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ABSTRACT 

 

QTL ANALYSIS FOR FRUIT TRAITS IN Solanum pimpinellifolium 

INBRED BACKCROSS LINES 

 

 Tomato is one of the most economically and nutritionally important crops. It 

contains antioxidants such as lycopene, phenolics, vitamins E, C, and β-carotene at high 

levels. These traits are of interest to consumers and plant breeders for their health-

related contributions.  

 The main aim of plant breeding is to improve agronomically relevant traits by 

combining characters from different parental lines or their relatives. Genetic markers 

reveal these characters and other genetic differences between organisms. In this study 

both health-related and agronomically important traits were phenotypically identified by 

using 120 BC2F7, BC2F8, and BC2F9 IBLs. Also the lines were genotypically identified 

using the BC2F10 IBL population. 

 A total of 66 COSII and 11 COS markers were positioned on the IBL map. A 

total of 103 QTLs were identified. Of these QTLs, 25 loci were identified for 

antioxidant traits: total water soluble antioxidant capacity, vitamin C content, lycopene 

and phenolic content. In addition, 78 QTLs were identified for agronomic traits: fruit 

weight, fruit shape, fruit firmness, stem scar size, external and internal color, locule 

number, fruit wall size, and soluble solid content. For most of the antioxidant QTLs, 

alleles from the S. pimpinellifolium parent were favorable. This result indicates that S. 

pimpinellifolium can be used as a source of high nutritional traits in order to improve 

elite tomato lines. 
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ÖZET 

 

Solanum pimpinellifolium SAF DÖL GERĠMELEZ HATLARINDA 

MEYVE KARAKTERLERĠ ĠÇĠN KANTĠTATĠF KARAKTER LOKUS 

ANALĠZLERĠ 

 

Domates ekonomik açıdan ve besin kaynağı olarak insanlar için önemli bir 

tarımsal üründür. Domates, likopen, fenolik, vitamin E, C ve β-karoten gibi 

antioksidantları yüksek miktarda içerir. Bu kalıtsal özellikler insan sağlığı açısından 

önemli oldukları için birçok bitki ıslahçısının odak noktası olmuĢtur. 

Bitki ıslahının ana amacı farklı ebeveyn hatlarının veya akrabalarının sahip 

olduğu çeĢitli karakterlerin birleĢtirilerek tarımsal açıdan önem taĢıyan istenilen 

özelliklerdeki bireylerin oluĢturulmasıdır. Genetik iĢaretleyiciler bu karakterleri ve 

organizmalar arasındaki diğer genetik farklılıkları ortaya çıkarırlar. Yapılan çalıĢmada, 

120 bireyden oluĢan BC2F7, BC2F8, and BC2F9 saf döl gerimelez hatlarında hem sağlık 

hem de tarımsal açıdan önem teĢkil eden fenotipik özellikler karakterize edilmiĢtir. 

Aynı zamanda 120 bireyden oluĢan BC2F10 saf döl gerimelez hatlarında ise genotipik 

karakterizasyonlar yapılmıĢtır. 

66 COSII ave 11 COS iĢaretleyici saf döl gerimelez hatları genotip haritasında 

pozisyonlandırılmıĢtır. Toplamda 103 QTL elde edilmiĢtir. 103 QTL’den 25’i suda 

çözünen toplam antioksidant aktivitesi, C vitamini, likopen ve fenolik içeriği olmak 

üzere dört antioksidant karakteri için belirlenmiĢtir. Diğer 78 QTL ise meyve ağırlığı, 

Ģekli, sertliği, gövde izi, iç ve dıĢ rengi, lokul sayısı, perikarp kalınlığı ve suda 

çözünebilir madde mitarı olmak üzere dokuz tarımsal açıdan önem taĢıyan karakter için 

belirlenmiĢtir. Antioksidant karakterler için elde edilen QTL’lerin çoğunun kaynağı S. 

pimpinellifolium ebeveynidir. Bu sonuç göstermektedir ki; S. pimpinellifolium birinci 

sınıf kültür domates hatları geliĢtirmek için zengin besin karakterleri kaynağı olarak 

kullanılabilir. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1. Tomato 

 

Tomato, Solanum lycopersicum (synonym: Lycopersicon esculentum), is one of 

the most important members of the Solanaceae or nightshade family, which possesses 

more than 3000 species such as potato, tobacco, pepper, eggplant and petunia. Tomato 

comes second after potato as the most consumed vegetable in the family. 

The origin of tomato is western South America, the Andean region, through 

Chile, Bolivia, Ecuador and the coastal areas of Peru. Although the exact time and place 

of tomato’s domestication remain unclear, the records show it reached a certain level of 

cultivation in Mexico before its first transportation to Europe in 1554 (Tucker et al., 

2007). After the renewal of phylogenetic classification, genus Lycopersicon has become 

a section of the genus Solanum with 13 species including S. pimpinellifolium, S. 

pennellii, S. habrochaites, S. peruvianum, S. chmielewskii and, the only domesticated 

species, S. lycopersicum (Peralta et al., 2006). With domestication of tomato a number 

of different morphological and physiological traits have been altered, these traits are 

called the domestication syndrome. In tomato important traits that are studied are plant 

height and earliness, self-pruning, fruit set, fruit size, fruit shape, fruit color, fruit 

morphology, quality, flavor, yield and heterosis, and disease and stress resistance. 

Qualitative genes and quantitative trait loci (QTLs) for these characteristics that have 

been identified in tomato have had huge importance to breeders (Bai and Lindhout, 

2007). 

Now grown worldwide, tomato is one of the most economically important crops 

with 130 million tons of total world production from 5.2 million hectares. Turkey ranks 

third in production with 11 million tons of production on 300,000 hectares and follows 

the world leaders China and the United States. With Mexico leading exports, Turkey 

ranks sixth in world tomato exports with 372,094 tons (FAO 2008). 

Consumed in high amounts, tomato fruit has an important place in the human 

diet as it contains antioxidants such as lycopene, phenolics, vitamins E, C, and β-
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carotene in high levels (Tucker et al., 2007). Lycopene is the most abundant carotenoid 

present in tomato and comprises more than 90% of the total carotenoids (Dorgan et al., 

1998). Research shows that lycopene can inhibit human cancer cell growth, especially 

in prostate and breast cancer cells, reduces cellular DNA injuries, and prevents liver 

fibrosis (Heber and Lu, 2002; Zhou et al., 2008; Kitade et al., 2002). β-carotene is the 

precursor of vitamin A and is an antioxidant that reduces cellular or tissue damage, 

prevents cardiovascular disease and the major cancers (Mantzouridou et al., 2001; 

Zhang and Omaye, 2001). Tomato is also a very good source of molybdenum, iron, 

phosphorus, magnesium, niacin and potassium which all have health benefits for 

humans such as lowering high cholesterol levels and high blood pressure.  

Tomato’s role is not only economical; it is also an important model system for 

genetic studies in plants.  As a simple diploid (2n=24), it is one of the most well-studied 

crop species. It is one of the first plants for which a high-density DNA-based molecular 

map was constructed (Tanksley et al., 1992). Also tomato is the first plant for which 

QTL mapping for a complete genome was conducted in a single segregating population 

(Paterson et al., 1988). The first plant resistance gene and first plant QTL that were 

cloned in plants were in tomato (Martin et al., 1993; Frary et al., 2000). Now the 

International Tomato Sequencing Project has reached 57% completion (Mueller et al., 

2005). 

 

1.2. Genetic Markers 

 

 The main aim of plant breeding is to improve agronomically relevant traits by 

combining characters from different parental lines or their relatives (Winter and Kahl, 

1995). Genetic markers reveal these characters and other genetic differences between 

organisms. Markers are specific locations on a chromosome that serve as indicators for 

genome analysis.  

 Characteristics that occur in a population with more than one trait and reveal the 

difference between individuals in this population are called polymorphic genetic 

markers. Polymorphic markers can also be divided into two categories: dominant and 

codominant. Codominant markers can separate heterozygote and homozygote 

individuals from each other, whereas dominant markers cannot (Collard et al., 2005). 
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Genetic markers are generally classified into two major groups. The first group 

is morphological markers which can be observed visually without specialized 

biochemical or molecular techniques. Such markers are color, height or shape. 

Morphological markers have some disadvantages as they are limited in number and 

affected by environmental changes. Also they are inefficient in distinguishing 

heterozygous and homozygous individuals (Kumar, 1999). The second group of 

markers is molecular markers which include biochemical markers and DNA markers. 

Biochemical markers reveal polymorphism at the protein level and are also called 

isozymes. They are proteins that can be identified by electrophoresis. However, their 

limited number and dependence on post-translational modifications constrain the use of 

isozymes (Staub et al., 1982). On the other hand DNA markers have eliminated these 

disadvantages and become the most widely used type of markers.  

DNA markers originate from DNA mutations such as point mutations, insertions 

or deletions that generally occur in non-coding regions (Collard et al., 2005). They can 

be classified into two categories; hybridization-based and PCR-based polymorphisms. 

Hybridization-based polymorphisms, including RFLPs (restriction fragment length 

polymorphisms) and VNTR (variable number tandem repeats), were the first techniques 

used for DNA profiling. However their slowness, difficulty, requirement for high 

amounts of DNA and combination of different processes led to the generation of new 

techniques based on PCR (Kumar, 1999). RAPDs (random amplified polymorphic 

DNAs) was one of the first PCR-based methods and it was followed by SPARs (single 

primer amplification reactions), AFLPs (amplified fragment length polymorphisms), 

SRAPs (sequence-related amplified polymorphisms), SNPs (sequence nucleotide 

polymorphisms), SSRs (simple sequence repeats), and CAPs (cleaved amplified 

polymorphisms).  

Due to advantages over other markers, CAPs is one of the most preferred marker 

systems in recent years. First, because it is a codominant system, relatively good map 

positions can be obtained with a small number of plants and that is a great advantage for 

populations whose phenotypic characters are difficult to observe. With the use of PCR 

(polymerase chain reaction), a small amount of DNA is adequate for determining a map 

position. Another benefit of CAPs is the cleaved and uncleaved products highly differ in 

size, leading to an easy detection with agarose gel electrophoresis. Another advantage 

of this system is that CAPs are fast and simple without need for any other processes 

(Glazebrook et al., 2008).  
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CAPs utilize DNA fragments, which are amplified by PCR and then digested 

with a restriction endonuclease in order to display a restriction site polymorphism after 

separation by agarose gel electrophoresis (Figure 1.1). COS (conserved ortholog set) 

and COSII (conserved ortholog set II) markers are the most commonly used CAPs 

markers for tomato. These markers were developed by computationally comparing the 

Arabidopsis genomic sequence with the ESTs (expressed sequence tags) database of 

tomato to identify putatively conserved orthologous sequences and design primers for 

these sequences (Fulton et al., 2002, Wu et al. 2006). 

 

 

 

 

 Figure 1.1. Schematic representation of CAPs. 

 

 

One of the applications of these DNA markers is construction of molecular 

marker maps. In a molecular marker map all these polymorphisms are placed in 

genomic locations on plant chromosomes. 

 

1.3. Molecular Marker Mapping 

 

 For localizing important genes controlling both qualitative and quantitative traits 

in plants, molecular marker linkage maps are very useful (Dirlewanger et al., 1998). 

Along the chromosome the distance between mapped markers are expressed in 
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centimorgans (cM). Centimorgans represent the recombination rates of the loci on the 

map (Kumar, 1999). 

 Construction of a segregating mapping population is the first step for developing 

a molecular marker map. A mapping population can be grown by crossing two parents 

that show differences in one or more traits for detection of polymorphisms by markers. 

Several different populations can be constructed. In most studies, balanced mapping 

populations are used in which both parental alleles are in high frequency (Doganlar et 

al., 2002). On the other hand unbalanced populations were developed, in which the 

alleles from one parent show higher frequency than the other one. One type of 

unbalanced populations is inbred backcrosses that were first introduced by Wehrhahn 

and Allard in 1965. These inbred backcross lines (IBLs) are produced by at least one 

backcross of the F1 population to the recurrent parent and then advanced by single seed 

descent until the requested loci is fixed and the population reaches a certain level of 

homozygosity (Mulitze and Baker, 1985; Doganlar et al., 2002). Figure 1.2 shows the 

construction of IBLs. The population is more similar to the recurrent parent which is an 

advantage of IBLs, because they allow examination of the effect of multiple donor 

alleles in the elite background of the recurrent parent.  

The second step for developing a molecular marker map is identification of 

markers that show polymorphism between parents. Polymorphic markers are selected 

and screened on the whole mapping population one by one.  

In order to construct a molecular marker map, the last step is linkage analysis of 

markers. By using a maximum likelihood method, recombination frequencies and their 

standard errors are calculated. These marker analyses can be performed manually, but 

with the high number of markers needed for maps, computer programs such as Linkage 

1 and MAPMAKER are used (Collard et al., 2005; Kumar, 1999).  

Once a genetic map is constructed it can be used for many applications. One of 

these is comparative mapping analysis in which the mapping information of populations 

is used to identify relationships between these populations. Another use is identifying 

genes controlling economically important traits like yield, quality or resistance to many 

biotic and abiotic stresses. Marker assisted selection (MAS) and map based cloning are 

other areas in which molecular marker maps are being used (Collard et al., 2005).  
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       Figure 1.2. Construction of IBLs. 

 

 

The traits for which genes are to be identified can be qualitative or quantitative. 

Qualitative traits are controlled by a single gene whereas quantitative traits are 

controlled by multiple loci. Quantitative trait loci (QTL) are the regions on the genome 

that control different quantitative traits of interest. QTL analysis is based on detection of 

association between phenotype and the genotype of markers (Doerge, 2002; Collard et 

al., 2005). In order to detect QTL; first the population is divided into different genotypic 

classes according to genotypes at the marker locus, then these groups are analyzed 

whether individuals of these groups also show phenotypic differences for the trait being 

measured. If there is a significant difference, it means that a gene or genes that affect the 

trait is/are linked to that marker (Tanksley, 1993).  

The simplest way to detect a QTL is using single-marker test (single point 

analysis), which analyzes the markers one by one. Single-marker analysis has an 
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advantage as it does not require a complete molecular linkage map. However because 

the crossing-over probability increases as the distance between the marker and QTL 

increases, there is a lower chance of detecting the QTL using single marker analysis that 

with other approaches. Using a high number of molecular markers that cover the whole 

genome is the solution. Once the markers are set on the map, the relationship between 

markers will be revealed (Doerge, 2002; Tanksley, 1993). 

 

1.4. Free Radicals and Antioxidants 

 

  It has been reported that the risk of many chronic diseases, such as coronary 

heart disease and most types of cancer are decreased with the help of antioxidants. 

Tomato and many other fruits and vegetables are known to contain high levels of 

antioxidants; therefore high intake of these products will be for the benefit of human 

health (Weisburger, 1999). Since antioxidants have importance for the human diet, plant 

breeders are interested in enhancement of their production. 

 Free radicals are atoms, molecules or ions that have one or more highly reactive 

unpaired electrons in their outer orbital with high capacity for participation in chemical 

reactions. When a free radical and a nonradical react with each other, a new radical 

forms and that leads to a chain reaction of other new radicals (Halliwell, 2006). These 

free radicals carry the potential to interact with different tissue components resulting in 

dysfunction of DNA, lipids and proteins (Kehrer, 1993).  

Of the many types of free radicals, the most important ones are the oxygen free 

radicals, also called reactive oxygen species (ROS), and reactive nitrogen species 

(RNS). These radicals are normally the products of cellular metabolism, and have 

benefits when produced in low concentrations. ROS can also be produced from 

exogenous substances such as environmental agents, xenobiotics, metal ions, radiation 

and barbituates. ROS have roles in cellular responses, like defense against infectious 

agents, and also in cellular signaling systems and induction of mitosis. Molecular 

oxygen (dioxygen) is a radical, and with the addition of one electron, it forms the 

superoxide anion radical. Superoxide anion is the primary ROS that generates 

secondary ROS when it reacts with other molecules (Valko et al., 2007; 2006). When 

ROS are produced in high amounts, they cause biological damage called oxidative 

stress (Halliwell, 2006). Oxidative stress may lead to cell death, necrosis, cancer, DNA 
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damage, aging, diabetes, atherosclerosis, neurodegenerative diseases, telomerase 

shortening and several other diseases (Dröge, 2002). In order to prevent oxidative stress, 

antioxidants play a great role. 

Antioxidants are molecules that prevent the oxidation of other molecules by 

being oxidized themselves (Halliwell, 2006). Antioxidants can be categorized as water 

soluble and lipid soluble, or endogenous and exogenous, or enzymatic and non-

enzymatic antioxidants. We will be interested in non-enzymatic antioxidants. 

Non-enzymatic antioxidants can be both water-soluble and lipid-soluble 

compounds. Vitamin C is the most abundant water soluble antioxidant in the body and 

is an electron donor, so it is a reducing agent. Also it promotes the formation of 

collagen in the body. Tomato, potato, orange and mango are some of the richest vitamin 

C sources. Vitamin E is one of the most important lipid-soluble antioxidants, and 

protects fatty acids from oxidative damage in lipid membranes (Byers and Perry, 1992; 

Padayatty et al., 2003). Other lipid-soluble antioxidants are carotenoids. Carotenoid 

pigments are highly abundant in many vegetables and fruits. β-carotene has been 

studied as cancer suppressor and a vitamin A precursor. Lycopene, the most abundant 

carotenoid in tomato, can be converted to β-carotene with the help of lycopene cyclase 

enzyme (Heber and Lu, 2002). 

Phenolic compounds are secondary metabolites in plants and roles as being anti-

allergenic, anti-inflammatory, anti-microbial, antioxidant. Also they are responsible for 

plants’ taste, aroma and color. Phenolic acids, flavonoids and simple phenolics are the 

most important classes of phenolic compounds in plants (Balasundram et al., 2006). 

Flavonoids are a huge family of plant secondary metabolites including anthocyanins, 

flavonols, flavones, catechins, and flavonones (Crozier et al., 1997). They give orange, 

red, and blue colors to vegetables, fruits, and flowers. Anthocyanins are the main 

attractors of animals leading to pollination. Flavonoids also regenerate vitamin C, which 

then regenerates vitamin E (Merken and Beecher, 2000). Phenolic compounds are 

highly consumed in the human diet and have important benefits for human health. 

 

1.5. Goals of This Study 

 

The purpose of this study was to construct and characterize a permanent inbred 

population and identify the genes that control nutritionally important traits in tomato 
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such as total water soluble antioxidant activity, total vitamin C content, total phenolic 

content, total flavonoid content, and lycopene content. Also several horticultural traits 

were measured. The QTLs for these traits were determined with genetic markers. In 

future studies these alleles can be used to improve the quality of new tomato hybrids 

through marker-assisted selection. 
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CHAPTER 2 

 

MATERIALS AND METHODS 

 

2.1. Plant Material 

 

The BC2F7, BC2F8, BC2F9, and BC2F10 mapping populations were developed by 

Sami Doganlar, by crossing the cultivated recurrent parent S. lycopersicum (TA209) 

with wild donor parent S. pimpinellifolium (LA1589). In order to increase the amount of 

S. lycopersicum genome in the population, one F1 hybrid was backcrossed with the 

recurrent parent. A total of 27 BC1 plants were selected by RFLP marker TG279 for 

homozygous S. lycopersicum alleles at the sp locus on chromosome 6, which is 

responsible for determinate growth habit. These selected plants were then backcrossed 

to S. lycopersicum to produce BC2 population. To fix the population genotypes BC2F1 

individuals were selfed for six generations, resulting in a population of 120 BC2F7 IBLs. 

Again selfing of this population led to BC2F8, then BC2F9 and BC2F10 populations. 

 Each individual of the BC2F7, BC2F8, and BC2F9 populations was transplanted to 

the field in Menemen by Aegean Agricultural Research Institute (ETAE) in summer 

2004, 2005, and 2006 respectively. The BC2F10 population was transplanted to the field 

in Antalya by MULTĠ Tarım Seed Company in 2009 and, as controls, recurrent and 

donor parents were planted at ĠYTE in April 2009. 

 

2.2. Phenotypic Characterization 

  

In this study 13 agronomically and nutritionally important traits were analyzed 

for QTL identification on BC2F7, BC2F8, and BC2F9 populations. Agronomically 

important traits were: fruit weight (FW), internal (IC) and external fruit color (EC), fruit 

firmness (FIRM), soluble solid content (SSC), fruit shape (FS), fruit stem scar size 

(SCAR), fruit locule number (LOC), and wall thickness (WALL). As nutritionally 

important traits; total water soluble antioxidant activity (AUC), total vitamin C content 

(VITC), total phenolic content (PHEN), and lycopene content (LYCO) were determined 

by biochemical assays. 
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2.2.1. Preparation of Samples for Antioxidant Trait Analysis 

 

 Tomato fruits were harvested from ten plants of each line at normal market stage 

in July in 2004, 2005, and 2006. Each year after being washed, about one kilo fruit from 

each sample were cut into slices and mixed. Until the time of analysis, these mixtures 

were packed and stored at -20
 o

C. Within four months of harvest all analyses were 

performed as described below. 

 

2.2.2. Determination of Total Water Soluble Antioxidant Activity 

 

 For the determination of total water soluble antioxidant activity, approximately 

200 g fruit was homogenized with 100 ml distilled water in a Waring blender that had a 

1 L double walled stainless steel jar at +4
 o

C. The homogenization proceeded at low 

speed for 2 minutes. From the homogenate 10 g sample was taken to be diluted with 15 

ml cold water. This diluted homogenate was filtered into two 15 ml falcon tubes 

through 4 layers of nylon cloth. In order to clear the supernatants, samples were 

centrifuged at 3000 x g for 10 min at 4
 o
C. Supernatants of two tubes were mixed in a 50 

ml falcon tube by being filtered through 3 layers of nylon cloth. The sample was kept on 

ice during the measurement. 

 To measure the antioxidant activity of tomato fruits spectrophotometrically 

(Shimadzu, 1700 UV Visible Spectrophotometer, Japan), the ABTS [2,2’-azinobis-(3-

ethyl-benzothiazoline-6-sulfonic acid)] decolorization assay of Re et al. (1999) was 

used. The absorbance of ABTS radical cation decreases when reduced by an 

antioxidant. The ABTS radical cation stock solution was prepared by mixing 7 mM 

ABTS with 2.45 mM potassium persulfate and was stored in dark for 12-16 hours. To 

adjust the absorbance of ABTS radical cation to 0.70 at 734 nm, stock solution was 

diluted with phosphate buffered saline (PBS) at pH 7.4. After preparation, 2.5 µl of 

tomato supernatant were mixed to 2 ml ABTS radical cation solution then the 

decolorization of blue-green ABTS radical cation solution was monitored kinetically at 

734 nm for 6 min at 30 
o
C. The test was repeated three times then the same 

measurements were carried out with 5 and 7.5 µl of tomato supernatant again with three 

replicates of each. Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) 

was used as a standard. The results expressed as µmol Trolox/kg fresh weight of tomato 
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fruits were calculated as area under the curve (AUC). The percent inhibition 

/concentration values for Trolox and the extracts were plotted over 1, 3, and 6 min test 

periods. The ratio areas were used to calculate the AUC value. 

 

2.2.3. Determination of Vitamin C Content 

 

 Vitamin C content was analyzed by the AOAC 967.21 titrimetric method. As 

reactive substance 2,6-dicloroindophenol was used (Nielsen, 2003). First 100 g of 

tomato was homogenized with 115 ml acetic acid-metaphosphoric acid extraction 

solution. The homogenization was carried out in a Waring blender at +4
 o

C and low 

speed for 2 min. A 100 ml dilution was prepared with 25 g of homogenated extract and 

cold extraction buffer. Then this dilution was passed through filter paper. A 15 ml 

sample was taken and titrated against 2,6- dicloroindophenol dye solution. The test was 

repeated three times for each extract. For calibration, commercial L-ascorbic acid was 

used and the results were expressed as mg ascorbic acid/kg fw of tomato fruit. 

  

2.2.4. Determination of Total Phenolic Compounds 

 

 Tomatoes total phenolic compounds (PHEN) were measured according to the 

method of Singleton and Rossi (1965). In this spectrophotometric procedure, Folin-

Ciocalteau was used as a reactive agent and gallic acid was used for generation of a 

standard curve. A 100 g tomato sample was blended with 200 ml distilled water in a 

Waring blender for 2 min at low speed and +4 
o
C. Then 2.5 g homogenate and 20 ml 

cold distilled water were mixed for dilution and the sample centrifuged at 3000 x g for 

10 min at +4
 o

C in a refrigerated centrifuge (Eppendorf). Next 2 ml supernatant and 10 

ml 2 N (10%) Folin-Ciocalteau were mixed. After 3 minutes of incubation, 8 ml 0.7 M 

Na2CO3 was added and left to incubate at room temperature for 2 hours. The absorbance 

of the mixture was measured in a spectrophotometer (Shimadzu, 1700 UV Visible 

Spectrophotometer, Japan) at 760 nm. Each sample was repeated three times. The total 

phenolic content of samples was interpreted as gallic acid equivalents (mg/kg fresh 

weight). 
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2.2.5. Determination of Lycopene Content 

 

 Lycopene content (LYCO) of tomato fruit was determined by using the 

procedure of Sadler et al. (1990). A total of 100 g tomato and 200 ml distilled water 

were homogenized in a Waring blender at +4
o
C, low speed for two min. Then 3 g 

homogenate was diluted with 50 ml hexane-acetone-ethanol (2:1:1; v:v:v) extraction 

buffer in a brown volumetric flask. Samples were shaken on a rotary mixer for 30 min 

at 150 rpm at room temperature in dark. Then samples were transferred into separation 

funnels. In order to separate polar and non-polar phases, after addition of 10 ml distilled 

water to the mixture, samples were left for 4 hours at dark. Lycopene that dissolved on 

the top was taken and measured by spectrophotometer (Shimadzu, 1700 UV Visible 

Spectrophotometer, Japan) at 472 nm. The results were expressed as mg/kg fresh weight 

based on a lycopene standard curve. 

 

2.2.6. Visual Score of Agronomically Important Traits 

  

Nine agronomically important traits were scored visually for each individual of 

the BC2F7, BC2F8, and BC2F9 populations and the controls.  

 Fruit weight (FW) was measured as the average weight of 20 ripe fruits of each 

plant. Fruit shape (FS) determined by the ratio of fruit length to fruit diameter. The scale 

of 1 to 5 was used on each line.  Internal (IC) and external fruit color (EC) was scaled as 

1 = low color, 5 = more intense red color. Fruit firmness (FIRM) was determined by 

hand squeezing fruit and scored as 1 = soft, 5 = very firm. Soluble solid content (SSC) 

was measured on puree from five randomly chosen fruits per plant in degrees Brix, 

using a refractometer. Fruit stem scar size (SCAR) was measured as the approximate 

mean diameter of the stem scar on 20 fruit. Fruit wall (WALL) thickness was scaled as 

1 = thin, 5 = very thick using transverse sections of fruits. Locule number (LOC) was 

determined by counting the locules of cross-wise cut tomato fruit. 
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2.3. Genotypic Characterization 

 

In order to identify markers that can be used to map QTLs for health related and 

agronomically important traits, genotypic characterizations were carried out on BC2F10 

population and parents. In order to map the QTLs, a previously constructed RFLP map 

was used (Doganlar et al., 2002). 

 

2.3.1. DNA Extraction 

 

 DNA was extracted from the leaves of tomatoes by the procedure described by 

Bernatzky and Tanksley (1986). Tomato leaves were collected from the field in two 

eppendorf tubes separately for each IBL and then transported to Izmir Institute of 

Technology, where DNA extraction was performed. The DNA concentration and 

quality was measured with nano-drop (ND-1000) spectrophotometer. To be used for 

PCR, each sample of DNA was diluted to ~ 55 ng/µl with distilled water.  

 

2.3.2. Molecular Marker Analysis 

 

 For molecular characterization and in order to construct a map, CAPs (Cleaved 

Amplified Polymorphic Sequence) marker analyses were performed using COS and 

COSII molecular markers. At first, for the identification of an adequate number of 

polymorphic markers, parental surveys were carried out. The two parents (TA209 and 

LA1589) were tested with each marker. For the CAPs procedure, 25 µl of PCR mixture 

was prepared including; 2.5 µl 10X PCR buffer (50 mM KCl, 10 mM Tris-HCl, 1.5 mM 

MgCl2, pH: 8.3), 0.5 µl dNTP (0.2 mM), 0.5 µl forward and 0.5 µl reverse primers (10 

pmol), 0.25 µl Taq polymerase (0.25 U), 18.75 µl sterile distilled water, and 2 µl DNA 

(~55 ng/µl). Samples were amplified in a thermocycler (GeneAmp® PCR System 9700, 

Applied Biosystems; Authorized Thermal Cycler, Mastercyler epgradientS, Eppendorf; 

C1000 Thermal Cycler™, BIO-RAD) using the PCR program in figure 2.1. 

After PCR amplification, samples were digested by using different restriction 

enzymes (Table 1). The enzyme digestion mixture contained 25 µl PCR product plus 3 

µl 10X digestion buffer, 0.5 µl enzyme (10 u/µl) and 1.5 µl sterile distilled water. 
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Samples were incubated at the appropriate temperature for the enzyme for at least 3 

hours. After incubation the samples were loaded on 2-3% agarose gels in 1X TAE 

buffer (0,25 M Tris base, 12,75 M EDTA adjusted to 1 L with distilled water and pH: 

8.3 with acetic acid). Samples were run at 110 V for at least 2 hours. Staining the gels 

with ethidium bromide allowed the identification of marker bands under UV light. 

Polymorphic markers were selected and then applied to whole population. 

 

 

 

 

Figure 2.1. PCR profile for CAP55 procedure. 

 

 

2.4. Statistical Analysis 

 

Student’s t-test, chi-square analysis, correlation analysis between traits and 

statistical analyses were performed in Excel 2010 computer program. QTL mapping 

was performed with QGENE software program (Nelson, 1997). 
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CHAPTER 3 

 

RESULTS AND DISCUSSION 

 

3.1. Phenotypic Characterization 

 

 Phenotypic characterization of agronomically and nutritionally important traits 

showed continuous distribution throughout the population. These distributions are 

expected because two distinct parents were used for population development and the 

traits of interest are all quantitative. With the selected parents, the BC2F7, BC2F8, and 

BC2F9 populations displayed an enhanced variation that is favorable for genetic 

mapping and identification of QTLs.  

 

3.1.1. Total Water Soluble Antioxidant Capacity 

 

 Total water soluble antioxidant (AUC) activities of the parents and 150 BC2F7, 

BC2F8, and BC2F9 lines for 2004, 2005 and 2006 were measured. Means of the 

antioxidant traits, standard errors and ranges for the IBLs of 2004, 2005, 2006, and all 

years’ average are presented in Table 3.1. Means of the antioxidant traits, standard 

errors and ranges for the parents are presented in Table 3.2. AUC activities of the IBLs 

showed no significant differences in all years. The three year averages of AUC activity 

in the population ranged from 3548 to 7135 µmol Trolox/kg fresh tomato indicating 

good variation with 2-fold variation. This variation is typical for quantitative traits.  

A distribution histogram for total water soluble antioxidant activities is 

presented in figure 3.1. This graph shows a nearly normal distribution for the trait. S. 

pimpinellifolium AUC activity was 1,4 fold higher than S. lycopersicum indicating no 

significant differences between them with P=0,10. As seen in the table both parents 

have extreme levels of AUC activity with higher values than most of the population. In 

fact, 99% of the population had lower antioxidant activity than both parents. This is the 

result of transgressive segregation which is caused by complementary action of genes 
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from parents or unmasking of recessive genes coming from parents (Vicente and 

Tanksley, 1993). 

 

 

 

 

Figure 3.1. Distribution histogram for total water soluble antioxidant activities. Sl and 

Sp indicate locations of S. lycopersicum and S. pimpinellifolium.  

 

 

3.1.2. Vitamin C Content 

 

BC2F7, BC2F8, and BC2F9 populations showed similar vitamin C contents over 

three years with an average of 245,54 ± 3,23 mg/kg of fresh fruit. Figure 3.2. shows the 

distribution histogram for vitamin C content on populations’ average of all years. The 

range for vitamin C content was between 161 and 410 mg/kg, displaying 2,5-fold 

difference between the highest and the lowest values in the population. Vitamin C 

content between individuals was normally distributed as expected. As represented in 

Figure 3.2, S. lycopersicum had moderate vitamin C content value. S. pimpinellifolium 

on the other hand, had the highest value among the population and 2-fold higher 

difference than the recurrent parent (P=0,06). Sixty seven percent of the population had 

lower values than both parents. The individuals outside the ranges of two parents are the 

results of transgressive segregation, different alleles from two parents leading to a 

decreased value for progeny. 
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Table 3.1. Antioxidant traits mean values, standard errors and ranges of BC2F7, BC2F8, and BC2F9 lines for 2004, 2005, 2006. 

 

 
2004   2005   2006   All Years   

Trait Mean ± SE Range Mean ± SE Range Mean ± SE Range Mean ± SE Range 

Antioxidant 

(µmolTrolox/kg) 

4936,97 ± 

58,81 3450,75-7134,92 5602,05 ± 126,31 3700,68-10637,18 

4880,32 ± 

60,26 3179,04-6617,14 

5132,74 ± 

53,01 

3548,39-

7134,92 

VitaminC (mg/kg) 243,42 ± 4,06 137,64-420,04 207,01 ± 3,43 104,02-380,16 293,14 ± 5,23 178,50-493,10 245,54 ± 3,23 160,48-410,35 

Lycopene (mg/kg) 208,3 ± 3,39 113,77-296,32 220,89 ± 3,54 126,36-343,01 - - 214,45 ± 2,89 141,29-305,49 

Phenolic (mg/kg) 496,83 ± 4,68 356,94-652,19 365,18 ± 7,88 227,55-666,18 534,10 ± 6,40 384,50-773,60 467,46 ± 4,53 339,08-683,55 

 

 

Table 3.2. Antioxidant traits mean values of parents for 2004, 2005, 2006. 

 

 
2004   2005   2006   All Years   

Trait TA209 LA1589 TA209 LA1589 TA209 LA1589 TA209 Mean ± SE LA1589 Mean ± SE 

Antioxidant 

(µmolTrolox/kg) 6416,77 9337,33 8405,22 13385,61 6029,41 6989,07 6950,47 ± 749,8 9904 ± 1903,36 

VitaminC (mg/kg) 244,69 393,84 205,97 - 315,23 325,42 255,29 ± 32,59 359,63 ± 123,78 

Lycopene (mg/kg) 214,29 331,08 225,12 327,53 - - 219,71 ± 4,5 329,31 ± 111,84 

Phenolic (mg/kg) 474,45 1199,35 422,16 723,82 525,68 843,84 474,1 ± 30,45 922,33 ± 145,47 

1
8 
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Figure 3.2. Distribution histogram for vitamin C content. Sl and Sp indicate locations of 

S. lycopersicum and S. pimpinellifolium. 

 

 

3.1.3. Total Phenolic Content 

 

Over three years, the total phenolic content of the population ranged between 

340 and 684 mg/kg with a 2-fold difference. Figure 3.3. shows the distribution of 

phenolic compound content in the population. S. lycopersicum displays a moderate total 

phenolic compound with a value of 474,1 ± 30,45 mg/kg. Also 37% of the mapping 

population showed lower values than S. lycopersicum due to transgressive segregation. 

As in vitamin C content, S. pimpinellifolium exhibited the greatest value with a mean 

value of 922,33 ± 145,47 mg/kg. The 2-fold range in phenolic content between parents 

was significantly different (P=0,02).  
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Figure 3.3. Distribution histogram for total phenolic content. Sl and Sp indicate 

locations of S. lycopersicum and S. pimpinellifolium. 

 

 

3.1.4. Lycopene Content 

 

Over three years, lycopene content didn’t show any significant differences in 

populations. Lycopene content in the population ranged from 141 to 306 mg/kg with 2-

fold variation. A good distribution of lycopene content exists in the population. Figure 

3.4. represent this distribution as an average of years. S. lycopersicum displayed a 

moderate total phenolic compound with a value of 219,71 ± 4,5 mg/kg. However 58% 

of the population had lower values than S. lycopersicum. That again was a result of 

transgressive segregation. S. pimpinellifolium had the highest level of lycopene with a 

mean value of 329,31 ± 111,84 mg/kg.  
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Figure 3.4. Distribution histogram for lycopene content. Sl and Sp indicate locations of 

S. lycopersicum and S. pimpinellifolium. 

 

 

3.1.5. Average Fruit Weight 

 

 Means, standard errors and ranges for agronomic traits for the IBLs in 2004, 

2005, 2006, and all years are presented in Table 3.3. Means of the agronomic traits, 

standard errors and ranges for the parents are displayed in Table 3.4. For fruit weight 

(FW) there was great variation in the population ranging from 24 to 96 g. The 

distribution histogram for fruit weight is displayed in Figure 3.5. The two parents 

showed highly different values. Weight for S. lycopersicum was 77,06 ± 3,45 g and for 

S. pimpinellifolium was 3,15 ± 1,68 g. These values indicated a highly significant 

difference between the parents (p=0,00002). S. pimpinellifolium showed the lowest 

value for the trait and only 3% of the population had heavier fruit than S. lycopersicum. 

This is also because of transgressive segregation.  
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Figure 3.5. Distribution histogram for fruit weight. Sl and Sp indicate locations of S. 

lycopersicum and S. pimpinellifolium. 

 

 

 

3.1.6. Fruit Shape 

 

 For fruit shape, the population and the parents were classified from 1 = round to 

5 = elongated. S. lycopersicum classified as 4 and S. pimpinellifolium as 1. For the 

population the range was between 1 and 5. The mean value for fruit shape was 2,98 ± 

0,09. Approximately 19% of the population showed higher result than S. lycopersicum 

with elongated fruits due to transgressive segregation. Most of the population had 

values close to S. lycopersicum. 

 

3.1.7. Fruit Firmness 

 

 For the population, fruit firmness (FIRM) ranged from 1 to 5 while the parents’ 

firmnesses were 3,83 ± 0,34 and 1,17 ± 0,17 for S. lycopersicum and S. pimpinellifolium 

respectively. This difference between parents was significant at P=0,001. The 

population displayed a continuous distribution. Figure 3.7. exhibits the histogram for 

fruit firmness. 1,4% of the population showed lower values than S. pimpinellifolium 

while 31% showed higher values than S. lycopersicum. 
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Figure 3.6. Distribution histogram for fruit shape. Sl and Sp indicate locations of S. 

lycopersicum and S. pimpinellifolium. 

 

 

 

  

 

 

Figure 3.7. Distribution histogram for fruit firmness. Sl and Sp indicate locations of S. 

lycopersicum and S. pimpinellifolium. 
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Table 3.3. Agronomic traits’ mean values, standard errors and ranges of BC2F7, BC2F8, and BC2F9  lines through 2004, 2005, 2006 and total. 

 

 

 

 

 

 

 

 

 

 

Table 3.4. Agronomic traits’ values of parents through 2004, 2005, 2006 and total. 

 
2004   2005   2006   All Years   

Trait Mean ± SE Range Mean ± SE Range Mean ± SE Range Mean ± SE Range 

Fruit Weight (g) 49,87 ± 1,19 21,89-85,58 48,79 ± 1,36 22,91-92,89 56,67 ± 1,50 19,70-106,56 51,34 ± 1,17 23,77-95,57 

Fruit Shape 3,11 ± 0,11 1-5 2,76 ± 0,10 1-5 2,82 ± 0,11 1-5 2,98 ± 0,09 1-5 

Firmness 2,97 ± 0,09 1-5 3,47 ± 0,10 1-5 3,88 ± 0,08 1,5-5 3,41 ± 0,07 1-5 

Stem Scar Size 3,57 ± 0,08 1,5-5 2,55 ± 0,09 1-5 3,31 ± 0,10 1-5 3,22 ± 0,07 1,17-5 

External Color 3,22 ± 0,06 2-5 3,41 ± 0,07 2-5 3,31 ± 0,07 1,5-5 3,30 ± 0,05 2-4,83 

Internal Color 3,08 ± 0,08 1,5-5 3,00 ± 0,08 1-5 3,08 ± 0,07 1,5-5 3,07 ± 0,06 1,50-4,67 

Locule Number - - 2,81 ± 0,04 2-4 2,81 ± 0,04 2-4,5 2,81 ± 0,03 2-4,5 

Wall - - 3,19 ± 0,09 1-5 3,25 ± 0,08 1-5 3,23 ± 0,07 1,5-5 

Soluble Solid Content 5,93 ± 0,05 4,5-7,5 4,55 ± 0,06 3,2-6,2 5,01 ± 0,07 3-7,8 5,24 ± 0,04 4,2-6,6 

 
2004   2005   2006   All Years   

Trait TA209 LA1589 TA209 LA1589 TA209 LA1589 

TA209 Mean ± 

SE 

LA1589 Mean ± 

SE 

Fruit Weight (g) 70,42 1,5 81,55 1,5 79,22 6,45 77,06 ± 3,45 3,15 ± 1,68 

Fruit Shape 4 1 4 1 4 1 4 ± 0 1 ± 0 

Firmness 3,5 1 3,5 1 4,5 1,5 3,83 ± 0,34 1,17 ± 0,17 

Stem Scar Size 5 1 4 1 5 1 4,67 ± 0,34 1 ± 0 

External Color 3,5 5 3 4 3 4,5 3,17 ± 0,17 4,5 ± 0,29 

Internal Color 4 5 3 4 3 4 3,33 ± 0,34 4,33 ± 0,34 

Locule Number 2,5 2 3 1 2 3 2,5 ± 0,29 2 ± 0,59 

Wall Thickness 4 1 4 1 4 1 4 ± 0 1 ± 0 

Soluble Solid Content 5,4 6,6 3,8 5,4 4,8 9 4,67 ± 0,48 7 ± 1,08 

2
4 
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3.1.8. External and Internal Fruit Color 

 

 External and internal fruit colors detected similar results over population and 

parents as expected. While external and internal color were 4,5 ± 0,29 and 4,33 ± 0,34 

for S. pimpinellifolium, external color was 3,17 ± 0,17 and internal color was 3,33 ± 

0,34 for S. lycopersicum. External color showed a significant difference between the 

parents (P=0,008) while internal color did not (P>0,05). For the population both traits 

ranged between 2 and 5. For external and internal color 38 and 59% of the population, 

respectively, had lower values than both parents due to transgressive segregation. 

Internal and external fruit color histograms are displayed in Figure 3.8. and Figure 3.9. 

They both show continuous distribution for the population averaged over years. 

 

 

 

 

Figure 3.8. Distribution histogram for external fruit color. Sl and Sp indicate locations 

of S. lycopersicum and S. pimpinellifolium. 
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3.1.9. Stem Scar 

  

 Stem scar size (SCAR) showed a great variety between parents and also  among 

individuals of the population. While S. lycopersicum averaged 4,67 ± 0,34 with a large 

scar, S. pimpinellifolium averaged as 1 ± 0 with a very small scar size. This was a highly 

significant difference between parents (P=0,0002). Also stem scar in the population 

ranged between 1 and 5 with a mean value of 3,22 ± 0,07 showing continuous variation. 

Figure 3.10. exhibits the distribution of stem scar in the population. Only 5,4% of the 

population exceeded the value of S. lycopersicum with a higher value due to 

transgressive segregation. 

 

 

 

 

Figure 3.9. Distribution histogram for internal fruit color. Sl and Sp indicate locations of 

S. lycopersicum and S. pimpinellifolium. 
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Figure 3.10. Distribution histogram for stem scar size. Sl and Sp indicate locations of S. 

lycopersicum and S. pimpinellifolium. 

 

 

3.1.10. Locule Number 

 

 Locule number in the population ranged from 2 to 4,5 with a mean value of   

2,81 ± 0,03. A total of 88% of the population had 3 locules in fruit. Figure 3.11. 

displays the distribution graph for locule number in the population. 

 

3.1.11. Fruit Wall Thickness 

 

 Wall thickness (WALL) was ranged 1,5 to 5 in the population with a mean value 

of 3,23 ± 0,07. S. lycopersicum was scored as 4 for wall thickness. Figure 3.12. shows 

the continuous distribution of wall thickness in the population. Approximately, 14% of 

the population showed higher values than S. lycopersicum. 
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Figure 3.11. Distribution histogram for locule number. Sl and Sp indicate locations of S. 

lycopersicum and S. pimpinellifolium. 

 

 

 

 

 

Figure 3.12. Distribution histogram for fruit wall thickness. Sl and Sp indicate locations 

of S. lycopersicum and S. pimpinellifolium. 
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3.1.12. Soluble Solid Content 

 

 Soluble solid content ranged from 4,2 to 6,6 brix over the population with a 

mean of 5,24 ± 0,04 brix. The average was 4,67 ± 0,48 brix for S. lycopersicum, while it 

was 7 ± 1,08 brix for S. pimpinellifolium. The parents showed no significant difference 

(P>0,05). Only 8% of the population exhibited lower values than S. lycopersicum. 

Overall, population showed continuous variation. 

 

 

 

 

Figure 3.13. Distribution histogram for soluble solid content. Sl and Sp indicate 

locations of S. lycopersicum and S. pimpinellifolium. 

 

 

3.1.13. Correlations Between Traits 

 

 Correlations between traits showed moderate but significant results (Table 3.5). 

Fruit weight was positively correlated with fruit shape, fruit firmness, stem scar size, 

and fruit wall (r = 0,53; r = 0,41; r = 0,56; r = 0,51 respectively). These results were 

expected as the bigger fruits tend to be elongated, have thicker fruit walls, bigger stem 

scar sizes and better firmness. All these traits are horticulturally important since they 
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affect yield and fruit appearance. In the same manner, fruit shape also showed 

correlations with firmness and wall thickness (r = 0,46; r = 0,42 respectively). This 

again confirms the relationship of weight and shape.  Another important trait is color, 

identified separately as internal and external color. Internal and external fruit colors had 

a good correlation between them giving the highest value of all traits (r = 0,61). This 

result was also expected as both traits are controlled by the same pathway.  

Also there was a good relationship between lycopene content and internal and 

external fruit color (r = 0,54 and r = 0,44 respectively). This is the result of lycopene 

being a carotenoid pigment that gives the red color to tomato. Another important 

correlation was between vitamin C and phenolic compounds (r = 0,54). This is expected 

because both compounds have contributions to the total amount of water soluble 

antioxidant activity. According to this information it was expected to see a good 

correlation between antioxidant activity and phenolics, but it exhibited a weak 

correlation (r = 0,27). 

  

 

Table 3.5. Correlations between traits. 

 

Trait FW FS FIRM SCAR EC IC LOC WALL SSC AUC VitC LYCO PHEN 

FW 1                         

FS 0,53 1                       

FIRM 0,41 0,46 1                     

SCAR 0,56 0,19 0,08 1                   

EC -0,21 -0,22 -0,13 -0,03 1                 

IC -0,25 -0,32 -0,14 0,07 0,61 1               

LOC 0,01 -0,19 -0,11 0,17 0,06 0,18 1             

WALL 0,51 0,42 0,25 0,33 -0,02 -0,18 -0,10 1           

SSC -0,15 -0,08 -0,17 0,16 0,16 0,26 -0,09 0,09 1         

AUC -0,14 -0,17 -0,34 0,14 0,07 0,19 0,14 -0,02 0,17 1       

VitC -0,19 -0,32 -0,10 -0,02 0,06 0,15 0,14 -0,12 0,15 0,24 1     

LYCO -0,07 0,01 0,04 0,09 0,44 0,54 0,09 -0,05 0,11 0,15 0,04 1   

PHEN -0,25 -0,31 -0,31 0,01 0,21 0,18 0,07 -0,15 0,25 0,27 0,53 0,12 1 
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3.2. Genotypic Characterization 

 

 In order to map the QTLs, the previously constructed RFLP map was used as 

framework (Doganlar et al., 2002). By using QGENE software program, single point 

regression analysis was carried out to identify the associations between markers and 

traits in the mapping population (Nelson, 1997). A total of 11 COS and 66 COSII 

markers that were tested on the 120 BC2F10 lines for genotypic characterization were 

also positioned on the RFLP map. Table 3.6. and 3.7. list the COSII and COS markers 

with the restriction enzymes used for each.  

In this research, a total of 103 significant (p<0,05) QTLs were identified. Table 

3.8 and Table 3.9 list the identified QTLs for agronomic traits and antioxidant traits, 

respectively. Out of 103 loci, 25 QTLs were antioxidant trait related (24,5%). The other 

78 QTLs were related to agronomic traits and accounted for 75,7% of all QTLs. Figure 

3.14 exhibits the QTLs that were mapped.  

For 26 of 78 QTLs for agronomic traits, favorable alleles were from S. 

pimpinellifolium. These traits mostly included internal and external fruit color and 

soluble solid content. This result is expected because fruits of S. pimpinellifolium tend 

to have darker red color. Favorable alleles for the other 52 agronomic traits were from 

S. lycopersicum including fruit weight, shape, firmness, stem scar size, wall thickness 

and locule number. This is also an expected result since the fruits of S. lycopersicum are 

much longer, heavier and firmer.  

Favorable alleles for 18 out of 25 QTLs for antioxidant traits were from S. 

pimpinellifolium (72%). This high percentage indicates that as a wild tomato S. 

pimpinellifolium has more nutritionally valuable traits than S. lycopersicum. In order to 

construct elite tomato lines with high antioxidant traits, the markers that are linked to 

these QTLs can be used for marker assisted selection (MAS). 

 

3.2.1. Reliability and Conservation of Loci 

 

 To confirm the reliability and conservation of the loci that were identified in this 

research, the results were cross-checked with previous research. Out of 25 antioxidant 

loci, 13 (52%) of them exhibited a match with a QTLs that were identified in the same 

population in 2004 (Ruscuklu 2005; Table 3.9). This indicated a good match with a 
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higher percentage than was seen by Rousseaux et al. (2005) when they compared 

antioxidant QTLs across years and found that 35% of the loci were identified in 

multiple years.  

In order to exhibit the conservation of loci in other wild species S. hirsutum and 

S. pennellii populations were crosschecked for antioxidant QTLs. Out of 25 QTLs that 

were  identified in this research, 5 of them (20%) matched with S. hirsutum (Okmen, 

2008). Some of the QTLs, (24%) were also QTLs identified in a S. pennellii population 

(Rousseaux et al. 2005).These results suggest that genes for antioxidant traits have been 

conserved during evolution of tomato. 

A total of four QTLs were identified for antioxidant activity in this research and 

3 of them were identified previously. That indicates a 75% match to previous work. For 

vitamin C, 11 QTLs were identified and 9 of them showed a match (82%). For lycopene 

content, 2 of 4 QTLs were identified as a match (50%). For phenolics, 4 QTLs out of 6 

displayed a match with previously identified loci (67%). These high percentages 

support the QTLs that we identified in this research.  

 

 

Table 3.6. List of polymorphic COS markers and their restriction enzymes. 

 

Marker Enzyme 

TG48 DraI 

TG70 HinfI 

TG176 RsaI 

TG180 DraI 

TG183 EcoRV 

TG254 DraI 

TG302 AluI 

TG328 HpaII (MspI) 

TG342 HhaI 

TG393 HinfI 

TG565 BamHI 
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Table 3.7. List of polymorphic COSII markers and their restriction enzymes. 

 

Marker Enzyme Marker Enzyme 

At1g03310 CfoI At3g12290 ApoI (XapI) 

At1g05350 ApoI (XapI) At3g16150 HinfI 

At1g05970 TaiI At3g17040 ApoI (XapI) 

At1g07080 DpnII At3g17930 MspI 

At1g07960 DraI At3g23400 CfoI 

At1g10500 HaeIII (BsuRI) At3g24050 DraI 

At1g19140 PCR At3g44890 HinfI 

At1g19530 DraI At3g47990 BcuI 

At1g29320 MvaI At3g55360 DraI 

At1g48300 ApoI (XapI) At3g63190 TaqI 

At1g53000 EcoRI At4g00090 RsaI 

At1g55870 PCR At4g10030 HinfI 

At1g71810 CfoI At4g15530 RsaI 

At1g78690 AluI At4g22260 HinfI 

At2g01490 DdeI (HpyF3I) At4g23100 Styl (Eco 130I) 

At2g01720 DraI At4g24830 HpaII (MspI) 

At2g06005 HinfI At4g30220 HinfI 

At2g16920 PCR At4g34700 CfoI 

At2g20860 DraI At4g35250 RsaI 

At2g24270 AluI At4g39660 HinfI 

At2g24390 HinfI At5g04740 MspI 

At2g25570 VspI At5g06430 PCR 

At2g26270 HinfI At5g13240 AluI 

At2g32090 HinfI At5g13700 HhaI 

At2g38730 AluI At5g20180 CfoI 

At2g39100 HhaI At5g20350 ApoI (XapI) 

At2g42750 BstUI (Bsh1236I) At5g23120 RsaI 

At2g45730 MspI At5g41480 Hin1I (NIaIII) 

At2g46820 HinfI At5g45410 BcuI 

At3g02220 HinfI At5g47040 DraI 

At3g02300 TaqI At5g51110 MspI 

At3g08030 HincII At5g51970 DraI 

At3g11830 HinfI At5g60160 HinfI 

 

 



 

   34 

Table 3.8. QTLs identified for agronomic traits. R square values indicate effect of each       

QTL to the total phenotype. 

 

Trait 
QTL 

Symbol 
Chrm Marker P Value 

RSq Value 

(%) 
Source 

Fruit Weight fw1.1 1 CT149 0,0467 4,2 TA209 

  fw2.1 2 TG167 0,0001 12,2 TA209 

  fw3.1 3 TG246 0,0002 11,3 TA209 

  fw3.2 3 CT141 0,0344 4,6 TA209 

  fw5.1 5 CT167 0,0341 4,7 LA1589 

  fw7.1 7 CD57 0,017 5,5 TA209 

  fw8.1 8 CD40 0,0455 4,3 TA209 

  fw12.1 12 CT211 0,0069 5 TA209 

  fw12.2 12 CT156 0,0409 4,4 TA209 

Fruit Shape fs2.1 2 TG167 0,0031 7,7 TA209 

  fs2.2 2 TG308 0,031 4,7 TA209 

  fs5.1 5 CT167 0,0056 7,1 LA1589 

  fs8.1 8 TG45 0,0001 29,8 TA209 

  fs9.1 9 TG654 0,0068 6,8 LA1589 

  fs9.2 9 CT74 0,0073 6,7 TA209 

  fs11.1 11 TG546 0,0278 5,1 TA209 

Firmness firm1.1 1 TG460 0,0039 5,6 LA1589 

  firm2.1 2 TG308 0,0123 6 TA209 

  firm2.2 2 TG492 0,0226 5,2 TA209 

  firm3.1 3 TG66 0,0467 4,2 TA209 

  firm4.1 4 TG272 0,0179 5,5 TA209 

  firm8.1 8 TG45 0,003 8 TA209 

  firm10.1 10 U 0,0126 4,2 TA209 

  firm12.1 12 CT156 0,0073 6,7 TA209 

Stem Scar Size scar1.1 1 CT191 0,0457 4,7 TA209 

  scar2.1 2 TG167 0,0005 10,1 TA209 

  scar3.1 3 TG242 0,0001 13,8 TA209 

  scar3.2 3 CT141 0,0218 5,2 TA209 

  scar4.1 4 TG483 0,0085 6,7 TA209 

  scar6.1 6 CT216 0,0244 5,1 TA209 

  scar8.1 8 TG330 0,0001 11,8 TA209 

  scar10.1 10 CT95 0,0275 5 LA1589 

  scar12.1 12 CT276 0,0148 5,7 TA209 

 

      (cont. on next page) 



 

   35 

        Table 3.8 (cont.) 

 

Trait 
QTL 

Symbol 
Chrm Marker P Value 

RSq Value 

(%) 
Source 

External Color ec2.1 2 CT176 0,0166 5,6 TA209 

  ec3.1 3 TG214 0,0166 5,6 TA209 

  ec4.1 4 CT192 0,0287 4,8 TA209 

  ec5.1 5 CT167 0,0008 9,8 LA1589 

  ec5.2 5 CT93 0,0274 4,9 TA209 

  ec5.3 5 CT118 0,0196 5,4 LA1589 

  ec6.1 6 TG314 0,0211 3,6 LA1589 

  ec6.2 6 TG365 0,0068 6,7 LA1589 

  ec7.1 7 TG342 0,001 9,4 LA1589 

  ec9.1 9 CT74 0,0143 5,8 TA209 

  ec10.1 10 U 0,0206 3,7 LA1589 

  ec11.1 11 TG393 0,0007 9,7 LA1589 

Internal Color ic1.1 1 TG460 0,0281 3,3 TA209 

  ic1.2 1 TG580 0,0304 4,8 TA209 

  ic2.1 2 TG492 0,0454 4,2 LA1589 

  ic3.1 3 TG152 0,023 5,4 TA209 

  ic5.1 5 CT167 0,0092 6,5 TA209 

  ic6.1 6 TG365 0,0023 8,2 LA1589 

  ic6.2 6 TG314 0,0348 3,1 LA1589 

  ic7.1 7 TG342 0,0025 8,2 LA1589 

  ic8.1 8 CT111 0,0127 6,7 TA209 

  ic11.1 11 TG393 0,0015 8,8 LA1589 

  ic11.2 11 TG57 0,0402 4,6 LA1589 

  ic12.1 12 TG360 0,038 4,7 TA209 

Locule Number loc1.1 1 TG245 0,0044 7,1 TA209 

  loc1.2 1 TG460 0,023 4 TA209 

  loc6.1 6 TG590 0,019 6,1 LA1589 

  loc9.1 9 TG654 0,0345 5,3 TA209 

  loc12.1 12 CT211 0,0337 3,5 LA1589 

Wall Thickness wall2.1 2 TG151 0,0006 1,1 TA209 

  wall3.1 3 TG246 0,0055 8 TA209 

  wall7.1 7 CT52 0,0262 3,9 TA209 

  wall11.1 11 CT182 0,0375 5,1 TA209 

  wall12.1 12 TG473 0,0011 10,4 TA209 

 wall12.2 12 TG111 0,0044 9,5 TA209 

Soluble Solid  ssc1.1 1 TG67 0,0168 6,3 TA209 

Content ssc2.1 2 CT205 0,007 7,7 LA1589 

  ssc3.1 3 CD51 0,023 5,9 TA209 

  ssc4.1 4 TG500 0,018 6,3 TA209 

  ssc5.1 5 CT167 0,0001 13,7 LA1589 

  ssc6.1 6 CT206 0,0067 5,7 LA1589 

  ssc6.2 6 TG356 0,0141 6,6 LA1589 

  ssc7.1 7 TG342 0,0059 8 LA1589 

  ssc9.1 9 TG254 0,0214 6,2 TA209 

  ssc10.1 10 CT234 0,0234 5,9 LA1589 
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Table 3.9. QTLs identified for antioxidant traits. R square values indicate effect of each 

QTL to the total phenotype. 

 

Trait 
QTL 

Symbol 
Chrm Marker P Value 

RSq Value 

(%) 
Source 

Reference* 

AUC auc2.1 2 CT205 0,013 6,1 LA1589 1 

  auc3.1 3 TG242 0,0429 4,4 TA209   

  auc6.1 6 TG314 0,0364 3,1 LA1589 1,2,3 

  auc10.1 10 CT234 0,0218 5,3 TA209 1,3 

Vitamin C vitc2.1 2 CT205 0,0013 9,1 LA1589 1,2 

  vitc4.1 4 TG163 0,0026 6,2 LA1589   

  vitc5.1 5 CT167 0,011 6,3 TA209 1 

  vitc6.1 6 TG99 0,0001 12,8 LA1589 1,2 

  vitc6.2 6 TG365 0,0048 7,2 LA1589 1 

  vitc7.1 7 CD57 0,0454 4,3 LA1589 1 

  vitc8.1 8 CD40 0,0001 14,5 LA1589 1 

  vitc10.1 10 CT234 0,0425 4,4 TA209 3 

  vitc10.2 10 CT95 0,043 4,5 LA1589   

  vitc11.1 11 TG36 0,0375 4,5 LA1589 1 

  vitc12.1 12 TG360 0,0258 5,3 LA1589 3 

Lycopene lycop6.1 6 CT206 0,0006 7,9 LA1589   

  lycop6.2 6 TG365 0,0087 6,5 LA1589   

  lycop9.1 9 CT283 0,011 6,2 TA209 1 

  lycop9.2 9 CT74 0,0199 5,4 TA209 2 

Phenolic phen2.1 2 TG608 0,0044 7,4 LA1589   

  phen5.1 5 CT167 0,0003 11,1 LA1589 1 

  phen6.1 6 CT206 0,0004 8,5 LA1589 2 

  phen6.2 6 TG365 0,0007 9,7 LA1589 1,3 

  phen8.1 8 CD40 0,0045 7,5 LA1589 3 

  phen8.2 8 CT111 0,0196 6,1 TA209   

*References are coded as 1=Rousseaux et al. (2005); 2=Okmen (2008); 3=Ruscuklu (2005).
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Figure 3.14. Molecular map of the tomato genome and locations of QTLs. COS and COSII markers are positioned on the left side, in parenthesis. 

                                (cont. on next page) 
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Figure 3.14 (cont.)  
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CHAPTER 4 

 

CONCLUSION 

 

Tomato is one of the most economically and nutritionally important crops and is 

produced and consumed in high amounts all around the world. The main goal of this 

study was to characterize a permanent inbred population and identify the genes that 

control nutritionally and agronomically important traits in tomato by identifying the 

QTLs for these traits with genetic markers. In order to develop a mapping population, 

120IBL lines were derived from a cross between S. lycopersicum and S. 

pimpinellifolium. BC2F7, BC2F8, and BC2F9 lines were used for phenotypic 

characterization. Agronomic and antioxidant traits were measured visually and 

biochemically. For the genotypic characterization, BC2F10 lines were screened with 66 

COSII and 11 COS markers.  

As a donor parent in this study, S. pimpinellifolium was shown to be a great 

source of antioxidant traits. For 72% of the antioxidant QTLs identified in this work, 

favorable alleles were from S. pimpinellifolium. As a recurrent parent, S. lycopersicum 

was the source of favorable alleles for agronomic traits. Thus, 67% of favorable alleles 

for agronomically important traits were sourced from S. lycopersicum. These results 

agree with what is expected to have resulted from the domestication of wild tomatoes. 

Through time agronomic traits like fruit weight, shape and firmness have been chosen 

while antioxidant traits have been ignored and lost. On the other hand, because of its 

great role in the plants’ defense system, antioxidant traits may have accumulated in wild 

species like S. pimpinellifolium which have been subjected to natural selection. Using 

two distant parents to form a population led to great genotypic and phenotypic variance 

in the population. Also having different combinations of alleles from both parents 

resulted in progeny that exceeded both parents. This was the result of transgressive 

segregation. With the help of the molecular markers these potential traits can be 

identified and new alleles can be introgressed for the improvement of cultivated tomato. 

Marker Assisted Selection (MAS) is useful for transferring of new genes and 

their alleles. Use of a marker identified to be linked to a trait of interest, makes it easier 

to select an individual that has the trait. Thus, there is no need to screen the population 
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for phenotypic identification. Since there is low recombination frequency between 

linked alleles, choosing a marker that is tightly linked to a trait will help to transfer the 

locus with it. Using MAS may also help saving time, energy, space and money. 

For further studies, the QTLs that have been identified in this research can be 

transferred to improve an elite line of tomato. With an increase of antioxidant traits in 

tomato, healthier and more nutritional fruits can be produced. This increase contributes 

improving tomato plant as well as human health. 
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