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ABSTRACT 

DESIGN OF A SIX DEGREE-OF-FREEDOM HAPTIC HYBRID 
PLATFORM MANIPULATOR 

The word Haptic, based on an ancient Greek word called haptios, means related 

with touch.  As an area of robotics, haptics technology provides the sense of touch for 

robotic applications that involve interaction with human operator and the environment. 

The sense of touch accompanied with the visual feedback is enough to gather most of 

the information about a certain environment. It increases the precision of teleoperation 

and sensation levels of the virtual reality (VR) applications by exerting physical 

properties of the environment such as forces, motions, textures. Currently, haptic 

devices find use in many VR and teleoperation applications.  

The objective of this thesis is to design a novel Six Degree-of-Freedom (DOF) 

haptic desktop device with a new structure that has the potential to increase the 

precision in the haptics technology. First, previously developed haptic devices and 

manipulator structures are reviewed. Following this, the conceptual designs are formed 

and a hybrid structured haptic device is designed manufactured and tested.  

Developed haptic device’s control algorithm and VR application is developed 

in Matlab© Simulink. Integration of the mechanism with mechanical, electro-

mechanical and electronic components and the initial tests of the system are executed 

and the results are presented. According to the results, performance of the developed 

device is discussed and future works are addressed. 
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ÖZET 

ALTI SERBESTLİK DERECELİ HAPTİK HİBRİT PLATFORM 
MAN İPÜLATÖRÜ TASARIMI 

Haptik kelimesi antik Yunancada haptios olarak geçmekte ve dokunma 

duyusuyla ilgili anlamına gelmektedir. Robotiğin bir uygulama alanı olan haptik 

cihazlar, robotik uygulamalara dokunma duyusunu eklemekte ve kullanıcı ile olan 

etkileşimi artırmaktadır. Görsel duyu ile birlikte dokunma duyusu, çoğu zaman 

bulunduğumuz ortamı anlamamız için yeterli olan bilgiyi sağlayabilmektedir. Haptik 

cihazlar bulunulan ortama ait kuvvet, hareket, yüzey yapısı gibi fiziksel öğeleri 

kullanıcıya ileterek uzaktan kumanda işlerinde yapılan işin hassasiyetini ve sanal 

gerçeklik uygulamalarında sanal gerçekliği artırmaktadır. Günümüzde haptik cihazlar 

birçok sanal gerçeklik ve uzaktan kumanda işlerinde kullanılmaktadır. 

Bu tezin amacı, günümüzde haptik teknolojinin sahip olduğu hassasiyeti 

artırabilecek potansiyele sahip 6 serbestlik dereceli özgün yapıda bir masaüstü haptik 

cihazı geliştirmektir. Öncelikle bu amaçla mevcut bulunan haptik cihazlar ve 

mekanizmalar incelenmiştir. Sonrasında kavramsal tasarımlar oluşturulmuş ve hibrit 

yapıda haptik cihaz tasarlanmış, üretilmiş ve test edilmiştir. 

Geliştirilen haptik cihazın kontrol algoritması ve sanal gerçeklik uygulaması 

Matlab© Simulink’ te  oluşturulmuş. Sistemin ilk denemeleri mekanik, elektromekanik 

ve elektronik kısımları ile birleştirilmesinden sonra gerçekleştirilmi ş ve geliştirilen 

cihazdan alınan sonuçlar tartışılmış ve gelecekte yapılması hedeflenen çalışmalar 

önerilmiştir.  

 



 

 vi

TABLE OF CONTENTS 

 

LIST OF FIGURES ..................................................................................................... ix 

 

LIST OF TABLES ...................................................................................................... xiv 

 

LIST OF SYMBOLS .................................................................................................. xv 

 

CHAPTER.1. INTRODUCTION .................................................................................. 1 

1.1. The Senses and the Sense of Touch ................................................... 1 

1.2. Objective of the Thesis ....................................................................... 2 

1.3. Outline ................................................................................................ 3 

 

CHAPTER.2. BACKGROUND .................................................................................... 5 

2.1. Introduction ........................................................................................ 5 

2.2. Kinaesthetic and Cutaneous Haptic Devices ...................................... 5 

2.2.1. Kinaesthetic Haptic Devices ......................................................... 6 

2.2.2. Cutaneous Haptic Devices ............................................................ 9 

2.2.3. Combination of Kinaesthetic and Cutaneous Haptic Devices .... 10 

2.3. Haptic Device Mechanisms .............................................................. 11 

2.3.1. Serial Mechanisms ...................................................................... 11 

2.3.2. Parallel Mechanisms ................................................................... 15 

2.3.3. Hybrid Mechanisms .................................................................... 18 

2.4. Haptic Applications .......................................................................... 20 

2.4.1. Haptics in Teleoperation ............................................................. 20 

2.4.2. Haptics in Virtual Reality ........................................................... 23 

2.5. Conclusion ........................................................................................ 26 

 

CHAPTER.3. COMPONENTS OF A HAPTIC DEVICE .......................................... 27 

3.1. Introduction ...................................................................................... 27 

3.2. Mechanical Components .................................................................. 27 

3.2.1. Materials ..................................................................................... 27 

3.2.2. Drive Systems ............................................................................. 29 



 

 vii

3.3. Electro-Mechanical Components ..................................................... 32 

3.3.1. Brakes Systems ........................................................................... 32 

3.3.2. Motors ......................................................................................... 36 

3.3.3. Sensors ........................................................................................ 40 

3.4. Electronic Components..................................................................... 42 

3.4.1. Commercial Data Acquisition Systems ...................................... 42 

3.4.2. Custom Data Acquisition Systems .............................................. 44 

3.5. Computer Control and Virtual Reality Software .............................. 45 

3.5.1. Simulink ...................................................................................... 46 

3.5.2. Labview ....................................................................................... 47 

3.6. Conclusion ........................................................................................ 47 

 

CHAPTER.4. MECHANISM DESIGN ...................................................................... 48 

4.1. Introduction ...................................................................................... 48 

4.2. Identification of the Task and Design Criteria ................................. 49 

4.3. Conceptual Designs .......................................................................... 50 

4.3.1. Translation Mechanisms ............................................................. 51 

4.3.2. Orientation Mechanisms ............................................................. 52 

4.4. The First Prototype Mechanism ....................................................... 55 

4.5. Design of the Final Translation Mechanism ..................................... 56 

4.5.1. Structural Design Criteria ........................................................... 56 

4.5.2. Component Design Criteria ........................................................ 60 

4.5.3. Link Dimensioning and Shape Identification  ............................ 62 

4.6. Design of the Final Orientation Mechanism ..................................... 62 

4.7. Kinematics and Static Force Analysis .............................................. 65 

 

CHAPTER.5. MANUFACTURING PROCESS ......................................................... 70 

5.1. Introduction ...................................................................................... 70 

5.2. Material Selection ............................................................................. 71 

5.3. Manufacturing Process of Translation Mechanism .......................... 71 

5.4. Manufacturing Processes of Orientation Mechanism ....................... 77 

5.5. Conclusion ........................................................................................ 80 

 

 



 

 viii

CHAPTER.6. INTEGRATION OF THE SYSTEM .................................................... 82 

6.1. Introduction ...................................................................................... 82 

6.2. Data Flow through the System ......................................................... 82 

6.3. Motor, Drive system and Motor Amplifier Selection....................... 83 

6.4. Sensor Selection and Integration ...................................................... 85 

6.5. Custom Data Acquisition System Design ........................................ 88 

6.5.1. The Components of the Custom Data Acquisition ..................... 88 

6.6. Commercial Data Acquisition System Selection and Integration .... 90 

6.7. Initial Tests and Modifications ......................................................... 92 

6.8. Conclusion ........................................................................................ 94 

 

CHAPTER.7. CONCLUSIONS ................................................................................... 95 

7.1. Conclusions ...................................................................................... 95 

7.2. Future Works .................................................................................... 96 

 

REFERENCES ............................................................................................................. 97 

 

APPENDICES 

APPENDIX A. SOURCE CODE OF THE SYSTEM ................................................ 103 

APPENDIX B. ISOMETRIC VIEWS AND PROPERTIES OF THE LINKS ........... 109 

 

 

 

 

 



 

 ix

LIST OF FIGURES 

 

Figure           Page 

Figure 2.1. Types of mechanoreceptors receptors: (a) Kinaesthetic, 

                 (b) Cutaneous .............................................................................................. ..6 

Figure 2.2. Wearable haptic application for arm: (a) Representation,  

                 (b) Actual .................................................................................................... ..7 

Figure 2.3. Wearable haptic application for hand: (a) Representation,  

                 (b) Actual .................................................................................................... ..7 

Figure 2.4. Representation of 4 wire haptic interface .................................................. ..8 

Figure 2.5. Prototype of 3-DOF parallel-type haptic device ....................................... ..8 

Figure 2.6. Garcia robot with embedded flex sensors and antenna ............................. ..9 

Figure 2.7. VITAL1: vibrotactile display .................................................................... .10 

Figure 2.8. Prototype of pen-like haptic interface ....................................................... .10 

Figure 2.9. PHANTOM® Desktop™ Haptic Device .................................................. .12 

Figure 2.10. Some products of Sensable (a) PHANTOM 1.5,  

                   (b) PHANTOM 3.0  .................................................................................. .12 

Figure 2.11. 2-DOF Haptic joystick ............................................................................ .13 

Figure 2.12. Force feedback for the index finger ........................................................ .13 

Figure 2.13. The MGA Exoskeleton ............................................................................ .14 

Figure 2.14. 5-DOF simulator for urological operations ............................................. .14 

Figure 2.15. 6 URS Haptic Device .............................................................................. .15 

Figure 2.16. Overview of 6-DOF Haptic Device......................................................... .16 

Figure 2.17. New 6-DOF Parallel Haptic Device ........................................................ .16 

Figure 2.18. CAD design of the new haptic interface ................................................. .17 

Figure 2.19. 6-DOF haptic mechanism ........................................................................ .17 

Figure 2.20. CAD model of SHaDE ............................................................................ .18 

Figure 2.21. 6-DOF haptic interface ............................................................................ .18 

Figure 2.22. Omega 6 haptic device ............................................................................ .19 

Figure 2.23. 6-DOF mechanism: (a) Overview of the device,  

                   (b) DOF of the mechanism ....................................................................... .19 

Figure 2.24. Telemanipulation system: (a) Master haptic device,  

                   (b) Micro robotic platform ........................................................................ .20 



 

 x

Figure 2.25. Teleoperation system: (a) Prototype of mobile robot,  

                   (b) Control Station .................................................................................... .21 

Figure 2.26. Teleoperation of a mobile robot .............................................................. .21 

Figure 2.27. Nano manipulation system: (a)Haptic device, (b) Atomic force  

                   microscope ................................................................................................ .22 

Figure 2.28. Teleoperation in hazardous enviroments: (a) Manned underwater  

                    backhoe, (b) Control room of developed system ..................................... .23 

Figure 2.29. 6-DOF haptic device for dental training: (a) Virtual reality  

                   application, (b) CAD design of the mechanism ........................................ .23 

Figure 2.30. A virtual sculpturing system.................................................................... .24 

Figure 2.31. A virtual-reality surgical simulator ......................................................... .24 

Figure 2.32. Virtual teleoperation robot path planning ............................................... .25 

Figure 2.33. Haptic monitoring system in rehabilitation ............................................. .25 

Figure 2.34. Haptic rehabilitation system .................................................................... .26 

Figure 3.1. Parallel haptic devices: (a) Omega 3 from force dimension,  

                 (b) Falcon from Novint ............................................................................... .28 

Figure 3.2. Omni from sensible technologies .............................................................. .29 

Figure 3.3. Mobile haptic interface VISHARD7 ......................................................... .30 

Figure 3.4. Force sensors of MGA exoskeleton haptic................................................ .30 

Figure 3.5. Capstan drive system of a haptic paddle ................................................... .31 

Figure 3.6. Capstan drive system of a medical haptic device ...................................... .31 

Figure 3.7. Wearable passive haptic interface ............................................................. .33 

Figure 3.8. Disk brake system for a haptic device ....................................................... .33 

Figure 3.9. Hybrid device with mechanic brake and motors ....................................... .34 

Figure 3.10. Hybrid device with ECB’s ...................................................................... .34 

Figure 3.11. CAD representation of mechanism ......................................................... .35 

Figure 3.12. Mechanism’s ER Brake ........................................................................... .35 

Figure 3.13. SMA actuators for tactile display ............................................................ .37 

Figure 3.14. Pneumatics in haptics (a) Pneumatic actuators, (b) Parallel 

                   haptic device ............................................................................................. .37 

Figure 3.15. PMA actuators ......................................................................................... .38 

Figure 3.16. Exoskeleton haptic with ultrasonic actuators .......................................... .38 

Figure 3.17. Magnetic levitation haptic interface ........................................................ .39 

Figure 3.18. Haptic joystick with Electrostatic actuators ............................................ .39 



 

 xi

Figure 3.19. Sensors of 2-DOF haptic joystick ........................................................... .40 

Figure 3.20. Force sensor and encoder of a haptic interface ....................................... .41 

Figure 3.21. Load cell .................................................................................................. .41 

Figure 3.22. NI PCI-6035E .......................................................................................... .43 

Figure 3.23. LABJACK U3 ......................................................................................... .43 

Figure 3.24. QUANSER Q8 hardware in the loop control board ................................ .44 

Figure 3.25. Tactile display haptic with color sensors ................................................ .45 

Figure 3.26. DAQ system of the sensor array.............................................................. .45 

Figure 3.27. 2-DOF mobile haptic device ................................................................... .46 

Figure 3.28. 2-DOF mobile haptic device ................................................................... .47 

Figure 4.1. General design phases ............................................................................... .48 

Figure 4.2. Delta manipulator ...................................................................................... .51 

Figure 4.3. Cartesian manipulator................................................................................ .51 

Figure 4.4. R-CUBE manipulator ................................................................................ .52 

Figure 4.5. Agile eye.................................................................................................... .53 

Figure 4.6. Hybrid-spherical manipulator.................................................................... .53 

Figure 4.7. Serial-spherical manipulator ...................................................................... .53 

Figure 4.8. Manufactured prototype mechanism ......................................................... .56 

Figure 4.9. R-CUBE designs: (a) Original design, (b) Rotated design ....................... .57 

Figure 4.10. Singularity in the first link: (a) Singularity if θi=±90,  

                   (b) Singularity avoidance .......................................................................... .58 

Figure 4.11. Length of the second, third and fourth links ........................................... .58 

Figure 4.12. The workspace and the Si parameter of the mechanism .......................... .59 

Figure 4.13. Joint variables and length of the first links.............................................. .59 

Figure 4.14. Platform of the mechanism...................................................................... .60 

Figure 4.15. Sensor locations and sensor hosing designs: (a) Location of the  

                   sensors, (b) The design of the sensor housings ......................................... .61 

Figure 4.16. CAD representation of joint components M4 screw, bearings  

                   and bearing plates ..................................................................................... .61 

Figure 4.17. Orientation mechanism............................................................................ .63 

Figure 4.18. Position sensors: (a) Location of the sensors, (b) Dimensions................ .64 

Figure 4.19. The CAD representation of the final design ............................................ .64 

Figure 4.20. Mechanism parameters ............................................................................ .65 

Figure 4.21. Isometric projection ................................................................................. .66 



 

 xii

Figure 4.22. Joint variable (θi) and torque (Ti) directions ........................................... .67 

Figure 4.23. Wr point of the mechanism ..................................................................... .69 

Figure 5.1. Base frame of the mechanism: (a) Parts, (b) Assembled structure ........... .72 

Figure 5.2. Shafts of the mechanism: (a) CAD representation of shafts with 

                 M4 screw thread, (b) View of the bearings on shaft ................................... .72 

Figure 5.3. Wire-erosion machine ............................................................................... .73 

Figure 5.4. Links of the mechanism: (a) Bearing plates, (b) View of the joint ........... .73 

Figure 5.5. Custom gage for bearing houses ............................................................... .74 

Figure 5.6. Links of the mechanism: (a) Link 1, (b) Link 3 ........................................ .74 

Figure 5.7. Links of the mechanism: (a) Link 4, (b) Assembled links ........................ .75 

Figure 5.8. Manufacturing process of Link5: (a) CAD representation of  

                 first edge removing, (b) Manufacturing process of first edge 

                 removing ..................................................................................................... .75 

Figure 5.9. Custom fixture for link 5 ........................................................................... .76 

Figure 5.10. Manufacturing process of Link5: (a) CAD representation of  

                   second edge removing, (b) Manufacturing process of second  

                   edge removing........................................................................................... .76 

Figure 5.11. Finished platform of the mechanism ....................................................... .77 

Figure 5.12. Orientation Mechanism ........................................................................... .77 

Figure 5.13. Base of the orientation mechanism ......................................................... .78 

Figure 5.14. Link 1: CAD representation of link 1, (b) Link 1 and link 2 .................. .78 

Figure 5.15. CAD representation of link 2 .................................................................. .79 

Figure 5.16. Link 3: (a) Shaft and bearings, (b) Link 3 ............................................... .79 

Figure 5.17. Assembled translation mechanism .......................................................... .80 

Figure 5.18. Assembled orientation mechanism .......................................................... .81 

Figure 6.1. Data flow ................................................................................................... .83 

Figure 6.2. Selected maxon motor ............................................................................... .84 

Figure 6.3. Selected maxon motor amplifier ............................................................... .85 

Figure 6.4. Selected position sensors ........................................................................... .86 

Figure 6.5. Sensing the position of the orientation mechanism:  

                 (a) Miniaturize sensors, (b) ADC and passive components........................ .86 

Figure 6.6. Integration of the miniaturize position sensors: (a) Integrated sensors,  

                 (b) Sensors on the second joint of the mechanism ..................................... .87 

Figure 6.7. Cased ribbon cable DAC data converter ................................................... .87 



 

 xiii

Figure 6.8. Custom data acquisition system ................................................................ .88 

Figure 6.9. Selected analog to digital converter .......................................................... .89 

Figure 6.10. Selected digital to analog converter ........................................................ .90 

Figure 6.11. ADC to DAC data converter ................................................................... .91 

Figure 6.12. Modified 6-DOF mechanism .................................................................. .92 

Figure 6.13. Selected optical encoder .......................................................................... .93 

Figure 6.14. Second link of the orientation mechanism .............................................. .94 

Figure 6.14. The 6-DOF haptic system........................................................................ .94 

 

 

 



 

 xiv

LIST OF TABLES  

 

Table           Page 

Table 4.1. Design criteria of the haptic device ............................................................ .50 

Table 4.2. Comparison of the translation mechanisms ................................................ .54 

Table 4.3. Comparison of the orientation mechanisms ............................................... .54 

Table 6.1. Specifications of Quanser Q8 DAQ Card ................................................... .91 

Table 6.2. Max Power Consumptions for Gravitational Effects .................................. .93 

 

 
 



 

 xv

LIST OF SYMBOLS 

 

R Revolute joint  

P Prismatic joint 

S Spherical joint 

Sl Sliding joint 

θi Rotation angle of the first links of the translation mechanism 

l i Link lengths of the translation mechanism 

Si Workspace location identification parameter 

Wr Point of interest of the translation mechanism (Wrist point)  

O Origin point 

C Rotation sequence 

α  First rotation angle for isometric projection 

β  Second rotation angle for isometric projection 

σ  Sign ambiguity 

F Applied force   

Ti Applied torque 

 



 

 1

CHAPTER 1 

 

INTRODUCTION 

 

1.1. The Senses and the Sense of Touch 

   

The brain is the center of the nervous system that understands ideas, performs 

mental tasks, manipulates our body functions and provides awareness of our 

surroundings. The fact of awareness and understanding the surrounding starts with the 

sensation and the sensation begins with sensory reception by sensory receptors. 

Sensory receptors are specified cells that respond to specific changes in the 

environment.  

Five senses are an evolution of specialized sensory receptors located in specific 

locations in the human body. Basically, human beings have five senses, vision (sight), 

audition (hearing), olfaction (smell), gustation (taste) and somatosense (touch). These 

senses provide connection between the physical world and human brain.  

Receptors that respond to light energy are known as photoreceptors allocated in 

the retina of the eye. In many respects, the basic imaging principle of the eye is similar 

to digital cameras with an adjustable iris and retina. Vision is a unique sense that 

provides us to see the world and it possesses a great potential to perceive most of the 

required stimuli originated from the environment. The sense of hearing allows us to 

detect sound waves and interpret them to the electro-chemical pulses. Sound is audible 

vibrations of air molecules and ear is an electro-mechanical organ that detects these 

acoustic vibrations. It provides us auditory feedback from the environment. This sense 

is necessary for hearing and speech for communication and the basis of social 

interactions. Gustation, the sense of taste, is accomplished by chemoreceptors that 

respond to chemicals dissolved in our mouths. Gustation provides information about 

the quality of the food and liquid which is important both for psychological and 

physical health.  The sense of smell is acquired by chemoreceptors that respond to 

chemicals in air. Also it has importance for psychological and physical health. 

 Among all senses, touch sense is the most amazing and necessary one. In 

embryos, it develops and activates before all other senses. It is the most simple and 
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most improved sense that provides interaction with the environment. It provides 

information about texture, shape, temperature, weight, etc. of an object or 

environment. Touch sense is the most durable sense organ because it employs many 

connections to nervous system from every single part of the body. This complexity 

also provides reliable sensory inputs to cerebral cortex of the brain. Basically the 

mechanoreceptors can be classified into two groups based on the location in the body. 

Kinaesthetic receptors are located in muscles, tendons and joints of the body and 

cutaneous receptors located in the skin. Nowadays, haptics technology is developing to 

stimulate both of these systems.   

Outlined five senses are our connection to world around us and human-

computer interfaces are the equipments that are designed to provide interaction 

between our brains and the computer via our senses.  In the beginning of the 

development of computers, human-computer interaction is provided with visual 

feedback technologies such as monitors. Afterwards auditory technologies are 

developed and improved the interaction levels. Although the sense of touch has a great 

potential to increase the human and computer interaction, due to the limitations of the 

data process capabilities and transfer rates, the first human and computer interaction 

applications were bounded by visual and auditory technologies. However, today it is 

clear that the sense of touch is essential for high level human and computer interaction 

to improve the perception of the environment. Today, powerful microprocessor and 

computer technology allows us to process such high amount of data thus makes haptics 

technology available for various implementations. 

Currently haptic devices are reality and many haptic systems are effectively 

used for a wide variety of applications such as computer aided design, entertainment, 

education, training, rehabilitation, nano-manipulation, molecular technology, virtual 

prototyping and virtual sculpturing.  

 

1.2. Objective of the Thesis 

  

 The sense of touch is a viable feedback to understand the environment. Most of 

the time, the sense of touch accompanied with the visual feedback is enough to gather 

most of the information about a certain environment. Therefore various types of haptic 

devices are developed, and they are employed in different types of tasks. Especially for 
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accurate teleoperation and high level VR applications, high precision haptic systems 

are required with respect to the current commercially available haptic devices.  In 

order to meet this precision criterion, in this thesis, 6-DOF high precision desktop 

haptic device is designed and manufactured. It is also aimed to design, custom data 

acquisition (DAQ) system for the manufactured mechanism. Therefore previous data 

acquisition designs investigated for such applications. 

 The final aim of this work is to employ the developed system in a VR 

application for the performance tests of system and finalize the system to be ready for 

future teleoperation applications.  

 

1.3. Outline 

 

 The following Chapter provides three different sections for haptic devices 

classification that are grouped by their haptic sensation types, mechanism types and 

applications. Each category is explained with several examples.   

 The fundamentals and basic components of a haptic device design are 

described in Chapter 3. The components of the mechanical, electro-mechanical and 

electronics parts are listed and discussed. The importance of the material selection in 

haptic device design is explained and conventional haptic drive systems are shown 

with examples. Electromechanical components such as sensors and actuators are 

described and previously used components are presented. Commercial and custom data 

acquisition systems and motor amplifiers are compared and computer control interface 

of a haptic device are discussed.      

 Chapter 4, is dedicated to design, analysis and simulations of the mechanism. 

The design criteria are listed and discussed, the design procedure is presented both for 

translation and orientation mechanism. The CAD analysis results via SolidWorks© 

CosmosMotion© (a CAD and mechanism analysis software) are discussed. Kinematic 

analysis for the mechanism is also presented in this chapter. 

 The manufacturing processes of the mechanism are explained in Chapter 5. 

Material selection criteria are provided and the manufacturing processes of all parts are 

explained in detail. 
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 In Chapter 6, the integration of the mechanical, electro-mechanical and 

electronic components are presented. The part selection and integration of the 

complete system is described. Experimental results are provided and discussed.  

   In conclusion part, conclusions and findings explained. The future 

modifications in the mechanism are proposed. The possible future applications of the 

system are listed.   
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CHAPTER 2 

 

BACKGROUND 

 

2.1. Introduction 

 

 Wide variety of types and sizes of haptic devices are utilized in various state-

of-the-art applications for both scientific and commercial purposes. Haptics technology 

is usually used for complex tasks such as controlling a manipulator in hazardous 

environments, minimal invasive surgery, robotic rehabilitation, nano manipulation 

task, 3D design, education and training applications.  

 In this chapter, the aim is to describe previous haptic applications and clarify 

the concept of haptics. In order to achieve this objective haptics technology is 

investigated in three separate groups by their: (1) feedback types, (2) mechanical 

structures, and (3) applications.  

 

2.2. Kinaesthetic and Cutaneous Haptic Devices 

 

 Kinaesthetic receptors are located in muscles, tendons and joints of the body as 

shown in Figure 2.1(a). The kinaesthetic system refers to the awareness of force, 

motion, position and low frequency vibration. Cutaneous receptors are located in the 

dermis and epidermis layer of skin as shown in Figure 2.1(b). Cutaneous system refers 

to the awareness of touch, pressure, stretch, texture and high frequency vibration. 
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                 (a)                             (b) 

Figure 2.1. Types of mechanoreceptors receptors: (a) Kinaesthetic, (b) Cutaneous 
(Source: Medical-look 2010) 

  

2.2.1. Kinaesthetic Haptic Devices 

 

Kinaesthetic display devices are human–computer interfaces that can simulate 

kinaesthetic parameters of an environment or an object, such as motion, location, 

weight and rigidity. Recently, kinaesthetic haptic devices are the most common type of 

haptic interfaces. Several types of robot arm mechanisms have already been configured 

as kinaesthetic haptic devices. However, it is still an active field of research and 

development.  

Wearable haptic devices are the most common example for kinaesthetic haptic 

devices. Skeletal representation and actual picture of a wearable haptic system for the 

arm is shown in Figure 2.2(a) and Figure 2.2(b). The mechanism was developed to fit 

the human body with an Electromyography (EMG) based force representation (Sone, 

et al. 2008). 
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              (a)                                   (b) 

Figure 2.2. Wearable haptic application for arm: (a) Representation, (b) Actual  
(Source: Sone, et al. 2008) 

 

A haptic interface for the thumb and index fingers of the user can be seen in 

Figure 2.3 that stimulates a two point contact (Frisoli, et al. 2007). 

 

                                  

(a)                                     (b) 

Figure 2.3. Wearable haptic application for hand: (a) Representation, (b) Actual 
(Source: Frisoli, et al. 2007) 

 

Representation of a planar 4 wire driven 3-DOF haptic interface with a circular 

end-effector is shown in Figure 2.4. Planar mechanism can provide forces about 1u
r
 and 

2u
r

 axes and moment about3u
r

 axis. The system has relatively large workspace and 

easy kinematic analysis which was presented in Paolo Gallina and G. Rosati. (Gallina 

and Rosati 2002). 
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Figure 2.4. Representation of 4 wire haptic interface  
(Source: Gallina and Rosati 2002) 

 

In Figure 2.5 prototype of a novel parallel haptic device is shown. The 

kinematic structure of the mechanism is based on a well-known Delta manipulator. 

The structure is arranged in a special configuration. The two rotary actuators are 

placed on the same direction and the other actuator is placed perpendicular to the 

direction of the other actuators. This provides high stiffness and enlarged workspace. 

The stiffness and kinematic analysis have been performed and the design was 

optimized to maximize the stiffness and to increase the workspace (Kim, et al. 2007).  

 

 

Figure 2.5. Prototype of 3-DOF parallel-type haptic device  
(Source: Kim, et al. 2007) 
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2.2.2. Cutaneous Haptic Devices 

 

Cutaneous display devices are human–computer interfaces that can copy tactile 

parameters of a surface such as texture, shape, roughness and temperature. Cutaneous 

device technology has been developed making use of several technologies such as 

mechanical needles actuated by electro-magnetics, piezoelectric materials, shape 

memory alloys and pneumatics.  

The cutaneous sensation is not only an area of haptics technology it has also 

several applications in nature. The behaviour of antenna was studied in blinded 

American cockroaches. The antenna of an insect has both cutaneous and kinaesthetic 

sensor behaviour (Okada and Toh 2004). 

An example for such an inspiration from the biological systems is the Garcia 

robot shown in Figure 2.6. It has bio-inspired tactile sensors and programmed for high-

speed wall following task (Lee, et al. 2008). 

 

 

Figure 2.6. Garcia robot with embedded flex sensors and antenna  
(Source: Lee, et al. 2008) 

 

As it was previously outlined, haptics has a wide range of application field in 

minimal invasive surgery applications. The importance of force and tactile feedback 

for surgeries was outlined and a review of artificial tactile feedback in laparoscopic 

surgery presented by Schostek, et al (Schostek, et al. 2009). 

Various types of tactile display devices and tactile actuation systems are still an 

active research area. A tactile display device called VITAL1 is shown in Figure2.7.   It 

has an 8x8 arranged pin matrix that is actuated by electro-magnetic actuators (Benali-

Khoudja, et al. 2007).  
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Figure 2.7. VITAL1: vibrotactile display  
(Source: Benali-Khoudja, et al. 2007) 

 

2.2.3. Combination of Kinaesthetic and Cutaneous Haptic Devices 

 

Combination of kinaesthetic and cutaneous sensation in one haptic device 

improves realistic hand and object interaction between user and computer.  Currently 

most of the developed haptic interfaces are separated as, force feedback devices and 

tactile devices. Nevertheless some combined haptic systems that have the capability to 

stimulate both kinaesthetic and cutaneous receptors.  

A pen-like haptic interface is shown in Figure 2.8. The system is based on a 

tactile display and a vibrating module. It is also combined with PHANTOMTM haptic 

system in order to add kinaesthetic feedback capabilities to the pen-like haptic 

interface (Kyung, et al. 2007). 

 

 

Figure 2.8. Prototype of a pen-like Haptic Interface  
(Source: Kyung, et al. 2007) 
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2.3. Haptic Device Mechanisms 

 

Serial manipulators are the most common industrial robots that have been 

widely used variety of applications. They have serial mechanical arm structure, which 

is a composition of serial chain of links and joints. The main advantage of the serial 

manipulators is their large workspace with respect to their footprint. However their 

low stiffness, amplified errors from link to link due to their open kinematic structure 

are their main disadvantages. The serial structure has to carry and move the large 

weights of links and the actuators; hence it has limited loading capacities. 

A parallel manipulator is a closed-loop mechanism with an end-effector placed 

on the moving platform that is connected to the ground with kinematic chains. Parallel 

manipulators have some structural advantages with respect to serial manipulators such 

as their higher precision, robustness and stiffness. The mechanism has to carry 

relatively low mass due to its ground fixed actuators. Therefore parallel manipulators 

have higher loading capacity with respect to the serial manipulators. Their major 

disadvantage is their limited workspace, and low stiffness in singular positions. 

A Hybrid manipulator is a combination of parallel and serial manipulators. 

They embrace the advantages of both serial and parallel manipulators.  

 

2.3.1. Serial Mechanisms 

 

Serial structures have been used in many haptic interface designs. Serial 

structure haptic devices are commercially available and probably the most well known 

devices are the products of Sensable Technologies (www.sensable.com 2010). The 

PHANTOM haptic device is currently used in various types of applications that range 

from commercial to scientific purposes. 6-DOF portable PHANTOM Desktop Haptic 

Device can apply 1.75 N continuous exertable forces about 321 ,, uuu
rrr

 axes and it 

has also 3 passive rotational axes for sensing the rotational motions (Figure 2.9) 

(Massie and Salibury 1994). 
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Figure 2.9. PHANTOM® Desktop™ Haptic Device  
(Source: Sensable 2010) 

 

Other products of Sensable Technologies can be seen in Figure 2.10.  

PHANTOM 1.5/6-DOF and PHANTOM 3.0/6-DOF  have higher translational force 

feedback capabilities with respect to the previously shown haptic devices. 1.5 HIGH 

FORCE/6-DOF HAPTIC DEVICE has 3N continuous exertable force about 

321 ,, uuu
rrr

 axes and also they are capable of providing torque feedback for 

rotational motions.       

 

             

(a)                                     (b) 

Figure 2.10. Some products of Sensable (a) PHANTOM 1.5, (b) PHANTOM 3.0  
(Source: Sensable 2010) 

  

Several types of special purpose serial structure haptic interfaces were also 

developed. 2-DOF haptic joystick for PC video games is shown in Figure 2.11.  The 

system is based on gimbal structure with two actuators and potentiometers (Kyihwan 

Park, et al. 2004). 
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Figure 2.11. 2-DOF Haptic joystick  
(Source: Park, et al. 2004) 

 

Wearable haptic interfaces are usually designed in serial structure in order to fit 

the mechanism to human body. A 4-DOF portable haptic interface can be seen in 

Figure 2.12. The device is designed for the index finger and it has passive force 

feedback capability utilizing mechanical brakes (Lelieveld and Maeno 2006). 

 

 

Figure 2.12. Force feedback for the index finger  
(Source: Lelieveld and Maeno 2006) 

 

Wearable exoskeleton haptic interfaces are frequently used as rehabilitation 

systems. An example for such an application is the wearable haptic interface shown in 

Figure 2.13.  The Maryland-Georgetown-Army (MGA) Exoskeleton has 6-DOF and it 

is designed and developed for shoulder rehabilitation applications (Carignan, et al. 

2009). 
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Figure 2.13. The MGA Exoskeleton  
(Source: Carignan, et al. 2009) 

 

Haptics technology is also used for medical purposes. A training simulator 

mechanism for urological operations is shown in Figure 2.14.  The 5-DOF mechanism 

is designed to reproduce even very small forces and moments; hence it has low mass 

and inertia (Vlachos and Papadopoulos 2003). 

 

 

Figure 2.14. 5-DOF simulator for urological operations  
(Source: Vlachos and Papadopoulos 2003) 
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2.3.2. Parallel Mechanisms  

 

Various researchers have recently designed several types of parallel structure 

haptic interfaces. Most of the published designs in the literature are based on delta 

structure.   

 

 

Figure 2.15. 6 URS Haptic Device  
(Source: Sabater, et al. 2004) 

 

In Figure 2.15, a modified version of Gough–Steward platform is configured as 

6-DOF parallel haptic device. The system has cable-driven pantographs and rotational 

electrical actuators for improved workspace and output bandwidth (Sabater, et al. 

2004).  

A 7-DOF haptic device called PATHOS II was designed and manufactured by 

Keehoon Kim et al. 6-DOF of the device is reserved for the spatial manipulation and 

the remaining 1-DOF for grasping the objects. The parallel mechanism design was 

chosen to enhance the stiffness and accuracy. Their experimental results indicated that 

the mechanism can display virtual environment with some stiffness and accuracy 

(Kim, et al. 2003).  

6-DOF haptic mechanism, shown in Figure 2.16, is a combination of a 3-DOF 

planar lower parallel mechanism and another 3-DOF parallel mechanism mounted on 

top of the lower mechanism. In order to decrease inertial effects, and to improve back-

drivability and transparency, the mechanism has only ground fixed actuators with 

cable drives (Ryu, et al. 2009). 
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Figure 2.16. Overview of a 6-DOF Haptic Device  
(Source: Ryu, et al. 2009) 

 

Another 6-DOF parallel haptic device can be seen in Figure 2.17. It is aimed to 

design a light weight system with ground fixed motors. (Lee, et al. 2001).   

 

 

Figure 2.17. 6-DOF Parallel Haptic Device  
(Source: Lee, et al. 2001) 

 

The CAD representation a 6-DOF haptic device is designed by Gosselin et al 

can be seen in Figure 2.18. The device is a light-weight parallel-structure mechanism 

with the handle on its moving platform. It was designed for computer aided design or 

virtual sculpturing applications (Gosselin, et al. 2005)  
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Figure 2.18. CAD design of the haptic interface  
(Source: Gosselin, et al. 2005) 

 

Yoon et al. designed a 6-DOF haptic mechanism that was driven with 

servomotors as presented in Figure 2.19. In this work, the control of the system was 

also studied and a control method with gravity compensation and with force feedback 

by a force-torque sensor was employed to reduce the effects of unmodeled dynamics 

(Yoon and Ryu 2001). 

 

 

Figure 2.19. 6-DOF haptic mechanism  
(Source: Yoon and Ryu 2001) 

 

A CAD model of a spherical mechanism for a haptic system called “SHaDE” is 

shown in Figure 2.20. SHaDE was a 3-DOF haptic device that has a spherical 

geometry. Due the spherical geometry, the mechanism has only pure rotation around 



 

 18

all axes at its center point, where the handle of the joystick is located at. It is offered 

for high precision teleoperation and VR applications (Birglen, et al. 2002). 

 

 

Figure 2.20. CAD model of SHaDE  
(Source: Birglen, et al. 2002) 

  

A general purpose 6-DOF haptic interface is presented in Figure 2.21. The 

structure is composed of a 6-DOF parallel base and a handle part. (Lee and Lee 2003)   

 

 

Figure 2.21. 6-DOF haptic interface  
(Source: Lee and Lee 2003) 

 

2.3.3. Hybrid Mechanisms 

 

Hybrid manipulators have the advantages of a parallel structure and serial 

manipulators such as high loading capacity, manipulability, stiffness, high precision, 

robustness and relatively large workspace.  
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Commercial hybrid haptic devices are also available in the market for various 

types of applications such as Force Dimension’s Delta based haptic devices. The 

Omega 6 haptic device (Figure 2.22) is a 6-DOF haptic device that has 3 active 

translations 

3 passive rotations. It can apply 12 N continuous torque with resolution less than 

0.01mm. 

 

 

Figure 2.22. Omega 6 haptic device  
(Source: Forcedimension 2010) 

 

Another Delta based hybrid haptic device consists of 3-DOF Delta manipulator 

(Figure 2.23(a)) for translation motions and 2-DOF gimbal ball for the orientation 

motions (Figure 2.23(b)). (Uchiyama, et al. 2007).  

 

                                         

(a)                   (b) 

Figure 2.23. 6-DOF mechanism: (a) Overview of the device, (b) DOF of the 
mechanism (Source: Uchiyama, et al. 2007) 
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2.4. Haptic Applications 

 

 Haptics technology is employed in various types of systems to accomplish 

important tasks ranging from portable robotic surgery tools to flight simulators. This 

section provides a review of haptic applications in two groups; (1) Teleoperation and 

(2) VR applications. 

 

2.4.1. Haptics in Teleoperation 

 

  The concept of teleoperation can be briefly summarized as remote control of 

robotic systems. Although humans have the ability to manage many complex tasks, 

remote controlled robots is a requirement for some special tasks such as small scale 

manipulations, tasks that are take place in hazardous environments or remote control 

of a machine at a distant location.   

Basically teleoperation systems are composed of a master and a slave 

subsystem.  Currently, haptic devices find use in assistive surgical robotics and most of 

the teleoperation systems in which level of telepresence is required to be increased for 

improved tele-manipulability.  

A haptic teleoperation with 5-DOF force feedback mechanism shown in Figure 

2.24(a), and a 2-DOF microrobot shown in Figure 2.24(b) was proposed and 

experimentally tested. The disparity between the master and slave side of the system 

improves the controllability of the micro robot in the environment. (Vlachos and 

Papadopoulos 2008).  

 

                         

   (a)           (b) 

Figure 2.24. Telemanipulation system: (a) Master haptic device, (b) Micro robotic               
                   platform (Source: Vlachos and Papadopoulos 2008) 
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All-terrain mobile robot, shown in Figure 2.25(a), is designed for haptic 

teleoperation applications. The mobile robot is equipped with various positioning 

systems such as sonar sensors, GPS module, wheel encoders, 3 axis gyro and 

accelerometer. PHANTOM Omni haptic device is the master mechanism of the 

teleoperation system. The master and slave systems were integrated with the 

communication equipments and control software as shown in Figure 2.25(b) (Horan et 

al. 2007).   

 

                          

  (a)                       (b) 

Figure 2.25. Teleoperation system: (a) Prototype of a mobile robot, (b) Control Station 
(Source: Horan, et al. 2007) 

 

A similar mobile robot designed for haptic teleoperation applications is shown 

in Figure 2.26. A mobile robot with multi sensory output is usually required to avoid 

obstacles in teleoperation applications. The sensory inputs are used to reproduce haptic 

force feedback to operator. Haptic feedback helps the operator to take the necessary 

actions to prevent the mobile robot from collisions (Lee, et al. 2005).   

 

 

Figure 2.26. Teleoperation of a mobile robot  
(Source: Lee, et al. 2005) 
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A nanoscale tele-manipulation system has been developed with a commercial 

haptic device and atomic force microscope configuration (Figure 2.27). The 

researchers that configured this system suggest that haptics technology has the 

potential to provide intuitive, efficient and reliable way for quick manipulation of 

nano-scale manipulations. The master and slave side of the haptic teleoperation setup 

can be seen in Figures 2.27(a) and 2.27(b), respectively (Jobin, et al. 2005).   

 

                           

                       (a)                                   (b) 

Figure 2.27. Nano manipulation system: (a) Haptic device, (b) Atomic force        
                   microscope (Source: Jobin, et al. 2005) 
 

Teleoperation of underwater construction machines is a typical example of 

hazardous environment operation. Haptics technology in teleoperation of underwater 

construction machines provides safer and more efficient underwater construction work.  

An example for underwater haptic teleoperation application is shown in Figure 

2.28. Camera systems usually do not provide good picture quality due to turbidity of 

the water. Hence, haptics technology along with the visual feedback provides a 

solution for this problem. (Hirabayashi, et al. 2006). Conventional manned underwater 

application and in developed haptic control system can be observed in Figures 2.28(a) 

and 2.28(b), respectively. 
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   (a)          (b) 

Figure 2.28. Teleoperation in hazardous environments: (a) Manned underwater   
                   backhoe, (b) Control room of developed system (Source: Hirabayashi,           
                   et al. 2006) 
 

2.4.2. Haptics in Virtual Reality 

 

Haptics technology increases the level of interaction between the user and the 

virtual environment in VR applications. Programmed virtual sensors provide sense of 

touch, which improves the quality of the virtual-presence. Other than the game 

industry, haptics in VR applications are used frequently in training and educational 

purposes such as medical simulators and especially for expensive and difficult 

trainings such as dental trainings.  

A 6-DOF haptic device for dental surgery training system is presented in Figure 

2.29. The designed haptic device is based on a modified 6-RSS parallel mechanism. It 

has ground fixed actuators that decrease the total inertia of the device. The kinematics 

of the device can be solved numerically. The singular configurations of the mechanism 

is identified and avoided for defined workspace (Cao, et al. 2007). 

 

                                               

     (a)                                                               (b) 

Figure 2.29. 6-DOF haptic device for dental training: (a) Virtual reality application, (b)             
                     CAD design of the mechanism (Source: Cao, et al. 2007) 
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Conventional design techniques with 2D mouse often require difficult design 

procedure.  Virtual sculpturing and designing via haptic devices facilitates the 

procedure. A virtual sculpturing system utilizing with 6-DOF PHANTOM haptic 

device is shown in Figure 2.30. A haptics-based interface for this application is 

presented (Dachille, et al. 2001). 

 

 

Figure 2.30. A virtual sculpturing system  
(Source: Dachille, et al. 2001) 

 

A virtual-reality surgical simulator for neurosurgeries is presented in Figure 

2.31. The simulator reproduces effects of a surgical operation such as prodding, 

pulling and cutting (Wang, et al. 2006). 

 

 

Figure 2.31. A virtual-reality surgical simulator  
(Source: Wang, et al. 2006) 

 

Haptics technology also offers solutions for very difficult tasks such as robot 

path planning. Haptic-aided robot path planning via a virtual robot facilitates the 

programming process. The user’s interaction with the VR can define or modify critical 
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positions and collisions. An example for such an application can be observed in Figure 

2.32 (He and Chen 2008).  

 

 

Figure 2.32. Robot path planning by virtual teleoperation 
(Source: He and Chen 2008) 

 

Following to the development of more affordable haptic mechanism, the haptic 

technology is applied in more specific applications such as rehabilitation systems. A 

haptic, patient monitoring system that is developed for monitoring the progress of the 

patient is presented by Ruba Kayyalil et al. The system is based on a haptic device 

(Figure 2.33) and VR applications that simulates simple exercises and monitors the 

performance of the user (Kayyalil, et al. 2008). 

 

 

Figure 2.33. Haptic monitoring system in rehabilitation 
(Source: Kayyalil, et al. 2008) 

 

Moreover haptics are also used in haptic rehabilitation systems via applying 

force feedback in virtual-reality application. VR-based ankle rehabilitation system is 

presented by Rares F. Boian et al. Similar with the previous example the system 
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consists of a haptic mechanism (Figure 3.34) and a VR application that simulates 

control of virtual examples (Source: Boian, et al. 2003).   

 

        

Figure 2.34. Haptic rehabilitation system  
(Source: Boian, et al. 2003) 

 

2.5. Conclusion 

 

Today, various types of haptic systems are used in different types of 

applications. In order to identify these systems, previous systems are investigated and 

categorized by their; sensation types, kinematic structure and applications. Depending 

on the type of the mechanoreceptors, two types of sensation types in haptic systems are 

explained and related examples are presented. The kinematic structures of robot 

manipulators are listed and the advantages and disadvantages are discussed. For each 

type of kinematical structure, previously built haptic device examples are introduced. 

Finally, haptic applications are presented in two groups along with example systems.   

In the next chapter, the components to configure the haptic devices are 

presented complying with the aim of the study. 
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CHAPTER 3 

 

COMPONENTS OF A HAPTIC DEVICE 

 

3.1. Introduction 

 

Towards developing a new haptic desktop device, a designer has to identify the 

task that the haptic device will be employed.  According to the environmental 

requirements, the design criteria of the haptic device have to be formed and the 

components should be selected. Although the components of a haptic device vary 

depending on the outlined types of the devices, basically all haptic systems are 

composed of mechanical, electro-mechanical, electronic and software parts.  In this 

chapter, the commonly used components of the haptic devices are investigated and 

discussed.  

 

3.1. Mechanical Components 

 

Mechanical components of a haptic device can be listed as the mechanism, 

material and drive system. Mechanism selection is probably the most important phase 

in developing a haptic device. Therefore the selection procedure is outlined in the next 

chapter.  In this section, only the materials and drive systems of the haptic devices are 

explained and discussed.  

 

3.2.1. Materials 

 

In haptic devices the specifications of the selected material for the mechanism 

are directly related with the quality of the haptic perception. The weight of the 

mechanical components must be minimized and the device has to have low inertia and 

high stiffness. Hence the most important specifications for the design haptic device 

material are; 
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i) Low density 

ii)  High strength and rigidity 

 

 In order to minimize the gravitational effects, haptic devices are manufactured 

from light weight materials such as aluminium, nickel, titanium alloys and plastics.  

Haptic devices transmit the forces that are applied by the user. Hence, the rigidity and 

the strength of the mechanism are important for precision and perception of the 

system. As a consequence strength to weight ratio is an important factor, which has to 

be considered in haptic device development.   

Among the other alloys, aluminium alloys is the most remarkable material in 

haptic devices. In general aluminium alloys have reasonable price, good machinability, 

high corrosion resistance and vital specifications outlined above.  

Non-metallic material plastics also provide good strength to weight ratio and 

very low cost which are used in many haptic devices. In mass production of the haptic 

devices, plastic injection moulding is an easy manufacturing process that is used for 

the manufacturing of the least important parts. Hence in general, the commercial haptic 

devices are composed of plastic and aluminium alloy parts and the custom haptic 

devices include only aluminium alloy components.  

The two parallel haptic desktop devices from different companies are shown in 

Figure 3.1(a) and Figure 3.1(b). The Omega 3 is developed for more precise 

applications such as medical and micro manipulation applications therefore it has more 

rigid structure with polished aluminium kinematic links, joints and frame which can be 

seen in Figure 3.1(a). Falcon haptic device is particularly developed for the game 

industry. It has less precise joints and base manufactured from plastics, which can be 

seen in Figure 3.1(b). 

 

                         

    (a)                                  (b) 

Figure 3.1. Parallel haptic devices: (a) Omega 3 from force dimension (Source:   
                 Forcedimension 2010), (b) Falcon from Novint (Source: Novint 2010) 
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Omni haptic device (Figure3.2) is the most cost-effective product of the Sensable 

Technologies and it has also a body that is a composed of aluminium and plastic 

materials. 

 

 

Figure 3.2. Omni from sensible technologies  
(Source: Sensable 2010) 

 

3.2.2. Drive Systems 

 

In haptics, drive systems are used for the transmission of the torques from 

actuators to the operator and the performance of the actuation system is more 

important with respect to the other robotic systems. Hence selection of the appropriate 

drive systems considering the type of the haptic device is important. The appropriate 

drive systems for a haptic device can be selected depending on the two broad classes 

 

i) Admittance type devices 

ii)  Impedance type devices 

 

Admittance haptic devices include force sensors that sense the applied force by 

the operator and adjust the operator’s position according to the manipulated virtual or 

real object. Hence the traditional transmission mechanisms such as gears can be 

employed in admittance type haptic devices. Nevertheless, the precision loss due to the 

use of transmission mechanisms is an important fact, which has to be considered in 

haptic device design. Therefore, high efficient and precise gearing transmission 

technology such as harmonic drive is currently used in haptic devices. Harmonic 

drives provide nearly zero backlash, light weight and high torque reduction ratios. An 

example for an admittance type haptic interface is VISHARD7 which can be seen in 

Figure 3.3. VISHARD7 is a 6-DOF mobile haptic interface for large remote 
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environments. The haptic interface is built by using brushless DC motors coupled with 

harmonic drive gears that provide relatively high force feedback capacity (Peer and 

Buss 2008). 

 

 

Figure 3.3. Mobile haptic interface VISHARD7  
(Source: Peer and Buss 2008) 

 

Previously presented haptic interface in Chapter 2, MGA haptic device is also a 

harmonic driven system with brushless DC motors and two force/torque sensors 

(Carignan, et al. 2009).    

 

 

Figure 3.4. Force sensors of MGA exoskeleton haptic  
(Source: Carignan, et al. 2009) 

 

In contrast to the admittance haptic devices, in an impedance haptic device, 

position sensors sense the position of the operator, and then the computed forces are 

applied to the user. Therefore, impedance type haptic devices have to be back-drivable 
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which is possible with low inertial and low frictional drive systems. Today most of the 

commercially available haptic desktop devices such as Phantom, Omega and Falcon 

are impedance type haptic systems.  They are back-drivable and have a common 

mechanical transmission system called Capstan drive mechanism (Figure 3.5). The 

capstan drive mechanism consists of tendon wrapped around pulley that actuates a 

semi-circular link. The ratio between the pulley’s and the semi-circular link’s 

diameters provides reduction that increases the force feedback capacity of the haptic 

systems. Capstan drive mechanism of a 1-DOF haptic paddle can be seen in Figure 3.5 

(Bowen, et al. 2006). 

 

 

Figure 3.5. Capstan drive mechanism of a haptic paddle  
(Source: Bowen, et al. 2006) 

 

Capstan drive systems are also used in medical haptic devices. 5-DOF 

mechanism which has a more complex capstan system is presented in Figure 3.6 

(Vlachos and Papadopoulos 2008). 

 

 

Figure 3.6. Capstan drive system of a medical haptic device  
(Source: Vlachos and Papadopoulos 2008) 
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3.3. Electro-Mechanical Components 

 

Electro-mechanical components of a haptic desktop device can be listed as the 

brakes, sensors and actuators. In haptics usually two types of sensors are used; position 

and force/torque sensors. Position sensors measure the angles or positions of the links 

and this sensory input is transmitted to the computers. Depending on the type of the 

haptic system, force/torque sensors are also used especially in admittance type haptic 

devices.  Moreover brakes and motors are used for the actuation of the mechanism and 

the properties of the actuation system are directly related with performance of the 

haptic device. In this section, electro-mechanical components of a haptic device is 

presented and discussed. 

 

3.3.1. Brake Systems 

 

Haptic interfaces can also be categorized as active or passive interfaces 

depending on the employed actuators. Active haptic interfaces employ active motors, 

to provide active feedback to the user. On the other hand, passive haptic interfaces use 

dampers or brakes that dissipate the energy of the motion. In contrast to the active 

actuators, passive actuators such as brakes, dampers and clutches are actually stable 

components that they can only absorb the energy of the system. Therefore they can 

provide relatively larger forces without risking the user's safety.  Furthermore it can 

improve the stability of the system. However passive actuators can only simulate some 

models such as high stiff wall or any rigid surface but they cannot simulate a model of 

an elastic surface or moving object. Nevertheless, due to the outlined advantages, 

dissipative components are recently employed in some haptic devices for better force-

feedback capabilities and higher perception levels. Currently mechanic friction, 

electro-magnetic, magneto-rheological, electro-rheological brake systems are 

employed and tested in haptic devices.   

Mechanical brake system of the previously presented, 4-DOF wearable passive 

haptic interface’s is shown in Figure 3.7. The brake system of the device is located at 

the top of the exoskeleton and the mechanism consists of separate transmission cables 

for actuation with brake mechanism. In this example, the requirements of an 
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exoskeleton haptic device such as simplicity, lightweight, high safety and hard-contact 

simulation are provided by passive actuation (Lelieveld and Maena 2006).    

 

  

Figure 3.7. Wearable passive haptic interface  
(Source: Lelieveld and Maena 2006) 

 

Zitzewitz et al. Presented a hybrid actuation concept with motor, spring and 

electro-mechanically actuated disc brake. The brake system is selected considering the 

5Hz bandwidth requirements which can be seen in Figure 3.8 (Zitzewitz, et al. 2008). 

 

 

Figure 3.8. Disk brake system for a haptic device  
(Source: Zitzewitz, et al. 2008) 

 

Another example for hybrid actuation is the 2-DOF haptic interface that is used 

for medical purposes is shown in Figure 3.9. The device has rotational and 

translational axes actuated by both active and passive actuators. The combination of 

active motors and passive brakes improves sensation levels by reflecting the natural 

friction and high level force feedback of the haptic colonoscopy (Samur, et al. 2008).    
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Figure 3.9. Hybrid device with mechanic brake and motors  
(Source: Samur, et al. 2008) 

 

Electromagnetic brakes such as eddy current brakes (ECB) are also employed 

in haptic systems. Some of the specifications of the ECBs such as programmable 

damping rates, applicability to the linear motion, high frequency responses make them 

very appropriate for passive haptic interfaces. The development and implementation of 

an ECB to a haptic interface is proposed by H. Andrew et al. 2-DOF mechanism and 

the components of the device can be seen in Figure 3.10 (Andrew, et al. 2008). 

 

 

Figure 3.10. Hybrid device with ECB’s  
(Source: Andrew, et al. 2008) 

 

Magneto-rheological (MR) fluids and electro-rheological (ER) fluids are types 

of smart materials. They are both capable to change their viscosity reversibly within 

milliseconds by controlling the applied magnetic or electric field. This feature can be 

applied to wide range of applications such as variable damping systems. Especially in 

haptics due to the short response time and damping abilities of both MR and ER fluids 

are used as braking systems. An example of MR fluid brake system in haptic devices is 
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presented by W.H. Li et al. The mechanism (Figure 3.11) is a conventional 2-DOF 

Gimbal mechanism, employed with two MR actuators (Li, et al. 2007). 

 

 

Figure 3.11. CAD representation of mechanism  
(Source: Li, et al. 2007) 

 

A 2-DOF haptic system with ER actuators is presented by Takehito Kikuchi et 

al. for rehabilitation purposes. In order to guarantee the safety of the user, the system is 

configured with only electrically controllable brake that is shown in Figure 3.12 

(Kikuchi, et al. 2007). 

 

 

Figure 3.12. ER Brake  
(Source: Kikuchi, et al. 2007) 
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3.3.2. Motors 

 

Motors are the active actuation components in haptic devices. The performance 

of an active haptic device is directly related with the characteristics of the actuators. In 

order to provide high level sensations in a haptic interface, the actuators of the system 

must have low inertia, low friction, low torque ripple, high back-driveability, low 

backlash and high torque ratings.  The selection of the appropriate actuators to meet 

the requirements of the haptic device is important. Currently various types of active 

actuators are employed in haptic desktop devices such as pneumatic, hydraulic, shape 

memory alloys (SMA), piezoelectric, pneumatic muscle, ultrasonic, magnetic and 

electrostatic actuators.  

Currently, DC motors are the most common actuation systems utilized in haptic 

devices. Most of the haptic devices in literature, including the commercial ones are 

configured with DC motors. DC motors are the pioneer electrical actuation method 

with respect to the other actuation methods. The performance, limitations, dynamics 

and control methods of the DC motors are well known. Moreover, DC motors have 

low cost, high reliability, and simple structure. Hence in robotics, actuation with 

brushed or brushless DC motors is the most preferred method. However, in haptic 

devices other actuation systems can provide better results. 

Shape memory alloys (SMA) are smart materials that have the ability to change 

its dimension via heat variations. Recently SMAs are employed in various types of 

applications including haptics. Although it seems that the SMA actuators are only 

employed in tactile haptic devices, SMA actuators have the potential to be used in 

SMA actuated haptic devices. Schematic representation of an 8x8 pin array haptic 

tactile display system is shown in Figure 3.13 (Jairakrean and Chanthasopeephan 

2009).  
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Figure 3.13. SMA actuators for tactile display  
(Source: Jairakrean and Chanthasopeephan 2009)  

 

Pneumatics (Figure 3.14(a)) converts air pressure to rotational or linear motion. 

The main advantage of the pneumatic actuation is the flexibility of the actuators which 

is necessary in a device that interacts with human. Due to the difficulties of position 

and force control, the pneumatics is not common in haptic devices. An example for 

pneumatic parallel haptic interface is proposed by Masahiro Takaiwa et al. The 

proposed device is a parallel mechanism that includes 6 pneumatic actuators and 

potentiometers as shown in Figure 3.14(b) (Takaiwa and Noritsugu 1999). 

 

        

(a)                                                                  (b) 

Figure 3.14. Pneumatics in haptics (a) Pneumatic actuators (Source:   
                   Directindustry 2010), (b) Parallel haptic device (Source: Takaiwa and  
                   Noritsugu 1999)  
 

Similar to the human muscles, pneumatic muscle actuators (PMA) are 

contractile components work with pressurized liquid or gas. The specifications of the 

PMAs are similar to the conventional pneumatic actuators, but the power/weight ratios 
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of the PMAs are relatively greater. Due to the presented advantage, PMA actuators are 

suitable for exoskeleton haptic devices. A 7-DOF PMA actuated exoskeleton haptic 

device is presented by N.Tsagarakis et al. (Tsagarakis, et al. 1999). 

 

 

Figure 3.15. PMA actuators  
(Source: Salonix 2010) 

 

Ultrasonic motors are piezoelectric motors that are actuated by ultrasonic 

vibrations. Similar to the DC motors, they consist of a rotor and a stator which is 

produced by piezoelectric materials. The ultrasonic motors are driven by two 

sinusoidal signals with a different phase. Associated with the phases of the signals the 

ultrasonic actuator has three phases; free, active and fixed phase. Thus ultrasonic 

sensors are capable to actuate a haptic device as a hybrid (passive/active) system 

without using brakes or clutches. Conceptual design of a wearable exoskeleton haptic 

for the index and thumb fingers can be seen in Figure 3.16. The entire mechanism is 

actuated with only four ultrasonic actuators that reflect bi- directional forces. (Choi 

and Choi 1999).  

 

 

Figure 3.16. Exoskeleton haptic with ultrasonic actuators  
(Source: Choi and Choi 1999)  
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Magnetic levitation actuators are probably the most interesting ones among the 

other actuators. The theory is based on suspending a handle object in magnetic field. A 

study on developing a magnetic haptic device is presented by Berkelman et al.  6-DOF 

device has motion ranges of ±5 mm and ±3.5 degrees in all directions and can generate 

20N force, 1.7 Nm torque (Berkelman, et al. 1995). A commercial magnetic levitation 

haptic is the product of Butterfly Haptic Inc. which can be seen in Figure3.17. 

 

 

Figure 3.17. Magnetic levitation haptic interface  
(Source: Butterflyhaptics 2010) 

 

Another method of actuation method in haptic devices is the electrostatic 

actuation. A 2-DOF linear haptic device with two electrostatic actuators is presented in 

Figure 3.18. This device is designed for neuroscience applications and non-magnetic 

actuators are employed in the system (Hara, et al. 2009). 

 

 

Figure 3.18. Haptic joystick with Electrostatic actuators  
(Source: Hara, et al. 2009)  
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3.3.3. Sensors 

 

In haptic device design, appropriate sensor selection is important for the 

electro-mechanical precision of the mechanism. Essential sensors of a haptic device 

are force/torque and position sensors. Position sensors can be categorized in two 

groups; analog and digital sensors. In general, hall-effect and resistive sensors are 

frequently employed in haptic devices due to their high resolution and low cost. 

However the noisy nature of the analog signals needs extra care during transfer and 

conversation to the digital signals. Besides potentiometers have various technical 

specifications that have to be evaluated carefully for use in haptic devices, such as 

mechanical resolution, linearity errors and resistance tolerance. On the other hand, 

digital encoders provide more accurate and noise free signal therefore digital encoders 

are more convenient for haptic applications. Nevertheless today, the cost of the digital 

encoders is relatively high and supplied resolution is limited.  

Currently commercially available haptic devices include both optical encoders 

and potentiometers.  6-DOF PHANTOM haptic device includes optical encoders and 

potentiometers on its active and passive joints respectively.    

  An example for the use of potentiometers is shown in Figure 3.19. Previously 

presented 2-DOF gimbal mechanism has two potentiometers for each of the axes 

(Park, et al. 2004). 

 

 

Figure 3.19. Sensors of a 2-DOF haptic joystick  
(Source: Park, et al. 2004) 
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CAD representation of a 1-DOF haptic interface for rehabilitation applications 

can be seen in Figure 3.20. The mechanism consists of an optical encoder and a force 

sensor (Khanicheh et al. 2008).  

 

 

Figure 3.20. Force sensor and encoder of a haptic interface  
(Source: Khanicheh, et al. 2008) 

 

A variety of sensors are designed to measure forces/torques for different 

applications. The components of a force/torque sensor can be categorized in two 

groups as; the construction of the sensor and the sensing element. The construction of 

force sensors has to be designed considering the requirements of the application and 

the sensing element. Currently, strain gauges and piezoresistive sensing elements are 

the most common sensing elements in the force/torque sensor design. In admittance 

type haptic devices, both custom and commercial (Figure 3.21) type force/torque 

sensors can be used. Although the commercial type sensors have relatively high cost, 

they can provide more accurate and reliable measurements. 

 

 

Figure 3.21. Load cell  
(Source: Honeywell 2010) 
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3.4. Electronic Components 

 

Data acquisition (DAQ) cards and motor amplifiers can be listed as electronic 

components of a haptic device. DAQ cards are the systems that measure, process, 

convert and transmit real world data to computers. Although the components of a DAQ 

system vary, depending on the specified tasks, DAQ systems may include, analog to 

digital converters (ADC), digital to analog converters (DAC), encoder decoders, 

counters, timers, digital inputs and outputs. In this section, appropriate DAQ systems 

for a haptic device are investigated. Commercially available DAQ systems are 

reviewed and previously built custom DAQ designs for haptic device are presented.  

 

3.4.1. Commercial Data Acquisition Systems  

 

During the development of a robotic system, commercial DAQ systems provide 

fast and reliable environment for initial tests of the integrated mechanism. Various 

DAQ cards are available for haptic device development with varying low prices. The 

primary specification of a DAQ system in haptic device design is the sampling rate 

requirement of the system. The selected commercial DAQ acquisition system has to 

support at least 1 KHz sampling rate (Tanner and Niemeyer 2006). Moreover the 

supported software environments such as Simulink and LabVIEW are also important 

for easy programming phases and initial test of the device.  

Some of the commercial DAQ system providers can be listed as National 

Instruments (NI), Labjack, Quanser, Sensoray, Diamond Systems, dSpace, IOTech, 

Servo2go.  NI is a hardware and software developer that provides various types of 

DAQ systems for different types of applications. An example for the product of 

National Instruments is NI PCI-6035E DAQ card, that supports 200kHz sampling rates 

and has 16-bit twenty-four analog inputs, 12-bit two analog outputs, eight bi-

directional digital channels and 24 bit counter and timers (Figure 3.22). The system is 

fully compatible with Labview Software development environment. 
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Figure 3.22. NI PCI-6035E  
(Source: NI 2010) 

 

Labjack provides low cost DAQ solution for robotic applications. Labjack U3 

DAQ system (Figure 3.23) provides 2.5 to 50 kHz sampling rates. It has 12-bit, sixteen 

analog inputs, 10-bit two analog outputs, and sixteen flexible digital channels and it 

provides LabVIEW communication library via USB port. 

 

 

Figure 3.23. LABJACK U3  
(Source: Labjack 2010) 

 

High performance Quanser Q8 Hardware in the Loop (HIL) board (Figure 

3.24)  from Quanser Consulting Inc. has eight 12-bit D/A converters, eight 14-bit A/D 

converters, eight quadrature encoder inputs and thirty-two digital I/O channels. The 

card provides approximately 56 kHz sampling rate and real time applications. The 

device supports both LabVIEW and Matlab Simulink programming languages. 

  



 

 44

 

Figure 3.24. QUANSER Q8 hardware in the loop control board  
 (Source: Quanser 2010) 

 

3.4.2. Custom Data Acquisition Systems  

 

Towards developing an end product, custom designed and manufactured data 

acquisition cards and drives for the developed system are a necessity. Therefore, in this 

thesis study, it is intended to design customary data acquisition system for haptic 

mechanism. Thus, previously developed custom DAQ systems are reviewed and 

essential technologies are investigated. 

As a result of the literature survey, it is oserved that PIC© (Programmable 

Interface Controller) based DAQ cards via serial port (RS-232) is commonly used in 

most haptic device designs. PIC is a popular microcontroller that is developed by 

Microchip Technology Inc. It is used in many digital control applications due to their 

low cost, easy development process, wide availability and high ability. 

A haptic glove for color detection system is shown in Figure 3.25. The system 

occupies color sensors and tactile display to sense the color information and to reflect 

the user. The custom DAQ card of this system is based on a dsPIC30F4011 digital 

signal processor that communicates via RS-232 communication port (Schwerdt, et al. 

2009). 
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Figure 3.25. Tactile display haptic with color sensors  
(Source: Schwerdt, et al. 2009) 

 

Another tactile haptic study is presented by Pierre Payeur et al. The study 

focuses on development of a tactile sensory module with force sensitive transducers. 

The DAQ card (Figure 3.25) of the device is also configured with a PIC 

microprocessor via RS-232 which operates at 19200 baud rate (Payeur, et al. 2005). 

 

 

Figure 3.26. DAQ system of the sensor array  
(Source: Payeur, et al. 2005) 

 

3.5. Computer Control and Virtual Reality Software 

 

Computer controller and VR application is required for the initial tests of a 

haptic system development. Hence appropriate computer controller and VR 

development softwares are investigated. Similar to the general robotic applications, 

high level programming languages such as Matlab (Simulink) and LabVIEW can be 
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used for the performance tests of the developed haptic devices. Both programming 

languages have the capability to develop real time applications and also include VR 

tools. Following to the initial test, respectively lower level software development 

languages are used in order to create final computer controller software, similar to the 

commercial haptic interfaces. In this section, possible haptic controller developer 

environments, LabVIEW and Matlab Simulink, are presented with examples.  

 

3.5.1. Simulink 

 

Simulink is graphical programming environment developed by MathWorks. It 

provides modelling, simulation and analyse tools for mechanical, electronic and 

electro-mechanical systems. Programs are developed using graphical programming 

blocks and a programmable set of block libraries. Simulink is widely used in control 

theory and digital signal processing for both frequency and time domain simulations. It 

supports two real-time working environments as Windows Real-Time target and xPC 

Target both compile the simulink code for HIL tests.  

A mobile haptic device called VIDET can be seen in Figure 3.26 it is designed 

for visually impaired users. 3-DOF wire tension control system of the device is 

developed via simulink (Smid and Melchiorri 1998). 

 

 

Figure 3.26. 3-DOF mobile haptic device  
(Source: Lar.deis 2010) 
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3.5.2. Labview  

 

LabVIEW is a product of National Instruments, which is also a graphical 

programming platform. It is commonly used by researchers and engineers for data 

acquisition, instrument control, data analysis, embedded system design and automation 

purposes. It also provides time domain applications and VR tools.  

An example for VR application with LabVIEW is presented in previously 

shown 2-DOF joystick. The created 3D application for the test of the system can be 

seen Figure 3.27 (Li, et al. 2007). 

 

 

Figure 3.27. 2-DOF mobile haptic device  
(Source: Li, et al. 2007) 

 

3.6. Conclusion 

 

In this chapter, necessary components of a haptic desktop device are 

investigated and appropriate components are compared. The material specifications for 

haptic devices are listed and common materials are presented. Two types of haptic 

systems are introduced. Considering the types of the haptic system, appropriate drive 

systems are explained. The importance of the actuation system for the performance of 

the device is addressed. For each component of the actuation system appropriate 

motors, brakes and drive mechanism are investigated. Both the custom and the 

commercial data acquisition systems for the developed mechanisms are reviewed and 

their specifications are presented. Finally, software development languages for the 

initial test of the system are given along with their examples.  

In the next chapter mechanism selection, design phases and the kinematic 

parameter determination process of are explained. 
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CHAPTER 4 

 

MECHANISM DESIGN 

 

4.1. Introduction 

   

During the development process, from the idea to tangible product, all design 

processes consist of different phases. Identification of design phases provides fast and 

reliable design process. The process of design that is used for the development of the 

mechanism is represented schematically in Figure 4.1. 

The design of the mechanism begins with the identification of task. Evaluating 

the design parameters, the conceptual designs are formed and final design of the 

prototype mechanism is configured via simulations.  

 

 

Figure 4.1. General design phases  
 

(1) Identification of the Task 

Design Changes 

(2) Design Parameters 

(3) Conceptual Designs 

(4) Final Design of the Prototype 

(5) First Prototype 

(6) Design of the Final Mechanism 

(7)Manufacture 
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The design of the prototype mechanism is manufactured and validation tasks 

are conducted. Complying with the test results, necessary design changes are identified 

and the design of the prototype mechanism is reconfigured. Finally, the necessary 

design changes are applied, the final design is simulated and the optimal design 

configuration is manufactured.   

This chapter describes the study towards design and analysis of a novel 6-DOF 

hybrid haptic device that is composed of R-CUBE based active 3-DOF translational 

motion and passive 3-DOF orientation mechanism for rotational motion monitoring. 

The design procedure of the mechanism is explained in the order of the general design 

phases as outlined in Figure 4.1. The evolution of the system is shown with figures and 

geometric design procedure is explained. Finally the kinematic and force analysis 

formulas that will be used for position and torque control of the system are presented 

and explained.  

 

4.2. Identification of the Task and Design Criteria 

 

This thesis outlines the design of a general purpose haptic device for fine VR 

and teleoperation applications that require higher level of precision. In order to 

develop a general purpose haptic device a kinaesthetic desktop device is selected since 

it supports a wide variety of applications. The hybrid mechanisms have both the 

advantages of serial and parallel structures as discussed in Chapter 2. Therefore, the 

structure of the mechanism is selected to be configured as a hybrid structure.  
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Table 4.1. Design criteria of the haptic device 
 

Sensation Kinaesthetic 

Structure Hybrid 

Concept of Structure Desktop Device 

Footprint <150-200 mm2 

DOF ≥6 

Force feedback Translation 321 ,, uuu
rrr

 

Workspace 
>100 W x 100 H x 100 D 

mm 

Continuous exertable force > 0.8 N 

Nominal Resolution < 0.1 mm 

 

The device is designated to provide feedback signals to determine the pose of 

the rigid body in space, therefore it should be configured as a 6-DOF mechanism. Only 

point type contact is considered for this thesis, so the DOF can be grouped as 3-DOF 

active translational and 3-DOF passive rotation. Considering the task requirements the 

design criteria of the mechanism are listed in Table 4.1. The workspace, continuous 

exertable force and the resolution of the system are selected to be compatible with the 

commercial haptic desktop devices that are reviewed in Chapter 2.  

 

4.3. Conceptual Designs 

 

According to the specified design criteria, the possible mechanism types for the 

hybrid structure reviewed in two groups, translation and orientation mechanisms. For 

translational mechanism, Delta, Cartesian Parallel, and R-Cube manipulators are 

considered and for orientation mechanism Agile Eye, Hybrid-Spherical and Serial-

Spherical manipulators are considered in conceptual designs (Dede, et al. 2009). 
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4.3.1. Translation Mechanisms 

 

Delta robot (Figure 4.2) is a 3-DOF parallel manipulator with 3RRNR structure 

that is used for translational motions for various haptic device designs.  It has 

seventeen links connected with twenty-one joints that are actuated by three ground 

fixed rotary motors. It has coupled motion and its structure provides high resolution, 

manipulability and high loading capacity with relatively limited workspace. 

 

 

Figure 4.2. Delta manipulator 

 

Cartesian manipulator is a 3-DOF parallel manipulator with 3PRRR structure. 

It can generate only translational motions (Figure 4.3). It has three legs that consists 

eleven links connected with twelve joints including base and platform. The actuation is 

provided by three prismatic joints with linear actuators. The motion of the manipulator 

is de-coupled in the direction of the prismatic axes.  

 

 

Figure 4.3. Cartesian manipulator 
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R-CUBE manipulator is a 3-DOF parallel manipulator with 3NRRR structure 

(Figure 4.4). It can generate translational motions with only revolute joints. It has three 

legs and seventeen links connected with twenty-one revolute joints. The motion of the 

moving platform is directly related with the input of the first links, therefore the 

structure has decoupled motion making use of rotary actuators.  Its kinematic analysis 

is simple with respect to other manipulators due to the de-coupled motion. The 

singularities of the manipulator only exist at the limits of the workspace which is easy 

to avoid (Li et al. 2009). 

 

 

Figure 4.4. R-CUBE manipulator 

 

4.3.2. Orientation Mechanisms 

 

Agile Eye is a 3-DOF parallel manipulator with 3RRR structure (Figure 4.5). 

Its workspace is a 140° cone with ±30° in torsion. It has eight links connected with 

nine joints. As a constructional advantage, it has ground fixed sensors. The structure 

has coupled motion.  
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Figure 4.5. Agile eye 

 

Hybrid-Spherical is a 3-DOF hybrid manipulator with 2RE+R structure (Figure 

4.6). Its workspace is a spherical surface with ±90° (x) ±90°(y) ±120°(z). It has four 

links connected with six joints. It has 2 ground fixed and 1 moving sensors.  

 

 

Figure 4.6. Hybrid-spherical manipulator 

 

Serial Spherical Manipulator is a 3-DOF serial manipulator with RRR structure 

(Figure 4.7). As a consequence of its serial structure, it has large workspace with a 

range about ±120° around all directions, but it has two moving sensors. 

 

 

Figure 4.7. Serial-spherical manipulator 
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Table 4.2. Comparison of translation mechanisms 
 

Mechanism Delta Cartesian R-CUBE 

Number of Joints 21 12 24 

Number of Links 17 11 17 

Kinematic analysis Complex Simple Simple 

De-coupled motion No Yes Yes 

Actuation Revolute Prismatic Revolute 

Ground fixed motors Yes Yes Yes 

Types of joints R R-P R 

 

The comparison table of the conceptual designs for translation and orientation 

mechanisms are shown in Tables 4.2. and 4.3, respectively.  These two tables are used 

to select the configuration for the prototype of the hybrid mechanism. 

 

Table 4.3. Comparison of the orientation mechanisms 
 

Mechanism 
Agile eye 

 
Hybrid -

Spherical 

Serial- 

Spherical 

Number of Joints 9 6 3 

Number of Links 8 4 4 

Kinematic analysis Easy 
Partially 
Complex 

Complex 

De-coupled motion No Yes No 

Workspace 
Cone 140° 
with ±30° 

torsion 

±90° ±90° 
±120° 

±120° 
±120° 
±120° 

Sensation Revolute Revolute Revolute 

Ground fixed sensors Yes Partially No 

Types of joints R R-S-Sl R 
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4.4. The First Prototype Mechanism 

 

Considering the specifications of the conceptual designs outlined above, R-

CUBE structure has unique properties as a haptic device mechanism. The structure of 

the mechanism includes only revolute joints, which increases the manufacturability 

and decreases the cost. The decoupled motion results in straight forward direct 

kinematics solution and static force analysis of the system. In haptics, due to the 

random motion of the operator, one of the most important facts is the singularity 

positions. Singularity analysis of the system is discussed (Li et al. 2009) and R-CUBE 

is proven to allow prevention of singularities with a proper design. Therefore, among 

the other translation mechanism candidates, R-CUBE mechanism is selected. Hybrid-

Spherical manipulator consists of revolute, spherical and sliding joints at once and it 

has also difficult manufacturing and assembling processes because of its complex 

structure. Nevertheless, this structure is a conventional mechanism for many control 

applications including game consoles. Hence, as a tentative mechanism hybrid-

spherical manipulator structure is demounted from joystick and employed into the 

system.  

The entire system is manufactured from stainless steel due to its resistance to 

corrosion and heavy loads with laser cutting technology. Laser cutting technology 

provides high precision and reduced contamination for the links. Sliding joints are 

selected for their low cost and assembly easiness, even though it decreases the 

precision. Stepper motors are used as the actuators because of their low cost. 

Manufactured prototype system with orientation and translation mechanisms can be 

observed, in Figure 4.8 with 1 and 2, respectively. 
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Figure 4.8. Manufactured prototype mechanism 

 

The manufactured mechanism is integrated with other components of the 

system and tested. Although the prototype system cannot be employed as a haptic 

system, the initial tests of the prototype system provide promising results for its 

manipulability.  

 

4.5. Design of the Final Translation Mechanism 

 

Design of the translational mechanism is presented into three sections (1) 

Structural design parameters, (2) Mechanical part designs and (3) Link parameter 

determination. In the first subsection, the design criteria of the mechanism are 

identified. The necessary mechanical component designs are developed in the second 

subsection and finally, in the third subsection the dimensions of the links are 

determined. 

 

4.5.1. Structural Design Criteria 

 

In the prototype mechanism, the original structure of R-CUBE had some 

actuation problems due to the unequally distributed gravitational effects. Hence, the 

original structure of R-CUBE is reoriented and the effect of gravity is distributed 
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equally to all actuators. Apart from that, such an oriented configuration also facilitates 

the controller design and gravity cancellation algorithms. 

 The original structure configuration and the proposed configuration are shown 

respectively in Figures 4.9(a) and 4.9(b). The rotation of the structure is based on 

isometric projection problem, which is explained in the following section (Carlbom 

and Paciorek 1978).   

 

           

   (a)                                       (b) 

Figure 4.9. R-CUBE designs: (a) Original design (Source: Li, et al. 2005),  
                 (b) Rotated design 
 

In haptics, due to the random motion of the operator, motion through singular 

positions must be restricted. During the design procedure two singularity conditions 

are encountered which are important to avoid mechanically. One of them is already 

discussed in the work by Weimin Li, et al. 2009 and presented as avoidable with a 

proper design. The reported singularity is at at θi = ±90 of the first link of the 

mechanism which is shown in Figure 4.10(a). Although the four-bar mechanisms are 

reported as possible engineering trouble by Weimin Li, et al, the problem is resolved 

by precise manufacturing technologies and the redundant constraint structure are used 

in order to  avoid the singularity position mechanically (Figure 4.10(b)). 
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                (a)            (b) 

Figure 4.10. Singularity in the first link: (a) Singularity if θi=±90, (b) Singularity  
                   avoidance 
 

In Figure 4.11, the link lengths of the jth link is denoted by lij for j=1, 2, 3, 4. 

The singularity at θ4=0 may cause trouble at the boundaries of the workspace. Hence 

the link lengths of the link, lij for j=2, 3, 4 are configured to avoid any link collisions 

and possible singularity positions. The link length determination process is based on 

the iterative simulations of the mechanism that were carried out in CosmosMotion©.  

 

 

Figure 4.11. Length of the second, third and fourth links 

 

The location of the workspace is important for the compactness of the design 

and it is limited with the footprint of the haptic device which is specified in the design 

criteria table (Table 4.1). The graphical representations of the workspace and Si 

parameter which defines the distance of the actuation axis from the origin of the base 
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frame are shown in Figure 4.12. The location of the workspace is determined with Si 

parameter by identification of the dimensional limitations of the mechanism.  

 

 

Figure 4.12. The workspace and the Si parameter of the mechanism 

 

Lengths of the first links (Figure 4.13) determine the volume of the workspace. 

According to the design criteria the first link length of the mechanism is calculated by 

direct kinematics analysis formula which is shown in detail, in Section 4.7, in order to 

meet the 120x120x120mm workspace specification. 

 

 

Figure 4.13. Joint variables and length of the first links 
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4.5.2. Component Design Criteria   

 

The main criterion of the parallel mechanism is to develop a universal design 

that is appropriate for different types of orientation mechanisms, so the moving 

platform of the mechanism (Figure 4.14) is designed complying with this criterion. An 

example of this is presented in Figure 4.15 where instead of the orientation mechanism 

a simple handle mechanism is mounted on the platform thus the hybrid mechanism’s 

total DOF is decreased to 3-DOF. Similarly, mounting a 4-DOF mechanism can result 

in a total 7-DOF hybrid structure.   

 

 

Figure 4.14. Platform of the mechanism 

 

During the design of haptic desktop devices, one of the most important design 

specification is the handle space that is required for operator’s hand to fit 

ergonomically, especially when converting a standard manipulator design into a haptic 

device. Therefore during the design of the final mechanism, the ergonomics of the 

handle space is also conceived in the design phase. 

   In the design, the locations of the sensors are selected for aesthetic 

considerations and to have a universal design for incorporating various sensor types. 

The three position sensors of the mechanism mounted at the base frame on the free 

rocker of the four-bar mechanisms as shown in Figure 4.15(a) denoted as 1, 2, 3. The 

position sensors of the mechanism can be replaced with various types of sensors only 

by remanufacturing the sensor housings. In Figure 4.15(b), the sensor mechanism is 
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shown with the sensor housing denoted as 1, the sensor as 2, the bearings as 3, and the 

shaft of the sensor as 4  

 

        

        (a)         (b) 

Figure 4.15. Sensor locations and sensor housing designs: (a) Location of the sensors,  
                    (b) The design of the sensor housings 
 

The CAD representation of the joint structure is shown in Figure 4.16. The 

structure has a shaft (4), bearings (3), screws (1) and the bearing plates (2). The outer 

bearing plates at the left and right hand side of the image are shown in the Figure 4.16. 

They provides leaning surface for the screws while fastening the joints.  The inner 

bearing plate shown in the middle of the image prevents the outer races of bearings 

against getting stuck. The main objective in this design is to improve the mechanical 

precision of the joints. Besides it is also aimed to design a compact structure which has 

easy disassembling procedure.  

 

 

Figure 4.16. CAD representation of joint components M4 screw, bearings and bearing   
                     plates 
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4.5.3 Link Dimensioning and Shape Identification 

 

Link dimensioning and shape identification of the translation mechanism are 

results of the structural and mechanical criteria outlined previously. The determination 

criteria can be listed as; 

 

i) Dimensions of the workspace 

ii)  Location of the workspace 

iii)  Universal design 

iv) Structure of the joints 

v) User’s handle space requirements 

vi) Singularity avoidance 

 

The lengths of the first links are determined to meet the workspace dimension 

specification. Previously defined 100x100x100mm workspace criterion is extended to 

120x120x120mm, in order to avoid the motions in the close-range of the singular 

positions. The location of the workspace, which is important for the general 

dimensions of the mechanism, is identified with the max footprint criterion (Table 

4.1). The universal design criterion sets the dimensions of the moving platform (Figure 

4.14); therefore the dimensions are determined by the size of the possible upper 

mechanisms. Volumes of the links are minimized to decrease the weight of 

mechanism. The cross-sectional area of the links is determined through the dimensions 

of the joint structure (Figure 4.16). The second, third and the fourth link length and 

shape determination process is based on the iterative simulations carried out in 

SolidWorks© CosmosMotion© utilizing the singularity positions, link collisions and 

handle space ergonomics.  

 

4.6. Design of the Final Orientation Mechanism 

 

The serial structure proposed for the final design does not have any structural 

criteria. Therefore, link dimensioning and shape identification of the orientation 

mechanism’s links is the result of criteria; 
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i) Sensation levels 

ii)  Ergonomic design 

iii)  Available sensors 

 

Due to the manufacturing limitations and precision requirements, previously 

employed orientation mechanism of the prototype system is replaced with the serial-

spherical manipulator in the final design. The orientation mechanism, serial-spherical 

manipulator is a 3-DOF-RRR spatial serial mechanism shown in Figure 4.17. 

The mechanism is designed for monitoring the rotational motions of the user’s 

hand, so it is designed in consideration with handle ergonomics. The design is 

manufactured in rapid prototyping machine in our laboratories and the ergonomics are 

tested (Figure 4.17). 

 

 

Figure 4.17. Orientation mechanism 

 

The primary challenge in the design of this mechanism is adjusting the size of 

the mechanism with huge amount of components, such as position sensors, bearings, 

cables and A/D converters. 3-DOF rotational motions of the end-effector are 

monitored through three miniature sensors as shown in Figure 4.18 (b). The A/D 

converters are mounted inside the mechanism (Figure 4.18 (a)) in order to reduce the 

noise level by converting the analog outputs of the position sensors to digital signals.  
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(a)                                    (b) 

Figure 4.18. Position sensors: (a) Location of the sensors, (b) Dimensions 

 

The design procedure of the mechanism is finished with necessary 

modifications to facilitate the manufacturing process. Finally, the model is designed in 

CAD environment and blue-prints are prepared for the test of the ergonomics of the 

mechanism. The CAD design of the new configuration of the hybrid mechanism with 

motors, sensors, bearings is shown in Figure 4.19. The manufacturing process is 

discussed in the following chapter.  

 

 

Figure 4.19. The CAD representation of the final design 
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4.7. Kinematics and Static Force Analysis  

 

Haptic devices are the systems that are used to manipulate virtual or real 

systems that may be a virtual or a robotic arm. In order to control a virtual or real 

system by a haptic interface, the position of the handle point has to be measured then 

measured or calculated forces from the VR system or the slave side of the 

teleoperation must be reflected back to the operator. The position of the tip point, Wr, 

(Figure 4.20) must be calculated with direct kinematic analysis of the parallel 

mechanism (R-CUBE) making use of the joint sensor readings. Forces on the VR 

system or teleoperation slave system must be calculated or measured to restrain the 

operator’s motion with calculated forces. In this section the position and torque 

calculation formulas of the developed haptic device are presented and discussed.   

In Figure 4.20, position of the tip point, Wr, is defined as the intersection point 

of the last link connection surfaces on the moving platform. The origin of the base 

coordinate frame, O, is located at the intersection point of the unit vectors of the 

coordinate frame that is originated from the respective actuator axes. The mechanism 

parameters, variables and the rotated coordinate axes as shown in Figure 4.20 that are 

used in the direct and inverse kinematics analysis, and in the static torque calculations. 

 

 
Figure 4.20 Mechanism parameters 
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In the parallel mechanism, the translational motion of the platform is regulated 

by the orientation of the actuators. Due to the decoupled motion of the mechanism, the 

motion along u
r

1, u
r

2 and u
r

3 axes is only dependent on the motors placed on the same 

axes which have rotations about u
r

2, u
r

3 and u
r

1 axes, respectively. Therefore, the 

mechanism’s direct and inverse kinematics analysis is relatively trivial. Nevertheless, 

the mechanism is only decoupled in rotated coordinate frame as shown in Figure 4.20, 

hence the torque and position analysis of the system is carried out in rotated coordinate 

frame.  For VR or teleoperation applications coordinate frame is reoriented with 

rotation sequence presented in Equations 4.1, 4.2 and 4.3. The reorientation angles, α 

and β, are calculated by using the isometric projection representation (Figure 4.21) 

(Carlbom and Paciorek 1978).   

 

                                                          βα 21
~~),(ˆ uuWR eeC =                                                 (4.1) 

 

°≅°= 26.35)30arcsin(tanα                                          (4.2) 

 

°−= 45β                                                          (4.3) 

 

 

Figure 4.21 Isometric projection  
 

The control scheme of the slave system is based on the calculation of the Wr 

point by utilizing the measurements from the positions sensors. This procedure is 

generally called direct kinematics. In the Equation 4.4, the calculation of the position 

vector of the tip point, Wr, with respect to the origin point, O, in the ground reference 

frame which is resented in Figure 4.20, is described. 

 

332211 uWruWruWrWr
rrr ++=                                             (4.4) 
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Components of the Wr vector are a function of the rotation amounts of the 

actuators, θ, as shown in Equation 4.5. The zero position of the angle, θi, is represented 

with dotted line in Figure 4.22., In Equation 4.5; Si is the distance between motor axes 

and origin point presented in Figure 4.20. li is the link length of the first link which is 

previously presented in Figure 4.20.  

 

 
Figure 4.22. Joint variable (θi) and torque (Ti) directions  

 

( ) 3,2,1;sin =+= ilSWr iiii θ                                       (4.5) 

 

The inverse kinematics solution is given in Equations 4.7 and 4.8. In inverse 

kinematic solution, the mechanical structure of the four-bar mechanism limits the 

motion of the first link to about ±65°. Therefore, it is not possible to pass to the region 

where the cosines of the joint variables become negative. As a result of this, the sign 

ambiguity denoted with σ in Equation 4.7 can be neglected and σ can be taken as +1 

without the loss of generality. 

 

( ) 3,2,1sin =−= i
l

SWr

i

ii
iθ                                         (4.6)  

 

( ) ( ) 1;sin1cos 2 ±=−= σθσθ ii                                    (4.7) 

 

( ) ( )( )iii θθθ cos,sinarctan2=                                         (4.8) 
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The components of the applied force, F, are calculated in the ground reference 

frame in Equation. 4.9.  

 

332211 uFuFuFF
rrrr

++=                                             (4.9) 

 

Torque demands for a specified force that has to be applied to the operator’s 

hand can be formulated by Equation 4.10. In Equation 4.10, T is the torque required to 

be applied by the actuators about their respective axis of rotation as shown in Figure 

4.22, and F is the desired force to be applied to the operator’s hand. Torque values for 

each actuator are calculated by taking cross product of the moment arm vector, Wr, 

and the force vector, F, and then taking the dot product with the respective actuator’s 

rotation axis. The torque element in all axes that has the moment arm along its 

respective axis is neglected because the forces will not be transferred as a consequence 

of the rotation axis arrangement of links 2, 3, and 4. T is the torque applied by the 

actuator about each axis as shown in Figure 4.20, and F is desired force to be applied 

to the operator’s hand. 

 

                                                          

( )
( )
( )233

122

311

WrFT

WrFT

WrFT

=
=
=

                                                  (4.10) 

 

In Figure 4.23, the tip point of the parallel mechanism is denoted with Wr. The 

orientation mechanism is in the form of a spherical wrist configuration. Thus, its 

forward kinematic analysis is provided as a series of pure rotations as in Equation 4.11. 

The orientation mechanism is a passive mechanism. The inverse kinematics solution is 

not required since the motion of the mechanism is not controlled by any actuation 

system. The measured angles from this mechanism are used only for the control of the 

rotation motion in VR or teleoperation applications. 
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Figure 4.23. Wr point of the mechanism 

 

635243
~~~)6,3(ˆ θθθ uuu eeeC =                                             (4.11) 
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CHAPTER 5 

 

MANUFACTURING PROCESS 

 

5.1. Introduction 

   

The designed device is manufactured by utilizing various types of 

manufacturing processes, such as wire erosion, laser cutting, milling and turning for 

both translation and orientation mechanism. In general the manufacturing process of 

the entire mechanism is challenging due to; 

 

i) Small scale parts 

ii)  High precision parts 

iii)  Parallel structure  

iv) Irregular part shapes 

v) Non-magnetic materials 

vi) Average machinability materials 

 

The design of the mechanism includes small bearings, bearing housings, 

bearing shafts, wiring and electronic component houses which are difficult to 

manufacture with conventional manufacturing processes. All moving parts of the 

mechanism are manufactured with high precision in order to detain possible 

backlashes and develop high precision mechanism. Nonidentical and less precise parts 

in a parallel mechanism can also block the motion of the mechanism. As a result of the 

link length and shape determination process outlined in section 4.5, the manufacturing 

of the irregular shaped parts result in a difficult and long manufacturing process. 

Especially, the platform of the mechanism is manufactured in several manufacturing 

phases. The presented materials which are discussed in the next section have average 

machinability and non-magnetic atomic configuration.  In general magnetic materials 

can be clutched with magnetic clutches to the milling and turning machines, however 

non-magnetic materials require custom manufactured fixture in order to fix the 
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workpiece to the machines. Manufacturing the parts of the mechanism with custom 

gages and fixtures increases the cost and time of the manufacturing process. 

In this chapter the steps of the manufacturing process are presented and 

explained with figures. 

 

5.2. Material Selection 

 

In material selection for translational mechanism, the primary objectives are to 

manufacture the mechanism with a material that is light, non-corrosive, and rigid. 

Therefore, non-ferrous metal alloys based on aluminium, zinc, nickel, copper, 

titanium, tungsten and cobalt are investigated and among the other non-ferrous alloys 

aluminium alloy 7075 is used to manufacture of the parallel mechanism. 7075 

aluminium alloy includes 5.1-6.1% zinc, 2.1-2.9% magnesium, 1.2-2.0% copper, 

maximum 0.4% iron, less than 0.4% silicon and other metals. Its density is about 

0.0028 g/mm³ and it has wide application in highly stressed structural parts that range 

from various commercial aircraft components, aerospace to defence equipments. The 

material combines high strength with moderate toughness and corrosion resistance. 

Alloy 7075 offers reasonable price and good machinability when machined with 

carbide machining tools. 

The primary objective during the material selection of the orientation 

mechanism is to use ultra light materials, in order to reduce the payload amount of the 

platform of the mechanism. An engineering plastic, cast polyamide commonly known 

as Kestamid© can provide low densities with reasonable rigidity and price. Delrin 

material has density about 0.0014 g/mm³ and it has wide application for general 

purposes especially in chemical and food industries. It is resistant to corrosion and it 

has average machinability.  

 

5.3. Manufacturing Process of Translation Mechanism 

 

The manufacturing process of the translation mechanism initialized with the 

manufacturing of the base frame is shown in Figure 5.1. Different from the other 

components of the translational mechanism, the base frame is manufactured with sheet 

stainless steel because of the high strength requirements. The base frame is the chassis 
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of the mechanism; it carries the actuators, sensors and the mechanism. Therefore its 

dimensions have to be accurate. Among the other sheet metal cutting technologies 

more precise laser cutting technology is used for the manufacturing of the parts. The 

parts of the base frame and the assembled frame can be seen in Figure 5.1(a) and 

Figure 5.1(b), relatively. 

 

        

        (a)                  (b) 

Figure 5.1. Base frame of the mechanism: (a) Parts, (b) Assembled structure 

 

The sliding joints of the prototype mechanism are replaced with roller-bearing 

joints in the recent mechanism to be able to prevent possible backlashes. In the joints, 

bearings that have 8mm outer and 5mm inner diameter with 3 mm width are used. For 

such a small scale roller-bearings, small scale shafts (Figure 5.2(a)) and bearing houses 

are manufactured. The shafts are manufactured by CNC turning machines from brass 

for its good strength and corrosion resistance properties (Figure 5.2(b)). M4 screw 

thread is cut inside of the shaft for fastening the joints.   

 

            

      (a)       (b) 

Figure 5.2. Shafts of the mechanism: (a) CAD representation of shafts with M4 screw  
                thread, (b) View of the bearings on shaft 
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During the manufacturing process of the translation mechanism the principal 

technique is the wire-erosion machining. Wire-erosion machining is a modern 

machining process, based on material removal technology with rapid electrical 

discharges. It has the capability to manufacture the complex shapes from very hard 

material with smaller tolerances. It also allows manufacturing of very small 

workpieces which is not possible with conventional tools. Therefore, most of the 

precise parts are fabricated with this process. Wire-erosion machine can be seen in 

Figure 5.3 during the manufacturing process of the links. 

 

 

Figure 5.3. Wire-erosion machine 

 

The bearing plates are small parts that have 6.2mm outer and 5mm inner 

diameter. In order to manufacture such precise parts, 7075 aluminium plate, with wire-

erosion. The manufactured parts and assembled compact design of the joint can be 

seen in Figures 5.4(a) and 5.4(b), respectively.  

 

        

        (a)      (b) 

Figure 5.4. Links of the mechanism: (a) Bearing plates, (b) View of the joint 
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The manufacturing of the bearing houses are one of the most demanding 

process in the mechanism. The axes of the joints must be parallel and identical to result 

in smooth joint motions. The bearing houses are cut during the manufacturing of the 

links then the holes are widened with drilling followed reaming process to meet the 

bearing tolerance specifications. The entire process is accomplished with custom 

designed and fabricated gage shown in Figure 5.5.     

 

 

Figure 5.5. Custom gage for bearing houses 

 

The links 1 and 2 are manufactured with wire-erosion from, 5mm, 7075 

aluminium sheet metal and then the process is finished with counter-sinking. The 

manufactured link 1 and 3 can be seen in Figures 5.6(a) and 5.6(b), respectively 

 

        

        (a)      (b) 

Figure 5.6. Links of the mechanism: (a) Link 1, (b) Link 3 

 

Other links, 2 and 4 is also manufactured with wire-erosion from, 14mm, 7075 

aluminium plate. In the second step, the bearing houses are completed and finally, all 

links are perforated in order to decrease the weight of the links. The perforated view of 
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the fourth link and an assembled leg of the mechanism can be seen in Figure 5.7(a) and 

Figure 5.7(b). 

 

        

        (a)                 (b) 

Figure 5.7. Links of the mechanism: (a) Link 4, (b) Assembled links 

 

The moving platform of the mechanism is manufactured by CNC milling from 

7075 aluminium billet. Among the other parts of the mechanism, this part has the most 

challenging manufacturing process due to its irregular shape and accuracy 

requirements. The geometry of the part is based on the modification of a cube; 

partiality shown in Figure 5.8(a) and 5.10(a). The surfaces of the cube have to be 

parallel and the cube must provide high fidelity geometry. Therefore the 

manufacturing process is started with fabrication of a uniform cube that has 

approximately ±0.001 tolerance range (Figure 5.8(b)).   

 

        

        (a)                            (b) 

Figure 5.8. Manufacturing process of Link5: (a) CAD representation of first edge  
                  removing, (b) Manufacturing process of first edge removing 
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The three screw holes for the joints are perforated as shown in Figure 5.8(a). 

Afterwards the workpiece is rotated about α, and β (Equation 4.2, 4.3) by bevel 

protractor and the one edge of the cube is removed as shown in Figure 5.8(b). 

 

 

Figure 5.9. Custom fixture for link 5 

 

The other edge of the link is removed with custom fixture shown in Figure 5.9 

and the manufacturing process can be seen in Figure 4.10(b) by milling machine. 

Created surfaces are not the working face. Therefore the precision of the edge 

removing process is not important.  

 

        

        (a)       (b) 

Figure 5.10. Manufacturing process of Link5: (a) CAD representation of second edge  
                  removing, (b) Manufacturing process of second edge removing 

 

Finished moving platform of the mechanism from aluminium alloy 7075 can be 

seen in Figure 5.11. The part is also manufactured from polyoxymethylene plastic 

(delrin) material by the same manufacturing processes in order to reduce the total 

payload. 
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The manufacturing process of all links and the base of the mechanism are 

finished with polishing process to acquire clear surface. Then, inserts (Helicoil©) are 

threaded into the pre-taped holes to provide a more enduring threaded screw holes.  

  

 

Figure 5.11. Finished platform of the mechanism 

 

5.4. Manufacturing Processes of Orientation Mechanism 

 

The orientation mechanism is manufactured utilizing turning process and hand 

workmanship process with Dremel©. The precision of the mechanism and the strength 

of the structure are relatively less significant than the lower mechanism because the 

structure has no active joints. It is a composed of four main parts as shown in Figure 

5.12. In Figure 5.12 base link denoted as “1”, the first link as “2”, the second link as 

“3”, and the third link as “4” 

 

 

Figure 5.12. Orientation Mechanism 

 

The base of the mechanism is used to fix the orientation mechanism to 

translation mechanism. It is manufactured from kestamid© by turning. The 
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manufacturing process is simple since it contains only a sensor house and bearing 

house. The manufactured base link can be seen in Figure 5.13. 

 

  

Figure 5.13. Base of the orientation mechanism 

 

The first link of the mechanism is shown in right hand side of the Figure 

5.14(b), it is manufactured from kestamid© by turning and hand workmanship process. 

It includes bearing surfaces for the first and the second axes and sensor housing. It has 

also simple manufacturing process except for the wire ways that can be seen in Figure 

5.14(a).  

 

        

        (a)                 (b) 

Figure 5.14. Link 1: CAD representation of link 1, (b) Link 1 and link 2 

 

The second link can be seen in the left hand side of the Figure 5.14(b). The 

components (Figure 5.16(a)) of the third axis are squeezed in a small volume which is 

partially shown in Figure 5.15. The link is the most complicated part in the orientation 

mechanism. Therefore the manufacturing process is long and difficult. Especially, 
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manufacturing the miniaturize potentiometer house is a result of multiple trials. It is 

manufactured from Kestamid© by turning, milling and hand workmanship process. 

 

      

Figure 5.15. CAD representation of link 2  

 

The last link of the mechanism is shown in Figure 5.16(b). It does not include 

any mechanics or electronics. It is the handle part of the joystick so it is designed 

considering the ergonomics. The manufacturing of this link is also difficult due to the 

dimensions and the plastic material. It has about 130mm length and 15mm pitch 

diameter which causes workpiece vibrations during the milling process. Hence the 

milling process is accomplished in multiple trials. 

 

        

        (a)       (b) 

Figure 5.16. Link 3: (a) Shaft and bearings, (b) Link 3 
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5.5. Conclusion 

 

The manufacturing processes of the mechanisms are presented in this chapter. 

Even though the manufacturing process  is challenging due to the, non-magnetic 

materials, irregular part shapes and small scale high precision parts, precise 

manufacturing processes, such as wire erosion, laser cutting, CNC milling and turning 

made the manufacturing of the parts possible. The tests of the assembled translation 

mechanism (Figure 5.17) show that the mechanism does not have any structural 

problems. Links and the joints of the system have low frictional loss and provide 

smooth joint motions which are important to provide higher level of sensations.  

 

 

Figure 5.17. Assembled translation mechanism  

 

The orientation mechanism (Figure 5.17) also has smooth joint motions and 

low frictional loss. It does not have any structural problems, but it has some bearing 

problems which is discussed in the following chapters. 
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Figure 5.17. Assembled orientation mechanism  

 

In the next chapter, integration of the mechanism with electronic and electro-

mechanic components of the system is explained and the properties of them are 

presented. 
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CHAPTER 6 

 

INTEGRATION OF THE SYSTEM 

 

6.1. Introduction 

 

Haptic systems are composed of mechanical, electro-mechanical and electronic 

components. The mechanical component of the system is presented and manufacturing 

processes are explained in the previous chapters. The electronics and electro-

mechanical components such as actuators, sensors, data acquisition cards and motor 

amplifiers of the system are required to be selected and integrated to the system. In this 

chapter, the selection of the outlined components of the system is discussed and 

selected components are presented. The integrated system is tested and according to 

initial tests result, necessary design changes is identified and applied. 

 

6.2. Data Flow Through the System  

 

The basic components and the data flow among these components are shown in 

Figure 6.1. This flow chart facilitates the identification of the correlation and data 

transfer between the system and the components. The control scheme of impedance 

type haptic system starts with the measurement of the positions of the mechanism’s 

degrees of freedom from potentiometers via data acquisition card. The analog signals 

from the potentiometer are converted to digital signals by ADCs in the DAQ card. 

Through the reserved communication port of the PC, digital signals are transferred to 

the computer control software and the forces are calculated as a result of the 

interaction between the object and the environment in VR or teleoperation application. 

Afterwards, the resultant forces are transmitted back though the same way, back to the 

actuators of the mechanism. In a VR application, acquired signals from the motion 

sensors through the DAQ card are used to move a virtual object in VR screen. 
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Figure 6.1. Data flow 

 

The only difference in teleoperation integration of this haptic device would be 

that actual forces has to be measured on the slave side of teleoperation instead of 

calculating virtual forces in the VR environment. The slave system is usually at a 

distant site. Therefore, the signals between the master and the slave robot must have a 

communication system such as the Internet, cables or wireless technology in 

teleoperation systems. 

 

6.3. Motor, Drive System and Motor Amplifier Selection 

 

Among the other actuation methods presented in the Chapter 2, DC motors are 

the most frequently used actuator types in the design of the robotic applications owing 

to their simple structure, low cost, high reliability and wide availability for various 

applications. DC motors are also used in the design of the haptic devices. In this thesis 

due to their advantages outlined above, Brushless DC motors are employed in the 

system. Basically DC motors can be grouped in two categories as brushed and 

brushless DC motors. Brushed DC motors are composed of brushes, commutator, 

stator and rotor. Because of the switching mechanism, motor and the maintenance cost 

of the actuator is high and the structure of the motor is sensitive to dust and abrasion. 

In contrast brushless DC (BLDC) motors include only a permanent magnet rotor and a 

stator.  In BLDCs, the switching is generated with electronic switching circuits, instead 

of any mechanical switching. The advantages of the brushless DC motors can be listed 

as 
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i) Includes fewer components that result in simple structure and low 

inertia. 

ii)  Low maintenance requirements and long life. 

iii)  High efficiency. 

iv) Reduced motor length and compact design. 

v) Low switching noise. 

 

The disadvantages of the brushless dc motor configuration relative to the 

brushed DC motors are; 

 

i) Relatively high cost due to the cost of the permanent magnet. 

ii)  Do not include any shaft for position sensing. 

iii)  Complexity in the electronic controller. 

 

The actuators are selected as a result of the force analysis performed in the 

CAD simulations. The applied force specification is to apply at least 0.8 N of force in 

all directions. This specification is consistent with the similar haptic devices in the 

market (www.sensable.com). The initial selection of the actuator is a Maxon brushless 

DC motor that provides 310 mNm of continuous torque according to its datasheet 

(Figure 6.2).  

 

 

Figure 6.2. Selected maxon motor 

 

In haptic devices, usually DC motors with capstan drives are used. However, it 

is foreseen that in time, the cables of the capstan drives loosen and results in loss of 
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precision since the mechanism is driven without any transmission mechanism.  

Brushless dc motors are used in direct drive formation.  

The system requires motor amplifiers that drive the three BLDC motors 

through current mode requiring +/- 10 V analogue signals as inputs. Maxon brushless 

dc motor amplifiers (drivers) are selected to be compatible with the current 

requirements of the motors. These amplifiers are used to drive the actuators in current 

mode can be seen in Figure 6.3, which enables to drive the actuators by torque inputs 

that originated from the haptic controller system. The amplifiers are selected to have a 

response rate of at least 1 kHz.  

 

 

Figure 6.3. Selected maxon motor amplifier 

 

6.4. Sensor Selection and Integration 

 

The design of the mechanism allows using separate sensors to measure the 

rotation amount of each actuator. Thus, it is not required to have an encoder system at 

the rear end of the actuator which usually has 9-bit of resolution. The four-bar 

structure placed as the fist link has identical nominal lengths, which permits the same 

motion on each link.  
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Figure 6.4. Selected position sensors 

 

A potentiometer or a higher bit resolution encoder (12-bit) can be aligned with 

the free link of the four-bar system and measure the same motion with more precision. 

In the initial system, six potentiometers that provide analogue signals, three on the 

parallel mechanism and three on the orientation mechanism, are used due to their low 

cost and simplicity. The selected potentiometer (Figure 6.4) for the links of translation 

mechanism has linear track tapper, approximately 270o mechanical angle, ±5 

resistance tolerance and 1% linearity error. In order to design a compact handle 

mechanism, it is required to use miniaturize potentiometers.  

The potentiometers of the rotational mechanism (Figure 6.5(a)) have small 

dimensions about 10x11x4 mm. Although the presented components, called trimpot, 

are not designed for position sensing, due to the availability limitations of miniaturize 

size position sensors, these trimpots are used as sensors.      

 

        

         (a)           (b) 

Figure 6.5. Sensing the position of the orientation mechanism: (a) Miniaturize sensors,       
                 (b) ADC and passive components 
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In order to minimize noise in the analog signal it is required to convert to 

digital signals directly. Therefore 16-Bit, High-Speed, ADC ADS8331 (Figure 6.5(b)) 

and the passive filtering components are mounted on the back of the trimpots as shown 

in Figure 6.6(a). Finally the integrated sensor modules are placed into the links of the 

mechanism. Located sensor of the second link can be seen in Figure 6.6. 

 

        

         (a)           (b) 

Figure 6.6. Integration of the miniaturize position sensors: (a) Integrated sensors,  
                       (b) Sensors on the second joint of the mechanism 

 

Due to the noise effects in high speed digital signals, cased ribbon cable is used 

for the power and data transmission between the integrated sensors and DAQ card 

(Figure 6.9). Other types of digital signal cables are also tried such as standard ribbon 

cables but positive results can be taken. Moreover the array of the signal cables are 

also important, the data, clock, positive supply, ground and enable signal cables are 

denotes as 1, 2, 3, 4, and 5 respectively in Figure 6.7.  

 

 

Figure 6.7. Cased ribbon cable DAC data converter 
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6.5. Custom Data Acquisition System Design  

 

A data acquisition (DAQ) card is used to convert analogue inputs from the 

potentiometers to digital signals to be fed into the computer and digital outputs from 

the computer to analogue signals to be fed into the motor amplifiers. 

This thesis also comprises an experimental study about design and development 

of a custom data acquisition system. The developed data acquisition card is 

Microchip© PIC based system that has six 16-bit A/D converters and three 16-bit D/A 

converters. The developed data acquisition system includes three analog to digital 

converter, micro processor, three digital to analog converters and RS-232 

communication ports denoted with 1, 2, 3, and 4, which can be seen, respectively in 

Figure 6.8. 

 

 

Figure 6.8. Custom data acquisition system 

 

6.5.1 The Components of the Custom Data Acquisition 

 

The important components of the developed data acquisition system can be 

listed as microprocessor, analog to digital converter and digital to analog converter 

units. The selected microprocessor of the system is PIC18f4431; this midlevel 
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microchip provides good performance with reasonable prices. It support clock speeds 

up to 40MHz, it has 16384 bytes program memory, 768 bytes of data memory and 

high-speed 10-bit A/D converters. Moreover it also provides quadrature encoder 

interface which could be used for optical sensing operations in the later versions of the 

developed haptic device. 

The ADCs of the system is a product of Burr-Brown which can be seen in 

Figure 6.9.The ADS8320 is a 16-bit ADC that provides 100 kHz sampling rates via 

synchronous serial communication protocol.  It has very low power requirements and 

differential input. The ultra-small package size (MSOP-8) of the ADS8320 makes it 

ideal for compact data acquisition applications. 

 

Figure 6.9. Selected analog to digital converter 

 

The DAC714 is a low noise digital to analog converter that can provide ±10 

volt voltage output without any additional opamps. It has high-speed synchronous 

serial communication interface which can operate in parallel bus connection, cascaded 

serial bus connection with asynchronous and synchronous update. The output pin is 

protected against possible short circuits to ground and the reference pins allow offset 

and gain adjustment. DAC714 is available in a plastic DIP16 package which can be 

seen Figure 6.10. 
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Figure 6.10. Selected digital to analog converter 

 

The developed data acquisition card is employed and tested in Matlab© 

Simulink via serial port communication blocks in time and frequency domain 

applications. Nevertheless, the initial tests show that the developed data acquisition 

system can support up to 100 Hz of sampling rate which is not usually enough in 

haptic applications. 

 

6.6. Commercial Data Acquisition System Selection and Integration 

 

Although various types of commercial data acquisition systems are available, 

due to the performance ratings, Quanser Q8 Hardware in the Loop (HIL) Board from 

Quanser Consulting Inc. is selected. Q8 has eight 12-bit D/A converters, eight 14-bit 

A/D converters whivh is enough for 6-DOF mechanism. Furthermore, it also has eight 

quadrature encoder inputs is for future modifications on the system’s sensors. The 

system currently occupies three D/A converters for motor amplifiers and six A/D 

converters for the potentiometers of the Q8. While human motion is limited to 10 Hz, 

forces that are up to 1 kHz is important for the perception of the outer media. 

Therefore, in general, haptic devices are required to have at least 1 kHz (Akahane et al. 

2005) of sampling rate in order to accurately provide the sense of touch. Quanser Q8 

can operate at 100 kHz sampling rates even in simultaneous acquisition. 
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Table 6.1. Specifications of Quanser Q8 DAQ Card 
 

Analog Inputs 8x14-bit 

Analog Outputs 8x12-bit 

Quadrature Encoder Inputs x8 

I/O Channels 32xProgrammable 

Dedicated Counter/Timers 2x 32-bit 

Reconfigurable Encoder 

Counter/Timers 
2x 24-bit 

PWM outputs x2 

PCI bus interface 32-bit, 33 MHz 

 

Due to the limitations of the developed custom data acquisition card (Figure 

6.7), the initial tests of the mechanism are performed with the purchased commercial 

DAQ system. Nevertheless the small dimensions and wire houses (Figure 5.14(a)) 

transmitting the analog sensory outputs from the mechanism are impossible. Therefore 

the digital signals from the embedded DAQ components (Figure 6.6) are converted by 

the use of ADC to DAC converter circuit which can be seen in Figure 6.11. 

 

 

Figure 6.11. ADC to DAC data converter 

 

In custom DAQ card the primary delays are the result of limited transfer rates of the 

serial port, so despite the designed circuit is also includes the same components with 

the presented custom DAQ system, it can operate within the desired frequencies.  
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6.7. Initial Tests and Modifications 

 

The integrated system is tested and necessary design modifications are 

identified and some of them are applied system. According to the integrated system 

test results, necessary modifications are addressed in; 

 

i) Rotation of the mechanism 

ii)  Motor selection 

iii)  Sensor selection 

iv) Second link of the orientation mechanism 

 

The initial test results revealed that the reoriented mechanism (Figure 4.9(b)) 

increased power consumption with respect to the original configuration (Figure 4.8) as 

shown in Table 6.2. Hence the orientation of the translation mechanism is changed 

back to the previous configuration (Figure 6.13). 

 

 

Figure 6.12. Modified 6-DOF mechanism 
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Table 6.2. Max Power Consumptions for Gravitational Effects 
 

 Motor No Ampere 

Reoriented Configuration 

1 4.2 

2 4.21 

3 4.35 

Original Configuration 

1 0 

2 4.81 

3 0.8 

 

Although the technical specification sheet of the selected rate presents the 

motor’s stall torque at 310 mNm, it is measured that the actuator can apply one third of 

the rated stall torque. Furthermore, changing back the orientation of the mechanism 

decreased the force feedback capability. Nevertheless this configuration can still 

provides enough torque rates to the mechanism. In order to achieve the required the 

feedback capacity more powerful brushed dc motors are planned to be used. 

Initially selected analog position sensors (potentiometers) provide noisy data 

which can results in precision loss. Therefore 12-bit three-channel incremental optical 

sensors (Figure 6.12) can be replaced far the potentiometers. 

  

 

Figure 6.13. Selected optical encoder 

 

The bearings and sensor installation track of the second link of the orientation 

mechanism is denoted respectively with 1 and 2 in Figure 6.14. The installation track 

is necessary for the installation of the DAQ module of the last link, however the 

deficiency in the sensor houses results in serious backlash on the handle mechanism. 

So the design of the link has to be modified.  
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Figure 6.14. Second link of the orientation mechanism 

 

6.8. Conclusion 

 

In this chapter, the integration of the mechanism with the electro-mechanic and 

the electronic components are presented. Data flow among the system components is 

explained and the specifications of the system components are presented. Considering 

the initial test results, the necessary modifications are listed.  

Integrated mechanism can be seen in Figure 6.14. The VR application, 

computer control scheme, DAQ components and the mechanism is denoted by 1, 2, 3, 

4 in Figure 6.14, respectively 

 

 

Figure 6.14. The 6-DOF haptic system 
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CHAPTER 7 

 

CONCLUSIONS 

 

7.1. Conclusions 

   

The aim of this thesis is to develop a general purpose haptic device that 

provides higher precision ratings. Hence, previous haptic device designs are 

investigated, current haptic systems’ sensation types are reviewed, mechanisms and 

their structural advantages are identified and haptic applications are grouped as 

teleoperation and VR haptics. Afterwards, the general haptic device components are 

listed and previously employed materials are reviewed. The difference of the 

admittance and impedance haptic devices is described, and drive systems are 

investigated according to the type of the haptic device. Some of the commercially 

available DAQ systems along with the custom DAQ systems are presented. Finally 

graphical DAQ software development languages are presented and compared to 

configure initial test environment making use of VR technology.   

Towards developing a haptic device, the design phases of the mechanical part 

of the system are clarified. According to the defined design phases, the design criteria 

are identified and the conceptual designs are formed. Evaluating the literature survey 

results and the developed conceptual designs, R-CUBE mechanism is selected for 

reflecting three-dimensional forces and 3R serial spatial mechanism is selected for 

monitoring the orientation of the operator’s hand. The selected mechanisms are 

configured as a haptic device and the dimensions and shapes of the links are 

determined to meet the specified design criteria. The designed mechanism is modified 

according to the manufacturing abilities, and then the mechanism is manufactured 

utilizing various manufacturing processes. The important points of the manufacturing 

process are presented and discussed.   

The mechanical, electro-mechanical, electronics and software parts of the 

device are integrated. Considering the force feedback requirements, motors are 

selected along with the appropriate motor amplifiers. In order to improve the precision 

of the actuation system, the driving type is determined as direct drive. The sensors of 
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the system are identified and the orientation mechanism is integrated with its DAQ 

modules. Experimental studies on the custom DAQ card are performed and appropriate 

commercial DAQ system is selected and purchased. Then, the commercial DAQ 

system is integrated with the other components of the mechanism. Finally initial tests 

are performed, necessary design changes are offered and some of them are applied into 

the system.  

 

7.2. Future Works 

 

Haptic system development phases can be listed in three groups; the design and 

manufacturing the mechanical structure, development of data acquisition cards and the 

development of VR or teleoperation application.  Until now, the structural 

development of the system is completed satisfying the precision requirements, 

experimental DAQ system is developed and tested and experimental VR is created in 

Matlab Simulink.  

In the future the mechanism can be remanufactured with composite material in 

order to improve the weight/strength ratio. The electro-mechanical components such as 

sensors and actuators can be replaced for better accuracy and force ratings. . Hence, the 

potentiometers can be replaced with optical encoders and the motors of the system can 

be changed with other types of actuators such as coreless DC motors. Furthermore 

passive actuators can be integrated to the existing device; the four-bar mechanism 

provides unique advantage for such an implementation. The developed custom DAQ 

card’s sampling rate can be improved with the use of more advanced technologies such 

as DSPs and FPGAs. VR application can be enhanced with better VR modules or 

custom programming. Moreover the system can be configured as the master system of 

a teleoperation application.  
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APPENDIX A 

 

SOURCE CODES OF THE SYSTEM 

 

A.1. Source Code of ADC to DAC Converter 

 

/************************************************** **** 
      3 Channels ADC to DAC Converter 
*************************************************** ****/ 
 
#include <16f877A.h>     \\ Microprocessor configurations 
#fusesHS,WDT,PROTECT,NOBROWNOUT,NOLVP,NOPUT,NOWRT, 
NODEBUG, CPD  
#use delay (clock=10000000)  
 
unsigned int16  Value=0;     \\ Global variables 
#include "DAC714_4.c"     \\ Included library 
#include "ADS8320_C.c" 
 
 
/*********Main Program Functions********/ 
 
void main ( ) 
{ 
 
   setup_psp(PSP_DISABLED);     \\ Internal interrupts 
   setup_spi(SPI_SS_DISABLED);      
   setup_timer_1(T1_DISABLED);      
   setup_timer_2(T2_DISABLED,0,1);  
   setup_adc_ports(NO_ANALOGS);     
   setup_adc(ADC_OFF);              
   setup_CCP1(CCP_OFF);             
   setup_CCP2(CCP_OFF);             
   setup_wdt(wdt_2304ms); 
   disable_interrupts(GLOBAL);  
  
------------------------------------- 
 
   init_ext_adc_C(pin_d2, pin_d3, pin_c4);     \\ Initializing the converters 
   init_ext_adc_C(pin_c5, pin_c6, pin_c7); 
   init_ext_adc_C(pin_d4, pin_d5, pin_d6); 
   init_DAC714(pin_d1, pin_d0, pin_c3, pin_c2); 
   init_DAC714(pin_c1 pin_c0, pin_e2, pin_e1); 
   init_DAC714(pin_e0, pin_a5, pin_a4, pin_a3); 
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while(True) 
   { 
    
   value=read_ext_adc_C(pin_d2, pin_c4, pin_d3);     \\ Converting data 
   DAC_Write16(Value,pin_d1, pin_d0, pin_c3, pin_c2); 
   output_low(pin_b7); 
    
   value=read_ext_adc_C(pin_c5, pin_c6, pin_c7); 
   DAC_Write16(Value,pin_c1 pin_c0, pin_e2, pin_e1); 
   output_low(pin_b7); 
    
   value=read_ext_adc_C(pin_d4, pin_d5, pin_d6); 
   DAC_Write16(Value,pin_e0, pin_a5, pin_a4, pin_a3); 
   output_low(pin_b7); 
    
 
   } 
}  

 

A.2. Source Code of Computer Control and Virtual Reality Software 

 

The computer control and VR software of the system is developed in Matlab 

Simulink via Quanser Q8 analog inputs. Each operation for the control of the 

impedance type haptic device is conducted in separate matlab blocks. The blocks that 

are configured for VR application, sensor readings, forward kinematics and force 

calculation can be seen in the main window of the software (Figure A.1). 

 

 

Figure A.1. Main program  
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The initial tests of the mechanism and the actuators are performed as a 

conventional manipulator then the system is operated as haptic system.  The tests of 

the system is executed by making use of the control blocks which can be observed in 

Figure A.1 with controller 1, 2, 3.  

The positions of the links are measured through the potentiometers with HIL 

Read Analog block then the readings are adjusted as shown in Figure A.2. The first 

math block sets the zero position of the links and the multiplication operations 

converts the ±10v analog inputs to degrees. 

 

 

Figure A.2. Translation mechanism Pot Read Block 

 

Similar to the translation mechanism, position angles of the orientation 

mechanism’s links are calculated with similar math operations as shown in Figure A.3. 
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Figure A.3. Orientation mechanism Pot Read Block 

 

The forward kinematic calculation of the translation mechanism is solved in 

forward kinematics block which can be seen in Figure A.4. The calculation translates 

the link angles to position of the Wr point. 

 

 

Figure A.4. Forward kinematics block 

 

The VR application is created with VR sink block in simulink (Figure A.5) and 

connected with the position of the Wr point. The VR application is a basic pen and 

surface application (Figure A.6) which can simulate point type of contact in 6-DOF 

space.  
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Figure A.5.VR application block 

 

 

Figure A.6. VR application  

 

Finally the VR haptic surface is determined in force feedback block and the 

calculated torqueses are applied to the user via HIL Analog Write block as shown in 

Figure A.7. 
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Figure A.7. Force feedback block 
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APPENDIX B 

 

ISOMETRIC VIEWS AND PROPERTIES  

OF THE LINKS 

 

B.1. Translation Mechanism 

 

Table B.1. Translation mechanism Link1 
 

Density Mass Volume Surface Area 

0.0028 g/mm³ 16.96 grams 6055.82 mm3 3784.83 mm2 

 

 

 

 

Figure B.1. Translation mechanism Link1 
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Table B.2. Translation mechanism Link2 
 

Density Mass Volume Surface Area 

0.0028 g/mm³ 54.21 grams 19361.66 mm3 12594.63 mm2 

 

 

 

 

 

 

Figure B.2. Translation mechanism Link2 
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Table B.3. Translation mechanism Link3 
 

Density Mass Volume Surface Area 

0.0028 g/mm³ 22.02 grams 7863.40mm3 4558.67 mm2 

 

 

 

 

 

 

Figure B.3. Translation mechanism Link3 
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Table B.4. Translation mechanism Link4 
 

Density Mass Volume Surface Area 

0.0028 g/mm³ 60.93 grams 21761.05 mm3 13751.85 mm2 

 

 

 

 

 

 

Figure B.4. Translation mechanism Link4 
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Table B.5. Translation mechanism Link5 
 

Density Mass Volume Surface Area 

0.0028 g/mm³ 71.30 grams 51297.53 mm3 15203.87 mm2 

 

 

 

 

 

 

Figure B.5. Translation mechanism Link5 
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B.2. Orientation Mechanism 

 

Table B.6. Orientation mechanism Link1 
 

Density Mass Volume Surface Area 

0.0014 g/mm³ 19.43 grams 13977.54 mm3 6680.48 mm2 

 

 

Figure B.6. Orientation mechanism Link1 

 

 

 

Table B.7. Orientation mechanism Link2 
 

Density Mass Volume Surface Area 

0.0014 g/mm³ 18.72 grams 13467.72 mm3 7302.14 mm2 

 

 

Figure B.7. Orientation mechanism Link2 
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Table B.8. Orientation mechanism Link3 
 

Density Mass Volume Surface Area 

0.0014 g/mm³ 10.71 grams 7705.32 mm3 5259.06 mm2 

 

 

Figure B.8. Orientation mechanism Link3 

 

 

 

Table B.9. Orientation mechanism Link4 
 

Density Mass Volume Surface Area 

0.0014 g/mm³ 47.17 grams 33935.26 mm3 11310.36 mm2 

 

 

Figure B.9. Orientation mechanism Link4 

 


