common eigen-states.

Here the states generated by B+ represent the sink where the energy is dissipated

by the quantum damped oscillator flows: the B-oscillator represents the reservoir or heat

bath coupled to the A-oscillator. (Vitiello 2001).

Now we want to find the eigenvalues of H0. The eigenvalues of A+A and B+B

can be found by starting from the ground state

A | 0, 0 >= 0, B | 0, 0 >= 0 (5.17)
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but

A+ | 0, 0 >=| 1, 0 >, B+ | 0, 0 >=| 0, 1 > (5.18)

applying nA and nB times the creation operators to the ground state

(A+)nA | 0, 0 >=
√

nA! | nA, 0 >, (B+)nB | 0, 0 >=
√

nB! | 0, nB > (5.19)

where nA, nB = 0, 1, 2, .... Hence

| nA, nB >=
1√

nA!nB!
(A+)nA(B+)nB | 0, 0 > (5.20)

If we apply A+ to the state | nA, nB >, it becomes one increased as

A+ | nA, nB >=
√

nA | nA + 1, nB >

and applying A to the state | nA, nB >, it becomes one decreased as

A | nA, nB >=
√

nA | nA − 1, nB > .

So the eigenvalues of the operator A+A ,

A+A | nA, nB >= nA | nA, nB >, (5.21)

and

B+B | nA, nB >= nB | nA, nB > . (5.22)

Then we can write eigenvalues of H0

H0 | nA, nB >= ~Ω(nA − nB) | nA, nB > (5.23)

so that eigenvalues of H0 are ~Ω(nA − nB) with eigen-states | nA, nB > belonging to

Hilbert space. Here H0 represents the difference of two free oscillator Hamiltonian.

Our next step is to find eigenvalues of H1 to reach the full Hamiltonian Eq.(5.14).

To that end, we define new operators (Dekker 1981),

φ0 =
1

2
(A+A + B+B), (5.24)

φx =
1

2
(A+B+ + AB), (5.25)

φy =
1

2
(A+B+ − AB), (5.26)

φz =
1

2
(A+A+ + BB+). (5.27)
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Clearly

H0 = 2~Ωφ0, H1 = iΓφy. (5.28)

Their commutators as spin-like operators produce su(1, 1) algebra,

[φx, φy] = iφz, (5.29)

[φz, φy] = iφx, (5.30)

[φx, φz] = iφy. (5.31)

Also φ0 commutes with φx, φy, φz. So φ0 is the Casimir operator for the algebra,satisfying

relation on pseudo sphere,

φ2
z − φ2

x − φ2
y = φ2

0 −
1

4
. (5.32)

Let’s introduce

j =
1

2
(nA − nB), m =

1

2
(nA + nB) (5.33)

and re-label the eigen-states | nA, nB > as | j, m >. Using the Baker-Hausdorff relation

we reach

eµφxφye
−µφx = φy cos µ + iφz sin µ. (5.34)

If we take µ = ±π
2

we obtain ,

φy = ±ie±
π
2
φxφze

±π
2
φx . (5.35)

The eigenvalue equation can be written as

φy | ψ(±)
j,m >= ±i

(
m +

1

2

)
| ψ(±)

j,m > (5.36)

where,

| ψ(±)
j,m >= e±

π
2
φx | j, m > (5.37)

The eigenfunctions | ψ(±)
j,m > do not belong in the ordinary Hilbert space because they can

not be normalized in the usual manner (Dekker 1977).

We see that there are two sets of eigen-states, one of them is with positive imaginary

eigenvalues i
(
m + 1

2

)
, the other is with negative imaginary eigenvalues−i

(
m + 1

2

)
. The

eigen-states with negative imaginary eigenvalues are the decaying states, with positive

eigenvalues states are the growing states.
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As a result the eigenvalues of H are

H | j, m >=

[
2~Ωj ± iΓ

(
m +

1

2

)]
| j,m >, (5.38)

or

H | nA, nB >=

[
~Ω(nA − nB)± i

Γ

2
(nA + nB + 1)

]
| nA, nB > . (5.39)

Now for the next step we find wave functions corresponding to Hamiltonian

(5.39). This is why we start from the Eq. (5.17) and multiply it from the left by < x, y |
to write the ground state wave function ψ0(x, y) =< x, y | 0, 0 > in coordinate represen-

tation as follow

< x, y | A | 0, 0 > = 0, (5.40)

< x, y | B | 0, 0 > = 0 (5.41)

where A and B are given by equations (5.12) and (5.13). Then we get

1

2
√
~Ω

[
1√
m

(px + py)− i
√

mΩ(x + y)

]
ψ0(x, y) = 0, (5.42)

1

2
√
~Ω

[
1√
m

(px − py)− i
√

mΩ(x− y)

]
ψ0(x, y) = 0. (5.43)

Adding and subtracting equations (5.43) and (5.42) , and replacing px = −i~ ∂
∂x

and py = −i~ ∂
∂y

, we get

(α
′ ∂

∂x
− αx)ψ0(x, y) = 0, (5.44)

(α
′ ∂

∂y
− αy)ψ0(x, y) = 0. (5.45)

Here α
′
= −i~

2
√
~mΩ

and α = i
2

√
mΩ
~ . Solving the above equations we get the wave function

ψ0(x, y) = Cexp

[
−1

2

(
x2 + y2

β2

)]
(5.46)

where β =
√

~
mΩ

and C is some constant.

In the following, we multiply Eq.(5.20) from the left by < x, y | ,

< x, y | nA, nB > = < x, y | 1√
nA!nB!

(A+)nA(B+)nB | 0, 0 > . (5.47)
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We rewrite A+ and B+ ( since they are adjoints of equations (5.12) and (5.13))substituting

the values of px and py as mentioned before , we get the form,

A+ = α

[(
x + β2 ∂

∂x

)
+

(
y + β2 ∂

∂y

)]
(5.48)

B+ = α

[(
x + β2 ∂

∂x

)
−

(
y + β2 ∂

∂y

)]
(5.49)

where α = i
2β

and β2 = ~
mΩ

Then the wave function becomes

ψnAnB
(x, y) =

(
mΩ

4~

)nA+nB (−1)nA+nB

√
nA!nB!

[(
x + β2 ∂

∂x

)
+

(
y + β2 ∂

∂y

)]nA

.

[(
x + β2 ∂

∂x

)
−

(
y + β2 ∂

∂y

)]nB

< x, y | 0, 0 > (5.50)

where

< x, y | 0, 0 >= ψ0(x, y) = Cexp

[
−1

2

(
x2 + y2

β2

)]

As a result we have found the wave function for Bateman quantum damped oscil-

lator.

5.3. Quantization of the Caldirola-Kanai’s Damped Harmonic

Oscillator

In this section we quantize the Caldirola-Kanai’s damped harmonic oscillator .

We define Hamilton operator in terms of the operators q and p and then use Schrödinger

equation to solve the problem in coordinate representation.

We begin by transferring the classical Hamiltonian function given at Eq. (4.29) to

quantum Hamiltonian. For this aim we write q and p in terms of operators

H =
p2

2me
γt
m

+
1

2
me

γt
m ω2q2, (5.51)

where p → −ih ∂
∂q

, q → q.

Substituting Eq.(5.51) into time dependent Schrödinger equation we get

i}
∂

∂t
ψ = Hψ

=

(
p2

2me
γt
m

+
1

2
me

γt
m ω2q2

)
ψ (5.52)

Now we use coordinate transformation. We transform the coordinates (q, t) to new coor-

dinates (q
′
, t
′
) to exclude explicit time dependence in H:

(q, t) = (q(q
′
, t
′
), t(q

′
, t
′
))
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where q
′
= e

γ
2m

tq and t
′
= t . Also we need to write the Jacobian of the given transfor-

mation of coordinates to see if the coordinates are linearly independent.

Definition 5.1 Jacobian J is determinant J = detĴ of the Jacobian matrix Ĵ given by

Ĵ =




∂q

∂q′
∂q

∂t′

∂t
∂q′

∂t
∂t′


 . (5.53)

Remark 5.1 New coordinates are independent if J 6= 0.

We find jacobian of the transformation as J = e
γ

2m
t 6= 0 so coordinates are inde-

pendent. The derivatives can be found as

∂

∂q
=

∂q
′

∂q

∂

∂q′
+

∂t
′

∂q

∂

∂t′
(5.54)

= e
γ

2m
t ∂

∂q′
,

∂

∂t
=

∂q
′

∂t

∂

∂q′
+

∂t
′

∂t

∂

∂t′
(5.55)

=
γ

2m
q
′ ∂

∂q′
+

∂

∂t′
.

Writing Eq.(5.52) in terms of the new variables we get

i}
∂ψ

∂t′
=

[
p
′2

2m
+

mω2

2
q
′2

+
γ

2m
q
′
p
′
]

ψ. (5.56)

where p
′
= −i} ∂

∂q′ .

The next step is to diagonalize Hamiltonian operator. Let’s consider p
′ as

p
′
= k − γ

2
q
′

(5.57)

the Hamiltonian becomes

H(k, q
′
) =

[
k2

2m
+

(
mΩ2

2

)
q
′2
]

, (5.58)

where Ω2 = ω2 − γ2

4m2 and k = p
′
+ γ

2
q
′
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Since

[q, p] = i} (5.59)

and

q = e−
γ

2m
tq
′
, p = e

γ
2m

tp
′
, (5.60)

by substituting (5.60) into (5.59) we get

[
q
′
, p

′
]

= i},
[
q
′
, k

]
= i}. (5.61)

Now we write the Schrödinger equation for the Hamiltonian (5.58),

i~
∂ψ

∂t′
=

[
k2

2m
+

(
mΩ2

2

)
q
′2
]

ψ (5.62)

or equivalently;

i~
∂ψ

∂t′
=
−~2

2m

[
∂

∂q′
+

iγ

2~
q
′
]2

ψ +

(
mΩ2

2

)
q
′2
ψ. (5.63)

We use the following gauge transformation 1

[
∂

∂q′
+

iγ

2~
q
′
]

= e−
iγ
4~ q

′ ∂

∂q′
e

iγ
4~ q

′
(5.64)

and 2 [
∂

∂q′
+

iγ

2~
q
′
]2

ψ = e−
iγ
4~ q

′ ∂2

∂q′2
e

iγ
4~ q

′
ψ (5.65)

Changing the wave function ψ to another wave function Ψ

ψ = e−
iγ
4~ q

′
Ψ (5.66)

and substituting Ψ into the Schrödinger equation (5.63) we get

i~
∂Ψ

∂t′
=
−~2

2m

∂2Ψ

∂q′2
+

(
mΩ2

2

)
q
′2

Ψ (5.67)

1Theorem:(Baker- Hausdorf) If A and B are two fixed non-commuting operators and ξ is a parameter,

then

eξABe−ξA = B + ξ[A,B] +
ξ2

2!
[A, [A,B]] +

ξ3

3!
[A, [A, [A,B]]] + ...

For our case A = q
′

,B = ∂
∂q′

and after the fist two terms the rest is zero.
2Theorem: If A and B are two fixed non-commuting operators and if A−1 exists, then we have

ABnA−1 = (ABA−1)
n
,

where n is an integer. (For more details see reference (Louisell1964))
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or

i~
∂Ψ

∂t′
=

(
p
′2

2m
+

mΩ2

2
q
′2
)

︸ ︷︷ ︸
Ĥ

Ψ, (5.68)

The Schrödinger equation has form of harmonic oscillator with fixed mass and

frequency.

Our next step is to solve Eq. (5.68) . First we rewrite Eq. (5.68) in the form

∂Ψ

∂t′
+

iĤ

~
Ψ = 0 (5.69)

Next we multiply this equation from the left by the integrating factor U−1 (see appen-

dix[D])

U−1 = exp

(
it
′
Ĥ

~

)

we obtain the equation
∂

∂t′

[
exp

(
it
′
Ĥ

~

)
Ψ

]
= 0 (5.70)

Integrating over the time gives

exp

(
it
′
Ĥ

~

)
Ψ(q

′
, t
′
)−Ψ(q

′
, 0) = 0 (5.71)

Multiplying this equation by U gives the result

Ψ(q
′
, t
′
) = exp

(
−it

′
Ĥ

~

)
Ψ(q

′
, 0) = UΨ(q

′
, 0) (5.72)

Suppose that in solution (5.72) we chose initial state to be an eigen-state of Ĥ . Call it ϕn,

so that

Ψn(q
′
, 0) = ϕn(q

′
) (5.73)

Ĥϕn = Enϕn

where En = ~Ω(n + 1
2
), (n = 0, 1, 2, ...) and since the known property 3we find the wave

function

Ψn(q
′
, t) = exp

(
−it

′
Ĥ

~

)
ϕn = exp

(
−it

′
Ên

~

)
ϕn. (5.74)

3Let Aϕn = anϕn then let the function f(x) =
∑∞

t=0 blx
l, one can write f(A)ϕn = f(an)ϕn (see

(Liboff 1998))
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Substituting Eq.(5.74) into Eq.(5.68) we reach the following result,
[−~2

2m

∂2

∂q′2
+

mΩ2

2
q
′2
]

ϕn = Enϕn (5.75)

This equation is the time-independent Schrödinger equation and the solution of this equa-

tion in terms of Hermite polynomials is given in Appendix [D], which, in terms of q
′ ,

leads to

ϕn(

√
mΩ

~
q
′
) = AnHn

(√
mΩ

~
q
′
)

e−
mΩ
2~ q

′2
(5.76)

where An is the normalization constant. Substituting the above equation into Eq.(5.74)

we get,

Ψn(q
′
, t) = An exp

(
− it

′
En

~

)
Hn

(√
mΩ

~
q
′
)

e−
mΩ
2~ q

′2
. (5.77)

Then we substitute previous equation into (5.66) ,

ψ =
∑

n

An exp

(
− iγ

4~
q
′
)

exp

(
−it

′
En

~

)
Hn

(√
mΩ

~
q
′
)

exp

(
−mΩ

2~
q
′2
)

(5.78)

in terms of the variables (q, p, t) we reach our final result,

ψ =
∑

n

An exp

(
− iγ

4~
e

γt
2m q

)
exp

(
−itEn

~

)
Hn

(√
mΩ

~
e

γt
2m q

)
exp

(
−mΩ

2~
e

γt
m q2

)

(5.79)

where Ω2 = ω2− γ2

4m2 . As a result we have found the wave function for the time dependent

Caldirola’s-Kanais damped harmonic oscillator.
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Part II

EULER EQUATION
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CHAPTER 6

GENERALIZED ANALYTICAL MECHANICS WITH

HIGHER DERIVATIVES

In the first part we discussed damped oscillator equation as the second order con-

stant coefficient equation.

There exist several problems in which equations of motion are higher degree than

two. This is why the Lagrangian should include more than first derivatives of the gener-

alized coordinates.

In this chapter, to describe dissipative systems with higher derivative, we should

extend our general approach formulated at chapter 3 to include higher derivatives.

Example: Radiation Damping, (Mendes et al. 2006)

We begin with the problem of the radiation damping. The equation of motion of one-

dimensional radiation damping , without external force,is

mẍ− γ
...
x = 0 (6.1)

where γ and m are independent of time. Since the system (6.1) is dissipative, a La-

grangian description leading to a consistent canonical formalism is not available. To de-

velop a canonical formalism we are required to consider (6.1) along with its time-reversed

image

mÿ + γ
...
y = 0 (6.2)

so that the composite system is conservative. The system (6.1) and (6.2) can be derived

from the following Lagrangian

L = mẋẏ +
γ

2
(ẋÿ − ẍẏ), (6.3)

where x is the radiation damping coordinate and y corresponds to the time-reversed coun-

terpart. So, the system made of the radiation damping and of its time-reversed image

globally behaves as a closed system.
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As it is clear from the example, the Lagrangian formalism for radiation damping

includes second derivatives. Hence equations of motion includes the third derivative. So

we will extend our formulation now.

To start generalization of analytical mechanics for higher derivatives we re-

strict our consideration with linear dissipative systems having higher order derivatives.

This why Lagrangian function we consider as a general quadratic form in terms of

(qi, q̇i, ..., q
(N−1)
i ),

L = L(qi, q̇i, ..., q
(N−1)
i ) (6.4)

where q(n−1) represents (n−1)th derivative of q. In the next section we derive generalized

Lagrange and Hamiltonian formalisms for higher derivatives.

6.1. Generalized Lagrange and Hamiltonian Formalisms for Higher

Derivatives
The Euler-Lagrange equation can be generalized for the higher derivatives as fol-

lowing
l∑

m=0

(−1)m dm

dtm

(
∂L

∂qm
i

)
= 0, (6.5)

where qm
i = dmqi/dtm, i = 1, ..., n, m = 0, ..., l. We observe that they will have order

2m where m is the number of derivatives figuring in L. To pass Hamiltonian formalism,

Legendre transformation is needed. For the non-singular case, Euler-Lagrange equations

can be transformed into equivalent Hamiltonian form. This theorem is called ”Ostrograd-

sky’s theorem” (Dubrovin et al. 1984)

If the Lagrangian is in the form of L = L(u, u
′
, ..., u(l)), one can introduce canon-

ical variables qi and pi, (i = 1, ..., l), defined by

q1 = u, q2 = u
′
, ..., ql = u(l−1) (6.6)

p1 =
∂L

∂u′
−

(
∂L

∂u′′

)′

+ ... + (−1)l−1

(
∂L

∂ul

)l−1

p2 =
∂L

∂u′′
−

(
∂L

∂u′′′

)′

+ ... + (−1)l−2

(
∂L

∂ul

)l−2

...

pl =
∂L

∂ul
,
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and then set

H(p, q) = −L + u
′
p1 + u

′′
p2 + ... + ulpl. (6.7)

Theorem 6.1 (Ostrogradsky). For non-singular Lagrangian L = L(u, u
′
, ..., ul), the

Euler-Lagrange equation are equivalent to the Hamiltonian system

q
′
α =

∂H

∂pα

, p
′
α = −∂H

∂qα

, α = 1, ..., l (6.8)

where H is given by (6.7).

Now as an example we give Hamiltonian formalism of the radiation damping. In

the radiation damping case the coordinates and moments are given as follow:

q1 = x, q2 = ẋ, q̃1 = y, q̃2 = ẏ

p1 =
∂L

∂ẋ
−

(
∂L

∂ẍ

)′

= mẏ + γÿ, p̃1 =
∂L

∂ẏ
−

(
∂L

∂ÿ

)′

= mẋ− γẍ

p2 =
∂L

∂ẍ
= −γ

2
ẏ, p̃2 =

∂L

∂ÿ
=

γ

2
ẋ

substituting into Legenre transformation we reach the next Hamiltonian formalism for the

radiation damping,

H =
p1p̃1

m
.

In the next section we consider an example of generalized Bateman type La-

grangian.

6.2. Generalized Bateman’s Lagrangian

In this section we consider Bateman’s type dual Lagrangian with higher deriva-

tives for description of the constant coefficient equations of arbitrary order. We can write

this Lagrangian in the following form ,

L = a2N
dNy

dtN
dNx

dtN
+

1

2
a2N−1

{
dN−1y

dtN−1

dNx

dtN
− dNy

dtN
dN−1x

dtN−1

}

−a2N−2
dN−1y

dtN−1

dN−1x

dtN−1
− 1

2
a2N−3

{
dN−2y

dtN−2

dN−1x

dtN−1
− dN−1y

dtN−1

dN−2x

dtN−2

}

+ . . . +
1

2
a1

{
y
dx

dt
− dy

dt
x

}
+ a0xy, (6.9)
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here a2N , a2N−1, ..., a0 terms are constants.

The Euler-Lagrange equations are:

N∑
q=0

(−1)q dq

dtq

(
∂L

∂vi
q

)
= 0 (6.10)

where vi
q = dqxi

dtq
, i = 1, 2 and x1 = x , x2 = y.

Substituting Eq. (6.9) into Eq. (6.10) we get equations of motion in the form of

the constant coefficient equation of order 2N and its time reversed image:

a2N
d2Nx

dt2N
+ a2N−1

d2N−1x

dt2N−1
+ ... + a1

dx

dt
+ a0x = 0, (6.11)

a2N
d2Ny

dt2N
− a2N−1

d2N−1y

dt2N−1
+ ...− a1

dy

dt
+ a0x = 0 (6.12)
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CHAPTER 7

THE EULER EQUATION

In this chapter firstl we introduce general Euler type differential equation of degree

N and it’s representation in terms of constant coefficient equation of degree N . After that

the Lagrangian formalism of the Euler equation will be given. Also we discuss some

related examples.

The Euler equation also known as the Cauchy-Euler differential equation is named

after Euler (1707− 1783). It is a second order differential equation given by

b2x
2 d2y

dx2
+ b1x

dy

dx
+ b0y = 0 (7.1)

where b0, b1, b2 are constants. This equation can be transformed to the second order

constant coefficient equation coinciding with the damped harmonic oscillator equation,

considered at section 4.1. As was shown there, the variational formulation of the

equation needs generalization of analytical mechanics by considering non-stationary

pseudo-Riemannian metric in Lagrangian function.

Definition 7.1 The homogeneous Euler Equation of degree N for function

y = y(x) has the generic form

N∑

k=0

bkx
k dky

dxk
= 0, bN 6= 0 (7.2)

where bk are constants and the power of x is always equal to the order of the derivative

of y in each term.

Solution of this differential equation is based on transformation to the constant coefficient

differential equation which can be easily solved.

Theorem 7.1 The Euler differential equation (7.2) can be transformed to a linear homo-

geneous ordinary differential equation degree N with constant coefficients,

N∑

k=0

ak
dky

dtk
= 0 (7.3)
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by using the substitution x = et .

Proof:

Substituting x = et, derivatives of y become;

x
dy

dx
= x

dy

dt

dt

dx
=

dy

dt
= Dty,

x2 d2y

dx2
= x2 d

dx

(
1

x

dy

dt

)
=

(
d2y

dt2
− dy

dt

)
= Dt (Dt − 1) y,

x3 d3y

dx3
=

(
d3y

dt3
− 3

d2y

dt2
+ 2

dy

dt

)
= Dt (Dt − 1) (Dt − 2) y,

...

xk dky

dxk
=

k−1∏
s=0

(Dt − s)y (7.4)

...

xN dNy

dxN
= Dt (Dt − 1) (Dt − 2) ... (Dt −N + 1) y

where Dt ≡ d
dt

.

Inserting there into equation (7.2) we reach the following differential equation with

constant coefficients

bNDt (Dt − 1) (Dt − 2) ... (Dt −N + 1) y + ...+

+b2Dt (Dt − 1) y + b1Dty + b0y = 0. (7.5)

For solution of equation (7.5) see Appendix A.

Combining terms at the same order derivatives in equation (7.5), we can write the

equation according to powers of Dt

aNDt
(N)y + aN−1Dt

(N−1)y + ... + a1Dt
(1)y + a0y =

N∑

k=0

akD
(k)
t y = 0,

where Dt
(k) = dk

dtk
. ¥

The relation between constants a1, ..., aN and b1, ..., bN

N∑

k=0

ak
dky

dtk
=

N∑

k=0

bkx
k dky

dxk
(7.6)

is given at Appendix E.
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7.1. Euler Equation in Physical and Mathematical Problems

We consider here three problems which appears in the Euler equations. First prob-

lem is the Dirichlet problem for circular disk. The second one is a quantum mechanical

problem, particle in a sphere, that leads to the spherical Bessel equations and written in

the radial form it produces the Euler differential equation. The third problem is the Euler

equation for radiation damping.

7.1.1. Dirichlet Problem for Circular Disk

Suppose that we have a thin circular disk of radius a, r < a, (with constant thermal

properties and no sources) with the temperature prescribed on the boundary as illustrated

in Figure 7.1,

Figure 7.1. Drichlet Problem for Circular Disk

If the temperature on the boundary is independent of time then we determine the

equilibrium temperature distribution. The temperature satisfies Laplace’s equation∇2u =

0. The geometry of this problem suggests to use polar coordinates, so that u = u(r, θ) .

The Laplace equation in polar coordinate is

∇2u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2
= 0 (7.7)

In particular, if on the circle r = a the temperature distribution is prescribed by the

function f(θ), then the Dirichlet boundary condition is

u(a, θ) = f(θ). (7.8)

Mathematically, we need conditions at the end points of the coordinate system, r = 0, a

and θ = −π, π. Here only r = a corresponds to a physical boundary. Polar coordinates
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are singular at r = 0 ; for physical reasons we will prescribe that temperature is bounded

at the origin

| u(0, θ) |< ∞. (7.9)

The conditions are needed at θ = ±π. Here θ = π and θ = −π correspond to the same

points. We say that the temperature is continuous there and the heat flow in the θ direction

is continuous, which implies the following periodicity condition;

u(r, θ) = u(r, θ + 2π). (7.10)

This satisfies homogeneous boundary condition. Now we use the method of separation of

variables:

u(r, θ) = Φ(θ)R(r). (7.11)

From Laplace’s equation

1

r

d

dr

(
r
dR

dr

)
Φ(θ) +

1

r2
R(r)

d2Φ

dθ2
= 0. (7.12)

Dividing by 1
r2 Φ(θ)R(r) we get

r

R

d

dr

(
r
dR

dr

)
= − 1

Φ

d2Φ

dθ2
= λ. (7.13)

Equation (7.13) yields two ordinary differential equations:

d2Φ

dθ2
+ λΦ = 0. (7.14)

r2R
′′

+ rR
′ − λR = 0, (7.15)

where primes denote derivatives with respect to r. Equation (7.15) is an example of Euler

differential equation.

First we solve θ-dependent problem given at Eq. (7.14). We determine the general

solution of the problem

Φ(θ) = A cos αθ + B sin αθ, λ = α2 > 0 (7.16)

Φ(θ) = A + Bθ, λ = 0, (7.17)

Φ(θ) = Aeαθ + Be−αθ, λ = −α2 < 0 (7.18)

Now requiring periodicity condition Φ(θ) = Φ(θ + 2π), we get the general solution for

our problem,

λ0 = 0, Φ0(θ) = A, (7.19)

λn = n2, Φn(θ) = An cos nθ + Bn sin nθ. (7.20)
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where (n = ±1,±2, ...) .

Second we solve r-dependent equation given at Eq. (7.15). For λ0 = 0 we get the

solution

R0(r) = C0 + D0 ln r (7.21)

Since for r = 0, u(r, θ) must be continuous then for this case D0 = 0 and R0(r) = C0.

For λn = n2 we have Euler equation,

r2R
′′
n + rR

′
n − n2Rn = 0. (7.22)

To solve this equation we substitute for r = et and get following constant coefficient

equation

R̈n − n2Rn = 0, (7.23)

dots denote derivative with respect to t variable. Then setting for R = eηt and substituting

into the constant coefficient equation, we find the solution η = ±n. We get R = e±nt =

(et)±n = r±n. We write the general solution of this equation

Rn(r) = Cnr
n +

Dn

rn
. (7.24)

For continuity at r = 0, we must have Dn = 0. So we get

Rn(r) = Cnr
n. (7.25)

The product of equations (7.20) and (7.25) yields the following result

u(r, θ) =
∞∑

n=0

Rn(r)Φn(θ) (7.26)

=
a0

2
+

∞∑
n=1

(an cos nθ + bn sin nθ)rn (7.27)

Using the Dirichlet condition u(a, θ) = f(θ) in the closed interval [0, 2π] we write

fourier series of f(θ)

u(a, θ) =
a0

2
+

∞∑
n=1

(an cos nθ + bn sin nθ)an (7.28)

and find the constants

an =
1

πan

∫ 2π

0

f(θ) cos nθdθ, (n = 0, 1, 2, ...) (7.29)

bn =
1

πan

∫ 2π

0

f(θ) sin nθdθ, (n = 1, 2, 3, ...) (7.30)

The above results determines the steady-state temperature distribution inside a circular

disk.
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7.1.2. Particle in a Sphere

We consider spherical Bessel Equation as an example of Euler Equation. In quan-

tum mechanics the problem of quantum mechanical particle in a sphere of radius a is

solved by using spherical Bessel functions. Quantum theory requires that the wave func-

tion Ψ, describing our particle, satisfy
(
− ~

2

2m
∇2 + V (r)

)
Ψ = EΨ, (7.31)

Here m is the mass of the particle, V (r) is potential energy. The boundary conditions (i)

Ψ(r ≤ a) remains finite, (ii) Ψ(a) = 0. This corresponds to a potential V = 0, r ≤ a

and V = ∞, r > a. Let us determine the minimum value of the energy for which our

problem has a solution. Eq. (7.31) is Helmholtz’s equation, the radial part of which is the

Euler equation,
d2R

dr2
+

2

r

dR

dr
+

[
k2 − n(n + 1)

r2

]
R = 0, (7.32)

with k2 = 2mE/~2, for n = 0, we get

r2d2R

dr2
+ 2r

dR

dr
+ k2r2R = 0, (7.33)

substituting r = et we have

d2R

dt2
+

dR

dt
+ (ket)2R = 0 (7.34)

if we consider (ket) = ω(t) then we have damped harmonic oscillator with time depen-

dent frequency. The solution is

R = Aj0(kr) + Bn0(kr). (7.35)

where j0(kr) = sin kr
kr

and n0(kr) = − cos kr
kr

We chose the orbital angular momentum

index n = 0, since any angular dependence with n > 0 would raise the energy. The

spherical Neumann function is rejected because of its divergent behavior at the origin. To

satisfy the second boundary condition, we require

ka =

√
2mE

~
a = α,

where α is a root of j0, that is j0(α) = 0. This is the effect of limiting the allowable

energies to a certain discrete set or, in other words, application of condition (ii) quantizes

the energy E. The smallest α is the first zero of j0 ,

α = π
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and

Emin =
π~2

2ma2

which means that for any finite sphere the particle energy will have a positive minimum

or zero point energy.

7.1.3. Euler Equation for Radiation Damping

The Euler equation of motion of the radiation damping

mẍ− γ
...
x = 0 (7.36)

can be reduced to the Euler equation by the following transformation τ = et, then

d

dt
= τ

d

dτ
. (7.37)

Inserting the relation (7.37) into the Eq.(7.36), we find

m

(
τ

d

dτ

)2

x− γ

(
τ

d

dτ

)3

x = 0. (7.38)

Reordering the Eq.(7.38) we get the Euler equation for radiation damping in the next

form,

γτ 3d3x

dτ 3
+ (3m− γ)τ 2d2x

dτ 2
+ (γ −m)τ

dx

dτ
= 0. (7.39)

7.2. Lagrangian Formalism for The Euler Equation N = 2

In this section we find Lagrangian formalisms for the Euler equation for the

generic case N = 2. The general solution of the problem of arbitrary degree N is out

of the scope of this thesis. We will consider here only solution of the problem for the sec-

ond order Euler equation. Let’s write the Euler equation in the operator form (discussed

at Appendix E).

D2
Ey =

[
b2x

2 d2

dx2
+ b1x

d

dx
+ b0

]
y = 0 (7.40)

The Lagrangian formulation of Eq. (7.40) is related to self-adjoint property of differential

operator D2
E .
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7.2.1. Self-Adjoint Differential Operators

Let L be a generic linear second order operator in the following form,

L = p0(x)
d2

dx2
+ p1(x)

d

dx
+ p2(x) (7.41)

where p0(x), p1(x), p2(x) are real functions of x. It results in the differential equation

Lu(x) = p0(x)
d2

dx2
u(x) + p1(x)

d

dx
u(x) + p2(x)u(x) = 0. (7.42)

Adjoint operator L† is determined by the next expression

< v | Lu >=< L†v | u > (7.43)

(where < u | v > is inner product in vector space defined as < u | v >=
∫ b

a
uvdx)so that

adjoint differential equation is

L†v = 0 (7.44)

or

(p0v)
′′ − (p1v)

′
+ p2v = 0 (7.45)

Definition 7.2 L is called self-adjoint if L = L†. Then equations for u and v are the

same,

p0u
′′

+ p1u
′
+ p2u = 0,

p0v
′′

+ p1v
′
+ p2v = 0.

According to this in the self-adjoint case we can consider the bilinear form

< u | Lu >=< Lu | u > (7.46)

Proposition 7.1 For the linear second order differential equation (7.42) to be self-adjoint

it is necessary and sufficient to have

p
′
0 = p1

Proof. Let adjoint operator L† (as same as Eq. (7.45))

L†u(x) =
d2

dx2
[p0u]− d

dx
[p1u] + p2u

= p0
d2u

dx2
+ (2p

′
0 − p1)

du

dx
+ (p

′′
0 − p

′
1 + p2)u (7.47)
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under the condition L = L†. In comparison of Eq. (7.42) and (7.47) the necessary and

the sufficient condition for self-adjoint L is that

p
′
0(x) =

dp0(x)

dx
= p1(x).¥ (7.48)

Hence when this condition is satisfied

Lu(x) = L†u(x) =
d

dx

[
p(x)

du(x)

dx

]
+ q(x)u(x). (7.49)

and the operatorL is said to be self-adjoint. Here for the self-adjoint case p0(x) is replaced

by p(x) and p2(x) by q(x).

Proposition 7.2 Every second order non-self adjoint linear differential equation where

p
′
0(x) 6= p1(x) can be always transformed into required self adjoint form, by multiplying

it by an integrating factor µ,

((µp0)u
′
)
′
+ (µp2)u = 0

Proof Consider (7.42) with p
′
0 6= p1. If we multiply L by an integrating factor, µ with

µ =
1

p0(x)
exp

[∫ x p1(t)

p0(t)
dt

]
, (7.50)

(see appendix B for the proof of µ)we obtain

1

p0(x)
exp

[∫ x p1(t)

p0(t)
dt

]
Lu(x) =

d

dx

{
exp

[∫ x p1(t)

p0(t)
dt

]
du(x)

dx

}

+
p2(x)

p0(x)
exp

[∫ x p1(t)

p0(t)
dt

]
u(x) (7.51)

we require p0 6= 0.As a result the Eq. (7.51) has been put into the self-adjoint form. ¥
According to bilinear form discussed at chapter 3 we have definition

Definition 7.3 Classical action is in bilinear form

S =
1

2
< v | L | u >=

1

2

∫ b

a

v(x)Lu(x)dx

where L = v(x)Lu(x) is the Lagrangian.
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If L is self adjoint then action is

S =
1

2
< u | L | u >=

1

2

∫ b

a

u(x)Lu(x)dx

Using Hamilton’s principle of least action to this action we get equations

Lu(x) = 0

Lv(x) = 0

and in self-adjoint case they coincide.

Now we will consider generic Euler equation (7.40) of degree two,

D2
Ey =

[
b2x

2 d2

dx2
+ b1x

d

dx
+ b0

]
y = 0.

Comparing it with Eq. (7.42) we find

p0 = b2x
2, p1 = b1x, p2 = b0.

If the coefficients satisfy b1 = 2b2 then Eq. (7.48) is satisfied since p
′
0 = p1 and corre-

sponding equation is self adjoint. But in generic case, if the operator is not self-adjoint,

following above procedure, we can get self adjoint operator using integrating factor µ.

We find the integrating factor for Eq.(7.40),

µ =
1

b2

x
b1
b2
−2

. (7.52)

Multiplying Eq.(7.40) by (7.52) we get our action formalism as follows,

S =
1

2
< y | µD2

E | y > (7.53)

where Lagrangian is equal to

L =
1

2
yx

b1
b2

d2y

dx2
+

1

2
y
b1

b2

x
b1
b2
−1 dy

dx
+

1

2
y
b0

b2

x
b1
b2
−2

y. (7.54)

or in terms of only zero and first derivatives

L = −1

2
x

b1
b2

(
dy

dx

)2

+
1

2

b0

b2

x
b1
b2
−2

y2. (7.55)

As easy to check by variation of action functional or by using Ostrogradsky formula for

higher degree Lagrangian in the section (6.2), we can obtain Euler equation of generic

form as

b2x
2 d2

dx2
y + b1x

d

dx
y + b0y = 0

56



Unfortunately for the generic Euler equation of degree N > 2 it is impossible to

have self-adjointness by one integrating factor.

In the next section we consider a special case for Lagrangian formalism of the

Euler equation when N = 2l.

7.3. Lagrangian Formulation of Euler Equation for Special Case

N = 2l

In this section we find Lagrangian formalism for Euler equation degree N = 2l of

the special form

x2l

(
d2ly

dx2l

)
+ 2l2x2l−1

(
d2l−1y

dx2l−1

)
+ ... + 2x

dy

dx
+ y = 0. (7.56)

The Lagrangian, for this Euler differential equation is

L =
l∑

n=0

1

2
(−1)n+1x2n

(
dny

dxn

)2

. (7.57)

It is easy to check by substituting (7.57) into the Eq. (6.5).

In the next section we consider some examples of the Euler equation. These exam-

ples show the relation of Euler equation with damped harmonic oscillator in the Bateman

and Caldirola-Kanai’s formalisms.

7.3.1. Examples of the Euler Equation

1. Damped Harmonic Oscillator Formulation of the Euler Equation:

One can reach damped harmonic oscillator differential equation from the La-

grangian formalism of the Euler equations. Let’s consider the Lagrangian function

L = L(x, y, y′) of the form

L =
1

2
x2y′2 − y2

2
, y′ =

dy

dx
. (7.58)

The above equation is derivable from Lagrangian (7.55). Using the Euler-Lagrange equa-

tion ;
∂L

∂y
− d

dx

∂L

∂y′
= 0,

we find the equation of the motion in the form of the Euler differential equation:

x2y′′ + 2xy′ + y = 0. (7.59)
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It is in self-adjoint form since p0 = x2, p1 = 2x and p
′
0 = p1. Now let’s consider the

general form of (7.59). This is the case where it takes the following form

b2x
2 d2y

dx2
+ b1x

dy

dx
+ b0y = 0. (7.60)

here b2 = 1, b1 = 2, b0=1.

Using the transformation x = et, the equation becomes a constant coefficient equation;

b2
d2y

dt2
+ (b1 − b2)

dy

dt
+ b0y = 0 (7.61)

This is the equation of the damped harmonic oscillator;

d2y

dt2
+

(
b1 − b2

b2

)
dy

dt
+

b0

b2

y = 0 (7.62)

which we can write as
d2y

dt2
+ γ

dy

dt
+ ω0

2y = 0 (7.63)

Here γ =
(

b1−b2
b2

)
is the damping parameter and ω0 =

√
b0
b2

is the angular frequency.

As a result starting from the Euler Lagrangian we reached the damped harmonic

oscillator equation.

2. Bateman Formalism for the Euler Equation:

In this example we relate the dual Bateman Lagrangian equation with the one for

Euler differential equation. Starting from the Bateman Lagrangian

L = xτyτ − γ

2
(xτy − xyτ )− kxy (7.64)

where xτ = dx
dτ

, yτ = dy
dτ

. In this case the equations of motion are constant coefficient

equation,

xττ + γxτ + kx = 0,

yττ − γyτ + ky = 0.

We apply the transformation t = eτ to pass the Euler differential equation. It is

t2ẍ + (γ + 1)tẋ + kx = 0 (7.65)

where ẋ = dx
dt

. The adjoint equation of the Eq. (7.65) is

t2ÿ + (1− γ)tẏ + (k + 1− γ)y = 0. (7.66)
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When we have equation of motion we can find the corresponding Lagrangian;

δ

∫
Ld(t) = δ

∫
y(t2ẍ + (γ + 1)tẋ + kx)d(t) = 0. (7.67)

Using integration by parts we can reformulate the Lagrangian

L = −t2ẋẏ + t[(1 + γ)ẋy − 2xẏ] + kxy (7.68)

This Lagrangian is Bateman’s dual Lagrangian and it’s equations of motion are now in

the Euler equation form.

3. Caldirola-Kanai Representation in the The Euler Form:

In chapter 4 we have applied Caldirola-Kanai Lagrangian formalism to derive

damped harmonic oscillator equations. Now we are going to show that Caldirola-Kanai

Lagrangian (4.27) can be represented in the Euler form. We start from Lagrangian (7.57)

for the case l = 1. Multiplying some elements of (7.57) by necessary constants, m,w and

change the variables of the Lagrangian as L = L(x, ẋ, t). Then we get

L = m

(
t2ẋ2

2
− w2x2

2

)
. (7.69)

where ẋ = dx
dt

. The corresponding equation of motion is in the Euler differential equation

form

t2ẍ + 2tẋ + w2x = 0

We re-parameterize the action (2.2) t = t(τ) it as follows

S =

∫ t2

t1

L(ẋ, x)dt,

=

∫
L

(
dx

dτ

dτ

dt
, x

)
dt

dτ︸ ︷︷ ︸
NewLagrangian

dτ

=

∫ τ2

τ1

L(xτ , x)dτ

where L = L
(

dx
dτ

dτ
dt

, x
)

1
τ̇

is modified Lagrangian and xτ = dx
dτ

. Now we will apply it to

the Lagrangian at Eq. (7.69) for t = eτ

L = m

(
t2

2

(
dx

dτ

dτ

dt

)2

− w2x2

2

)
1

τ̇
,

= eτ m

2

(
x2

τ − w2x2
)
. (7.70)
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As a result we get Eq. (7.70), which is Caldirola-Kanai Lagrangian with the equation of

motion,

xττ + xτ + w2x = 0.

In the next chapter we consider stationary and non-stationary quantum mechanical

problems connected with Euler equation.
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CHAPTER 8

QUANTUM EULER EQUATION

In this chapter we will discuss Quantum Euler equations. First we consider Euler

equation in a stationary Schrödinger problem. Second we discuss exact solutions of quan-

tum Euler equations in non-stationary case.

8.1. Quantum Euler Equation in Stationary Case

In this section we consider the Euler equation. Then we associate Euler differ-

ential operator with the Hamiltonian, called the Euler Hamiltonian and the stationary

Schrödinger equation.

8.1.1. Euler Equation in Heisenberg-Weyl Representation

General homogeneous Euler Differential equations are those in which every deriv-

ative operator d
dx

is combined by a factor of x. When we set for x and d
dx

the following

relations

q = x, p = −i~
d

dx
(8.1)

where ~ = 1, this time x stands for coordinate and −i d
dx

stands for momentum,satisfying

the commutation relations

[q, p] = i, [q, q] = 0, [p, p] = 0, (8.2)

so they have both a quantum mechanical meaning. This why we can set the Heisenberg-

Weyl algebra for the Euler equation. The definition of the algebra is the following,

Definition 8.1 The Heisenberg-Weyl algebra is a real three-dimensional Lie algebra

whose generators satisfy the commutation relations

[e1, e2] = e3, [e1, e3] = [e2, e3] = 0. (8.3)

Introducing generators in terms of operators q and p we get the Heisenberg-Weyl algebra

representation of the Euler equations

e1 = ip =
d

dx
, e2 = iq = ix, e3 = iI, (8.4)
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satisfying the commutation rules in (8.3).

According to this the Euler equation (7.2) can be written in terms of the operators

q and p acting on the function Ψ ≡ y(x):

N∑

k=0

bkq
kpkΨ = 0. (8.5)

Defining the Euler Hamiltonian,

H =
N∑

k=1

bkq
kpk (8.6)

and denoting the term for k = 0, b0 as E, the Euler equation get the form of the

Schrödinger equation,

HΨ = EΨ (8.7)

where H is (8.6) and E = b0 (8.7) ,then every solution of the Euler equation gives the

solution of quantum mechanical problem with hamiltonian (8.6).

In the next section we consider Euler equation in Fock-Bragmann representation.

8.1.2. Euler Equation in Fock-Bargmann Representation

In this section we discuss complexified Euler equation. In this case the operators

x, d
dx

are replaced by complex operators

x → z = x + iy,
d

dx
→ d

dz
=

1

2
(

∂

∂x
− i

∂

∂y
). (8.8)

so that
N∑

k=0

bkz
k dk

dzk
f(z) = 0 (8.9)

This allow us to give interpretation of Euler differential equation as operator equation in

Fock-Bargmann representation.

Definition 8.2 There is a realization of Hilbert space (see appendix C for definition of

Hilbert space), where any state vector is described by an entire analytical function, this

realization is called Fock-Bargmann representation.

According to this we can associate operators z, d
dz

with bosonic creation and annihilation

operators

a =
d

dz
, a+ = z, (8.10)
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where they satisfy the commutation relation

[a, a] = [a+, a+] = 0, [a, a+] = 1. (8.11)

Definition 8.3 Euler differential operator can be defined in the Hamiltonian form in

terms of creation and annihilation operators as follows

H = ~w
N∑

k=1

bk(a
+)k(a)k. (8.12)

where for dimensional reasons we have introduced Planck’s constant ~ and the charac-

teristic frequency w.

We define vacuum states,

a | 0 >= 0

and n-particle state,

| n >=
1√
n!

(a+)n|0 > .

Since {| n >} is complete,

| Ψ >=
∞∑

n=0

cn | n >,

for ∀ Ψ are elements of Hilbert space.

Definition 8.4 The number operator N is defined in terms of creation and annihilation

operators N = a+a. When the number operator acts on a state n, it has the eigenvalue n

N |n >= n|n > .

To get the Euler operator (8.12) in terms of the number operator N , we rewrite (a+)k(a)k

as a polynomial of N

(a+)k(a)k = Pk(N).
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Pk(N) can be found using the commutation relations (8.11) and stating k = 0, 1, 2, ..., l

as follows,

P0(N) = 1

P1(N) = a+a = N,

P2(N) = a+a+aa = a+ a+a︸︷︷︸ a = a+([a+, a] + aa+)a

= a+(aa+ − 1)a = a+aa+a− a+a (8.13)

= N(N − 1)

.

.

.

Pl(N) = (a+)l(a)l = N(N − 1)(N − 2)...(N − (l − 1))

Substituting the terms into the Eq. (8.12) we get Euler Hamiltonian operator in terms of

number operators,

H(N) = ~ω
l∑

k=1

bkPk(N), (8.14)

or in explicit form,

H(N) = [blN (N − 1) (N − 2) ... (N − l + 1) + ... + b2N (N − 1) + b1N + b0] .

If we re-arrange the above equation in terms of powers of N we get

H(N) = clN
l + cl−1N

l−1 + ... + c1N + c0.

where cl are constants. Acting on the state |n > we have

H(N)|n >= E(n)|n >,

with the discrete spectrum

E(n) = Pl(n) = ~ω
(
cln

l + cl−1n
l−1 + ... + c0

)
. (8.15)
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8.1.3. The Euler Hamiltonian in Terms of the Standard Harmonic Os-

cillator Hamiltonian

In this part we consider Euler hamiltonian operator (8.12) in terms of the standard

harmonic oscillator creation and annihilation operators a+, a,

a =

√
mw

2~

(
q +

ip

mw

)
, a+ =

√
mw

2~

(
q − ip

mw

)
, (8.16)

and standard harmonic oscillator hamiltonian operator H0 is given by the form

H0 =
1

2m

(
p2 + m2w2q2

)
. (8.17)

where the q and p are the quantum mechanical coordinate and momentum operators re-

spectively, m is mass, w is frequency.

They satisfy the algebra

[a, a+] =
i

2~
[p, q]− i

2~
[q, p] = 1 (8.18)

where [q, p] = i~.

Our aim is to write Eq. (8.14) in terms of the standard harmonic oscillator hamil-

tonian operator H0. Hence we start from k = 1

a+a =
p2

2m~w
+

mw

2~
q2 +

i

2~
(qp− pq) =

H0

~w
− 1

2
, (8.19)

then

H0 = ~w(a+a +
1

2
) = ~w(N +

1

2
), k = 1. (8.20)

to get higher terms k = 2, 3, ..., l we use Eq. (8.13) for simplicity

a+a+aa = N(N − 1) =

(
H0

~w
− 1

2

)(
H0

~w
− 3

2

)
, k = 2,

a+a+a+aaa = N(N − 1)(N − 2) =

(
H0

~w
− 1

2

)(
H0

~w
− 3

2

)(
H0

~w
− 5

2

)
, k = 3,

.

.

.

(a+)l(a)l = N(N − 1)(N − 2)...(N − (l − 1)),

= =

(
H0

~w
− 1

2

)(
H0

~w
− 3

2

)
...

(
H0

~w
− (l − 1)

2

)
, k = l.

In this way we get Eq. (8.14) in terms of H0, that can be written as

H = PN(H0)
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8.2. Quantum Euler Equation in Non-Stationary Case

In the present section we consider the time dependent Heisenberg equation with

Hamilton operator given by the Euler Hamiltonian. These models are examples of non-

linear quantum systems.

In the previous section we have defined Euler Hamiltonian to refer quantum me-

chanical Hamiltonian that can be written as functions of pq (Bender 1994). The examples

of Euler hamiltonian can be given as H = pqpq, H = p3q3 + q3p3, H = exp(pq + qp).

If we have a quantum mechanical Hamiltonian H , we can write down the Heisen-

berg operator equations of motion [For details see appendix E].

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
. (8.21)

In terms of commutation relations we can formalize these as follows

q̇ = i[H, q], ṗ = i[H, p] (8.22)

These equations determine the time evolution of operators q(t), p(t) in Heisenberg

picture. Where q(t) and p(t) satisfy the commutation relation

[q(t), p(t)] = i. (8.23)

In general it is difficult to find solutions to (8.21) for given hamiltonian H . But in

the case of harmonic oscillator when Hamiltonian is quadratic

H =
1

2
p2 +

1

2
q2 (8.24)

it is simple, since the equations are linear. To solve this problem we use the given Hamil-

tonian (8.24) to establish the time evolution of the operators q(t), p(t). The equations of

motion as follow

q̇ =
∂H

∂p
= p, ṗ = −∂H

∂q
= −q. (8.25)

can be solved with the initial conditions q(0) = q(t0), p(0) = p(t0) and to yield the

solution;

q(t) = q(0) cos(t) + p(0) sin(t), (8.26)

p(t) = p(0) cos(t)− q(0) sin(t). (8.27)

Now we show how to solve exactly the large class of non-linear Heisenberg equations

arising from Hamiltonian’s of Euler type.
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8.2.1. Examples for Non-linear Heisenberg Equations

Example 1 :

Let’s consider the following system of operator equations:

q̇ = q(pq)n, ṗ = −p(qp)n. (8.28)

We can derive exact solution to the system of equations (8.28) satisfying the

commutation relation (8.23). To find the solution we multiply q̇ from the left by p and ṗ

from the right by q at (8.28) and add them as follows

pq̇ + ṗq = pq(pq)n − p(qp)nq (8.29)
d

dt
(pq) = (pq)n+1 − pq︸︷︷︸

1

pq︸︷︷︸
2

p...q pq︸︷︷︸
n+1

= (pq)n+1 − (pq)n+1 = 0

Since left hand side of the Eq. (8.29) is total time derivative of pq and right hand side is

equal to zero we can say q(t0)p(t0) = q0p0 and p(t0)q(t0) = p0q0 are all constant. Then

the solution of the equation (8.28) is

q(t) = qoe
(poqo)nt (8.30)

p(t) = poe
−(qopo)nt (8.31)

Example 2 :

For this example we consider a more complicated system of operator equation,

q̇ = q
∑

n

αn(pq)n (8.32)

ṗ = −p
∑

n

αn(qp)n (8.33)

where αn are arbitrary numerical coefficients and the sum over n needs to be convergent.

We derive the exact solution of the system satisfying the commutation relation (8.23),

q(t) = q0exp(
∑

n

αn(p0q0)
nt)

p(t) = p0exp(−
∑

n

αn(q0p0)
nt). (8.34)

The example 2 is the generalization of example 1. As a result if we are given the set of

Heisenberg operator equations of motion it can be expressed in the form of (8.34) by use

of the commutation relation (8.23).
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Example 3 :

Now we use the same procedure to solve Heisenberg equations of motion for the given

Euler Hamiltonian at the Eq. (8.6) ,

HN =
N∑

n=0

bnqnpn.

Using the Heisenberg operator equations of motion (8.22) we find by induction,

for q,

n = 0, q̇0 = i[H0, q] = i[b0, q] = 0,

n = 1, q̇1 = i[H1, q] = i[b1qp + b0, q] = b1q,

n = 2, q̇2 = i[H2, q] = i[b2q
2p2 + b1qp + b0, q] = 2b2q

2p + b1q,

...

n = N, q̇N = i[HN , q] =
N∑

n=0

αnnqnpn−1. (8.35)

for p,

n = 0, ṗ0 = i[H0, p] = i[b0, p] = 0,

n = 1, ṗ1 = i[H1, p] = i[b1qp + b0, p] = −b1p,

n = 2, ṗ2 = i[H2, p] = i[b2q
2p2 + b1qp + b0, p] = −2b2qp

2 − b1p,

...

n = N, ṗN = i[HN , p] = −
N∑

n=0

αnnqn−1pn. (8.36)

Multiplying Eq. (8.35) by p from the right, Eq. (8.36) by q from the left and taking the

sum and writing it in terms of the derivative of the product we find the result as in

previous examples, again d
dt

(qp) = 0. This show that the product of q(t)p(t) = p0q0 is

constant. This is why equations (8.35) and (8.36) can be reduced to (8.32) and (8.33) as

follows,

q̇ = q

N∑
n=0

αnnqn−1pn−1 = q

N∑
n=0

αnn(qp)n−1 (8.37)

ṗ = −p

N∑
n=0

αnnqn−1pn−1 = −p

N∑
n=0

αnn(qp)n−1 (8.38)
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with the solutions,

q(t) = q0exp

(
N∑

n=0

αnn(p0q0)
n−1t

)
,

p(t) = p0exp

(
−

N∑
n=0

αnn(q0p0)
n−1t

)
. (8.39)

Example 4 :

In this example we consider the homogeneous Euler Hamiltonian of degree 4,

H = apq2p + bqp2q + c(pqpq + qpqp) + d(q2p2 + p2q2), (8.40)

where a, b, c, d are arbitrary coefficients. Using the Heisenberg equation (8.22) for this

hamiltonian (8.40) we get

q̇ = (a + c + 2d)(q2p + pq2) + 2(b + c)qpq

ṗ = −(b + c + 2d)(qp2 + p2q)− 2(a + c)pqp

Now we use the commutation relation (8.23) to re-order previous expression. It can be

re-written as

q̇ = αqpq

ṗ = −αpqp

where α = (2a + 2b + 4c + 4d) . Then we get the solution depends only α

q(t) = q0exp(αnp0q0t)

p(t) = p0exp(−αnq0p0t). (8.41)

In this section we discussed Euler equation in Heisenberg picture, now we con-

sider another representation of the Euler equation.

8.3. Quantum Euler Equation for N = 2 in the Schrödinger Picture

In this section we write quantum Euler equation in Schrödinger picture (see Ap-

pendix F).

At the previous chapter we have found Lagrangian formalisms of the Euler equa-

tion for the cases N = 2, Eq.(7.55) and N = 2l, Eq. (7.57). When we set l = 1 in
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Eq. (7.57) we see that the equations that represent the Lagrangians have exactly the same

form. This form can be written as follows (x → t, y → x),

L =
1

2
mt2ẋ− 1

2
kx2, (8.42)

where m and k are all constants, t is time and x is coordinate. Corresponding equation of

motion is ,

mt2ẍ + 2tẋ + kx = 0. (8.43)

Using the Legendre transformation H = pẋ − L where p = ∂L
∂x

we find the Hamiltonian

function for (8.42) in the next form,

H =
1

t2
p2

2m
+

1

2
kx2 (8.44)

Substituting Eq.(8.44) into the time dependent Schrödinger equation we get

Hψ(x, t) = i~
∂ψ

∂t

(
1

t2
p2

2m
+

1

2
kx2)ψ(x, t) = i~

∂ψ

∂t
.

Since the momentum operator p = −i~ d
dx

we get the following second order differential

equation

− ~2

2mt2
ψxx +

k

2
x2ψ = i~ψt (8.45)

or

ψxx + mt2kx2ψ = i~2mt2ψt. (8.46)

To solve Eq.(8.46) we use coordinate transformation. We want to pass from the coordi-

nates (x, t) to new coordinates (x
′
, t
′
) . This why we write

(x, t) = (x(x
′
, t
′
), t(x

′
, t
′
))

where x
′

= x
√

t and t
′

= t . Now also we need to write the Jacobian of the given

transformation of coordinates to understand if the transformation is independent or de-

pendent. We find jacobian of the transformation as J =
√

t 6= 0 so the transformation is

independent. Then the derivatives can be found as

∂

∂x
=

√
t′

∂

∂x′

∂2

∂x2
= t

′ ∂2

∂x′2
(8.47)

∂

∂t
=

x
′

2t′
∂

∂x′
+

∂

∂t′
.
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Substituting the derivative terms Eq.(8.47) into Eq.(8.46) we get

− ~2

2mt′
ψx

′
x
′ +

k

2t′
x
′2
ψ = i~

(
x
′

2t′
ψx

′ + ψ
′
t

)
. (8.48)

Multiplying the previous equation with t
′ and then substituting t

′
= eτ we have

i~ψτ = − ~
2

2m
ψx′x′ − i~

x
′

2
ψx′ +

k

2
x
′2
ψ (8.49)

or in terms of momentum operator p
′

i~ψτ =

(
p
′2

2m
+

x
′
p
′

2
+

k

2
x
′2
)

ψ (8.50)

where p
′
= −i~ d

dx′

The following step is diagonalizing Eq.(8.50), by this reason we substitute for

p
′ → p

′
+ m

2
x
′ into the Schrödinger equation and we get it in a diagonalized form as

follows

i~ψτ = − ~
2

2m

[
∂

∂x′
+

im

2~
x
′
]2

ψ +

(
k

2
− m

8

)
x
′2
ψ +

i~
4

ψ (8.51)

Now we apply the gauge transformation ,
[

∂

∂x′
+

im

2~
x
′
]2

ψ = e−
im
4~ x

′ ∂2

∂x′2
e

im
4~ x

′
ψ (8.52)

and we transform the wave function ψ to another wave function Ψ according to

ψ = e−
im
4~ q

′
Ψ. (8.53)

Substituting ψ into the Schrödinger equation (8.51) we reach time dependent Schrödinger

equation in terms of Ψ,

i~Ψτ = − ~
2

2m
Ψx′x′ +

(
k

2
− m

8

)
x
′2

Ψ +
i~
4

Ψ (8.54)

As was shown at section (5.3) we write for Ψ,

Ψn(x
′
, τ) = exp

(
−iτEn

~

)
ϕn. (8.55)

where En =
[
~ω(n + 1

2
) + i~

4

]

Now we substitute Eq.(8.55) into the Eq.(8.54) we reach the following form,
[−~2

2m

∂2

∂x′2
+

(
k

2
− m

8

)
x
′2
]

ϕn = Enϕn (8.56)
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This is the time-independent Schrödinger equation which has a solution in terms

of Hermite polynomials given in Appendix D which leads in terms of x
′ ,

ϕn

(√
mΩ

~
x
′
)

= AnHn

(√
mΩ

~
x
′
)

e−
mΩ
2~ x

′2
(8.57)

where An is the normalization constant and Ω2 =
(

k
m
− 1

4

)
.

Substituting the above equation into Eq.(8.55) we get,

Ψn(x
′
, t) = An exp

(
−iτEn

~

)
Hn

(√
mΩ

~
x
′
)

e−
mΩ
2~ x

′2
. (8.58)

Then we substitute previous equation into (8.53) ,

ψ = An exp

(
−im

4~
x
′
)

exp

(
−iτEn

~

)
Hn

(√
mΩ

~
x
′
)

exp

(
−mΩ

2~
x
′2
)

(8.59)

in terms of the variables (x, t) we reach our final result,

ψ = An exp

(
−im

4~
x
√

t

)
t(−

iEn
~ )Hn

(√
mΩ

~
x
√

t

)
exp

(
−mΩ

2~
x2t

)
(8.60)

Finally we found the wave function for the Hamiltonian of the Euler equation.
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CHAPTER 9

CONCLUSION

In the present thesis, first we have given the generalization of analytical mechan-

ics to describe dissipation. Then starting from classical damped harmonic oscillator we

have passed Calfirola-Kanai and the Bateman oscillators as the quantum analogs of a

classical dissipative oscillator. We have observed that Calfirola-Kanai oscillator is a one-

dimensional oscillator with an exponentially increasing mass in time. On the other hand,

also we have observed that the Bateman oscillator is a two-dimensional system, one sub-

system describing the damped oscillator and the other describing an amplified oscillator

or a heat bath. We have showed that the total energy is conserved since the energy dissi-

pated away from the damped oscillator is transferred to the other. We have quantized the

two models and found the wave functions of them.

Then we have formulated generalized analytical mechanics for higher derivatives

since for Euler equation the Lagrangian function should include more than first deriva-

tives. This led us to construct Euler equation in general form. Reducing the Euler equation

to constant coefficient equation, coinciding with damped harmonic oscillator equation, we

gave the general solution of it. Then we have showed the Lagrangian of the Euler equa-

tion for the cases N = 2 . For this formalism self-adjointness is required. After we found

Bateman and Caldirola formulations for Euler equation and showed they can be reduced

to damped harmonic oscillator form.

Moreover, we have discussed quantum Euler equations in stationary and non-

stationary cases. We have defined Euler Hamiltonians where they can be written as func-

tions of (pq). We have given some examples for non-linear Heisenberg equations in the

form of Euler Hamiltonians, we have found exact solutions for them.

73



REFERENCES

Aliaga, J., Crespo, G. and Proto, A.N., 1991. ”Squeezed states for the Bateman
Hamiltonian”, Physical Review A, Vol. 43, No. 1, pp. 595-597.

Arfken, B.G., Weber H.J.,Mathematical methods for physicists, (Academic Press, UK),
pp. 684-685.

Banerjee, R., Mukherjee, P., 2002. ”A canonical approach to the quantization of the
damped harmonic oscillator”, Journal of Physics: Math. Gen., Vol. 35, pp.
5591-5598.

Bateman, H.,1931. ”On Dissipative Systems and Related Variational Principles”,Physical
Review. Vol. 38, pp. 815-819.

Bender, C. M. and Gerald V. Dunne., 1989. ”Exact solıtions to operator differantial
equation”, Physical Review D. Vol.40, No. 8, pp. 2739-2742.

Bender, C. M. and Gerald V. Dunne., 1989. ”Integration of operator differential
equations”, Physical Review D. Vol.40, No. 10, pp. 3504-3511.

Bender, C. M., Mead, L.R. and Pinsky, S.S. 1986. ”Resolution of the operator-ordering
problem by the method of finite elements”, Physical Review Letters, Vol. 56,
No. 23, pp. 2445-2448.

Bender, C. M., 1994. ”Exact Solition to Operator Differantial Equations”, Contemporary
Mathematics, Vol.160, pp. 31-45

Blasone, B., Graziano, E., Pashaev, O.K. and Vitiello, G., 1996. ”Dissipation and
Topologically Massive Gauge Theories in the Pseudo-Euclidean Plane”, Annals

of Physics Vol. 252, 115-132, No. 0126, pp. 115-132.

Caldirola, P.,1941. ”Forze non conservative nella meccanica quantistica”, Nouovo
Cimento, Vol. 18,p. 393.

Dekker, H., 1981. ”Classical and quantum mechanics of the damped harmonic oscillator”,
Physical Reports, Vol.80, No. 1, pp. 1-112.

Dekker, H., 1977. ”Quantization of the linearly damped harmonic oscillator”,
Physical Review A, Vol.16, No. 5, pp. 2126-2134.

Dubrovib, B.A., Fomenko, A.T., Novikov, S.P., 1972. Modern geometry methods and
applications (Part I), (Springer-Verlag, New York), pp. 5-7.

Feshbach, H. and Tikochinsky, Y.,1977. ”Quantization of the Damped Harmonic
Oscillator”, N.Y. Acad. Sci.,Vol. 38 (Ser. II), p. 44.

Greiner, W., 2003. Classical mechanics, Systems of particles and Hamiltonian dynamics,
(Springer-Verlag, New York), pp. 324-330.

Gzly, H.,1983. ”Quantization of the damped harmonic oscillator”, Physical Review A,
Vol.27, No. 5, pp.2297-2299.

74



Kanai, E.,1948. ”On the Quantization of the Dissipative Systems”, Prog.
Theoretical Physics, Vol.3, No.440.

Kim, S. P., and Page, D. N., 2001. ”Classical and quantum action-phase variables for
time dependent oscillators”, Physical Review A, Vol.64, No.12104, pp. 1-8.

Kim, S. P., Santana, A.E., Khanna, P.C.,2003. ”Decoherence of quantum damped
oscillators” Journal of Korean Physical Society, Vol. 43, No. 4, pp.452-460.

Lanczos, C, 1957. The Variational Principles Of Mechanics, (Toronto Press, Toronto),
pp. 3-31 and pp. 111-147.

Liboff, R. L., 1998. Introductory quantum mechanics, (Addison-Wesley, New york),
pp. 69-82.

Louisell, W., H., 1964. Radiation and noise in quantum electronics, (McGraw-Hill,
New york), pp. 99-103.

Marchiolli, M.A. and Mizrahi, S.S., 1997. ”Dissipative mass-accreting quantum
oscillator”,J. Phys. A Vol. 30, pp. 2619-2635.

Marsden, J.E. and Ratiu T.S., 2002. Introduction to Mechanics and Symmetry,
(Springer Verlag, New York), p. 2.

Mendes, A.C.R., Takakura, F.I., Nevesc,C., Oliveirad, W., 2005. ”An alternative approach
to canonical quantization of the radiation damping”, The Europen
Physical Journal C Vol. 45, pp. 257-261.

Merzbacher , E., 1961, Quantum mechanics, (John Wiley-Sons, New york), p. 53.

Pashaev, O.K. and Lee, J.-H.,2002. ”Resonance solitons as black holes in madelung
fluids”, Modern Physics Letters A,Vol. 17, No. 24 pp. 1601-1619.

Pashaev, O.K.,unpublished, ”Degenerate damped oscillator and topological
(Chern-Simomns) dissipative mechanics”.

Pedrosa, I.A. and Guedes, I., 2003. ”Quantum states of generalized time-dependent
invertor harmonic oscillator”, arxiv:quant-ph/0307084v1.

Perelomov, A., Generalized coherent states and their applications,
(Springer-Verlag,Berlin), pp. 8-12, 19-23.

Haberman, R., 1998. ”Elementary applied partial differential equations”, (Prentice-
Hall, London), pp. 73-77.

Sakurai, J.J., 1994. ”Modern quantum mechanics”, (Addison-Wesley, New york),
pp. 68-80.

Stauber, T. and Guinea, F. 2006. ”Entanglement and dephasing of quantum dissipative
systems”, arXiv:quant-ph/0512007.

Um, C., Yeon, K., George, T.F., 2002. ”The quantum damped harmonic oscillator”,
Physics Reports, Vol.362, pp. 63-192.

75



APPENDIX A

SOLUTION OF THE CONSTANT COEFFICIENT

EQUATION

The equation

{akDt (Dt − 1) (Dt − 2) ... (Dt − k + 1) + ... + a2Dt (Dt − 1) + a1Dt + a0} y = 0

is a constant coefficient equation of degree k. By using another notations we get the

following equation ;

bkyt
(k) + bk−1yt

(k−1) + ... + b1yt
(1) + b0y = 0 (A.1)

where yt
(k) = dky

dtk
. To solve such an equation we can make a substitution y = eλt to form

the characteristic equation,

P (λ) = akλ
k + ak−1λ

k−1 + ... + a1λ
1 + a0 = 0 (A.2)

For the solution of the characteristic equation the following cases are possible;

1) All roots λ1, λ2, ..., λk of the characteristic equation are real and distinct. Then the

general solution is

y = c1e
λ1t + c2e

λ2t + ... + cke
λkt (A.3)

2) There are n equal roots λ1 = λ2 = ... = λn (n 0 k), and the other roots are real and

distinct. Then the general solution is

y = eλ1t
(
c1 + c2t + ... + cnt

n−1
)

+ cn+1e
λn+1t + cn+2e

λn+2t + ... + cneλnt (A.4)

3) There are n equal complex conjugate roots λ = α ± iβ (2n 0 k), and the other roots

are real and distict

y = eαt cos βt
(
A1 + A2t + ... + Ant

n−1
)

+ eαt sin βt
(
B1 + B2t + ... + Bnt

n−1
)
+

+C2n+1e
2n+1t + C2n+2e

2n+2t + ... + Cnent (A.5)
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4) In the general case, when there are r different roots λ1, λ2, ..., λr of multiplicities

n1, n2, ..., nr respectively, the right hand side of the characteristic equation can be rep-

resented as

P (λ) = (λ− λ1)
n1 (λ− λ2)

n2 ... (λ− λr)
nr (A.6)

where n1 + n2 + ... + nr = k.

And the general solution is

y =
r∑

p=1

eλpt
(
Cp,0 + Cp,1t + ... + Cp,np−1t

np−1
)

(A.7)

Cp,l : arbitrary constant
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APPENDIX B

THE INTEGRATING FACTOR AND SELF-ADJOINT

DIFFERENTIAL EQUATION

Considering the differential equation

p0u
′′

+ p1u
′
+ p2u = 0 (B.1)

multiplying above equation with the integrating factor we get,

µp0u
′′

+ µp1u
′
+ µp2u = 0

writing the first term in terms of total derivative we reach

(µp0u
′
)
′ − (µp0)

′
u
′
+ µp1u

′
+ µp2u = 0.

To get self-adjoint form the such of second and third terms must be zero, which leads

(µp0)
′
u
′
= µp1u

′
, (B.2)

multiplying left hand side of the equation (B.2) with p0 and integrating it,

(µp0)
′
= (µp0)

p1

p0

=⇒
∫

d(µp0)

µp0

=

∫
p1

p0

dx

we find µ as same as Eq. (7.50)

µ =
1

p0(x)
exp

[∫ x p1(t)

p0(t)
dt

]
.¥ (B.3)
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APPENDIX C

QUANTUM FUNDAMENTALS

C.1. Postulates of Quantum Mechanics

Postulate C.1 (Observables and Operators ) To any self-consistently and well-defined

observables in physics such as energy, momentum, number of particles, there corresponds

an operator (call it A) such that measurement of A yields values (call these measured

values a) which are eigenvalues of A. The values, a, are those values for which the

equation is called eigenvalue equation

Aψ = aψ

has a non-zero solution ψ. The function ψ is called the eigenfunction of A corresponding

to the eigenvalue a.

Postulate C.2 (Measurement in Quantum Mechanics) Measurement of the observable

A that yields the value a leaves the system in the state ψa, where ψa is the eigenfunction

of A that corresponds to eigenvalue a.

Postulate C.3 (The State Function and Expectation Values) The state of a system at any

instant of time may be represented by a state or wave function ψ which is continuous and

differentiable. All information regarding the state of the system is contained in the wave

function. Let a system be in the state ψ(x, t), the average of any physical observable C

relevant to that system at time t is

< C >=

∫
ψ∗Cψdx.

The average, < C > is called the expectation value of C

Postulate C.4 (Time Development of the State Function) The state function ψ(x, t) for

a system (e.g. a single particle) develops in time according to the equation

−i~
∂ψ(x, t)

∂t
= Hψ(x, t).
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This equation is called the time-dependent Schrödinger equation. The operator H is the

Hamiltonian operator. It is given by

H =
−~2

2m

d2

dx2
+ V (x, t)

Here V (x, t) is the potential that particle is placed in.

The Schrödinger equation is a linear, first order partial differential equation in

time. Therefore, it completely determines the wave function ψ(x, t) at any time t.

Stationary States: Assume that the system is isolated, in other words that the potential

V does not depend explicitly on time. Consider the eigenfunctions of the Hamiltonian,

which are defined by the eigenvalue equation

Hψα(x) = Eαψα(x)

where the Eα are the energy eigenvalues, which are real. These particular wave functions

correspond to states of the system which have well-defined values Eα of the energy. Using

these eigenfunctions, we obtain solutions of the Schrödinger equation, by choosing

ψ(x, t) = ψαe−iEαt/~.

The time dependence of such states is periodic, with angular frequency w = Eα/~.

These are called stationary states. Stationary state whose energy is well defined ”does

not evolve”. Neither the probability law nor the expectation value of its position evolves

with time. In order for a system to evolve with time, it must be a superposition of at least

two stationary states with different energies.

C.2. Hilbert Space

Definition C.1 Hilbert space is an infinite dimensional vector (function) space H with an

inner product

< ψ, φ > such that the norm defined by

|| ψ ||=
√

< ψ, ψ >

turns H into a complete space.

A Hilbert space H has the following properties:
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1. The space is linear. A function space is linear under the following two conditions:

(a) If a is a constant and a ψ is any element of the space. (b) If ψ and φ are any two

elements of the space, then ψ + φ is also element of the space.

2. There is an inner product , < ψ, φ > , for any two elements in the space. For

functions defined in the interval a ≤ x ≤ b we may take

< ψ, φ >=

∫ b

a

ψ(x)φ(x)dx.

3. Any element of H has a norm that is related with the inner product as follows

|| ψ ||=
√

< ψ,ψ >.

4. H is complete.

An example of a Hilbert space is given by the set of functions of L2 space. This is the set

of square-integrable functions defined on the whole x interval,

|| ψ ||2=
∫ ∞

∞
ψ(x)∗ψ(x)dx < ∞.

C.3. Linear Operators

A linear operator A is correspondence, or rule, by which a vector Aψ is associated

with any vector ψ, in such a way that

(i) if φ = ψ, then Aφ = Aψ;

(ii) A(cψ) = c(Aψ);

(iii) A(ψ + φ) = Aψ + Aφ.

If A and B are linear operators, and ψ is any vector,

(a) cA denotes the operator defined by (cA)ψ = c(Aψ);

(b) A + B denotes the operator defined by (A + B)ψ = Aψ + Bψ;

(c) AB denotes the operator defined by (AB)ψ = A(Bψ)

Commuting Operators: An important concept in quantum mechanics is the

commutator [A,B] of two operators defined by

[A,B] = AB −BA
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If [A,B] = 0, then A and B are called commuting operators. If [A,B] 6= 0, then

A and B are called non-commuting operators.

Theorem C.5 Observable A and B commute if and only if there exists a basis of eigen-

values common to both.

Adjoint Operators: The adjoint operator can be formally defined within the Dirac

notation by demanding that if < φ | and | φ > are corresponding bras and kets, then

< φ | A+ ≡< ω |, A | φ >≡| ω >

should also be corresponding bras and kets. From the fact that < ω | ψ >∗=< ψ | ω >,

it follows that

< φ | A+ | ψ >∗=< ψ | A | φ >

for all φ and ψ. Several useful properties of the adjoint operator are

(cA)+ = c∗A+

(A + B)+ = A+ + B+

(AB)+ = B+A+

where c is a complex number.

Hermitian Operators (Self-Adjoint Operators): An operator A that is equal to its

adjoint A+ is called self-adjoint. This means that it satisfies

< φ | A | ψ >=< ψ | A | φ >∗ (C.1)

An operator that only satisfies Eq. (C.1) is called Hermitian, in analogy with a Hermitian

matrix, for which Mij = M∗
ji.

The following theorems are useful in identifying Hermitian operators on a vector

space with complex scalars, (Liboff 1998).

Theorem C.6 If A is a Hermitian operator then all of its eigenvalues are real.
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Theorem C.7 Eigenvectors corresponding to distinct eigenvalues of a Hermitian opera-

tor are orthogonal.

Theorem C.8 If A and B are self-adjoint operators, each of which possesses a complete

set of eigenvectors, and if AB = BA, then there exists a complete set of vectors which

are eigenvectors of both A and B.
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APPENDIX D

STATIONARY SCHRÖDINGER EQUATION FOR THE

STANDARD HARMONIC OSCILLATOR

The Hamiltonian of the stationary Schrödinger equation given by

H =
p2

2m
+

1

2
kx2 (D.1)

where k is a real positive constant. It can be shown that the angular frequency is

w =
√

k/m, where m is the mass of the oscillator. Now we will solve the stationary

Schrödinger equation and find the stationary eigen-states for this system, and then we

will find the energy eigenvalues of the oscillator.

Eq. (D.1) can be written as

H = − ~
2

2m

d2

dx2
+

mw2

2
x2. (D.2)

Thus eigenvalue equation is

− ~
2

2m

d2ψ(x)

dx2
+

mw2

2
x2ψ(x) = Eψ(x) (D.3)

We define ε = 2E
~w and we change the variable ξ =

√
mw
~ x, hence we have

d2ψ

dx2
=

d

dx

(
dψ

dξ

dξ

dx

)
=

d2ψ

dξ2

(
dξ

dx

)2

=
mω

~
d2ψ

dξ2
(D.4)

Therefore,
~ω
2

d2ψ(ξ)

dξ2
+ Eψ(ξ)− ~ω

2
ξ2ψ(ξ) = 0 (D.5)

or
d2ψ(ξ)

dξ2
+ (ε− ξ2)ψ = 0 (D.6)

For large ξ the dominant part of the previous differential equation is

d2ψ(ξ)

dξ2
− ξ2ψ = 0 (D.7)

The solution for this equation points to the asymptotic behavior of the wave function for

large ξ :

ψ(ξ) ∼ e−ξ2/2 (D.8)
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So we can assume

ψ(ξ) = H(ξ)e−ξ2/2 (D.9)

Substituting (D.9)in Eq. (D.7) yields

d2ψ(ξ)

dξ2
=

d

dξ
[H

′
e−ξ2/2 − ξH(ξ)e−ξ2/2]

= [H
′′
(ξ)− 2ξH

′
(ξ) + (ξ2 − 1)H(ξ)]e−ξ2/2 (D.10)

Thus we have

[H
′′
(ξ)− 2ξH

′
(ξ) + (ξ2 − 1)H(ξ)]e−ξ2/2 + (ε− ξ2)H(ξ)e−ξ2/2 = 0 (D.11)

We obtain the Hermite polynomials differential equation.

H
′′ − 2ξH

′
+ (ε− 1)H = 0 (D.12)

The wave function’s behavior around ξ = 0 (x = 0) is accounted for by these

polynomials. In order to solve this equation we substitute

H(ξ) =
∞∑

n=0

anξn

so that Eq. (D.12) becomes

∞∑
n=0

[an+2(n + 1)− 2nan + (ε− 1)an]ξn = 0 (D.13)

Therefore all the coefficients of this series must vanish:

an+2(n + 1) + (ε− 2n− 1)an = 0 (D.14)

or

an+2 =
2n + 1− ε

(n + 2)(n + 1)
an (D.15)

D.1. Hermite Polynomials

The Hermite polynomials Hn(x) are defined by the relation

Hn(x) = (−1)nex2

(
dn

dxn
e−x2

)

n = 0, 1, 2, ... The Hn(x) are the solutions to the differential equation

d2Hn(x)

dx2
− 2x

dHn(x)

dx
+ 2nHn(x) = 0
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The orthogonality relation for Hn(x) is
∫ ∞

−∞
e−x2

Hm(x)Hn(x)dx =
√

π2nn!δmn

Two important recurrence relations for Hn(x) are

dHn(x)

dx
= 2nHn(x), Hn+1(x) = 2xHn(x)− 2nHn−1(x)

The first few Hermite polynomials are given below:

H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2,

H3(x) = 8x3 − 12x, H4(x) = 16x4 − 48x2 + 12
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APPENDIX E

EULER EQUATION

Here our aim is to find the relation between the constants of the constant coeffi-

cient equation and Euler’s equation
N∑

k=0

ak
dky

dtk
=

N∑

k=0

bkx
k dky

dxk
(E.1)

we will follow two ways. The first way we use matrices and the second way without using

a matrix formulation it gives direct equivalence.

1−) For the first way before writing the matrix elements, let’s find the relations between

them. We begin with the following definitions.

Definition E.1 Euler differential operator of degree N DN
E is defined by the next formula

DN
E =

N∑

k=0

bkx
k dk

dxk
(E.2)

where bk are constants.

Definition E.2 Constant coefficient differential operator of degree N DN
C is defined by

the formula

DN
C =

N∑

k=0

ak
dk

dtk
(E.3)

where ak are constants.

After giving definitions and using the equations in (7.4) we write the relation

starting from N = 1,

For the case N = 1

D1
E = b0 + b1x

d

dx
= b0 + b1

d

dt

D1
C = a0 + a1

d

dt

Result for N = 1,

a0 = b0 (E.4)

a1 = b1
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For the case N = 2

D2
E = b0 + b1x

d

dx
+ b2x

2 d2

dx2

= b0 + b1
d

dt
+ b2

d

dt
(
d

dt
− 1)

= b0 + (b1 − b2)
d

dt
+ b2

d2

dt2

D2
C = a0 + a1

d

dt
+ a2

d2

dt2

Result for N = 2,

a0 = b0

a1 = b1 − b2 (E.5)

a2 = b2

For the case N = 3

D3
E = b0 + b1x

d

dx
+ b2x

2 d2

dx2
+ b3x

3 d3

dx3

= b0 + b1
d

dt
+ b2

d

dt
(
d

dt
− 1) + b3

d

dt
(
d

dt
− 1)(

d

dt
− 2)

= b0 + (b1 − b2 + 2b3)
d

dt
+ (b2 − 3b3)

d2

dt2
+ b3

d3

dt3

D3
C = a0 + a1

d

dt
+ a2

d2

dt2
+ a3

d3

dt3

Result for N = 3,

a0 = b0

a1 = b1 − b2 + 2b3

a2 = b2 − 3b3 (E.6)

a3 = b3

For the case N = 4

D4
E = b0 + b1x

d

dx
+ b2x

2 d2

dx2
+ b3x

3 d3

dx3
+ b4x

4 d4

dx4

= b0 + b1
d

dt
+ b2

d

dt
(
d

dt
− 1) + b3

d

dt
(
d

dt
− 1)(

d

dt
− 2) + b4

d

dt
(
d

dt
− 1)(

d

dt
− 2)(

d

dt
− 3)

= b0 + (b1 − b2 + 2b3 − 6b4)
d

dt
+ (b2 − 3b3 + 11b4)

d2

dt2
+ (b3 − 6b4)

d3

dt3
+ b4

d4

dt4

D4
C = a0 + a1

d

dt
+ a2

d2

dt2
+ a3

d3

dt3
+ a4

d4

dt4

88



Result for N = 4,

a0 = b0

a1 = b1 − b2 + 2b3 − 6b4

a2 = b2 − 3b3 + 11b4 (E.7)

a3 = b3 − 6b4

a4 = b4

Now we can write the relations at (E.4), (E.5), (E.6) and (E.7) in terms of matrices.

They are respectively as follows,


 a0

a1


 =


 1 0

0 1





 b0

b1


 (E.8)




a0

a1

a2


 =




1 0 0

0 1 −1

0 0 1







b0

b1

b2


 (E.9)




a0

a1

a2

a3




=




1 0 0 0

0 1 −1 2

0 0 1 −3

0 0 0 1







b0

b1

b2

b3




(E.10)




a0

a1

a2

a3

a4




=




1 0 0 0 0

0 1 −1 2 −6

0 0 1 −3 11

0 0 0 1 −6

0 0 0 0 1







b0

b1

b2

b3

b4




(E.11)

89



These matrices are upper triangular matrices, where repeated indices are equal to 1. They

can be rewritten for N dimension as



a0

a1

a2

.

.

.

aN−1

aN




=




M0
0 M1

0 M2
0 . . . MN−1

0 MN
0

M0
1 M1

1 . . . . . .

M0
2 . M2

2 . . . . .

. . . . . . . .

. . . . . . . .

M0
N−1 . . . . . . MN

N−1

M0
N . . . . MN−1

N MN
N







b0

b1

b2

.

.

.

bN−1

bN




, (E.12)

or this formalism can be written as in terms of,

an =
N∑

k=0

Mk
nbk (E.13)

where n = 0, 1, ..., N , Mk
n = 1 for n = k and Mk

n = 0 for n > k.

The next step is to find the relation between matrix elements, Mk
n . This relation is given

by the following formula,

Mk
n = (−1)k+n

[
(k − 1)|Mk−1

n |+ |Mk−1
n−1 |

]
(E.14)

Substituting (E.14) into (E.13) we get the relation between the constants in terms of

matrices give by

an =
N∑

k=0

(−1)k+n
[
(k − 1)|Mk−1

n |+ |Mk−1
n−1 |

]
bk (E.15)

where n = 0, 1, ..., N .

Since we didn’t give the proof of the above correspondence, it is just a hypothesis.

Now we pass the second way.

2−) Our aim is to formalize the relation of constants of the Euler equation and constant

coefficient equation in an direct way. Writing the Euler differential operator defined at the

Eq. (E.2) in terms of multiplication formula we get

DN
E =

N∑

k=1

bk

k−1∏
s=0

(Dt − s),

=
N∑

l=1

alD
l
t.
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If we act this operator on a state eλt for N = 1 then we get

D1
Eeλt = (E.16)

DN
E eλt =

N∑

k=1

bk

k−1∏
s=0

(λ− s)eλt,

=
N∑

l=1

alλ
leλt.

differentiating the previous term we can write al in the form of,

al =
1

l!

dl

dλl

[
N∑

k=1

bk

k−1∏
s=0

(λ− s)

]

λ=0

. (E.17)

where l = 1, 2, ..., N . Therefore al can be calculated in an explicit way.
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APPENDIX F

QUANTUM DYNAMICS

F.1. Dynamical Behavior of a Quantum System

To give time development of a quantum system, we postulate the existence of a

hamiltonian H for the system require that the state vector for the system | ψ(t) > change

in accordance with the Schrödinger equation

i~
∂

∂t
| ψ(t) >= H | ψ(t) > (F.1)

where H is to be treated as an observable of the system and must be therefore

Hermitian.

Two cases may arise

(i) In the first case, the system is conservative and H is explicitly independent of time. In

that case we may formally integrate (F.1) and obtain

| ψ(t) >= U(t, t0) | ψ(t0) > (F.2)

where

U(t, t0) = exp[−iH(t− t0)

~
] (F.3)

and | ψ(t0) > is the state of the system at time t0. This solution can be verified by

differentiation and substitution back into (F.1).

Since H is hermitian it follows from (F.3) that

U+(t, t0) = exp[
iH(t− t0)

~
] = U−1(t, t0) (F.4)

which shows that U is a unitary operator

Therefore it can be said that the state of the system at time t develops from the

state at time t0 by a unitary transformation.

(ii) In the second case, Hamilton explicitly contains time dependence, H = H(t). This

time unitary operator U is given by the next relation,

U(t, t0) = exp

[
−i

∫ t

t0

H(t
′
)dt

′
/~

]
(F.5)
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If we multiply (F.1) on both sides dt and integrate from t0 to t we get

| ψ(t) >=| ψ(t0) > − i

~

∫ t

t0

H(t
′
) | ψ(t

′
) > dt

′
(F.6)

and repeating this process for | ψ(t
′
) > and then infinite number of time we get,

| ψ(t) > =

[
− i

~

∫ t

t0

H(t
′
)dt

′
+

(−i

~

)2 ∫ t

t0

H(t
′
)dt

′
∫ t

t0

H(t
′′
)dt

′′
+ ...

]
| ψ(t0) >

≡ U(t, t0) | ψ(t0) > .

F.1.1. The Schrödinger Picture

In Schrödinger picture the observables (p, q, H) are time independent. The state

vector | ψS(t) > (subscript S indicates that it is in Schrödinger picture)is function of

time, this why time dependent. This description in which the basis vector are stationary

and the dynamical state vector | ψS(t) > moves is called Schrödinger picture of quantum

mechanics.

F.1.2. The Heisenberg Picture

In Heisenberg picture the observables (p, q,H) are time dependent, the state vector

| ψH > is not depended on time (remains stationary).

The state vectors in the two pictures are related by the next equation

| ψS(t) >= U(t, t0) | ψH(t0) > (F.7)

where subscript H indicates the Heisenberg picture. The vector | ψH(t0) > is

stationary while | ψS(t0) > is moving.

Also an operator in Heisenberg picture is defined as

AH(t) = U+(t, t0)ASU(t, t0) (F.8)

If we differentiate both sides of (F.8) with respect to t and and use U and its

adjoint U+ in Schrödinger equation, respectively given as follows

i~
dU

dt
= HU, −i~

dU t

dt
= HU+,
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also using U+U = UU+ = 1 we obtain

i~
dAH

dt
= U+ASHU − U+HASU + i~U+∂AH

∂t
U

= U+ASUU+HU − U+HUU+ASU + i~U+∂AH

∂t
U

≡ [AH , HH ] + i~
∂AH

∂t
(F.9)

where

HH = U+(t, t0)HSU(t, t0).

The equation (F.9) is called Heisenberg equation of motion for the observable A. If

dAH

dt
= 0,

then AH is a constant of the motion.
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