

MODELING AND VERIFICATION OF A STREAM

AUTHENTICATION PROTOCOL USING

COMMUNICATING SEQUENTIAL PROCESSES

A Thesis Submitted to

the Graduate School of Engineering and Sciences of

İzmir Institute of Technology

in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Engineering

by

Süleyman Murat ÖZKAN

August 2010

İZMİR

We approve the thesis of Süleyman Murat ÖZKAN

Prof. Dr. Sıtkı AYTAÇ

Supervisor

Assoc. Prof. Dr. Ahmet KOLTUKSUZ

Co-Supervisor

Assist. Prof. Dr. Ufuk ÇELİKKAN

Committee Member

Assist. Prof. Dr. Gökhan DALKILIÇ

Committee Member

Assist. Prof. Dr. Serap ATAY

Committee Member

26 August 2010

 _____________________________ _____________________________

 Prof. Dr. Sıtkı AYTAÇ Assoc. Prof. Dr. Talat YALÇIN

 Head of the Department of Dean of the Graduate School of

 Computer Engineering Engineering and Sciences

ACKNOWLEDGEMENTS

First, I owe my gratitude to my co-advisor Assoc. Prof. Dr. Ahmet Koltuksuz for

his guidance and patience.

I also would like to thank Prof. Dr. Sıtkı Aytaç for his support and

encouragement. Additionally, I would like to thank Asst. Prof. Dr. Serap Atay for her

invaluable support.

Furthermore, I would like to express my gratitude to (almost Dr.) Selma Tekir

and Mutlu Beyazit. This study would not have been possible without the wisdom,

guidance, friendship and humor. My roommate Gürcan Gerçek deserves my thanks too.

I also would like to thank to Dr. Wayne Trotman, for his help in correcting typos

and errors in this study.

Finally, I would like to thank my family most, for their never-ending support.

Especially, my fiancé and colleague Burcu Külahçıoğlu deserves my sincere thanks.

This study could never be finished without her support, encouragement and love.

iv

ABSTRACT

MODELING AND VERIFICATION OF A STREAM

AUTHENTICATION PROTOCOL USING COMMUNICATING

SEQUENTIAL PROCESSES

Although most systems used for computation are concurrent systems, classical

theories of computation are generally involved in sequential formalisms. Thus,

mathematical methods are developed for modeling and analyzing the behavior of

concurrent and reactive systems. One of these formal methods is Communicating

Sequential Processes (CSP), which is a process algebra proposed by Hoare in the 1970s.

Broad theory of CSP captures different properties of processes by using different

approaches within a unifying formalization.

Many security protocols are modeled with CSP and successfully verified using

model-checking or theorem proving techniques. Unlike other authentication protocols

modeled using CSP, each of the Efficient Multi-chained Stream Signature (EMSS)

protocol messages are linked to the previous messages, forming hash chains, which

introduce difficulties into the modeling and verification. In this thesis the EMSS stream

authentication protocol is modeled using CSP and its authentication properties are

verified using model checking, which in turn calls for building an infinite state model of

the protocol that is also successfully reduced into a finite state model.

v

ÖZET

HABERLEġEN SIRALI SÜREÇLER KULLANARAK BĠR AKIġ

KĠMLĠK DENETĠMĠ PROTOKOLÜNÜN MODELLENMESĠ VE

DOĞRULANMASI

Hesaplamada kullanılan sistemlerin çoğu eĢzamanlı sistemler olmasına rağmen,

klasik hesaplama kuramı genel olarak sıralı sistemler üzerinde durmaktadır. Bu nedenle,

eĢzamanlı ve birbiriyle iletiĢim içinde olan sistemlerin modellenmesi ve doğrulanması

için matematiksel yöntemler geliĢtirilmiĢtir. Bu yöntemlerden birisi olan HaberleĢen

Sıralı Süreçler (CSP), Hoare tarafından yetmiĢli yıllarda geliĢtirilen bir süreç cebiridir.

CSP’nin kapsamlı kuramı, süreçlerin değiĢik özelliklerini, değiĢik yaklaĢımları

kullanarak yakalamaya izin verir.

Birçok güvenlik protokolü CSP ile modellenmiĢ ve model denetimi veya kuram

ispatı teknikleri kullanılarak bu protokollerin doğruluğu gösterilmiĢtir. CSP ile

modellenmiĢ olan diğer kimlik denetimi protokollerinden farklı olarak, her bir Verimli

Çoklu-Zincirli AkıĢ Ġmzası (EMSS) protokol mesajı, modelleme ve doğrulamada zorluk

yaratacak Ģekilde, önceki mesajlara özet zincirleri ile bağlıdır. Bu tezde, EMSS akıĢ

kimlik denetimi protokolü CSP ile modellenmiĢ ve kimlik denetimi özellikleri, model

denetimi yöntemlerini kullanarak doğrulanmıĢtır.

vi

TABLE OF CONTENTS

LIST OF FIGURES ... ix

LIST OF TABLES .. x

CHAPTER 1. INTRODUCTION ... 1

CHAPTER 2. CONCURRENT SYSTEMS AND COMMUNICATING SEQUENTIAL

 PROCESSES ... 3

2.1. Concurrent Systems .. 3

2.1.1. Models of Concurrency .. 4

2.1.2. Formal Verification Techniques ... 4

2.2. Communicating Sequential Processes (CSP) 5

2.3. Events, Processes and Operations .. 5

2.4. Operational Semantics .. 7

2.5. Behaviors and Denotational Semantics .. 8

2.5.1. Traces (𝒯) Model .. 8

2.5.2. Stable Failures (ℱ) Model .. 9

2.5.3. Failures / Divergences (𝒩) Model ... 10

2.6. Refinement Relations ... 11

2.7. A Verification Tool for CSP: FDR ... 12

2.7.1. Refinement Checking ... 13

2.7.2. Compression Techniques .. 14

CHAPTER 3. MODELING AND VERIFICATION OF SECURITY PROTOCOLS

 USING CSP ... 15

3.1. Stream Authentication .. 15

3.2. The Generic CSP Protocol Model .. 16

3.2.1. Honest Agents ... 17

3.2.2. Intruder Model .. 17

3.2.3. Simplifications on Protocol Model ... 18

vii

3.3. Data Independence ... 19

3.4. Specification of Security Protocols .. 21

3.4.1. Using 𝑠𝑖𝑔𝑛𝑎𝑙 Events... 21

3.4.2. Authentication ... 21

CHAPTER 4. PROPOSED MODEL FOR THE PROTOCOL 23

4.1. The Efficient Multi-chained Stream Signature (EMSS) Protocol 23

4.2. Modeling Assumptions ... 25

4.3. Symbolic Data Types and Operations .. 25

4.3.1. Symbolic Data Types .. 26

4.3.2. Cryptographic Operations ... 27

4.4. Modeling the Hash Chain Mechanism using Fixed Hash Sizes 27

4.4.1. Using Fixed Hash Sizes .. 28

4.4.2. The Construction of 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕 Set ... 29

4.4.3. The 𝑕𝑎𝑠𝑕 function .. 31

4.4.4. Implementation Considerations .. 32

4.5. Infinite State CSP Model of the EMSS Protocol................................ 35

4.5.1. Sender Agent ... 35

4.5.2. Receiver Agent ... 36

4.5.3. Check Process ... 37

4.5.4. Intruder and the Network .. 39

4.5.5. Example Correct Run .. 42

4.6. Reduction of Infinite State Model to Finite Model 44

4.6.1. Analyzing the Infinite State CSP Model....................................... 44

4.6.2. Revisions on the Data Model .. 45

4.6.3. Bounding the Size of Hash Sets .. 46

4.6.4. Revisions on Agent Processes .. 47

4.6.5. Example Run using the Revised Model .. 49

4.7. Labeling the Sequence of Messages ... 50

CHAPTER 5. SPECIFICATION AND VERIFICATION OF THE PROPOSED

 PROTOCOL MODEL ... 51

5.1. Parameters and Configurations Used ... 51

viii

5.2. Specifications of the Proposed Model .. 52

5.2.1. Validation Specifications .. 53

5.2.2. Verification Specifications ... 54

5.3. Refinement Checking of the Proposed Model.................................... 55

CHAPTER 6. CONCLUSIONS ... 58

REFERENCES ... 60

APPENDIX A ... 66

ix

LIST OF FIGURES

Figure Page

Figure 3.1. Generic CSP Model Used for Verification of Security Protocols 16

Figure 4.1. The Hash Chains Between the Protocol Messages in EMSS 24

Figure 4.2. Each Message Must Use the Hashes of Preceding Messages 30

Figure 4.3. Actual Data Types Used in the Protocol Model ... 33

Figure 4.4. The PM Set Including the Signature Message ... 33

Figure 4.5. The Function that Computes the Cardinality of 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕 34

Figure 4.6. The 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕 Set of Size 3 ... 34

Figure 4.7. The Algorithm of 𝐶𝑕𝑒𝑐𝑘 Process ... 38

Figure 4.8. The Network Model Used for the Protocol .. 41

Figure 4.9. Correct and Incorrect Hash Values .. 46

Figure 5.1. The Debug Trace of the First Validation Property 56

Figure 5.2. The Debug Trace for Second Property, using 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟𝐹𝐶 56

file:///C:/Users/StorM/Desktop/murat_tez_r9_format.docx%23_Toc270369321

x

LIST OF TABLES

Table Page

Table 4.1. The Size of 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕 Set for Two Data Values. .. 44

Table 5.1. Results of Refinement Checks of Validation Properties 55

Table 5.2. Results of Refinement Checks for Verification Properties 57

1

CHAPTER 1

INTRODUCTION

Systems in the real world are composed of many interacting components, which

can, in turn, interact with other systems, constituting a system exhibiting more complex

behavior than their sub-components. Also, these systems run concurrently; that is,

events may occur simultaneously instead of sequentially.

Computational systems are good examples of these systems. For example, an

operating system can run multiple processes simultaneously which interact with each

other. Even though this is only an illusion, the interaction of the processes with each

other and the environment makes it a concurrent system, interacting and evolving in

parallel with each other.

 On the other hand, most classical theories of computation are involved in

sequential formalisms of computation, such as automata theory and Turing machines.

These formalisms consider computation as a transformation of input into output, while

interaction with environment (or other systems) is left unconsidered.

The deficiencies of sequential computing models led to the formation of

concurrent formalisms of computation, starting with the introduction of Petri nets (Petri

1962). Currently, there are different approaches for modeling concurrent systems based

on graph (e.g. Labeled Transition Systems), net (e.g. Petri Nets) and term (e.g. Process

algebras) structures, which have different levels of expressiveness. The specifications of

a model can be stated in the same formalism as the model itself or in a different

formalism, which are used to verify the correctness of the system (Glabbeek 2000).

Another aspect of concurrent systems is the dependence on the concept of time.

Concurrency theory models time in its formalisms in two different approaches. The first

aspect is the qualitative notion of time, which does not keep track of the actual units of

time elapsed between events, but the relative ordering of the events. The other models

use quantitative notion of time, in which the passage of time between two events can be

explicitly modeled.

2

Communicating Sequential Processes (CSP) is essentially a term based model.

The model of the system and the specifications are represented as CSP processes. Then,

the correctness of the system is determined by means of refinement relations.

The contribution of this study is to model the Efficient Multi-chained Stream

Signature (EMSS) protocol using CSP and verify its authentication properties using

model checking. The infinite state model of the EMSS protocol is built using fixed sized

hashes. This model is not suitable for verification by model checking; therefore it has

been reduced into a finite state model and verified using Failures - Divergences

Refinement (FDR) (Goldsmith 2005a) tool. This study uses model checking to verify

the security properties of EMSS protocol, which have previously been verified only

using theorem proving methods (ter Beek, et al. 2003, 2006, Perrig, et al. 2000).

In the second chapter, the theory of Communicating Sequential Processes and its

place in the concurrent computing models are introduced. The fundamental operators

and concepts of CSP and their role in the operational semantics of the language are

presented. Additionally, behavior of the processes is discussed within the denotational

semantics section. Finally, the concept of refinement is introduced and tool support for

CSP is evaluated.

The purpose of the third chapter is to introduce general concepts and techniques

used for modeling and verification of security protocols, as the protocol model of EMSS

constructed in this thesis modifies and uses these concepts.

In the fourth chapter, the EMSS protocol is introduced and CSP model of the

EMSS protocol is built. In order to do that, infinite state CSP model of the protocol is

first built and then reduced to a finite state model while retaining the properties of the

protocol.

The fifth chapter involves building the specification processes and performing

validation and verification of the model using refinement checking on the reduced

model. Additionally, the reduced model is evaluated using results of the check.

The last chapter states the conclusions and contributions of this study.

3

CHAPTER 2

CONCURRENT SYSTEMS AND COMMUNICATING

SEQUENTIAL PROCESSES

 In this chapter, the theory of Communicating Sequential Processes (CSP) and its

place in the concurrent computing models are introduced. The fundamental operators

and concepts of CSP and their role in the operational semantics of the language are

presented. Additionally, behavior of the processes is discussed within the denotational

semantics section. Finally, the concept of refinement is introduced and tool support for

CSP is evaluated.

2.1. Concurrent Systems

Computational systems are mostly composed of subcomponents which interact

with each other and form a more complex structure. Concurrency theory forms the

mathematical foundations for representing and analyzing these systems in a systematic

manner.

Concurrent systems share some common traits. First, concurrent systems have

interaction. Interaction might be implemented differently in different models, but in

general, it allows a system to communicate with another system.

The second trait is non-transformality. Transformal models are defined within

the classical theories of computation, in which the system is only an input – output

transformer, such as an automaton. However, concurrent systems interact with each

other, they tend to evolve with their environments and their outputs may not entirely

depend on the inputs. The final trait is unbounded execution. In sequential models, the

model need to stop, but concurrent systems do not have this restriction. (Bowman and

Gomez 2006).

4

2.1.1. Models of Concurrency

There are numerous models, which represent concurrent systems. These models

can be classified with respect to the kind of mathematical objects that are used to

represent processes (Winskel and Nielsen 1995).

In Graph oriented models (Keller 1976), a system is represented by a process

graph, or state-transition diagram. A variant is labelled transition systems, in which a

concurrent system is not denoted by a whole graph, but by a vertex in a graph. Another

class is net oriented models, in which a concurrent system is represented by a Petri net.

Event oriented models represents a concurrent system by a set of events (action

occurrences) together with some structure on this set, determining the relations between

the events (Mazurkiewicz 1988).

In term models, a system is represented as a term in a system description

language, such as Calculus of Communicating Systems (CCS) (Milner 1982) or CSP.

Using term models, a system can be denoted either by means of an expression (i.e.

term) in that language or semantically.

CSP is a term based model. In CSP, processes can be viewed in three different

aspects, each of which gives different meanings to processes (Roscoe 1998):

(i) Operational Semantics interprets CSP processes as transition diagrams

 and helps generating the state space of processes from process

 definitions.

(ii) Denotational Semantics interprets CSP processes in terms of the

 behaviors that the processes engage in. Different behaviors are

 represented as different models.

(iii) Algebraic Semantics involves in the algebraic relations between

 operators and defines process equivalences in terms of relations.

2.1.2. Formal Verification Techniques

After expressing the system using a model, verification results need to be

established on this model. To establish verification results on a model, the requirements

of the model should be formalized first.

5

Then, the model is verified using theorem-proving; which uses logical inference

rules in order to prove or disprove the specifications. Alternatively, the model can be

verified using model checking; which involves in building the state space of the system

and exhaustively checking all states against the specifications.

2.2. Communicating Sequential Processes (CSP)

CSP (Hoare 1978, Roscoe 1998, Schneider 1999, Davies 2006) is a process

algebra, designed specifically for the description of communication patterns of

concurrent system components that interact through message passing. The original

version of CSP is introduced in the seventies and further developed and refined to

modern form as process algebra (Brookes et al 1984, Hoare 1985) which is widely

influenced by Calculus of Communicating Systems (Milner 1982).

Machine readable CSP or 𝐶𝑆𝑃𝑀 (Scattergood 1998) is a functional language

with CSP constructs represented in ASCII form.

2.3. Events, Processes and Operations

In CSP, systems are modeled in terms of the events that they can perform.

Events are atomic and have no measurable duration. Also, the intervals of time between

events are not considered, only the relative ordering of events is important. Timed CSP

(Reed and Roscoe, 1998) is an extension to CSP, which introduces timing information

in processes, in order to model the passage of time.

A single event may contain various pieces of information, so events can have

structure. If 𝑀 and 𝑁 are two sets of messages, then 𝑀. 𝑁 will be the set of messages

{𝑚. 𝑛 | 𝑚 ∈ 𝑀 ∧ 𝑛 ∈ 𝑁}.

Events can be associated with channels, which model the point to point

communications between processes. A channel 𝑐 is said to be of type 𝑀 if any event

𝑐. 𝑚 ∈ Σ has that 𝑚 ∈ 𝑀.

Definition (Alphabet): The set of all possible events (Σ) forms the alphabet of

the process and denoted as Σ. An alphabet can be finite (𝛴∗) or infinite (Σω).

6

The 𝜏 event specifies an internal transition that cannot be observed from

environment.

Definition (Process): Processes are the components of systems, which are the

entities, described using CSP in terms of the possible events they may engage in.

The BNF form of a CSP process can be defined as:

 𝑃, 𝑄 ∷= 𝑆𝑇𝑂𝑃 𝑆𝐾𝐼𝑃 𝑎 → 𝑃 𝑃; 𝑄 𝑃 □ 𝑄 𝑃 ⊓ 𝑄 𝑎: 𝐴 → 𝑃 𝑎 |

 𝑃 △ 𝑄 | 𝑓 𝑃 𝑃 \ 𝐴 𝑃 ||𝐵𝐴 𝑄 | 𝑃 ||
𝐴

 𝑄 | ||𝐴𝑃
𝑃 | 𝑃 ||| 𝑄 | 𝜇 𝑋 ∙ 𝐹(𝑋)

The process 𝑆𝑇𝑂𝑃 is the process that can engage in no events at all; it is

equivalent to deadlock. 𝑆𝐾𝐼𝑃 denotes a process that does nothing but immediately

terminate.

 𝑎 → 𝑃 defines a process prefixed with an event using the prefix operator →. The

process will communicate the event 𝑎 and then behave as process 𝑃.

 𝑃; 𝑄 is the sequential composition operator, which handles the control over 𝑄

after 𝑃 has been successfully terminated.

The process 𝑃 □ 𝑄 (deterministic choice) and 𝑃 ⊓ 𝑄 (non-deterministic choice)

both can behave like 𝑃 or like 𝑄. The main difference is, in deterministic choice, the

environment decides on which process to run.

 𝑎: 𝐴 → 𝑃 𝑎 denotes a deterministic choice between the events of the set 𝐴

which may be finite or infinite. This notation allows representing the inputs from and

outputs to the channels. The input 𝑐? 𝑥 ∶ 𝐴 → 𝑃(𝑥) can accept any input 𝑥 of type 𝐴

along channel 𝑐, following which it behaves as 𝑃(𝑥). Its first event will be any event of

the form 𝑐. 𝑎 where 𝑎 ∈ 𝐴. The output 𝑐! 𝑣 → 𝑃 is initially able to perform only the

output of 𝑣 on channel 𝑐, then it behaves as 𝑃.

The interrupt process, 𝑃 △ 𝑄 defines a process which behaves as 𝑃 unless it

receives an interrupt event, which is the first event of process 𝑄. If this event is

received, the control is transferred to 𝑄 and process 𝑃 is discarded.

A relabeled process 𝑓 𝑃 has a similar control structure to 𝑃, however the

events are renamed depending on the function 𝑓. The hiding operator 𝑃 \ 𝐴 defines a

process similar to process 𝑃 but the environment will not see the events defined in the

set 𝐴. The hidden events will occur immediately, as the environment is not able to see

these events and synchronize with them.

7

Processes may also be composed in parallel. If 𝐴 is a set of events, then the

process 𝑃 ||
𝐴

 𝑄 behaves as 𝑃 and 𝑄 acting concurrently, with synchronizing on any

event in the synchronization set 𝐴. Events not in 𝐴 may be performed by either of the

processes independent of the other. If the alphabets of 𝑃 and 𝑄 are 𝐴 and 𝐵

respectively, then (provided 𝑃 and 𝑄 cannot communicate using an event outside their

alphabets) 𝑃 |𝐴 |𝐵 𝑄 = 𝑃 ||
𝐴 ∩ 𝐵

 𝑄. The indexed parallel operator ||𝐴𝑃
𝑃 defines a process

which is composed of 𝑃 processes with a set of respective interfaces 𝐴𝑃 . Interleaving

(i.e. the two components do not interact on any events) is achieved by synchronizing on

nothing so 𝑃 ||| 𝑄 = 𝑃 ||
∅

 𝑄 .

The recursion 𝜇 𝑋 ∙ 𝐹(𝑋) represents a process which behaves like 𝐹(𝑋) but with

every free occurrence of 𝑋 in 𝑃 (recursively) replaced by 𝜇 𝑋 ∙ 𝐹 𝑋 ; where the variable

𝑋 here usually appears freely within 𝐹(𝑋).

2.4. Operational Semantics

The operational semantics views CSP processes as transition systems and

provides a formal way of generating the transition systems of processes.

Definition (Labeled Transition System): A labeled transition system (LTS) is a

tuple (ℙ, →) where ℙ is set of nodes (states) , Σ,𝜏 = Σ ∪ { , 𝜏} is set of actions

(events) and → is a ternary relation such that →⊆ ℙ × Σ,𝜏 × ℙ.

A process 𝑃, with set of initial states 𝑃0, performs an event from Σ,𝜏 and

changes its node accordingly. Each node of the LTS represents the state of the process.

The LTS can be finite or infinite, depending on the set of states required to define the

process. It is generally assumed that each node is reachable from 𝑃0 (Roscoe 1998).

Firing rules are defined for each CSP operator to systematically generate the

state space of processes from process definitions. These firing rules form a logical

inference system as a whole. Model checkers use these firing rules to generate the state

space of a system (Goldsmith 2005b).

As the CSP processes can be viewed as LTSs, the similarity between LTS and

automata raises the question of the relation of CSP with automata. The expressiveness

of processes in CSP corresponds to partial automata; in which the transition function is

8

a partial function (Wolter 2002). Similarly, the expressiveness of Timed CSP is

equivalent to a subclass of Timed Automata (Alur and Dill 1994, Ouaknine and Worrel,

2002).

2.5. Behaviors and Denotational Semantics

Denotational semantics of CSP introduces behavioral models for capturing and

comparing the behavior of processes. Each model defines the observations to be made

on the processes and provides algebraic relations between these observations.

Different behaviors of the system are captured with different models, so they can

represent the same system in different levels of detail. What they have in common is

that each of them provides an abstract way of representing a process as a set of

behaviors it can have in one or more categories.

There are three widely used models in CSP, that represent the most commonly

used behaviors, namely Traces (𝒯), Stable Failures (ℱ) and Failures / Divergences (𝒩)

models. All three models are based on recording finite observations on processes.

It is also possible to define new behavioral models in CSP which make different

observations on processes (Bolton and Lowe 2004, Roscoe, et al. 2007, Roscoe 2008,

2009).

2.5.1. Traces (𝓣) Model

The sequence of all events that a process has communicated by some point in its

execution forms the trace of the process. A trace of a process may be finite or infinite,

but in this model, only finite traces are considered.

𝑡𝑟𝑎𝑐𝑒𝑠(𝑃) is the function that defines a process as the set of finite sequences of

visible events that it could perform, thus 𝑡𝑟𝑎𝑐𝑒𝑠(𝑃) ⊆ Σ∗.

 This function must satisfy the following pair of healthiness conditions to be in 𝒯

(traces model):

(T1) 〈〉 ∈ 𝑡𝑟𝑎𝑐𝑒𝑠(𝑃)

(T2) 𝑡𝑟 ^ 𝑡𝑟′ ∈ 𝑡𝑟𝑎𝑐𝑒𝑠 𝑃 ⇒ 𝑡𝑟 ∈ 𝑡𝑟𝑎𝑐𝑒𝑠 𝑃

9

The condition (T1) states that empty trace is a trace of process 𝑃. (T2) states that

the set 𝑡𝑟𝑎𝑐𝑒𝑠(𝑃) is prefix closed; meaning that any prefix of a trace is also a trace of 𝑃.

Note that ^ denotes the concatenation of two traces (Roscoe 1998).

The deadlocked process 𝑆𝑇𝑂𝑃 cannot perform any actions, so its trace only

contains the empty trace, that is 𝑡𝑟𝑎𝑐𝑒𝑠(𝑆𝑇𝑂𝑃) = { 〈〉 }. On the other hand, the process

𝑅𝑈𝑁Σ is the process that can perform every action in its alphabet Σ, that is 𝑅𝑈𝑁Σ =

𝑥: Σ → 𝑅𝑈𝑁Σ . Its traces contain all possible traces in the system: 𝑡𝑟𝑎𝑐𝑒𝑠 𝑅𝑈𝑁Σ = Σ∗.

 Traces model is used for general safety specifications of processes.

2.5.2. Stable Failures (𝓕) Model

 Stable failures model (ℱ) considers the set of events that a process cannot accept

as well as the trace information of a process. ℱ makes more identifications between

processes than 𝒯; thus ℱ is a finer model than 𝒯.

Definition (Refusal): A refusal is set of events that a process fails to accept

even if events are available to the process. 𝑟𝑒𝑓𝑢𝑠𝑎𝑙𝑠(𝑃) is the set of 𝑃’s initial refusals.

𝑟𝑒𝑓𝑢𝑠𝑎𝑙𝑠(𝑃/𝑡𝑟) is the set of 𝑃’s refusals after a trace of 𝑡𝑟, where 𝑟𝑒𝑓𝑢𝑠𝑎𝑙𝑠(𝑃) ⊆ ℙΣ.

(Note that ℙ represents the power set.)

Definition (Stable State): A process is said to be in a stable state, if the process

has no immediate internal actions (𝜏). If there are one or more 𝜏’s available, these

internal actions will be taken and the process gets into some other state; so only stable

states have refusal sets.

Definition (Failure): Each possible (𝑡𝑟, 𝑋) pair is a failure of the process

where 𝑡𝑟, 𝑋 ⊆ Σ∗ × ℙΣ. The function 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 𝑃 = 𝑡𝑟, 𝑋 𝑡𝑟 ∈ 𝑡𝑟𝑎𝑐𝑒𝑠 𝑃 ∧

𝑋 ∈ 𝑟𝑒𝑓𝑢𝑠𝑎𝑙𝑠(𝑃/𝑡𝑟) } forms the failure set of a process 𝑃. This function must satisfy

both (T1), (T2) (healthiness conditions for 𝒯) and these conditions:

(F1) 𝑡𝑟, 𝑋 ∈ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 𝑃 ⇒ 𝑡𝑟 ∈ 𝑡𝑟𝑎𝑐𝑒𝑠 𝑃

(F2) 𝑡𝑟, 𝑋 ∪ 𝑌 ∈ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 𝑃 ⇒ 𝑡𝑟, 𝑋 ∈ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 𝑃

(F3) 𝑡𝑟, 𝑌 ∈ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 𝑃 ∧ ∀𝑥 ∈ 𝑋 ∙ 𝑡𝑟 ^ 〈𝑥〉 ∉ 𝑡𝑟𝑎𝑐𝑒𝑠 𝑃 ⇒

 𝑡𝑟 , 𝑋 ∪ 𝑌 ∈ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 𝑃

The first condition (F1) provides consistency with the traces of the process, if 𝑡𝑟

is not a trace of 𝑃, then there shouldn’t be a failure pair for 𝑡𝑟. (F2) condition points out

10

that every refusal set of possible trace should be subset - closed. The final condition

(F3) states that events performed in a particular state can be added to the failures set of

the process.

2.5.3. Failures / Divergences (𝓝) Model

While ℱ can be useful for classifying deterministic and nondeterministic

processes, it has some shortcomings when there are processes which include infinite

number of internal actions.

Definition (Divergence): A process is said to be divergent if infinite,

consecutive sequence of internal actions (𝜏) occur. The set 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝑠(𝑃) is the set

of traces of 𝑃 (thus, 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝑠(𝑃) ⊆ Σ∗) after which the process diverges.

Definition (Deterministic Process): A process 𝑃 is a deterministic process if

𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝑠 𝑃 = and 𝑡𝑟^〈𝑎〉 ∈ 𝑡𝑟𝑎𝑐𝑒𝑠(𝑃) ⟹ (𝑡𝑟, 𝑎) ∉ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠(𝑃), that is; if

it does not diverge, it does not accept and refuse the same event.

The sets 𝑡𝑟𝑎𝑐𝑒𝑠(𝑃) and 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠(𝑃) must be extended to provide divergence

information:

(1) 𝑡𝑟𝑎𝑐𝑒𝑠⊥(𝑃) = 𝑡𝑟𝑎𝑐𝑒𝑠(𝑃) ∪ 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝑠(𝑃)

(2) 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠⊥(𝑃) = 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠(𝑃) ∪ {(𝑡𝑟, 𝑋) | 𝑡𝑟 ∈ 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝑠(𝑃)}

In (1), 𝑡𝑟𝑎𝑐𝑒𝑠(𝑃) is extended to contain the traces in which the process

diverges. (2) states that if a process diverges, then it refuses every event.

In 𝒩, a process 𝑃 can be described with pair (𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠⊥(𝑃), 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝑠(𝑃))

where 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠⊥ ⊆ (Σ∗ × ℙΣ∗) and 𝐷 ⊆ Σ∗. Also, several healthiness conditions

are defined for pairs to describe processes:

(F1) 𝑡𝑟𝑎𝑐𝑒𝑠⊥ 𝑃 = 𝑡𝑟 𝑡𝑟, 𝑋 ∈ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠(𝑃)} is non-empty and prefix

 closed.

(F2) 𝑡𝑟, 𝑋 ∈ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 𝑃 ∧ 𝑌 ⊆ 𝑋 ⟹ (𝑡𝑟, 𝑌) ∈ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 𝑃

(F3) 𝑡𝑟, 𝑋 ∈ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 𝑃 ∧ ∀𝑎 ∈ 𝑌 ∙ 𝑡𝑟^〈𝑎〉 ∉ 𝑡𝑟𝑎𝑐𝑒𝑠⊥ 𝑃 ⟹

 (𝑡𝑟, 𝑋 ∪ 𝑌) ∈ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 𝑃

(F4) 𝑡𝑟^〈 〉 ∈ 𝑡𝑟𝑎𝑐𝑒𝑠⊥ 𝑃 ⟹ (𝑡𝑟, Σ) ∈ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 𝑃

(D1) 𝑡𝑟 ∈ 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝑠 𝑃 ∩ Σ∗ ∧ 𝑎 ∈ Σ∗ ⟹ 𝑡𝑟^𝑎 ∈ 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝑠(𝑃)

(D2) 𝑡𝑟 ∈ 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝑠 𝑃 ⟹ (𝑡𝑟, 𝑋) ∈ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 𝑃

11

(D3) 𝑡𝑟^〈 〉 ∈ 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝑠 𝑃 ⟹ 𝑡𝑟 ∈ 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝑠 𝑃

 The condition (F2) states that if a process can refuse 𝑋, then it can refuse any

subset of it. (F3) condition points out that if a process refuses 𝑋 after 𝑡𝑟, then the same

state must refuse any events in set 𝑌, the set of events it cannot perform after 𝑡𝑟. (F4)

states that if a process terminates, then it refuses anything. The divergence condition,

(D1) is an extension closure property, stating that if 𝑡𝑟 is a divergence of 𝑃 then so

is 𝑡𝑟^𝑎. Condition (D2) states the process refuses any 𝑋 ⊆ ℙΣ∗ , because it only

performs the internal actions. The last condition, (D3) states the special case of

termination event.

Stable processes can be described with same observations in both models. In

other words, 𝒩 does not provide more observations than ℱ for stable processes (Roscoe

1998).

2.6. Refinement Relations

Assume that 𝑃 ⊓ 𝑅 can be used anywhere instead of 𝑅, where 𝑃 and 𝑅 are

processes. To satisfy this property, 𝑃 must exhibit all behavior that 𝑅 exhibits (i.e. every

behavior of 𝑃 should be a behavior of 𝑅), therefore it can be said that 𝑃 refines 𝑅. That

is, if 𝑃 ⊓ 𝑅 = 𝑅 then 𝑃 refines 𝑅, which is symbolized as 𝑅 ⊑ 𝑃.

Refinement relation is;

(i) reflexive; for any process 𝑃, 𝑃 ⊓ 𝑃 = 𝑃, therefore every process is a

refinement of itself

(ii) antisymmetric; for any processes 𝑃 and 𝑅, if 𝑃 ⊓ 𝑅 = 𝑅 and 𝑃 ⊓ 𝑅 = 𝑃 then

𝑃 = 𝑄. This forms the notion of equivalence between processes.

(iii) transitive; for any processes 𝑃,𝑅 and 𝑄, if 𝑅 ⊑ 𝑃 and 𝑃 ⊑ 𝑄, then 𝑅 ⊑ 𝑄.

As the behaviors of processes are defined by models; refinement relations can be

expressed in terms of the models. Let ℳ 𝑃 represent the set of all possible behaviors

of process 𝑃 in model ℳ. If process 𝑃 refines process 𝑅 in model ℳ, then the set of all

behaviors of R should include at least all behaviors of P. That is, if 𝑅 ⊑ℳ 𝑃, then

ℳ 𝑅 ⊇ ℳ 𝑃 . In general, more behavior a process has, less refined it is.

12

The refinement relation forms a partial ordering between processes. This also

means that, there are least refined processes and most refined processes. For example, in

𝒯 (traces model), 𝑆𝑇𝑂𝑃 is the most refined process, because for any 𝑃, 𝑡𝑟𝑎𝑐𝑒𝑠 𝑃 ⊇

𝑡𝑟𝑎𝑐𝑒𝑠 𝑆𝑇𝑂𝑃 . The least refined process is 𝑅𝑈𝑁Σ , therefore, for any process 𝑃,

𝑡𝑟𝑎𝑐𝑒𝑠(𝑅𝑈𝑁Σ) ⊇ 𝑡𝑟𝑎𝑐𝑒𝑠(𝑃).

It is straightforward to define the refinement relation for 𝒯, ℱ and 𝒩 models:

Definition (Traces Refinement): Let 𝑃, 𝑅 be two processes. 𝑅 ⊑𝒯 𝑃 (𝑃 is a

trace refinement of 𝑅) if and only if 𝑡𝑟𝑎𝑐𝑒𝑠 𝑅 ⊇ 𝑡𝑟𝑎𝑐𝑒𝑠 𝑃 .

Definition (Failures Refinement): Let 𝑃, 𝑅 be two processes. 𝑅 ⊑ℱ 𝑃 (𝑃 is a

failures refinement of 𝑅) if and only if 𝑡𝑟𝑎𝑐𝑒𝑠(𝑅) ⊇ 𝑡𝑟𝑎𝑐𝑒𝑠(𝑃) and 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠(𝑅) ⊇

𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠(𝑃). If 𝑅 ⊑ℱ 𝑃 for processes 𝑃 and 𝑅; then 𝑅 ⊑𝒯 𝑃 also holds.

Definition (Failures-Divergences Refinement): Let 𝑃, 𝑅 be two processes.

𝑅 ⊑𝒩 𝑃 (𝑃 is a failures - divergences refinement of 𝑅) if and only if 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠⊥(𝑅) ⊇

𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠⊥(𝑃) and 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝑠(𝑅) ⊇ 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝑠(𝑃).

Refinement checking involves using another CSP process as the specification

process, which identifies the correct behavior of a process. This approach is somewhat

similar to the concept of language inclusion, which is defined for finite state automata.

It is also possible to use other formalisms for expressing specifications, such as

Computational Tree Logic (CTL) (Emerson and Clarke 1982) and Linear Tree Logic

(LTL) (Pnueli 1977). However, it is proved that refinement checking is more expressive

than CTL (Leuschel et al. 2001).

In addition to refinement checking, it is possible to use individual properties 𝑅

and check if a process 𝑃 satisfies 𝑅; which is 𝑃 𝒔𝒂𝒕 𝑅 (Hoare 1985). The expressive

power of sat based specification and refinement relations is also comparable (Roscoe

2005).

2.7. A Verification Tool for CSP: FDR

Failures - Divergences Refinement (FDR) (Goldsmith 2005a) is a commercial

tool, designed to establish verification results for the concurrent and reactive systems

13

described in CSP. It calculates the state space of the given system and performs an

exhaustive search on this space, like the other model checking tools.

Generally, FDR obtains its results by comparing two descriptions: a

specification and an implementation; in order to determine if the latter is a refinement of

the former. If a check is successful, it means that the implementation is a reasonable

candidate for substitution into the role of the specification.

FDR generates LTS of processes according to operational semantics through a

process called compilation. However, a compilation process that treats all the processes

same is inefficient when checking big state spaces. Therefore, FDR uses a two-level

approach to calculating operational semantics: The low level is fully general but

relatively inefficient, whereas the high level is restricted (specifically, it cannot handle

recursion) but much more efficient in terms of space and time.

The most recent version of FDR used in this study is FDR 2.83 which is released

on July 23, 2007. FDR can check for refinement in Traces, Stable Failures and Failures

– Divergences models and in several non-standard models (Bolton and Lowe 2003,

Goldsmith 2005a).

2.7.1. Refinement Checking

The refinement checking mechanism in FDR depends on the theory of fixed

point induction (Tarski 1955, Roscoe 1998).

Suppose a check in which whether an implementation process 𝐼𝑚𝑝𝑙 refines the

specification process 𝑆𝑝𝑒𝑐 with respect to model 𝒩, that is 𝐼𝑚𝑝𝑙 ⊒𝒩 𝑆𝑝𝑒𝑐. Let all the

states for 𝑆𝑝𝑒𝑐 and 𝐼𝑚𝑝𝑙 be 𝑆 and 𝐼, respectively. Before the refinement check, FDR

normalizes specification process 𝑆𝑝𝑒𝑐.

After normalization, a process pair must satisfy these conditions if failures-

divergences refinement holds:

(1) ∀𝑎 ∙ (𝐼
𝑎
→) ⟹ (𝑆

𝑎
→)

(2) ∀𝑋 ∙ 𝐼 𝑟𝑒𝑓𝑢𝑠𝑒𝑠 𝑋 ⟹ 𝑆 𝑟𝑒𝑓𝑢𝑠𝑒𝑠 𝑋

(3) 𝐼 ↑⟹ 𝑆 ↑

The condition (1) states that if an event is possible from implementation state 𝐼,

then it must be available for specification state 𝑆. Condition (2) states that any refusal of

14

𝐼 should be available for 𝑆. Since the subset of a refusal is also a refusal, only maximal

refusals are checked. Finally (3) states that 𝐼 should diverge only if 𝑆 do. (Goldsmith

2005a).

If a pair is correct, then all pairs should be checked, that are reachable from

current state. The refinement holds if it holds for every pair in the state space. Hence,

refinement checking is only applicable to finite state processes.

2.7.2. Compression Techniques

Similar to other model checkers, FDR also suffers from the state space explosion

problem. Some compression techniques are used to decrease the number of states that

should be checked. Compression involves converting a state machine into an equivalent

but a more efficient state machine, by application of several techniques (Roscoe, et al.

1995, Clarke et al. 1999, Goldsmith 2005a).

These compression techniques are available to all processes because they are

applied to the generated LTS by the operational semantics. However the gain provided

by these techniques is generally dependent on the structure of the process. Unsuitable

compression techniques are known to increase the state space of some processes

(Roscoe 1998).

15

CHAPTER 3

MODELING AND VERIFICATION OF SECURITY

PROTOCOLS USING CSP

The purpose of this chapter is to introduce the general concepts and techniques

used for modeling and verification of security protocols. In this study, these concepts

are heavily used in the modeling of the protocol and verification of the protocol model.

 Security protocols (cryptographic protocol) define a sequence of messages

between two or more participants. They aim to reach a goal (e.g. authentication between

principals, secrecy of a message, etc…) using cryptographic mechanisms such as

encryption, decryption and hashing; even if the underlying medium is insecure.

3.1. Stream Authentication

Some applications require a stream of data be transported between agents on a

network, often with smaller packets, where the data in each packet is related with the

previous and the next packets. This is often the case in real-time stock exchange, audio /

video transmission protocols or sensor networks where the data is generated in real time

and needs to be transported in a timely manner (Gennaro and Rohatgi 1997, Anderson,

et al. 1998, Canetti, et al. 1999). Thus, these applications have different requirements,

such as reliability, group management and locus of control (Obraczka 1998).

In addition to these issues, authenticating and signing the stream is fairly

different from standard authentication schemes such as Needham – Schroeder Protocol

(Needham and Schroeder, 1978) or Yahalom Protocol (Burrows, et al. 1990). These

schemes provide authentication between one sender and one responder; which agree on

a shared secret key. However, streaming protocols may use many responders while

sender is single. So, these schemes are not suitable for streaming applications where the

sender must authenticate it to multiple receivers.

Stream authentication protocols are generally verified using theorem proving

techniques, due to their infinite state space. However, Timed Efficient Stream Loss-

16

tolerant Authentication Protocol (TESLA) (Perrig, et al. 2000) has been modeled using

CSP and verified using model checking (Broadfoot and Lowe 2002), which used data

independence techniques (Lazic 1998, Roscoe and Broadfoot 1999, Roscoe, et al 2000).

3.2. The Generic CSP Protocol Model

 Each participant is modeled as CSP processes and a network between these

processes is constructed. Security properties of the model are then analyzed with respect

to the specifications of the protocol using refinement relations (Ryan et al. 2001).

 CSP model of a protocol represents a finite subset of the real protocol, which

supposedly includes infinite number of states, to be analyzed by model checking. The

network is modeled as a CSP process which is the parallel composition of honest

agents, other protocol participants and attacker. The network process provides an

abstraction of the real network. Communication between the processes is provided by

CSP channels which are labeled with sender and receiver fields. Honest agents use these

channels to receive and send the protocol messages. The structure of a generic CSP

network model is given in Figure 3.1.

Initiator Responder

Server

Attacker

Only used if the

protocol needs a server.

(3-Party Protocols)

Logical communication channels

Actual channels

Figure 3.1. Generic CSP Model Used for Verification of Security Protocols

17

This model can also be modified to satisfy different requirements. For example,

more processes can be added to represent agents with different roles or agent processes

can contain two or more internal processes (Dilloway and Lowe 2007).

3.2.1. Honest Agents

Honest agents are trustworthy processes that aim to reach the protocol goal,

despite the interventions of the un-trusted network. An agent can either act as an

initiator or responder of the protocol and might be parameterized by its identity.

When acting as an initiator, initiating agent chooses an agent to communicate

with and then communicates messages of the protocol in turn. The responding process

communicates the protocol messages as defined in the protocol description. When the

run is complete, agents enter a state in which they are in a session with each other.

In addition to the protocol messages, agents may also engage in signal events.

These events represent the state of protocol run and they are sent using different

channels such that attacker is not able to interfere with them. Hence, a general view of

protocol run can be obtained and this information might be used to build specification

processes (Shaikh et al. 2009).

3.2.2. Intruder Model

The network is responsible for the transmission of messages and cannot be

trusted, since the messages can be lost, reordered or changed during transmission. Also;

the network may contain some malicious parties that may acquire sensitive information

and even forge their own messages.

In this model, the intruder is modeled as the network. Capabilities of the intruder

are:

 Deliver Messages:

This is basically transmitting the message to intended recipient without any

alteration.

 Overhear Messages:

18

Intruder may access the contents of transmitted messages. On overhearing, it

may add overheard message to its knowledge base. The message will still be

delivered to intended recipient, without alteration.

 Block (Intercept) Messages:

The message will not be delivered to recipient in this case.

 Forge (Fake) Messages:

Intruder may create messages by applying some operations (deductions) to

messages in its knowledge base. Also; it may send previous messages, which is

known as replay or redirection.

This view of network is known as Dolev - Yao Model (Dolev and Yao 1981) in

which a strong intruder that forms the untrusted medium. In this model, the intruder can

even perform cryptographic attacks on encrypted messages.

However the protocol must be checked for correctness, not underlying

cryptographic operations. Hence the capabilities of intruder are limited by perfect –

cryptology assumptions.

First, the contents of encrypted messages cannot be viewed, if the process

cannot supply the proper decryption key. Additionally, keys cannot be deduced from

encrypted messages by guessing or applying cryptanalysis.

This view of network is known as Dolev - Yao Model with perfect-cryptology. If

the protocol is checked to be correct despite the presence of a strong intruder; it should

also be correct for networks with weaker intruders (Roscoe 1995a).

On the other hand; using weaker channels than Dolev - Yao is also possible. In

the case of empirical channels (i.e. Channels on which the data is transferred using

sight, hearing, etc…), when sight is used as a channel; the channel cannot be spoofed

and is authentic, but confidentiality cannot be assured (Nguyen and Roscoe 2008).

3.2.3. Simplifications on Protocol Model

The complexity of protocols makes analysis much more difficult. When

analyzing a complex protocol using model checking, state space explosion problem

occurs.

The idea is to apply as many safe simplifying transformations as possible, trying

to avoid introducing new attacks, and then to analyze the simplified protocol. If the

19

simplified protocol is secure, then so is the original; if the attack discloses an attack up

on the simplified protocol, then it must be considered that whether there is a

corresponding attack on the original protocol. If there is such an attack, then clearly the

original protocol is flawed; otherwise, it means that the whole scheme has been

oversimplified. (Hui and Lowe 1999, 2001).

Examples of such transformations include removing encryptions, hash functions

and some atomic or hashed fields, renaming atomic fields and removing fields from the

bodies of encryptions (Hui and Lowe 1999, 2001).

3.3. Data Independence

A process can be parameterized if its behavior is dependent on parameters

𝑝1, 𝑝2, … , 𝑝𝑛 with respective types 𝑇1, 𝑇2, … , 𝑇𝑁. Each different value bound to

parameters will build a different instance of the process. Parameterized processes need

to be instantiated using values of appropriate type, in order to be verified using a model

checker. Hence, the result of verification is actually meaningful for one instance of

system, not for all values of parameterized type.

Definition (Parameterized Verification Problem): The problem of verifying whether a

parameterized system satisfies correctness conditions for all parameter values is known

as Parameterized Verification Problem (Lazic 1998).

 Although the Parameterized Verification Problem is undecidable (Krzysztof and

Kozen, 1986) there are some subclasses of problems, on which this problem becomes

decidable. The data independence techniques focus on identifying such processes.

Definition (Data Independence): A parameterized system 𝑃 is data-independent with

respect to a data type 𝑇 if and only if the operations performed in the system are

restricted to:

(i) Input,

(ii) Store and copy within its variables (i.e. polymorphic operations such as

tupling),

(iii) Performing equality tests between them (but not ordering),

(iv) Output.

20

The system must not perform operations on 𝑇 which can constrain its type, such

as computing the size of 𝑇, apply ordering operations between members of 𝑇, using

constants of type 𝑇, etc…. Also, the control flow of program must not depend on the

parameterized values of type 𝑇 (Lazic 1998).

Definition (Weak Data Independence): A parameterized system 𝑃 is weakly data-

independent if either;

(i) Values from 𝑇 can affect the control flow of 𝑃 by equality tests, or,

(ii) It has formal operations from any type to 𝑇.

The idea is to verify a data-independent program with respect to type 𝑇 using the

minimum sized set of 𝑇; and the result of verification would hold for all finite or infinite

sized type 𝑇. This minimum size is actually a threshold value; after which the program

behavior won’t change.

Let 𝑆𝑝𝑒𝑐(𝑇) and 𝐼𝑚𝑝𝑙(𝑇) be data independent processes with respect to type 𝑇;

representing respectively specification and implementation processes. It is needed to

determine the threshold values to check for refinement between 𝑆𝑝𝑒𝑐(𝑇) and 𝐼𝑚𝑝𝑙(𝑇)

and determinism check of process 𝐼𝑚𝑝𝑙(𝑇).

Definition (𝑵𝒐𝑬𝒒𝑻𝑻 Condition): A data independent process 𝑃 satisfies 𝑁𝑜𝐸𝑞𝑇𝑇

condition if it contains no explicit or implicit equality tests between the members of

type 𝑇.

If 𝑆𝑝𝑒𝑐 process only knows that an arbitrary member of 𝑇 is communicated but

not interested in which member is; a set of size 1 can be used. Otherwise, if the 𝑆𝑝𝑒𝑐

process is interested in each value is output in right place, a set of size 2 can be used.

For the general case; it is assumed that the data independent processes may have

equality tests between members of type 𝑇 and control flow of process may be affected

with these tests. Hence, the 𝑁𝑜𝐸𝑞𝑇𝑇 condition might not be satisfied by these processes.

If 𝑆𝑝𝑒𝑐(𝑇) and 𝐼𝑚𝑝𝑙(𝑇) are data independent processes with respect to type 𝑇

and they do not satisfy 𝑁𝑜𝐸𝑞𝑇𝑇 condition; thresholds can be computed by determining

some constants. These constants need to have a finite value to calculate a usable

threshold value; else the process does not have a finite threshold. (Lazic 1998).

21

3.4. Specification of Security Protocols

This section is devoted to the construction of specification processes for security

protocols. There are different methods for specifying secrecy, authentication and non

repudiation properties of protocols, however only authentication properties are

introduced (Roscoe 1996, 1998, Schneider 1996, 1997, Lowe 1997a).

3.4.1. Using 𝒔𝒊𝒈𝒏𝒂𝒍 Events

It is necessary to capture the state of honest agents during the protocol run in

order to build the specifications of the system. Signal events are used to determine this

information. Signal events use channels that are not accessible by the intruder. When an

agent reaches a certain stage of execution in a run, these events are performed. Then the

system’s behavior can be captured by hiding other events other than these signal events

(Shaikh, et al. 2009).

The channel 𝑠𝑖𝑔𝑛𝑎𝑙 is used to capture the states of execution of agents. An

event in the form of 𝑠𝑖𝑔𝑛𝑎𝑙. 𝑅𝑢𝑛𝑛𝑖𝑛𝑔. 𝑟𝑜𝑙𝑒. 𝐴. 𝐵. 𝑑1. 𝑑2 represents that agent 𝐴, thinks

it is running the protocol as 𝑟𝑜𝑙𝑒 with 𝐵, agreeing on data items 𝑑1 and 𝑑2. This event is

performed before the last message that 𝐴 sends.

An event in the form of s𝑖𝑔𝑛𝑎𝑙. 𝐶𝑜𝑚𝑚𝑖𝑡. 𝑟𝑜𝑙𝑒. 𝐴. 𝐵. 𝑑1. 𝑑2 represents that agent

𝐴 thinks that it has succeeded in protocol run where it performed as 𝑟𝑜𝑙𝑒 with 𝐵,

agreeing on data items 𝑑1 and 𝑑2. This event is performed after 𝐴’s last event in the run.

3.4.2. Authentication

Authentication is concerned with the verification of an entity's claimed identity.

An authentication protocol provides an agent 𝐴 with a mechanism to ensure that the

other party 𝐵 has also been involved in the protocol run. However, there is no consensus

on the exact meaning of authentication. Therefore, four possible specific meanings of

the term are introduced and evaluated (Lowe 1997a).

22

The first definition is the strongest definition; agreement, where the protocol

agents are required to agree on a mutual set of data items. Also a protocol run of

initiator must be matched by a unique run on the responding side of the protocol.

A weaker definition is non-injective agreement, where the agents are required to

agree on a mutual set of data items, as in agreement, but a run of the protocol might not

be matched by a unique run on responding side. A protocol which satisfies agreement

specifications also satisfies non-injective agreement specifications.

Weak agreement specifications provide weaker specifications than non-injective

agreement. This definition of authentication allows agent 𝐵 to assume any protocol role

in its run. Therefore, agent A does not have a guarantee about the role of responding

agents or values of data items. Additionally, two agents do not need to agree on a

mutual set of data items.

The weakest definition is aliveness. In this definition, a run of agent 𝐵 may not

be recent. In other words, this specification allows checking that agent 𝐵 has completed

the protocol run before agent 𝐴. Also agent 𝐵 may not believe that it was running the

protocol with agent 𝐴.

23

CHAPTER 4

PROPOSED MODEL FOR THE PROTOCOL

In this chapter, the EMSS protocol is introduced and evaluated under CSP for

verification. First, infinite state CSP model of the protocol is built, which is then

reduced into a finite state model using some observations and assumptions while

retaining the properties of the protocol. This model is represented as a CSP process that

describes the behavior of the protocol.

4.1. The Efficient Multi-chained Stream Signature (EMSS) Protocol

The Efficient Multi-chained Stream Signature (EMSS) protocol (Perrig, et al.

2000) aims to provide the authentication of sender to receivers, which is based on

signing a small number of special messages in a data stream. Each packet is linked to a

signed message via multiple hash chains.

Hash chains are formed by appending the hash of each message to a number of

subsequent messages.

The main features of this scheme are; the amortization of the cost of signature

operation over multiple packets, resistance to packet loss, low message overhead and

non repudiation of the sender to the transmitted data (Perrig, et al. 2000).

The hash chains are formed by appending the hashes of a number of previous

messages to current message 𝑃𝑖 . Periodically, a signature message 𝑃𝑠𝑖𝑔𝑛 is sent, which

contains the hashes of previous messages in a signature. Receiver then decrypts the

signature message and obtains the signed hashes of previous messages. The chained

hashing relation between the messages is illustrated in Figure 4.1.

There should be a path from a message to the signed message to authenticate the

message. To authenticate message 𝑃𝑖 , then the existence of messages 𝑃𝑖+1 or 𝑃𝑖+2 is

sufficient. If both of these messages are lost, then there’s no path to 𝑃𝑖 from the

signature message and all 𝑃𝑘 𝑤𝑕𝑒𝑟𝑒 0 ≤ 𝑘 ≤ 𝑖 cannot be verified.

24

Figure 4.1. The Hash Chains Between the Protocol Messages in EMSS

The digital signature message can be sent periodically for every 𝑛 messages,

which would be different for each application of protocol. Clearly, for authenticity

verification, the receiver must buffer messages until a signature message arrives.

Several use cases are defined for setting these parameters to use the protocol for

different purposes (Perrig, et al. 2000).

EMSS can be represented in Security Protocol Notation as:

1. 𝐴 → 𝐵 ∶ 𝑃0, 𝑃0 = d0

2. 𝐴 → 𝐵 ∶ 𝑃1, 𝑃1 = 𝑑1, 𝑕(𝑃0)

i. 𝐴 → 𝐵 ∶ 𝑃𝑖 , 𝑃𝑖 = 𝑑𝑖 , 𝑕 𝑃𝑖−1 , 𝑕(𝑃𝑖−2) where 2 ≤ 𝑖 < 𝑛

… …

n. 𝐴 → 𝐵 ∶ 𝑃𝑛 , 𝑃𝑛 = {𝑕 𝑃𝑛−1 , 𝑕 𝑃𝑛−2 }𝑠𝑘(𝐴)

where, 𝑑 is the data and 𝑕 is the hash function. Since the protocol is not defined in

security protocol notation (Perrig, et al. 2000), the protocol definition that is used in this

study is the same as the one in (ter Beek, et al. 2006).

Only 𝑑0 is sent to the receiver as the first protocol message 𝑃0. In the second

message, 𝑑1 is sent to the receiver along with the hash of 𝑑0. Next message consists of

𝑑2 and hashes of 𝑃1 and 𝑃0. Thus, 𝑃0 may be still authenticated even if 𝑃1 is lost or

unauthenticated. The last message consists of 𝑃𝑛−1 and 𝑃𝑛−2, encrypted with 𝑠𝑘(𝑠) - the

private key of the sender.

𝑃0

𝑃1

𝑃2

𝑃𝑖−1

𝑃𝑖

𝑃𝑠𝑖𝑔𝑛

𝑃𝑖−3

𝑃𝑖−2

𝑖 − 6 packets

𝐴 𝐵 The hash of 𝐴 is appended to 𝐵

25

 As opposed to non-stream protocols, which have a predefined number of

protocol messages in a run, the maximum message number in a run of EMSS protocol

depends on the application (Perrig, et al. 2000).

EMSS protocol does not make any secrecy claims, as the data items are sent to

the receiver in the clear. However, the receiver is able to check for the authenticity of

incoming messages when a signature message arrives. Thus, EMSS claims to provide

one-way authentication, only authenticating the sender to receivers. The sender agent is

not able to authenticate the receiver agents. In this study, one-way authentication

properties of EMSS protocol are considered.

4.2. Modeling Assumptions

It is assumed that the agents perform only the operations defined in the protocol

description. Also, the agents are assumed to know their own secret keys, the public keys

and the identities of other agents. One further assumption is that the intruder has the

capabilities of a Dolev - Yao Intruder (Dolev and Yao 1981).

Additionally, a perfect cryptosystem is assumed in order to focus the analysis on

the protocol. For hashing, it is assumed that agents cannot extract the message contents

from hashed messages. Also, hashes of different messages are always different. Hence,

a perfect hashing scheme is assumed where the hashed message gives no clue about the

clear message and furthermore, no hash collisions occur.

The protocol definition does not include any communication from the receiver to

the sender. So it is assumed that the sender knows the identities of receivers with which

it will communicate with. In reality, this is likely to be a subset of all agent identities.

EMSS protocol can be configured to have more than two hash values in a

protocol message (Perrig, et al. 2000). In this study, it is assumed that one message has

the hashes of two other messages.

4.3. Symbolic Data Types and Operations

 Symbolic data types model the actual data structures and variables within the

protocol. This abstraction provides a degree of freedom from the constraints on actual

data structures but allows including them in the model.

26

 Cryptographic operations are also represented symbolically for symbolic data

types, thus, the operation is not performed in reality; but relevant symbolic data are

modified appropriately. This allows the model to ignore the implementation specific

details of cryptosystem, as stated in the modeling assumptions.

4.3.1. Symbolic Data Types

Protocol messages and their contents need to be represented in a structured way.

Messages and their subcomponents are constructed from atomic data items by

concatenation. This means that a communication of a compound message is equivalent

to the communication of all of its atomic subcomponents.

Hence, a data type 𝑓𝑎𝑐𝑡 is defined in 𝐶𝑆𝑃𝑀 , in order to represent atomic data

items such as agent identities, keys, encrypted and hashed messages and compound data

items that are built using atomic data items:

 𝑑𝑎𝑡𝑎𝑡𝑦𝑝𝑒 𝑓𝑎𝑐𝑡 = 𝐴𝑔𝑒𝑛𝑡. 𝐴𝐺𝐸𝑁𝑇 | 𝑆𝑞. 𝑆𝑒𝑞(𝑓𝑎𝑐𝑡) |

 𝑝𝑘. 𝐴𝐺𝐸𝑁𝑇 𝑠𝑘. 𝐴𝐺𝐸𝑁𝑇 𝑘𝑒𝑦. 𝐴𝐺𝐸𝑁𝑇, 𝐴𝐺𝐸𝑁𝑇 |

 𝑃𝑘. 𝑓𝑎𝑐𝑡, 𝑓𝑎𝑐𝑡 𝐸𝑛𝑐𝑟𝑦𝑝𝑡. 𝑓𝑎𝑐𝑡, 𝑓𝑎𝑐𝑡 𝐻𝑎𝑠𝑕. (𝑓𝑎𝑐𝑡)

The 𝐴𝐺𝐸𝑁𝑇 set contains the agent labels. An agent 𝐴 is identified by 𝐴𝑔𝑒𝑛𝑡. 𝐴

in protocol messages, where 𝐴 ∈ 𝐴𝐺𝐸𝑁𝑇.

Sequenced messages can be represented by 𝑆𝑞. 〈𝑓𝑎𝑐𝑡0, 𝑓𝑎𝑐𝑡1, … , 𝑓𝑎𝑐𝑡𝑛〉,

which represents a sequence of facts; 𝑓𝑎𝑐𝑡0 to 𝑓𝑎𝑐𝑡𝑛 . The public and secret keys of

agents are represented respectively by 𝑝𝑘. 𝐴𝐺𝐸𝑁𝑇 and 𝑠𝑘. 𝐴𝐺𝐸𝑁𝑇. Hence, a key pair

for an agent 𝐴 becomes 𝑝𝑘. 𝐴 and 𝑠𝑘. 𝐴; which are the dual of each other.

Similarly, 𝑘𝑒𝑦. (𝐴𝐺𝐸𝑁𝑇, 𝐴𝐺𝐸𝑁𝑇) symbolizes a symmetric key between two agents.

The data type 𝑓𝑎𝑐𝑡 is defined recursively to allow the use of nested encryption,

nested hashing and sequencing inside an encryption.

The set of items that can be constructed from 𝑓𝑎𝑐𝑡 has unnecessary and invalid

combinations of facts, most of which don’t represent meaningful protocol messages. For

example, 𝐸𝑛𝑐𝑟𝑦𝑝𝑡. (𝑘𝑒𝑦. 𝐴, 𝐵 ,…) and 𝐸𝑛𝑐𝑟𝑦𝑝𝑡. (𝑘𝑒𝑦. 𝐵, 𝐴 , …) represent the same

message, because 𝑘𝑒𝑦. (𝐴, 𝐵) and 𝑘𝑒𝑦. (𝐵, 𝐴) represent the same key. In a similar sense,

illegal protocol messages can be constructed using this set.

27

 These definitions are restricted in order to reduce the state space; by defining a

finite set of protocol messages. This approach helps reducing the need of recording

every message separately, providing a reduction in the number of facts to be tracked.

4.3.2. Cryptographic Operations

In the analysis, the main focus of interest is finding attacks which are mounted

on the behavior of protocol participants, not on the cryptosystems used in the protocol.

Furthermore, CSP is not a suitable formalism to represent and verify cryptosystems.

Therefore encryption, decryption and hashing operations are represented as

symbolic operations. The operation is not performed in the real sense, only the data

items are tagged (or untagged) to symbolize that the operation is performed.

In symbolic encryption, 𝑃𝑘. (𝑓𝑎𝑐𝑡, 𝑓𝑎𝑐𝑡) represents a public key encrypted

message and 𝐸𝑛𝑐𝑟𝑦𝑝𝑡. 𝑓𝑎𝑐𝑡, 𝑓𝑎𝑐𝑡 represents a symmetrically encrypted message.

Using the values within an encrypted data block means the decryption of the message. If

the receiving agent knows 𝑘𝑒𝑦. (𝐴, 𝐵), it can receive (synchronize on) the message and

use its contents. However, the intruder should have to decode the message if and only if

it has the right key. Decryption is provided in a deduction in this case; the intruder does

not have access to the contents unless it has the corresponding key.

Hashing mechanism is similar to this approach. However, intruder does not have

any deductions to retrieve the contents of the hashed messages.

4.4. Modeling the Hash Chain Mechanism using Fixed Hash Sizes

This section discusses problems encountered during the modeling of EMSS

protocol and proposes a method to overcome these problems. First, the straightforward

approach and its problems are explained. Then, a fixed size hashed message approach is

defined for hash chain modeling.

The straightforward approach expresses the hash values by tagging the data

values with 𝐻𝑎𝑠𝑕. (). This does not pose a problem for non-stream protocols, which do

not use nested hashing. However, as in the EMSS protocol, the length of the

representation of the hash value becomes very large when nested hashing is used. Using

this straightforward method, 𝑖𝑡𝑕 EMSS protocol message is represented as:

28

 𝑠𝑒𝑛𝑑. 𝐴𝑙𝑖𝑐𝑒. 𝐵𝑜𝑏. 𝑆𝑞. 〈𝑑𝑖 ,

𝐻𝑎𝑠𝑕. 𝑆𝑞. 〈𝑑𝑖−1, 𝐻𝑎𝑠𝑕. 𝑆𝑞. 〈𝑑𝑖−2〉… 〉 ,

𝐻𝑎𝑠𝑕. 𝑆𝑞. 〈𝑑𝑖−2, 𝐻𝑎𝑠𝑕. 𝑆𝑞. 〈𝑑𝑖−3〉… 〉

 〉

where 𝐴𝑙𝑖𝑐𝑒, 𝐵𝑜𝑏 ∈ 𝐴𝐺𝐸𝑁𝑇.

Another issue is the types of 𝑠𝑒𝑛𝑑 and 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 channels. In CSP; it is possible

to define channels with arbitrary type; however for model-checking purposes; the types

of channels should be defined explicitly. Channels which accept messages with

arbitrary number of nested hashes are a problem while expressing the protocol for

model-checking tools.

Because of these reasons, hash chaining in the EMSS protocol using a tagged

representation cannot be modeled for model checking purposes.

4.4.1. Using Fixed Hash Sizes

In this approach, the size of a hashed message should be fixed, whatever the

message length is. So, 𝑖𝑡𝑕 protocol message, sent from 𝐴𝑙𝑖𝑐𝑒 to 𝐵𝑜𝑏 is represented by:

𝑠𝑒𝑛𝑑. 𝐴𝑙𝑖𝑐𝑒. 𝐵𝑜𝑏. 𝑆𝑞. 〈𝑑𝑖 , 𝑕𝑖−1, 𝑕𝑖−2〉

where 𝑕𝑖−1and 𝑕𝑖−2 represent the hash values of previous two messages.

Representing the protocol messages in such a manner requires a relationship, a

mapping between the hash values and the protocol messages to be hashed. The receiver

process needs to check the correctness of the hash values by comparing received hashes

with computed hashes, thus such a mapping becomes necessary.

Before the definition of mapping data, protocol messages and hashes should be

represented using sets, whose elements are symbolic representations of actual data

structures. Elements of the 𝐴𝑙𝑙𝐷𝑎𝑡𝑎 set represent all possible symbolic data values in

the protocol:

𝐴𝑙𝑙𝐷𝑎𝑡𝑎 = 𝑑𝑖 𝑖 ∈ 0. . 𝑚 }

where 𝑚 represents the upper bound on the number of data values. The 𝐴𝑙𝑙𝐻𝑎𝑠𝑕𝑒𝑠 set

represents all symbolic hash values usable on the system, with 𝑛 being the maximum

number of symbolic hashes:

𝐴𝑙𝑙𝐻𝑎𝑠𝑕𝑒𝑠 = 𝑕𝑖 𝑖 ∈ 0. . 𝑛 }

29

Finally, the set of all possible protocol messages is represented by 𝑃𝑀 set,

which use 𝐴𝑙𝑙𝐷𝑎𝑡𝑎 and 𝐴𝑙𝑙𝐻𝑎𝑠𝑕𝑒𝑠 sets as building blocks. The structure of protocol

messages vary, the 1𝑠𝑡 and 2𝑛𝑑 protocol messages have zero and one hash values

appended, but other messages have two hash values appended. Hence, 𝑃𝑀1 and 𝑃𝑀2

sets represent all possible 1𝑠𝑡 and 2𝑛𝑑 messages, while 𝑃𝑀𝐶 set defines all remaining

messages. The 𝑛𝑡𝑕 message (i.e. the signature message) is excluded from this set as its

hash is not used in the protocol.

𝑃𝑀 = 𝑃𝑀1 ∪ 𝑃𝑀2 ∪ 𝑃𝑀𝐶

 𝑃𝑀1 = 〈𝑑〉 𝑑 ∈ 𝐴𝑙𝑙𝐷𝑎𝑡𝑎}

 𝑃𝑀2 = 〈𝑑, 𝑕〉 𝑑 ∈ 𝐴𝑙𝑙𝐷𝑎𝑡𝑎, 𝑕 ∈ 𝐴𝑙𝑙𝐻𝑎𝑠𝑕𝑒𝑠}

 𝑃𝑀𝐶 = 〈𝑑, 𝑕1 , 𝑕2〉 𝑑 ∈ 𝐴𝑙𝑙𝐷𝑎𝑡𝑎, 𝑕1 , 𝑕2 ∈ 𝐴𝑙𝑙𝐻𝑎𝑠𝑕𝑒𝑠}

𝑃𝑀 is the set of all possible protocol messages, although many combinations of

the messages are invalid. However, it is important because its union with 𝑃𝑀𝑁 set used

as the type of 𝑠𝑒𝑛𝑑 and 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 channels where 𝑃𝑀𝑁 = 𝑃𝑘. 𝑠𝑘. 𝑎, 〈𝑕1, 𝑕2〉 𝑎 ∈

𝐴𝑔𝑒𝑛𝑡, 𝑕1, 𝑕2 ∈ 𝐴𝑙𝑙𝐻𝑎𝑠𝑕𝑒𝑠} is the set of all possible signature messages.

4.4.2. The Construction of 𝑫𝒂𝒕𝒂𝑯𝒂𝒔𝒉 Set

The 𝑃𝑀 set contains all valid and invalid protocol messages, however a

mapping between 𝐴𝑙𝑙𝐻𝑎𝑠𝑕𝑒𝑠 and 𝑃𝑀 set is still required to define the 𝑕𝑎𝑠𝑕 relation.

This relationship is implemented by a mapping set 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕, which contains

all protocol messages paired with a distinct hash value. So, 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕 set is composed

of pairs (𝑕, 𝑚) where 𝑕, 𝑚 ⊆ 𝐴𝑙𝑙𝐻𝑎𝑠𝑕𝑒𝑠 × 𝑃𝑀. A message can only use hash values

which have already been assigned to one of previous messages, which is illustrated in

Figure 4.2.

Similar to the definition of the 𝑃𝑀 set, the 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕 set can be defined as the

union of 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕𝑖 sets, where the subscript 𝑖 represents the 𝑖𝑡𝑕 protocol message.

For 𝑖 = 0, 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕0 set contains tuples (𝑕, 𝑚) where (𝑕, 𝑚) ⊆ 𝐴𝑙𝑙𝐻𝑎𝑠𝑕𝑒𝑠 ×

𝑃𝑀1, that is (𝑕𝑥 , 〈𝑑𝑥〉) and 𝑕𝑥 ∈ 𝐴𝑙𝑙𝐻𝑎𝑠𝑕𝑒𝑠, 𝑥 ∈ {0 …𝑚}. The 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕0 set only

enumerates the hash values with protocol messages, defining different hash value for

each different data item:

𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕0 = 𝑕𝑥 , 〈𝑑𝑥〉 𝑥 ∈ {0 …𝑚} }

30

Figure 4.2. Each Message Must Use the Hashes of Preceding Messages

 As there are a total of 𝑚 distinct data values, there are 𝑚 different hash values

corresponding to the hashes of these data values for 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕0.

For 𝑖 = 1, 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕1 set contains tuples (𝑕, 𝑚) where (𝑕, 𝑚) ⊆ 𝐴𝑙𝑙𝐻𝑎𝑠𝑕𝑒𝑠 ×

𝑃𝑀2, that is (𝑕𝑥 , 〈𝑑𝑦 , 𝑕𝑧〉) and 𝑕𝑥 ∈ 𝐴𝑙𝑙𝐻𝑎𝑠𝑕𝑒𝑠, 𝑦, 𝑧 ∈ 0 …𝑚 . The values of 𝑕𝑧 are

the hash values defined in the previous set 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕0. Similarly, this set enumerates

the hash values with 2𝑛𝑑 protocol messages, but this time, it associates every distinct

data and hash value pair with a unique hash value denoted with the subscript 𝑥:

𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕1 = 𝑕𝑥 , 〈𝑑𝑦 , 𝑕𝑧〉 0 ≤ 𝑦 < 𝑚, 0 ≤ 𝑧 < 𝑚 }

where 𝑥 = 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕1 𝑦 + 1 + 𝑧 .

For the general case, where 𝑖 ≠ 0 and 𝑖 ≠ 1, the respective 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕𝑖 sets are

composed of tuples (𝑕, 𝑚) where (𝑕, 𝑚) ⊆ 𝐴𝑙𝑙𝐻𝑎𝑠𝑕𝑒𝑠 × 𝑃𝑀𝐶 . That is, the structure of

each tuple is (𝑕𝑥 , 〈𝑑𝑦 , 𝑕𝑧 , 𝑕𝑡〉) where 𝑕𝑥 ∈ 𝐴𝑙𝑙𝐻𝑎𝑠𝑕𝑒𝑠 and 〈𝑑𝑦 , 𝑕𝑧 , 𝑕𝑡〉 ∈ 𝑃𝑀𝐶 .

The calculation of lower and upper bounds for 𝑧 and 𝑡 need more attention. A

message at 𝑖 ≥ 3 could use hash values defined in sets beginning from 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕0 to

𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕𝑖−1. Thus, the upper bounds for 𝑧 and 𝑡 for any message would be the total

number of hash values assigned until (including) 𝑖 − 1𝑡𝑕 message. Let this number be 𝑘,

and its value is equal to |𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕𝑐 |𝑖−1
𝑐=0 .

The lower bounds of 𝑧 and 𝑡 are fixed to be 0 for 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕𝑖 , which has several

implications. First of all, this definition causes collisions in 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕 set. For example

the hash of 〈𝑑0, 𝑕0 , 𝑕0〉 is 𝑕6 for 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕3 and 𝑕78 for 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕4, but the relation

⟨𝑑⟩ ⟨𝑑, 𝑕⟩ ⟨𝑑, 𝑕1 , 𝑕2⟩ ⟨𝑑, 𝑕1 , 𝑕2⟩

𝑕 ∈ 𝑕(𝑃0) 𝑕1 , 𝑕2 ∈ 𝑕 𝑃0

 ∪ 𝑕(𝑃1)

𝑃0 𝑃1 𝑃2 𝑃𝑥

…

𝑕1 , 𝑕2 ∈

 𝑕(𝑃𝑖)
𝑥−1
𝑖=0

𝑕(𝑃): Hash function

31

that needs to be provided is one-to-one. Another implication is the size of 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕

set is not at its minimum, as there are colliding entries in the set.

For colliding entries, it is safe to assume that 𝑕𝑎𝑠𝑕 function returns the first

entry in the set. That is, 𝑕𝑎𝑠𝑕 〈𝑑0, 𝑕0, 𝑕0〉 returns 𝑕6, not 𝑕78 or any other value,

providing the necessary one-to-one relationship between the hash values and protocol

messages.

Another solution for this problem can be the redefinition of 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕𝑖 set as

the union of 3 subsets, each containing different bounds for 𝑧 and 𝑡. In this case, first

subset should have the boundaries 0 ≤ 𝑧 < 𝑘′ and 𝑘′ ≤ 𝑡 < 𝑘, next one should have

𝑘′ ≤ 𝑧 < 𝑘 and 0 ≤ 𝑡 < 𝑘 and the last one 𝑘′ ≤ 𝑧, 𝑡 < 𝑘; where 𝑘’ is the total number

of hash values assigned until 𝑖 − 2𝑡𝑕 message, that is 𝑘’ = |𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕𝑐 |𝑖−2
𝑐=0 .

Hence, the boundaries of 𝑧 and 𝑡 are assumed as 0 ≤ 𝑧, 𝑡 < 𝑘:

 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕𝑖 = 𝑕𝑥 , 〈𝑑y , 𝑕z , 𝑕t〉 0 ≤ 𝑦 < 𝑚, 0 ≤ 𝑧, t < 𝑘 }

where 𝑥 = 𝑘2y + k z + 1 + 𝑡 and 𝑘 = |𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕𝑐 |𝑖−1
𝑐=0 .

The 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕 set with a maximum length of 𝑛 is composed of union of all sets

and represents all possible hash values of protocol messages:

𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕 = 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕𝑖

𝑛

𝑖=0

 Thus, the 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕 set is formed as the union of all preceding sets and

contains all possible and valid combinations of messages and hashes.

4.4.3. The 𝒉𝒂𝒔𝒉 function

The 𝑕𝑎𝑠𝑕 relation is actually a one-to-one function 𝑕𝑎𝑠𝑕: 𝑃𝑀 → 𝐴𝑙𝑙𝐻𝑎𝑠𝑕𝑒𝑠

which transforms a given protocol message into a hash value, because it is a one-to-one

and total relation, with the domain 𝑃𝑀 and range 𝐴𝑙𝑙𝐻𝑎𝑠𝑕𝑒𝑠. That is, for every protocol

message, there is a unique hash value defined.

The 𝑕𝑎𝑠𝑕 𝑑𝑠 function is defined to return the unique 𝑕𝑖 value assigned to a

particular 𝑑𝑠 from 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕 set:

𝑕𝑎𝑠𝑕 𝑑𝑠 = 𝑕′ 𝑕′ , 𝑠 ∈ 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕, 𝑠 = 𝑑𝑠}

32

This hashing scheme obeys modeling assumptions about hashes; processes

cannot retrieve the contents of the messages only the hash values. Also, this mechanism

constructs the mapping 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕 as one-to-one, so, ensuring all hashes in the system

are distinct, for distinct messages.

To illustrate the use of fixed sized hashes, below is an example message

exchange between protocol agents. Assume that two distinct data values and hash chain

length of 4 is used, that is 𝐴𝑙𝑙𝐷𝑎𝑡𝑎 = {𝑑0, 𝑑1} and 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕 = 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕𝑖
3
𝑖=0 . Let

another assumption be that sender sends the data in this order:

⟨𝑑0, 𝑑1, 𝑑1, 𝑑0⟩

In this case, the contents of 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕 is computed by computing the contents

of each set 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕0 , … , 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕3:

𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕0 = { 𝑕0, ⟨𝑑0⟩ , 𝑕1, ⟨𝑑1⟩ }

𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕1 = { 𝑕2, ⟨𝑑0, 𝑕0⟩ , 𝑕3, ⟨𝑑0, 𝑕1⟩ , 𝑕4 , ⟨𝑑1, 𝑕0⟩ , 𝑕5, ⟨𝑑1, 𝑕1⟩ }

𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕2 = { 𝑕6, ⟨𝑑0, 𝑕0 , 𝑕0⟩ , … , 𝑕40 , ⟨𝑑1, 𝑕0 , 𝑕4⟩ ,… , (𝑕77 , ⟨𝑑1, 𝑕5 , 𝑕5⟩) }

𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕3 = { 𝑕78 , ⟨𝑑0, 𝑕0 , 𝑕0⟩ , … , 𝑕522 , ⟨𝑑0, 𝑕4 , 𝑕40⟩ ,… , (𝑕12245 , ⟨𝑑1, 𝑕77 , 𝑕77⟩) }

For the first message, only the data item is sent, thus 𝑃0 = 𝑑0. For the second

message, 𝑃1 = ⟨𝑑1, 𝑕𝑎𝑠𝑕 𝑃0 ⟩, and 𝑕𝑎𝑠𝑕 𝑃0 = 𝑕𝑎𝑠𝑕 ⟨𝑑0⟩ = 𝑕0, so 𝑃1 = ⟨𝑑1, 𝑕0⟩.

The third message is 𝑃2 = ⟨𝑑1, 𝑕𝑎𝑠𝑕 𝑃0 , 𝑕𝑎𝑠𝑕 𝑃1 ⟩ = ⟨𝑑1, 𝑕0 , 𝑕4⟩. Finally, following

the same pattern, the final message is 𝑃3 = ⟨𝑑0, 𝑕𝑎𝑠𝑕 𝑃1 , 𝑕𝑎𝑠𝑕 𝑃2 ⟩ = ⟨𝑑0, 𝑕4 , 𝑕40⟩.

Only the hash of 𝑃3 is required for the signature message, which is already

present in 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕3 set. So, ⟨𝑕𝑎𝑠𝑕 𝑃2 , 𝑕𝑎𝑠𝑕 𝑃3 ⟩ = ⟨𝑕40 , 𝑕522⟩ becomes the

signature message which is ready to be encrypted with the private key of the sender.

4.4.4. Implementation Considerations

In this section, the 𝐶𝑆𝑃𝑀 representation of hash chains are defined using the

fixed sized hash values. First of all, the datatype definitions need to be extended to

allow representation of hash and data values with subscripts.

First, the 𝐻𝑎𝑠𝑕. tag is removed from the datatype definition. A hash value 𝑕𝑖

is represented by 𝑕. 𝑖 in 𝐶𝑆𝑃𝑀 , where 𝑖 ∈ {0. . 𝑚}. The 𝐴𝑙𝑙𝐻𝑎𝑠𝑕𝑒𝑠 and 𝐴𝑙𝑙𝐷𝑎𝑡𝑎 sets

contain symbolic hash and data values: 𝐴𝑙𝑙𝐻𝑎𝑠𝑕𝑒𝑠 = 𝑕. 𝑖 𝑖 ∈ 0. . 𝑛 } and 𝐴𝑙𝑙𝐷𝑎𝑡𝑎 =

33

 𝑑. 𝑖 𝑖 ∈ 0. . 𝑚 }. In the implementation, the items of sets 𝐴𝑙𝑙𝐷𝑎𝑡𝑎 and 𝐴𝑙𝑙𝐻𝑎𝑠𝑕𝑒𝑠

belong to the type 𝑓𝑎𝑐𝑡 and the sets of subscripts are symbolized by 𝐻𝐴𝑆𝐻 and 𝐷𝐴𝑇𝐴

sets (Figure 4.3).

Figure 4.3. Actual Data Types Used in the Protocol Model

The 𝑃𝑀 set is constructed from 𝐻𝐴𝑆𝐻 and 𝐷𝐴𝑇𝐴 sets, which was defined in

Section 4.4.1. The signature message is appended in 𝐶𝑆𝑃𝑀 representation in Figure 4.4.

Figure 4.4. The PM Set Including the Signature Message

The implementation of 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕 set is more complicated. To assign the

subscripts of hash values, 𝐶𝑎𝑟𝑑_𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕(𝑖) function is defined (Figure 4.5).

𝑃𝑀_0 = { ⟨𝑑. 𝑥⟩ | 𝑥 < − 𝐷𝐴𝑇𝐴 }

𝑃𝑀_1 = { ⟨𝑑. 𝑥, 𝑕. 𝑦⟩ | 𝑥 < − 𝐷𝐴𝑇𝐴, 𝑦 < − 𝐻𝐴𝑆𝐻 }

𝑃𝑀_𝑐 = { ⟨𝑑. 𝑥, 𝑕. 𝑦, 𝑕. 𝑧⟩ | 𝑥 < − 𝐷𝐴𝑇𝐴, 𝑦 < − 𝐻𝐴𝑆𝐻, 𝑧 < − 𝐻𝐴𝑆𝐻 }

𝑃𝑀_𝑛 = { 𝑃𝑘. (𝑠𝑘. 𝑎, ⟨𝑕. 𝑥, 𝑕. 𝑦⟩) | 𝑎 < −𝐴𝐺𝐸𝑁𝑇, 𝑥 < − 𝐻𝐴𝑆𝐻, 𝑦 < − 𝐻𝐴𝑆𝐻 }

𝑃𝑀 = 𝑈𝑛𝑖𝑜𝑛({ 𝑃𝑀_0, 𝑃𝑀_1, 𝑃𝑀_𝑐, 𝑃𝑀_𝑛 })

𝑑𝑎𝑡𝑎𝑡𝑦𝑝𝑒 𝑓𝑎𝑐𝑡 = 𝑆𝑞. 𝑆𝑒𝑞 𝑓𝑎𝑐𝑡 | 𝑝𝑘. 𝐴𝐺𝐸𝑁𝑇 |

𝐴𝐺𝐸𝑁𝑇 = {𝐴𝑙𝑖𝑐𝑒, 𝐵𝑜𝑏, 𝐶𝑎𝑚𝑒𝑟𝑜𝑛}

𝐻𝐴𝑆𝐻 = {0. . 𝑛}

𝐷𝐴𝑇𝐴 = {0. . 𝑚}

 𝑠𝑘. 𝐴𝐺𝐸𝑁𝑇 | 𝑃𝑘. 𝑓𝑎𝑐𝑡, 𝑓𝑎𝑐𝑡 |

 𝐴𝑙𝑖𝑐𝑒 | 𝐵𝑜𝑏 𝐶𝑎𝑚𝑒𝑟𝑜𝑛 𝑕. 𝐻𝐴𝑆𝐻 | 𝑑. 𝐷𝐴𝑇𝐴

34

Figure 4.5. The Function that Computes the Cardinality of 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕

The 𝐶𝑎𝑟𝑑_𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕(𝑖) function is a recursive function, which calculates the

cardinality of 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕𝑖 set. The value returned by the 𝐶𝑎𝑟𝑑_𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕(𝑖) function

corresponds to the 𝑘 value, which is defined in Section 4.4.2 and used in construction of

𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕𝑖 set (Figure 4.6).

Figure 4.6. The 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕 Set of Size 3

𝑐𝐷 = 𝑐𝑎𝑟𝑑(𝐷𝐴𝑇𝐴)

𝐶𝑎𝑟𝑑_𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕(𝑖) = 𝑖𝑓 𝑖 == 1 𝑡𝑕𝑒𝑛

 𝑐𝐷

 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑖 == 2 𝑡𝑕𝑒𝑛

 𝑐𝐷 ∗ (𝑐𝐷 + 1)

 𝑒𝑙𝑠𝑒 𝑙𝑒𝑡

 𝑑𝑖 = 𝐶𝑎𝑟𝑑_𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕(𝑖 − 1)

 𝑤𝑖𝑡𝑕𝑖𝑛

 𝑐𝐷 ∗ 𝑑𝑖 ∗ 𝑑𝑖 + 𝑑𝑖

𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕(1) = { (𝑕. 𝑥, ⟨𝑑. 𝑥⟩) | 𝑥 < − 𝐷𝐴𝑇𝐴 }

𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕 2 = 𝑕. 𝑐𝐷 𝑥 + 1 + 𝑦 , ⟨𝑑. 𝑥, 𝑕. 𝑦⟩

𝑥 < −𝐷𝐴𝑇𝐴, 𝑦 < −𝐷𝐴𝑇𝐴 }

𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕(𝑖) = 𝑙𝑒𝑡

𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕 = 𝑈𝑛𝑖𝑜𝑛({𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕(1), 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕(2), 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕(3)})

 𝑐𝐷𝑖 = 𝐶𝑎𝑟𝑑_𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕 𝑖 − 1

 𝑤𝑖𝑡𝑕𝑖𝑛 {

 (𝑕. (𝑐𝐷𝑖 ∗ 𝑐𝐷𝑖 ∗ y + cDi ∗ z + 1 + 𝑡), ⟨𝑑. 𝑥, 𝑕. 𝑦, 𝑕. 𝑧⟩) |

 𝑥 < − 𝐷𝐴𝑇𝐴, 𝑦 < − 0. . 𝑐𝐷𝑖 − 1 , 𝑧 < − 0. . 𝑐𝐷𝑖 − 1

 }

35

4.5. Infinite State CSP Model of the EMSS Protocol

Due to the fixed sized hash values, a CSP model of the protocol could be

constructed. In this phase, the state space generated from the model is not considered,

only the model is built.

As a first step, the 𝑠𝑒𝑛𝑑 and 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 channels are defined. These channels are

used by the CSP processes of honest agents. Then the 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟 process is built, which

forms an operational attacker based on the Dolev-Yao Intruder Model.

Finally, 𝑠𝑒𝑛𝑑 and 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 channels are connected to 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟_𝐵𝑎𝑠𝑖𝑐 process,

which represents a reliable transmission medium, transmitting messages without any

modification.

The EMSS protocol defines two honest agents, one of which is the 𝑆𝑒𝑛𝑑𝑒𝑟,

responsible for sending a stream of data through the network and the other one is

the 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟, responsible for collecting the data, checking the received data and

authenticating them. 𝑆𝑒𝑛𝑑0(𝑖𝑑) and 𝑅𝑒𝑐𝑣0(𝑖𝑑) processes represent honest agents

whose identities are defined by the parameter 𝑖𝑑.

4.5.1. Sender Agent

The sender agent is responsible for calculating the hashes of previous messages

for preparing and transmitting the protocol messages to the receiver. The sender process

is composed of three sub processes: First process is responsible for sending 1
st
 and 2

nd

protocol messages, which have a different format than 𝑖𝑡𝑕 message. Second process

sends 𝑖𝑡𝑕 message and the last process sends the signature message.

 The first part chooses a receiver to communicate with, receives the data from

𝐷𝑎𝑡𝑎𝑆𝑡𝑟𝑒𝑎𝑚 process and forms and transmits protocol messages using the 𝑠𝑒𝑛𝑑

channel.

After sending initial protocol messages, the identity of the receiver agent is

passed to the following process along with the hashes of the previous messages. Note

that, 𝑃0 = 𝑑0 and 𝑃1 = 〈𝑑1, 𝑕𝑎𝑠𝑕 𝑑0 〉:

 𝑆𝑒𝑛𝑑0 𝑖𝑑 = ⊓ 𝑏: 𝐴𝑔𝑒𝑛𝑡 •

 𝑔𝑒𝑡𝐷𝑎𝑡𝑎. 𝑖𝑑? 𝑑0 → 𝑠𝑒𝑛𝑑. 𝑖𝑑. 𝑏. 𝑑0 →

36

 𝑔𝑒𝑡𝐷𝑎𝑡𝑎. 𝑖𝑑? 𝑑1 →

 𝑠𝑒𝑛𝑑. 𝑖𝑑. 𝑏. 𝑆𝑞. 〈𝑑1, 𝑕𝑎𝑠𝑕 𝑑0 〉 →

 𝑆𝑒𝑛𝑑𝑖 𝑖𝑑, 𝑏, 𝑕𝑎𝑠𝑕(𝑃0), 𝑕𝑎𝑠𝑕 𝑃1

The second part requests for another data item, hashes the old data items and

sends the 𝑖𝑡𝑕 protocol message. Alternatively it may choose to send the signature

message, which is chosen nondeterministically:

𝑆𝑒𝑛𝑑𝑖 𝑖𝑑, 𝑏, 𝑕1, 𝑕2 = 𝑆𝑒𝑛𝑑𝑛 𝑖𝑑, 𝑏, 𝑕1 , 𝑕2 ⊓ (𝑔𝑒𝑡𝐷𝑎𝑡𝑎. 𝑖𝑑? 𝑑𝑖 →

𝑠𝑒𝑛𝑑. 𝑖𝑑. 𝑏. 𝑆𝑞. 〈𝑑𝑖 , 𝑕1 , 𝑕2〉 → 𝑆𝑒𝑛𝑑𝑖+1 𝑖𝑑, 𝑏, 𝑕2, 𝑕𝑎𝑠𝑕 𝑃𝑖

The final part of the sender agent involves sending the signature message. A

new run of the protocol can begin after sending the signature message:

𝑆𝑒𝑛𝑑𝑛 𝑖𝑑, 𝑏, 𝑕1, 𝑕2 = 𝑠𝑒𝑛𝑑. 𝑖𝑑. 𝑏. 𝑃𝑘. (𝑠𝑘. 𝑖𝑑, 𝑆𝑞. 〈𝑕1, 𝑕2〉) → 𝑆𝑒𝑛𝑑0(𝑖𝑑)

Note that in a fresh protocol run, old hash and data values are assumed to be

forgotten by the sender. Hence the processed data and the hash items are not sent as

parameters to the new protocol run.

4.5.2. Receiver Agent

Similar to the sender, the receiver is modeled using three sub processes, each

having similar roles with their 𝑆𝑒𝑛𝑑𝑒𝑟 counter parts.

It is important to note that the set 𝑅 has the structure of 𝑖, 𝑚 where 𝑖 ∈ ℕ is the

sequence number of arrived message and 𝑚 ∈ 𝑃𝑀 is the message. This structure is

required by the 𝐶𝑕𝑒𝑐𝑘 process, because, it needs to know the sequence number of a

stored message.

However, unlike the sender process, the receiver should also check the validity

of the received protocol messages after the reception of a signature message. The

messages are just buffered in the set 𝑅𝑒𝑐𝑣𝑑 until a signature message arrives:

 𝑅𝑒𝑐𝑣0 𝑖𝑑 = □ 𝑎: 𝐴𝑔𝑒𝑛𝑡, 𝑑𝑟0: 𝐴𝑙𝑙𝐷𝑎𝑡𝑎 •

 𝑟𝑒𝑐𝑣. 𝑎. 𝑖𝑑. 𝑑𝑟0 →

 □ 𝑕𝑟0: 𝐴𝑙𝑙𝐻𝑎𝑠𝑕𝑒𝑠, 𝑑𝑟1: 𝐴𝑙𝑙𝐷𝑎𝑡𝑎 •

 𝑟𝑒𝑐𝑣. 𝑎. 𝑖𝑑. 𝑆𝑞. 〈𝑑𝑟1, 𝑕𝑟0〉 →

 𝑅𝑒𝑠𝑝𝑖(𝑖𝑑, 𝑎, {(0, 〈𝑑𝑟0〉), (1, 〈𝑑𝑟1, 𝑕𝑟0〉)})

37

 The second process is responsible for collecting any 𝑖𝑡𝑕 message sent by the

sender. The sender might choose to send the signature message after 2
nd

 message, so

this part should be prepared to receive a signature message.

 𝑅𝑒𝑐𝑣𝑖(𝑖𝑑, 𝑎, 𝑅𝑒𝑐𝑣𝑑) = 𝑅𝑒𝑐𝑣𝑛(𝑖𝑑, 𝑎, 𝑅𝑒𝑐𝑣𝑑) □ (

 □ 𝑕𝑟1, 𝑕𝑟2 ∶ 𝐴𝑙𝑙𝐻𝑎𝑠𝑕𝑒𝑠, 𝑑𝑟 ∶ 𝐴𝑙𝑙𝐷𝑎𝑡𝑎 •

 𝑟𝑒𝑐𝑣. 𝑎. 𝑖𝑑. 𝑆𝑞. 〈𝑑𝑟 , 𝑕𝑟1, 𝑕𝑟2〉 →

 𝑅𝑒𝑐𝑣𝑖+1(𝑖𝑑, 𝑎, 𝑅𝑒𝑐𝑣𝑑 ∪ (𝑖, 〈𝑑𝑟 , 𝑕𝑟1, 𝑕𝑟2〉))

The final process is responsible for the reception of the signature message.

 𝑅𝑒𝑐𝑣𝑛 𝑖𝑑, 𝑎, 𝑅𝑒𝑐𝑣𝑑 = □ 𝑕𝑟0, 𝑕𝑟1 ∶ 𝐴𝑙𝑙𝐻𝑎𝑠𝑕𝑒𝑠 •

 𝑟𝑒𝑐𝑣. 𝑎. 𝑖𝑑. 𝑃𝑘. 𝑠𝑘. 𝑎, 𝑆𝑞. 〈𝑕𝑟0, 𝑕𝑟1〉 →

 𝐶𝑕𝑒𝑐𝑘(𝑅𝑒𝑐𝑣𝑑, 𝑛, 〈𝑕𝑟0, 𝑕𝑟1〉 , 𝑛 − 1)

4.5.3. Check Process

 EMSS protocol does not explicitly specify a method for checking the

authenticity of received messages, allowing assumptions about the behavior of an agent.

For this reason, the process of checking the incoming messages is as explained below.

After the arrival of the signature message, the buffer should be checked for

(possibly) valid messages. The buffer of received packets (i.e. 𝑅𝑒𝑐𝑣𝑑 set in 𝑅𝑒𝑐𝑣

process, 𝑅 in check process), set of validated messages (i.e. the set 𝑉) that initially has

the hashes in the signature message and the total number of received packets 𝑛 are

passed as parameters to C𝑕𝑒𝑐𝑘 process. This process uses the algorithm defined in

Figure 4.7 to determine the validity of each message.

38

Figure 4.7. The Algorithm of 𝐶𝑕𝑒𝑐𝑘 Process

Basically, this algorithm begins from the (𝑛 − 1)𝑡𝑕 message and for each

message 𝑃𝑖 in the received set 𝑅, and checks whether any of the messages 𝑃𝑖+1 and 𝑃𝑖+2

are in validated set. A message cannot be verified, if there is not a link to at least one

validated message or the hash values in the validated messages are not equal to current

message’s hash, and discarded from set 𝑅. The verified messages are stored in the

validated set 𝑉, which contains all verifiable messages when the algorithm terminates.

 The helper functions 𝑕𝑝1(𝑃𝑖) and 𝑕𝑝2(𝑃𝑖) return first or second hash value in 𝑃𝑖 ,

respectively. That is, 𝑕𝑝1 𝑃𝑖 = 𝑕𝑖−1 and 𝑕𝑝2 𝑃𝑖 = 𝑕𝑖−2 if 𝑃𝑖 = 〈𝑑𝑖 , 𝑕𝑖−1, 𝑕𝑖−2〉. The

function 𝑑𝑎𝑡𝑎 𝑃𝑖 returns the data part of the message 𝑃𝑖 .

This algorithm is represented as a recursive process, with slight differences. If a

message is valid, it is sent via 𝑝𝑢𝑡𝐷𝑎𝑡𝑎 channel as well as addition to the verified set 𝑉

and removal from the message buffer set 𝑅. Additionally, the process needs to be able

to receive further messages from 𝑆𝑒𝑛𝑑𝑒𝑟, after finishing checking.

𝐶𝑕𝑒𝑐𝑘 𝑅, 𝑉, 𝑖 =

 𝑖𝑓 𝑖 < 0 𝑡𝑕𝑒𝑛

 𝑅𝑒𝑐𝑣0(𝑖𝑑)

 𝑒𝑙𝑠𝑒

 𝑖𝑓 𝑃𝑖+1 ∈ 𝑉 𝑎𝑛𝑑 𝑕𝑎𝑠𝑕 𝑃𝑖 = 𝑕𝑝1(𝑃𝑖+1)

 𝑜𝑟 𝑃𝑖+2 ∈ 𝑉 𝑎𝑛𝑑 𝑕𝑎𝑠𝑕 𝑃𝑖 = 𝑕𝑝2 𝑃𝑖+2 𝑡𝑕𝑒𝑛

 𝑝𝑢𝑡𝐷𝑎𝑡𝑎. 𝑑𝑎𝑡𝑎 𝑃𝑖 → 𝐶𝑕𝑒𝑐𝑘(𝑅 − 𝑃𝑖 , 𝑉 ∪ 𝑃𝑖 , 𝑖 − 1)

input: received messages 𝑅 = {𝑃0 … , 𝑃𝑛−1}, valid messages 𝑉 = {𝑃𝑛}

output: 𝑉 containing all valid messages

 𝑛 ← |𝑅|

 for 𝑖 ← 𝑛 to 0 do

 if (𝑃𝑖+1 ∈ 𝑉 and 𝑕𝑎𝑠𝑕 𝑃𝑖 = 𝑕𝑝1(𝑃𝑖+1)) or

 (𝑃𝑖+2 ∈ 𝑉 and 𝑕𝑎𝑠𝑕 𝑃𝑖 = 𝑕𝑝2 𝑃𝑖+2) then

 𝑉 ← 𝑉 ∪ {𝑃𝑖}

 end

 𝑅 ← 𝑅 − {𝑃𝑖}

 end

output 𝑉

39

 𝑒𝑙𝑠𝑒

 𝐶𝑕𝑒𝑐𝑘(𝑅 − 𝑃𝑖 , 𝑉, 𝑖 − 1)

 Note that, if more than two consecutive messages cannot be verified, then the

second 𝑖𝑓 condition will never be satisfied by subsequent recursions, which matches

with the definition of the EMSS protocol (Section 4.1).

4.5.4. Intruder and the Network

In this study, two intruder models are used. The first model, which is known as

the basic model, redirects data from 𝑠𝑒𝑛𝑑 channel to 𝑟𝑒𝑐𝑣 channel and does nothing

else. The second model forms a complete intruder. These two models are explained in

the following section.

4.5.4.1. Basic Intruder Model

The basic intruder model only acts as a medium that delivers messages without

any alteration or recording, which is modeled as 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟𝐵 process. This process is

important in the validation of the agent processes.

 The basic intruder can be defined as:

𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟𝐵 = □ 𝑎, 𝑏 ∶ 𝐴𝑔𝑒𝑛𝑡, 𝑚: 𝑃𝑀 •

 𝑠𝑒𝑛𝑑. 𝑎. 𝑏. 𝑚 → 𝑟𝑒𝑐𝑣. 𝑎. 𝑏. 𝑚 → 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟𝐵

4.5.4.2. Full Intruder Model

To detect any attacks, the full intruder model is used in the verification of the

protocol model, which has the capabilities of Dolev – Yao Intruder model.

Intruder initially knows all public facts and the private facts about an agent that

it can impersonate. Two additional channels are used, 𝑕𝑒𝑎𝑟 and 𝑠𝑎𝑦, to represent

communications of the intruder. The type of 𝑕𝑒𝑎𝑟 and 𝑠𝑎𝑦 channels is 𝑃𝑀, which is the

set of all protocol messages:

 𝑐𝑕𝑎𝑛𝑛𝑒𝑙 𝑕𝑒𝑎𝑟, 𝑠𝑎𝑦: 𝑃𝑀

40

 Intruder is allowed to overhear messages and add them to its knowledge base

and send messages from its knowledge base.

 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟 𝐼𝐾 =

𝑕𝑒𝑎𝑟? 𝑚 → 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟 𝐼𝐾 ∪ {𝑚}

⊓ 𝑠𝑎𝑦! 𝑚 ∶ 𝐼𝐾 → 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟(𝐼𝐾)

The operation 𝐼𝐾 ∪ {𝑚} , is a closure operation under deduction relation:

𝑆 =
𝑆 𝑆′ − 𝑆 = ∅

𝑆 ∪ 𝑆′ 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

where 𝑆′ = 𝑓 𝑋, 𝑓 ∈ 𝐴𝑙𝑙𝐷𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑠, 𝑆 − 𝑋 = ∅}. That is, 𝑆′ is the set of facts that

can be inferred from the power set of elements of 𝑆. The set 𝐴𝑙𝑙𝐷𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑠 are set of

all deductions that can be done by using facts.

The knowledge base of the intruder is not stored as a set; rather it is modeled as

a network of two state processes, because of performance issues (Roscoe and Goldsmith

1997). For each fact, reachable by intruder, 𝑖𝑔𝑛𝑜𝑟𝑎𝑛𝑡𝑜𝑓(𝑓) represents an unknown fact

𝑓 and 𝑘𝑛𝑜𝑤𝑛(𝑓) represents a known fact 𝑓. These processes carry out 𝑖𝑛𝑓𝑒𝑟 actions,

which uses deductions to figure out unknown information from known facts.

𝑆𝑎𝑦𝐾𝑛𝑜𝑤𝑛 process does not make any inferences, but generates already known

messages to be sent to the receiving agent. The 𝑐𝑕𝑎𝑠𝑒() function instructs the model

checker to apply partial-order reduction (Clarke 1999) on the selected process.

 Overall intruder process is (without renaming and irrelevant details):

𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟𝐹𝐶 = 𝑐𝑕𝑎𝑠𝑒(||𝑓: 𝐿𝑒𝑎𝑟𝑛𝑎𝑏𝑙𝑒𝐹𝑎𝑐𝑡𝑠 𝑖𝑔𝑛𝑜𝑟𝑎𝑛𝑡𝑜𝑓(𝑓))\{𝑖𝑛𝑓𝑒𝑟})||| 𝑆𝑎𝑦𝐾𝑛𝑜𝑤𝑛

 The intruder process is a generic intruder process which is applicable for most

protocol models. (Roscoe and Goldsmith 1997, Ryan, et al. 2001). Moreover, in this

study, 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟𝐹 process is used, whose structure is the same as 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟𝐹𝐶 process

but does not contain the 𝑐𝑕𝑎𝑠𝑒 reduction function:

𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟𝐹 = (||𝑓: 𝐿𝑒𝑎𝑟𝑛𝑎𝑏𝑙𝑒𝐹𝑎𝑐𝑡𝑠 𝑖𝑔𝑛𝑜𝑟𝑎𝑛𝑡𝑜𝑓(𝑓))\{𝑖𝑛𝑓𝑒𝑟})||| 𝑆𝑎𝑦𝐾𝑛𝑜𝑤𝑛

 These definitions of intruder are able to perform all actions of intruder in Dolev /

Yao Model. It can overhear messages using the 𝑕𝑒𝑎𝑟 channel: The 𝑕𝑒𝑎𝑟 channel allows

𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟 receiving the messages that are communicated on the network by honest

agents. Then, it builds a closed set of intruder knowledge, including the new message.

Delivery of messages is possible, because the 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟 process can perform the trace

41

〈𝑕𝑒𝑎𝑟. 𝑚1, 𝑠𝑎𝑦. 𝑚2〉 where 𝑚1 = 𝑚2, thereby delivering the message to intended

recipient.

 Also, it is possible for this process to block (intercept) messages, because it can

reach a trace like 〈𝑕𝑒𝑎𝑟. 𝑚1, 𝑕𝑒𝑎𝑟. 𝑚2〉. In this case, upon hearing message 𝑚1, intruder

may not choose to send a message through 𝑠𝑎𝑦 channel (because of the non-

deterministic composition) and synchronize on another 𝑕𝑒𝑎𝑟 event. To forge (fake)

messages, 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟 process keeps a set of messages that it has heard and can deduce

new protocol messages. It can send any of the messages in its knowledge set using 𝑠𝑎𝑦

channel.

4.5.4.3. The Complete Network

 The network of the processes is defined as the parallel composition of 𝑆𝑒𝑛𝑑,

𝑅𝑒𝑐𝑣 processes and intruder process. Let 𝑆𝑒𝑛𝑑 and 𝑅𝑒𝑐𝑣 be processes representing

honest agents, such that; 𝑆𝑒𝑛𝑑 = 𝑆𝑒𝑛𝑑0(𝐴𝑙𝑖𝑐𝑒), 𝑅𝑒𝑐𝑣 = 𝑅𝑒𝑐𝑣0(𝐵𝑜𝑏), where

𝐴𝑙𝑖𝑐𝑒, 𝐵𝑜𝑏 ∈ 𝐴𝑔𝑒𝑛𝑡. An event in the form of 𝑠𝑒𝑛𝑑. 𝑎. 𝑏. 𝑚 symbolizes sending

message 𝑚 from agent 𝑎 to agent 𝑏. The network model, including agent and intruder

processes and the channels, is illustrated in Figure 4.8.

Figure 4.8. The Network Model Used for the Protocol

This model is defined a process composed of parallel composition of agent and

intruder processes. The agent processes only communicate the signal event 𝑡𝑒𝑠𝑡 with

each other and 𝑠𝑒𝑛𝑑 and 𝑟𝑒𝑐𝑣 events to the intruder. Therefore, a 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 process is

defined, expressing their relationship:

𝑁𝑒𝑡𝑤𝑜𝑟𝑘 = (𝑆𝑒𝑛𝑑
||

𝛼𝑇𝑒𝑠𝑡
 𝑅𝑒𝑐𝑣)

||

𝛼𝑆𝑡𝑜𝑝
 𝑆𝑇𝑂𝑃

𝑟𝑒𝑐𝑣. 𝐴. 𝐵. 𝑚

𝑟𝑒𝑐𝑣. 𝐵. 𝐴. 𝑚 𝑠𝑒𝑛𝑑. 𝐵. 𝐴. 𝑚

𝑠𝑒𝑛𝑑. 𝐴. 𝐵. 𝑚
𝑆𝑒𝑛𝑑 𝑅𝑒𝑐𝑣 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟

𝑔𝑒𝑡𝐷𝑎𝑡𝑎

𝑝𝑢𝑡𝐷𝑎𝑡𝑎

42

where the sets 𝛼𝑇𝑒𝑠𝑡 and 𝛼𝑆𝑡𝑜𝑝 are defined as: 𝛼𝑇𝑒𝑠𝑡 = 𝑡𝑒𝑠𝑡 , 𝛼𝑆𝑡𝑜𝑝 =

 { 𝑟𝑒𝑐𝑣. 𝐶𝑎𝑚𝑒𝑟𝑜𝑛 } ∪ { 𝑠𝑒𝑛𝑑. 𝑎. 𝐶𝑎𝑚𝑒𝑟𝑜𝑛 | 𝑎 ∈ 𝐴𝑔𝑒𝑛𝑡}. The purpose of the 𝛼𝑆𝑡𝑜𝑝

set is to prevent messages sent as and received by the agent Cameron. It is not a real

agent, the intruder uses 𝐶𝑎𝑚𝑒𝑟𝑜𝑛 only if it wants to impersonate a legitimate agent.

The 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟 process is one of the 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟𝐵, 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟𝐹 or 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟𝐹𝐶

processes:

𝑆𝑦𝑠𝑡𝑒𝑚 = 𝑁𝑒𝑡𝑤𝑜𝑟𝑘
||

𝛼𝐼𝐴
𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟

where 𝛼𝐼𝐴 is the synchronization set of parallel composition between the 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟

process and the agent processes, such that 𝛼𝐼𝐴 = 𝑠𝑒𝑛𝑑, 𝑟𝑒𝑐𝑣 .

 𝑆𝑒𝑛𝑑 process only sends but does not receive any data and 𝑅𝑒𝑐𝑣 process does

not send any data. However the 𝑟𝑒𝑐𝑣 channel between 𝑆𝑒𝑛𝑑 and 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟 and the

𝑠𝑒𝑛𝑑 channel between 𝑅𝑒𝑐𝑣 and 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟 are included in the model for the sake of

generality.

4.5.5. Example Correct Run

In this section, the system’s behavior during a correct run is evaluated. The

𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕 set defines a hash chain with a maximum length of 4; and ⟨𝑑0, 𝑑1, 𝑑1, 𝑑0⟩ be

the data sequence.

 Additionally, the 𝑆𝑦𝑠𝑡𝑒𝑚𝐵 process is used as defined in previous section, and

the 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟𝐵 process will be used as the intruder.

The run begins with the 𝑆𝑒𝑛𝑑0(𝐴𝑙𝑖𝑐𝑒) process choosing an agent process non-

deterministically, which is the process 𝐵𝑜𝑏. It gets the data using 𝑔𝑒𝑡𝐷𝑎𝑡𝑎 channel and

sends it using the 𝑠𝑒𝑛𝑑 channel by producing the event 𝑠𝑒𝑛𝑑. 𝐴𝑙𝑖𝑐𝑒. 𝐵𝑜𝑏. ⟨𝑑0⟩.

𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟_𝐵𝑎𝑠𝑖𝑐 process synchronizes with this event and produces another event using

the 𝑟𝑒𝑐𝑣 channel, which is 𝑟𝑒𝑐𝑣. 𝐴. 𝐵. ⟨𝑑0⟩. 𝑅𝑒𝑐𝑣0(𝐵𝑜𝑏) process synchronizes on this

event. Then, sender again gets data, ⟨𝑑1⟩, and calculates the hash of ⟨𝑑0⟩, previous

protocol message. This is accomplished by 𝑕𝑎𝑠𝑕 function, performing a lookup from

𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕 set and returning the respective hash value: ⟨𝑕0⟩. Thus, the 2𝑛𝑑 message is

sent, which is 𝑠𝑒𝑛𝑑. 𝐴. 𝐵. ⟨𝑑1, 𝑕0⟩.

To send the third message, 𝑆𝑒𝑛𝑑1 process chooses to get another data instead of

sending the signature message and uses the previous two hash values, which were

43

passed as parameters to 𝑆𝑒𝑛𝑑𝑖 process. Again, it prepares and sends the message via the

𝑠𝑒𝑛𝑑 channel, which is 𝑠𝑒𝑛𝑑. 𝐴. 𝐵. ⟨𝑑1, 𝑕4, 𝑕0⟩. Upon receiving this message, 𝑅𝑒𝑐𝑣𝑖

process adds this message to its buffer set 𝑅, which already contains first two messages.

It already contains first two messages because, 𝑅𝑒𝑐𝑣0 process has filled in these

messages which were the parameters of 𝑅𝑒𝑐𝑣𝑖 , after it had received second message.

The generation and sending of fourth message, which is 𝑠𝑒𝑛𝑑. 𝐴. 𝐵. ⟨𝑑0, 𝑕40 , 𝑕4⟩

is similar to the third message. After the reception of fourth message, contents of the

buffer set 𝑅 becomes as follows:

𝑅 = 0, ⟨𝑑0⟩ , 1, ⟨𝑑1, 𝑕0⟩ , 2, ⟨𝑑1, 𝑕4 , 𝑕0⟩ , (3, ⟨𝑑0, 𝑕40, 𝑕4⟩)

 Finally, sender decides to send the signature message by evolving into 𝑆𝑒𝑛𝑑𝑛

process. The signature message is composed of the hashes of third and fourth messages,

encrypted with the private key of the sender: 𝑠𝑒𝑛𝑑. 𝐴. 𝐵. 𝑃𝑘. (𝑠𝑘. 𝐴, ⟨𝑕40 , 𝑕522 ⟩). The

receiver knows the dual of 𝑠𝑘. 𝐴, which is 𝑝𝑘. 𝐴 (i.e. public key of 𝐴), and is able to

decrypt the contents of the message. As the receiver could decrypt the message using

𝐴’s public key, it believes that message is valid, and puts it into verified set, which is

the parameter of 𝐶𝑕𝑒𝑐𝑘 process.

Up to this point, the sender and receiver have completed their protocol runs and

sender is ready to start a new run. However, the receiver needs to verify the messages

before it can continue; so it evolves into 𝐶𝑕𝑒𝑐𝑘 process.

Initially, the 𝐶𝑕𝑒𝑐𝑘 process has the parameters:

𝑅 = 0, ⟨𝑑0⟩ , 1, ⟨𝑑1, 𝑕0⟩ , 2, ⟨𝑑1, 𝑕4, 𝑕0⟩ , (3, ⟨𝑑0, 𝑕40 , 𝑕4⟩)

𝑉 = {(4, ⟨𝑕40 , 𝑕522 ⟩)}

𝑖 = 3

For 𝑖 = 3, the process finds that 𝑃4 ∈ 𝑉, so it outputs 𝑑0 using 𝑝𝑢𝑡𝐷𝑎𝑡𝑎

channel, adds 𝑃3to 𝑉 set and removes it from 𝑅. In the next iteration, 𝑖 = 2, process also

finds out that 𝑃3, 𝑃4 ∈ 𝑉 and continues until the index 0 is verified. At the end of the

𝐶𝑕𝑒𝑐𝑘 process, the contents of 𝑅 and 𝑉 sets are:

𝑅 = { }

𝑉 = 0, ⟨𝑑0⟩ , 1, ⟨𝑑1, 𝑕0⟩ , 2, ⟨𝑑1, 𝑕4, 𝑕0⟩ , 3, ⟨𝑑0, 𝑕40 , 𝑕4⟩ , (4, ⟨𝑕40 , 𝑕522 ⟩)

Obviously, the set 𝑅 be still empty, if some protocol messages were left

unverified, but the 𝑉 set would not contain all the received messages. Additionally, as

44

the process starts validation from the last protocol message, the data would be output

with an inverted order on 𝑝𝑢𝑡𝐷𝑎𝑡𝑎 channel, which is not a problem.

Finally, the 𝐶𝑕𝑒𝑐𝑘 process evolves into 𝑅𝑒𝑐𝑣0 process, forgetting all values in

sets 𝑅 and 𝑉, allowing a fresh protocol run with the sender process.

4.6. Reduction of Infinite State Model to Finite Model

The protocol model developed in Section 4.4 is not suitable for model checking,

in which the state space is very large and cannot be verified by the finite computing

resources. Thus, in this section, the sources of larger state space is identified, solutions

are stated and implemented in the protocol model.

4.6.1. Analyzing the Infinite State CSP Model

In the previous section, the EMSS protocol hash chaining mechanism are

modeled using CSP; by assigning each possible protocol message a unique hash value.

While this approach can successfully model the protocol, problems arise when verifying

the model using model checking.

The first problem is the infamous state-space explosion problem. When FDR

tries to construct the state space of the system, a new state is generated for each distinct

item in the 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕 set. However, the cardinality of 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕 set can be quite high,

even if a small 𝐴𝑙𝑙𝐷𝑎𝑡𝑎 set is used. For example, for 𝐴𝑙𝑙𝐷𝑎𝑡𝑎 = 2, there will be

around 150 million different ways of constructing fifth protocol message, as given in

Table 4.1.

Table 4.1. The Size of 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕 Set for Two Data Values

𝑖 0 1 2 3 4

|𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕𝑖| 2 4 72 12168 ~150 𝑀

This exponential increase of the cardinality of the 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕 set makes model

checking infeasible beyond four messages, even if two distinct data values are used.

45

Another problem is the time complexity of the 𝑕𝑎𝑠𝑕 function. As the 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕

set grows bigger, it would take more time to select the correct hash value from the set,

even if all the required states could be held in memory.

There are two kinds of reductions to solve state space explosion problem. First

one is the application of state space compression techniques which the model checker

provides. These are general techniques which are designed to be run on any LTS or

process. The second kind is the simplification of the model, which is the approach

described in the next sections.

Therefore it can be concluded that the bulk of the state space explosion is caused

by the complexity of the 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕 set and the hash chain model needs to be refined by

abstracting unnecessary details away.

4.6.2. Revisions on the Data Model

As discussed in previous sections, the 𝐴𝑙𝑙𝐷𝑎𝑡𝑎 set contains 𝑚 different data

values, which symbolizes all the data values in the system. However, the actual contents

of the data transferred do not have an effect on the behavior of the protocol.

Thus, one data item is sufficient to represent all data values in the protocol and

the upper bound of the size of 𝐴𝑙𝑙𝐷𝑎𝑡𝑎 set should be one. This is actually dropping the

set and choosing one symbol to represent all data items, instead.

 To implement this revision, the 𝐴𝑙𝑙𝐷𝑎𝑡𝑎 (and 𝐷𝐴𝑇𝐴 set in implementation) is

omitted. The data item could be symbolized by a fact 𝑑. 𝐴𝑔𝑒𝑛𝑡, where 𝐴𝑔𝑒𝑛𝑡 is the set

of all agent identities. This change makes verification more convenient, as the origin of

the data is more interesting than its value.

 This revision is sound, because different values of data items are ignored by the

processes. So, there is no point in having more than one data value.

Conversion of the model is actually an application of data independence on this

protocol model. Note that all processes, using the 𝐴𝑙𝑙𝐷𝑎𝑡𝑎 set, satisfy the 𝑁𝑜𝐸𝑞𝑇𝑇

condition; that is there are no implicit or explicit equivalence tests between the members

of 𝐴𝑙𝑙𝐷𝑎𝑡𝑎 set. Additionally, in the traces, it does not matter which member of 𝐴𝑙𝑙𝐷𝑎𝑡𝑎

set is recorded. Hence, 𝐴𝑙𝑙𝐷𝑎𝑡𝑎 = 1 and the replacement of 𝐴𝑙𝑙𝐷𝑎𝑡𝑎 set by a single

value is a sound reduction.

46

4.6.3. Bounding the Size of Hash Sets

In the hashing mechanism presented, the hash value of a given protocol message

is calculated explicitly using the 𝑕𝑎𝑠𝑕 function, which maps each protocol message to a

single correct hash value. All other hash values would be incorrect, as there is one

correct hash value.

This observation means that, while building the state space of the system, one

value represents the correct hash value and all the remaining values represent incorrect

hash values. If all incorrect hash values are symbolized as a single value, the state space

would be reduced greatly (Figure 4.9).

Thus, two symbolic facts are declared; 𝑕𝐶 , represents a correct hash value and

𝑕𝐼 , represents an incorrect hash value, with respect to the corresponding previous

message. In this case, a message 𝑃𝑖 = 〈𝑑. 𝐴, 𝑕𝐶 , 𝑕𝐼〉 represents a message, carrying data

from agent 𝐴𝑙𝑖𝑐𝑒 and correct hash value for 𝑃𝑖−1 and an incorrect hash value for 𝑃𝑖−2.

Figure 4.9. Correct and Incorrect Hash Values

Exactly one symbolic value is used instead of all of the incorrect hash values

and there’s no need to know which incorrect value has arrived. This approach greatly

reduces the state space of the system and makes model checking possible, without

losing any attacks.

⟨𝑑⟩ ⟨𝑑, 𝑕𝑖⟩ ⟨𝑑, 𝑕𝑖 , 𝑕𝑗 ⟩ ⟨𝑑, 𝑕𝑖 , 𝑕𝑗 ⟩

𝑕𝑖 = 𝑕𝑎𝑠𝑕 𝑃0

𝑕𝑖 = 𝑕𝑎𝑠𝑕 𝑃0 ,

 𝑕𝑗 = 𝑕𝑎𝑠𝑕(𝑃1)

𝑃0 𝑃1 𝑃2 𝑃𝑥

…

𝑕𝑖 = 𝑕𝑎𝑠𝑕 𝑃𝑥−1 ,

𝑕𝑗 = 𝑕𝑎𝑠𝑕(𝑃𝑥−2)

∀𝑕𝑗 ∈ 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕,

 𝑗 ≠ 𝑖

∀𝑕𝑘 ∈ 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕,
 𝑘 ≠ 𝑖 ∨ 𝑘 ≠ 𝑗

∀𝑕𝑘 ∈ 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕,
 𝑘 ≠ 𝑖 ∨ 𝑘 ≠ 𝑗

Correct

 Incorrect

47

For instance, the following set of messages represents a run of the protocol,

without any intervention from the attacker:

〈𝑑. 𝐴〉, 〈𝑑. 𝐴, 𝑕𝐶〉, 〈𝑑. 𝐴, 𝑕𝐶 , 𝑕𝐶〉, … , 𝑃𝑘. (𝑠𝑘. 𝑎, 〈𝑕𝐶 , 𝑕𝐶〉)

Next, 𝐴𝑙𝑙𝐻𝑎𝑠𝑕𝑒𝑠 and 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕 sets need to be redefined. The new symbolic

hash values 𝑕𝐶 and 𝑕𝐼 are members of 𝐴𝑙𝑙𝐻𝑎𝑠𝑕𝑒𝑠 such that 𝐴𝑙𝑙𝐻𝑎𝑠𝑕𝑒𝑠 = {𝑕𝐶 , 𝑕𝐼}.

Also, the 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕 set no longer needs to contain all possible mappings of hashes and

messages. It is redefined so that it contains only the messages whose hashes are correct:

𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕 = {〈𝑑𝑎𝑡𝑎. 𝐴〉, 〈𝑑𝑎𝑡𝑎. 𝐴, 𝑕𝐶〉, 〈𝑑𝑎𝑡𝑎. 𝐴, 𝑕𝐶 , 𝑕𝐶 〉}

 The receiver needs to calculate the hashes of incoming messages, so a simplified

hash function is used:

𝑕𝑎𝑠𝑕 𝑑𝑠 = 𝑖𝑓 𝑕 = ∅ 𝑡𝑕𝑒𝑛 𝑕𝐼 𝑒𝑙𝑠𝑒 𝑕𝐶

where 𝑕 = { 𝑕 | 𝑑𝑠 ∈ 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕, 𝑑𝑠 = 𝑠 }.

 Having defined a new hashing mechanism, it is necessary to show that this

mechanism is compatible with the hashing assumptions. The revised model satisfies the

first assumption, because no mechanism is present to deduce the input from hash values

𝑕𝐼 and 𝑕𝐶 .

 As all incorrect hash values are mapped to a single symbolic value 𝑕𝐼 , different

input messages can have the same hash value. However, it is unnecessary to know the

exact incorrect hash value, but rather whether the value is right or wrong. In this sense,

it can be concluded that the model satisfies this condition.

4.6.4. Revisions on Agent Processes

In the 𝑆𝑒𝑛𝑑 process, the 𝑔𝑒𝑡𝐷𝑎𝑡𝑎 events and previous hash values in the

parameters of 𝑆𝑒𝑛𝑑𝑖 and 𝑆𝑒𝑛𝑑𝑛 are removed. Since it is assumed that the sender

correctly calculated the previous hashes, which are equal to 𝑕𝐶 , these parameters are not

necessary.

Moreover, the 𝐿𝑎𝑠𝑡 process is defined to be used for validation and verification

which defines the behavior of the system after the protocol run.

𝑆𝑒𝑛𝑑0 𝑖𝑑 = ⊓ 𝑏: 𝐴𝑔𝑒𝑛𝑡 •

 𝑠𝑒𝑛𝑑. 𝑖𝑑. 𝑏. 𝑑𝑎𝑡𝑎. 𝑖𝑑 →

48

 𝑠𝑒𝑛𝑑. 𝑖𝑑. 𝑏. 𝑆𝑞. 〈𝑑𝑎𝑡𝑎. 𝑖𝑑, 𝑕𝐶〉 → 𝑆𝑒𝑛𝑑𝑖 𝑖𝑑, 𝑏

𝑆𝑒𝑛𝑑𝑖 𝑖𝑑, 𝑏 = 𝑆𝑒𝑛𝑑𝑛 𝑖𝑑, 𝑏 ⊓ (𝑠𝑒𝑛𝑑. 𝑖𝑑. 𝑏. 𝑆𝑞. 〈𝑑𝑎𝑡𝑎. 𝑖𝑑, 𝑕𝐶 , 𝑕𝐶〉 →

 𝑆𝑒𝑛𝑑𝑖+1 𝑖𝑑, 𝑏)

𝑆𝑒𝑛𝑑𝑛 𝑖𝑑, 𝑏 = 𝑠𝑒𝑛𝑑. 𝑖𝑑. 𝑏. 𝑃𝑘. (𝑠𝑘. 𝑖𝑑, 𝑆𝑞. 〈𝑕𝐶 , 𝑕𝐶〉) → 𝐿𝑎𝑠𝑡

The 𝑕𝑎𝑠𝑕 function is not used in the 𝑆𝑒𝑛𝑑 process, which reduces the time

complexity of computing the transitions between states.

Similarly, the receiver process is modified to accommodate the changes, by

dropping of all instances of 𝐴𝑙𝑙𝐷𝑎𝑡𝑎 set.

𝑅𝑒𝑐𝑣0 𝑖𝑑 = □ 𝑎: 𝐴𝑔𝑒𝑛𝑡 •

 𝑟𝑒𝑐𝑣. 𝑎. 𝑖𝑑. 𝑑. 𝑎 →

 □ 𝑕𝑟0: 𝐴𝑙𝑙𝐻𝑎𝑠𝑕𝑒𝑠 •

 𝑟𝑒𝑐𝑣. 𝑎. 𝑖𝑑. 𝑆𝑞. 〈𝑑. 𝑎, 𝑕𝑟0〉 →

 𝑅𝑒𝑠𝑝𝑖(𝑖𝑑, 𝑎, {(0, 〈𝑑. 𝑎〉), (1, 〈𝑑. 𝑎, 𝑕𝑟0〉)})

𝑅𝑒𝑐𝑣𝑖(𝑖𝑑, 𝑎, 𝑅𝑒𝑐𝑣𝑑) = 𝑅𝑒𝑐𝑣𝑛(𝑖𝑑, 𝑎, 𝑅𝑒𝑐𝑣𝑑) □ (

 □ 𝑕𝑟1, 𝑕𝑟2 ∶ 𝐴𝑙𝑙𝐻𝑎𝑠𝑕𝑒𝑠 •

 𝑟𝑒𝑐𝑣. 𝑎. 𝑖𝑑. 𝑆𝑞. 〈𝑑. 𝑎, 𝑕𝑟1, 𝑕𝑟2〉 →

 𝑅𝑒𝑐𝑣𝑖+1(𝑖𝑑, 𝑎, 𝑅𝑒𝑐𝑣𝑑 ∪ (𝑖, 〈𝑑. 𝑎, 𝑕𝑟1, 𝑕𝑟2〉))

𝑅𝑒𝑐𝑣𝑛 𝑖𝑑, 𝑎, 𝑅𝑒𝑐𝑣𝑑 = □ 𝑕𝑟0, 𝑕𝑟1 ∶ 𝐴𝑙𝑙𝐻𝑎𝑠𝑕𝑒𝑠 •

 𝑟𝑒𝑐𝑣. 𝑎. 𝑖𝑑. 𝑃𝑘. 𝑠𝑘. 𝑎, 𝑆𝑞. 〈𝑕𝑟0, 𝑕𝑟1〉 →

 𝐶𝑕𝑒𝑐𝑘(𝑅𝑒𝑐𝑣𝑑, 𝑛, 〈𝑕𝑟0, 𝑕𝑟1〉 , 𝑛 − 1)

In the 𝐶𝑕𝑒𝑐𝑘 process, the hash of current message does not need to be compared

with the hash values in previous messages. It is assumed that, if any previous message

has been verified, then they contain the right hash value for the current message, which

is 𝑕𝐶 . Thus, it is needed to check whether any of the previous messages are in checked

set and hash of the current message is correct.

 Also, the recursion in 𝐶𝑕𝑒𝑐𝑘 process is removed, so that the model stops if the

protocol run is completed. Hence, 𝑅𝑒𝑐𝑣0 is replaced by 𝐿𝑎𝑠𝑡 process:

𝐶𝑕𝑒𝑐𝑘 𝑅, 𝑉, 𝑖 =

 𝑖𝑓 𝑖 < 0 𝑡𝑕𝑒𝑛

 𝐿𝑎𝑠𝑡

 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑕𝑎𝑠𝑕 𝑃𝑖 = 𝑕𝐶 𝑎𝑛𝑑 𝑃𝑖+1 ∈ 𝑉 𝑜𝑟 𝑃𝑖+2 ∈ 𝑉 𝑡𝑕𝑒𝑛

49

 𝑝𝑢𝑡𝐷𝑎𝑡𝑎. 𝑑𝑎𝑡𝑎 𝑃𝑖 →

 𝐶𝑕𝑒𝑐𝑘(𝑅 − 𝑃𝑖 , 𝑉 ∪ 𝑃𝑖 , 𝑖 − 1)

 𝑒𝑙𝑠𝑒

 𝐶𝑕𝑒𝑐𝑘(𝑅 − 𝑃𝑖 , 𝑉, 𝑖 − 1)

4.6.5. Example Run using the Revised Model

Consider the example correct protocol run defined in Section 4.5.5. which used

the infinite state model. The receiver’s buffer set 𝑅 containing the messages, before the

reception of signature message were:

𝑅 = 0, ⟨𝑑0⟩ , 1, ⟨𝑑1, 𝑕0⟩ , 2, ⟨𝑑1, 𝑕4 , 𝑕0⟩ , (3, ⟨𝑑0, 𝑕40 , 𝑕4⟩)

Using the revised model, the sender agent sends 𝑑. 𝐴 as data value instead of

{𝑑0, 𝑑1}. Thus, from verification point of view, the distinction between different data

values are eliminated, which were unnecessary. Additionally, as all the hash values are

correct, they are represented using 𝑕𝐶 in the protocol messages. Thus, the receivers’

buffer set 𝑅′ in revised model would be:

𝑅′ = 0, ⟨𝑑. 𝐴⟩ , 1, ⟨𝑑. 𝐴, 𝑕𝐶⟩ , 2, ⟨𝑑. 𝐴, 𝑕𝐶 , 𝑕𝐶⟩ , (3, ⟨𝑑. 𝐴, 𝑕𝐶 , 𝑕𝐶⟩)

𝑅’ represents not only one correct run of the protocol which sends the data

values ⟨𝑑0 , 𝑑1, 𝑑1, 𝑑0⟩, but for all instances of data values, for a chain length of 4. That

is, 𝑅′ in revised model also represents a correct run, in which data values ⟨𝑑1, 𝑑0, 𝑑0, 𝑑1⟩

are sent.

Now, assume that the intruder modifies 𝑅, such that it replaces the hash value in

message 1, such that message 1 becomes ⟨𝑑1, 𝑕3⟩. The 𝑕3 value is not a correct hash

value, and represented by 𝑕𝐼 in the revised model. Hence, the corresponding message in

revised model would be ⟨𝑑. 𝐴, 𝑕𝐼⟩. Also, the hash of this message is 𝑕𝐼 , so the 𝐶𝑕𝑒𝑐𝑘

process does not verify this message.

Additionally, intruder might modify the data value, leaving the hash values

intact. For example, the second protocol message in 𝑅 can be changed to ⟨𝑑0, 𝑕4 , 𝑕0⟩. In

the revised model, the changed message is symbolized by ⟨𝑑. 𝐼, 𝑕𝐶 , 𝑕𝐶⟩, in which the

intruder has changed the data value 𝑑. 𝐴 with its own data value 𝑑. 𝐼. Again, the 𝐶𝑕𝑒𝑐𝑘

process does not verify this message because its hash value evaluates to 𝑕𝐼 .

50

4.7. Labeling the Sequence of Messages

The EMSS protocol definition does not specify a mechanism from which the

receiver can know the sequence of the messages. The sequence numbers of messages

are important for the 𝐶𝑕𝑒𝑐𝑘 process, since it uses the sequence numbers to look them up

from the set of received messages. Therefore, it is assumed that the sequence number of

every message is sent along with the message in a way that the intruder is unable to

learn or change. Intruder is still able to change the sequence of messages, but it cannot

change the sequence numbers of the messages directly. The sequence labels used are

elements of 𝐿𝐴𝐵𝐸𝐿_𝐴𝐿𝐿 where 𝐿𝐴𝐵𝐸𝐿_𝐴𝐿𝐿 = {0. . 𝑛}, 𝑛 is the maximum chain length.

To illustrate the consequences of this problem and how the model used in this

study deals with the problem; assume the message sequence sent by the 𝑆𝑒𝑛𝑑 process:

〈𝑑. 𝐴〉, 〈𝑑. 𝐴, 𝑕𝐶〉, 〈𝑑. 𝐴, 𝑕𝐶 , 𝑕𝐶〉, 〈𝑑. 𝐴, 𝑕𝐶 , 𝑕𝐶〉, 𝑃𝑘. (𝑠𝑘. 𝑎, 〈𝑕𝐶 , 𝑕𝐶〉)

If this message is intercepted by the attacker, 𝑅𝑒𝑐𝑣 process cannot get the third

message. Then, the receiver forms the set 𝑅 as:

𝑅 = {(0, 〈𝑑. 𝐴〉), (1, 〈𝑑. 𝐴, 𝑕𝐶〉), (2, 〈𝑑. 𝐴, 𝑕𝐶 , 𝑕𝐶〉)}

where, it would not notice the lost packet. However, it can be assumed that a lost

message is equivalent to a message in which all fields contain garbage values:

𝑅 = { 0, 〈𝑑. 𝐴〉 , 1, 〈𝑑. 𝐴, 𝑕𝐶〉 , 2, 〈𝑑. 𝐴, 𝑕𝐶 , 𝑕𝐶〉 , (3, 〈𝑑. 𝐼, 𝑕𝐼 , 𝑕𝐼〉}

This trace is also a part of state space, which in turn means that the revised

model can handle lost messages as well.

51

CHAPTER 5

SPECIFICATION AND VERIFICATION OF THE

PROPOSED PROTOCOL MODEL

In this chapter, specification processes are constructed for the validation and

verification of the protocol model. The security properties of the protocol are formalized

as CSP processes, which constitutes the specification of the protocol model. Validating

the model means that checking whether the right model is built, on the other hand,

verifying the model means that checking whether the model works correctly. Finally,

refinement checking is applied on these processes to check whether the protocol adheres

to the goals it claims to have.

Additionally an evaluation of the protocol model is presented, which includes

the problems on the protocol itself and the considerations about the proposed models.

5.1. Parameters and Configurations Used

The proposed model is checked using the validation and verification properties

stated in previous sections. FDR version 2.83 is used as the model checker on a system

running Ubuntu 9.10 on Intel Core2 Duo 𝑃7350, 2.00 𝐺𝐻𝑧 processor and 4𝐺𝐵 of

RAM.

Both GUI and batch mode is present in FDR. GUI is used in the development

phase of the CSP model and the batch interface is used to run the refinement checks

found in this section.

In this study, refinement checks are run from batch interface of FDR. The

command to start the check is:

./𝑓𝑑𝑟2 𝑏𝑎𝑡𝑐𝑕 𝑂𝑃𝑇𝐼𝑂𝑁𝑆 < 𝑖𝑛𝑝𝑢𝑡 𝑓𝑖𝑙𝑒 >

The first parameter, 𝑏𝑎𝑡𝑐𝑕, is used to notify FDR to run in batch mode to run all

the checks in the specified . 𝑐𝑠𝑝 file. The 𝑂𝑃𝑇𝐼𝑂𝑁𝑆 parameter controls trace generation.

Actual values of 𝑂𝑃𝑇𝐼𝑂𝑁𝑆 parameter used in this study are:

52

 -𝑡𝑟𝑎𝑐𝑒𝑠: Instructs FDR to generate counter-example traces for any

unsatisfied refinement checks. The generated traces are output to screen.

 -𝑚𝑎𝑥 100: Maximum number of counter-example traces to generate. In

this study, this value is set to 100. This value needs to be increased when

maximum debug traces is reached in any debug trace.

 -𝑑𝑒𝑝𝑡𝑕 2: This option instructs FDR to report trace information for sub-

processes. In the refinement checks of this study, the traces of the top

level processes are hidden (i.e. all 𝜏 actions). A depth level of 2 is

required to be able to see 𝜏 actions.

The model and the refinement checks are both placed in 𝑒𝑚𝑠𝑠. 𝑐𝑠𝑝 file, which is

the last parameter of the command. The other parameters of the model checker are left

without any changes.

5.2. Specifications of the Proposed Model

In this section, the specification processes are built, which are used to check the

proposed protocol model for errors. Validation specifications are used to check whether

the process agents behave as defined in the protocol description. On the other hand,

verification specifications focus on the authentication properties of the protocol.

Three system processes are used in specification properties. The first process is

𝑆𝑦𝑠𝑡𝑒𝑚𝐵 process, which uses 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟𝐵 process is used as the intruder model.

𝑆𝑦𝑠𝑡𝑒𝑚𝐵 = 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 || 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟𝐵

The second system process uses the full intruder without the 𝑐𝑕𝑎𝑠𝑒 operation:

𝑆𝑦𝑠𝑡𝑒𝑚𝐹 = 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 || 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟𝐹

The final system process uses the full intruder, which uses the 𝑐𝑕𝑎𝑠𝑒 operation:

𝑆𝑦𝑠𝑡𝑒𝑚𝐹𝐶 = 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 || 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟𝐹𝐶

Different system processes have only the 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟 processes different. Other

processes use the same definitions in all three system processes.

53

5.2.1. Validation Specifications

It is necessary to state some correctness properties of the protocol in order to

validate the revised protocol model. For both properties, the 𝐿𝑎𝑠𝑡 process is defined as

𝐿𝑎𝑠𝑡 = 𝑡𝑒𝑠𝑡. 𝑜𝑘 → 𝑆𝑇𝑂𝑃.

Property 1: The first validation property checks whether the agents can finish

the protocol run in a trusted network. To check the first property, two refinement checks

are constructed. First refinement check asserts that a state where both agents perform

the 𝑡𝑒𝑠𝑡. 𝑜𝑘 event is reachable, using 𝑆𝑦𝑠𝑡𝑒𝑚𝐵:

𝑆𝑇𝑂𝑃 ⊑𝑇 𝑆𝑦𝑠𝑡𝑒𝑚𝐵 \ {Σ − {𝑡𝑒𝑠𝑡}}

where Σ is the set of all events in the system. If the model is correct, then this

check should fail and return the debug trace of a correct run.

The second refinement check asserts the same property, using a specification

process 𝑆𝑝𝑒𝑐0, which is defined as 𝑆𝑝𝑒𝑐0 = 𝑡𝑒𝑠𝑡. 𝑜𝑘 → 𝑆𝑇𝑂𝑃. According to 𝑆𝑝𝑒𝑐0, the

system should eventually perform a 𝑡𝑒𝑠𝑡. 𝑜𝑘 event. The refinement check is:

𝑆𝑝𝑒𝑐0 ⊑𝑇 𝑆𝑦𝑠𝑡𝑒𝑚𝐵 \ { Σ − {𝑡𝑒𝑠𝑡} }

This check should succeed if the system is correct; since the system’s every

behavior should be a subset of 𝑆𝑝𝑒𝑐0’s behavior.

Property 2: The second validation property tests the protocol model using the

full intruder model. So, 𝑆𝑦𝑠𝑡𝑒𝑚𝐹 and 𝑆𝑦𝑠𝑡𝑒𝑚𝐹𝐶 processes are used as system

processes in the refinement checks. The first and second refinement checks assert that a

state where both agents perform the 𝑡𝑒𝑠𝑡. 𝑜𝑘 event is reachable, using 𝑆𝑦𝑠𝑡𝑒𝑚𝐹 and

𝑆𝑦𝑠𝑡𝑒𝑚𝐹𝐶 processes, respectively.

𝑆𝑇𝑂𝑃 ⊑𝑇 𝑆𝑦𝑠𝑡𝑒𝑚𝐹 \ {Σ − {𝑡𝑒𝑠𝑡}}

𝑆𝑇𝑂𝑃 ⊑𝑇 𝑆𝑦𝑠𝑡𝑒𝑚𝐹𝐶 \ {Σ − {𝑡𝑒𝑠𝑡}}

If the proposed model is correct, the 𝑡𝑒𝑠𝑡. 𝑜𝑘 event is reachable and both checks

should return the debug trace of a successful protocol run.

Alternately, a specification process which shows the correct run of the system

could be defined, in which 𝑡𝑒𝑠𝑡 and 𝑝𝑢𝑡𝐷𝑎𝑡𝑎 events are observed:

𝑆𝑝𝑒𝑐1 = 𝑡𝑒𝑠𝑡. 𝑜𝑘 → 𝑆𝑇𝑂𝑃 ⊓ (⊓ 𝑖: 𝐿𝐴𝐵𝐸𝐿_𝐴𝐿𝐿 • 𝑝𝑢𝑡𝐷𝑎𝑡𝑎. 𝑖. 𝐴𝑙𝑖𝑐𝑒 → 𝑆𝑝𝑒𝑐1)

54

According to 𝑆𝑝𝑒𝑐1, the system process can communicate 𝑡𝑒𝑠𝑡. 𝑜𝑘 without any

data output or after output of some data. The refinement checks involving 𝑆𝑝𝑒𝑐1 are:

𝑆𝑝𝑒𝑐1 ⊑𝑇 𝑆𝑦𝑠𝑡𝑒𝑚𝐹 \ {Σ − {𝑡𝑒𝑠𝑡, 𝑝𝑢𝑡𝐷𝑎𝑡𝑎}}

𝑆𝑝𝑒𝑐1 ⊑𝑇 𝑆𝑦𝑠𝑡𝑒𝑚𝐹𝐶 \ {Σ − {𝑡𝑒𝑠𝑡, 𝑝𝑢𝑡𝐷𝑎𝑡𝑎}}

Both checks should fail, if the proposed model is correct, returning the trace of

correct runs.

Property 3: The third (and last) property focuses on the order of 𝑝𝑢𝑡𝐷𝑎𝑡𝑎

events, appear on the traces of the system. In a correct model, the sequence labels of

two subsequent 𝑝𝑢𝑡𝐷𝑎𝑡𝑎 events should be different and the second event should have a

smaller value. To check this property, 𝑆𝑝𝑒𝑐2 process is used:

𝑆𝑝𝑒𝑐2(𝑖) = 𝑡𝑒𝑠𝑡. 𝑜𝑘 → 𝑆𝑇𝑂𝑃 ⊓ (⊓ 𝑖_: 𝐿𝐴𝐵𝐸𝐿_𝐴𝐿𝐿 •

 𝑖_ < 𝑖 & 𝑝𝑢𝑡𝐷𝑎𝑡𝑎. 𝑖_. 𝐴𝑙𝑖𝑐𝑒 → 𝑆𝑝𝑒𝑐2(𝑖_)

The related refinement checks are:

𝑆𝑝𝑒𝑐2 𝑛 ⊑𝑇 𝑆𝑦𝑠𝑡𝑒𝑚𝐹 \ Σ − 𝑡𝑒𝑠𝑡, 𝑝𝑢𝑡𝐷𝑎𝑡𝑎

𝑆𝑝𝑒𝑐2(𝑛) ⊑𝑇 𝑆𝑦𝑠𝑡𝑒𝑚𝐹𝐶 \ {Σ − {𝑡𝑒𝑠𝑡, 𝑝𝑢𝑡𝐷𝑎𝑡𝑎}}

where 𝑛 is the maximum hash chain length. The models should satisfy these

checks to be correct.

5.2.2. Verification Specifications

Verification specifications state the specifications of the protocol, which is used

in the checking of the model for potential attacks. In this study, only the one-way

authentication property of EMSS protocol is verified.

If there is an attack on the protocol, then the intruder is able to trick the receiver

to think that an invalid message is valid and other messages appear on the 𝑝𝑢𝑡𝐷𝑎𝑡𝑎

channel, that are not sent by 𝐴𝑙𝑖𝑐𝑒. Therefore, the refinement checks based on this

observation are:

𝑆𝑇𝑂𝑃 ⊑𝑇 𝑆𝑦𝑠𝑡𝑒𝑚𝐹𝐶 \ {Σ − 𝑝𝑢𝑡𝐷𝑎𝑡𝑎. 𝑖. 𝐴𝑙𝑖𝑐𝑒 0 ≤ 𝑖 < 𝑛 }}

𝑆𝑇𝑂𝑃 ⊑𝑇 𝑆𝑦𝑠𝑡𝑒𝑚𝐹 \ {Σ − 𝑝𝑢𝑡𝐷𝑎𝑡𝑎. 𝑖. 𝐴𝑙𝑖𝑐𝑒 0 ≤ 𝑖 < 𝑛 }}

55

As the receiver process puts validated messages on 𝑝𝑢𝑡𝐷𝑎𝑡𝑎 channel, any

message that is not coming from 𝐴𝑙𝑖𝑐𝑒 is considered fake. Thus, if the protocol model

has any attacks, this refinement check is not satisfied, and returning the debug trace of

the attack. Otherwise, the check is satisfied.

If these refinement checks fail, debug traces will be generated, which show the

sequence of messages forming the attack. On the other hand, if they are satisfied, it can

be concluded that there are no attacks on this model of the protocol.

Both 𝑆𝑦𝑠𝑡𝑒𝑚𝐹 and 𝑆𝑦𝑠𝑡𝑒𝑚𝐹𝐶 processes are used in this property. Although it is

enough to apply refinement checking to one of these processes, both processes are

checked.

5.3. Refinement Checking of the Proposed Model

The proposed model has been checked using the refinement checks defined in

previous section. Table 5.1 shows the results of validation specifications.

Table 5.1. Results of Refinement Checks of Validation Properties

Property -

Check
Intruder # of States

of

Transitions
Result

of counter

examples

1 Property 1 – 1 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟𝐵 47 60 fail 1

2 Property 1 – 2 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟𝐵 48 61 pass -

3 Property 2 – 1 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟𝐹 10,514 42,709 fail 32

4 Property 2 – 2 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟𝐹𝐶 830 1,916 fail 1

5 Property 2 – 3 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟𝐹 10,546 42,901 pass -

6 Property 2 – 4 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟𝐹𝐶 831 1,917 pass -

7 Property 3 – 1 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟𝐹 10,875 43,815 pass -

8 Property 3 – 2 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟𝐹𝐶 858 1,944 pass -

The first property involved checking the agents’ behavior using a basic intruder

process. The first check failed and returned the debug trace of a correct protocol run,

which is given in Figure 5.1. The second check was passed, which indicates the

systems’ behavior is equivalent to the 𝑆𝑝𝑒𝑐0 process in Traces model.

56

Figure 5.1. The Debug Trace of the First Validation Property

The second property checks the model using 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟𝐹 and 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟𝐹𝐶

processes. Checks one and two failed as expected, but there were different number of

debug traces generated. This is an effect of the 𝑐𝑕𝑎𝑠𝑒 function, in the 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟𝐹𝐶

process, which causes the model checker to follow immediate 𝜏 events. So, the state

space is reduced and a shorter run than the trace in Figure 5.1 is returned (Figure 5.2).

Figure 5.2. The Debug Trace for Second Property, using 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟𝐹𝐶

Additionally, the debug traces generated from the first check of second property

are all possible correct runs, which are reachable in the state space of the model. The

 _𝑡𝑎𝑢

 𝑠𝑒𝑛𝑑. 𝐴𝑙𝑖𝑐𝑒. 𝐵𝑜𝑏. 𝑑. 𝐴𝑙𝑖𝑐𝑒

 𝑟𝑒𝑐𝑣. 𝐴𝑙𝑖𝑐𝑒. 𝐵𝑜𝑏. 𝑑. 𝐴𝑙𝑖𝑐𝑒

 𝑠𝑒𝑛𝑑. 𝐴𝑙𝑖𝑐𝑒. 𝐵𝑜𝑏. 𝑆𝑞. < 𝑑. 𝐴𝑙𝑖𝑐𝑒, 𝑕𝐶 >

 𝑟𝑒𝑐𝑣. 𝐴𝑙𝑖𝑐𝑒. 𝐵𝑜𝑏. 𝑆𝑞. < 𝑑. 𝐴𝑙𝑖𝑐𝑒, 𝑕𝐶 >

 _𝑡𝑎𝑢

 𝑠𝑒𝑛𝑑. 𝐴𝑙𝑖𝑐𝑒. 𝐵𝑜𝑏. 𝑃𝑘. (𝑠𝑘. 𝐴𝑙𝑖𝑐𝑒, < 𝑕𝐶, 𝑕𝐶 >)

 𝑟𝑒𝑐𝑣. 𝐴𝑙𝑖𝑐𝑒. 𝐵𝑜𝑏. 𝑃𝑘. (𝑠𝑘. 𝐴𝑙𝑖𝑐𝑒, < 𝑕𝐶, 𝑕𝐶 >)

 𝑝𝑢𝑡𝐷𝑎𝑡𝑎. 1. 𝐴𝑙𝑖𝑐𝑒

 𝑝𝑢𝑡𝐷𝑎𝑡𝑎. 0. 𝐴𝑙𝑖𝑐𝑒

 𝑡𝑒𝑠𝑡. 𝑜𝑘

 _𝑡𝑎𝑢

 𝑠𝑒𝑛𝑑. 𝐴𝑙𝑖𝑐𝑒. 𝐵𝑜𝑏. 𝑑. 𝐴𝑙𝑖𝑐𝑒

 𝑟𝑒𝑐𝑣. 𝐴𝑙𝑖𝑐𝑒. 𝐵𝑜𝑏. 𝑑. 𝐴𝑙𝑖𝑐𝑒

 𝑟𝑒𝑐𝑣. 𝐴𝑙𝑖𝑐𝑒. 𝐵𝑜𝑏. 𝑆𝑞. < 𝑑. 𝐴𝑙𝑖𝑐𝑒, 𝑕𝐼 >

 𝑠𝑒𝑛𝑑. 𝐴𝑙𝑖𝑐𝑒. 𝐵𝑜𝑏. 𝑆𝑞. < 𝑑. 𝐴𝑙𝑖𝑐𝑒, 𝑕𝐶 >

 _𝑡𝑎𝑢

 𝑠𝑒𝑛𝑑. 𝐴𝑙𝑖𝑐𝑒. 𝐵𝑜𝑏. 𝑃𝑘. (𝑠𝑘. 𝐴𝑙𝑖𝑐𝑒, < 𝑕𝐶, 𝑕𝐶 >)

 𝑟𝑒𝑐𝑣. 𝐴𝑙𝑖𝑐𝑒. 𝐵𝑜𝑏. 𝑃𝑘. (𝑠𝑘. 𝐴𝑙𝑖𝑐𝑒, < 𝑕𝐶, 𝑕𝐶 >)

 𝑝𝑢𝑡𝐷𝑎𝑡𝑎. 0. 𝐴𝑙𝑖𝑐𝑒

 𝑡𝑒𝑠𝑡. 𝑜𝑘

57

results of the checks of second property point to a correct protocol model, as they are

consistent with the expectations stated in previous section.

The checks for the last property were also satisfied, which was consistent with

the expectations. Therefore, it is concluded that the model is valid and further

verification can be performed on the model.

Verification properties were also performed using 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟𝐹 and 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟𝐹𝐶

processes (Table 5.2.). All authentication properties are satisfied, so no attacks could be

found on the proposed model.

Table 5.2. Results of Refinement Checks for Verification Properties

Property –

Check
Intruder # of States

of

Transitions
Result

of counter

examples

1 Property 1 – 1 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟𝐹 10,546 42,901 pass -

2 Property 1 – 2 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟𝐹𝐶 831 1917 pass -

Analysis in previous studies could not find any attacks on protocol models of

EMSS Protocol. Verification of EMSS Protocol using compositional proof rules in

Team Automata also did not find any attacks on the protocol (ter Beek, et al. 2003,

2006)., where the protocol is verified with multiple senders and multiple receivers.

On the other hand, this study only uses single sender and single receiver. The

limitation in this study could be removed using data independence techniques.

However, only the application of data independence techniques is not enough. The

protocol does not specify a way of distinguishing different message streams on the same

network. Such a distinction is necessary for further analysis of the protocol.

Another verification of the EMSS protocol expressed the hash chains as graphs

and reduced the authentication problem to the reachability problem over the graph

(Perrig, et al. 2000). Although this study also proved the security properties of the

protocol, the approach taken cannot be applied for general protocol schemas

58

CHAPTER 6

CONCLUSIONS

 The main contribution of this study is the verification of EMSS authentication

protocol by model checking using CSP / FDR framework. The EMSS protocol had been

verified previously by only theorem proving techniques and this work constitutes the

first attempt to model EMSS using model checking.

First of all, the infinite state protocol model was constructed based on the

modeling assumptions presented in Section 4.2. Fixed sized hash value approach was

introduced along with the necessary structures to support its operation, since the

straightforward use of tagging cannot model hash chains in EMSS protocol model.

Although the infinite state model was successful in representing EMSS protocol

in CSP, it was not suitable for symbolic model checking. Therefore, this model was

revised and the hash chain model was identified as the source of the state space

explosion problem. Moreover, the 𝑕𝑎𝑠𝑕 function needed to lookup hash values from a

very large 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕 set which causes high time complexity of computing the

transitions.

The application of revisions in Section 4.6 reduced the state space of the model

to finite number of states. First of all, the size of 𝐴𝑙𝑙𝐷𝑎𝑡𝑎 set was limited to a single

symbolic value which could symbolize all data values. Next, the hash chain model was

revised. The hash values were subscripted in the infinite state model, all of which were

used to denote correct and incorrect hash values. Therefore, 𝑕𝐶 and 𝑕𝐼 symbols are used

to symbolize correct and incorrect hash values, which effectively reduced the state

space.

After the application of aforementioned revisions, the revised model was

validated and verified using FDR. The model was validated to check that the agent

processes could function as described in the protocol definition. After validation, the

model was verified for any attacks, but FDR could not find any attacks on the reduced

protocol model.

59

This is the second study to model and verify a stream authentication protocol

using CSP and model checking. The first study was the analysis of TESLA protocol

using CSP and FDR (Broadfoot and Lowe 2002). This study is different in terms of

modeling hash chains mechanism of the EMSS; since TESLA protocol used key

chaining mechanisms. Therefore the CSP model of TESLA protocol requires more

complex implementation of data independence techniques.

In addition to this study, the previous studies (ter Beek, et al. 2003, 2006) could

not find any attacks on the EMSS protocol, using compositional proof rules of Team

Automata. In contrast with this study, the protocol is proved to be correct for multiple

sender and receivers scenario in these studies.

Future studies might include a generalized approach in modeling the stream

authentication protocols, which roots from the comparison and contrasting with Lowe’s

work. This may also lead to tool like Casper (Lowe 1998) or an extension to Casper,

which can allow automated checking of stream authentication protocols.

This work may also provide insight about different assumptions on the network

(e.g. the receivers cannot communicate with each other, the intruder cannot block

messages, etc…). For instance, weaker intruder models than Dolev - Yao Intruder

model (Nguyen and Roscoe 2009) could be used as the intruder in the protocol model.

Weaker intruders should cause a reduction in state-space, allowing for more complex

behaviors of the protocol to be verified without losing any attacks.

60

REFERENCES

Abadi, M. (2000). “Security Protocols and Their Properties”, NATO ASI Series F

Computer and Systems Sciences 175: 39-60.

Alur, R. and Dill, D.L. (1994). “A Theory of Timed Automata”, Theoretical Computer

Science 126: 183-235.

Anderson, R., Bergadano, F., Crispo, B., Lee, J.H., Manifavas, C. and Needham, R.

(1998). “A New Family of Authentication Protocols”, ACM SIGOPS Operating

Systems Review 32: 9-20.

Bolton, C. and Lowe, G. (2003). “On the Automatic Verification of Non-Standard

Measures of Consistency”, Proceedings of 6
th

 International Workshop on Formal

Methods (IWFM).

Bolton, C. and Lowe, G. (2004). “A Hierarchy of Failures-Based Models”, Electronic

Notes in Theoretical Computer Science 96, Elsevier: 129-152.

Bowman, H. and Gomez, R. (2006). Concurrency Theory, Calculi and Automata for

Modelling Untimed and Timed Concurrent Systems, Springer, ISBN-13:

9781852338954.

Broadfoot, P.J. and Lowe, G. (2002). “Analysing a Stream Authentication Protocol

Using Model Checking”, Lecture Notes In Computer Science 2502, Springer and

Proceedings of the 7
th

 European Symposium on Research in Computer Security:

146-161.

Brookes, S.D., Hoare, C.A.R. and Roscoe, A.W. (1984). “A Theory of Communicating

Sequential Processes”, Journal of the ACM 31: 560-599.

Burrows, M., Abadi, M. and Needham, R. (1990). “A Logic of Authentication”, ACM

Transactions on Computer Systems 8: 18-36.

Canetti, R., Garay, J., Itkis, G., Micciancio, D., Naor, M. and Pinkas, B. (1999).

“Multicast Security: A Taxonomy and Some Efficient Constructions”, 18
th

 Annual

Joint Conference of the IEEE Computer and Communications Societies

(INFOCOM) 2: 708-716.

Clarke E.M., Grumberg O. and Peled D.A. (1999). Model checking, The MIT Press,

ISBN-13: 978-0262032704.

Creese, S.J. and Reed, J. (1999). “Verifying End-to-End Protocols Using Induction with

CSP/FDR”, Lecture Notes in Computer Science 1586, Springer and Proceedings

of IPPS/SPDP'99 Workshops Held in Conjunction with the 13th International

61

Parallel Processing Symposium and 10th Symposium on Parallel and Distributed

Processing: 1243-1257.

Donovan, B., Norris, P. and Lowe, G. (1999). “Analyzing a Library of Security

Protocols Using Casper and FDR”, Proceedings of the Workshop on Formal

Methods and Security Protocols.

Davies, J. (2006). “Using CSP”, Refinement Techniques in Software Engineering,

Springer: 64-122.

Dilloway, C. and Lowe, G. (2007). “On the Specification of Secure Channels”,

Proceedings of the Workshop on Issues in the Theory of Security (WITS '07).

Dolev, D. and Yao, A.C. (1981). “On the Security of Public Key Protocols”,

Proceedings of the 22
nd

 Annual Symposium on Foundations of Computer Science,

IEEE Computer Society: 350-357.

Emerson, E.A. and Clarke, E.M. (1982). “Using Branching Time Temporal Logic to

Synthesize Synchronization Skeletons”, Science of Computer Programming 2:

241-266.

Gennaro, R. and Rohatgi, P. (1997). “How to Sign Digital Streams”, Lecture Notes in

Computer Science 1297, Springer: 180-197.

Glabbeek, R.J. van. (2000). “The Linear Time-Branching Time Spectrum I – The

Semantics of Concrete, Sequential Processes”, Handbook of Process Algebra,

Elsevier: 3-99.

Goldsmith, M. (2005). “FDR2 User’s Manual version 2.82” Technical Report.

Goldsmith, M. (2005). “Operational Semantics for Fun and Profit”, Lecture Notes in

Computer Science 3525/2005, Springer: 265-274.

Gorrieri, R., Martinelli, F. and Petrocchi, M. (2008). “Formal Models and Analysis of

Secure Multicast in Wired and Wireless Networks”, Journal of Automated

Reasoning 41, Springer: 325-364.

Hoare, C.A.R. (1978). “Communicating Sequential Processes”, Communications of the

ACM 21: 666-677.

Hoare, C.A.R. (1985). Communicating Sequential Processes. Prentice-Hall, Inc.

International Series in Computer Science, ISBN-10:0131532715.

Hui, M.L. and Lowe, G. (1999). “Safe Simplifying Transformations for Security

Protocols or not just the Needham Schroeder Public Key Protocol”, Proceedings

of the 12
th

 IEEE workshop on Computer Security Foundations: 32-43.

Hui, M.L. and Lowe, G. (2001). “Fault-Preserving Simplifying Transformations for

Security Protocols”, Journal of Computer Security 9: 3-46.

62

Keller, R.M., (1976). “Formal Verification of Parallel Programs”, Communications of

the ACM 19/7: 371–384.

Krzysztof, R. and Kozen, D.С. (1986). “Limits for Automatic Verification of Finite-

State Concurrent Systems”, Information Processing Letters 22, Elsevier: 307-309.

Lazic, R.S. (1998). “A Semantic Study of Data Independence with Applications to

Model Checking”, Ph.D. Thesis, University of Oxford.

Leuschel, M., Massart, T. and Currie, A. (2001). “How to Make FDR Spin LTL Model

Checking of CSP by Refinement”, Lecture Notes in Computer Science

2021, Springer and Proceedings of the International Symposium of Formal

Methods Europe on Formal Methods for Increasing Software Productivity: 99 –

118.

Lowe, G. (1997). “A Family of Attacks Upon Authentication Protocols”, Technical

Report, University of Leicester.

Lowe, G. (1997). “A Hierarchy of Authentication Specifications”, Proceedings of the

10
th

 IEEE workshop on Computer Security Foundations: 31.

Lowe, G. (1997). “Breaking and Fixing the Needham-Schroeder Public-Key Protocol

Using FDR”, Software – Concepts & Tools 17, Springer: 93-102.

Lowe, G. (1998). “Casper: A Compiler for the Analysis of Security Protocols”, Journal

of Computer Security 6: 53-84.

Lowe, G. and Roscoe, A.W. (1997). “Using CSP to Detect Errors in the TMN

Protocol”, IEEE Transactions on Software Engineering 23: 659-669.

Mazurkiewicz, A. (1988). “Basic Notions of Trace Theory”, Lecture Notes in Computer

Science 354, Springer: 285–363.

Martinelli, F., Petrocchi, M. and Vaccarelli, A. (2003). “Analysing EMSS with

Compositional Proof Rules for Non-Interference”, Proceedings of the 3
rd

Workshop on Issues in the Theory of Security: 52-53.

Milner, R. (1982). A Calculus of Communicating Systems. Springer-Verlag. ISBN:

0387102353.

Needham, R.M. and Schroeder, M.D. (1978). “Using Encryption for Authentication in

Large Networks of Computers”, Communications of the ACM 21/12: 993 – 999.

Nguyen, L.H. and Roscoe, A.W. (2010). “Authentication Protocols Based on Low-

Bandwith Unspoofable Channels: A Comparative Survey”, Journal of Computer

Security (to be published).

Obraczka, K. (1998). “Multicast Transport Protocols: a Survey and Taxonomy”, IEEE

Communications Magazine 36: 94-102.

63

Ouaknine, J. and Worrell, J. (2002). “Timed CSP = Closed Timed Automata”,

Electronic Notes in Theoretical Computer Science 68, Elsevier: 142-159.

Perrig, A., Canetti, R., Tygar, J.D. and Dawn, S. (2000). “Efficient Authentication and

Signing of Multicast Streams Over Lossy Channels”, Proceedings of the 2000

IEEE Symposium on Security and Privacy: 56-75.

Petri, C.A. (1962). “Fundamentals of a Theory of Asynchronous Information Flow”,

Proceedings of the International Federation for Information Processing (IFIP)

Congress 62: 386-390.

Pnueli A. (1977). "The Temporal Logic of Programs", Proceedings of the 18th IEEE

Symposium on Foundations of Computer Science: 46-77.

Reed, G.M. and Roscoe, A.W. (1988) “A Timed Model for Communicating Sequential

Processes”, Theoretical Computer Science 58, Elsevier: 249-261.

Roscoe, A.W. (1995). “Modelling and Verifying Key-Exchange Protocols Using CSP

and FDR”, Proceedings of 8
th

 IEEE workshop on Computer Security Foundations:

98-107.

Roscoe, A.W. (1995). “CSP and Determinism in Security Modelling”, Proceedings of

1995 IEEE Symposium on Security and Privacy: 114.

Roscoe, A.W. (1996). “Intensional Specifications of Security Protocols”, Proceedings

of the 9
th

 IEEE workshop on Computer Security Foundations: 28.

Roscoe, A.W. (1998). The Theory and Practice of Concurrency, Prentice Hall, Inc.

ISBN-13: 978-0136744092.

Roscoe, A.W. (2005). “On the Expressive Power of CSP Refinement”, Formal Aspects

of Computing 17, Springer: 93-112.

Roscoe, A.W. (2008). “The Three Platonic Models of Divergence-Strict CSP”, Lecture

Notes in Computer Science 5160, Springer and Proceedings of the 5
th

International Colloquium on Theoretical Aspects of Computing (ICTAC): 23-49.

Roscoe, A.W. (2009). “Revivals, Stuckness and the Hierarchy of CSP Models”, Journal

of Logic and Algebraic Programming, ScienceDirect 78/3: 163-190.

Roscoe, A.W. and Broadfoot, P.J. (1999). “Proving Security Protocols with Model

Checkers by Data Independence Techniques”, Journal of Computer Security 7:

147-190.

Roscoe, A.W. and Broadfoot, P.J. (2002). “Internalising Agents in CSP Protocol

Models”, Proceedings of 2
nd

 Workshop on Issues in the Theory of Security.

64

Roscoe, A.W., Broadfoot, P.J. and Lowe, G. (2000). “Automating Data Independence”,

Lecture Notes in Computer Science 1895, Springer and Proceedings of the 6th

European Symposium on Research in Computer Security: 175-190.

Roscoe, A.W. and Goldsmith, M.H. (1997). “The Perfect Spy for Model-Checking

Crypto-Protocols”, Proceedings of DIMACS Workshop on the Design and Formal

Verification of Crypto-Protocols.

Roscoe, A.W. and Kleiner, E. (2006). “Modelling Unbounded Parallel Sessions of

Security Protocols in CSP” Unpublished Draft.

Roscoe, A.W., Gardiner, P. H. and Goldsmith, M.H. (1995). “Hierarchical Compression

for Model-Checking CSP, or How to Check 10^20 Dining Philosophers for

Deadlock”, Lecture Notes in Computer Science 1019 and Proceedings of the 1
st

International Workshop on Tools and Algorithms for Construction and Analysis of

Systems (TACAS): 133 – 152.

Roscoe, A.W., Reed, J.N. and Sinclair, J.E. (2007). “Responsiveness and stable

revivals”, Formal Aspects of Computing, Springer 19/3: 303-319.

Ryan, P. and Schneider, S. (1998).“An Attack on a Recursive Authentication Protocol:

A Cautionary Tale”, Information Processing Letters 65, Elsevier: 7-10.

Ryan, P., Schneider, S., Goldsmith, M., Lowe G. and Roscoe, A.W. (2001). The

Modelling and Analysis of Security Protocols: the CSP Approach. Addison-

Wesley Professional, ISBN-10: 0201674718.

Scattergood, B. (1998). “The Semantics and Implementation of Machine-Readable

CSP”, Ph.D. Thesis, University of Oxford.

Shaikh, S.A., Bush, V.J. and Schneider, S. (2009). “Specifying Authentication Using

Signal Events in CSP”, Computers & Security 28, Elsevier: 310-324.

Schneider, S. (1996). “Security Properties and CSP”, Proceedings of the 1996 IEEE

Symposium on Security and Privacy: 174-189.

Schneider, S. (1997). “Verifying Authentication Protocols with CSP”, Proceedings of

the 10
th

 IEEE workshop on Computer Security Foundations: 9.

Schneider, S. (1999). Concurrent and Real-Time Systems: the CSP Approach. John

Wiley. ISBN-13: 978-0471623731.

Schneider, S. (2002). “Verifying Authentication Protocol Implementations”,

Proceedings of 5
th

 International Conference on Formal Methods for Open Object-

Based Distributed Systems: 5.

Schneider, S. and Delicata, R. (2005). “Verifying Security Protocols: An Application of

CSP”, Lecture Notes in Computer Science 3525/2005, Springer: 243-263.

65

Tarski, A. (1955). “A Lattice-theoretical Fixpoint Theorem and Its Applications”,

Pacific Journal of Mathematics 5/2: 285–309.

ter Beek, M.H., Lenzini, G. and Petrocchi, M. (2003).“Team Automata for Security

Analysis of Multicast/Broadcast Communication”, Proceedings of Workshop on

Issues in Security and Petri Nets: 57-71.

ter Beek, M.H., Lenzini, G. and Petrocchi, M. (2006). “A Team Automaton Scenario for

the Analysis of Security Properties of Communication Protocols”, Journal of

Automata, Languages and Combinatorics 11: 345-374.

Winskel, G. and Nielsen, M. (1995). “Models for Concurrency”, Handbook of Logic in

Computer Science Semantic Modelling 4: 1-148.

Wolter, U. (2002). “CSP, Partial Automata, and Coalgebras”, Theoretical Computer

Science 280, Elsevier: 3-34.

66

APPENDIX A

-- ---

-- Data Types and Sets

-- ---

datatype fact = Sq. Seq(fact) | Hash.fact | pk. AGENT |

 sk. AGENT | Pk. (fact, Seq(fact)) |

 Alice | Bob | Cameron | hC | hI | d.AGENT

datatype TEST_ = ok

AGENT = {Alice, Bob, Cameron}

HASH = {hC, hI}

DataHash = {<d.Alice>, <d.Alice,hC>, <d.Alice,hC,hC>}

hash(s) = let

 hx = { hC | ds <- DataHash, ds == s }

 within

 if empty(hx) then

 hI

 else

 pick(hx)

n = 6

LABEL = {2..n-1}

LABEL_ALL = {0..n}

PM_0 = { (0, d.a) | a <- AGENT }

PM_1 = { (1, Sq.<d.a, h>) | a <- AGENT, h <- HASH }

PM_c = { (c_, Sq.<d.a, h1, h2>) | a <- AGENT, h1 <- HASH,

 h2 <- HASH, c_ <- LABEL}

PM_n = { (c_, Pk.(sk.a, <h1, h2>)) | a <-AGENT, h1 <- HASH,

 h2 <- HASH, c_ <- LABEL_ALL}

PM = Union({ PM_0, PM_1, PM_c, PM_n })

MESG_BODY = {m_ | (_,m_) <- PM}

Fact = Union({

 AGENT,

 {pk.a | a <- AGENT},

 {sk.a | a <- AGENT},

 HASH,

 {d.a | a <- AGENT},

 MESG_BODY

 })

channel send, recv : AGENT . AGENT . PM

channel putData : LABEL_ALL . AGENT

channel test : TEST_

-- ---

-- General Helper Functions

-- ---

67

dual(pk.arg) = sk.arg

dual(sk.arg) = pk.arg

second_((_,m_)) = m_

first_((i_,_)) = i_

data_(<d.a_>) = a_

data_(<d.a_, _>) = a_

data_(<d.a_, _, _>) = a_

pick({x}) = x

isMember_(V, i) =

 if empty({ (id_, m_) | (id_, m_) <- V, id_ == i}) then

 false

 else

 true

-- ---

-- Agent Processes

-- ---

Sender_Alice = Sender_0(Alice)

Receiver_Bob = Recv_0(Bob)

-- Sender Process

-- Send protocol messages 1 and 2

Sender_0(id) = |~| b: diff(AGENT, {id}) @

 send.id.b.(0, d.id) ->

 send.id.b.(1, Sq.<d.id, hC>) ->

 Sender_i(id,b, 2)

-- Send ith protocol message or the final message

Sender_i(id, b, i) = Sender_n(id, b, i)

 |~| (

 (i < n) &

 send.id.b.(i, Sq.<d.id, hC, hC>) ->

 Sender_i(id, b, i+1))

-- Send signature message and stop

Sender_n(id, b, i) = send.id.b.(i, Pk.(sk.id, <hC, hC>)) ->

 Last

-- Receiver Process

-- Receive protocol messages 1 and 2

Recv_0(id) = [] a: diff(AGENT, {id}) @

 recv.a.id.(0, d.a) ->

 [] hr0 : HASH @

 recv.a.id.(1, Sq.<d.a, hr0>) ->

 Recv_i(id, a, {(0, <d.a>), (1, <d.a, hr0>)} , 2)

Recv_i(id, a, received, i) = Recv_n(id, a, received, i) []

 ([] hr1 : HASH @

 [] hr2 : HASH @

 (i < n) &

 recv.a.id.(i, Sq.<d.a, hr1, hr2>) ->

68

 Recv_i(id, a, union(received, {(i, <d.a, hr1, hr2>)}),

i+1))

Recv_n(id, a, received, i) = [] hr1 : HASH @

 [] hr2 : HASH @

 recv.a.id.(i, Pk.(sk.a, <hr1, hr2>)) ->

 Checker_i(received, {(i, <hr1, hr2>)}, (i-1))

Checker_i(R, V, i) =

 let

 self_ = { (id_, m_) | (id_, m_) <- R, id_ == i}

 self = if empty(self_) then

 <>

 else

 second_(pick(self_))

 within

 if i < 0 then

 Last

 else

 if (hash(self) == hC) then

 if (isMember_(V, i+1)

 or isMember_(V, i+2)) then

 putData.i.data_(self) ->

 Checker_i(diff(R, self_),

 union(V, self_), i-1)

 else

 Checker_i(diff(R, self_), V, i-1)

 else

 Checker_i(diff(R, self_), V, i-1)

-- Last Process

Last = test.ok -> STOP

-- ---

-- Intruder

-- ---

-- Deductions

SqDeductions(X) = { (set(fs_), Sq.fs_) | Sq.fs_ <- X }

UnSqDeductions(X) = { ({Sq.fs_}, f_) | Sq.fs_ <- X, f_ <-

set(fs_) }

EncryptionDeductions(X) = { (union({k_}, set(fs_)),

 Pk.(k_,fs_)) | Pk.(k_, fs_) <- X }

DecryptionDeductions(X) = {({Pk.(k_,fs_), dual(k_)}, f_) |

 Pk.(k_,fs_) <- X, f_ <- set(fs_)}

DeductionSet(X) = Union({SqDeductions(X), UnSqDeductions(X),

EncryptionDeductions(X), DecryptionDeductions(X)})

AllDeductions = DeductionSet(Fact)

Close(S) = let S' = {f | (X, f) <- AllDeductions, diff(X,S)=={}}

69

 within

 if diff(S',S)=={} then S else Close(union(S,S'))

-- Intruder Initial Knowledge

IK' = Union({

 AGENT,

 HASH,

 { pk.a | a <- AGENT},

 {sk.Cameron}

 })

IK = Close(IK')

PossibleBasicKnowledge = union(IK,MESG_BODY)

KnowableFacts = Close(PossibleBasicKnowledge)

LearnableFacts = diff(KnowableFacts,IK)

Deductions = {(X,f) | (X,f) <- AllDeductions,

 member(f,LearnableFacts),

 not member(f,X),

 diff(X,KnowableFacts)=={}}

-- The Intruder Process

channel say,learn : MESG_BODY

channel infer : Deductions

ignorantof(f) = learn?f:MESG_BODY -> knows(f)

 [] infer?t:{(X,f') | (X,f') <- Deductions,

 f'==f} -> knows(f)

knows(f) = say?f:MESG_BODY -> knows(f)

 [] learn?f:MESG_BODY -> knows(f)

 [] infer?t:{(X,f') | (X,f') <- Deductions,

 member(f,X)} -> knows(f)

AlphaL(f) = Union({{say.f,learn.f | member(f,MESG_BODY)},

 {infer.(X,f') | (X,f') <- Deductions, (f' ==

 f) or member(f,X)}})

SayKnown = say?f:inter(IK,MESG_BODY) -> SayKnown

 [] learn?f:inter(IK,MESG_BODY) -> SayKnown

transparent chase

IntruderC'' = chase((|| f:LearnableFacts @ [AlphaL(f)]

 ignorantof(f))\{|infer|})

Intruder'' = ((|| f:LearnableFacts @ [AlphaL(f)]

 ignorantof(f))\{|infer|})

IntruderC' = IntruderC'' ||| SayKnown

Intruder' = Intruder'' ||| SayKnown

Intruder_F = (Intruder'

 [[learn.second_(m) <- send.A.B.m | A <- AGENT,

 B <- AGENT, m <- PM]]

70

 [[say.second_(m) <- recv.A.B.m | A <- AGENT,

 B <- AGENT, m <- PM]]

)

Intruder_FC = (IntruderC'

 [[learn.second_(m) <- send.A.B.m | A <- AGENT,

 B <- AGENT, m <- PM]]

 [[say.second_(m) <- recv.A.B.m | A <- AGENT,

 B <- AGENT, m <- PM]]

)

-- Basic Intruder

Intruder_B = ([] a: AGENT, b: AGENT @

 [] m: PM @

 send.a.b.m -> recv.a.b.m -> Intruder_B)

-- ---

-- System Process

-- ---

Network = (Sender_Alice [| {| test |} |] Receiver_Bob) [|

 union({| recv.Cameron |}, {| send.a_.Cameron |

 a_ <- AGENT |}) |] STOP

System_F = Network [| {| send, recv |} |] Intruder_F

System_FC = Network [| {| send, recv |} |] Intruder_FC

System_B = Network [| {| send, recv |} |] Intruder_B

-- ---

-- Specifications

-- ---

-- Validation

Spec0 = test.ok -> STOP

Spec1 = (|~| i: LABEL_ALL @

 putData.i.Alice -> Spec1) |~| test.ok -> STOP

Spec2(i) = (|~| i_:LABEL_ALL @

 i_ < i & putData.i_.Alice -> Spec2(i_))

 |~| test.ok-> STOP

assert Spec0 [T= System_B \ {| send, recv, putData |}

assert Spec1 [T= System_F \ {| send, recv |}

assert Spec1 [T= System_FC \ {| send, recv |}

assert Spec2(n) [T= System_F \ {| send, recv |}

assert Spec2(n) [T= System_FC \ {| send, recv |}

assert STOP [T= System_F \ {| send, recv, putData |}

assert STOP [T= System_FC \ {| send, recv, putData |}

assert STOP [T= System_B \ {| send, recv, putData |}

-- Verification

71

assert STOP [T= System_F \ {| send, recv, test, putData.i_.a_ |

 i_ <- LABEL_ALL,

 a_ <- AGENT,

 a_ == Alice |}

assert STOP [T= System_FC \ {| send, recv, test, putData.i_.a_ |

 i_ <- LABEL_ALL,

 a_ <- AGENT,

 a_ == Alice |}

