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ABSTRACT 
 

MOLECULAR MECHANISMS OF BORON TOXICITY AND 
IDENTIFICATION OF BORON METABOLISM GENES 

 
 
Boron is an essential micronutrient for plants and it is either necessary or 

beneficial for animals. Studies identified only few genes related to boron metabolism 

thus far and details of how boron is imported into cells and used in cell metabolism are 

largely unknown. In this study, in order to identify genes that play role in boron 

metabolism, the entire set of yeast haploid deletion mutants was screened and 6 boron 

resistant and 21 boron sensitive mutants were identified. Boron treatment activated the 

expression of ATR1 and many genes that are regulated by genereal amino acid control in 

a GCN4 dependent manner. Polysome analyses and 35-S methionine labelling assays 

suggested that boron inhibits protein synthesis. Inhibition of protein synthesis was also 

confirmed by the phosphorylation of translation factor eIF2α in boron treated cells, and 

phosphorylation of eIF2α was totally dependent on the uncharged tRNA binding domain 

of Gcn2 kinase. Overall, our results revealed many genes and pathways related to boron 

stress response and suggest a possible link between boron toxicity and translational 

control.  
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ÖZET 
 

BOR TOKSİSİTESİNİN MOLEKÜLER MEKANİZMALARI VE BOR 
METABOLİZMASI GENLERİNİN TANIMLANMASI 

 
 
Bor bitkiler için esansiyel bir mikrobesin olmasının yanında hayvanlar için de 

yararlı ya da gerekli olabilmektedir. Bugüne kadarki çalışmalar bor metabolizması ile 

ilgili çok az geni ortaya çıkarmıştır ve borun hücre içerisine nasıl taşındığı ve hücresel 

metabolizmada nasıl kullanıldığı hala bilinmemektedir. Bu çalışmada bor 

metabolizmasında rol oynayan genlerin bulunması amacıyla maya haploid delesyon 

mutantlarından oluşan bir set taranmış ve 6 mutant bor dirençli ve 21 mutant da bora 

karşı duyarlı bulunmuştur. Bor muamelesi ATR1 ifadelenmesini ve GCN4’e bağlı olarak 

genel amino asit kontrol mekanizması tarafından düzenlenen çoğu genin ifadelenmesini 

aktive etmiştir. Polizom analizleri ve 35-S metiyonin işaretlemesi denemeleri borun 

protein sentezini inhibe ettiğini göstermektedir. Protein sentezinin inhibisyonu aynı 

zamanda, eIF2α translasyon faktörünün bor ile muamele edilmiş hücrelerde 

fosfatlanmasıyla doğrulanmıştır ve eIF2α’nın fosforilasyonunun Gcn2 kinazının yüksüz 

tRNA bağlanma bölgesi ile ilişkili olduğu gösterilmiştir. Sonuç olarak, bor 

metabolizması ile alakalı pek çok gen ve yolak aydınlatılmıştır ve bor toksisitesi ile 

translasyonel kontrol arasında bir bağ olabileceği öne sürülmüştür. 
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CHAPTER 1 

 

INTRODUCTION 

 
1.1. Boron Biochemistry 

 
Boron is an element which has intermediate properties between metals and non-

metals (Bolanos, et al. 2004). It is a naturally occuring substance but is never found as a 

single element (GreenFacts 2004). In nature it forms compounds such as borax, borates 

and boric acid with combinations of sodium and oxygen (Expert Group on Vitamins and 

Minerals 2003). However only organoboron complexes which contain B-O or B-N 

bonds like orthoborates are important in biological systems. These organoboron 

complexes are formed in plant, animal, and human tissues. 

In an organism during normal physiological conditions nearly 96% of the boron 

are present as boric acid B(OH)3 and as a small amount of borate anion B(OH) 4
- (Hunt 

2003, Bolanos, et al. 2004). Boric acid is a Lewis acid with a pKa of 9.25 and it accepts 

a hydroxyl ion, rather than donating protons, to form the tetrahedral anion B(OH) 4
-.  

 

B(OH)3 + 2H2O ←→ H3O + + B(OH)4
−   pKa= 9. 25 (25˚C) (1.1) 

(Source: Greenwood and Earnshaw 1984) 

 

Both boric acid and borate make strong interactions with biomolecules, 

especially which containing cis-hydroxyl groups such as riboflavin, adenosine 

monophosphate, pyridoxine, ascorbic acid, sugar molecules and polysaccharides. When 

the hydroxyl groups are next to each other and on the same side of the molecules there 

is an interaction between boron and its ligands via ester bonds (Hunt 2003). 

Boric acid and borates have been commonly used as an antiseptic, bactericide, 

cleaning agent such as soaps and detergents, preservatives for leathers and wood, fire 

retardants, fertilizers, insecticides, and herbicides, cosmetic products; also used for 

many industrial purposes including manufacture of glass, fiberglass insulation, 

porcelain enamel, ceramic glazes, and metal alloys (Woods 1994, Moore 1997, EPA 

2004).  
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Major world boron deposits are located in Turkey and California, and also found 

in Argentina, Chile, Russia, China, Peru, Egypt, Iraq, Libya, Morocco, Syria (Green 

Facts 2004, Tanaka and Fujiwara 2008). 

 

1.2. Necessity and Function of Boron in Living Things 

 
The first report which proposes essentiality of boron for plants came in the year 

1923. In that year Warington found the growth of Vicia faba (field bean) was reduced in 

a medium that lacked boron but when the medium was supplied with only boron, the 

growth was rescued (Warington 1923). Since then boron has been established as an 

essential micronutrient not only for plants but also for animals. As a result of 

accumulating evidence boron has been thought to play roles in many physiological and 

metabolic processes in microbial systems, plants and animals. However it is toxic to all 

these organisms when present at high concentrations (Nielsen 1997, Tanaka and 

Fujiwara 2008). 

In plants, boron has important roles in nucleic acid metabolism, carbohydrate 

and protein metabolism, cell wall synthesis, cell wall structure, membrane integrity and 

function, and phenol metabolism. Nevertheless, molecular mechanisms of these roles 

are mostly unknown (Goldbach, et al. 2001, Miwa, et al. 2007). Recently a primary 

function of boron was found at molecular level. It cross-links pectins in cell walls. 

Pectins are complex polysaccharides and are important components of plant cell wall 

structure. Boron forms a cross-link with apiose residues of pectin rhamnogalacturonan 

II (RG-II) and this cross-linking is essential for normal leaf extension (Kobayashi, et al. 

1996, O’Neill, et al. 2004).  

Boron has also roles in microbial growth. It is required for bacterial nitrogen 

fixation in Azotobacter, although it is not essential for growth (Anderson and Jordan 

1961). However the species Bacillus boroniphilus require boron for its growth and can 

tolerate more than 450 mM boron (Ahmed, et al. 2007). Heterocystous cyanobacteria 

and actinomycetes of the genus Frankia also require boron for both growth and nitrogen 

fixation. It was suggested that boron stabilizes the glycolipid layer of the heterocysts 

through interacting with their hydroxyl groups. This requirement of boron for 

Cyanobacteria indicates it was an essential element during early evolution of life since 

Cyanobacteria were dominant organisms in Pre-Cambrian age (Mateo, et al. 1986, 
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Bonilla, et al. 1990, Bolanos, et al. 2002). Newly a boron containing molecule which 

mediates quorum sensing in bacteria was isolated (Chen, et al. 2002, Bolanos, et al. 

2004). Boromycin and tartrolon A and B are boron containing antibiotics synthesized by 

bacteria (Irschik, et al. 1995, Kohno, et al. 1996). 

Boron is also required for several marine species, diatoms and algal flagellates. 

In addition it was found necessary during embryonic development of zebra fish (Danio 

rerio) and rainbow trout (Oncorhynchus mykiss) and frogs (Xenopus laevis) (Rowe and 

Eckhert 1999). The levels of boron required are different among these organisms. In 

animals boron affects various mechanisms. These include carbohydrate, mineral 

metabolism, energy consumption, regulation of several enzyme activities and 

embryonic development. However molecular mechanisms of boron function in animals 

are not well understood (Tanaka and Fujiwara 2008). 

Human beings are exposed to boron through their diet, from drinking water 

and from consumer products such as soaps, detergents, cosmetic, deodorant, pesticides, 

and preservatives. An essentiality of boron has not been reported to date in human but it 

has beneficial effects. It has roles in steroid hormone metabolism, healthy bone 

development, cell membrane maintenance. Additionally, clinical experiments showed 

when boron was taken with foods, the risk of prostate cancer significantly reduced. 

Therefore molecular basis of these functions should be uncovered (Green Facts 2004, 

Cui, et al. 2004, Tanaka and Fujiwara 2008). 

 

1.3. Boron Deficiency and Toxicity 

 
Boron is an important nutrient for plants and animals. Although the necessity 

has been known for growth and development of these organisms, boron is also toxic 

when present at high concentrations. In plants boron deficiency symptoms are seen 

mainly expanding organs. Boron deficiency results in the formation of abnormal cell 

wall, cytoskeletal polymerization changes and alteration of plasma membrane 

permeability for ions. In addition to these, leaf expansion, root elongation, flower and 

fruit development are inhibited. At the cellular level boron restriction harms many 

physiological processes and can drive cells even to death. In 2004, it was reported that 

the expression of glutathione S-transferase and glucosyltransferase induced in tobacco 

(Nicotiana tabacum) BY-2 cells under boron limitation and in 2009, another study with 
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these tobacco cells showed that oxidative damage is directly involved in cell death 

under boron deprivation and it is not likely a typical programmed cell death. In contrast, 

boron toxicity symptoms are seen margins of mature leaves. It causes reduced root cell 

division, lower photosynthetic rates, chlorosis or necrosis of old leaves. However the 

physiological basis of boron toxicity is not clear (Kobayashi, et al. 2004, Camacho- 

Cristobal, et al. 2008, Koshiba, et al. 2009).  

In human and animals, as a result of boron deprivation growth impairs, bone 

development becomes abnormal, blood steroid hormone levels decrease, urinary 

calcium excretion increases and macromineral status changes. It is also found that mice 

and frogs have developmental disorders arising from boron deficiency. Excessive boron 

intake causes neurological effects, kidney damage, diarrhea, anorexia, weight loss, and 

testicular atrophy in mice, rats, and dogs. It also causes decrease in fetal body weight 

and increase in skeletal malformation and cardiovascular defects in pregnant female 

animals (Yazbeck, et al. 2005). Despite its importance little is known about the 

mechanisms of these boron actions. 

 

1.4. Boron Uptake and Transport in Plants and Animals 
 

In metabolism of essential micronutrients there are generally special carrier 

systems that carry the nutrient into the cell and several factors that modulate the 

regulation of these nutrients in the cell.  

Boron is also an essential nutrient for many organisms. Plants acquire boron 

from soil in the form of boric acid. It is taken up by roots and is loaded to xylem for 

transport to shoots. During this long distance boron follows the transpiration streams 

and accumulates at margins of mature leaves since transpiration rate is high in these 

regions (Brown and Shelp 1997). In human and animal, there is limited information 

about the physiology and molecular biology of boron uptake. Fruits and vegetables are 

the primary sources of boron. After absorbed from the gastrointestinal and respiratory 

tracts more than 90% of boron are rapidly excreted in the urine. Boron concentrations in 

tissues are held constant by kidney-regulated homeostasis. However the mechanism of 

this homeostasis is not known now (Devirian and Volpe 2003). 

The essentiality of boron for higher plants has been known for many years and 

boron deficiency is an agriculturally important problem in many parts of the world. 
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Therefore an optimum supply of boron is necessary for normal growth. To solve this 

major problem in boron deficient regions boron is supplied as fertilizer, but this usage 

should be also tightly controlled because boron is toxic when present in excess. There is 

a narrow range between boron deficiency and toxicity. Thus a need arises to understand 

the mechanisms that regulate boron homeostasis at molecular level. To achieve this, 

many studies related to boron have used plants as a model and to date many plant genes 

which are involved in boron transport and tolerance have been found (Takano, et al. 

2008, Kato, et al. 2009).  

It has long been believed that the passive diffusion of boric acid is the only and 

major transport mechanism of boron through membrane. However recent studies 

revealed three mechanisms for membrane transport of boric acid. The first is passive 

diffusion. First experiments showed that the theoretical permeability coefficient of boric 

acid for lipid bilayer was 8×10-6cm s-1 (Raven 1980). In 2000, experiments with squash 

root (Cucurbita pepo) and charopyte alga (Chara corallina) cells also revealed a similar 

permeability coefficient of boric acid to calculated value by Raven (Dordas, et al. 2000, 

Stangoulis, et al. 2001). According to these results passive diffusion represents a 

significant way for passing lipid bilayer when there is high boron supply, but under low 

boron conditions there is a need for membrane proteins. 

Recent studies suggest that in addition to passive transport there are also active 

transport mechanisms for boric acid. Using tracer boric acid (10B) it was found that in 

sunflower (Helianthus annuus) growing under low boron, the transport of boric acid 

takes place against concentration gradient (Dannel, et al. 2000). Similar to the 

sunflowers Arabidopsis thaliana accumulates boron in the xylem against a 

concentration gradient under boron limitation. In this study BOR1 gene was identified 

as the first boron efflux transporter for xylem loading (Takano, et al. 2002). Shoot 

growth inhibition and reduced fertility were shown in A.thaliana bor1-1 mutant under 

low boron conditions and this mutant can not translocate boron from roots to shoots. 

When BOR1 was overexpressed, improved shoot growth and fertility were observed 

(Miwa, et al. 2006). However BOR1 gets internalized via endocytosis and degraded in 

the vacuole when plants are exposed to high levels of boron (Takano, et al. 2005). 

BOR1 belongs to animal bicarbonate transporter superfamily (SLC4) and BOR1 

homologs were found in many organisms (Figure 1.1). For example OsBOR1 was 

identified in rice and has roles in boron efflux transport for boron uptake and xylem 

loading (Nakagawa, et al. 2007). In Saccharomyces cerevisiae YNL275w was also 
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characterized as one of the BOR1 homologs and is responsible for transporting boron in 

plasma membrane (Takano, et al. 2002). BOR1 also shows a significant homology to 

mammalian NaBC1. In 2004, NaBC1 was shown as a Na+-coupled borate transporter 

and it is essential for boron homeostasis of mammalian cells (Park, et al. 2004). BOR1 

has six paralogs. One of them, BOR4, provides tolerance to plants against high levels of 

boron whereas BOR1 can not (Miwa, et al. 2007). Additionally, BOT1 is a BOR1 

ortholog and provided boron tolerance to barley (Sutton, et al. 2007).  

 

 

Figure 1.1. Phylogenetic tree of the SLC4 anion-exchanger superfamily. Na+-
bicarbonate transporters are shown in brown, Na+-dependent anion 
exchangers in green and proteins of unknown function in grey. Hs: 
Human, Sc: Yeast, At: Arabidopsis (Source: Frommer and von Wiren 
2002). 
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As a third mechanism for the membrane transport of boric acid, facilitated 

transport by NIP channels represents new aspects. NIP5:1 is a member of major 

intrinsic protein family (MIP) (Figure 1.2). MIPs are integral membrane proteins and 

serve as channels for water and small uncharged molecules in mammals, amphibians, 

yeast, bacteria and plants. MIPs are divided into four subgroups: the plasma membrane 

intrinsic proteins (PIP), the tonoplast intrinsic proteins (TIP), the nodulin 26-like 

intrinsic proteins (NIP), and the small basic intrinsic proteins (SIP) (Wallace, et al. 

2006). NIP5:1 belongs to plant-specific NIP subfamily and has been identified as a 

boric acid channel that upregulated in A. thaliana roots under boron deficiency (Takano, 

et al. 2006). However it is unclear whether other MIPs are involved in boric acid 

transport in animals. Thus there is a need for determining other channels and the 

molecular mechanisms of boric acid transport by these transporters and channels. It is 

also inevitable to investigate the sensing mechanisms behind the boron toxicity. 

 

 
Figure 1.2. Boron transport mechanism of NIP5:1 and BOR1 in plants. In addition to 

the passive diffusion NIP5:1 facilitates the boric acid transport into cells 
following the concentration gradient. It is predicted that BOR1 exports 
borate [B(OH)4

–)] which is converted from boric acid in the plant cytosol 
where the pH is high (Source: Takano, et al. 2008). 
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1.5. Yeast and Boron Relationship 

 
Previous studies have shown that unicellular eukaryotic organism 

Saccharomyces cerevisiae is an excellent model to search the molecular trafficking of 

several metals such as copper, iron and zinc and to understand the mechanisms by 

which cells respond to various stress conditions (Lin, et al. 1997, Jamieson 1998, 

Culotta, et al. 1999). As a result of a study which also used yeast cells, it was found that 

cells could not divide and cell cycle stopped under boron deficiency. However when 

boron added to media, yeast cells proliferated normally and when exposed to high levels 

of boron, cells were poisoned. This boron dependent growth has suggested yeast can be 

used as a suitable model for boron molecular biology researches (Bennett, et al. 1999). 

In addition, the properties like growing rapidly in liquid and solid medias, being 

genomically characterized, the availability of haploid and diploid deletion sets, simple 

expression systems for extrachromosomal genes, the applicability of many techniques in 

molecular genetics and evolutionary conservation between yeast and higher eukaryotes 

make yeast a convenient system to get information related to fundamental cellular 

processes in higher organisms.  

Yeast has been also used for characterization of plant boron tolerance genes so 

far. It is known as a boron tolerant organism because it can grow in the presence of 80 

mM boric acid (Nozawa, et al. 2006, Kaya, et al. 2009). Yeast BOR1 was characterized 

in detail. This protein is localized to plasma membrane and has a role in boric acid 

efflux and therefore tolerance of boron toxicity (Takano, et al. 2007). In addition to 

BOR1, DUR3 and FPS1 were found to be involved in boron tolerance in yeast. Dur3 is 

a urea transporter and Fps1 is a member of the MIP family and transports glycerol. 

Mutants that lack DUR3 and FPS1 showed decreased accumulation of boron in cells 

suggesting these genes are involved in boron import. However it is not clear which 

functions have these transporters in boron detoxification (Nozawa, et al. 2006). 

In another study with yeast which was conducted by our group, ATR1 has been 

found as a boron tolerance gene (Kaya, et al. 2009). ATR1 was characterized as a 

suppressor of the 3-amino-1,2,4-triazole sensitivity of gcn4Δ mutants for the first time 

(Kanazawa, et al. 1988). Apart from that it conferred resistance to 4-nitroquinoline-N-

oxide in a genetic screen (Mack, et al. 1988). Yeast Atr1 is composed of 14 membrane-

spanning segments and a member of the DHA2 family of drug-H+ antiporters (Gbelska, 
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et al. 2006). Yeast genomic DNA library screen revealed expression of ATR1 provided 

extreme resistance to boron and reduced the intracellular boron levels. Mutants that lack 

ATR1 gene were found sensitive to boron treatment and had high intracellular boron. 

Taken together it can be concluded that Atr1 functions as a boron efflux pump and 

therefore provides tolerance (Kaya, et al. 2009).  
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CHAPTER 2 

 

MATERIALS AND METHODS 

 
2.1. Yeast Growth and Media 

 
WT strain BY4741 (MATa his3 leu2 met15 ura3) and its isogenic deletion 

mutants were obtained from the yeast deletion library (Invitrogen) and diploid strain 

BY4743 (MATa/α his3Δ1/his3Δ1 leu2Δ0 /leu2Δ0 lys2Δ0/LYS2 MET15/met15Δ0 

ura3Δ0 /ura3Δ0) and its isogenic deletion mutants were obtained from EUROSCARF. 

YPD medium (2% glucose, 2% peptone, 1% yeast extract and 2% agar for solid media) 

was used for cell growth and selective YNB (yeast nitrogen base) medium with required 

amino acids and bases was used for plasmid carrying cells. 

 

2.2. Screening of Yeast Deletion Collection Set 

 
To identify mutants that were boron resistant, haploid yeast deletion collection 

strains were inoculated into 200 μl of liquid YPD media in microtiter plates using a 

home made 96 pin-replicator. After overnight incubation at 30 ºC, cells were replicated 

onto YPD agar plates supplemented with 100 mM boric acid. Cells were incubated at 30 

ºC for 3 days. Mutants that were resistant to 100 mM boric acid were picked and tested 

on 150 mM boric acid. Similar analyses were performed for homozygous diploid cells. 

In order to identify mutants that were sensitive to boron, cells were replicated onto YPD 

plates containing 10-70 mM boric acid. Related diploid mutants were also tested in a 

similar manner. Both resistant and sensitive mutants were tested on different boron 

concentrations several times. 
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2.3. Cloning of the YAP1, GCN2 and GCN4 Genes with Gateway        
Technology® and Plasmids Used for Yeast Transformation 
 
The wild type alleles of the YAP1, GCN2 and GCN4 was amplified by either 

Long PCR Enzyme or High Fidelity enzyme (Fermentas) from yeast genomic DNA 

using the primers 

YAP1F 

(5´GGGGACAAGTTTGTACAAAAAAGCAGGCTCTTAAACCATGAGTGTGTCT-3´)  

and 

YAP1B 

(5´GGGGACCACACTTTGTACAAGAAAGCTGGGTGTTCCCGCTTTAGTTCATAT-3´) 

for YAP1 gene,  

GCN2F 

(5´GGGGACAAGTTTGTACAAAAAAGCAGGCTATGTCATTGAGTCATCTCAC-3´) 

and  

GCN2B 

(5´GGGGACCACTTTGTACAAGAAAGCTGGGTGCCTACCTCTGTAAATCGAT-3´)  

for GCN2 gene, 

GCN4F 

(5´GGGGACAAGTTTGTACAAAAAAGCAGGCTAATGTCCGAATATCAGCCAA-3´) 

and  

GCN4B 

(5´GGGGACCACTTTGTACAAGAAAGCTGGGTATGAAATCAGCGTTCGCCAA-3´) 

for GCN4 gene. The amplified fragments was first cloned into PDONR vector using 2 

μl BP ClonaseTM II enzyme (Invitrogen) with an overnight incubation at 250C and then 

moved to LR clonase reaction. This reaction was performed with 2 μl of isolated entry 

clones, 1.5 μl pAG423GPD expression vector, 3 μl TE buffer and 2 μl LR ClonaseTM II 

enzyme mixture (Invitrogen). Isolated plasmids were confirmed with sequence analyses 

and then yeast cells were transformed with the empty vector or with gene expression 

construct and selected for histidine prototrophy. Plasmids used for translational 

regulation of eIF2α phosphorylation in gcn2Δ cells were provided from Alan G. 

Hinnebusch (Laboratory of Gene Regulation and Development, National Institutes of 

Health). These include p4384 (expressing a functional, flag epitope-tagged form of 

GCN2), p4055 (containing flag epitope-tagged GCN2 with nonphosphorylatable S577-
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Alanine mutation), p4056 (containing flag epitope-tagged GCN2 with substitutions in 

the m2 motif of the HisRS-like domain), p4057 (containing flag epitope-tagged GCN2 

with substitutions both in m2 motif and S577A). All four plasmids contain URA3 region 

for selection. 
 

2.4. Yeast Transformation with LiAc Method 
 

Yeast transformations were performed by LiAc method (Gietz 1995). 5 ml of 

liquid YPD was inoculated and incubated overnight with shaking at 30˚C. 

Logarithmically grown yeast cells were harvested by centrifugation and washed with 

sterile distilled water. Pelleted cells were resuspended in 0,1M LiAc and transferred to 

1.5 ml microcentrifuge tubes. After top speed centrifugation pellet was resuspended in 

240 μl PEG (50 % w/v), 36 μl (1M) LiAc, 5 μl salmon sperm single stranded carrier 

DNA (10 mg/ml), 10 μl DTT (0,3mM), 20 μl plasmid DNA, 10 μl dH2O respectively, 

vortexed for 1 minute and incubated for 30 minutes at 30˚C. Then heat shocked at 42°C 

for 20-25 minutes. Transformed cells were spreaded on YNB-Ura or YNB-His media. 

Cells were allowed to grow for 3-4 days to form a colony. The colonies obtained were 

used for further experiments. 

 

2.5. Determination of Boron Tolerance of Mutants 
 

Boric acid was used as a source of boron and spotting assays on solid media 

were performed to determine boron tolerances of mutants and wild type yeast. For 

spotting assays, overnight cultures were diluted to an optical density of 0.2 at 600 nm 

initially and to 0.2, 0.02, 0.0002 by serial dilution. 5 μl of each dilution was spotted on 

YPD or YNB agar plates containing different amounts of boric acid. Plates were 

incubated 3 days at 30˚C.  
 

2.6. DNA Microarray Analysis 
 

BY4741 wild type, yap1Δ, gcn2Δ, gcn4Δ mutant cells were grown to an optical 

density of 0,2-0,3 at 600 nm in 200 ml YPD medium separately, with or without 

treatment for 1 hour with 20 mM boric acid. Then, cells were harvested by 



13 

centrifugation. Total RNA was isolated by using Ambion RiboPure™-Yeast Kit. The 

Agilent Two-Color Low RNA Input Linear Amplification Kit was used to generate 

fluorescently labeled cRNA for two-color microarray hybridizations. Fluorescently 

labeled, cRNA molecules were purified from the reaction mixture using the Qiagen 

RNeasy mini kit. cRNA samples (825 ng each) were combined with Agilent Hi-RPM 

hybridization buffer. Microarray hybridizations were performed using Agilent SureHyb 

hybridization chambers. The hybridization chambers were loaded onto a rotisserie in an 

Agilent Hybridization oven and were incubated at 65˚C for 17 hours with a rotational 

speed of 10 rpm. Following incubation, the microarray slides were washed for 1 minute 

each in Gene Expression wash buffer 1 (6×SSPE, 0.005% N-lauroylsarcosine at room 

temperature) and Gene Expression Wash Buffer 2 (0.06×SSPE, 0.005% N-

lauroylsarcosine at 31˚C) for 1 minute each. The microarray slides were briefly dipped 

in a solution of acetonitrile, dried and scanned in an Agilent Technologies G2505B 

microarray scanner at 5 µm resolution.  
 

2.7. RNA Isolation and Real Time PCR Analyses 

 
Total RNA was isolated using the RNA isolation kit (Invitrogen). Genomic 

DNA traces were removed by DNAse treatment (Fermentas). Complementary DNA 

(cDNA) from total mRNA was obtained using the First Strand cDNA Synthesis Kit 

(Fermentas). The cDNA was used as a template for amplifying a 186 bp fragment for 

the ATR1 gene and a 103 bp fragment for the internal control ACT1 gene. Real time 

PCR analyses were performed with the IQ5 real-time PCR system (Bio-Rad) via using 

Fermentas MaximaTM SYBR Green qPCR Master Mix (2X) (Fermentas) for 

determining quantitave expression levels. The primers used for amplification of ATR1 

were ATR1F (5´-ACGCGTATAGCATAGCCGCTTTCA-3´) and  

ATR1B (5´-TGTAAGCCTGGTTCCAACCCGATA-3´); and those used for 

amplification of ACT1 were ACT1F (5´-ACGTTCCAGCCTTCTACGTTTCCA-3´) and 

ACT1B (5´-ACGTGAGTAACACCATCACCGGAA-3´). The conditions for PCR 

amplification were as follows: 30 cycles at 94 ◦C for 30 s, 58 ◦C for 30 s and 72 ◦C for 

30 s. 
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2. 8. Polysome Profiling 
 

Density gradient centrifugation system is used in order to separate total RNAs 

based on their molecular weight. This experiment can be analyzed in three parts as 

sucrose density gradient, sample homogenization and fraction collection. First of all 5% 

and 70% sucrose solutions [RiboLock™ RNase inhibitor (Fermentas), 100 mM NaCl, 

10 mM MgCl2, 20 mM HEPES] were prepared and thereafter sucrose gradients were 

prepared by using ISCO systems. BY4741 cells were grown to an optical density of 0,7 

to 0,9 at 600 nm in 30 ml YPD medium. These cells which exposed to 0 mM, 50 mM 

and 100 mM boric acid for 1 hour harvested by centrifugation, washed with two times 

sterile distilled water and were frozen at -80˚C as pellets. The day of trial, yeast pellets 

were homogenized in 5 ml lysis buffer [100 mM NaCl, 10 mM MgCl2, 20 mM HEPES, 

40 u/µl RiboLock™ RNase inhibitor (Fermentas), 1% Triton-X 100, 1% sodium 

deoxycolate (NaDOC), 10 mg/ml cycloheximide (Sigma)] to obtain total RNA with the 

help of glass beads and vortexing. Followed by 8.minutes incubation on ice, the 

homogenate was centrifuged for 10 minutes at 12.000 x g at 40C. The supernatant was 

spreaded onto prepared 5%-70% (w/v) sucrose gradients and sedimented for 2.55 h, at 

27.000 rpm, 40C in SW28 rotor (Beckman Coulter (Optima™ L-XP Ultracentrifuge 

System). In fraction collection step, 40 fractions were collected from the top of the 

gradient by using ISCO Tris pump while monitoring absorbance at 254 nm with an 

ISCO UA-6 monitor. The RNP populations were grouped according to their 

sedimentation rate: mRNP, 40S, monosome and polyribosome fractions. Following the 

addition of 10% SDS and 200 mM NaCl to fractions, phenol- chloroform extraction was 

applied twice in order to remove proteins. Aqueous phase was recovered after vortexing 

and centrifuging at 3000 rpm, at 240C, for 5 minutes. The aqueous parts containing 

RNA were ethanol precipitated in 1/10 NaOAC, 2X 96% ethanol and stored at -200C 

overnight. Ethanol-precipitated RNA was centrifuged at 12.000 rpm at 40C for 20 

minutes. The RNA pellet was washed twice with %70 ice cold ethanol and centrifuged 

at 12.000 rpm at 40C for 5 minutes. Finally the RNA pellet was resuspunded in 200-300 

µl DEPC water. RNA concentration was measured by NanoDrop spectrophotometer. 

Samples were aliquoted and stored at -80˚C. 
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2.9. Metabolic Labeling 

 
BY4741 yeast cells were grown in 200 ml of YNB medium to OD600= 0.5, 

splitted to 100 ml aliquots and one aliquot was treated with 20mM of boric acid. After 1 

hour of incubation both aliquots were metabolically labeled with 0.5 mCi of 

EXPRE35S35S Protein Labeling Mix (Perkin-Elmer) for 30 minutes. Cells were 

harvested by centrifugation, washed three times with PBS buffer and disrupted with 

glass beads during 10 minutes in PBS buffer. The resulting cellular lysates were 

normalized according to protein concentration and 10µg of each lysate were subjected 

to SDS-PAGE. Resolved proteins were transferred to the polyvinylidene difluoride 

(PVDF) membrane. 35S-labeled proteins were visualized with a Storm PhosphorImager 

system (Amersham Biosciences) after 2 days of exposure. 

 

2.10. Western Blot Analyses  

 
Wild type cells, and the isogenic GCN4-MYC, ATR1-GFP and gcn2Δ strains 

were grown to mid-log phase in either YPD or selective YNB-Ura media, with or 

without boron treatment and equal number of cells were harvested by centrifugation for 

each strain. Cell extracts were resuspended with sample buffer [0,06 M Tris-HCl pH: 

6.8, 10% (v/v) glycerol, 2% (w/v) SDS, 5% (v/v) 2-mercaptoethanol, 0,0025% (w/v) 

bromophenol blue] and heated at 95˚C for 5 minutes after vortexing vigorously. For 

analysis, cell extracts were resolved by 5%-15% SDS-PAGE and blotted to PVDF 

membrane. Primary antibodies that used in these experiments were anti-c-myc antibody 

produced in rabbit for GCN4-MYC (Sigma), anti-gfp, N-terminal, antibody produced in 

rabbit for ATR1-GFP (Sigma), rabbit anti-eukaryotic translation initiation factor 2, 

alpha, phosphorylated (Ser52) antibody (USBiological). The blots were stripped and 

reprobed with antibodies against yeast phosphoglycerate kinase monoclonal antibody 

(Invitrogen) as an internal control. As secondary antibodies anti-rabbit IgG conjugated 

to horseradish peroxidase (Sigma) or goat anti mouse IgG horseradish peroxidase 

conjugated was used. The membranes were treated with enhanced chemiluminescence 

system (Bio-Rad) and were visualized using VersaDoc Imaging System (Bio-Rad). 
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CHAPTER 3 

 

RESULTS AND DISCUSSION 

 
3.1. Identification of Boron Resistant Yeast Deletion Mutants 

 
It is known that wild type yeast can tolerate up to 80 mM boric acid (Kaya, et al. 

2009). To identify genes whose deficiency confer resistance to high boron levels, all 

mutants of yeast haploid deletion set (approximately 4700 mutants) were screened via 

using solid media containing 100 mM boric acid, and 24 resistant mutants were 

identified. These resistant mutants, then, were retested on higher boron concentrations 

and 6 of them mutants (ncs2Δ, ncs6Δ, kti12Δ, elp1Δ, elp3Δ, elp6Δ) could grow on 

media which contained 150 mM boric acid (Figure 3.1). Since many strains in the yeast 

deletion set could have suppressor mutations or aneuploidy, these mutants were also 

verified in a different background in terms of boron resistance. As seen in (Figure 3.2), 

homozygous diploid cells lacking the same genes were also boron resistant. Among 

them Elp1, Elp3 and Elp6 are subunits of the elongator complex which has six members 

(Elp1-Elp6) and play role in formation of the 5-methoxycarbonylmethyl (mcm5) and 5-

carbamoylmethyl (ncm5) groups on wobble uridines in several tRNAs, in transcriptional 

elongation by RNA Polymerase II and in exocytosis. Also Kti12 plays a role in 

modification of the wobble base together with the elongator complex. Ncs2 and Ncs6 

are required for thiolation of the uridine at the wobble position of Lys, Glu, Gln tRNAs 

and have roles in urmylation and in invasive and pseudohyphal growth. Since the 

formation of modifications in the wobble position of tRNAs negated the deficiency in 

exocytosis and transcriptional activation, it seems to be an important function of the 

elongator complex. Thus, resistance of ncs2Δ, ncs6Δ, kti12Δ, elp1Δ, elp3Δ and elp6Δ 

mutants to boron could be related to the absence of uridine modifications at the wobble 

base of tRNAs which are needed for efficient decoding of lysine and glutamine codons 

in mRNAs during translation, however mechanisms how absence of tRNA 

modifications could cause boron resistance need to be investigated (Goehring, et al. 

2003, Esberg, et al. 2006, Huang, et al. 2008). 
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Figure 3.1. Haploid boron resistant mutants 
 

 

 

Figure 3.2. Boron resistant homozygous diploid mutants 
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3.2. Identification of Boron Sensitive Mutants 

 
To find genes whose absence sensitizes cells for boron, the yeast haploid 

deletion set was screened for the mutants that can not tolerate boron levels that are not 

toxic. 21 mutants that can not tolerate boron concentrations over 40 mM were identified 

through this screening (Figure 3.3). Absence of the same genes in homozygous diploid 

background also caused sensitivity to boron (Figure 3.4). As seen in Table 3.1 these 

mutants were lacking genes that play role in many different metabolic pathways. For 

example, absence of two genes (THR1 and HOM6) related to amino acid metabolism 

resulted in boron sensitivity. THR1 is a homoserine kinase which involves in threonine, 

serine, methionine and isoleucine metabolism, and regulated by general amino acid 

control mechanism (Mannhaupt, et al. 1990). HOM6 encodes for homoserine 

dehydrogenase which plays role in theronine, serine, methionine and lysine metabolism. 

Also cells lacking VPS16, BRE5, UBP3, BRO1 and SAC1genes were found sensitive to 

boron. These genes play roles in vesicular and vacuolar transport systems. Sac1 has 

phosphatase activity and is localized to Golgi and endoplasmic reticulum. Bro1 plays a 

role in multivesicular body pathway (Odorizzi, et al. 2003). UBP3 and BRE5 work 

together to regulate trafficking between Golgi and ER (Cohen, et al. 2003). PHO85 

gene encodes for a cyclin-dependent kinase (CDK). This CDK plays role depending on 

the cyclin partner, in cellular responses to nutrients, environmental stress, and in 

regulation transcription during the cell cycle (Huang, et al. 2007). CCS1 has been 

known as an antioxidant protein since it plays role as a copper chaperone for superoxide 

dismutases I (Sod1) (Schmidt, et al. 1999). Also there were sensitive mutants deficient 

in carbohydrate metabolism (rpe1Δ, reg1Δ, och1Δ). Apart from these, absence of ERG4 

which is a sterol reductase and plays role in ergosterol synthesis and ADK1 which has 

roles in purine metabolism also provided boron sensitivity.  
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Figure 3.3. Haploid boron sensitive mutants 

 
 
 
 
 
 

 
 

Figure 3.4. Boron sensitive homozygous diploid mutants 
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Table 3.1. List of the mutants that show boron sensitivity. Data extracted from 
Saccharomyces Genome Database 

 

Systematic 
Name 

Common 
Name Function 

YBL007C SLA1 Cytoskeletal protein binding protein  
 

YCR016W  
Putative protein of unknown function 
 

YDL075W RPL31A Protein component of the large (60S) ribosomal subunit 
 

YDR028C REG1 Regulatory subunit of type 1 protein phosphatase Glc7p
 

YDR226W ADK1 Adenylate kinase 
 

YER151C UBP3 Ubiquitin-specific protease 
 

YGL012W ERG4 C–24(28) sterol reductase 
 

YGL038C OCH1 Mannosyltransferase of the cis-Golgi apparatus 
 

YGR283C  Protein of unknown function 
 

YHR025W THR1 Homoserine kinase 
 

YJL120W  Dubious open reading frame  
 

YJL121C RPE1 D-ribulose-5-phosphate 3-epimerase 
 

YJR139C HOM6 Homoserine dehydrogenase 
 

YKL212W SAC1 Phosphatidylinositol phosphate (PtdInsP) phosphatase 
 

YMR038C CCS1 Copper chaperone for superoxide dismutase Sod1p 
 

YMR310C  Putative protein of unknown function 
 

YNR051C BRE5 Ubiquitin protease cofactor 
 

YOR141C ARP8 Nuclear actin-related protein 
 

YPL031C PHO85 Cyclin-dependent kinase 
 

YPL045W VPS16 
Subunit of the vacuole fusion and protein sorting HOPS 
complex and the CORVET tethering complex 
 

YPL084W BRO1 
Cytoplasmic class E vacuolar protein sorting (VPS) 
factor 
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3.3. Transcriptional Regulation as an Answer to Boron Treatment  

 
Recently our group found that ATR1 is responsible for high boron tolerance in S. 

cerevisiae via screening a genomic DNA library. ATR1 codes for a multidrug resistance 

transport protein of the major facilitator superfamily. Deletion of ATR1 caused 

increased sensitivity to high boron in the environment and its expression provided a 

strong tolerance. It was localized to the cell membrane and was a boron efflux pump. It 

is widely distributed among bacteria and fungi. This study also showed that a group of 

genes involved in amino acid biosynthesis and membrane transport were expressed as a 

result of boron treatment which were presented with DNA microarrays (Kaya, et al. 

2009). Since boric acid treatment induced ATR1 expression over threefold which was 

the greatest increase among transporter genes, we further analyzed the expression of 

ATR1 gene to understand molecular mechanisms between the ATR1 gene and boron 

treatment. A previous study showed GCN4 and YAP1 transcription factors play roles in 

ATR1 induction (Coleman, et al. 1997). Yap1 as a well known transcription factor 

controls the oxidative stress response genes and is likely to take a role in activation of 

ATR1 (Lee, et al. 1999). Gcn4 is a major regulator of gene expression during amino acid 

starvation in yeast and also under conditions of nutrient limitation and other forms of 

cell stress. Gcn2 is a protein kinase and upregulates the expression of GCN4 mRNA 

translation under starvation conditions and accumulation of high levels of uncharged 

tRNA seems to be an important factor that induces Gcn2 activity (Natarajan, et al. 

2001). When considering all these information, we reasoned that boron treatment may 

transcriptionaly activate ATR1 in a GCN-system dependent manner. To test this 

hypothesis, firstly spotting assays were conducted in terms of examining the boron 

sensitivity of the mutant cells that lack YAP1, GCN2 and GCN4 respectively. As seen in 

Figure 3.5 these mutants were all sensitive to boron. 

 
 

 

 

 

 

 

 



22 

 

Figure 3.5. Comparison of boron sensitivity of haploid transcription factor mutants 

 

To reveal which transcription factor regulates the expression of ATR1 in 

response to boron DNA microarray experiments were conducted. In these experiments 

the induction of ATR1, amino acid biosynthesis genes and transporter genes were 

analyzed in wild type, gcn2∆, gcn4∆, yap1∆ mutant cells after a 20 mM boric acid 

treatment for one hour. As shown in Figure 3.6, ATR1 was not upregulated in only 

gcn4∆ mutant cells in response to boron. Deletion of YAP1 and GCN2 did not alter the 

expression profile of ATR1. Thus, transcription factor Gcn4 is required for ATR1 

expression in response to boron. Besides ATR1, upregulation of amino acid 

biosynthesis genes were also inhibited in cells lacking GCN4 gene. 
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Figure 3.6. The changes in the expression levels of transporter genes in transcription 
factor mutants by boron treatment  
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Figure 3.7. The changes in the expression levels of amino acid biosynthetic genes in      
transcription factor mutants by boron treatment 
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To confirm that ATR1 is not upregulated in gcn4∆ mutants, we checked the 

mRNA level of ATR1 in a similar manner by a Real Time PCR approach. It was found 

that ATR1 mRNA levels were similar in untreated cells, but upon boron treatment ATR1 

upregulation was not observed in gcn4∆ cells which confirmed the microarray results. 

However, deletion of YAP1 and GCN2 partially prevented ATR1 upregulation in 

response to boron.    

 

Figure 3.8. Real time PCR transcriptional analyses of ATR1 

 

 
Moreover, we cloned and overexpressed GCN2, GCN4 and YAP1 genes to see 

whether they provide resistance to boron. Interestingly only YAP1 overexpressing cells 

are viable in the presence of 150 mM boric acid (Figure 3.9 and Figure 3.10). 
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Figure 3.9. Wild type cells overexpressing GCN2, GCN4, and YAP1 genes 

 

 

 
Figure 3.10. Isogenic mutants overexpressing GCN2, GCN4, and YAP1 gene 

 

 

3.4.  Translational Response to Boron Treatment 

 
In order to understand molecular mechanisms that lay behind boron toxicity, it 

should be known what boron does in the cell and in which direction it changes 

transcriptional and translational machineries of cells for survival. First of all, polysome 

profiling was carried on to reveal how cells respond to boron translationally and then 

the entry of 35S-labeled methionine to newly synthesizing proteins was followed. 
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Polysomes are a cluster of ribosomes bound to an mRNA molecule and actively 

translate the message in the process of protein synthesis. And metabolic labeling 

techniques, such as 35-S methionine labelling, are widely used to study the biosynthesis 

properties of proteins. As seen in Figure 3.11, boron treatment decreased the number of 

polysomes in samples separated by sucrose gradient centrifugation. Similarly, the ratio 

of 35S labelled methionine incorporation into newly synthesized proteins was lower 

than that of wild type cells (Figure 3.12). Both of these assays suggest that protein 

synthesis is impaired under boron stress.  

 

 

Figure 3.11. Polysome profiles of wild type yeast cells which were exposed either 0 
mM or 100 mM boric acid 
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Figure 3.12. Radioactive methionine enters into newly synthesized proteins 

 

When considering polysome profiles and metabolic labeling, it was shown that 

boron plays role in translation initiation. Therefore it is necessary to review the basic 

principles of translation in eukaryotic cells. Protein translation can be analyzed in three 

different stages. Firstly, translation initiation modulates the positioning of the 80S 

ribosome at the AUG start codon correctly. Secondly, translation elongation makes sure 

the addition of the amino acids to the polypeptide chain which is growing and lastly, 

translation termination leads to the release of the protein when faced with a stop codon. 

Following the release, newly synthesized proteins are subject to cotranslational and 

posttranslational quality control mechanisms.  

Protein synthesis is basicly regulated at translation initiation level as a result of 

extracellular and intracellular signals, and stress conditions. Sequestration of cap-

binding eIF4 by eIF4E-binding proteins under nutrient deprivation and as opposite, 

phosphorylation of eIF4E-binding proteins by TOR kinase when presence of excess 
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nutrient. Apart from that under starvation and stress conditions eIF2α becomes an 

inhibitor of eIF2B with the phosphorylation by Gcn2. These are just two mechanisms 

that control translation initiation. Although GCN2-dependent regulation inhibits general 

translation, because of reduced ternary complex levels, it also activates some stress 

related proteins such as mammalian ATF4 and yeast GCN4 (Figure 3.13). The 

expression of more than 500 target genes most of which consisted of amino acid 

biosynthesis genes is controlled by Gcn4. Besides amino acid deprivation, the 

conditions of starvation or stress also cause an upregulation in the Gcn4 protein levels 

(Deplazes, et al. 2009). This regulatory response has been known as general amino acid 

control (GAAC). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13. Regulation of GCN4 translation and general translation by ternary complex 
levels (Source: Deplazes, et al. 2009) 

 
 

As a best characterized mechanism for regulating protein synthesis eIF2 plays a 

central role. It provides the delivery of charged methionyl initiator tRNA to the 

initiation codon and forms a ternary complex with GTP. It is a multimeric protein and is 

phoshorylated on serine-51 of its α subunit in response to viral infection, amino acid 

limitation, apoptosis, nutrient deprivation, heme deprivation, and other stresses that 

activate the kinases heme-regulated inhibitor (HRI), double-stranded RNA-activated 
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protein kinase (PKR), pancreatic protein kinase activated by endoplasmic reticulum 

stress (PERK/PEK), and nutrient-regulated protein kinase (Gcn2) (Kimball 1999).  

As indicated in Figure 3.14 yeast protein kinase GCN2 contains a histidyl tRNA 

synthetase-related domain (HisRS) which includes conserved motif 2 sequence that 

interacts with the acceptor stem of tRNA. According with the idea that amino acid 

starvation activates Gcn2, it has been found that Gcn2 has affinity for different 

uncharged tRNAs (Dong, et al. 2000). Binding of uncharged tRNA to the HisRS-like 

domain would produce a conformational change in Gcn2 and this activates its kinase 

function. Also autophosphorylation of threonines 882 and 887 in protein kinase domain 

is essential for Gcn2 function. However under nonstarvation conditions phoshorylation 

of serine 577 inhibits Gcn2 function by decreasing the affinity of Gcn2 for uncharged 

tRNA (Cherkasova and Hinnebush 2003, Hinnebusch 2005).  

 

 

 
Figure 3.14. Functional domains and phosphorylation sites of Gcn2 

(Source: Hinnebusch, 2005) 
 

 

Since boron stress is mediated by Gcn4 transcription factor, we tested whether 

Gcn4 protein level is upregulated by boron stress. To do so we used a yeast strain whose 

chromosomal GCN4 was tagged with Myc epitope.  Using Myc antibodies, expression 

of Gcn4 was shown to be increased in boron treated cells (Figure 3.15). 
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Figure 3.15. Western blot analysis for GCN4-MYC. PGK is phosphoglycerate kinase 

and used as internal control 
 

 

It was interesting to see that boron inhibited protein syntesis, but synthesis of 

Gcn4-Myc was not affected from this inhibition. Previously it was shown that in  the 

case of starvation, Gcn2 kinase play role in inhibition of general protein synthesis, but 

on the other hand specifically activate the translation of Gcn4 (Hinnebusch 2005). 

Being a boron tolerance gene, protein level of Atr1 was not significantly induced in 

response to boron. Low doses of boron induced the expression of chromosomally 

expressed Atr1-GFP fusion protein as detected by anti-GFP antibodies, however higher 

doses of boron blocked the increase in protein level of Atr1-GFP because of the 

inhibitory effect of boron on protein synthesis (Figure 3.16). 

 

 
Figure 3.16. Western blot analysis for ATR1-GFP. PGK is phosphoglycerate kinase and 

used as internal control 
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Additionaly, to see if boron treatment causes phosphorylation of eIF2α and if 

this was modulated by Gcn2 kinase, a western blot assay was performed with an 

antibody which specifically recognize the Ser-51 phosphorylated form of yeast eIF2α. 

As expected, boron treatment caused eIF2α phosphorylation mediated by Gcn2 kinase, 

because this phosphorylation did not occur in cells lacking the GCN2 gene (Figure 

3.17). 

 

 

Figure 3.17. Western blot analysis for eIF2α-P 

 

To determine whether Gcn2 activation by boric acid requires binding of 

uncharged tRNAs to tRNA binding site of Gcn2 (m2 domain) or phosporylation of 

serine 577, plasmids containing wild type GCN2 and mutated form of GCN2 (GCN2 

without m2 domain and GCN2 with S577A or combination of both) were transferred to 

gcn2Δ mutant cells and their ability to phosphorylate eIF2α was investigated in boron 

treated cells. As seen in Figure 3.18, S577A substitution in Gcn2 did not prevent eIF2α 

phosphorylation showing that boron effect is mediated independently of regulatory 

serine 577 status. However phosphorylation of eIF2α did not occur without the m2 

domain of Gcn2 in the presense of boron which suggest that Gcn2 kinase activation 

requires uncharged tRNA binding to an intact HisRS-like (m2) domain in Gcn2. 
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Figure 3.18. Western analysis showing the effect of boric acid on eIF2α 
phosphorylation  
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CHAPTER 4 

 

CONCLUSIONS 

 
Boron is an important micronutrient in plants and animals and has many 

structural and physiological functions in these cells. However these specific functions 

are not yet clear. In addition, boron is toxic to cells when present excess in the 

environment.  To survive against the toxic effects of boron, it is vital for cells to 

develop strategies. These strategies which provide low intracellular boric acid content 

can include removing this toxic element from the cytosol either by active transport or by 

sequestration in an internal organelle, and controlling the influx. Several genes 

associated with boron transport and tolerance have been identified in plants so far. For 

the characterization of these genes the yeast Saccharomyces cerevisiae has been widely 

used as a model system. Recently, ATR1 has been found as a boron tolerance gene by 

screening a yeast genomic DNA library. Overexpression of ATR1 conferred high 

resistance to boron treatment whereas deletion of this gene caused hypersensitivity. 

Also it was shown that ATR1 expression was regulated by boron (Kaya, et al. 2009).  

In this study, we investigated the transcriptional regulation of ATR1 in response 

to boron treatment and found that the transcription factor Gcn4, which is a very well 

known activator of amino acid biosynthesis genes, mediates the boron stress and 

induces the ATR1 efflux pump along with the amino acid biosynthesis genes. Gcn2, 

which is an activator of Gcn4, but an inhibitor of translation did not play role in ATR1 

regulation, however Gcn2 played a role in inhibition of translation in response to boron 

treatment. The M2 domain of Gcn2, where uncharged tRNAs bind to, was required for 

Gcn2 to phosphorylate eIF2α and inhibit translation.  Thus boron treatment causes 

accumulation of tRNAs carrying no amino acids and triggers uncharged tRNA 

response. However, the details of how boron affects the tRNAs are not known and it 

needs to be characterized. 

In addition to mechanisms of ATR1 regulation, we also found several genes that 

play role in boron tolerance by screening a yeast deletion library and many distinct 

genes and pathways were found to be important in boron stress response. All of the 

boron resistant mutants identified by the genetic screen lack the genes that play roles in 
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the wobble base modifications of tRNAs during the translation. Boron sensitive mutants 

were lacking genes that play role in different metabolic pathways such as amino acid 

metabolism, lipid metabolism, vacuolar transport, oxidative stress response.  

Most of the genes identified in this study have homologs in animals and plants. 

Therefore this study may shed light on the mechanisms of boron transport and toxicity 

in higher organisms. Our results may also provide clues about the unknown metabolism 

of other transporter and metal tolerance genes. 
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