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Committee Member

13 May 2010
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ABSTRACT

OPERATOR SPLITTING METHODS FOR DIFFERENTIAL EQUATIONS

In this thesis, consistency and stability analysis of the traditional operator splitting

methods are studied. We concentrate on how to improve the classical operator splitting

methods via Zassenhaus product formula. In our approach, acceleration of the initial

conditions and weighted polynomial ideas for each cases are individually handled and

relevant algorithms are obtained. A new higher order operator splitting methods are pro-

posed by the means of Zassenhaus product formula and rederive the consistency bound

for traditional operator splitting methods. For unbounded operators, consistency analy-

sis are proved by the C0-semigroup approach. We adapted the Von-Neumann stability

analysis to operator splitting methods. General approach to use Von-Neumann stability

analysis are discussed for the operator splitting methods. The proposed operator splitting

methods and traditional operator splitting methods are applied to various ODE and PDE

problems.
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ÖZET

DİFERANSİYEL DENKLEMLER İÇİN OPERATÖR AYIRMA METODLARI

Bu tezde geleneksel operatör ayırma metodlarının kararlılık ve tutarlılık analizleri

çalışılmıştır. Klasik anlamdaki operatör ayırma metodlarının Zassenhaus çarpım formulü

ile nasıl geliştirildiğine yoğunlaşılmıştır. Yaklaşımımızda, başlangıç koşullarının aksel-

erasyonu ve ağırlaştırılmış polinom fikri her durum için ayrı ayrı işlenmiş ve ilgili algorit-

malar elde edilmiştir. Zassenhaus çarpım formulü ile elde edilen yeni yüksek dereceli op-

eratör ayrıma metodları sunulmuş ve geleneksel operatör ayrıma metodları için tutarlılık

sınırları yeniden elde edilmiştir. Sınırsız operatörler için tutarlılık analizleri C0-yarıgrup

yaklaşımı ile yapılmıştır. Von-Neumann kararlılık analizi operatör ayırma metodları için

uyarlanmıştır ve geleneksel yaklaşımı tartışılmıştır. Önerilen operatör ayırma metodları

ve geleneksel operatör ayırma metodları çeşitli adi ve kısmi diferansiyel denklemler için

uygulanmıştır.
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CHAPTER 1

INTRODUCTION

Operator splitting is a powerful method for numerical investigation of complex

models. The basic idea of the operator splitting methods based on splitting of complex

problem into a sequence of simpler tasks, called split sub-problems. The sub operators

are usually chosen with regard to different physical process. Then instead of the original

problem, a sequence of sub models are solved, which gives rise to a splitting error. The

order of the splitting error can be estimate theoretically. In practice, splitting procedures

are associated with different numerical methods for solving the sub-problems, which also

causes a certain amount of error.

The idea of operator splitting, which was the Lie-Trotter splitting, dates back to

the 1950s. It was probably in 1957 that this method was first used in the solution of partial

differential equations (Bagrinovskii & Godunov, 1957). The first splitting methods were

developed in the 1960s or 1970s and were based on fundamental results of finite difference

methods. The classical splitting methods are the Lie-Trotter splitting, the Strang splitting

(Dimov et al., 2001), (Strang, 1968), (Faragó & Havasi, 2007) and the symmetrically

weighted splitting (Strang, 1963), (Csomós et al., 2005). A renewal of the methods

was done. In the 1980s while using the methods or complex process underlying partial

differential methods in (Crandall & Majda, 1999).

Complex physical processes are frequently modelled by the systems of linear or

non-linear partial differential equations. Due to the complexity of these equations, typ-

ically there is no numerical method which can provide a numerical solution that is ac-

curate enough while taking reasonable integrational time. In order to simplify the task

(Strang, 1968), (Marchuk, 1988) operator splitting procedure has been introduced, which

is widely used for solving advection-diffusion-reaction problems in (Hvistendahl et al.,

2001), (Marinova et al., 2003) Navier-Stokes equation in (Christov & Marinova, 2001),

including modelling turbulence (Mimura et al., 1984) and interfaces.

The main idea is to decouple a complex equation in various simpler equations

and to solve the simpler equations with adapted discretisation and solver methods. The

methods are described in the literature for the basic studies in (Verwer & Sportisse, 1998)

and (Strang, 1968).

In many applications in the past, a mixing of various terms in the equations for the

1



discretization and solver methods made it difficult to solve them together. With respect to

the adapted methods for a simpler equation, the methods give improved results for simpler

parts.

The higher order operator splitting methods are used for more accurate computa-

tions, but also with respect to more computational steps. These methods are often per-

formed in quantum dynamics to approximate the evolution operator exp(τ(A + B)). The

construction of the higher order methods is based on the forward and backward time step,

due to the reversibility. There have been some composition techniques to get the higher

order splitting methods. The well known higher order composition schemes are developed

by many authers (Blanes & Moan, 2002), (Kahan & Li, 1997), (Mclachlan & Quispel,

2002), (Suzuki, 1990), (Yoshida, 1990).

The consistency of difference splitting schemes has been thoroughly investigated

in the terms of the local splitting error (Dimov et al., 2001), (Csomós et al., 2005).

These studies are based on the traditional power series expansion of the exact solution

and of the solution of the obtained by splitting and recently with semigroup theory for

abstract homogenous and non-homogenous Cauchy problem, see in (Bjórhus, 1988). For

a special class of unbounded operators, the so-called generators of strongly continuous

semigroups (or C0-semigroups) the Taylor series still have a convenient form. By means

of this formula, the consistency analysis of the traditional operator splitting methods have

been performed for generators of C0-semigroups by Bjórhus (Bjórhus, 1988).

The outline of this thesis can be given as follows: Chapter 2 introduces the Lie-

Trotter splitting, Strang splitting, symmetrically weighted splitting, additive splitting and

higher order splitting. We prove the orders of these methods in terms of the Taylor series

expansion. Chapter 3 focuses on the Zassenhaus product formula and relation between the

operator splitting methods. In Chapter 4, we study the consistency analysis of the operator

splitting methods by means of the Zassenhaus product formula and also with semigroup

theory for unbounded operators. In Chapter 5, we discuss the general approach to use the

Von-Neumann stability analysis. Von-Neumann stability analysis of proposed algorithms

are used to achieve linear stability criteria to model problem, nonlinear KdV equation. In

Chapter 6, we give some numerical examples of various ODE and PDE problems with

traditional and higher order operator splitting methods to show that the operator splitting

methods are efficient. Finally, the conclusion is given in Chapter 7.
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CHAPTER 2

OPERATOR SPLITTING METHODS

Operator splitting methods are well known in the field of numerical solution of

partial differential equations. The technique is generally used in one of the two ways: It

is used in methods in which one splits the differential operator such that each split system

only involves derivatives along one of the coordinate axes. Alternatively, it is used as

a means to split the differential operator into several parts, where each part represents a

particular physical phenomenon, such as convection, diffusion, etc. In either case, the

corresponding numerical method is defined as a sequence of solves of each of the split

problems. This can lead to very efficient methods, since one can treat each part of the

original operator independently.

Operator splitting means the spatial differential operator appearing in the equa-

tions is split into a sum of different sub-operators having simpler forms, and the corre-

sponding equations can be solved easier. Operator splitting is an attractive technique for

solving coupled systems of partial differential equations, since complex equation system

maybe split into simpler parts that are easier to solve. Several operator splitting techniques

exists, but we will apply a class of methods often referred as fractional step methods.

We focus our attention on the case of two linear operators. Let us consider the

Cauchy problem :

∂U(t)

∂t
= AU(t) + BU(t), with t ∈ [0, T ], U(0) = U0, (2.1)

whereby the initial function U0 is given and A and B are assumed to be bounded linear

operators in the Banach-space X with A,B : X → X. In realistic applications the

operators corresponds to physical operators such as convection and diffusion operators.

Splitting methods assume that the mathematical problem can be split into two or

more terms. We denote by U(t) = e(A+B)tU0 is the solution at the time t of the differential

equation (2.1) with initial value U(0) = U0.

While attractive from a theoretical point of view, the fractional operator splitting

methods based on exact flows may not be practically feasible. In particular, the exponen-

tial mapping may not be computationally available or too expensive to evaluate exactly.
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Thus the flow map exp is often approximated using some numerical method. Some of the

choices studied in the literature are regular ODE-based integration of a single component

of the vector field. A feature of numerical approximations to the exponential function is

that such approximations usually do not satisfy the composition property experienced by

the exact flow. Distinguishing the different approaches, methods based on exact flows are

commonly known as exponential splitting methods.

Having constructed splitting methods for ordinary differential equations, the ques-

tion naturally arises of how to construct accurate schemes which may be used with non-

small step size. One approach in this direction is the construction of higher order methods

for which numerical map Φt of (2.1) satisfies,

Φt = e(A+B)t +O(tp+1) (2.2)

with the order p being as high as possible. A standard technique for obtaining such meth-

ods is to compose Φt from more than two exponentials.

As such, a typical non-symmetric composition method often used is

Φt = eamBtebmAt...ea1Bteb1Atea0Bteb0At (2.3)

and various approach have been suggested for determining conditions on the free param-

eters a0, a1, ..., am and b0, b1, ..., bm.

Any exponential operator splitting method involving several compositions can be

cast into the following form,

et(A+B) =
m∏

i=1

eaitAebitB +O(tm+1) (2.4)

where A, B are noncommutative operators, t is equidistance time step, and (a1, a2, ...),

(b1, b2, ...) are real numbers.

For example Lie-Trotter splitting method for (2.1) can be cast into the general

form (2.4) with

s = 1, a1 = 1, b1 = 1 or a1 = 0, a2 = 1, b1 = 1, b2 = 0 (2.5)

4



respectively, that is, the first numerical solution value is given by

y1 = eBteAty0, or y1 = eAteBty0 (2.6)

Strang splitting method can be cast into the form (2.4) with

s = 2, a1 = a2 =
1

2
, b1 = 1, b2 = 0 (2.7)

or

s = 2, a1 = 0, a2 = 1, b1 = b2 =
1

2
(2.8)

respectively, that is, the first numerical solution value is given by

y1 = eAt/2eBteAt/2y0, or y1 = eBt/2eAteBt/2y0 (2.9)

In this study, we consider Lie-Trotter splitting and additive splitting as first order

splitting methods, Strang splitting and symmetrically weighted splitting as second order

splitting methods.

2.1. First Order Splitting: Lie-Trotter Splitting

First, we describe the first order operator splitting method, which is called Lie-

Trotter splitting. Lie-Trotter splitting is introduced as a method, which solves two sub-

problems sequentially on subintervals [tn, tn+1], where n = 0, 1, ..., N − 1, t0 = 0 and

tN = T . The different subproblems are connected via the initial conditions.

Lie-Trotter Splitting’s algorithm is as follows :

∂u(t)

∂t
= Au(t) with t ∈ [tn, tn+1] and u(tn) = un

sp (2.10)

∂v(t)

∂t
= Bv(t) with t ∈ [tn, tn+1] and v(tn) = u(tn+1), (2.11)

for n = 0, 1, ..., N − 1 whereby un
sp = U0 is given from (2.1). The approximated split

5



solution at the point t = tn+1 is defined as un+1
sp = v(tn+1).

Although it may now seem that we have found an approximate solution after a

time interval 24t, we have only included parts of the right hand side in each integration

step.To see that result v(4t) is in fact a consistent approximation to U(4t) we perform a

Taylor series expansion of both the original solution U , and the approximation v obtained

by the operator splitting.We have,

U(4t) = U0 +4t
∂U

dt
+
4t2

2!

∂2U

∂t2
+O(4t3) (2.12)

where,

∂U

∂t
= (A + B)U (2.13)

and if A and B do not depend explicitly on t, we obtain by direct differentiation

∂2U

∂t2
= (A + B)(A + B)U (2.14)

for which we introduce the shorter rotation

∂2U

∂t2
= (A + B)2U (2.15)

Repeating these steps n times gives the general result,

∂nU

∂tn
= (A + B)nU (2.16)

where the notation (A+B)n simply means that operator (A+B) is applied n times to U.

Inserted into the Taylor series, this gives

U(4t) = U0 +4t(A + B)U0 +
4t2

2!
(A + B)2U0 +O(4t3) (2.17)

6



A similar Taylor expansion can be made for the solution u of the simplified equa-

tion (2.10). We get,

u(4t) = U0 +4tAU0 +
4t2

2!
A2U0 +O(4t3) (2.18)

We now use the same series expansion for the solution of (2.11), with u(4t) as the initial

condition. We get,

v(4t) = u(4t) +4tBu(4t) +
4t2

2!
B2u(4t) +O(4t3) (2.19)

and inserting the series expansion for u(4t) gives,

v(4t) = U0 +4t(A + B)U0 +
4t2

2!
(A2 + 2BA + B2)U0 +O(4t3) (2.20)

The splitting error at t = 4t is the difference between the operator splitting solution

v(4t) and the solution U(4t) of the original problem.Inserting the series expansion

(2.17) and (2.20) we get,

v(4t)− U(4t)

4t
=
4t

2
[A,B]U0 +O(4t2) (2.21)

We see that the error after one time step we expect this error accumulate to n4t2 after n

time step. We define [A,B] := AB − BA as the commutator of A and B. Consequently,

the splitting error is O(4t2). When the operators commute, then the method is exact.

2.2. First Order Splitting: Additive Splitting

This method is based on a simple idea: we solve the different sub-problems by

using the same initial function. We obtain the split solution by the use of these results and

the initial condition. We consider the problem (2.1), in the computation of split solutions

of the two subproblems are added, and the initial condition is subtracted from the sum. In

this manner we obtain a splitting method where the different subproblems have no effect
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on each other. The additive splitting method solves two sub-problems sequentially on

sub-intervals [tn, tn+1], where n = 0, 1, ..., N − 1, t0 = 0 and tN = T .

The additive splitting algorithm is as follows:

∂u(t)

∂t
= Au(t) with t ∈ [tn, tn+1] and u(tn) = un

sp (2.22)

∂v(t)

∂t
= Bv(t) with t ∈ [tn, tn+1] and v(tn) = un

sp, (2.23)

un+1
sp = u(tn+1) + v(tn+1)− un

sp (2.24)

for n = 0, 1, ..., N − 1 whereby un
sp = U0 is given from (2.1).

To see that additive splitting is a first order accuracy again we use the Taylor

expansion of the solutions. Using the series expansion of (2.22) and (2.23) we get,

usp(4t) = U0 +4tAU0 +
4t2A2

2
U0 + U0 +4tBU0 +

4t2B2

2
U0 (2.25)

−U0 +O(t3) (2.26)

The splitting error at t = 4t is the difference between the operator splitting solution

usp(4t) and the solution U(4t) of the original problem.

usp(4t)− U(4t)

4t
=
4t

2
(BA + AB)U0 +O(4t2) (2.27)

We see that additive splitting is a first order method.

2.3. Second Order Splitting: Strang Splitting

One of the most popular and widely used operator splitting method is Strang split-

ting (or Strang-Marchuk operator splitting method). By the small modification it is pos-

sible to make the splitting algorithm second order accurate. The idea is that instead of

first solving (2.10) for a full time step length 4t, we solve the problem for a time step

of length 4t/2. We then solve the problem (2.11) for a full time step of length 4t, and

finally (2.10) once more, again for a time interval of length 4t/2.
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Strang Splitting’s algorithm is as follows :

∂u∗(t)
∂t

= Au(t) with t ∈ [tn, tn+1/2], u(tn) = un
sp (2.28)

∂v(t)

∂t
= Bv(t) with t ∈ [tn, tn+1], v(tn) = u(tn+1/2) (2.29)

∂w(t)

∂t
= Aw(t) with t ∈ [tn+1/2, tn+1], w(tn+1/2) = v(tn+1) (2.30)

where tn+1/2 = tn + 0.54t, and the approximated split solution at the point t = tn+1 is

defined as un+1
sp = w(tn+1).

In order to show that Strang Splitting gives second order accuracy, we first find a

Taylor expansion of the solution u of (2.28), at t = 4t/2

u(4t/2) = U0 +
4t

2
AU0 +

4t2

4
A2U0 +O(4t3) (2.31)

Using this as an initial condition for a Taylor expansion of the solution v(4t) from

the second step, we get

v(4t) = U0 +
4t

2
AU0 +4tBU0 +

4t2

8
A2U0 +

4t2

2
ABU0 (2.32)

+
4t2

2
B2U0 +O(4t3) (2.33)

And finally, by a Taylor expansion of the third step, we find

w(4t) = U0 +4t(A + B)U0 +
4t2

2
(A2 + AB + BA + B2)U0 +O(4t3) (2.34)

Comparing this with the Taylor expansion (2.12) of the solution (2.1) we get,

w(4t)− U(4t)

4t
= O(4t3) (2.35)

and it is seen that Strang splitting gives second order accuracy.
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2.4. Second Order Splitting: Symmetrically Weighted Splitting

For noncommuting operators, the Lie-Trotter splitting is not symmetric with re-

spect to the operators A and B, and it has first order accuracy. However in many practical

cases we require splittings of higher-order accuracy. We can achieve this by the follow-

ing modified splitting method, called Symmetrically Weighted Splitting which is already

symmetrical with respect to the operators. The sequential operator splitting method solves

two sub-problems sequentially on sub-intervals [tn, tn+1], where n = 0, 1, ..., N − 1,

t0 = 0 and tN = T .

Symmetrically Weighted Splitting’s algorithm is as follows :

∂u1(t)

∂t
= Au1(t) , u1(t

n) = un
sp (2.36)

∂v1(t)

∂t
= Bv1(t) , v1(t

n) = u1(t
n+1) (2.37)

∂u2(t)

∂t
= Bu2(t) , u2(t

n) = un
sp (2.38)

∂v2(t)

∂t
= Av2(t) , v2(t

n) = u2(t
n+1), (2.39)

for n = 0, 1, ..., N − 1 whereby un
sp = U0 is given from (2.1). Then the approximation at

the next time level tn+1 is defined as,

un+1
sp =

v1(t
n+1) + v2(t

n+1)

2
(2.40)

We can easily see that the method is of second order accurate by using the Taylor

expansion of the solutions u1 and u2 of the simplified equation (2.36) and (2.38).We get,

u1(4t) = U0 +4tAU0 +
4t2

2!
A2U0 +O(4t3) (2.41)

We now use the same series expansion for the solution of (2.36), with u1(4t) as the initial

condition. We get,

v1(4t) = u1(4t) +4tBu1(4t) +
4t2

2!
B2u1(4t) +O(4t3) (2.42)
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and inserting the series expansion for u1(4t) gives,

v1(4t) = U0 +4t(A + B)U0 +
4t2

2!
(A2 + 2BA + B2)U0 +O(4t3) (2.43)

Doing the same for the second part we get,

u2(4t) = U0 +4tBU0 +
4t2

2!
B2U0 +O(4t3) (2.44)

We now use the same series expansion for the solution of (2.38), with u2(4t) as the initial

condition. We get,

v2(4t) = u2(4t) +4tAu2(4t) +
4t2

2!
A2u2(4t) +O(4t3) (2.45)

and inserting the series expansion for u2(4t) gives,

v2(4t) = U0 +4t(A + B)U0 +
4t2

2!
(A2 + 2BA + B2)U0 +O(4t3) (2.46)

We know that,

usp(4t) =
v1(4t) + v2(4t)

2
(2.47)

The splitting error at t = 4t is difference between the operator splitting solution usp(4t)

and the solution U(4t) of the original problem.

usp(4t)− U(4t)

4t
= O(4t3) (2.48)

we can easily see that symmetrically weighted splitting is a second order splitting method.
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2.5. Higher Order Splitting Method

The higher order operator splitting methods are used for more accurate computa-

tions, but also with respect to more computational steps. These methods are often per-

formed in quantum dynamics to approximate the evolution operator e(A+B)t.

An analytical construction of higher order splitting methods can be performed

with the help of Baker-Campbell-Hausdorff formula, which is proposed initially by J.E.

Campbell in 1898 and subsequently proved independently by Baker in 1905 (Baker,

1905) and Hausdorff in 1906. Baker-Campbell-Hausdorff (BCH) formula expresses the

product of two exponentials as one new exponential:

eAteBt = eÂt (2.49)

with

Â = (A + B) +
1

2
t[B, A] +

1

12
t2([B, [B, A]] + [A, [A,B]]) (2.50)

+
1

24
t3[B, [A, [A,B]]] +O(t4). (2.51)

Clearly, if A, B commute all higher-order terms in the expansion vanish and Â = A + B.

The reconstruction process is based on the following product of exponential func-

tions:

et(A+B) =
m∏

i=1

eaitAebitB +O(tm+1) (2.52)

where A, B are noncommutative operators, t is equidistance time step, and (a1, a2, ...),

(b1, b2, ...) are real numbers.

For a fourth order method, we have the following coefficients,

a1 = a4 =
1

2(2− 21/3)
, a2 = a3 =

1− 21/3

2(2− 21/3)
(2.53)

b1 = b3 =
1

2− 21/3
, b2 = − 22/3

2− 21/3
, b4 = 0 (2.54)
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Many authers constructed different higher order methods by various composition tech-

niques. Exponential operator splitting methods of order four and six are given in Table

2.1.

Table 2.1. Exponential operator splitting methods of order p involving s compositions.

method order comp.
Mclachan p=2 s=3

Strang p=2 s=2
Blanes-Moan(BM4-2) p=4 s=7

Suzuki(S4) p=4 s=6
Yoshida(Y4) p=4 s=4

Kahan p=6 s=10
Suzuki (S6) p=6 s=26
Yoshida(Y6) p=6 s=8

Blanes-Moan(BM6-1) p=6 s=11
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CHAPTER 3

HIGHER ORDER OPERATOR SPLITTING METHODS

VIA ZASSENHAUS PRODUCT FORMULA

In the previous chapter we showed that any exponential splitting method involving

several compositions can be cast into the form (2.4). Similarly, the exponential of the

sum of two non-commutative operators A and B may be written as an infinite product as

follow,

eA+B = eAeB

∞∏
n=2

eDn (3.1)

which is known as the Zassenhaus product. The Zassenhaus exponents Dn may be also

expressed as linear combinations a polynomial representation, and not the desired rep-

resentation in terms of the nested commutators. In the literature, several different ap-

proaches concerning the question how to calculate Zassenhaus exponents can be found.

In a number of independent papers, Dynkin (Dynkin, 1947), Specht (Specht, 1948),

Wever (Wever, 1947) provided a simple explicit construction of such commutator rep-

resentation. We use the formal power series expansion of the exponential function and

comparison technique to find the Zassenhaus exponents.

We solve the initial value problem (2.1). We assume A and B are bounded and

constant operators. From the Zassenhaus product formula we have the form (3.1), Expan-

sion of the left hand side of (3.1) yields,

e(A+B)t = I + (A + B)t +
(A + B)2

2
t2 +O(t3) (3.2)

and right hand side of (3.1) yields,

eAteBteD2t2 ... =

(
I + At +

A2t2

2
...

)(
I + Bt +

B2t2

2
...

)
(I + D2t

2) +O(t3)

= I + (A + B)t +

(
A2

2
+ AB +

B2

2
+ D2

)
t2 +O(t3) (3.3)
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By comparing the (3.2) and (3.3), D2 can be found as,

D2 = −1

2
[A,B]. (3.4)

We use the following expansions to find the value of D3

eAteBt = (I + At +
A2t2

2
+

A3t3

6
+ ...)(I + Bt +

B2t2

2
+

B3t3

6
+ ...) (3.5)

and

eD2t2eD3t3 = (I + D2t
2 + D3t

3) +O(t4) (3.6)

The right hand side of (3.1) can be expand as follows,

eAteBteD2t2eD3t3 ... = I + (A + B)t +

(
A2

2
+

B2

2
+ AB + D2

)
t2

+

(
A3

6
+

B3

6
+

A2B

2
+

AB2

2
+ (A + B)D2 + D3

)
t3

+O(t4) (3.7)

and the left hand side of (3.1) yields,

e(A+B)t = I + (A + B)t +
(A + B)2

2
t2 +

(A + B)3

6
t3 +O(t4) (3.8)

By comparing the (3.7) and (3.8), D3 can be found as,

D3 =
1

6
[A, [A,B]]− 1

3
[B, [B,A]]. (3.9)

Again, using the formal power series expansion of exponential function, we have the
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following form,

e(A+B)t =
∞∑

k=0

1

k!
(A + B)ktk = I + (A + B)t

+(
1

2
A2 +

1

2
AB +

1

2
BA +

1

2
B2)t2 + ....

= (I +
At

2
+ ...)(I + Bt + ...)(I +

At

2
+ ...)

∞∏
n=3

(eDntn)

= e
At
2 eBe

At
2 eD3t3eD4t4 .... (3.10)

Our aim is to compute the polynomials D3 which is a function of commutators

[., [[., ]]]. By comparing the exact solution given in (3.10) with the expansion up to the

order O(t4), given in the following equation,

eAt/2eBteAt/2eD3t2 ... = I + (A + B)t + (
BA + B2 + AB + A2

2
)t2

+(
BAA

8
+

BBA

4
+

A3

8
+

ABA

4
)τ 3

+(
ABB

4
+

AAB

8
+ D3)t

3 +O(t4) (3.11)

D3 can be found as,

D3 =
1

24
[A, [A,B]]− 1

12
[B, [B, A]]. (3.12)

Our aim is to improve the accuracy and modify the algorithm for better perfor-

mance. We first simply explain the basic of idea obtaining higher order result by lower

order method in the following example, we then carry this approach in order to develop a

higher order operator splitting method. Consider the scalar equation:

y′(t) = f(y), y(0) = y0 (3.13)

16



The exact solution near initial condition is given by the Taylor series expansion as follows,

y(t) = y0 + tf(y0) +
t2f ′(y0)f(y0)

2!
+ ...... (3.14)

Next, suppose f(y) is a linear function, f(y) = ay, we then have

y(t) = (1 + at +
a2t2

2!
+ ......)y0. (3.15)

Numerical approximation of this problem on the interval [0, t] by lower order explicit

Euler Method is

yapprox(t) = (1 + at)y0. (3.16)

After the initial condition is accelerated as

ỹ0 = (1 + wt2)y0, (3.17)

the numerical approximation of the problem can be found by this initial condition in

a higher order accuracy. Here, the relaxation constant w = a2t2

2!
can be obtained by

comparing the exact and approximate solution given in (3.14) and (3.17), respectively.

We then have a second order accuracy in the solution by a first order method,

ỹapprox(t) = (1 + at +
a2t2

2!
)y0 (3.18)

We exhibit our approach in Figure (3.1). Here, y0 is given initial condition and ŷ0 is

accelerated initial condition. By applying low order method to the initial value problem

with the initial condition ŷ0 yield the higher order result ŷapp(t).

17



Figure 3.1. By changing initial data, the higher order result can be obtained.

The underlying idea is to improve the initial condition of the splitting schemes.

We can shift the approximated solution with the improved initial condition to the exact

solution and we obtain (Geiser et al., 2009):

||y − ỹapprox|| ≤ ||y − yapprox||, (3.19)

while ỹapprox is approximated by higher order terms.

We focus on the Cauchy problem (2.1) and deal with the following schemes: For

the classical Lie-Trotter or A-B splitting, we have globally a first order scheme

||(e(A+B)t − eAteBt)U0|| ≤ O(t2), (3.20)

where e(A+B)t is the exact solution given in (2.1) and eAteBt the approximated solution, t

is the local time-step, see (Engel & Nagel, 2000).

For the Strang-Marchuk or A-B-A splitting, we have globally a second order

scheme

||(e(A+B)t − eAt/2eBteAt/2)U0|| ≤ O(t3), (3.21)
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where e(A+B)t is the exact solution given in (2.1) and eAt/2eBteAt/2 the approximated

solution, t is the local time-step, see (Strang, 1968).

In classical operator splitting errors, we have often the problem of improving the

lower order methods, see (Sheng, 1993). One helpful method is to improve the initial

condition by a weighted function, see Figure (3.1).

We derive a weighted function based on the initial conditions:

||U(t)−W (t)Un|| ≤ O(tm) (3.22)

where U(t) is the operator for the classical function, e.g. W (t) = exp(At) exp(Bt) for

the A-B splitting.

It can be improved by

||U(t)−W (t)Ũn|| ≤ O(tm+p) (3.23)

where Ũn = W̃ (t)Un and W̃ (t) is the operator for weighted function, see e.g. Zassenhaus

method, (Scholz & Weyrauch, 2006).

3.1. Higher Order Lie-Trotter Splitting by Accelerating the
Subproblems Via Weighted Polynomials

We gave the algorithm of the Lie-trotter splitting in the previous chapter and

showed that the Lie-trotter splitting is a first order method. The order of the method

may be increase by the following theorems.

Theorem 3.1 We solve the initial value problem (2.10), (2.11) on the subinterval [0,t].

We assume bounded and constant operators A and B. The consistency error of the Lie-

Trotter splitting is O(t), then we can improve the error of the Lie-Trotter splitting scheme

to O(t2) by multiplied by the initial condition with the weight w2 = I + D2t
2.

Proof The splitting error of Lie-Trotter splitting or A-B splitting is

ρ = exp((A + B)t)− exp(At) exp(Bt) (3.24)

= −(
1

2
[A,B])t2 (3.25)
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The coefficient of t2 given in the expansion

e(A+B)t = eAteBteD2t2 +O(t3) (3.26)

is

D2 +
(A + B)2

2!
− ρ,

thus, if we choose D2 = ρ, the splitting error becomes O(t3). ¤

Theorem 3.2 We solve the initial value problem (2.10) and (2.11) on the subinterval

[0,t]. The consistency error of the A-B splitting is O(t), then we can improve the error of

the A-B splitting scheme to O(tp), p > 1 by improving the starting conditions U0 as

U0 = (

p∏
j=2

exp(Djt
j))U0

where Dj is called as Zassenhaus exponents, thus local splitting error of A-B splitting

method can be read as follows:

ρ = (exp(t(A + B))− exp(tB) exp(tA))usp (3.27)

= DT tp+1 +O(tp+2)

where DT is a function of Lie brackets of A and B.

Proof Let us consider the subinterval [0, t], where t is time step size, the solution of the

subproblem (2.10) is:

u(t) = exp(At)U0 (3.28)
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after improving the initialization we have

u(t) = exp(At)(

p∏
j=2

exp(Djt
j))U0 (3.29)

the solution of the subproblem (2.11) becomes

v(t) = exp(Bt) exp(At)(

p∏
j=2

exp(Djt
j))U0 (3.30)

= exp((B + A)t)U0 +O(tp+1)

¤

3.2. Higher Order Strang Splitting by Accelerating the Subproblems
Via Weighted Polynomials

In order to obtain higher order Strang splitting, we present the idea of the Weighted

Polynomials in the following theorem:

Theorem 3.3 We solve the initial value problem (2.28), (2.29) and (2.30) on the subinter-

val [0,t]. We assume bounded and constant operators A and B. The consistency error of

the Strang splitting is O(t2), then we can improve the error of the Strang splitting scheme

to O(t3) by multiplied by the initial condition with the weight w3 = I + D3t
3.

Proof The splitting error of Strang splitting or A-B-A splitting is

ρ = exp((A + B)t)− exp(At/2) exp(Bt) exp(At/2) (3.31)

= (
1

24
[B, [B, A]]− 1

12
[A, [A,B]])t3 (3.32)

The coefficient of t3 given in the expansion

e(A+B)t = e
At
2 eBe

At
2 eD3t3 +O(t4) (3.33)
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is

D3 +
(A + B)3

3!
− ρ, (3.34)

thus, if we choose D3 = ρ, the splitting error becomes O(t3). ¤

Theorem 3.4 We solve the initial value problem (2.28), (2.29) and (2.30) on the subinter-

val [0,t]. We assume bounded and constant operators A and B. The consistency error of

the Strang splitting is O(t2), then we can improve the error of the Strang splitting scheme

to O(tp), p > 2 by applying the following steps:

• Step 1: Improve the starting conditions u(0) = U0 as

u(0) = (

p∏
j=2

exp(Djt
j))U0

where Dj is called as Zassenhaus exponents,

• Step 2 : Accelerate v(0) as

v(0) = e−Atu(t/2),

• Step 3: Accelerate w(t/2) as

w(t/2) = eAt/2v(t),

thus the order of the A-B-A splitting method can be read as follows

e(At)/2eBte(At)/2 = e(A+B)t +O(tp+1). (3.35)

Proof Let us consider the subinterval [0, t], the solution of the subproblem (2.28) is:

u(t) = eAtU0 (3.36)
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after improving the initialization we have

u(t) = eAt(

p∏
j=2

exp(Djt
j))U0. (3.37)

Next accelerate u(t) as

u(t) = e−Atu(t) (3.38)

the solution of the subproblem (2.29) becomes

v(t) = eBtu(t/2) (3.39)

= eBte−At/2eAt/2(

p∏
j=2

exp(Dj(t/2)j))U0 (3.40)

or

v(t) = eBt(

p∏
j=2

exp(Dj(t/2)j))U0 (3.41)

since [-A/2, A/2]=0. Finally, the acceleration of v(t) is given by the equation

v(t) = eAt/2eBt(

p∏
j=2

exp(Dj(t/2)j))U0, (3.42)

then the solution of the subproblem (2.29) becomes

w(t) = eAt/2eAt/2eBt(

p∏
j=2

exp(Dj(t/2)j))U0 (3.43)
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or

w(t) = eAteBt(

p∏
j=2

exp(Dj(t/2)j))U0 (3.44)

since [A/2, A/2]=0. This can be rewritten as

w(t) = eAteBt(

p∏
j=2

exp(D̃j(t)
j))U0 (3.45)

= exp((A + B)t) +O(tp+1). (3.46)

where D̃p = 1
2p Dj with the help of the Zassenhaus product formula. ¤
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CHAPTER 4

CONSISTENCY ANALYSIS OF THE OPERATOR

SPLITTING METHODS

In the previous chapter, we obtained modified Lie-Trotter and Strang splitting

methods by accelerating the initial condition with via Zassenhaus product formula. In this

chapter we will obtain the errors for the operator splitting by using Zassenhaus product

formula for bounded operators and prove the the consistency of operator splitting methods

for unbounded operators by using C0-semigroup approach.

4.1. Consistency Analysis of the Operator Splitting Methods Based
on Zassenhaus Product Formula

In this section, we analyze the consistency and the order of the operator split-

ting methods by the means of the Zassenhaus product formula. We consider the Cauchy

problem (2.1) for linear bounded operators A and B.

The exact solution of (2.1) is given by

U(t) = e(A+B)tU0, t ≥ 0. (4.1)

As the exact solution operator EA+B is linear with respect to the initial value, we write

U(t) = EA+B(h)U0 = e(A+B)tU0, t ≥ 0. (4.2)

Let us divide the time interval [0, T ] of the problem into N subintervals of equal length

h = tn+1− tn, n = 0, 1, ..., N −1 the approximate solution Un+1 of U(tn+1) is computed

as Un+1 = ΦA+B(h)Un where, ΦA+B is the split solution operator.

In connection with the consistency of a splitting we give the definition of the

consistency.
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Definition 4.1 The splitting method is called consistent of order p on [0, T ] if,

lim
h→0

sup
0≤tn≤T−h

‖EA+B(h)U(t)− ΦA+B(h)U(t)‖
h

= 0 (4.3)

and

ρh = sup
0≤tn≤T−h

‖EA+B(h)U(t)− ΦA+B(h)U(t)‖
h

= O(hp), p > 0, (4.4)

4.1.1. Consistency of the Lie-Trotter Splitting Based on Zassenhaus
Product Formula

Here we will analyze the consistency and the order of the Lie-Trotter splitting by

the means of Zassenhaus product formula for the linear bounded operators A and B in the

Banach-space X with A,B : X → X.

Theorem 4.1 Let A and B be given linear bounded operators. We consider the abstract

Cauchy problem (2.1). Lie-Trotter splitting is consistent with the order of O(t).

Proof From the Zassenhaus product formula we have the form,

e(A+B)t = eAteBteD2t2eD3t3 ..., (4.5)

where,

D2 = −1

2
[A,B] (4.6)

D3 =
1

6
[A, [A, B]]− 1

3
[B, [B, A]] (4.7)
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For the term eD2t2eD3t3 by using the series expansion we can write,

eD2t2eD3t3 = (I + D2t
2 +O(t3))(I + D3t

3 +O(t4)) (4.8)

= I + D2t
2 + D3t

3 +O(t4) (4.9)

We can write the equation (4.5) as follows,

e(A+B)t = eAteBt + eAteBt(I + D2t
2 + D3t

3 +O(t4)) (4.10)

Subtracting the term eAteBt from the both sides of the equation (4.10) we get,

e(A+B)t − eAteBt = eAteBt(D2t
2 + D3t

3)... (4.11)

= D2t
2 + (D3 + (A + B)D2)t

3 +O(t4) (4.12)

For Lie-trotter splitting we get

e(A+B)t − eAteBt = −1

2
t2[A,B] +O(t3) (4.13)

The splitting error of this operator splitting method is derived as follows:

ρt =
1

t
(et(A+B) − eAteBt)U(t) (4.14)

The local truncation is found to satisfy,

ρt = −1

2
t[A,B]U0 +O(t2), (4.15)

¤
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4.1.2. Consistency of the Symmetrically Weighted Splitting Based on
Zassenhaus Product Formula

Theorem 4.2 Let, A and B be given linear bounded operators. We consider the abstract

Cauchy problem (2.1). Symmetrically weighted splitting is consistent with the order of

O(t2).

Proof First we define,

1

2
e(A+B)t =

1

2
eAteBteE2t2eE3t3 ... (4.16)

1

2
e(B+A)t =

1

2
eBteAteẼ2t2eẼ3t3 ... (4.17)

where,

E2 = −1

2
[A,B] (4.18)

Ẽ2 = −E2 (4.19)

E3 =
1

6
[A, [A,B]]− 1

3
[B, [B,A]] (4.20)

Ẽ3 =
1

6
[B, [B,A]]− 1

3
[A, [A,B]] (4.21)

We get the following by subtracting the summation of equations (4.16) and (4.17) from

the term e(A+B)t,

(e(A+B)t − 1

2
(eAteBt + eBteAt)) =

1

2
(I + (A + B)t)(E2t

2 + E3t
3)

+
1

2
(I + (A + B)t)(Ẽ2t

2 + Ẽ3t
3)

+O(t4) (4.22)

Since E2 = −Ẽ2 we have,

(e(A+B)t − 1

2
(eAteBt + eBteAt)) =

1

2
(E3 + Ẽ3) +O(t4) (4.23)

(4.24)
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where,

1

2
(E3 + Ẽ3) = − 1

12
([A, [A, B]] + [B, [B,A]]) (4.25)

The truncation error is,

ρt = − 1

12
t2([A, [A,B]] + [B, [B, A]])U0 +O(t3) (4.26)

¤

4.1.3. Consistency of the Strang Splitting Based on Zassenhaus
Product Formula

Theorem 4.3 Let, A and B be given linear bounded operators. We consider the abstract

Cauchy problem (2.1). Strang splitting is consistent with the order of O(t2).

Proof The exact solution of the (2.1)can be rewritten as follows,

e(A+B)t = e(A+B)t/2+(B+A)t/2 (4.27)

= e(A+B)t/2e(B+A)t/2 (4.28)

Our aim is to show that the consistency error of the Strang Splitting by using Zassenhaus

product formula. Let us consider ,

e(A+B)t/2 = eAt/2eBt/2eF2t2eF3t3 ... (4.29)

e(B+A)t/2 = eBt/2eAt/2eF̃2t2eF̃3t3 ... (4.30)

where,

F2 = −1

2

[
A

2
,
B

2

]
(4.31)

F̃2 = −F2 (4.32)
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F3 =
1

6

[
A

2
,

[
A

2
,
B

2

]]
− 1

3

[
B

2
,

[
B

2
,
A

2

]]
(4.33)

F̃3 =
1

6

[
B

2
,

[
B

2
,
A

2

]]
− 1

3

[
A

2
,

[
A

2
,
B

2

]]
(4.34)

By a series expansion we get,

e(A+B)t/2 = eAt/2eBt/2(I + F2t
2 + F3t

3 +O(t4)) (4.35)

e(B+A)t/2 = eBt/2eAt/2(I + F̃2t
2 + F̃3t

3 +O(t4)) (4.36)

and we have,

e(A+B)t/2 = eAt/2eBt/2

+ eAt/2eBt/2(F2t
2 + F3t

3 +O(t4)) (4.37)

e(B+A)t/2 = eBt/2eAt/2

+ eBt/2eAt/2(F̃2t
2 + F̃3t

3 +O(t4)) (4.38)

Multiplying the equations (4.37) and (4.38) we get,

e(A+B)t = eAt/2eBt/2eBt/2eAt/2

+ eAt/2eBt/2eBt/2eAt/2(F̃2t
2 + F3t

3)

+ eAt/2eBt/2(F2t
2 + F3t

3)eBt/2eAt/2

+O(t4) (4.39)

Using the series expansion,

eAt/2eBt/2 = (I +
At

2
+

A2t2

8
+ ...)(I +

Bt

2
+

B2t2

8
+ ...) (4.40)

= I +
(A + B)t

2
+O(t2) (4.41)
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After some calculations equation (4.39) can be written in the following form,

(e(A+B)t − eAt/2eBteAt/2) = ((A + B)F̃2 +
(A + B)

2
F2 + F2

(A + B)

2
+(F3 + F̃3))t

3 +O(t4) (4.42)

The local truncation error is,

ρt =
1

24
t2([A, [A,B]]− 2[B, [B, A]])U0 +O(t3) (4.43)

¤

4.2. Consistency Analysis of Operator Splitting Methods for C0

Semigroups

The consistency of the operator splitting methods is studied in the previous sec-

tion for bounded operators by means of the Zassenhaus product formula.In this section,

first we introduce the semigroup theory by giving the basic definitions, then rederive the

consistency analysis for Lie-Trotter, symmetrically Weighted and Strang Splitting for un-

bounded generators of strongly continuous semigroup.

4.2.1. Semigroup Theory

Semigroup theory is developed to solve operator ODE. Consider the following

linear equation system in ODE

∂u(t)

∂t
= Au(t) (4.44)

u(0) = u0 (4.45)

where the A is matrix of constant coefficient and u is a vector function of time. It is well-

known, the solution is u(t) = eAtu(0). If A is a linear bounded operator in Banach space,

u(t) still has this form. However, in many interesting cases, it is unbounded which don’t
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admit this form. This to some extend shows the richness of semigroup theory.

For its application, semigroup theory uses abstract methods of operator theory to

treat initial boundary value problems for linear and nonlinear equations that describe the

evolution of a system.

Definition 4.2 A one-parameter semigroup of operators over a real or complex Banach

space X is a family of bounded operators S(t), t ≥ 0 satisfy: S(t + s) = S(t)S(s) for

all t; s ≥ 0 and S(0) = I .

1. A semigroup in X, {S(t)}t≥0, is called uniformly continuous if limt→0+ S(t) = I ,

where the limit is in the topology of S(X).

2. A semigroup in X, {S(t)}t≥0, is called strongly continuous, or C0 for short, if for

every x ∈ X, limt→0+ S(t)x = x.

3. A semigroup in X, {S(t)}t≥0, is called semigroup of contractions if,

‖S(t)‖ ≤ 1 for every t ≥ 0.

Observe that in the case of a finite dimensional space, a known example of semigroups

are exponentials,

S(t) = eAt (4.46)

Also, observe that once S(t) is known, the matrix A can be determined by,

A =
∂S(t)

∂t
, for t = 0 (4.47)

In general case, assume u(t) is solution of (4.44), so u(t) = S(t)u0. Then, if u0 ∈ D(A)

using (4.44) we must have,

ut(0) = Au0 (4.48)

and left hand side can be written as,

ut(0) = lim
t→0+

S(t)u0 − u0

t
(4.49)
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This motivates the following definition,

Definition 4.3 The infinitesimal generator of a C0 semigroup is the linear operator

(A,D(A)), whose domain is given by the elements of X such that,

Ax = lim
t→0+

S(t)x− x

t
(4.50)

exists.

Consider the linear abstract Cauchy problem (4.44)-(4.45) where A : X → X is a closed,

densely defined linear operator.Assume that A generates C0-semigroup {S(t)}t≥0. Then

there exist constants w0 ∈ R and M0 ≥ 1 such that,

‖S(t)‖ ≤ M0e
w0t, t ≥ 0 (4.51)

Moreover, for any u0 ∈ D(A) (4.44) has the unique solution

u(t) = S(t)u0, t ≥ 0. (4.52)

Assume that,

A = A1 + A2, (4.53)

where A1 and A2 are generators of such C0-semigroups {S1(t)}t≥0 and {S2(t)}t≥0, which

can be approximated more easily than {S(t)}t≥0, respectively satisfying,

D(Ak) = D(Ak
1) = D(Ak

2) k = 1, 2, 3 (4.54)

Let us divide the time interval (0, T ] of the problem into N sub-intervals of equal length

h = tn+1 − tn. The approximate solution Un+1
s of u(tn + 1) is compute as,

Un+1
s = Sspl(h)Un

s , (4.55)
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We will concentrate on the following splitting schemes:

1. Lie-Trotter Splitting : Sspl(h) = Slie(h) = S2(h)S1(h),

2. SWS : Sspl(h) = Ssym(h) = 1
2
(S2(h)S1(h) + S1(h)S2(h)),

3. Strang Splitting : Sspl(h) = Sstr(h) = S1(h/2)S2(h)S1(h/2).

Corresponding operator splitting method is consistent in the usual sense:

Define Th : X× [0, T − h] → X by

Th(u0, t) = S(h)u(t)− Sspl(h)(h)u(t) (4.56)

where u(t) is given by (4.52). Thus for each u0 and t, Th(u0, t) yields the local truncation

error of the corresponding splitting method.

Definition 4.4 The splitting method is said to be consistent on [0, T ] if

lim
h→0

sup
0≤tn≤T−h

‖Th(u0, tn)‖
h

= 0 (4.57)

whenever u0 ∈ B, B being some dense subspace of X.

Definition 4.5 If in the consistency relation (4.57) we have

sup
0≤tn≤T−h

‖Th(u0, tn)‖
h

= O(hp), p > 0, (4.58)

then the method is said to be (consistent) of order p

The following formula and lemmas will play a basic role in our investigations.

Theorem 4.4 For any C0-semigroups {S(t)}t≥0 of bounded linear operators with corre-

sponding infinitesimal generator A, we have the Taylor series expansion

S(t)x =
n−1∑
j=0

tj

j!
Ajx +

1

(n− 1)!

t∫

0

(t− s)n−1S(s)Anxds, for all x ∈ D(An) (4.59)
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Particularly, for n = 3, 2 and 1 we get the relations,

S(h)x = x + hAx +
h2

2
A2x +

1

2

h∫

0

(h− s)2S(s)A3xds, (4.60)

S(h)x = x + hAx +

h∫

0

(h− s)S(s)A2xds, (4.61)

S(h)x = x +

h∫

0

S(s)Axds, (4.62)

Lemma 4.1 Let A and B be closed linear operators from D(A) ⊂ X and D(B) ⊂ X,

respectively, into X. If D(A) ⊂ D(B), then there exists a constant Ĉ such that

‖Bx‖ ≤ Ĉ(‖Ax‖+ ‖x‖) for all x ∈ D(A). (4.63)

This implies that there exists a universal constant Ĉ by which of x ∈ Dk, k = 1, 2, 3

‖Ak
i x‖ ≤ Ĉ(‖Ak

j x‖+ ‖x‖) i, j = 1, 2. (4.64)

where,

Dk = D(Ak
1)

⋂
D(Ak

2)
⋂

D(Ak) k = 1, 2, 3 dense in X (4.65)

Lemma 4.2 Let A be an infinitesimal generator of a C0-semigroup {S(t)}t≥0. Let T > 0

and n ∈ N arbitrary. If u0 ∈ D(An), then u(t) = S(t)u0 ∈ D(An) for 0 ≤ t ≤ T , and

we have

sup
[0,T ]

‖Aku(t)‖ ≤ Ck(T ), k = 0, 1, ..., n (4.66)

where Ck(T ) are constants independent of h.

Proof Let z(t) = An−1u(t) = An−1S(t)u0 = S(t)An−1u0. Clearly, u0 ∈ D(An)
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implies An−1u0 ∈ D(A). It is known from the theory of C0-semigroups [6] that then

S(t)An−1u0 ∈ D(A), i.e., An−1u(t) ∈ D(A). Consequently, u(t) ∈ D(An). Moreover,

sup
[0,T ]

‖Aku(t)‖ = sup
[0,T ]

‖AkS(t)u0‖ = sup
[0,T ]

‖S(t)Aku0‖ ≤ Me|w|T‖Aku0‖ (4.67)

for k = 0, 1, ..., n ¤

4.2.2. Consistency of the Lie-Trotter Splitting

We need to show that the first order consistency of Lie-Trotter Splitting for C0-

semigroups. By using (4.59) for n = 2, for x ∈ D(A2) we then have,

S2(h)S1(h)x = S1(h)x + hA2S1(h)x +

h∫

0

(h− s)S2(s)A
2
2S1(h)xds (4.68)

Substituting

S1(h)x = x + hA1x +

h∫

0

(h− s)S1(s)A
2
1xds, (4.69)

and

S1(h)x = x +

h∫

0

S1(s)A1xds, (4.70)

into the first and second terms on the right-hand side of (4.68), respectively, we get

S2(h)S1(h)x = x + h(A1x + A2x) +

h∫

0

(h− s)S1(s)A
2
1xds (4.71)
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+hA2

h∫

0

S1(s)A1xds (4.72)

+

h∫

0

(h− s)S2(s)A
2
2S1(h)xds (4.73)

On the other hand, we have

S(h)x = x + hAx +

h∫

0

(h− s)S(s)A2xds, (4.74)

so the difference is

S2(h)S1(h)x− S(h)x =

h∫

0

(h− s)S1(s)A
2
1xds (4.75)

+hA2

h∫

0

S1(s)A1xds (4.76)

+

h∫

0

(h− s)S2(s)A
2
2S1(h)xds (4.77)

−
h∫

0

(h− s)S(s)A2xds (4.78)

Proposition 4.1 Let A, A1 and A2 be infinitesimal generators of the C0-semigroups

{S(t)}t≥0, {S1(t)}t≥0 and {S2(t)}t≥0, respectively,. Assume that (4.53) and (4.54) are

satisfied, and let T > 0. Then for all x ∈ D the relation

‖S2(h)S1(h)x− S(h)x‖ ≤ h2C(T )(‖A2x‖+ ‖Ax‖+ ‖x‖) (4.79)

holds h ∈ [0, T ], where C(T ) is a constant of independent of h.
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Proof We estimate the terms on the right-hand side of (4.75)-(4.78). The two terms in

(4.75) and (4.78) can be estimated directly by

∥∥∥∥∥∥

h∫

0

(h− s)S1(s)A
2
1xds

∥∥∥∥∥∥
≤ M1e

|w1|h‖A2
1x‖

h2

2
(4.80)

and

∥∥∥∥∥∥

h∫

0

(h− s)S(s)A2xds

∥∥∥∥∥∥
≤ Me|w|h‖A2x‖h2

2
(4.81)

The term in (4.77) is estimated by

∥∥∥∥∥∥

h∫

0

(h− s)S2(s)A
2
2S1(h)xds

∥∥∥∥∥∥
≤ M2e

|w2|h‖A2
2S1(h)x‖h2

2
, (4.82)

but if we apply (Lemma 4.1) to compare the closed operators A2
2 and A2

1 we have,

‖A2
2S1(h)x‖ ≤ Ĉ(‖A2

1S1(h)x‖+ ‖S1(h)x‖), (4.83)

which since A2
1 and S1(h) commute, yields the estimate

∥∥∥∥∥∥

h∫

0

(h− s)S2(s)A
2
2S1(h)xds

∥∥∥∥∥∥
≤ M1e

|w1|hM2e
|w2|hĈ(‖A2

1x‖+ ‖x‖)h
2

2
, (4.84)

For the term (4.76), using (Lemma 4.1) to compare A1 and A2, we have

∥∥∥∥∥∥
hA2

h∫

0

S1(s)A1xds

∥∥∥∥∥∥
≤ hĈ




∥∥∥∥∥∥
A1

h∫

0

S1(s)A1xds

∥∥∥∥∥∥
+

∥∥∥∥∥∥

h∫

0

S1(s)A1xds

∥∥∥∥∥∥


 (4.85)
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Using (4.61) twice and the fact that all semigroups commute with their generator, we get

A1

h∫

0

S1(s)A1xds = S1(h)A1x− A1x =

h∫

0

S1(s)A
2
1xds, (4.86)

Hence we get the estimate,

∥∥∥∥∥∥
hA2

h∫

0

S1(s)A1xds

∥∥∥∥∥∥
≤ hĈ




∥∥∥∥∥∥

h∫

0

S1(s)A
2
1xds

∥∥∥∥∥∥
+

∥∥∥∥∥∥

h∫

0

S1(s)A1xds

∥∥∥∥∥∥


 (4.87)

≤ h2ĈM1e
|w1|h(‖A2

1x‖+ ‖x‖) (4.88)

Hence, adding the four estimates (4.80),(4.81), (4.84) and (4.87), we get the following,

‖S2(h)S1(h)x− S(h)x‖ ≤ h2C(T )(‖A2
1x‖+ ‖x‖+ ‖A2x‖+ ‖x‖) (4.89)

From Lemma 4.1 we know that we can bound ‖A2
1x‖ in terms of ‖A2x‖ + ‖x‖ and

similarly ‖A1x‖ in terms of ‖A2x‖+ ‖x‖. ¤

To prove the first-order consistency of the Lie-Trotter splitting, we need a uniform bound,

proportional to h2 on

‖S2(h)S1(h)u(t)− S(h)u(t)‖ (4.90)

as t runs from 0 to T − h, where u(t) = S(t)u0 is the exact solution of the original

problem (4.44)-(4.45).

Proposition (4.1), (4.64) and Lemma (4.2) imply the following

Theorem 4.5 Let the conditions of Proposition (4.1) be satisfied. Then for any u0 ∈ D

we have a uniform bound

‖S2(h)S1(h)u(t)− S(h)u(t)‖ ≤ h2C(T ) (4.91)
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where C(T ) is a constant independent of h.

4.2.3. Consistency of the Symmetrically Weighted Splitting

Our aim is to show the second order consistency of the Symmetrically Weighted

Splitting for C0-semigroups. By using (4.59) for n = 3, for x ∈ D(A) we then have,

S2(h)S1(h)x = S1(h)x + hA2S1(h)x +
h2

2
A2

2S1(h)x (4.92)

+
1

2

h∫

0

(h− s)2S2(s)A
3
2S1(h)xds (4.93)

and similarly,

S1(h)S2(h)x = S2(h)x + hA1S2(h)x +
h2

2
A2

1S2(h)x (4.94)

+
1

2

h∫

0

(h− s)2S1(s)A
3
1S2(h)xds (4.95)

Applying (4.60), (4.61) and (4.62) for the semigroups {S1(t)}t≥0 and {S2(t)}t≥0 and

substituting the corresponding expressions into the first, second and third terms of the

right-hand side of (4.92), we get

1

2
(S2(h)S1(h) + S1(h)S2(h)x) = (4.96)

x + h(A1 + A2)x +
h2

2
(A1 + A2)

2x (4.97)

+
1

4

h∫

0

(h− s)2S1(s)A
3
1xds (4.98)

+
1

4

h∫

0

(h− s)2S2(s)A
3
2xds (4.99)

+
1

2
hA2

h∫

0

(h− s)S2(s)A
2
1xds +

1

2
hA1

h∫

0

(h− s)S2(s)A
2
2xds (4.100)
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+
1

4
h2A2

2

h∫

0

S1(s)A1xds +
1

4
h2A2

1

h∫

0

S2(s)A2xds (4.101)

+
1

4

h∫

0

(h− s)2S2(s)A
3
2S1(h)xds +

1

4

h∫

0

(h− s)2S1(s)A
3
1S2(h)xds (4.102)

On the other hand, we have

S(h)x = x + hAx +
h2

2
A2x +

1

2

h∫

0

(h− s)2S(s)A3xds (4.103)

so the difference is

1

2
(S2(h)S1(h) + S1(h)S2(h)x)− S(h)x = (4.104)

+
1

4

h∫

0

(h− s)2S1(s)A
3
1xds +

1

4

h∫

0

(h− s)2S2(s)A
3
2x (4.105)

+
1

2
hA2

h∫

0

(h− s)S1(s)A
2
1xds +

1

2
hA1

h∫

0

(h− s)S2(s)A
2
2xds (4.106)

+
1

4
h2A2

2

h∫

0

S1(s)A1xds +
1

4
h2A2

1

h∫

0

S2(s)A2xds (4.107)

+
1

4

h∫

0

(h− s)2S2(s)A
3
2S1(h)xds +

1

4

h∫

0

(h− s)2S1(s)A
3
1S2(h)xds (4.108)

−1

2

h∫

0

(h− s)2S(s)A3xds (4.109)

Proposition 4.2 Let A, A1 and A2 be infinitesimal generators of the C0-semigroups

{S(t)}t≥0, {S1(t)}t≥0 and {S2(t)}t≥0, respectively,. Assume that (4.53) and (4.54) are

satisfied, and let T > 0. Then for all x ∈ D the relation

∥∥∥∥
1

2
(S2(h)S1(h) + S1(h)S2(h)x)− S(h)x

∥∥∥∥ ≤ (4.110)

h3C(T )(‖A3x‖+ ‖A2x‖+ ‖Ax‖+ ‖x‖) (4.111)
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holds h ∈ [0, T ], where C(T ) is a constant of independent of h.

Proof We estimate the terms on the right-hand side of (4.104)-(4.109). For the first

term in (4.106) by using (Lemma 4.1) we can write

∥∥∥∥∥∥
1

2
hA2

h∫

0

(h− s)S1(s)A
2
1xds

∥∥∥∥∥∥
≤ Ĉ

2
h

∥∥∥∥∥∥
A1

h∫

0

(h− s)S1(s)A
2
1xds

∥∥∥∥∥∥
(4.112)

+
Ĉ

2
h

∥∥∥∥∥∥

h∫

0

(h− s)S1(s)A
2
1xds

∥∥∥∥∥∥
(4.113)

Using (4.61) twice and the fact that all semigroups commute with their generator, for the

term (4.112) we obtain the estimate

Ĉ

2
h

∥∥∥∥∥∥
A1

h∫

0

(h− s)S1(s)A
2
1xds

∥∥∥∥∥∥
≤ M1e

|w1|h‖A3
1x‖

h3

4
Ĉ. (4.114)

Term (4.113) can be estimated by

Ĉ

2
h

∥∥∥∥∥∥

h∫

0

(h− s)S1(s)A
2
1xds

∥∥∥∥∥∥
≤ M1e

|w1|h‖A2
1x‖

h3

4
Ĉ. (4.115)

So,

∥∥∥∥∥∥
1

2
hA2

h∫

0

(h− s)S1(s)A
2
1xds

∥∥∥∥∥∥
≤ M1e

|w1|h(‖A3
1x‖+ ‖A2

1x‖)
h3

4
Ĉ. (4.116)

Similarly, for the second term in (4.106) the following relation is valid,

∥∥∥∥∥∥
1

2
hA1

h∫

0

(h− s)S2(s)A
2
2xds

∥∥∥∥∥∥
≤ M2e

|w2|h(‖A3
2x‖+ ‖A2

2x‖)
h3

4
Ĉ. (4.117)
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For the estimate of he first term of (4.107) on the base of (Lemma 4.1) we can write

∥∥∥∥∥∥
1

4
h2A2

2

h∫

0

S1(s)A1xds

∥∥∥∥∥∥
≤ Ĉ

4
h2

∥∥∥∥∥∥
A2

1

h∫

0

(h− s)S1(s)A1xds

∥∥∥∥∥∥
(4.118)

+
Ĉ

4
h2

∥∥∥∥∥∥

h∫

0

(h− s)S1(s)A1xds

∥∥∥∥∥∥
(4.119)

where for terms (4.118) we have

Ĉ

4
h2

∥∥∥∥∥∥
A2

1

h∫

0

(h− s)S1(s)A1xds

∥∥∥∥∥∥
=

Ĉ

4
h2

∥∥∥∥∥∥

h∫

0

(h− s)S1(s)A
3
1xds

∥∥∥∥∥∥
(4.120)

≤ Ĉ

4
h3M1e

|w1|h‖A3
1x‖ (4.121)

and for the term (4.119),

Ĉ

4
h2

∥∥∥∥∥∥

h∫

0

(h− s)S1(s)A1xds

∥∥∥∥∥∥
≤ Ĉ

4
h3M1e

|w1|h‖A1x‖ (4.122)

Consequently,

∥∥∥∥∥∥
1

4
h2A2

2

h∫

0

S1(s)A1xds

∥∥∥∥∥∥
≤ M1e

|w1|hĈ(‖A3
1x‖+ ‖A1x‖)h

3

4
. (4.123)

In a similar way, the second term of (4.107) is estimated by

∥∥∥∥∥∥
1

4
h2A2

1

h∫

0

S2(s)A2xds

∥∥∥∥∥∥
≤ M2e

|w2|hĈ(‖A3
2x‖+ ‖A2x‖)h

3

4
. (4.124)
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For the first term of (4.108) we can write

∥∥∥∥∥∥
1

4

h∫

0

(h− s)2S2(s)A
3
2S1(h)xds

∥∥∥∥∥∥
≤ M2e

|w2|h‖A3
2S1(h)x‖h3

12
(4.125)

≤ M2e
|w2|hĈ(‖A3

1S1(h)x‖+ ‖S1(h)x‖)h
3

12
(4.126)

≤ M1e
|w1|hM2e

|w2|hĈ(‖A3
1x‖+ ‖x‖)h

3

12
(4.127)

Finally, in a similar manner, the second term of (4.108) is estimated by

∥∥∥∥∥∥
1

4

h∫

0

(h− s)2S1(s)A
3
1S2(h)xds

∥∥∥∥∥∥
≤ (4.128)

M1e
|w1|hM2e

|w2|hĈ(‖A3
2x‖+ ‖A2x‖)h

3

12
. (4.129)

¤

To prove the second-order consistency of the Symmetrically weighted splitting,

we need a uniform bound, proportional to h3 on

‖1

2
(S2(h)S1(h)u(t) + S1(h)S2(h)u(t))− S(h)u(t)‖ (4.130)

as t runs from 0 to T−h, where u(t) = S(t)u0 is the exact solution of the original problem

(4.44)-(4.45).

Proposition (4.2), (4.64) and Lemma (4.2) imply the following

Theorem 4.6 Let the conditions of Proposition (4.2) be satisfied. Then for any u0 ∈ D

we have a uniform bound

∥∥∥∥
1

2
(S2(h)S1(h)u(t) + S1(h)S2(h)u(t))− S(h)u(t)

∥∥∥∥ ≤ h3C(T ) (4.131)

where C(T ) is a constant independent of h.
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4.2.4. Consistency of the Strang Splitting

Let us introduce the notation y = S2(h)S1(h/2), and let x ∈ D according to

(4.54). Then we can write

S1(h/2)S2(h)S1(h/2) = S1(h/2)y (4.132)

and by (4.59) we have

S1(h/2)y = y +
h

2
A1y +

h2

8
A2

1y +
1

2

h/2∫

0

(
h

2
− s)2S1(s)A

3
1yds (4.133)

Substituting

y = S1(h/2)x + hA2S1(h/2)x +
h2

2
A2

2S1(h/2)x (4.134)

+
1

2

h∫

0

(h− s)2S2(s)A
3
2S1(h/2)xds (4.135)

y = S1(h/2)x + hA2S1(h/2)x +

h∫

0

(h− s)S2(s)A
2
2S1(h/2)xds (4.136)

y = S1(h/2)x +

h∫

0

S2(s)A2S1(h/2)xds (4.137)

and

y = S2(h)S1(h/2)x (4.138)

successively the terms of the right-hand side of (4.133), and the expressions

S1(h/2)x = x +
h

2
A1x +

h2

8
A2

1x +
1

2

h/2∫

0

(
h

2
− s)2S1(s)A

3
1xds (4.139)
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S1(h/2)x = x +
h

2
A1x +

h/2∫

0

(
h

2
− s)S1(s)A

2
1xds (4.140)

S1(h/2)x = x +

h/2∫

0

S1(s)A1xds (4.141)

Taking into account (4.103), we obtain that

S1(h/2)S2(h)S1(h/2)x− S(h)x = (4.142)

+
1

2

h/2∫

0

(
h

2
− s)2S1(s)A

3
1xds + hA2

h/2∫

0

(
h

2
− s)S1(s)A

2
1xds (4.143)

+
h2

2
A2

2

h/2∫

0

S1(s)A1xds +
1

2

h∫

0

(h− s)2S2(s)A
3
2S1(h/2)xds (4.144)

+
h

2
A1

h/2∫

0

(
h

2
− s)S1(s)A

2
1xds +

h2

2
A1A2

h/2∫

0

S1(s)A1xds (4.145)

+
h

2
A1

h∫

0

(h− s)S2(s)A
2
2S1(h/2)xds +

h2

8
A2

1

h/2∫

0

S1(s)A1xds (4.146)

+
h2

8
A2

1

h∫

0

S2(s)A2S1(h/2)xds (4.147)

+
1

2

h/2∫

0

(
h

2
− s)2S1(s)A

3
1S2(h)S1(h/2)xds (4.148)

−1

2

h∫

0

(h− s)2S(s)A3xds (4.149)

Proposition 4.3 Let A, A1 and A2 be infinitesimal generators of the C0-semigroups

{S(t)}t≥0, {S1(t)}t≥0 and {S2(t)}t≥0, respectively,. Assume that (4.53) and (4.54) are

satisfied, and let T > 0. Then for all x ∈ D the relation

‖S1(h/2)S2(h)S1(h/2)x− S(h)x‖ ≤ (4.150)

h3C(T )(‖A3x‖+ ‖A2x‖+ ‖Ax‖+ ‖x‖) (4.151)
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holds h ∈ [0, T ], where C(T ) is a constant of independent of h.

Proof We estimate the terms on the right-hand side of (4.142)-(4.149) one by one. The

first term of (4.143) can be directly estimated as

1

2

∥∥∥∥∥∥

h/2∫

0

(
h

2
− s)2S1(s)A

3
1xds

∥∥∥∥∥∥
≤ M1e

|w1|h/2‖A3
1x‖

h3

48
(4.152)

For the second term of (4.143) by the use of (Lemma 4.1) we can write

∥∥∥∥∥∥
hA2

h/2∫

0

(
h

2
− s)S1(s)A

2
1xds

∥∥∥∥∥∥
≤ Ĉh

∥∥∥∥∥∥
A1

h/2∫

0

(
h

2
− s)S1(s)A

2
1xds

∥∥∥∥∥∥
(4.153)

+Ĉh

∥∥∥∥∥∥

h/2∫

0

(
h

2
− s)S1(s)A

2
1xds

∥∥∥∥∥∥
(4.154)

Here by using (4.61) twice, for the first integral can be written as

A1

h/2∫

0

(
h

2
− s)S1(s)A

2
1xds =

h/2∫

0

(
h

2
− s)S1(s)A

3
1xds (4.155)

and so the term (4.153) can be estimated by

M1e
|w1|h/2‖A3

1x‖
h3

8
Ĉ (4.156)

For the term (4.154) the following estimates holds

M1e
|w1|h/2‖A2

1x‖
h3

8
Ĉ (4.157)
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The first term of (4.144) we have

∥∥∥∥∥∥
h2

2
A2

2

h/2∫

0

S1(s)A1xds

∥∥∥∥∥∥
≤ M1e

|w1|h/2(‖A3
1x‖+ ‖A1x‖)h

3

4
(4.158)

The second term of (4.144) can be estimated as

1

2

∥∥∥∥∥∥

h∫

0

(h− s)2S2(s)A
3
2S1(h/2)xds

∥∥∥∥∥∥
≤ 1

2
M2e

|w2|h‖A3
2xS1(h/2)‖h3

3
(4.159)

From the (Lemma 4.1) we get the right-hand side of (4.159)

M1e
|w1|h/2M2e

|w2|hĈ(‖A3
1x‖+ ‖x‖)h

3

6
(4.160)

For the first term of (4.145) we can write

h

2

∥∥∥∥∥∥
A1

h/2∫

0

(
h

2
− s)S1(s)A

2
1xds

∥∥∥∥∥∥
≤ M1e

|w1|h/2‖A3
1x‖

h3

16
(4.161)

For the second term one has

∥∥∥∥∥∥
h2

2
A1A2

h/2∫

0

S1(s)A1xds

∥∥∥∥∥∥
≤ Ĉ

h2

2
‖A2

2

h/2∫

0

S1(s)A1xds‖ (4.162)

+Ĉ
h2

2
‖A2

h/2∫

0

S1(s)A1xds‖ (4.163)

which, by Lemma (4.1), is less than or equal to

M1e
|w1|h/2Ĉ2(‖A3

1x‖+ ‖A2
1x‖+ 2‖A1x‖)h

3

4
(4.164)
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Using again Lemma (4.1), the first term of (4.146) can be estimated as

h

2

∥∥∥∥∥∥
A1

h∫

0

(h− s)S2(s)A
2
2S1(h/2)xds

∥∥∥∥∥∥
(4.165)

≤ h

2
Ĉ(‖A2

h∫

0

(h− s)S2(s)A
2
2S1(h/2)xds‖) (4.166)

+‖
h∫

0

(h− s)S2(s)A
2
2S1(h/2)xds‖ (4.167)

≤ M2e
|w2|hM1e

|w1|h/2Ĉ2(‖A3
1x‖+ ‖A2

1x‖+ 2‖A1x‖)h
3

4
(4.168)

For the second term of (4.146) we have

h2

8

∥∥∥∥∥∥
A2

1

h/2∫

0

S1(s)A1xds

∥∥∥∥∥∥
≤ M1e

|w1|h/2‖A3
1x‖

h3

16
(4.169)

We estimate the (4.147) as

h2

8

∥∥∥∥∥∥
A2

1

h∫

0

S2(s)A2S1(h/2)xds

∥∥∥∥∥∥

≤ h2

8
Ĉ

∥∥∥∥∥∥
A2

2

h∫

0

S2(s)A2S1(h/2)xds

∥∥∥∥∥∥
+

h2

8
Ĉ

∥∥∥∥∥∥

h∫

0

S2(s)A2S1(h/2)xds

∥∥∥∥∥∥

≤ h3

8
Ĉ2M2e

|w2|h‖A3
2S1(h/2)x‖+

h3

8
Ĉ2M2e

|w2|h‖A2S1(h/2)x‖

≤ M1e
|w1|h/2M2e

|w2|hĈ2(‖A3
1x‖+ ‖A1x‖+ 2‖x‖)h

3

8
(4.170)

and the (4.148)

1

2

∥∥∥∥∥∥

h/2∫

0

(
h

2
− s)2S1(s)A

3
1S2(h)S1(h/2)xds

∥∥∥∥∥∥
≤ (4.171)

≤ h3

48
M1e

|w1|h/2Ĉ(‖A3
2S2(h)S1(h/2)x‖+ ‖S2(h)S1(h/2)x‖) (4.172)
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Here

‖A3
2S2(h)S1(h/2)x‖ ≤ M2e

|w2|h‖A3
2S1(h/2)x‖ (4.173)

≤ M2e
|w2|hĈ(‖‖A3

1S1(h/2)x‖+ ‖S1(h/2)x‖). (4.174)

Therefore

1

2

∥∥∥∥∥∥

h/2∫

0

(
h

2
− s)2S1(s)A

3
1S2(h)S1(h/2)xds

∥∥∥∥∥∥
≤ (4.175)

M1e
|w1|h/2M2e

|w2|hM1e
|w1|h/2(Ĉ2(‖A3

1x‖+ ‖x‖) + Ĉ‖x‖)h
3

48
(4.176)

Finally, for the term (4.149) we have

1

2

∥∥∥∥∥∥

h∫

0

(h− s)2S(s)A3xds

∥∥∥∥∥∥
≤ 1

2
Me|w|h‖A3x‖h3

3
. (4.177)

¤

Proposition (4.3), (4.64) and Lemma 4.2 imply the following

Theorem 4.7 Let the conditions of Proposition (4.3) be satisfied. Then for any u0 ∈ D

we have a uniform bound

‖S1(h/2)S2(h)S1(h/2)x− S(h)x‖ ≤ h3C(T ) (4.178)

where C(T ) is a constant independent of h.

50



CHAPTER 5

STABILITY ANALYSIS FOR OPERATOR SPLITTING

METHODS

In this chapter, we will discuss the stability analysis of the operator splitting meth-

ods for ODE systems and PDE problems, such that nonlinear KdV equation. For PDE

sense we will use the Von-Neumann stability analysis. General approach to Von-Neumann

stability analysis for Lie-Trotter and Strang splitting will be discussed.

5.1. Stability for Linear ODE Systems

In this section, we take a look at properties of linear systems of ODEs and in

particular at influence of perturbations at such systems.

Consider the initial value problem,

∂U(t)

∂t
= AU(t), with t ∈ [0, T ], U(0) = U0, (5.1)

with given matrix A ∈ Rm×m. The solution of the equation (5.1) can be written as,

U(t) = etAU0. (5.2)

Consider also a perturbed problem,

∂Û(t)

∂t
= AÛ(t) + δ(t), with t ∈ [0, T ], Û(0) = Û0, (5.3)

Then for ε(t) = Û(t)− U(t) we find by the variation of constant formula that,

ε(t) = etAε(0) +

∫ t

0

e(t−s)Aδ(s)ds, (5.4)
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which leads to the norm estimate

‖ε(t)‖ ≤ ‖etA‖‖ε(0)‖ +

∫ t

0

‖e(t−s)A‖ds max
0≤s≤t

‖δ(s)‖. (5.5)

Consequently, if we have the following stability inequality

‖etA‖ ≤ Ketw for all t ≥ 0, (5.6)

with constants K > 0 and w ∈ R, then we obtain

‖ε(t)‖ ≤ Ketw‖ε(0)‖+
K

t
(etw − 1) max

0≤s≤t
‖δ(s)‖, (5.7)

with convention (etw − 1)/w = t in case w = 0. This inequality shows that the overall

error ‖ε(t)‖ can be bounded in terms of the initial error ‖ε(0)‖ and perturbations ‖δ(s)‖,

0 ≤ s ≤ t.

In general, the term stability will be used to indicate that small perturbations give

a small overall effect. We now take a closer look at bounds for ‖etA‖. Suppose that A is

diagonalizable, A = PΛP−1, where Λ = diag(λk) and that the vector norm is absolute.

Then it follows that,

‖etA‖ ≤ ‖P‖‖Λ‖‖P−1‖ = cond(P ) max
1≤k≤m

|etλk |. (5.8)

Consequently, if we know that cond(P ) = ‖P‖‖P−1‖ ≤ K and Reλk ≤ w, then (5.6)

follows with

w = max
1≤k≤m

|etλk |. (5.9)

In particular, if A is normal matrix, then the matrix of eigenvectors P is unitary.

Since etA = PetΛP−1 the matrix etA is also normal. Thus with the normal matrices A we
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have

‖etA‖2 = max
1≤k≤m

|etλk |. (5.10)

Assume for A, two-term splitting in (5.1),

A = A1 + A2 (5.11)

The solution of (5.1) is given by

U(tn+1) = etAU(tn) (5.12)

where t = tn+1− tn on each subintervals [tn, tn+1], where n = 0, 1, ..., N − 1. If we wish

to use only A1 and A2 separately, instead of the full A, then (5.12) can be approximated

by

Un+1 = etA2etA1Un (5.13)

with Un approximating U(tn). With regard to stability, if we have ‖etAk‖ ≤ 1, k = 1, 2,

then it follows trivially that ‖Un+1‖ ≤ ‖Un‖ for the splitting (5.13). General stability

results under the weaker assumption that ‖etAk‖ ≤ K for 0 ≤ t ≤ T with a constant

K ≥ 1 seem unknown. However, in practice the splitting appears to be stable provided

the sub-steps themselves are stable.

In general, if the matrix A is not normal, an estimate of cond(U) in some suitable

norm maybe difficult to obtain. For this reason we will look a more general concept to

obtain bounds for ‖etA‖. A useful concept for stability results with non-normal matrices

is the logarithmic norm of a matrix A in Rm×m, defined as

µ(A) = lim
t↓0

‖I + tA‖
t

. (5.14)

In terms of logarithmic matrix norms, ‖etAk‖ ≤ 1 means that µ(Ak) ≤ 0. This implies
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µ(A1 + A2) ≤ 0 and therefore ‖et(A1+A2)‖ ≤ 1, so the system will be stable.

5.2. Stability Analysis for PDE

In order to determine the Courant-Friedrichs-Levy condition for the stability of an

explicit solution of a PDE the Von Neumann stability analysis is used. A very versatile

tool for analysing stability is the Fourier method developed by Von Neumann. Here initial

values at mesh points are expressed in terms of a finite Fourier series, and we consider the

growth of individual Fourier components. We do not need to find eigenvalues, or matrix

norms.

A unique representation of the function U(x) can be expressed as,

U(x) =
1√
2π

∫ ∞

−∞
Û(ξ)eiξxdξ (5.15)

Consider a trial solution at x,

U(x, t) = U(t)eikx (5.16)

We can write the Un
j and Un+1

j as follows,

Un
j = U(xj, tn) = Ûneikjh (5.17)

Un+1
j = U(xj, tn+1) = Ûn+1eikjh (5.18)

The amplification factor is so called because its magnitude is the amount of the amplitude

of each frequency in the solution given by,

ρ(ξ) =
Ûn+1

Ûn
(5.19)

Where ξ = kjh. If |ξ| ≤ 1 then the solution dampened. If |ξ| > 1 the solution grows in

amplitude and becomes unstable.

We illustrate the method by considering the particular example. Through the use
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of Fourier transform the determination of the stability of a scheme is reduced to relatively

simple algebraic consideration.

We consider the following problem parabolic problem:

ut = Duxx, (5.20)

Let xi = i∆x and tn = n∆t, i = 1, ..., M − 1 n = 0, ..., N Respectively ∆x =

1
M

∆t = 1
N

are the regular spatial end time step sizes. The discrete representation of

(5.20) over each time interval [tn, tn + ∆t] is as follows,

Un+1
i − Un

i

∆t
=

D

∆x2
(Un+1

i+1 − 2Un+1
i + Un+1

i−1 ) (5.21)

Let say D∆t
∆x2 = r. Rearranging the terms (5.21) according to the time level, then

−rUn+1
i+1 + (1 + 2r)Un+1

i − rUn+1
i−1 = Un

i (5.22)

The discrete Fourier transform of (5.22) is given by,

(−reiξ + (1 + 2r)− re−iξ)Ûn+1 = Ûn (5.23)

After simplification (5.23) reduce to

(1 + 4r sin2 ξ/2)Ûn+1 = Ûn (5.24)

and amplification factor corresponding to (5.24) is given by,

ρ(ξ) =
1

1 + 4r sin2 ξ/2
(5.25)
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The stability of the solution obtained by the diffusion operator satisfies that,

|ρ(ξ)| < 1 (5.26)

for any value of r > 0 for any positive scalar coefficient of the diffusion operator.

5.3. Stability Analysis of the Non-linear KdV Equation

In this section, we first give the numerical algorithms then present the Von Neu-

mann stability analysis for the nonlinear KdV equation by appling Lie-Trotter and Strang

splitting methods and give the stability conditions related to these methods.

In 1895, Korteweg and de Vries formulated the equation

Ut − 6UUx + Uxxx = 0 (5.27)

which models Russell’s observation.The term UUx describes the sharpening of the wave

and Uxxx the dispersion. Let xi = i∆x and tn = n∆t, i = 1, ...,M − 1 n = 0, ..., N

Respectively ∆x = 1
M

∆t = 1
N

are the regular spatial end time step sizes. The first

step towards solving (5.27) is to consider the fractional splitting method, which can be

expressed as follows:

ut = −uxxx , t ∈ [tn, tn + ∆t] , (5.28)

vt = 6uvx, t ∈ [tn, tn + ∆t] , v(tn) = u(tn + ∆t) . (5.29)

We substitute the solution of the equation (6.36) for u in (6.37),

We imply the semi-discretisation for (5.27) using the central difference approxi-

mation. The finite difference approximation of the operators (5.27) are given by,

(6u
∂u

∂x
− ∂3u

∂x3
)(xi,t) = 6u

1

2∆x
(ui+1(t)− ui−1(t))

− 1

2∆x3
(ui+2(t)− 2ui+1(t) + 2ui−1(t)− ui−2(t)) (5.30)
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We will take u as a constant in here, for i = 1, ..., N We obtain the following system of

the first order differential equation,

ut = Au (5.31)

vt = Bv (5.32)

where A and B are global matrices of coefficients resulting from he discretisation of

−uxxx and vx

A = − 1

2∆x3
[1 − 2 2 − 1] (5.33)

B = 6c
1

2∆x
[−1 0 1] (5.34)

We will obtain the following system of first order differential equation given by,

∂u∗

∂t
= (A + B)u∗ (5.35)

The exact solution of (5.35) satisfies the matrix exponential function of the matrices A

and B given by,

u∗(t + ∆t) = e∆t(A+B)u∗(t) (5.36)

where ∆t is the time step for the simulation of of the solution through [0, T ]

5.3.1. Algorithm 1 (First Order Splitting Method)

Over the time interval [tn, tn + ∆t]

• Step1:

u(tn + ∆t) = e∆tAu(tn) with u(tn) = u∗(tn) (5.37)
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• Step2:

v(tn + ∆t) = e∆tBv(tn) with v(tn) = u(tn + ∆t) (5.38)

• Step3:

u∗(tn + ∆t) = v(tn + ∆t) (5.39)

• Step4: If T < (n + 1)∆t go to Step1, otherwise stop.

The recurrence solution given by (5.37) and (5.38) will be estimated using the Pade’

approximation for e∆tA and e∆tB, respectively (Daoud, 2007)

e∆tA = (I −∆tA)−1 + O(∆t2) , (5.40)

e∆tB = (I −∆tB)−1 + O(∆t2),

which is locally second order approximation in time O(∆t2).Therefore,

e∆t(A+B) ' e∆tAe∆tB ' (I −∆tA)−1(I −∆tB)−1O(∆t2) ' (I −∆tA)−1 (5.41)

We could easily observe that

u(tn + ∆t) = e∆tAe∆tBu(tn) ' e∆t(A+B) (5.42)

The discrete presentation of (5.37) and (5.38) using (5.57) over each time interval [tn, tn+

∆t] are as follows

un+1
i − un

i

∆t
= − 1

2∆x3
(un+1

i+2 − 2un+1
i+1 + 2un+1

i−1 − un+1
i−2 ) , (5.43)

vn+1
i − vn

i

∆t
=

1

2∆x
(vn+1

i+1 − vn+1
i−1 )
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Let 6c∆t
2∆x

= R and ∆t
2∆x3 = r Rearranging the terms of (5.43) according to the time level,

then

run+1
i+2 − 2run+1

i+1 + 2run+1
i−1 − run+1

i−2 + un+1
i = un

i , (5.44)

−Rvn+1
i+1 + vn+1

i + Rvn+1
i−1 = vn

i

Next, we will investigate the stability analysis of Lie-Trotter splitting.

5.3.2. Stability Analysis of the Lie-Trotter Splitting

Theorem 5.1 For any ∆t and ∆x the First Order Splitting Method (Lie-Trotter Splitting)

is stable in `2 norm.

Proof For stability of the `2 norm we will consider the Von-Neumann stability analysis

and using the discrete Fourier transform. The discrete Fourier transform is given by

ûneiξ = rûn+1e(i+2)ξ − 2rûn+1e(i+1)ξ + 2rûn+1e(i−1)ξ (5.45)

+ rû(d)n+1e(i−2)ξ + û(d)n+1eiξ

v̂neiξ = −Rv̂n+1e(i+1)ξ + v̂n+1eiξ + Rv̂n+1e(i−1)ξ

rearanging the terms in (5.45) we get,

ûn = (re2iξ − 2reiξ + 2re−iξ − re−2iξ + 1)ûn+1 (5.46)

v̂n = (−Reiξ + 1 + Re−iξ)v̂n+1

After simplification (5.46) reduce to ,

(1 + 2irsinξ(cosξ − 1))ûn+1 = ûn (5.47)

(1 + 2iRsinξ)v̂n+1 = v̂n
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and the amplification factors corresponding to (5.47) are given by

ρB(ξ) =
1

(1 + 2iRsinξ)
ρA(ξ) =

1

(1 + 2irsinξ(cosξ − 1))
(5.48)

for stability of the solution corresponding to the convection operator it is easily observed

that

|ρB(ξ)| < 1 (5.49)

for any value of R.The stability of the solution of the diffusion operator satisfies

|ρA(ξ)| <
∣∣∣∣

1

(1 + 2irsinξ(cosξ − 1))

∣∣∣∣ < 1 (5.50)

for any r > 0. Since the solution of (5.27) is represented by the splitting operators,

operators are given by (5.59).Therefore the amplification factor corresponding to discrete

Fourier transform corresponding to the discretisation of (5.27) is given

ρ(ξ) = ρA(ξ)ρB(ξ) (5.51)

and

|ρ(ξ)| < |ρA(ξ)||ρB(ξ)| < 1 (5.52)

Therefore the solution of(5.27) using the first order splitting (Lie-Trotter) is uncondition-

ally stable for any positive scalar coefficient of the given operators. ¤

5.3.3. Algorithm 2 (Second Order Splitting Method)

Over the time interval [tn, tn + ∆t]
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• Step1

u(tn + ∆t/2) = e(∆t/2)Au(tn) with u(tn) = u∗(tn) (5.53)

• Step2

v(tn + ∆t) = e∆tBv(tn) with v(tn) = u(tn + ∆t/2) (5.54)

• Step3

w(tn + ∆t/2) = e(∆t/2)Aw(tn) with w(tn + ∆t/2) = v(tn + ∆t) (5.55)

• Step4

u∗(tn + ∆t) = w(d)(tn + ∆t) (5.56)

• Step5 If T < (n + 1)∆t go to Step1, otherwise stop.

We will be estimated using the Pade’ approximation for e∆t/2A and e∆tB, respectively

e(∆t/2)A = (I − (∆t/2)A)−1 + O(∆t2) (5.57)

e∆tB = (I −∆tB)−1 + O(∆t2),

Therefore,

e∆t(A+B) ' e(∆t/2)Ae∆tBe(∆t/2)A (5.58)

' (I − (∆t/2)A)−1(I −∆tB)−1(I − (∆t/2)A)−1O(∆t2)

' (I −∆t(A + B))−1
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From the above discussion we could easily observe that,

u(tn + ∆t) = e(∆t/2)Ae∆tBe(∆t/2)Au(tn) ' e∆t(A+B) (5.59)

The discrete presentation of the Algorithm 2 over the each time interval are as follows:

u
n+1/2
i − un

i

∆t
= − 1

2∆x3
(u

n+1/2
i+2 − 2u

n+1/2
i+1 + 2u

n+1/2
i−1 − u

n+1/2
i−2 ) (5.60)

vn+1
i − vn

i

∆t
=

1

2∆x
(vn+1

i−1 − vn+1
i+1 )

w
n+1/2
i − wn

i

∆t
= − 1

2∆x3
(w

n+1/2
i+2 − 2w

n+1/2
i+1 + 2w

n+1/2
i−1 − w

n+1/2
i−2 )

Let 6c ∆t
2∆x

= R and ∆t
2∆x3 = r Rearranging the terms of (5.43) according to the time level,

then

ru
n+1/2
i+2 − 2ru

n+1/2
i+1 + 2ru

n+1/2
i−1 − ru

n+1/2
i−2 + u

n+1/2
i = un

i (5.61)

−Rvn+1
i+1 + vn+1

i + Rvn+1
i−1 = vn

i

rw
n+1/2
i+2 − 2rw

n+1/2
i+1 + 2rw

n+1/2
i−1 − rw

n+1/2
i−2 + w

n+1/2
i = wn

i

Next we will investigate the stability analysis for Strang splitting.

5.3.4. Stability Analysis of the Strang Splitting

Theorem 5.2 For any ∆t and ∆x The Second Order Splitting Method (Strang Splitting)

is stable in `2 norm.

Proof For any ∆t and ∆x Strang Splitting is stable in `2 norm.We will consider the

Von Neuman stability analysis using the discrete Fourier transform.The discrete Fourier

transform (5.61)is given by

ûneiξ = rûn+1/2e(i+2)ξ − 2rûn+1/2e(i+1)ξ + 2rûn+1/2e(i−1)ξ (5.62)

+ rûn+1/2e(i−2)ξ + ûn+1/2eiξ
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v̂neiξ = −Rv̂n+1e(i+1)ξ + v̂n+1eiξ + Rv̂n+1e(i−1)ξ

ŵneiξ = rŵn+1/2e(i+2)ξ − 2rŵn+1/2e(i+1)ξ + 2rŵn+1/2e(i−1)ξ

+ rŵn+1/2e(i−2)ξ − ŵn+1/2eiξ

rearanging the terms in (5.62)we get,

ûn = (re2iξ − 2reiξ + 2re−iξ − re−2iξ + 1)v̂n+1/2 (5.63)

v̂n = (−Reiξ + 1 + Re−iξ)ûn+1

ŵn = (re2iξ − 2reiξ + 2re−iξ − re−2iξ + 1)ŵn+1/2

After simplification (5.63) reduce to ,

(1 + 2irsinξ(cosξ − 1))ûn+1/2 = ûn (5.64)

(1 + 2iRsinξ)ûn+1 = ûn

(1 + 2irsinξ(cosξ − 1))ŵn+1/2 = ŵn

and the amplification factors corresponding to (5.64) are given by

ρB(ξ) =
1

(1 + 2iRsinξ)
ρA/2(ξ) =

1

(1 + 2irsinξ(cosξ − 1))
(5.65)

for stability of the solution corresponding to the operator it is easily observed that

|ρB(ξ)| < 1 (5.66)

for any value of R.The stability of the solution of the diffusion operator satisfies

|ρA/2(ξ)| < | 1

1 + 2irsinξ(cosξ − 1)
| < 1 (5.67)

for any r > 0. Since the solution of (5.27) is represented by the splitting operators,

operators are given by (5.59).Therefore the amplification factor corresponding to discrete
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Fourier transform corresponding to the discretisation of (5.27) is given by

ρ(ξ) = ρA/2(ξ)ρB(ξ)ρA/2(ξ) (5.68)

and

|ρ(ξ)| < |ρA/2(ξ)||ρB(ξ)||ρA/2(ξ)| < 1 (5.69)

Therefore the solution of(5.27) using the second order splitting (Strang Splitting) is un-

conditionally stable for any positive scalar coefficient of the given operators. ¤

5.4. General Approach to Von-Neumann Stability Analysis for
Operator Splitting Methods

We will investigate the stability of the of the partial differential equations with

von Neumann approach. In the approach taken here, it is not necessary to specify a spatial

discretisation method. It suffices to know that there exist a spatial discretisation technique

that can be applied to the resultant system of equation. Let us consider the linear system

of equation,

(
∂u/∂t

∂v/∂t

)
=

(
L1(u)

L2(v)

)
(5.70)

where L1 and L2 are linear operators u = u(x, t) and v = v(x, t) Suppose that we have

a linear map resulting from the application of the 2nd order midpoint rule to the system

(5.70) over one time step such that,

(
u
′
(x)

v
′
(x)

)
=

(
L11 L12

L21 L22

)(
u0(x)

v0(x)

)
= A

′
(

u0(x)

v0(x)

)
(5.71)

where A
′ is a matrix of linear operators, u0(x) = u(x, t0), v0(x) = v(x, t0) are the

temporal initial conditions, and u
′
(x) and u

′
(x) are the approximations of u and v in
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function space at time t = t0 + τ . The stability criterion for the linear map we need

to check the eigenvalues of the matrix A
′ . The eigenvalues of the A

′ are solutions of

λ2−Tr(A′) + det(A′) = 0. Following the stability of the linear maps, if the roots λ1 and

λ2 of the equation are complex conjugates then,

λ =
Tr(A′)

2
± i

√
det(A′)−

(
Tr(A′)

2

)2

(5.72)

with | Tr(A′) |< 2
√

det(A′) and λ ≤ 1. In order to apply stability theory A′ must be

manipulated into a matrix of scalars. This is done by taking Fourier transforms of (6.1)

as would be done in a von-Neumann stability analysis (Regan, 2000). We will restrict

this discussion to linear operators that are either spatial derivatives of at least first order

or the identity multiplied by real or complex scalars. Given this restriction, applying a

continuous Fourier transform to (6.1) according to the formula,

û(w) =
1√
2π

∫

R

e−iwxu(x)dx (5.73)

we will yield,

(
û
′
(w)

v̂
′
(w)

)
=

(
z11(w) z12(w)

z21(w) z22(w)

)(
û0(w)

v̂0(w)

)
= A

(
û0(w)

v̂0(w)

)
(5.74)

where zij(w) are complex scalars involving the frequency w ∈ R.This gives stability

criteria in terms of the spectral variable w.

For Lie-Trotter splitting let take,

∂u(x, t)

∂t
= L1u

∂v(x, t)

∂t
= L2v (5.75)
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where L1 and L2 are linear bounded operators. After applying implicit euler method we

get,

(
u′(x)

v′(x)

)
=

(
(I − hL1)

−1 0

0 (I − hL2)
−1

)(
u0(x)

v0(x)

)
(5.76)

Applying a continuous Fourier transform to (5.76) according to formula (5.73) we will

yield,

(
û′(w)

û′(w)

)
=

(
A11(w) 0

0 A22(w)

)(
û0(w)

û0(w)

)
(5.77)

whereAij(w) are complex scalars involving the frequency w ∈ R. This gives stability

criteria in terms of the spectral variable w.

For Strang splitting we get,

∂u(x, t)

∂t
= L1u

∂v(x, t)

∂t
= L2v

∂w(x, t)

∂t
= L1w (5.78)

Application of the second order midpoint rule yields,




u′(x)

v′(x)

w′(x)


 =




I+
hL1
2

I−hL1
2

0 0

0
I+

hL2
2

I−hL2
2

0

0 0
I+

hL1
2

I−hL1
2







u0(x)

v0(x)

w0(x)


 (5.79)

Taking a Fourier transform of this gives,




û′(w)

v̂′(w)

ŵ′(w)


 =




A11(w) 0 0

0 A22(w) 0

0 0 A33(w)







û0(w)

v̂0(w)

ŵ0(w)


 (5.80)
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where Aij(w) are complex scalars involving w ∈ R. This gives the stability criteria in

terms of w.

5.4.1. Stability Analysis of the Lie-Trotter Splitting for Nonlinear
KdV Equation

Now in a continuous case we rewrite the equation (5.27) to unbounded operators

∂u(x, t)

∂t
= L1u

∂v(x, t)

∂t
= L2v (5.81)

where L1 = − ∂3

∂x3 and L2 = c∂x with c = u Application of the implicit euler method

yields,

(
u′(x)

v′(x)

)
=

(
1

I−hL1
0

0 1
I−hL2

) (
u0(x)

v0(x)

)
(5.82)

Taking a Fourier transform of this gives,

(
û′(x)

v̂′(x)

)
=

(
1

1−ihw3 0

0 1
1−ichw

)(
û0(x)

v̂0(x)

)
(5.83)

For stability it is easily seen that,

λ1 =

∣∣∣∣
1

1− ihw3

∣∣∣∣ < 1 and λ2 =

∣∣∣∣
1

1− ichw

∣∣∣∣ < 1 (5.84)

This is true for any choice of w, hence the method is unconditionally stable.

Next, we will apply the same idea for investigating the stability analysis of the

nonlinear KdV equation for Strang splitting method.
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5.4.2. Stability Analysis of the Strang Splitting for Nonlinear KdV
Equation

We have the equation (5.27). We split the equation into two parts and apply the

Strang splitting,

∂u(x, t)

∂t
= L1u

∂v(x, t)

∂t
= L2v

∂w(x, t)

∂t
= L1w (5.85)

where L1 = − ∂3

∂x3 and L2 = c∂x Application of the midpoint rule yields,




u′(x)

v′(x)

w′(x)


 =




I+
hL1
2

I−hL1
2

0 0

0
I+

hL2
2

I−hL2
2

0

0 0
I+

hL1
2

I−hL1
2







u0(x)

v0(x)

w0(x)


 (5.86)

Taking a Fourier transform of this gives,




û′(w)

v̂′(w)

ŵ′(w)


 =




1+ ihw3

2

1− ihw3

2

0 0

0
1+ ichw

2

1− ichw
2

0

0 0
1+ ihw3

2

1− ihw3

2







û0(w)

v̂0(w)

ŵ0(w)


 (5.87)

For stability we know that λi ≤ 1 , i = 1, 2, 3

λ1 =

∣∣∣∣∣
1 + ichw

2

1− ichw
2

∣∣∣∣∣ ≤ 1 and λ2,3 =

∣∣∣∣∣
1 + ihw3

2

1− ihw3

2

∣∣∣∣∣ ≤ 1 (5.88)

This is true for any choice of w, hence the method is unconditionally stable.
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CHAPTER 6

APPLICATIONS OF THE OPERATOR SPLITTING

METHODS

This chapter has three main parts. In the first part, traditional operator splitting

methods are compared with the proposed higher order methods. For this purpose we

solved numerically ODE and PDE problems. Next, we apply the traditional splitting

methods to the real life problem (Mathematical model for capillary formation in tumor

angiogenesis). Finally, we adapted the traditional operator splitting methods to the non-

linear KdV equation.

6.1. Applications of the Higher Order Operator Splitting Methods

In this section, we will apply the traditional and higher operator splitting meth-

ods to linear ODE problem and parabolic equation. We will compare the results of the

problems and see that we get higher accuracy by accelerating the initial conditions with

Zassenhaus products.

6.1.1. Application to Matrix Problem

We first deal with the following linear ordinary differential equation :

∂u(t)

∂t
=

(
0 1

1 0

)
u (6.1)

with the initial conditions u0 = (1,−1) on the interval [0, T]. The analytical solution is

given by :

u(t) =

(
e−t

et

)
(6.2)
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We split our linear operators into two operators by setting:

∂u(t)

∂t
=

(
2 −1

−1 0

)
u +

(
−2 2

2 0

)
u (6.3)

We then have the operators:

A =

(
2 −1

−1 0

)
B =

(
−2 2

2 0

)
(6.4)

For integration constants we use a step size of ∆t = 10−2. We apply the fourth order

Runge-Kutta method to our operator splitting schemes with respect to the one operator.

We compare the first component of the solution obtained from weighted and without

weighted operator splitting schemes with exact solution.

For Lie-Trotter splitting we compare, one term weight we mean with [A,B] 6= 0,

w1 = −1

2
[A,B]

two term weight we mean

w2 =
1

6
[A, [A,B]]− 1

3
[B, [B,A]]

For Strang splitting we compare the one term weight polynomial,

w1 =
1

24
[A, [A,B]]− 1

12
[B, [B,A]]

As a first experiment, Lie-Trotter splitting and fourth order Runge-Kutta method

is applied with different weight polynomials for ∆t = 0.01. Comparison of the exact

solution and the numerical solution of the problem is shown in Figure 6.1. Next, in

Figure 6.2 we compare the first component of the solution obtained by Strang splitting

with weight and without weighted polynomials for ∆t = 0.01 and fourth order Runge-

Kutta method.
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The comparison of errors measured by L∞ and L1 are given in the Table 6.1 and

Table 6.2. The errors used in our computations are calculated by the following equations,

errL∞ := max(max(|u(xi, t
n)− uanaly(xi, t

n)|)) (6.5)

errL1 :=
m∑

i=1

4x|u(xi, t
n)− uanaly(xi, t

n)| (6.6)

It can be seen clearly in these tables, the splitting error is reduced by applying

weighted polynomials.

Table 6.1. Comparison of errors for ∆t = 0.01.

errL∞ errL1

Lie Trotter Splitting Without w 0.1194 0.0060
With one w 0.0292 0.0014
With two w 0.0284 0.0013

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 
exact
without w
one term w
two w

Figure 6.1. Comparison of the solutions of matrix problem obtained by Lie-Trotter
splitting.
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Table 6.2. Comparison of errors for ∆t = 0.01.

errL∞ errL1

Strang Splitting Without w 0.0055 2.7104e-004
With one w 0.0051 2.3562e-004
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exact
without w
one term w

Figure 6.2. Comparison of the solutions of matrix problem obtained by Strang splitting.

6.1.2. Application to Parabolic Equation

We consider a parabolic equation in the following test problem as a next example

of higher order splitting method:

ut = Duxx, (6.7)

where (x, t) ∈ [0, 1] × [0, 1] , D = 0.5∗dx2

4√0.5
, with exact solution u(x, t) = sin(πx)e−Dπ2t

and initial conditions are taken from exact solution, boundary conditions are Dirichlet

boundary condition.
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We shall imply the fourth order difference approximation for uxx as

uxx
∼= 1

∆x2 [−1/12 4/3 − 5/2 4/3 − 1/12].

Therefore we obtain the first order differential equations given by

du

dt
= Au, (6.8)

where A is the global matrix coefficients given by the following stencil

A =
1

∆x2 [−1/12 4/3 − 5/2 4/3 − 1/12] = A1 + A2, (6.9)

and A1 = (Al + D), A2 = Au where Al is lower triangular matrix, D is Diagonal matrix,

Au is upper triangular matrix.

As a first experiment, Lie-Trotter splitting and implicit Euler method without

weight and midpoint rule with one term weight and two weight are applied with different

weight polynomials with ∆x = 0.1 and ∆t = 0.1. Comparison of the exact solution

and the numerical solution of the problem with different weight polynomials are shown

in Figure 6.3. Next, in Figure 6.4 we compare the numerical solution obtained by Strang

splitting with weight and without weighted polynomials with ∆x = 0.1 and ∆t = 0.1

and midpoint rule.

The comparison of errors measured by L∞ and L1 are given in the Table 6.3 and

Table 6.4. It can be is easily seen that we get the same result by using Lie-Trotter with

one weight, with Strang Splitting without weight.

Table 6.3. Comparison of errors for ∆x = 0.1 and ∆t = 0.1.

errL∞ errL1

Lie Trotter Splitting Without w 0.0376 0.0021
With one w 0.0082 2.1848e-004
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Figure 6.3. Comparison of the solutions of parabolic equation obtained by Lie-Trotter
splitting.
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Figure 6.4. Comparison of the solutions of matrix problem obtained by Strang splitting.
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Table 6.4. Comparison of errors for ∆x = 0.1 and ∆t = 0.1.

errL∞ errL1

Strang Splitting Without w 0.0100 4.1548e-004
With one w 0.0011 8.8875e-005

6.2. Mathematical Model for Capillary Formation in Tumor
Angiogenesis

The mathematical model for capillary formation in tumor angiogenesis is orig-

inally presented in (Levine et al., 2001). In this model, Levine et al introduces us the

following initial boundary value problem and this problem describes the endothelial cell

movement in capillary.

∂u

∂t
= D

∂

∂x
(u

∂

∂x
(ln

u

f(x)
)), x ∈ (0, 1), t ∈ (0, T ] (6.10)

Initial condition is given by

u(x, 0) = 1, x ∈ (0, 1), (6.11)

and boundary conditions are given by

Du
∂

∂x
(ln

u

f(x)
) |0 = 0, t ∈ [0, T ], (6.12)

Du
∂

∂x
(ln

u

f(x)
) |1 = 0, t ∈ [0, T ], (6.13)

where f(x) is the so-called transition probability function which has the effect of biasing

the random walk of endothelial cells and given by
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f(x) = (
a + A1x

k(1− x)k

b + A1xk(1− x)k
)α1(

c + 1− A2x
k(1− x)k

d + 1− A2xk(1− x)k
)α2 (6.14)

In this initial boundary value problem (6.10)-(6.13), u(x, t) is the concentration

of Endothelial Cells, D is the cell diffusion constant and a, b, c, d, A1, A2, k, α1, α2 are

some arbitrary constants.

Consider the Eq.(6.10), it can be written as

D
∂

∂x
(u

∂

∂x
(ln

u

f(x)
)) = D

∂

∂x
(u(

u′

u
− f ′(x)

f(x)
)) (6.15)

and by setting F (x) = f ′(x)
f(x)

we have the simplified form

ut = D(uxx − (uF (x))x). (6.16)

The initial condition is

u(x, 0) = 1, x ∈ (0, 1), (6.17)

and boundary conditions (6.12),(6.13) become

D(
∂u

∂x
− uF ) |0 = 0 for t > 0, (6.18)

D(
∂u

∂x
− uF ) |1 = 0 for t > 0, (6.19)

We split the equation

ut = D(uxx − uxF − Fxu) (6.20)
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into two parts as follows: Diffusion part is

ut = Duxx (6.21)

and advection-reaction part is

ut = −DuxF −DFxu. (6.22)

For initial condition we have

um = 1, 0 ≤ m ≤ N, (6.23)

and for boundary conditions (6.18), (6.19), we have

D(
∂u0

∂x
− u0F0) = 0, for t > 0, (6.24)

D(
∂uN

∂x
− uNFN) = 0, for t > 0 (6.25)

where m defines the spatial discretisation step and N is the spatial discretisation number.

The derivatives terms in Eqs. (6.24), (6.25) are approximated by using the the backward

and forward difference formulas. Next, the central difference approximation for each

derivative terms uxx and ux are taken into account as follows: Diffusion term at each grid

point (xm, t) becomes

∂2u

∂x2
|(xm,t)=

1

h2
(um+1(t)− 2um(t) + um−1(t)) (6.26)

and advection term at each grid point (xm, t) becomes

∂u

∂x
|(xm,t)=

1

2h
(um+1(t)− um−1(t)) (6.27)

where h is the spatial stepping and m = 0, 1, . . . , N .
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After assembling the unknowns of (6.26), for each m, and embedding the approxi-

mation of derivative terms in boundary conditions in (6.24), (6.25), we have the following

system of equations in matrix form as follows:

uxx = A1u (6.28)

where

A1 =
1

h2




−2 + (1− hF0) 1 0 . . . 0 0

1 −2 1 . . . 0 0
...

...
. . . . . .

... 0

0 0 0 . . . −2 1

0 0 0 . . . 1 −2 + (1 + hFN )




(6.29)

A1 is (N + 1)× (N + 1) matrix and by assembling the unknowns of (6.27), for each m,

we obtain the following system

ux = B1u (6.30)

where

B1 =
1

2h




−(1− hF0) 1 0 . . . 0 0

−1 0 1 . . . 0 0
...

... . . . . . .
... 0

0 0 0 . . . 0 1

0 0 0 . . . −1 (1 + hFN)




(6.31)

B1 is (N + 1)× (N + 1) matrix.

We fix the functions F (x) and F ′(x) at each discretisation points m = 0, 1, . . . , N
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and have

F (x
¯
) =




F (x0) 0 . . . 0

0 F (x1) . . . 0
...

... . . . ...

0 . . . 0 F (xN)




(6.32)

and

F ′(x
¯
) =




F ′(x0) 0 . . . 0

0 F ′(x1) . . . 0
...

... . . . ...

0 . . . 0 F ′(xN)




(6.33)

where we use central difference approximation for each F ′(xm).

We finally get,

ut = (A + B)u (6.34)

where A = DA1, B = −DF (x
¯
)B1 −DF ′(x

¯
).

For numerical computation we consider the problem (6.10)-(6.13) with parameters

D = 0.00025, a = 1, b = 2, c = 10, d = 0.1, α1 = α2 = 1, A1 = 28 × 107,

A2 = 0.22× 109 and k = 16. We write the computer program in matlab and present our

results on graphs which are taken at different times.

Numerical solution of the problem (6.10)-(6.13) by using Lie-Trotter splitting,

Strang splitting and Symmetrically weighted splitting are given in Figure 6.5, Figure 6.6

and Figure 6.7.Figures show similar trends as ones that obtained by method of lines (Pa-

muk & Erdem, 2007) and exponentially-fitted method (Erdoǧan et al., 2009).
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Figure 6.5. Numerical solution of the problem by using Lie-Trotter splitting method
for T = 750.

0 0.2 0.4 0.6 0.8 1
0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

Figure 6.6. Numerical solution of the problem by using Strang splitting method for
T = 750.
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Figure 6.7. Numerical solution of the problem by using Symmetrically weighted split-
ting method for T = 750.

6.3. Nonlinear KdV Equation

We consider the nonlinear KdV equation,

Ut − 6UUx + Uxxx = 0 (6.35)

which models Russell’s observation. The term UUx describes the sharpening of the wave

and Uxxx the dispersion. Let xi = i∆x and tn = n∆t, i = 1, ...,M − 1 n = 0, ..., N

Respectively ∆x = 1
M

∆t = 1
N

are the regular spatial end time step sizes. The first step

towards solving is to consider the fractional splitting method, which can be expressed as

follows:

ut = −uxxx, [tn, tn + ∆t], (6.36)

vt = 6uvx, [tn, tn + ∆t], v(tn) = u(tn + ∆t) (6.37)

We substitute the solution of the equation (6.36) for u in (6.37),
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We imply the semi-discretisation for (6.35) using the central difference approxi-

mation. The finite difference approximation of the operators (6.35) are given by,

ut = Au (6.38)

vt = Bv (6.39)

where A and B are global matrices of coefficients resulting from the discretisation of

−uxxx and vx

A = − 1

2∆x3
[1 − 2 2 − 1] (6.40)

B = 6ci
1

2∆x
[−1 0 1] (6.41)

where ci = ui

The one -soliton solution is given by

u(x, t) = − v

2 cosh2(1
2

√
v(x− vt))

(6.42)

and the parameter v is taken as v = 16.

For the first experiment, the one soliton solution of the KdV equation is obtained

by Strang splitting and Runge-Kutta method. We solved the problem in the region −8 ≤
x ≤ 8 with a grid size ∆x = 0.1 and ∆t = 0.1. The periodic boundary conditions are

chosen. The comparison of the exact solution and numerical solution of the KdV equation

at fixed t = 2 is shown in Figure 6.8.

Next, Lie-Trotter splitting and Runge-Kutta are also implemented to obtain one

soliton solution of the KdV equation. The comparison of errors measured by L∞ and L1

are given in the Table 6.5.

It can be seen clearly in this table, second order Strang splitting method can

achieve more accurate result than Lie-Trotter splitting method. The proposed algorithms

are efficient to find the approximated solution for the model problem, as we expected from

our stability analysis.
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Table 6.5. Comparison of errors for h = 0.1.

errL∞ errL1

Lie-Trotter Splitting 0.1707 0.0358
Strang Splitting 0.0954 0.0132
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space x
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x,
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Exact
Strang

Figure 6.8. Numerical solution of one-soliton for h=0.1 and fixed t=2. The dashed line
indicates the exact solution.
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Figure 6.9. Numerical solution of one-soliton case for h=0.1 and up to t=5.
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CHAPTER 7

CONCLUSION

In this thesis, we introduced the traditional operator splitting methods; Lie-Trotter

splitting, additive splitting, symmetrically weighted splititng, Strang splitting and higher

order splitting methods which are obtained by the Zassenhaus product formula. Con-

sistency analysis for linear bounded operators are studied by the means of Zassenhaus

product formula and for unbounded operators by C0-semigroup approach. We derived

the algorithms for the nonlinear KdV equation and studied the stability analysis for these

operator splitting methods. We reformulated to Von-Neumann stability analysis for Lie-

Trotter and Strang splitting. We extend the operator splitting methods to solve various

ODEs and PDEs.

Starting with the traditional and proposed operator splitting methods are applied

to matrix problem. For that problem we observed that, the splitting error reduced by

applying weighted polynomials. We get the same result by using Lie-Trotter splitting

with one weight, with Strang splitting without weight. So, proposed operator splitting

methods lead us advantage for the CPU times.

Next, we applied the operator splitting methods to real life problem (mathematical

model for capillary formation in tumor angiogenesis). The graphs in 6.5, 6.6 and 6.7

show similar trends as the ones that obtained by method of lines and exponentially fitted

method.

Finally, we adapted the traditional splitting methods to nonlinear KdV equation.

This adaptation leads us to use Von-Neumann stability analysis for the proposed methods.

We presented the errors obtained by Lie-Trotter and Strang splitting measured by L∞ and

L1 are given in the Table 6.5. Results give us proposed algorithms work and expected

order of the accuracy for the operator splitting methods are confirmed.
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APPENDIX A

MATLAB CODES FOR THE APPLICATIONS OF THE

OPERATOR SPLITTING METHODS

HIGHER ORDER AND TRADITIONAL OPERATOR SPLITTING

METHODS MATLAB CODE FOR MATRIX PROBLEM

%Lie-Trotter splitting for matrix problem

Nt=10; A=[2 -1 ; -1 0]; B=[-2 2; 2 0];

u11=zeros(2,Nt+1); u22=zeros(2,Nt+1); u33=zeros(2,Nt+1);

u11(:,1)=[1;-1]; u22(:,1)=[1;-1]; u33(:,1)=[1;-1];

uini1=[1;-1]; uini2=[1;-1]; uini3=[1;-1];

T=1;t0=0; dt=(T-t0)/Nt

C=(B*A-A*B); D=(B*C-C*B);

E=A*(A*B-B*A)-(A*B-B*A)*A;

W1=eye(size(B))-(1/2)*C*dtˆ2;

W2=eye(size(B))-(1/2)*C*dtˆ2+((1/6)*D-(1/3)*E)*dtˆ3;

t=t0:dt:T;

for i=1:(Nt+1)

ye(i)=exp(-t(i));

end

for s=2:Nt+1,

u1=runfour(A,uini1,dt);

v1=u1;

u1=runfour(B,v1,dt);

uini1=u1;

u11(:,s)=u1;

u2=runfour(A,uini2,dt);

v2=W1*u2;

u2=runfour(B,v2,dt);

uini2=u2;

u22(:,s)=u2;

u3=runfour(A,uini3,dt);

v3=W2*u3;
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u3=runfour(B,v3,dt);

uini3=u3;

u33(:,s)=u3;

end

u11(1,:); u22(1,:); u33(1,:)

plot(t,ye);hold on;plot(t,u11(1,:),’*-’);

hold on;plot(t,u22(1,:),’--’);

hold on;plot(t,u33(1,:),’o’);grid on;

legend(’exact’,’without w’,’one term w’,’two w’);

e1 = max(max(abs(ye-u11(1,:))))

e2=dtˆ2*sum(sum(abs(ye-u11(1,:))))

errweight1 = max(max(abs(ye-u22(1,:))))

errweight2=dtˆ2*sum(sum(abs(ye-u22(1,:))))

errweight11 = max(max(abs(ye-u33(1,:))))

errweight21=dtˆ2*sum(sum(abs(ye-u33(1,:))))

%Strang splitting for matrix problem

Nt=10;

A=[2 -1 ; -1 0];

B=[-2 2; 2 0];

u11=zeros(2,Nt+1); u22=zeros(2,Nt+1); u33=zeros(2,Nt+1);

u11(:,1)=[1;-1]; u22(:,1)=[1;-1]; u33(:,1)=[1;-1];

uini1=[1;-1]; uini2=[1;-1]; uini3=[1;-1];

T=1;t0=0; dt=(T-t0)/Nt

C=(B*A-A*B); D=(B*C-C*B);

E=A*(A*B-B*A)-(A*B-B*A)*A;

W1=eye(size(B))-((1/24)*D+(1/12)*E)*dtˆ3;

for i=1:(Nt+1)

ye(i)=exp(-t(i));

end

for s=2:Nt+1,

dtt=dt/2;

u1=runfour(A,uini1,dtt); v1=u1;

u1=runfour(B,v1,dt); v2=u1;

u1=runfour(A,v2,dtt); uini1=u1;

u11(:,s)=u1;

90



u2=runfour(A,uini2,dtt); p2=W1*u2;

u2=runfour(B,p2,dt); m2=u2;

u2=runfour(A,m2,dtt); uini2=u2;

u22(:,s)=u2;

u11(1,:); u22(1,:);

plot(t,ye);hold on;plot(t,u11(1,:),’*-’);

hold on;plot(t,u22(1,:),’--’);grid on;

legend(’exact’,’without w’,’one term w’);

function fun=runfour(A,x0,dt);

x=zeros(2,2);

x(:,1)=x0;

for i=2:2

k1=dt*fli(A,x(:,i-1));

k2=dt*fli(A,x(:,i-1)+k1/2);

k3=dt*fli(A,x(:,i-1)+k2/2);

k4=dt*fli(A,x(:,i-1)+k3);

x(:,i)= x(:,i-1)+(k1+2*k2+2*k3+k4)/6;

end fun=x(:,2);

HIGHER ORDER AND TRADITIONAL OPERATOR SPLITTING METHODS

MATLAB CODE FOR PARABOLIC PROBLEM

%%%%%% Lie-Trotter splitting for parabolic problem

xp=0;X=1;tp=0;T=1;N=10;Nt=10;

dx=1/N;dt=1/Nt;x=xp:dx:X;t=tp:dt:T;

D=(0.5*dxˆ2)/(0.5)ˆ(1/4);

k=dtˆ2;

%%%exact solution

for i=1:N

for j = 1:Nt+1

exact(i,j) = sin(pi*x(i))*exp(-D*piˆ(2)*t(j));

end end

%% initail conditon

for i = 1 : N+1

x0(i) = sin(pi*x(i))*exp(-D*piˆ(2)*t(1));

x01(i) = sin(pi*x(i))*exp(-D*piˆ(2)*t(1));

x02(i) = sin(pi*x(i))*exp(-D*piˆ(2)*t(1)); end
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x0=x0’

sin(pi*x(N))*exp(-D*piˆ(2)*t(1));

sin(pi*x(N))*exp(-D*piˆ(2)*t(2));

sin(pi*x(N))*exp(-D*piˆ(2)*t(3));

%% boundary conditons

for j = 1 : Nt+1

xbl(j) = 0; xbr(j) = 0; end

for i=1

for j = 1:Nt+1

exact(i,j) = 0; end end

%% definition of B 4th order% -1/12 4/3 -5/2 4/3 -1/12

n=N-2; B=toeplitz([-5/2 4/3 -1/12 0 zeros(1,n-1)],

[-5/2 4/3 -1/12 0 zeros(1,n-1)]);

full(B); B = D/(dxˆ2)*B;

B(1,1)=0; B(1,2)=0; B(1,3)=0;

B(N+1,N+1)=0;B(N+1,N)=0; B(N+1,N-1)=0;

full(B);

B1=zeros(N+1,Nt+1);

B2=zeros(N+1,Nt+1);

%%%%%%%%%% B1 %%%%%%%%%%%%

n=N-2; B1=toeplitz([-5/2 0 0 0 zeros(1,n-1)],

[-5/2 4/3 -1/12 0 zeros(1,n-1)]);

full(B1); B1 = D/(dxˆ2)*B1;

B1(1,1)=0; B1(1,2)=0; B1(1,3)=0;

B1(N+1,N+1)=0;B1(N+1,N)=0; B1(N+1,N-1)=0;

full(B1);

% %%%%%%%%%%%%%%%% B2 %%%%%%%%%%%%%%%%%

n=N-2; B2=toeplitz([0 4/3 -1/12 0 zeros(1,n-1)],

[0 0 0 0 zeros(1,n-1)]);

full(B2); B2 = D/(dxˆ2)*B2;

B2(1,1)=0; B2(1,2)=0; B2(1,3)=0;

B2(N+1,N+1)=0;B2(N+1,N)=0; B2(N+1,N-1)=0;

full(B2); M=B1+B2

C=(B2*B1-B1*B2)

D=(B2*C-C*B2);
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E=(B1*(B1*B2-B2*B1)-(B1*B2-B2*B1)*B1);

w1=eye(size(B2))-(1/2)*C*dtˆ2;

w2=eye(size(B2))-(1/2)*C*dtˆ2+((1/6)*D-(1/3)*E)*dtˆ3;

ni = [1,2,3]; for j = 1: length(ni)

ua= zeros(N+1,Nt+1,j); ua1=zeros(N+1,Nt+1,j);

ua2=zeros(N+1,Nt+1,j); end for i = 1: length(ni)

ua(:,1,i)= x0’; ua(1,:,i)= xbl(i);

ua(end,:,i)=xbr(i); ua1(:,1,i)= x0’;

ua1(1,:,i)= xbl(i); ua1(end,:,i)=xbr(i);

ua2(:,1,i)= x0’; ua2(1,:,i)= xbl(i);

ua2(end,:,i)=xbr(i); end m=1; v=2;

for a=1:Nt

erg(:,:,v) = NUM3p(B1,x0,dt,Nt,N,m,a);

v1=erg(:,a+1,v);

erg(:,:,v)=NUM3p(B2,v1,dt,Nt,N,m,a);

usp=erg(:,a+1,v);

x0=usp; ua(:,a+1,v)=usp;

erg1(:,:,v) = NUM3p(B1,x01,dt,Nt,N,v,a);

v11=w1*erg1(:,a+1,v);

erg1(:,:,v)=NUM3p(B2,v11,dt,Nt,N,v,a);

usp1=erg1(:,a+1,v);

x01=usp1; ua1(:,a+1,v)=usp1;

erg2(:,:,v) = NUM3p1(B1,x02,dt,Nt,N,v,a);

v12=w2*erg1(:,a+1,v);

erg2(:,:,v)=NUM3p1(B2,v12,dt,Nt,N,v,a);

usp2=erg2(:,a+1,v);

x02=usp2; ua2(:,a+1,v)=usp2; end

uaa=ua(:,:,v); uaa1=ua1(:,:,v); uaa2=ua1(:,:,v);

uaa(N+1,:)=0; uaa1(N+1,:)=0; uaa2(N+1,:)=0;

plot(x,exact(:,end));hold on; plot(x,uaa(:,end),’--’);

hold on; plot(x,uaa1(:,end),’-*’);

hold on;plot(x,uaa2(:,end),’o’);

legend(’exact’,’without w’,’one w’,’two w’,2);

function erg2 = NUM3p(C,x0,dt,Nt,N,k,a)

u1= zeros(N+1,Nt+1);
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u2= zeros(N+1,Nt+1); u3= zeros(N+1,Nt+1);

u1(:,a)= x0’; u2(:,a)= x0’; u3(:,a)= x0’;

b=a+1; if k==1 for i=b:b

u1(:,i)= (eye(size(C))-dt*C) \ (u1(:,i-1));

u(1,i)= xbb; end

erg2=u1; else if k==2 for ii=b:b

C1= (eye(size(C))-(dt/2)*C);

C2= (eye(size(C))+ (dt/2)*C);

u2(:,ii)= C1 \(C2*u2(:,ii-1)); u(1,i)= xbb;

end erg2=u2; else if k==3 for ij=b:b

u11= u3(:,ij-1); a1= feval(’runge’,C,u11);

a2=feval(’runge’,C,u11+(dt/2)*a1);

a3=feval(’runge’,C,u11+(dt/2)*a2);

a4=feval(’runge’,C,u11+dt*a3);

u3(:,ij)= u3(:,ij-1)+(dt/6)*(a1+2*a2+2*a3+a4);

u(1,i)= xbb; end erg2=u3;

end end end

%%%%%% Strang splitting for parabolic problem ”

C=(B1*B2-B2*B1);

D=(B2*C-C*B2);

E=(B1*(B2*B1-B1*B2)-(B2*B1-B1*B2)*B1);

w1=eye(size(B2))+(1/24)*D*dtˆ3-(1/12)*E*dtˆ3;

v=2; m=2; for a=1:Nt

dtt=dt/2;

erg(:,:,v) = NUM3p(B1,x0,dtt,Nt,N,m,a);

v1=erg(:,a+1,v);

erg(:,:,v)=NUM3p(B2,v1,dt,Nt,N,m,a);

v2=erg(:,a+1,v)

erg(:,:,v) = NUM3p(B1,v2,dtt,Nt,N,m,a);

usp=erg(:,a+1,v);

x0=usp;

ua(:,a+1,v)=usp;

end uaa=ua(:,:,v);

uaa1=ua1(:,:,v);exact(N+1,:)=0;

uaa(N+1,:)=0;uaa1(N+1,:)=0;
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plot(exact(:,end));hold on;

plot(uaa(:,end),’--’);hold on;

plot(uaa1(:,end),’-*’);

legend(’exact’,’without w’,’one w’,2);

e1 = max(max(abs(uaa(:,end)-exact(:,end))))

e2=dxˆ2*sum(sum(abs(uaa(:,end)-exact(:,end))))

errweight1 = max(max(abs(uaa1(:,end)-exact(:,end))))

errweight2=dxˆ2*sum(sum(abs(uaa1(:,end)-exact(:,end))))

OPERATOR SPLITTING METHODS MATLAB CODE FOR PARABOLIC

PROBLEM CAPILLARY FORMATION in TUMOR ANGIOGENESIS

%with Lie-Trotter splitting

N=64; M=50; x0=0; xl=1;

t0=0; T=500; dx=(xl-x0)/N;

dt=(T-t0)/M; D=0.00025;

r=D*dt/(dx)ˆ2;

r2=D*dt/2*dx;

x=x0:dx:xl+2*dx;

t=t0:dt:T;

% %%%%%%%% diffusion part matrix for u1’=D*A1*u1

n=N-2; A1=toeplitz([-2 1 0 0 zeros(1,n-1)],

[-2 1 0 0 zeros(1,n-1)]);

full(A1);

size(A1);

Aa=zeros(N+1);

Aa(1,1)=(1-(fu(x(2))-fu(x(1)))/fu(x(1)));

Aa(N+1,N+1)=(1+(fu(x(N+1))-fu(x(N)))/fu(x(N+1)));

A1=(A1+Aa);

A1=(1/((dx)ˆ2))*A1;

A=D*A1;

size(A);

% %%%%%%% convection part %%%%%%%

A2=toeplitz([0 -1 0 0 zeros(1,n-1)]

,[0 1 0 0 zeros(1,n-1)]);

full(A2);

Aa2=zeros(N+1);
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Aa2(1,1)=-(1-(fu(x(2))-fu(x(1)))/fu(x(1)));

Aa2(N+1,N+1)=(1+(fu(x(N+1))-fu(x(N)))/fu(x(N+1)));

A2=D*(1/(2*dx))*(A2+Aa2);

A2;

% % %%%%%% matrixes for F(xi) %%%%%%%%%

Ff=zeros(N+1);

for i=1:N+1,

Ff(i,i)=(fu(x(i+1))-fu(x(i)))/(dx*fu(x(i)));

end Ff; Ff=D*A2*Ff;

% %%%%% matrixes for F(xi)derivative %%%%%%%%%%

Ffd=zeros(N+1);

for i=1:N+1,

Ffd(i,i)=((fu(x(i+2))-2*fu(x(i+1))+

fu(x(i)))*fu(x(i))/(dxˆ2)-((fu(x(i+1))-

fu(x(i)))ˆ2)/(dxˆ2))/(fu(x(i)))ˆ2;

end Ffd=D*Ffd;

B=-(Ff+Ffd);

% % % % % %%%%%%% initial conditions %%%

for i = 1 : N+1 x0(i) =1;

end x0=x0’;

ni = [1,2,3];

for j = 1: length(ni)

ua= zeros(N+1,M+1,j);

end for i = 1: length(ni)

ua(:,1,i)= x0’;end

m=1;v=2;

for a=1:M

erg(:,:,v) = tum(A,x0,dt,M,N,m,a);

v1=erg(:,a+1,v);

erg(:,:,v)=tum(B,v1,dt,M,N,m,a);

usp=erg(:,a+1,v);

x0=usp;

ua(:,a+1,v)=usp;

end uaa=ua(:,:,v);

s=0:dx:xl;
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plot(s,uaa(:,end))

%% with Strang splitting

ni = [1,2,3];

for j = 1: length(ni)

ua= zeros(N+1,M+1,j);

end

for i = 1: length(ni)

ua(:,1,i)= x0’;

end m=1; v=2;

for a=1:M

dtt=dt/2;

erg(:,:,v) = tum(A,x0,dtt,M,N,m,a);

v1=erg(:,a+1,v);

erg(:,:,v)=tum(B,v1,dt,M,N,m,a);

v2=erg(:,a+1,v);

erg(:,:,v) = tum(A,v2,dtt,M,N,m,a);

usp=erg(:,a+1,v);

x0=usp;

ua(:,a+1,v)=usp;

uaa=ua(:,:,v);

s=0:dx:xl;

plot(s,uaa(:,end))

%with Symmetrically weighted splitting

ni = [1,2,3];

for j = 1: length(ni)

ua= zeros(N+1,M+1,j);

ua1= zeros(N+1,M+1,j);

end

for i = 1: length(ni)

ua(:,1,i)= x0’;

ua1(:,1,i)= x01’;

end m=1; v=2;

for a=1:M

erg(:,:,v) = tum(A,x0,dt,M,N,m,a);

v1=erg(:,a+1,v);
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erg(:,:,v)=tum(B,v1,dt,M,N,m,a);

usp=erg(:,a+1,v);

x0=usp;

ua(:,a+1,v)=usp;

erg2(:,:,v) = tum(B,x01,dt,M,N,m,a);

v2=erg(:,a+1,v);

erg2(:,:,v)=tum(A,v2,dt,M,N,m,a);

usp1=erg2(:,a+1,v)

x01=usp1;

ua1(:,a+1,v)=usp1;

end

uaa=ua(:,:,v);

uaa1=ua1(:,:,v);

uaaa=(uaa+uaa1)/2;

s=0:dx:xl;

plot(s,uaaa(:,end))

function erg2 = tum(C,x0,dt,M,N,k,a)

u1= zeros(N+1,M+1);

u2= zeros(N+1,M+1);

u3= zeros(N+1,M+1);

u1(:,a)= x0’;u2(:,a)= x0’;

u3(:,a)= x0’; b=a+1;

if k==1 for i=b:b

u1(:,i)= (eye(size(C))-dt*C)\(u1(:,i-1));

end erg2=u1;

else if k==2

for ii=b:b

C1= (eye(size(C))-(dt/2)*C);

C2= (eye(size(C))+ (dt/2)*C);

u2(:,ii)= C1 \(C2*u2(:,ii-1));

end erg2=u2;

else if k==3

for ij=b:b

u11= u3(:,ij-1);

a1= feval(’runge’,C,u11);
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a2=feval(’runge’,C,u11+(dt/2)*a1);

a3=feval(’runge’,C,u11+(dt/2)*a2);

a4=feval(’runge’,C,u11+dt*a3);

u3(:,ij)= u3(:,ij-1)+(dt/6)*(a1+2*a2+2*a3+a4);

end erg2=u3;

end end end

SPLITTING METHODS MATLAB CODE FOR NONLINEAR KdV

%%Soliton with Lie-Trotter

function solitona

h=0.1;

x=(-8+h:h:8)’;

m=length(x);

k=hˆ3;

n=2/k;

u=firstsol(x,16,0);

for i=1:n

a11=k*f1(u); a21=k*f1(u+a11/2);

a31=k*f1(u+a21/2); a41=k*f1(u+a31);

u=u+a11/6+a21/3+a31/3+a41/6;

a1=k*f2(u); a2=k*f2(u+a1/2);

a3=k*f2(u+a2/2); a4=k*f2(u+a3);

u=u+a1/6+a2/3+a3/3+a4/6;

end

plot(x,-u);

axis([-8,8,-2,12])

xlabel(’space x’)

ylabel(’u(x,2)’)

function dudt=f1(u)

u = [u(end-1:end); u; u(1:2)]; h=.1;

dudt = -(u(5:end)-2*u(4:end-1)+

2*u(2:end-3)-u(1:end-4))/2/hˆ3;

function dudt=f2(u)

u = [u(end-1:end); u; u(1:2)]; h=.1;

dudt = 6*(u(3:end-2)).*(u(4:end-1)

-u(2:end-3))/2/h;
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function u=firstsol(x,v,x0)

u=-v/2./cosh(.5*sqrt(v)*(x-x0)).ˆ2;

%%% Soliton wiith strang Splitting

function solitonst

a11=s*f1(u); a21=s*f1(u+a11/2);

a31=s*f1(u+a21/2); a41=s*f1(u+a31);

u=u+a11/6+a21/3+a31/3+a41/6;

a1=k*f2(u); a2=k*f2(u+a1/2);

a3=k*f2(u+a2/2); a4=k*f2(u+a3);

u=u+a1/6+a2/3+a3/3+a4/6;

a12=s*f1(u); a22=s*f1(u+a12/2);

a32=s*f1(u+a22/2); a42=s*f1(u+a32);

u=u+a12/6+a22/3+a32/3+a42/6;

end

plot(x,-u1); hold on;

plot(x,-u,’r’);

axis([-8,8,-2,12])

xlabel(’space x’)

ylabel(’u(x,2)’)
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