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ABSTRACT 
 

PREPARATION AND CHARACTERIZATION OF CORN ZEIN 
NANOCOMPOSITE COATED POLYPROPYLENE FILMS FOR FOOD 

PACKAGING APPLICATIONS 
 

Feasibility of prepared novel corn zein nanocomposite (CZNC) coated 

polypropylene (PP) film (CZNC-PP) structures for food packaging applications was 

investigated. Excellent barrier properties of corn zein nanocomposites were successfully 

combined with mechanically strong PP as an eco-friendly promising alternative to 

conventional barrier packaging systems. In this study, the effect of nano-sized layered 

silicate amount, type and processing of CZNC layer on the barrier, mechanical, optical 

and surface properties of the CZNC-PP films were investigated. Incorporation of 

organomodified montmorillonite (OMMT) by solution intercalation into zein coating 

matrix improved barrier and mechanical properties of PP films. The properties of single 

CZNC layers and interactions between layered silicates and zein matrix were also 

investigated. Fine delamination of OMMT in zein coating was found to be responsible 

for the improvements in oxygen and water vapor barrier of single corn zein layers due 

to more tortuous path formed for permeation of oxygen and water vapor. Prepared 

CZNC-PP films achieved nearly 4 times reduced oxygen permeability while WVP of 

the films were reduced by 30% with 5 wt% OMMT content in 5.9 µm corn zein coating. 

Meanwhile, improvements were less significant for unmodified nanoclay loadings due 

to the incompatibility between unmodified MMT and corn zein. Hydrophobicity of 

CZNC surface increased with increasing OMMT loading in accordance with WVP 

results. Permeation data was fitted to various phenomenological models predicting the 

permeability of polymer nanocomposites as a function of clay concentration and aspect 

ratio of nanoplatelets. While significant improvements in mechanical properties 

including doubled elastic modulus and 75% higher yield strength of PP films were 

obtained, incorporation of OMMT in CZNC layer did not change the color of CZNC-PP 

films significantly.  
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ÖZET 
 

GIDA AMBALAJI UYGULAMALARI İÇİN MISIR PROTEİNİ 
NANOKOMPOZİTLERİ KAPLI POLİPROPİLEN FİLMLERİN HAZIRLANMASI 

VE KARAKTERİZASYONU 
 

Gıda ambalaj uygulamalarına yönelik mısır proteini nanokompozitleri ile 

kaplanmış (MPNK) polipropilen (PP) filmlerin hazırlanması ve karakterizasyonu 

incelenmiştir. Biyobozunur bir polimer olan mısır proteininin yüksek oksijen bariyer 

özellikleri ile mekanik olarak dayanıklı olan PP filmlerinin özellikleri mevcut bariyer 

filmlerine çevreci bir alternatif oluşturabilecek şekilde başarılı bir biçimde 

birleştirilmiştir. Bu çalışmada mısır proteini nanokompozit tabakasının hazırlanmasında 

kullanılan nano boyutlu kil miktarının, tipinin ve nanokompozit hazırlama metodunun 

MPNK kaplı PP filmlerin (MPNK-PP) bariyer, mekanik, optik ve yüzey özellikleri 

üzerine olan etkileri incelenmiştir. Sıvı yaklaşımı metodu ile polimer yapıya dahil edilen 

organomodifiye tabakalı silikat nanokillerinin (OMTS) MPNK-PP filmlerin bariyer ve 

mekanik özelliklerini belirgin biçimde iyileştirdiği gözlemlenmiştir. MPNK 

tabakalarının tekbaşına özellikleri ve içeriğindeki killer ile polimer matrisinin etkileşimi 

de bu çalışmada incelenmiştir. Oksijen ve su buharı bariyer özelliklerinde elde edilen 

iyileşmelerin nanoboyutlu silikat tabakalarının etkili biçimde açılması sonucu artan 

dolambaçlı  difüzyon yoluna bağlı olarak gerçekleştiği belirlenmiştir. 5.9 mikrometre 

kalınlığındaki, kütlece %5 OMTS içeren MPNK katmanı ile kaplanan filmler baz PP 

filmler ile karşılaştırıldığında oksijen geçirgenliği değerlerinin 4 kat, su buharı 

geçirgenliklerinin ise %30 oranında azaldığı görülmüştür. Su buharı bariyeri ile uyumlu 

olarak, MPNK kaplı yüzeylerin hidrofobik özellikleri OMTS ilavesi ile artmıştır. Bunun 

yanında, modifiye olmayan doğal kil ve sonikasyon yerine karıştırma ile hazırlanan 

filmlerde gözlemlenen iyileşmelerin daha az belirgin olduğu gözlemlenmiştir. Bariyer 

iyileştirmelerine ek olarak; OMTS ilaveli mısır proteini kaplamalı filmlerde baz PP 

filmlere kıyasla elastik modülüs 2 kat artarken, akma mukavemeti %75 oranında artmış, 

filmlerin renginde çıplak göz ile ayırt edilebilecek herhangi bir değişiklik 

gözlemlenmemiştir.  
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CHAPTER 1 

 

INTRODUCTION 

 
Food packaging deals with the preservation of food quality during the period 

from its production to its end use by the consumers. Synthetic polymers are the main 

packaging materials today since they offer versatile solutions for several needs of food 

packaging. Conventional packaging polymers are begun to be questioned due to 

increasing environmental concerns and their petroleum based sources. Research on 

sustainable alternative materials for food packaging is a hot topic for over a decade. 

Biopolymers are being draw attention of many researchers especially because of their 

petroleum independent sources and eco-friendliness. Most of biopolymers are 

synthesized from microorganisms or extracted directly from biomass. Their 

incomparably shorter degradation in the nature than the conventional synthetic polymers 

makes them attractive for food packaging applications.  

Protein based biopolymers such as corn zein, soy or whey proteins extracted 

from by-products of food industry have noticeable properties suitable for food 

packaging. The most important feature of protein based biopolymers is their excellent 

barrier to oxygen, comparable to that of ethylene vinyl alcohol (EVOH) or 

polyvinylidine chloride (PVDC) (Padua and Wang, 2002; Miller and Krochta, 1997). 

Protein based polymers are soluble in light solvents such as ethanol depending on the 

type of the protein. Extensive research was reviewed concerning the preparation and 

characterization of stand-alone protein based biopolymer films. (Padua and Wang, 

2002,; Tharanathan, 2003; Cuq et al., 1998). The processability of these polymers using 

plasticizers with different polymer processing techniques was also studied (Hernandez-

Izquerdo and Krochta, 2008).  

Particularly among proteins, corn zein; obtained from the corn gluten that is a 

by-product of corn wet milling industry; has great potential to be used in food 

packaging applications. Protein based polymers are heterogeneous polymers owing their 

functionality to amino acids in their structures (Padua and Wang, 2002; Lawton, 2002; 

Shukla and Cheryan, 2001). Proteins are mostly hydrophilic, being very sensitive to 

humidity and mostly soluble in water constituting for an important limitation for their 
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use in food packaging applications. On the contrary, zein is not soluble in water 

although its properties are still being dependent on relative humidity. Corn zein is 

relatively hydrophobic due to its high content of non-polar amino acids (Padua and 

Wang, 2002; Gioia and Guilbert, 1999). Although corn zein is a better barrier to 

moisture compared to other proteins and an excellent barrier to oxygen, use of corn zein 

standalone films in food packaging applications seem impossible with current status due 

to poor mechanical properties. Various plasticizers were used to solve the brittleness 

problem of corn zein. In addition to use of plasticizers; many hybrid strategies were 

developed to put corn zein in use in order to utilize its sustainability and excellent 

barrier to oxygen. These include lamination of zein with other proteins and lipids 

(Ghanbarzadeh and Oromiehi, 2008; Ryu et al., 2002; Cho et al., 2002; Weller et al., 

1998), blending with synthetic polymers or biopolymers (Herald et al., 2002; Wu et al., 

2003; Corradini et al., 2004) and coating polyolefin surfaces with corn zein 

(Tihminlioglu et al., 2010; Lee et al., 2008). Biopolymer coatings such as corn zein are 

attractive in environmental aspects, since identification and separation of layers for 

recycling of synthetic films are problematic and multilayer structures used for barrier 

applications constitute for an important amount of waste (Marsh and Bugusu, 2007; 

Cutter, 2006). 

In this study, feasibility of further improvements in layered silicate loaded 

biopolymer coatings on commercial polypropylene films were investigated. Layered 

silicate nanocomposites (LSNC) were successfully used to improve the properties of 

synthetic polymers and are currently being put in use by food packaging industry 

(Lange and Wyser, 2003). Unique improvements brought in by clay nanoplatelets 

intercalated or exfoliated within the polymer matrix were well reviewed in the literature 

(Pavlidou and Papaspyrides, 2008; Paul and Robeson, 2008; Alexandre and Dubois, 

2000; Ray and Bousmina, 2006). Improved elastic modulus and tensile strength at break 

due to strong interactions between high surface area LS and polymer matrix and 

improvements in barrier properties due to enhanced tortuosity are also promising 

features of biopolymer nanocomposites (DeRocher et al., 2005; Nielsen, 1967; Lape et 

al., 2006; Herrera-Alonso et al., 2009; Choudalakis and Gotsis, 2009). Therefore, the 

primary objective of this study was to develop a corn zein nanocomposite (CZNC) 

coated polypropylene (PP) film structure and to investigate the effect of coating on 

oxygen and water vapor permeability of the films. The CZNC was prepared by solution 

intercalation method using organomodified montmorillonite (OMMT), Cloisite 10A, as 
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nanofiller. Beside barrier properties, mechanical, surface hydrophobicity and color 

properties of the coated films were also discussed for various OMMT concentrations. 

 The thesis report consists of seven chapters, which altogether aim at covering 

preparation and characterization of corn zein nanocomposite coated polypropylene films 

for food packaging applications. Chapter 1 gives a general introduction to the 

background of this study. Decisive factors such as barrier and mechanical durability 

together with environmental aspect of food packaging were outlined in Chapter 2, in 

order to present the point of view of this thesis. Biodegradable alternatives of 

conventional polymers and strategies to utilize desirable properties of corn zein for food 

packaging applications were summarized in Chapter 3. Chapter 4 of the thesis was 

dedicated to nanocomposites and their applications. Desirable improvements in 

biodegradable polymer properties that can be achieved by layered silicate 

nanocomposites were also discussed in this chapter. Materials and methods used for the 

preparation of corn zein nanocomposite coated polypropylene films were given in 

Chapter 5 together with the characterization methods employed to investigate effect of 

CZNC coatings on polypropylene films. Mechanical, oxygen and water vapor barrier 

performance of CZNC coatings on PP films and effect of OMMT loading on barrier and 

properties of single CZNC layers were also evaluated in Chapter 6. Interactions between 

OMMT layered silicate and corn zein matrix as followed by FTIR-ATR as well as 

optical and surface characteristics of the prepared films were also discussed. Finally in 

Chapter 7, conclusions of this study were outlined. 
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Food packaging is one of the major application areas of polymers. Polymers in 

rigid forms or in films replaced other materials such as glass and metals due to their 

ease of production and versatility in food packaging applications. Food packaging deals 

with safely preparation of food for transport, distribution, storage and retailing end use.  

Today, most of the food products are consumed months after their production 

and far from their production origin as well. During this period, prevention of food from 

deterioration is crucial. Food either in its processed form or in the raw material stage is 

highly perishable depending upon its water activity and temperature of storage and 

therefore it needs a careful technological intervention to preserve it longer 

(Tharanathan, 2003). For example; the post harvest losses of farm products such as 

fruits and vegetables are significantly high, ranging from 15 to 20% (Tharanathan, 

2003). Similar to unprocessed farm products, processed food products are also sensitive 

and need protection until consumer use. Improper or poor packaging of these goods is 

responsible for high losses as well as improper distribution and storage.  

The purpose of food packaging is to preserve the quality and safety of the food 

that it contains from the time of manufacture to the time it is used by the consumer 

(Cutter, 2006). Foods are sensible products that may undergo biological, chemical and 

physical deteriorations during storage and distribution. Deteriorations in packed food 

may be caused from many sources but mainly due to the transport of solutes through the 

packaging such as gases - like oxygen and carbon dioxide or water vapor. Resistance of 

the packaging material to the transport of solutes is called barrier property of the 

material. Deterioration of sensory attributes, reduction of nutritional content and 

impairing safety of foods is caused principally by physical and chemical changes in the 

food during storage and by microbial spoilage. Packaging should minimize these 

deteriorative changes in food products (Haugaard et al., 2001).  

Packaging is directly related to food safety; firstly, if the packaging material 

does not provide a suitable barrier around the food, then microorganisms might 

CHAPTER 2 

 

GENERAL INFORMATION ABOUT FOOD 

PACKAGING MATERIALS 
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contaminate the food and make it unsafe. However, microbial contamination can also 

arise if the packaging material permits the transfer of, for example, moisture or O2 into 

the package. In this situation, microorganisms that are present in the food, but present 

no risk because of the initial absence of moisture or O2, may subsequently be able to 

grow and present a risk to the consumer (Robertson, 2006). As in the case of microbial 

deteriorations, enzymatic reactions are also favored by water content and ingress of O2 

into a package entailing deteriorations in food.  

Food quality is also affected by chemical and physical reactions within the 

packaging. There are numbers of possible deteriorative chemical reactions adversely 

affecting the quality of food especially favored by transferred O2 and water vapor. Lipid 

oxidation (autoxidation) initiated by molecular O2, non-enzymatic browning, color 

changes related with the presence or absence of O2, and reactions of vitamins or 

proteins with O2 decreases the nutritional value of packaged food. Chemical changes of 

food also results in physical changes. Some physical changes deteriorating the food 

quality can be listed as softening, caking especially in powder products, toughening, 

emulsion breakdown, swelling/shrinkage and crushing/breakage that can be altered by 

controlling water uptake as well as protecting from physical impacts.  

Mechanical properties of the packaging materials are important as well as barrier 

properties to ensure the success of the packaging. A packaging material must be durable 

itself in order to coat and protect the food product inside. An important function of a 

packaging is to resist some degree of impact without significant/permanent changes 

during the distribution of the product. An ideal packaging material must be strong and 

flexible at the same time in order to protect the product that it contains. Mechanical 

properties are also important for the other functions of packaging such as barrier 

properties. Resistance to solutes of the material is also related with the microstructure of 

the packaging material and durable mechanical properties also guarantee homogeneous 

barrier to solutes.  

Packaging of raw or processed food is critical. Beside packaging technology, the 

materials used for food packaging must include a list of properties: low cost, lightness, 

toughness, flexibility, impact resistance, fabrication easiness, inertness, barrier to 

oxygen and water vapor, high wet-strength, etc. (Smith, 2005). Today the most well-

known polymeric packaging materials that meet these criteria are polyethylene and 

polypropylene which have been in use by the food industry for over 50 years (Cutter, 

2006). Polypropylene has good resistance to chemicals and water vapor, but not to 
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oxygen gas. Therefore, multilayer structures of PP is used with an oxygen barrier such 

as ethylene vinyl alcohol or polyviniylidene chloride, to improve the oxygen barrier 

properties (Marsh and Bugusu, 2007). In 2000, polypropylene represented 23% of the 

thermoplastic consumed in Western Europe. Its sales in tonnage is the third most 

important amongst plastics in the world (Brachet et al., 2008). 

Global production of packaging materials is estimated at more than 180 million 

tones per year, with growth and demand increasing annually (Tice, 2003). Within the 

plastic packaging market, food packaging is the largest sector. It is estimated 125 

million tones of plastics are produced throughout the world annually and 25% of this 

amount is used for food packaging purposes (Weber et al., 2002). It is estimated that of 

the 100$ billion packaging market in the United States, 70% is attributed to beverage 

and food production (Comstock et al., 2004). 

It seemed, more than ten years ago, that it was time to add one more 

characteristic to the list of desirable properties for plastics that usually have a service 

life of 18 months or less (Smith, 2005). Environmental concerns become more 

important in the last decades for the selection of packaging materials; and additional to 

above mentioned characteristics of an ideal food packaging material, environmental 

impact is added to list. In contravention of high usage and economical value of 

polymers the recovery of plastic materials are very low. Most of the polymer based 

packaging materials end in land fills, which is the cheapest and the most common 

solution for generated wastes. Packaging wastes constitute for 5.7% of total discarded 

waste and only 9.4% of the plastic packaging materials were recovered in United States 

according to EPA (2006) statistics. This percentage is very low compared to other 

packaging materials that of 58.8% for paper and paperboard, 51.3% for metals and 

25.3% for glass (Marsh and Bugusu, 2007). Reason of this low recovery ratio was 

attributed to difficulty in identification and separation of polymeric packaging materials 

(Marsh and Bugusu, 2007; Cutter, 2006; Tice, 2003). The identification and separation 

issue can be more easily seen in recovery statistics for polymeric resins of EPA (2006). 

While recovery ratio of polyethylene terephthalate (PET), which is mostly used for 

plastic bottle production that is easier to separate from wastes is around 18% (this ratio 

is also low compared to other non-polymer packaging materials). Recycling of 

polyolefins is especially problematic. For example, the recovery of polypropylene 

which is extensively used in multilayer barrier films and coating applications together 

with other polymers is just about 0.25% (Marsh and Bugusu, 2007).  
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Land filling is still the most common application for the waste packaging 

materials. Beside landfills, combustion or incineration is a way of waste management. 

By burning polymeric wastes, besides generating electricity or heat; the waste volume 

can be decreased by 70% to 90% (Marsh and Bugusu, 2007). But still the remaining 

waste must be land filled and the emissions given to atmosphere are another problem. 

Biobased food packaging idea was emerged at the point of waste management. 

Biobased (biopolymer) packaging is defined as packaging containing raw materials 

originating from agricultural sources, i.e. produced from renewable biological raw 

materials such as polysaccharides like starch chitosan, animal or plant derived proteins 

like corn zein, soy, whey, casein and bioderived monomers like polylactate (PLA) 

(Petersen et al., 1999; Cutter, 2006). 

Biopolymers have opportunity to be used as food packaging materials. Plant 

derived biopolymers such as chitosan, corn zein and starch is known to be effective 

barrier to oxygen, comparable to that of EVOH and OVDC. Most of the biopolymers 

are thermoplastics that can be shaped into solid articles or processed into films. Recent 

technological advances also have allowed biopolymers to be processed similarly to 

petroleum based plastics whether in sheets, by extrusion, spinning, injection molding, or 

thermoforming (Cutter, 2006). In spite of their excellent barrier to oxygen and other 

gases, biopolymers are poor water vapor barrier and moreover, their barrier and 

mechanical properties are dependent to moisture which is not desirable especially for 

the packaging of certain food types. One of the challenges facing the food packaging 

industry in its efforts to produce biobased primary packaging is to match the durability 

of the packaging with the product shelf life. The biopolymer packaging material must 

remain stable without changes of mechanical and/or barrier properties and must 

function properly during storage until disposal (Petersen et al., 1999).  

Poor mechanical properties and dependency to moisture of biopolymers should 

be overcome in many ways. For example, use of plasticizers such as glycerol, ethylene 

glycol, sorbitol etc. in the film formulations or composites is advantageous to impart 

pliability and flexibility which improves handling (Tharanathan, 2003). Bilayer 

packaging applications of biopolymers are also a solution. Coating the water sensitive 

material with wax would add hydrophobicity to the biopolymer and maintain structural 

stability against moisture (Petersen et al., 1999).  

In food packaging technology, application of bilayer and multilayer structures is 

a common and well known technique. Multilayer films are produced by coextrusion of 
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different types of polymers. Mechanically durable but low barrier polymers and high 

barrier-low strength polymers are widely coextruded to satisfy different needs of food 

packaging. Multilayer co-extruded film applications are especially common in 

production of barrier films such as metallized PET-LDPE for the packaging of instant 

coffee in elastic vacuum bags and polyvinyl alcohol/ethylene vinyl alcohol coated 

polypropylene used in many products for producing barrier to oxygen combined with 

polypropylene’s strength (Robertson, 2006).  

Despite the availability of a variety of excellent synthetic oxygen barriers, the 

disadvantages of any such composite polymeric structures are the difficulties entailed in 

their recycling. Existing composite films containing layers of different plastic materials 

may not be recycled, because typically only single component plastics are recyclable 

(Hong and Krochta, 2006). Since biopolymers could also be processed using extrusion, 

biopolymer –biopolymer and/or biopolymer-synthetic polymer bilayer or multilayer 

films can be produced in order to utilize the O2 barrier of a biopolymer and mechanical 

strength of a synthetic polymer as well as to maintain heat sealability. In environmental 

aspect of view, multilayer films containing synthetic polymers are not favorable since it 

is hard to separate layers and recover. But in the case of biopolymer coated 

conventional synthetic polymers, desired barrier properties would be achieved by using 

less amount of synthetic polymer leading to light weighting the disposed packaging 

after decomposition of biobased part in much shorter time.   

For a decade, one of the most important research topics is the nanotechnology 

applications in materials science. Nanoscale manipulations successfully done on 

materials have potential to give effective and superior results. Nanocomposite systems 

offer great opportunities in biobased food packaging polymers. Characteristic 

disadvantages such as poor mechanical properties, or low barrier to water vapor can be 

improved by using nanocomposite technology.  

 Nanocomposites are a new class of composites, which are particle-filled 

polymers with at least one dimension of the dispersed particles, is in the nanometer 

range (Alexandre and Dubois, 2000). Blending or creating composite structures with 

inorganic fillers is a widely used method to improve polymer properties in today’s 

polymer industry. Replacing conventional fillers with nanofillers were proved to give 

many successful results such as improvements in mechanical properties, weight 

reduction, technological improvements such as resistance to fire, adding antimicrobial 

properties and one of the most promising – to improve barrier properties to gases and 



 9

water vapor. Nanocomposite applications have potential to make biopolymers a stronger 

environment friendly alternative of petroleum based polymeric food packaging 

materials. 

Multilayer films and standalone films produced by using biopolymers and 

biopolymer-nanocomposites are favorable in terms of associating excellent barrier to 

gases of a synthetic polymer or improving the properties of a single biopolymer. They 

are also favorable in terms of bringing in positive public opinion for marketing. Since 

one function of the packaging material is communication, the environment friendly 

biopolymer packaging is a message itself. It is generally accepted that consumers are 

becoming more conscious of the environment. Indeed, recent consumer surveys show 

that the consumers are willing to pay more for food, packaged in biomaterials which are 

friendlier to the environment (Petersen et al., 1999).  

 

2.1. Mass Transfer in Food Packaging 

 
Barrier to permeating solutes in order to ensure the quality of food requires 

dealing with mass transfer phenomena in food packaging. Mass transfer phenomena 

occurring in food packaging involves absorption of any gas, water vapor, or solute from 

surrounding to the packaging which is also defined as solubility; and diffusion that is 

the transport of any absorbed solute within the polymeric media due to concentration 

difference. Permeability is the steady-state rate of transport of a permeant molecule 

through a polymer of unit area per unit thickness as a result of combined effects of 

diffusion and solubility (Miller and Krochta, 1997). 

For many packaging materials, the relation between solubility, diffusion and 

permeability can be described by using the expression: 

SDP *=      (2.1) 

where P is the permeability coefficient, D is the diffusion coefficient, and S is the 

solubility coefficient related with the absorption of a gas to a solid surface. 
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2.1.1. Solubility of Permeants in Packaging Film 

 
Solubility is the partitioning behavior of a permeant molecule between the 

surface of a polymer and the surroundings. It is a measure of the mass of permeant 

molecules sorbed by a unit of polymer mass per unit of partial pressure. The solubility 

coefficient S describes the dissolution of a permeant in a polymer, and thus represents a 

thermodynamic property of the polymer-permeant system (Miller and Krochta, 1997). 

The solubility coefficient can be represented as: 

p
CS =       (2.2) 

where p is the vapor pressure of the permeant, C is the concentration of the permeant 

and S is the solubility coefficient. 

 

2.1.2. Diffusion through the Packaging Film 

 
Diffusion is the process, by which permeant molecule moves through the 

polymer matrix as a result of random molecular motions, representing the kinetic 

property of polymer-permeant system. There are two processes by which gases and 

vapors may pass through polymeric materials: 

• A pore effect, in which the gases and vapors flow through microscopic 

pores, pinholes and cracks in the materials 

• A solubility diffusion effect, in which the gases and vapors dissolve in 

the polymer at one surface, diffuse through the polymer by virtue of a 

concentration gradient, and evaporate at the other surface of the polymer. 

This “solution-diffusion” process (also known as “activated diffusion”) is 

described as true permeability (Robertson, 2006). 

Activated diffusion is described as the opening of a void space among a series of 

segments of polymer chain due to oscillations of the segments. Then, this active state is 

followed by translational motion of the permeant within the void space before the 

segments return to their normal state. Both active and normal states are long-lived, as 
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compared with the translational of the permeant. Factors affecting the structure of a 

polymer have a direct effect on segmental mobility, and therefore, influence its mass 

transport properties (Miller and Krochta, 1997). A schematic representation of activated 

diffusion process is given in Figure 2.1 below:  

 

Figure 2.1. The activation process for diffusion (Resource: Miller and Krochta 1997) 

The mathematical theory of diffusion called Fick’s first law is based on the 

hypothesis that the rate of transfer of diffusing substance through unit area of a section 

is proportional to the concentration difference; 

x
cDJ
δ
δ

−=      (2.3) 

where J is the diffusive mass transfer rate of permeant per unit area, c is the 

concentration of permeant, x is the length and D is the diffusion coefficient. 

 

2.1.3. Permeability of Packaging Films 

 
Permeability is the steady-state rate of transport of a permeant molecule through 

a polymer of unit area per unit thickness as a result of combined effects of diffusion and 

solubility (Miller and Krochta, 1997). The permeability coefficient, P, includes both 

thermodynamic and kinetic properties of polymer-permeant system as expressed in 

equation 2.1. Barrier properties of polymeric films are generally reported in terms of 
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permeability because of its simplicity rather than their diffusion or solubility constants. 

Permeability of a film is determined by the steady state rate of mass transport through 

the films with constant D and S. Permeability coefficient can be defined by integrating 

equations 2.2 and 2.3 to obtain: 

( )
pA

LdtdM
P statesteady

Δ×

×
= −     (2.4) 

where M is mass or volume of permeating substance, t is time, L is length, A is the 

cross-sectional area that permeation takes place and ∆p is the partial pressure difference 

of permeate across the film. It is more convenient to use partial pressures rather than 

concentrations in the formula. Because sorption of gas component into a film generally 

has a linear relationship with the partial pressure of the gas as shown in Henry's law 

under conditions where the gas concentration is lower than its saturation concentration 

or maximum solubility (Han, 2005; Miller and Krochta, 1997). The term (dM/dt) is the 

slope of the permeate transmission curve and is required to be at steady-state.  

 Any type of monolayer, bilayer or multilayer packaging film permeability can be 

measured by the permeation cell technique consisting of two chambers at different 

solute concentrations separated by sample film. With the knowledge of intrinsic 

thickness and permeabilities, the permeability of multilayer film or single layers can be 

calculated by using the equation below by using permeability (P) and thickness (L) of 

multilayer film (Robertson, 2006; Han, 2005): 

∑
=

=
n

i i

i

P
L

P
L

1
     (2.5) 

where n is the number of layers in the film, while Li and Pi is the thickness and 

permeability of each layer respectively.  

Diffusion in polymers is influenced by many factors. Characterizing the relations 

between permeability of solute and polymer structure is crucial in terms of designing 

barrier films in food packaging. Chemical structure of the polymer is one of the most 

important factors in polymers controlling the permeation of solute. Substituent groups 

existing in the polymer structure result in differences in the cohesive energy density of 

the polymer; which is a measure of how polar the polymer is. In general, polar polymers 
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are effective on resisting the permeation of non-polar gases such as O2, and polymers 

with non-polar character are classified as good barriers to water vapor. Effect of 

substituent groups tied on the same backbone on water vapor and oxygen permeability 

can be followed in the Table 2.1 below. On the contrary, existence of some polar 

groups; as in the case of most of the biobased polymers; could result in absorption of 

moisture from the atmosphere and may lead to swelling and plasticizing of the polymer 

diminishing the barrier properties (Robertson, 2006). 

Table 2.1. Effect of substituent groups on polarity (Cohesive Energy Density-CED) and 
oxygen - water vapor permeabilities of polymers (cm3 µm/(m2 d kPa)) 
(Source: Miller and Krochta, 1997) 

 

The types of substituent groups present in a polymer can also have a tremendous 

effect on the variability of the permeability coefficient by influencing two main factors: 

how tightly the polymer chains are bound together and how much free volume exists 

between the chains (Miller and Krochta, 1997). Interstitial spacing between the 

molecules in a polymer also affects the movement of any solute through the polymer. 

Increase in free volume; decreases the resistance of polymer to a permeating solute. 

Although free volume is a characteristic of the polymer, it might be manipulated by the 

addition of plasticizers. Plasticizer addition to a polymer during processing increases the 

free volume and enhances the flexibility of the polymer packaging product in expense 

for decrease in barrier properties. 

Polymer chain structure and alignment also effects the permeation of solutes. 

Close chain-to-chain packing ability brought by molecular symmetry, order or 
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crystallinity slows down the moving molecules and enhances the barrier properties. 

Linear, isotactic polymers have good chain packing; and could limit the permeation 

more than the polymers with bulky side groups. Crystalline phases within a polymer 

acts as impermeable barriers to solutes and are more effective in limiting permeants 

than amorphous phases in semi-crystalline polymers.  

As in the case of crystalline parts of the polymer, crosslinks between polymer 

chains limit the movement of the permeant. Crosslinks formed by curing the polymer 

and by addition of chemicals improves the barrier property of the polymer. Another 

parameter affecting the mobility of the permeating molecules is the glass transition 

temperature (Tg) temperature of the polymer. Below Tg, the segments have little 

mobility and there is also a reduction in “free volume”. Thus not only are there fewer 

voids, but, in addition, a diffusing molecule will have a much more tortuous path 

through the polymer. Therefore, if a polymer has a high Tg, then it is likely that its 

temperature of use will be below its Tg and it will consequently have improved barrier 

properties (Robertson, 2006). 

 

2.2. Mechanical Properties of Packaging Films 

 
Mechanical properties are critical as barrier properties for a packaging material. 

Along the travel of the packaged food, from its packing to use, packaging must be 

durable and free from minor defects to ensure the safety of food. Sufficient mechanical 

strength of packaging material is critical in terms of preventing food to be effected from 

physical impacts and also to satisfy the barrier properties required. Among many 

properties considered for polymeric packaging films such as barrier, clarity, etc.; 

mechanical properties are the most frequently considered and primary property 

controlled in the industry. Interactions between hydrocolloids and small molecules, 

including water, plasticizers, lipids, and other additives dispersed in the space of the 

matrix contribute to the mechanical behavior of films (Olabarrieta, 2005). 

 Mechanical properties of polymer films are mainly evaluated using tensile 

testing that gives useful data such as yield and tensile strength, elongation at break and 

elastic modulus (Young’s modulus). The tensile behavior of a polymer should be 

examined in two sections according to their deformation characteristics. The initial 

deformation of a polymer under applied load is elastic. Although the specimen deforms, 
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it would regain its initial shape after the load is removed. Elastic deformation of a 

polymer is characterized by the initial linear curve obtained in tensile testing. From the 

slope of this line the elastic (Young’s) modulus is obtained. Modulus is the ratio of 

stress per strain before elastic limit and gives information about the stiffness of the 

material. As applied force is increased, the polymer deformation becomes plastic and 

the deformation becomes irreversible.  

At the initial steps of plastic deformation polymer chains get close to each other 

and the resulting stress caused by elongation increases. After the yield strength point, 

polymer chains relax and the resulting stress decreases. The yield point of a polymer is 

important since it would provide information on the maximum allowable stress before 

plastic deformation. Other two important properties of a polymer film, the tensile 

strength at break (maximum strength) and elongation at break is obtained at the point at 

which the film looses its structural integrity and breaks down. The maximum tensile 

strength and elongation of a film is important since, after that point the package would 

not be available to protect the product inside.   

 The mechanical properties of polymers are diverse. Depending on the polymer 

type, processing conditions and the rate at which load is applied, mechanical properties 

changes (Olabarrieta, 2005). The most widely used packaging materials polyolefins are 

characterized by good maximum strength and high elongations. The mechanical 

properties of polymers can also be manipulated by adding different chemicals or fillers. 

Plasticizer addition as generally used to make a stiff polymer more flexible also results 

in decreased yield and maximum strength and decreased modulus values as well. On the 

other hand, cross-linking agents can be used to increase the modulus and maximum 

strength (Smith, 2005).  

The fillers added to the polymer during processing for cost reduction, 

improvement of barrier properties, etc. also affects the mechanical properties. In this 

case the effect is dependent on the interaction between the filler and the polymer matrix. 

While a good interaction between filler and polymer matrix enhances maximum 

strength and modulus at the expense of reduced flexibility, insufficient interaction 

diminishes the mechanical properties. At the point of interaction between filler and 

polymer matrix, nanoparticles are reported to give better results because of the 

increased interaction due to high available surface area in contact with the polymer.  
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2.3. Optical and Surface Properties of Packaging Films 

 
 Food packaging has also communication aspect additional to barrier and 

mechanical properties required to ensure the quality of food until final consumer use.. In 

terms of marketing purposes, the appearance and design of the packaging is very 

important. The name, properties or trademark of the product must always be printed on 

the packaging. In some cases, food packaging is better to be transparent in order to 

directly present the food inside. 

 Surface properties of the films, surface energy or surface tension are critical for 

food packaging films. Surface energy of the films depends on variations on the 

homogeneity and roughness of the surface as well as composition and crystal orientation 

of the packaging material (Smith, 2005). Surface energy of the films cannot be 

measured directly. Surface energy parameters are obtained from contact angle analysis 

of several probe liquids such as water. Contact angle measurements can give an idea 

about the surface characteristics such as hydrophobicity. Level of surface 

hydrophobicity is important since interactions with other layers such as printing ink 

applied on packaging films or coatings require compatibility with the surface for good 

adhesion. Besides, surface characteristics are also important in production processes 

such as blending or co-extrusion applications.  

 Another feature of packaging films is their optical properties. Transparency, 

ability of a material to let light through a film is important. Transparency of packaging 

films are required in applications which product visibility from outside is desired. 

Consumer surveys showed better acceptance of products are obtained by transparent 

packaging of fresh vegetables and fruits and also for snacks (Petersen et al., 1999). Most 

of the synthetic polymers like PET, PP, PE are well known transparent materials. Beside 

transparency, appearance of the films is important. Haze; simply scattering of light 

which results into cloudy appearance, is not desired in food packaging (Hong et al., 

2003). Color of the films is also important since details of the product may deteriorate 

when deviances to more yellow or green colors exists in packaging. Color of the pristine 

film is also important in terms of printing applications. 
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CHAPTER 3 

 

BIOBASED AND BIODEGRADABLE POLYMERS IN 

FOOD PACKAGING 

 
Biodegradable and biobased polymers are the materials that have ability to be 

totally decomposed in the nature by the microorganisms in the soil. Advances in the 

production of biodegradable polymers and their processing led to the idea of green 

polymer packaging materials. Today, nearly all the polymer based packaging materials 

are produced from petroleum based synthetic non-degradable materials. Replacement of 

synthetic polymers by biodegradable polymers has been taken seriously for a decade. 

Research and some early applications proved that biodegradable polymers have 

potential to be used for packaging as blends with synthetic or natural polymers, 

composites or as stand-alone films. Although there is extensive research and investment 

in the biodegradable polymer area, biopolymers are still not competitive to commonly 

used synthetic polymers (Petersen, 1999; Weber, 2002; Cutter, 2006). 

The terms biobased and biodegradable polymers are often used together, but 

they define different characteristics. In order to call a polymer “biodegradable”, all the 

carbon in its structure should be accounted for carbon balance, and all residues left 

should be nontoxic in the environmental assessments. In addition, the residue and 

microbial biomass should eventually be incorporated into the natural geochemical cycle 

(Nayak, 1999). On the other hand; biobased polymer definition is used to define the 

type of polymers that have natural and renewable origins. The biobased materials may 

have biodegradability as one of their properties, whereas biodegradable materials not 

necessarily are biobased.  Since the aim of this section is to discuss biodegradable 

polymers with biological origins; the terms biopolymer and biobased are going to be 

used to define biobased-biodegradable polymers. 

 Biopolymers should be classified into three categories according to their origin 

and method of production: 

I. Polymers produced by microorganisms or genetically modified bacteria 

such as polyhydroxyalkonates (PHAs) 
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II. Polymers produced by chemical synthesis from renewable bio-derived 

monomers like polylactic acid (PLA) 

III. Polymers directly extracted from biomass such as proteins like corn 

zein and polysaccharides such as starch 

These categories are further outlined in the Figure 3.1: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Biodegradable polymer families (Source: Weber, 2000; Kolybaba et al., 
2003) 

 Depending on the structure of the biopolymer, these polymers have different 

interesting properties for food packaging. Bio-derived PLA and microorganism 

produced PHB are known to be mechanically durable and good barrier to water vapor. 

Biodegradable polymers extracted from biomass are known to be good oxygen barriers 

due to their polar structure. Next sections are going to be dealing with the biomass 

extracted proteins in more detail.   
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3.1. Biopolymers Extracted from Biomass 

 
 Biopolymers extracted from biomass counts for the largest and diverse group of 

biodegradable polymers. All the polymers in this group are “truly green” since they all 

have biological origins and they completely decompose in the nature. Biomass 

originated biopolymers are mostly obtained from by-products and characterized as 

effective gas-especially oxygen barriers. On the other hand, major drawback is this 

group is their low mechanical strength and hydrophilicity affecting their barrier 

properties. Because of this, real potential of biomass derived polymers lies in their 

blends with other polymers and in multilayer structures. This group can be investigated 

in major sub-groups of polysaccharides such as starch or chitosan and proteins like corn 

zein, whey, etc.  

 Polysaccharides are an important group of biomass extracted biopolymers since 

they are constitute for the most abundant form of biopolymers in the nature. Among 

polysaccharide biopolymers, starch attracts the most interest in biodegradable 

packaging. Starch is a highly crystalline material like cellulose. Although it is tough and 

not processable in its granule form, starch may have thermoplastic properties upon 

disruption of its molecular structure by dissolving in boiling water or processing by 

extrusion (Tharanathan, 2003). In its thermoplastic form, starch has desirable properties 

for food packaging. It is biodegradable in the nature and it has excellent barrier to 

oxygen and carbon dioxide better than the widely used PP and PE polymers. On the 

other hand, unmodified starch; also in thermoplastic form; suffers low mechanical 

properties and water sensitivity.  

 Polysaccharide based chitosan and chitin together are the second most abundant 

polymer in the nature. Generally chitosan is characterized as an excellent barrier to 

oxygen and carbon dioxide (Weber, 2000). Although chitosan has film forming ability 

and has excellent barrier to gases, its use conventional in packaging is limited due to its 

high price even compared to other biopolymers and its moisture sensitivity coming from 

its hydrophilic nature (Weber, 2002).  
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3.1.1. Protein Based Biopolymers 

 
 Protein based biopolymers are classified under the main group “biopolymers 

extracted from biomass”. Protein based biopolymers are truly green. First they are 

produced from totally renewable, mostly annual crops or animal based compounds. 

Second no residue will be left to nature after their complete degradation. Another 

important environmental feature of this class of biopolymers is their short degradation 

time. Degradation of protein based biopolymers complete in a couple of months to years 

depending on the protein type; that is nearly negligible compared to thousands of years 

degradation cycle of synthetic polymers such as PP or PE. 

 Protein based biopolymers are being obtained from two main sources. These 

sources are animal based and plant based agricultural sources. Whey protein is the best 

example for the animal based protein biopolymers. Whey is extracted from the 

byproducts of cheese industry (Weber, 2000). Like most of the other plant based 

biopolymers, whey suffers from brittleness and due to its hydrophilic nature; it is very 

sensitive to humidity; even soluble in water. The most promising feature of whey 

protein makes it a topic of interest is its low oxygen permeability. Whey protein has 

been topic of many studies in the literature including its coatings on PP or PE films 

(Hong et al., 2004; Hong and Krochta, 2006; Lee et al., 2008). Casein, gelatin, collagen, 

keratin are the other elements of animal based protein films.  

 Plant based proteins constitute for a very large and versatile group of 

biopolymers. All members of this group are being extracted from by-products of 

industry. Members of this group are corn gluten, wheat gluten as examples to direct by-

products of industry; and further processed forms such as corn zein, soy protein isolate.  

 Plant based protein compounds can be processed with melt processing 

techniques such as extrusion or injection molding with appropriate modifications 

generally held by plasticizers (Hernandez and Krochta, 2008). They are characterized as 

polar and hydrophilic compounds sensitive to humidity and soluble in water except corn 

zein. Polar character of plant protein biopolymers also bring in excellent oxygen barrier 

comparable to that of widely used EVOH and PVDC synthetic polymers. In the 

following sections, characteristics and properties of corn zein protein which is the 

subject of this study is going to be discussed in more details.  
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3.2. Plant Protein Based Corn Zein 

  
 Corn zein is another type of biopolymer with film forming ability. Commercial 

corn zein proteins are obtained by extraction of the corn wet-milling industry by 

products named corn gluten meal. Biologically it is classified as a prolamin found in 

corn endosperm and it is alcohol soluble (Lawton, 2002). Corn zein has a unique and 

complex structure compared to other biobased polymeric materials.  

 Corn zein has some sort of thermoplasticity that makes it a promising candidate 

in industrial polymers world. Corn zein is characterized as a hydrophobic polymer due 

to its high content of non-polar amino acids in its structure. Although, it is hydrophobic 

and it is not soluble in water unlike some other biopolymers such as starch, humidity 

deeply affects the properties of corn zein such as mechanical and barrier to gases, as 

well as its processability. Like other protein based biopolymers, corn zein is an 

excellent barrier to gases; especially its barrier against oxygen and carbon dioxide 

makes it an attractive polymer together with its hydrophobicity and thermoplasticity for 

food packaging applications.  

The earliest uses of corn zein in the industry go until the beginning of the 20th 

century. The first patents were introducing zein as a novel type of binder. Zein’s 

resistance to grease was utilized in lacquers, varnishes and coatings instead of shellac. 

Despite being used in coatings, zein was also used in inks for a while (Lawton, 2002). 

Recently corn zein is commonly used in controlled drug delivery applications. Drugs 

are usually incorporated in to zein micro spheres and in order to delay the release of 

drugs utilizing the zein’s strength to stomach acid (Shukla and Cheryan, 2001). 

 

3.2.1. Corn Zein as a Packaging Material 

 
Corn zein has potential to be used in barrier food packaging applications for 

oxygen sensitive foods alone or in combination with other synthetic polymers in 

multilayer applications. The films formed by drying of alcoholic aqueous dispersions 

are not water soluble, but are relatively brilliant and grease resistant (Nayak, 1999). 

Another advantage of zein over conventional synthetic polymers is that corn zein is 

completely biodegradable and it is annually renewable since it is produced from the by-

product of corn milling industry. Corn zein offers relatively good mechanical properties 
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and good barrier to water vapor permeability compared to other biomass based 

polymers and interestingly, it does not swell in water.  

Despite having ideal and strong properties, corn zein suffers the known 

disadvantages of protein based biopolymers. Corn zein is brittle especially at low water 

activity and its properties are widely affected by high moisture contents. Brittleness of 

the corn zein could be overcome by addition of plasticizers that also improves the 

processability of the corn zein, which is extensively investigated in the literature. Since 

obtaining sufficient mechanical strength in single corn zein films is hard, the most 

promising application of corn zein appears to be its use together with mechanically 

strong films.    

 

3.2.2. Plasticizers for Corn Zein Films 

 
 Brittleness is an important characteristic of plant based protein biopolymers. 

Brittleness of corn zein constitutes for the most important challenge to be solved for 

their industrial packaging film applications. A packaging film must be durable from its 

production to end-use in order satisfy mechanical strength required for the packed 

products’ mechanical stability, and to maintain critical functions such as barrier to 

oxygen and water vapor without significant changes. 

 Brittleness and problematic melt processing of corn zein is due to the existence 

of strong intermolecular forces within the structure. In almost all cases, manufacturing 

and industrial use of protein-based films and coatings requires plasticization of the 

protein in order to improve the flexibility of films and to make them processable (Gao et 

al., 2006). Many theories have been proposed to account for the mechanisms of 

plasticizer action; roughly relaxing the strong interactions in polymer structure which 

results in more flexible materials and significant changes in barrier properties (Padua 

and Wang, 2002; Hernandez and Krochta, 2008; Hong and Krochta, 2006; Tillekeratne 

and Eastel, 2000). 

Gioia and Guilbert (1999) discussed three of these plasticizing theories. In the 

“lubricity theory”, the plasticizer acts as a lubricant to facilitate movements of the 

macromolecules over each other, whereas the “gel theory” considers the disruption of 

polymer-polymer interactions (hydrogen bonds and van der Waals or ionic forces). The 

“free volume theory” states that a study of plasticization is a study of ways to increase 
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free volume and is useful to clarify the lowering of the glass transition temperature (Tg) 

by a plasticizer. In their study concerning the effect of polar and amphiphilic plasticizers 

on corn gluten meal, glycerol found to be more effective due to its small molecule size 

than other larger molecule plasticizers. The authors concluded that regardless of which 

theory is the most appropriate, the action of a plasticizer is to interpose itself between 

the polymer chains and alter the forces holding the chains together (Gioia and Guilbert, 

1999). Another conclusion from the same study was that, polar plasticizers, such as 

water and glycerol are more effective than amphiphilic plasticizers such as octaonic acid 

on mass basis for the plasticization of corn protein.  

In the literature many compounds were studied as plasticizers for protein based 

biopolymers. Some of the common plasticizers used for the formation of corn zein films 

were also given in the Table 3.1 below. 

Table 3.1. Common plasticizers used for formation of corn zein films (Gioia and 

Guilbert, 1999; Tillekeratne et al., 2000; Padua and Wang 2002; Santosa and 

Padua, 2000; Lee et al., 2008) 

Plasticizer Type Plasticizer Type 

Glycerol (GLY) Polypropylene Glycol (PPG) 

Water Dibutyl Tartrate 

Polyethylene Glycols (PEGs) 

Triethylene Glycol 

Sugars (glucose, fructose) 

Sorbitol 

Propylene Glycol (PG) Stearic Acid (SA) 

Oleic Acid (OA) Lauric Acid (LA) 

Glycerol (C3H8O3) is a polar and hydrophilic plasticizer and belongs to polyols 

group. It is the most common used plasticizer in corn zein and other protein based 

biopolymer studies, since the protein conformation is stabilized to a large extent by 

hydrogen bonds (H-bonds) and nonpolar interactions. Because of this, plasticizers must 

be polar (Hernandez and Krochta, 2008). Glycerol is a miscible compound with zein 

and has ability to plasticize corn zein effectively. Effectiveness of glycerol due to its 

small molecule size and good interaction with corn zein and other protein based 

biopolymers compared to various plasticizers was reported by many authors (Gioia and 

Guilbert, 1999; Lawton, 2004; Ghanbarzadeh et al., 2007; Hong and Krochta, 2003; 
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Gao et al., 2006).  Ghanbarzadeh and coworkers (2007) investigated the surface of 

plasticized corn zein films. AFM results obtained in the study proved the effective 

plasticization with glycerol. Smoother surfaces with glycerol compared to sorbitol and 

mannitol was observed. 

Plasticization and extend of plasticization can be followed by the changes in the 

thermal properties of polymer. Plasticization is always characterized by significant 

depressions in the glass transition temperature – a polymeric material property stating 

whether the polymer is in rubbery state or more ordered and tough glassy state. Glass 

transition temperature changes with plasticization and extend of plasticization were 

investigated in the literature (Madeka and Kokini, 2006; Santosa and Padua, 2000; 

Wang et al., 2004; Gioia and Guilbert, 1999; Gillgren et al., 2009; Lawton, 2004).  

Plasticizing efficiency of the initial concentrations of plasticizers are more 

effective and property determining than higher concentrations (Gioia and Guilbert, 

1999; Gillgren et al.,2009; Lawton, 2004). Some of the mentioned studies concerning 

thermal analysis of the plasticized corn zein also reported significant effect of water on 

the plasticized corn zein. The following section discusses the plasticizing effect of water 

in more details.  

 

3.2.3. Water as a Plasticizer for Corn Zein Films 

 
Although glycerol is the most commonly used plasticizer in corn zein films, 

water has also a significant effect on the properties. Protein based polymers are 

generally hydrophilic and dramatically effected and even decompose by the presence of 

water. Despite the fact that corn zein is classified as hydrophobic and is not soluble in 

water, still presence of water changes its film properties significantly due to polar parts 

in its structure. Another importance of water is that it may be used to enable zein melt 

processed. Water is also used as a plasticizer in its melt processing operations such as 

extrusion and molding in order to improve processability of corn zein (Hernandez and 

Krochta, 2008; Selling et al., 2004).  

 Generally use of water for plasticization is not common and studies concerning 

water alone are limited. Gioia and Guilbert (1999) studied glycerol and water separately 

as plasticizers in their study using corn gluten meal (CGM). Concentration of the 

plasticizers was in 0-30% in mass basis. More significant glass transition temperature 
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depression for water was reported compared to other plasticizers obtained by MDSC 

analysis. The effectiveness of water as a plasticizer was attributed to water’s small 

molecule size, enabling it to easily enter between CGM chains and its polar structure 

compatible with protein structure. 

Gillgren and coworkers (2009) also studied water and glycerol plasticization of 

corn zein using FTIR and DMA for the determination of Tg up to 50% (w/w) in terms 

of plasticizer concentration. In accordance with the results of Gioia and Guilbert (1999), 

the group reported higher plasticizing effect of water and glycerol for small 

concentrations – 5% for water and 15% for glycerol - and moderate effect of plasticizers 

up to 40% (w/w) from the Tg data obtained from DMA. Interaction of water and 

glycerol with zein protein structure was also reported in the study (Gillgren et al 2009).  

 Lawton (2002) reported another important aspect of water for the plasticization 

of corn zein in his review. A group of plasticizers including glycerol were classified as 

secondary plasticizers and noted their effectiveness should be increased by using other 

compounds. Lawton (2004) also studied the coupling of water with glycerol and other 

plasticizers in the previously mentioned study dealing with the relative humidity effect 

on zein. In the study, zein already containing 5%(w/w) water was further plasticized by 

additional 5%(w/w) plasticizer. Glass transition temperature decrease followed by DSC 

was higher in the samples containing both water and plasticizer than the samples 

containing 10%(w/w) plasticizer alone. It was also reported that for higher plasticizer 

concentrations, water and glycerol was competing for the plasticization of zein. The 

additional plasticizing effect of water did not exist for hygroscopic plasticizers such as 

glycerol for plasticizer concentrations over 30% (w/w) (Lawton, 2004). 

 All plasticizers used for corn zein, as well as water, impose different changes in 

the mechanical and barrier properties of the plasticized polymers. In the following parts, 

these changes are going to be discussed. 

 

3.2.4. Mechanical Properties of Plasticized Corn Zein Films 

 
 Plasticizers affect the structure of polymers by loosening the interactions 

between polymeric chains. Changes in the structure can also be followed from the 

mechanical properties of the materials. Changes in mechanical properties of plasticized 

protein based corn zein were generally reported as decreases in maximum tensile 
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strength and Young Modulus while significant improvements in percent elongation at 

break were observed. For mechanical testing of corn zein, appropriate relative humidity 

is critical since water and relative humidity acts like a plasticizer as discussed before. 

Degree of effects observed due to relative humidity and water content is also different 

for the type of plasticizer used.  Because of this, as in the requirements of the ASTM D 

882 standard for thin films testing, the samples must be conditioned at least 48 hours at 

the desired humidity (50% RH for ASTM D 882) 

Lawton’s study (2004) is important in terms of showing the humidity 

dependence of corn zein films in plasticized or unplasticized form. Lawton investigated 

effect of water (relative humidity) on the properties of corn zein films. The effect of 

several plasticizers such as glycerol, triethylene glycol (TEG), polyethylene glycol 300 

(PEG300), and oleic acid on corn zein films prepared by casting plasticized zein 

solutions on glass plates was investigated. Mechanical properties of the unplasticized 

zein films (tensile strength and elongation at break, Young’s modulus) were observed to 

be diminishing significantly for increasing %RH values in 0-90% RH range. Plasticized 

films also exhibited the same decrease trend seen for the unplasticized zein films.  

Another important feature of the study was that, plasticizing corn zein resulted in more 

stable films without sharp mechanical property changes due to relative humidity. 

Similar findings were also reported by Selling and Sessa (2007) for TEG plasticized 

zein films. 

Gioia and coworkers (2000) studied mechanical properties of octaonic acid (OA) 

and glycerol (GLY) plasticized corn gluten meal and effect of water content in 

plasticized samples. Samples both plasticized by OA and GLY exhibited improved 

tensile strength and elongation at break up to 20% (w/w) plasticizer content and 

decrease in tensile strength at 30% (w/w) plasticizer content. Young modulus of the 

glycerol plasticized samples also decreased as in the case of OA plasticization, but the 

decrease was less significant. Effect of water content resulted in more dramatic 

decreases in mechanical properties of OA plasticized samples. These changes were 

attributed to the more water sensitive character of OA plasticization since water 

absorption of OA plasticized samples were higher compared to GLY plasticization. 

Ghanbarzadeh and coworkers (2007) studied the effect of different plasticizers 

(glycerol, sorbitol and mannitol) at high concentrations (50%-70%-100% (w/w)) on 

corn zein films. Decrease in Young’s modulus and improved elongation at break values 

were reported as expected. Glycerol was found to be the most effective plasticizer 
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relaxing the strong interactions between zein polymer chains due to its smaller 

molecular size. Glycerol addition improved strain at break and decreased modulus more 

significantly than the other plasticizers. 

 

3.2.5. Barrier Properties of Plasticized Corn Zein 

 
Relaxation of interactions between zein polymer chains due to use of plasticizers 

causes permeants to travel more easily throughout the films. As for other polymers, 

plasticizers used to improve processability and flexibility of corn zein results in higher 

water vapor and oxygen permeability. For corn zein protein, proper selection of 

plasticizer and its amount are critical to produce barrier polymers. 

Plasticizers results in important changes in water vapor permeability of corn zein 

polymer. Since corn zein is known to be a moderate barrier to water vapor, plasticizers 

introduced to the system increase water vapor permeability. Water contact angle of 

polymers can also accepted as an indication to WVP of a polymer due to hydrophobicity 

of the material (Ghanbarzadeh et al., 2006). Relationship between water vapor 

permeability and water contact angle can be seen in water barrier materials. Polymers 

such as PP and PVDC or oil based lipids used for water vapor barrier in food packaging 

are known as highly hydrophobic polymers and characterized by high contact angles 

(Smith, 2005). 

Ghanbarzadeh and coworkers (2006) studied the hydrophobicity of zein films 

plasticized by high concentrations (50%-70%-100%w/w zein) of glycerol, sorbitol and 

mannitol. The plasticizers used were all hydrophilic and decreased the contact angle of 

water at the surface of the zein film between 15% - 25%. Among the plasticized films, 

zein-glycerol films had the most hydrophobic character. Addition of glycerol decreased 

the contact angle to 52.480 from 62.30 of unplasticized zein. Their findings were in good 

agreement with another study comparing glycerol and sorbitol as plasticizers. 

Plasticization resulted in more hydrophilic structures and similar trends were reported 

by Muthuselvi and Dhathathreyan (2006).  

Corn zein films without plasticizers were reported to have lower water vapor 

permeability than the films plasticized by glycerol or its mixtures with PEG or PPG 

(Padua and Wang, 2002). Paramawati and coworkers (2001) studied the effect of 

polyethylene glycol (PEG) and lauric acid (LA) on WVP of corn zein. Plasticizing 
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effect of PEG was found to be more significant since films become more flexible and 

WVP was higher. Mixtures of PEG and LA plasticizers resulted in significant decreases 

in water vapor permeability of the films.  

Gioia and coworkers (2000) studied water absorption and water transmission 

rates of CGM and its plasticized samples. Octaonic acid plasticized samples absorbed 

nearly 20% more water than unplasticized CGM samples. Also the time required to 

reach equilibrium was also reported to increase 4 times for octaonic acid plasticization. 

Water transmission of glycerol plasticized samples increased 2 fold. Similar findings 

were also given by Wang and Padua (2004) who reported effect of relative humidity in 

extruded corn zein samples. 2 fold increase in WVP was observed for the samples tested 

at 50% relative humidity instead of 100%. 

 Oxygen permeability is also strongly affected by the plasticizer addition and 

relative humidity that also acts like a plasticizer. In the literature, there is not enough 

data and study concerning the oxygen permeability of corn zein polymer. Plasticizers 

and increased relative humidity was reported to increase oxygen permeability of zein 

and other biopolymers in the reviews. Another parameter affecting oxygen transport 

throughout the corn zein films is the temperature at which permeability analysis 

conducted. Temperature effect on oxygen permeation was studied by Padua and Wang 

(2002) at 0% relative humidity. The results were well fitting Arrhenius activation 

energy model. 

 

3.3. Biopolymer Coating Applications of Packaging Materials 

 
 In the literature, there are studies conducted to investigate the properties of 

laminated biopolymer structures. Insolubility of corn zein in water convinced researches 

to coat zein on other water soluble biopolymers or prepare laminates using hot press 

molding. Ghanbarzeadeh and Oromiehi (2008) investigated glass transition 

temperatures of laminated whey and zein films using DMA and DSC. Ryu and 

coworkers (2002) coated water soluble starch with zein and investigated the mechanical 

properties of the coatings. Whey powder-Sodium caseinate mixtures were coated with 

zein layers (Cho et al., 2002).  In another study, corn zein was used as a substrate and 

coated with water resistant compounds (sorghum wax and carnauba wax) to modify its 

barrier to water (Weller and et al.,1998). 
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 In the recent years, coating the surfaces of synthetic polymers with biopolymers 

has begun to draw attention of many researchers looking for new types of packaging 

materials. Biopolymer coating on synthetic polymers is attractive since the amount of 

non-degradable waste disposed could be decreased.  

Biopolymer coatings on economical synthetic polymers, as being alternative to 

conventional multilayer polymeric structures; attracted many research. Hong and 

coworkers (2004) examined the optical and surface properties of whey protein isolate 

(WPI) coatings on conventional PP and PVC films with different plasticizers (Glycerol, 

polyethylene glycol, polypropylene glycol, sorbitol and sucrose). WPI is a hydrophilic 

protein based polymer similar to corn zein. WPI coatings resulted in good adhesion 

between polar PVC substrate and WPI. On the contrary, WPI coatings on PP were not 

uniform and showed poor adhesion. Authors attributed poor adhesion to the nonpolar 

character of the PP substrate with low surface energy. Since WPI is polar, nonpolar PP 

didn’t have enough binding sites for the polymer. Corona treatment was applied on the 

surface of PP in order to impart some degree of oxidation and increase surface energy of 

the polymer. 

 Surface treatment of polymer is a widely used technique in the production of 

multilayer polymeric films. In the applications where polar and nonpolar polymers 

desired to be used together, surface modification of nonpolar polymer is used to 

increase possible binding sites for good adhesion of layers. Surface treatment could be 

done by several methods such as corona discharge, flame treatment, and chemical 

etching.  

In the latter part of the study, researchers reported good adhesion between PP 

and WPI after corona treatment of PP film. The color differences were insignificant and 

gloss of the films was improved. Only films plasticized with glycerol showed small 

gloss loss. Lower contact angles with respect to base PP and PVC were also reported 

regardless of the plasticizer type. Decrease in the contact angle values were attributed to 

hydrophilic character of plasticized WPI coatings (Hong et al., 2004). 

 Hong and Krochta (2003) investigated changes in oxygen barrier properties of 

WPI coated PP (corona treated) films using different plasticizer types (glycerol, 

sorbitol, sucrose, propylene glycol (PG) and polyethylene glycol 200 (PEG200)), at 

various temperatures, and relative humidities (RH). Significant increase in film 

thickness was obtained as high molecular size plasticizers were used. WPI coatings 

plasticized by glycerol and PG showed highest barrier to oxygen per unit thickness 
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indicating the importance of the plasticizer type in oxygen permeability. WPI coated PP 

films showed significant exponential increase in oxygen permeability (4 fold in the 

temperature range); good fitting the Arrhenius model in the temperature range of 15 to 

45 oC. It was found that PP layer was more responsible for the increase in oxygen 

permeability. Relative humidity at which permeability analysis were conducted showed 

serious effect on oxygen barrier of WPI and WPI-PP films. Especially over 60% RH, 

oxygen permeability of WPI film increased 6 fold. Finally, the group reported 15% 

improvement in oxygen barrier at 25C and 50%RH (6µm WPI - 51µm PP). 

 In a later study of Hong and Krochta (2006); WPI and whey protein concentrate 

(WPC) were coated on corona treated PP and PE films. The effects of temperature and 

relative humidity on oxygen permeability of coated films were again investigated. The 

same trends mentioned above were observed for PE and WPC. Calculated oxygen 

permeabilities of WPI and WPC were reported to be nearly the same.  

 Lee and coworkers (2008) studied mechanical properties of SPI, WPI and corn 

zein biopolymers plasticized by different plasticizers (glycerol, sorbitol, PEG400, 

PEG200, glycerol, PG) coated PP films. Corn zein coated films plasticized by PG and 

GLY showed poor mechanical properties. Meanwhile, PEG200/400 plasticized films 

showed better properties by diminishing the flexibility of the films in lesser extend. 

Atik and coworkers (2007) investigated the optical, barrier and mechanical 

properties of corn zein coated PP films. Ethanol concentration, plasticizer type and level 

in the coating formulations were examined. Zein coatings applied resulted in 

insignificant color changes and transparency decrease depending on the coating 

formulation. Barrier to water vapor and oxygen of the resulting films improved 

significantly depending on the coating formulation. Some improvements in mechanical 

properties were also observed such as tensile strength and Young modulus of the films 

improved due to stiffer mechanical character of the zein coating. Interestingly, no 

decrease in elongation values was reported (Atik et al., 2007; Tihminlioglu et al. 2010). 

 Additional to coating of synthetic polymers, researchers also studied coating of 

paperboards in order to utilize water and grease barrier properties of biopolymers. Rhim 

and coworkers (2006) coated SPI films on paperboards and investigated effect of cross-

linking agents and mixed OMMT on water contact angle and water vapor permeability. 

WVP of SPI coated paperboards showed consistent trend with the contact angles 

measured. Samples with lower contact angles (higher hydrophilic character) showed 

higher WVP. Another study investigated relationship between water vapor permeability 
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and oil absorption with water and oil contact angles in paperboards coated with 

hydrophobic starch and starch plasticized by stearic acid. Authors reported improved 

water vapor and grease barrier with starch coating and increased stearic acid 

concentration. Again a relationship between permeability and measured contact angles 

were reported (Butkinaree et al., 2008). 

 Biopolymer coatings on synthetic polymers were studied by many researchers 

and showed potential to be used as an alternative to conventional multilayer food 

packaging. Biopolymer barrier to oxygen could be utilized in combination with the 

mechanically durable synthetic polymers. At the same time, faster decomposition of 

multilayer structure could be achieved due to biodegradability of biopolymer layer after 

disposal. 

Another possible strategy to utilize high performance films from corn zein is its 

nanocomposites. Strong interactions of nanofiller and corn zein can improve mechanical 

and barrier properties. Excellent barrier properties of zein nanocomposites (CZNC) 

could be utilized by coating CZNC on synthetic polymers in order to combine barrier of 

corn zein with high mechanical strength of synthetic polymers. 
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CHAPTER 4 

 

LAYERED SILICATE POLYMER NANOCOMPOSITES 

AND PROPERTIES 

 
 There exist several strategies to put in use when properties of polymeric 

materials are found to be inadequate or desired to be further improved. Blending with 

other polymers, treating with various chemicals such as plasticizers or cross-linking 

agents, designing multilayer structures are the examples of these strategies discussed in 

the previous chapter. Beside these methods, composting inorganic fillers within polymer 

matrices is a widely used method. Polymer composites are also being applied in the 

industry today to improve mechanical properties of a polymer such as stiffness or 

toughness; to obtain better barrier properties against water vapor and various gases; to 

improve thermal properties or to enhance their resistance to fire and ignition, to 

introduce functional properties such as antimicrobial activity, or just to reduce the costs 

of the product. Composite applications are known and widely used in many fields of 

polymer world for a long time however; the nanocomposite applications are quite new 

and nowadays accepted as one of the most promising areas in polymer research.  

Polymer nanocomposites are a new class of composites which are filled with 

particles whose at least one dimension is in the nanometer range (Alexandre and 

Dubois, 2000). Conventional composites impart some drawbacks to the resulting 

materials, such as weight increase, brittleness or opacity (Pavlidou and Papaspyrides, 

2008) that are generally attributed to high filler content required to obtain desired 

properties. The important difference of nanocomposites over conventional composites is 

that nanocomposites are able to achieve same level of improvement with less amount of 

nanofiller. The first successful nanocomposites were prepared in 1993 using nylon 6 

and organically modified montmorillonite (OMMT). Although several attempts were 

made by many research groups previously, none could achieve satisfactory results due 

to the level of inefficient exfoliation (Okamoto, 2005). 

 High level interactions between polymer matrix and properly dispersed 

nanofiller are the key point in nanocomposites. Nanocomposites offer higher level of 

improvements, since nanofiller-polymer matrix interactions in nanocomposites are far 
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stronger compared to conventional composite structures. Polymer nanocomposites can 

be synthesized from a variety of nanometer size particles. Nanoparticles can be 

classified in three main families with respect to number of dimensions being in 

nanometers. The first nanoparticle family is the isodimensional nanoparticles, such as 

spherical silica obtained by in situ sol-gel methods. This family is characterized with 

their both three dimensions being in nanoscale. The second and one of the most 

promising families for exceptional mechanical properties are called nanotubes or 

whiskers. They are widely researched for utilizing high performance yielding materials. 

Two dimensions of nanotube particles are in nanometers and have an elongated 

structure in their third dimension (Ray and Bousmina, 2005).  

The third and the most extensively researched group of nanoparticles are the 

layered silicate family. Layered silicates (LS) - or generally so called nanoclays - differ 

from the other nanoparticles by being in nanometer scale with their single (thickness) 

dimension. Layered silicates are in the form of platelets and characterized by having 

very large surface area available for interaction with polymer matrix. Good examples of 

layered silicates are forms of natural clays; montmorillonite (MMT), hectorite and 

saponite. In the following section, structure and properties of the layered silicates will 

be discussed.  

 

4.1. Properties of Layered Silicates 

 
Among nanoparticles; layered silicates are the most widely used family among 

the nanoparticles since their polymer interactions are well known and they are easy to 

access (Alexander and Dubois, 2000). Among number of natural or synthetic origin 

layered silicates, 2:1 type (phyllosilicates or smectide family) clays are the most suitable 

candidates for reinforcing polymer matrices since their structural properties were 

reported to be suitable for utilization in nanocomposites. 

Layered silicates (LS) have high surface areas around 400–700 m2 per gram of 

layered silicate (Goettler et. al., 2007). Obviously, high surface area is owing to high 

aspect ratios of LS being in the range of 30-1000 (Ray and Bousmina, 2005). High 

surface area of LS should be utilized optimally when they are well exfoliated in polymer 

matrix. Layered silicates have two unique characteristics that make them an important 

candidate for preparation of nanocomposites. Although LS are generally found in 
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stacks, they have ability to disperse into individual layers which allows better dispersion 

of layered silicate particles. Second; surface characteristics of layered silicates can be 

manipulated depending on the matrix polymer type. These two characteristics are 

related to each other, since degree of dispersion of layered silicates depends on 

interlayer charge (cation) of the clay and polymer character (Ray and Okamoto, 2003; 

Paul and Robeson, 2008). 

Crystal structure of layered silicates consists of layers made up of two 

tetrahedrally coordinated silicon atoms fused to an edge-shared octahedral sheet of 

either aluminum or magnesium hydroxide (Ray and Bousmina, 2005). The thickness of 

the above mentioned layer is about 1 nanometer in thickness and its lateral dimensions 

vary from 30 nm to several microns depending on the type of the LS. Stacking of the 

layers leads to regular van der Waals gaps between the layers called the interlayer or 

gallery. Structure of montmorillonite as an example to 2:1 layered silicates is given in 

the Figure 4.1.  

 In the case of tetrahedrally substituted layered silicates, the negative charge is 

located on the surface of silicate layers. Hence, the polymer matrices can interact more 

readily with these than with octahedrally-substituted material (Alexandre and Dubois, 

2000). Pristine layered silicates usually contain hydrated Na+ or K+ ions. Since the 

surface contains negative charges in the pristine state, layered silicates such as 

montmorillonite are only miscible with hydrophilic polymers such as poly(ethylene 

oxide) (PEO), poly(vinyl alcohol) (PVA), etc. (Ray and Bousmina, 2005; Alexandre 

and Dubois, 2000; Okamoto, 2005). To improve miscibility with other polymer 

matrices, one must convert the originally hydrophilic silicate surface to organophilic, 

which enables intercalation of layered silicates within hydrophobic polymers. 

 Hydrophilic layered silicates such as montmorillonite can not be effectively 

exfoliated within most of the polymers because of the hydrophobicity of the polymers. 

Degree of exfoliation and performance of layered silicate nanocomposites (LSNC) 

depends on compatibility of interlayer charge (cation) of the clay and polymer matrix 

since opening of stacks and their alignment in different directions is driven by 

intermolecular interactions (Goettler et al., 2007). Surface characteristics of hydrophilic 

montmorillonites are generally changed in order to achieve efficient dispersion within 

hydrophobic polymers. Changing the surface characteristic of LS from hydrophilic to 

organophilic is called organomodification. By organomodification, surface energy of LS 

is reduced and the surface becomes more compatible with hydrophobic polymers. 
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Generally, change in surface charge of layered silicates is obtained by ion-exchange 

reactions with cationic surfactants, including primary, secondary, tertiary, and 

quaternary alkylammonium or alkylphosphonium cations (Alexandre and Dubois, 

2000). Beside improved miscibility with the matrix polymer; organomodification also 

leads to higher interlayer spacings between individual clay platelets exhibiting more 

available space for the penetrating polymer chains within LS stackings. XRD analysis 

of several OMMT particles showed increases in the interlayer spacings (Cervantes-Uc 

et al., 2007). 

 

4.2. Layered Silicate Nanocomposite Structures and Characterization 

 

4.2.1. Layered Silicate Nanocomposite Structures 

 
 Introduction of layered silicates to the polymer matrix may result in several 

structures due to penetration level of polymer chains between the silicate layers. These 

structures could be overviewed in three types: phase separated, intercalated and 

exfoliated. As mentioned in previous section, structure’s reliance on filler-polymer 

matrix interactions is obvious. In the case of relatively strong interactions among 

silicate layers rather than matrix, nanofillers tend to stay in stacks within the polymer 

defined as phase separated. Phase separation is generally observed for the composites of 

unmodified or inadequately modified silicates with hydrophobic polymers (Choudalakis 

and Gotsis, 2009, Ray et al., 2003). If the polymer chains can not penetrate efficiently 

between layers of silicates, the interface for bonding with matrix would be less and the 

resulting structures will have similar properties to that of microcomposites. 

 Second LSNC structure is the intercalated state of layered silicates within 

polymeric matrix. Better penetration of polymer chains due to stronger interactions lead 

to increased opening of clay stacks, concurrently is not enough to completely degrade 

the original conformation of nanoclays. Intercalated structures tend to take position 

within the matrix in stacks rather than single platelets. 

 The targeted structure in a nanocomposite is the exfoliated structure which is 

characterized by the random and disordered dispersion of silicates within the polymer 

matrix. As the interaction between silicate layers become weaker, matrix polymer 

penetrates strongly inside stacks and diminishes the ordered formation of LS stackings. 
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This conformation maximizes the interaction between polymer and filler, and leads to 

enhanced properties in the nanocomposite. An illustration for the possible layered 

silicate nanocomposite structures was given in Figure 4.1. In a LSNC, one or more of 

the nanocomposite structures may exist together. Beside mentioned structures, also 

there also exist mid-structures. In some conditions, intercalated silicate layers may also 

flocculate and extend the length of stacking in x-axis denoted by Lclay as can be seen in 

the Figure 4.2. The flocculation of nanoclay platelets was attributed to interactions 

between organically modified silicate and polymer matrix (Okamoto, 2005). Each 

structure is formed depending on the level of miscibility and interactions that have 

different extend of influence on the performance of nanocomposites. Therefore, it is 

critical to characterize the structure in order to evaluate the performance of 

nanocomposites.  

 

Figure 4.1. Schematic illustration of three different types of thermodynamically 
achievable polymer/clay nanocomposites (Source: Ray et al., 2003, 
Okamoto, 2005) 
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4.2.2. Characterization of Nanocomposite Structures 

 
 Characterization of nanocomposite structures is a key issue in nanocomposite 

research, since extend of the dispersion of layered silicate nanoparticles within the 

polymer matrix governs the possible modifications and additional unique properties 

Characterization of nanocomposites has been primarily done by joint use of X-ray 

diffraction (XRD) and transmission electron microscopy (TEM) techniques. Some other 

techniques have also been used such as FTIR and NMR in combination to support XRD 

in terms of molecular interactions (Ray et al., 2003). 

In the XRD analysis, X-rays send on a sample –especially those having regular 

crystal structures- are collected and analyzed as peaks from different atom positions. 

Most of the layered silicates generally have ordered structures that give reflection when 

diffracted beams send on them. After incorporation of nanosized layered silicates into 

the polymer matrix, extend of nanofiller dispersion in the nanocomposite structure can 

be followed from XRD analysis by monitoring the position, shape, and intensity of the 

basal reflections from the distributed silicate layers (Ray and Bousmina, 2006). 

The dispersion of silicate layers in the polymer matrix generally resulted in 

increased gallery height or d-spacing. The changes in the d-spacing can be investigated 

quantitatively by using the Bragg’s law (Equation 4.1) where λ corresponds to the 

wavelength of the X-ray source used, θ is the diffraction angle measured and d is the 

spacing between diffractional lattice planes. 

θλ sin2d=       (4.1) 

As interlayer spacing between planes increases, the characteristic peak of the clay in the 

XRD chromatogram shifts to lower angles. Intercalated structures are identified by 

broader and smaller diffraction peaks in XRD. This is reflected in 2θ values observed in 

lower angles, since the d-spacing of silicate layers are also expected to increase.  In the 

case of intercalation with flocculation; the new arrangement of silicate layers may lead 

to appearance of new basal reflections at lower angles. 

As extend of intercalation increases and exfoliation of silicate layers occurs 

within the polymer matrix, it can be expected that all reflections disappear and the 

obtained XRD analysis (crystallogrophy) of the nanocomposites is observed just like a 



 38

noise. Disappearance of peaks was attributed to large gallery height; beyond the 

maximum d-spacing value can be determined by XRD (Ray and Bousmina, 2005). Also 

exfoliation results in disordered dispersion of layered silicate stacks in several directions 

and loose their ordered structure that enables them to be detected (Paul and Robeson, 

2008). 

As discussed in the beginning of this section; XRD technique is generally used 

in combination with TEM. XRD results should be supported by some other techniques 

since XRD signal strength is strongly dependent on many factors like clay loading and 

layer orientation (Ijdo et al., 2006). In some cases it is very difficult to understand the 

peak broadening. In addition; layered silicates initially do not exhibit well-defined basal 

reflections, thus peak broadening and the decrease in intensity is difficult to study 

systematically (Ijdo et al., 2006). Therefore, TEM is used to make sure the real picture 

of the nanocomposite structure. TEM allows a qualitative understanding of the internal 

structure, spatial distribution and dispersion of the nanoparticles within the polymer 

matrix. Views of the defect structure through direct visualization could also be obtained. 

(Ray and Okamoto, 2003; Goettler et. al., 2007). Representative XRD chromatograms 

and corresponding TEM images for several types of structures were given in Figure 4.2. 

 

Figure 4.2. XRD patterns, and TEM images of three different types of nanocomposites 
(Source: Okamoto, 2005) 
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4.3. Preparation Techniques of Layered Silicate Nanocomposites 

 
Performance of a nanocomposite lies in the degree of dispersion of nanofillers in 

the polymer matrix. Highly dispersed - exfoliated nanoparticles within the polymer 

matrix allows enhancement of many properties of polymer and by this way, unique 

nanocomposites could be obtained for different applications. Several nanocomposite 

preparation methods exist depending on the polymer type or desired application.  

 

4.3.1. In-situ Intercalative Polymerization  

 
In this method; polymerization reaction is held in the liquid monomer or in the 

liquid monomer solution that layered silicates were previously swollen. In situ 

intercalative polymerization is advantageous since polymers are synthesized together 

with nanofillers. Another advantage of this technique is to facilitate the lower molecular 

weight of monomer or oligomer solution for enhanced dispersion efficiency of layered 

silicates. Some examples of intercalative polymerization method include the 

polymerization of a polyamide thermoplastic from its monomers, the cross-linking of a 

thermosetting epoxy and the vulcanization of rubber (Ray and Okamoto, 2003). 

 

4.3.2. Melt Intercalation 

 
 Melt intercalation method is the most practical and industrially promising 

method for inserting polymer chains into the silicate galleries. Different than solution 

intercalation, melt intercalation is specific for each polymer type. It also eliminates 

solvent related cost and waste problems and can be used in combination with the entire 

industrial polymer processing methods. Melt intercalation method includes penetration 

of polymer chains into silicate galleries above softening point of polymer by means of 

shear forces (Ray and Bousmina, 2005). As shear introduced to the system increases, 

intercalation of silicates followed by exfoliation became more effective. This causes 

better interaction between LS and polymer matrix and results in more significant 

property improvements. Melt processing of nanocomposites is generally held in twin-

screw extruders either in co-or counter rotating configurations.  
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4.3.3. Direct Intercalation from Solution (Solution Intercalation)  

 
Direct intercalation of polymer chains into the layered silicates from solution or 

shortly solution intercalation method is the basic and easiest way to prepare 

nanocomposites. Although there are many different procedures reported in the 

literature; the first step in solution intercalation is the swelling of nanoparticles in the 

solvent phase. Initial swelling of layered silicates in the solvent before polymer addition 

resulted in better dispersion (Pandey and Singh, 2005; Kvien et al., 2007) due to the fact 

that solvent molecules have ability to penetrate into layered silicate stacks and increase 

the d-spacing (Ray and Okamoto, 2003). Several studies also showed that each solvent 

has different capability of swelling silicates. Surface energies of solvent and clay type 

have an important role on the swelling of layered silicates (Tran et al., 2006). 

Compatibility of solvents and nanoclays were also reported to affect modified layered 

silicate swelling and d-spacing within organic solvents depending on the type of 

organomodification agent used (Burgentzle et al., 2004). Once silicate particles swelled 

within the solvent; replacement of solvent molecules with polymer molecules come to 

the fruitition by the addition of individually dissolved polymer mixture in the same 

solvent or just by dissolving polymer in the LS swelled solution. Most effective method 

to achieve layered silicate swelling is sonication. Generally, further sonication is applied 

to polymer-swollen silicate solution in order to enhance penetration of polymer chains 

within nanoclay stackings. Use of plasticizers is also important in solution intercalation 

method since plasticizers may compete with polymer to bond with layered silicates 

(Pandey and Singh, 2005; Kvien et al., 2007). 

Addition of swelled silicates and dissolved polymer solution is held around 

dissolution temperature specific to polymer type in order to utilize the low viscosity and 

free movement of polymer chains. Since most of the biopolymers dissolves in light 

solvents such as hexane, ethanol or water, solution intercalation is an ideal method to 

prepare layered silicate nanocomposites especially in the laboratory conditions. Solution 

intercalation can also be used in combination with other methods; such as in situ 

intercalative polymerization and prior to melt intercalation to prepare masterbatch 

stocks for further exfoliation.  
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4.4. Barrier Properties of Layered Silicate Nanocomposites 

 
 Among several interesting properties of polymer layered silicate nanocomposites 

(LSNC), the most attractive one from food packaging aspect is the availability of 

nanocomposites for unique improvements in gas and water vapor barrier of packaging 

films. Composting inorganic fillers with polymers is a common application in the 

industry to improve barrier properties of packaging materials. Micro size filler content 

required for adequate improvements is generally high, and may lead to deteriorations in 

mechanical strength and optical properties of produced films (Lu and Mai, 2007). 

Besides, possible problems such as higher processing temperature and poor melt 

rheology may occur. In the case of nanocomposites, level of barrier improvement is 

higher and such adverse effects are less likely to occur.  

 Improvements in barrier properties by the introduction of fillers in the polymer 

matrix are primarily attributed to the tortuous path formed for the permeating 

molecules. A diffusing molecule tends to travel in the path where it will face with least 

resistance. Any source of resistance, such as crystalline domains within the structure or 

irregularities in the sequence of the polymer molecules results in longer path that a 

permeant must travel reducing the permeability as discussed in the previous chapters. 

Tortuosity concept where the inorganic fillers are assumed to be impermeable for gas 

and liquid molecules (Eitzman et al., 1996) is analogous to above mentioned transport 

properties of molecules.  

 Basically, nanocomposites also improve barrier of polymers by creating more 

tortuous path for diffusing molecules due to incomparably higher aspect (length to 

width) ratio of nanofillers. While conventional composites are accepted to improve the 

barrier properties of polymers due to increased tortuosity; several additional factors 

were also proposed for nanocomposites. Small particle size and enormous surface area 

offered by layered silicates (LS) reported to alter matrix structure and change the 

permeation properties. Restrained polymer chain mobility resulted in decrease of free 

volume fraction of rubber/hectorite nanocomposites due to interactions in LS-polymer 

matrix and decrease in gas permeability (Sun et al., 2008). Nanoscale dimensions of 

nanocomposites may act as seeds for the creation of crystalline domains in the structure. 

MMT exfoliation within Nylon 6 increased matrix crystallinity and improved barrier 

properties (Ray and Bousmina, 2006). 
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 LSNCs offer unique improvements in barrier properties of polymers due to their 

special geometry and properties. Polymer chains can be inserted between the LS 

stackings by several preparation methods and LS surface can be modified to enhance 

compatibility with the polymer matrix. Fine distribution of LS platelets, defined as 

exfoliation, may give aspect ratios in the range of several hundreds (Bharadwaj, 2001; 

Choudalakis and Gotsis, 2009; Ray and Okamoto, 2003). Schematic explanation of 

more effective tortuous path formation in LSNC in comparison to conventional 

composites was given in Figure 4.3.  

 

  (a)      (b) 

Figure 4.3. Schematic illustration of formation of highly tortuous path in 
nanocomposite. Conventional filler reinforced composites at left and, 
polymer/layered silicate nanocomposites at right.  

 Petersson and Oksman (2006) compared bentonite/PLA LSNC and microcrystalline 

cellulose (MCC)/PLA microcomposite by fixing the weight percent of filler. Results 

showed very significant differences in oxygen permeability values approving the effect of 

aspect ratio. Oxygen permeability of bentonite LSNC decreased while MCC composites 

destructed polymer structure and resulted in high permeability to O2; even three times 

higher than the value for neat PLA. The most important feature of LSNC is the 

availability to achieve the same level of barrier improvement with small concentrations 

of nanofiller around 1-5 wt% without altering the mechanical strength of polymeric 

films due to high length to width ratio of LS compared to conventional fillers.  

 Though single LS platelets are characterized in nanometers, poor exfoliation 

may lead to agglomerates, decreasing the effectiveness of nanocomposites beyond a 

critical level of nanoclay content specific to each system. Heterogeneous wheat gluten 

biopolymer and MMT nanocomposites showed insignificant changes beyond 5 wt% LS 

content despite sharp improvements obtained in WVP up to 5% wt (Tunc et al., 2007). 

Similarly, starch and gelatin LSNCs showed decreased efficiency in improving WVP 
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and oxygen barrier beyond 7 wt% of unmodified MMT (Tang et al., 2008; Bae et al., 

2009). 

 In the literature, barrier property improvements obtained by LSNC were mostly 

interpreted by the extensive tortuosity formed due to exfoliation of LS. Changes in 

polymer structure such as crystallinity, directed by LS platelets are hard to follow, and 

some polymer classes such as protein based biopolymers are amorphous. Several 

models based on tortuosity exist in the literature proposed to explain the effect of 

dispersed LS within the polymer matrix. Although these models were well defined 

before the development of nanocomposite concept, they are also applicable to LSNC 

since a very broad range of dimension definitions (i.e. aspect ratio) are used in the 

models (Paul and Robeson, 2008). Most of the permeability models applicable to LS 

systems were generally constructed by ignoring any possible structure change in the 

polymer as a result of nanocomposite formation (Pavlidou and Papaspyrides, 2008; Ray 

and Bousmina, 2006; Sorrentino et al., 2006).  

 The earliest attempt to construct a model to investigate permeability of gases and 

water vapor in layered silicate systems was done by Nielsen (Nielsen, 1967). The model 

was constructed on regular arrangement of 2 dimensional, rectangular platelets; aligned 

perpendicular to diffusion direction creating the highest tortuosity. Any structure change 

in the polymer which could alter the permeability in the matrix due to exfoliation of LS 

was ignored. Relative permeability of dilute LS systems with respect to pristine polymer 

could be analyzed according to volume fraction of layered silicates up to 10 v% Nielsen 

model successfully explains the level of decrease in permeability of LSNC by the 

formation of highly tortuous path due to higher aspect ratio of nanosize LS. Since 

Nielsen Model is one of the basic models, the derivation of the model was given below 

to give an idea about tortuosity based permeability models.  

 Due to above mentioned assumptions, solubility (S) and diffusion (D) 

parameters of Fick’s Law (Equation 4.2) was modified considering the presence of 

layered silicates:  

     SDP *=      (4.2) 

     )1(*0 φ−= SS     (4.3) 

     τ/0DD =      (4.4) 
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where φ is the volume fraction of nanoparticles in the matrix; τ is the tortuosity factor; 

and D0 and S0 denotes for diffusion and solubility coefficients of neat polymer. 

Tortuosity is dependent to aspect ratio (length of particle (L)/thickness of particle (W)) 

and the shape and orientation of nanoplatelets as well. Tortuosity can be defined as: 

     ll /'=τ       (4.5) 

While l denotes for membrane (film) thickness, l’ is the distance a solute must travel in 

the presence of nanoplatelets. Estimation of l’ is done by thinking each nanoplatelet 

increases the diffusion length by L/2 from the definition of aspect ratio (α): 

     )2/(*' LNll +=      (4.6) 

where N is the number of platelets on the path: 

     
W
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=       (4.7) 

Then l’ becomes as;  
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By combining Equations 4.6 and 4.8, l’ and tortuosity (τ) become: 
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Then diffusion parameter of modified Fick’s Law (Equation 4.4) becomes: 
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and by inserting Equations 4.3 and 4.11 into Equation 4.2; composite permeability 

equation is derived as; 
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Dividing the composite permeability definition given in Equation 4.12 by permeability 

of neat polymer and rearranging by considering aspect ratio (α); relative theoretical 

permeability of a polymer can be calculated by the Nielsen Model: 
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P       (4.13) 

 Theoretical permeability of LS systems predicted by Nielsen Model for several 

aspects ratios were plotted in the Figure 4.5. As seen in the Nielsen plot, when 

assumptions of the model satisfied, aspect ratio of the LS significantly affects the 

permeability of the system. As aspect ratio increases, the marginal improvement 

obtained for smaller clay contents is more explicit since path required to be traveled by 

a diffusing molecule become significantly longer as seen in Figure 4.4.  
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Figure 4.4. Relative permeability predictions according to Nielsen Model as a function 
of layered silicate volume fraction for different aspect ratios 
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 Another two widely used models to predict permeability in LSNC systems are 

Cussler regular and random models. The first model is an alternative to Nielsen model, 

considering regular alignment of LS in the polymer matrix and proposed using the same 

assumptions. Difference of Cussler regular array model over Nielsen model is that; the 

model also includes area available to permeation of molecules (Eitzman et al., 1996, 

Lape et al, 2004). The model equation derived is: 
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 The volume fraction of nanofillers in a composite or nanocomposite matrix can 

be calculated by using the formula for all models: 
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where ρp and ρc are densities of matrix polymer and filler respectively and Mc denotes 

for mass fraction of filler. 

 Cussler model for regular alignment of rectangular platelets predicts the 

permeability better especially for low nanoclay loadings below 0.5 v% (Sun et al., 2008, 

Choudalakis and Gotsis, 2009). This property of model is beneficial for more accurate 

predictions in some LSNC systems while the area included estimation is ineffective for 

some systems.  

 Random positioning of rectangular platelets aligned normal to diffusion 

direction was also modeled by Cussler (Eitzman et al., 1996; Lape et al., 2004; 

DeRocher et al., 2005). Assumptions and considered platelet positioning was tabulated 

in Table 4.1 together with other models discussed in this section. The derived model 

equation for random positioning of rectangular platelets is: 
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Table 4.1. Most common permeability models used to investigate nanocomposite barrier performance 

Model LS Array Formula Assumptions 

Nielsen  
(Nielsen, 1967)  

 
 

 
 2D, rectangular platelets, regular 

array, platelets align normal to 
diffusion direction 

Cussler (regular) 
(Eitzman et al., 

1996) 

 
 

 
 2D, rectangular platelets, regular 

array, platelets align normal to 
diffusion direction 

Bharadwaj 
(Bharadwaj, 2001) 

 
 

 
 2D, rectangular platelets, random 

array, platelets align in different 
directions to diffusion 

Cussler (random) 
(Lape et al., 2004) 

 
 

 
 2D, rectangular platelets, random 

array, platelets align normal to 
diffusion direction 
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 Although Nielsen and Cussler models reported to evaluate the permeability 

decrease of nanocomposites well in the literature, their ability to reflect exfoliated state 

of nanocomposites is controversial. For example, an aspect ratio of 70 was found by 

using Nielsen Model for the WVP data of PCL nanocomposites although successful 

exfoliation of LS was observed by TEM (Ray and Bousmina, 2006). This was attributed 

to the low aspect ratio to alignment of platelets in several directions rather than the 

direction proposed by Nielsen Model. Several studies showed alignment of LS platelets 

in various directions for exfoliated LSNC structures as observed by TEM images.  

 A platelet orientation included extension of Nielsen model is Bharadwaj model 

(Bharadwaj, 2001). The model equation is: 
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φ      (4.17) 

 An order parameter S was introduced to Nielsen equation to quantify the average 

degree of particle deviation from diffusion direction. Parameter S can be calculated by 

using Equation 4.18. In the equation θ is the angle between diffusion direction and the 

orientation of platelet. The S value may have a value between 0 and 1. 

    1cos*3
2
1 2 −= θS       (4.18) 

While S=1 case considers the same alignment with Nielsen Model, the S=0 case 

accounts for completely random orientation of platelets as seen in Table 4.1. Effect of 

LS platelet orientation on permeability decrease especially for shorter exfoliated 

platelets can be more easily seen by the model (Bharadwaj, 2001). 

 Permeability estimations done by using different models may lead to various 

results depending on whether the clay content is in the dilute region and aspect ratio of 

LS employed during the calculations. Theoretical permeability values predicted by 

discussed models for aspect ratios of 50, 200 and 1000 was plotted in Figure 4.6 for 

comparison. The differences related to the model assumptions were discussed in more 

detail for broad ranges of LS loadings and aspect ratios in the review of Choudalakis 

and Gotsis (2009). 
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 Accepted permeability models are generally applicable to dilute and/or semi-

dilute clay contents in nanocomposites since models assume good level exfoliation in 

their predictions. Herrera-Alonso and coworkers (2009) investigated He and O2 

permeability of polyurethane-OMMT nanocomposites up to very high LS content of 50 

wt%. Their results were fitted to several models gave very low aspect ratios between 10 

and 40 for used OMMT, which should be attributed to nanoclay agglomerates and out-

of range model fitting. It should also be noted that LS platelets exist in a range of aspect 

ratios rather than a single homogeneous ratio (Paul and Robeson, 2008). The aspect 

ratio estimated by using the permeability models is a normalized value for overall 

system.  

 

4.5. Mechanical Properties of Layered Silicate Nanocomposites 

 
 The potential of polymeric layered silicate nanocomposites in materials science 

was first evidenced by the effective reinforcing capability of exfoliated layered silicate 

nanoclays in polymer matrix. Improvements in mechanical properties of polymers could 

be achieved in a larger extend by employing nanocomposites compared to conventional 

composites prepared by using micro size fillers. As in the case of barrier improvements 

of layered silicate nanocomposites, several factors were proposed for the performance 

of LSNC. These factors can be sum up in two headings; factors that can be explained by 

composite theory and nano-effects occurred in polymer structure due to efficient 

distribution of nanofillers in the polymer matrix (Paul and Robeson, 2008; Ray et al., 

2003). 

 Reinforcing mechanism of fillers such as fibers can be put in use to understand 

the effect of LSNC on mechanical properties. High moduli rigid fillers within the 

relatively soft polymer matrix create a mechanically restrained area of polymer, 

particularly adjacent to filler. Reinforcing mechanism of fillers was given in the Figure 

4.5 below. As long as adequate bonding between polymer and filler phases exists, the 

structure would tend to act as a stronger material than the pristine polymer. At this 

point, the enormous surface area (characterized in several hundred meter squares) 

benefited due to effective distribution of layered silicate platelets can be used to explain 

the more expressed improvements in a LSNC than a conventional composite (Pavlidou 

and Papaspyrides, 2008; Paul and Robeson, 2008; Ray and Bousmina, 2006). 
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Figure 4.5. Reinforcement mechanism in composite materials  
(Source: Pavlidou and Papaspyrides, 2008) 

Several reviews and studies discussed the successful stiffening of polymers by 

LSNC with less filler content compared to conventional composites to achieve same 

degree of improvement. Paul and Robeson (2008) reviewed comparison of PE/MMT 

nanocomposites with PE/Talc composites and Nylon6/MMT nanocomposites with 

Nylon6/glass fiber composites. The required amount of MMT to double elastic modulus 

of neat polymers was reported to be 4 and 3 times lower than talc and glass fibers; 

indicating a significant weight reduction for the same performance (Paul and Robeson, 

2008). Petersson and Oksman (2006) studied PLA nanocomposites prepared by 

bentonite LS and PLA microcomposites prepared by microcrystalline cellulose. 

Concentration of both fillers was 1 wt% with respect to polymer.  Authors reported 50% 

increase in elastic modulus and yield strength for LSNC of PLA while cellulose 

composites slightly reduced the modulus of films without significantly improving the 

yield strength. 

 Beside improvements in stiffness, the addition of LSNC increased the maximum 

tensile strength of polymers. While elastic modulus increase in LSNC was mainly 

attributed to existence of stiffer layered silicates platelets, improvements in tensile 

strength of LSNC were attributed to degree of bonding between nanoclay and polymer 

matrix (Ray and Bousmina, 2005; Pavlidou and Papaspyrides, 2008). Dean and 

coworkers (2008) improved the tensile strength of PVOH/Starch blends by using MMT. 

Higher increase in tensile strength in PVOH blends compared to single starch films 



 51

were attributed to enhanced bonding between PVOH and MMT as evidenced by FTIR. 

Many reviews concerning the mechanical properties of LSNC reported that tensile 

strength improvements in LSNC are more sensitive to nanoclay content than modulus 

changes due to level of interactions between nanofiller and polymer (Okamoto, 2005; 

Ray and Okamoto, 2003; Pavlidou and Papaspyrides, 2008). 

Maximum elongation of polymeric films under tensile load is another important 

mechanical aspect of nanocomposites. It is well known that polymeric composites 

improve modulus and tensile strength at the expense of flexibility of the material. 

Decreased flexibility is generally observed in nanocomposites as well. Nanocomposites 

are thought to alter flexibility of polymers in lesser extend than conventional composite 

systems that results in better interactions between filler and polymer matrix due to 

higher surface area available for bonding (Okamoto, 2005; Paul and Robeson, 2008; 

Ray and Bousmina, 2006). 

 

4.6 Nanocomposites of Agricultural and Protein Based Biopolymers 

 
 Successful nanocomposite applications of synthetic polymers encouraged many 

researchers to develop biodegradable nanocomposite systems for food packaging 

applications. Currently, there is an extensive literature available about the 

nanocomposite applications of biopolymers. Most biopolymer nanocomposite research 

is focused on microorganism and bio-derived monomer synthesized polymers such as 

PHAs, PCL and PLA that have homogeneous and similar structure to polyolefins.  

 Agricultural based biopolymers were also being subject to nanocomposite 

applications. Many researches was conducted on starch, and in less extend on other 

proteins like soy, wheat gluten, gelatin and whey to improve their inherent mechanical 

brittleness and high permeability to water vapor by utilizing strong interactions between 

layered silicate nanoclay platelets and polymer matrix. As in the case of synthetic 

polymers and other biopolymers, nanoclays intercalated and exfoliated within the 

polymer matrix showed enhanced mechanical and barrier properties for agricultural 

biopolymers. Today, nanocomposite applications are one of the hottest topics for the 

property improvements in protein based and other types of renewable biopolymers. 

 Tang and coworkers (2008) compared the performances of unmodified and 

modified nanoclays on plasticized starch nanocomposites. While unmodified MMT was 
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exfoliated or intercalated depending on the clay content, all concentrations of modified 

MMT showed no increase in interlayer spacing. In consistent with the XRD results, 

modified 130E MMT resulted in lower tensile strength and percent elongation at break, 

even showing poorer mechanical properties than the pristine starch. This was attributed 

to the disturbed structure of starch due to ineffective dispersion of modified clay. 

Meanwhile, the unmodified MMT being compatible with the starch matrix resulted in 

improved mechanical and water vapor barrier properties. These results were in good 

agreement with the level of exfoliation interpreted from XRD analysis. Huang and 

Netravali (2006) investigated nanocomposite performance of unmodified cloisite Na+ on 

highly hydrophilic soy protein cross-linked by phytagel. Iimproved tensile strength (TS) 

and Young modulus was reported due to observed exfoliated structure up to 7 wt% 

nanoclay with a slight decrease in elongation at break. Further clay loading resulted in 

intercalated structures and a decrease in TS (still being higher than the pristine soy film) 

and percent elongation. On the other hand modulus of the samples continued to 

increase. DMA of the nanocomposite samples also showed enhanced storage modulus, 

especially for lower temperatures. A slight increase in Tg (from 186.7 to 193.4 oC) of 

nanocomposite samples was observed. 

 Protein based biopolymers, as well as most of the plant based polymers require 

plasticizer treatment in order to prevail over the inherent brittleness of films. Plasticizers 

loosen the bonds among polymer chains by entering between and creating new 

interactions as well. As biopolymers have tendency to form new bonds with layered 

silicates, plasticizers may also compete with polymers to interact with nanoclays. 

Pandey and Singh (2005) investigated the effect of processing sequences in solution 

intercalation method together with interactions between glycerol and MMT in starch 

nanocomposites. Authors proposed that glycerol and starch compete for bonding with 

MMT. This competition results in a decrease in the efficiency of starch chains’ entering 

between layered silicate platelets according to FTIR analysis. Plasticization, following 

the mixing of layered silicates and starch improved the elongation at break of samples in 

spite of significant decreases observed for simultaneous or former plasticization with 

starch/LS mixing. More flexible and stronger films resulted due to mixing of LS and 

biopolymer prior to plasticization which was also observed in the study of Kvien and 

coworkers (2007). 

 Nanocomposite preparation by using solution intercalation involves use of 

stronger mixing techniques. While early studies utilized long ultrasonic bath treatments, 
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probe type ultrasonic processors gave better results as observed in this study. Dean and 

Yu (2005) investigated effect of ultrasonic treatment time on layered silicate 

delamination by using XRD analysis. Increased period of ultrasonic treatment was 

resulted in a small increase in d-spacing due to swelling effect of water. Improved 

delamination of LS stackings was reported for longer ultrasonic treatment and 

plasticization effect of glycerol. 

Chen and Zhang (2006) investigated interactions between glycerol plasticized 

soy protein and unmodified MMT as well as mechanical properties of produced 

nanocomposites. Authors foresee H-bonds were formed between nanoclay platelets and 

soy protein according to FTIR analysis results. While intensity of FTIR bands at Amide 

I and II regions increased for intercalated and exfoliated structures, high clay loading 

did not change the peak intensities. This was interpreted; as occupation of all free sites 

results in inefficient dispersion of further added nanoclay, as also considering XRD 

results. Changes in the “in- and out-of-plane” Si-O stretching bands of MMT were also 

observed. Higher exfoliation of clay platelets were resulted in narrower and less intense 

Si-O bands as well as better identified out-of-plane band due to efficient dispersion of 

MMT. Interestingly, very high clay contents compared to other polymers were reported. 

Exfoliated nanocomposite structures up to 8 wt% of MMT and intercalation around 16 

wt% was obtained. High interaction of nanoclays was resulted in dramatic decrease in 

elongation at break and significant increase in Young modulus. Tensile strength at break 

of the molded films doubled at 16 wt% clay loading 

 Depending on the polymer chains entering within the layered silicates and 

degree of stack opening give improved properties to the nanocomposites. The stack 

opening – or interlayer spacing- of the layered silicate is also critical as well as the 

interactions between nanoclay and polymer itself. Yu and coworkers (2006) studied soy 

protein nanocomposites prepared by dispersing unmodified rectorite, another type of 

layered silicate, characterized by twice the interlayer spacing of unmodified MMT. 

TEM images showed exfoliated structures for 4 wt% clay and intercalated structures 

without agglomeration for 12 wt% samples. TEM images were also supported by XRD 

peaks disappeared or shifted to left indicating increased interlayer spacing. FTIR 

analysis of the nanocomposites gave similar results to that of Chen and Zhang’s (2006) 

study. Researchers reported highly increased Young modulus up to 20 wt% clay and 

doubled tensile strength for 12 wt% clay loaded sample. Further increase in clay content 

resulted in decreased tensile strength close to that of pristine polymer’s for 24 wt% clay 
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concentrations. Decrease in tensile strength was attributed to brittleness caused by clay 

agglomerates. Also flexibility of the prepared samples decreased dramatically. The glass 

transition of the nanocomposites were hindered due to limited chain motion caused by 

polymer chains entering between clay layers according to the thermal analyses results 

(Chen and Zhang, 2006). 

 Rao (2007) compared two different gelatin - layered silicate nanocomposites 

prepared by nanoclays with different aspect ratios. Layered silicates having higher 

aspect ratios gave better results for synthetic polymers. Cloisite Na+ characterized by 

aspect ratio of 200 increased modulus and tensile strength at break more than the 

Laponite layered silicate with aspect ratio of 30. DSC scans of the nanocomposites 

resulted in slightly increased melting temperatures and decreased melting enthalpy of 

the nanocomposites which was attributed to depressed crystallinity by the presence of 

the nanoclays in the structure. Transparent films with very little changes compared to 

pristine gelatin film for both nanocomposites were also reported. 

 Effect of layered silicate nanoclays on optical properties of whey protein 

composites was studied by Sothornvit and coworkers (2010). In contrast to unchanged 

optical properties in gelatin nanocomposites (Rao, 2007), cloisite 30B layered silicate 

incorporated composites hindered optical properties of whey protein films. 

Transparency and gloss of whey protein films decreased due to the clay introduced. 

Authors also reported improvements in the haze of composite samples indicating 

reduced homogeneity on the surface. Diminished optical properties in whey modified 

MMT nanocomposites can be attributed to poor dispersion of clays in the structure. 

 An important aspect of nanocomposites is their potential to have improved 

barrier properties compared to that of neat polymers. Many nanocomposite studies 

showed that layered silicates can decrease water vapor permeability (WVP) and oxygen 

permeability (OP) depending on the level of dispersion of nanoclays. Bae and 

coworkers (2009) studied water vapor and oxygen permeability of fish gelatin 

nanocomposites prepared by unmodified Cloisite Na+ montmorillonite. Increment in 

MMT content resulted in continuous decrease in both OP and WVP, following the same 

trend. The decreases were slightly sharper for clay content up to 5%. Improvements in 

tensile strength in expense of percent elongation at break were reported as well. Authors 

also investigated effect of sonication on the nanocomposites produced. OP of sonicated 

samples was lower, together with better improvements in mechanical properties. Among 

samples stirred at different speeds, no significant difference in OP was observed. It was 
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concluded that, mechanical forces, other than sonication are ineffective for the 

preparation of nanocomposites. 

Layered silicates introduced to polymer matrix would affect permeability 

characteristics in several ways. Since permeation has solubility and diffusion aspects, 

effect nanoclays may exist in one of them or both. Tunc and coworkers (2007) prepared 

glycerol plasticized wheat gluten/MMT nanocomposites and investigated their barrier to 

water vapor, oxygen and carbondioxide; as well mechanical performance of the 

nanocomposites. Surface hydrophilicity of wheat gluten was affected by the clay 

content in the 0-10 wt% range. While contact angle of the nanocomposites observed to 

decrease significantly by the increasing clay concentration, the water absorption rate 

was decreased interestingly. Authors attributed these changes to clay content. Clays 

dispersed within the polymer formed a barrier to penetrating water vapor while 

hydrophilic character of clays increased the wettability of the wheat gluten polymer. No 

change in oxygen and carbondioxide permeabilities were obtained while WVP of the 

films reduced to half of neat gluten. Considering all permeability results together; 

authors predicted the effect of clays in the films as limiting the solubility of water 

molecules to surface rather than decreasing diffusivity.  

Changes in hydrophobicity of biopolymers due to introduction of hydrophobic 

OMMT were also reported in several studies. Magalhaes and Andrade (2009) studied 

corn starch nanocomposites prepared by organomodified Cloisite 30B. Authors 

observed very significant increases in hydrophobicity of hydrophilic starch, depending 

on the clay content. Organomodified Nanomer 1.34TCN incorporated soy protein 

coatings as a conventional filler on paperboards resulted in increased hydrophobicity 

measured by higher contact angle of water on soy protein layer (Rhim et al. 2006). 

Very recently in the literature, Corn zein OMMT nanocomposites prepared by 

using solution intercalation and blown film extrusion methods were studied by Luecha 

and coworkers (2010). Improved elongation at break was reported for extrusion blown 

samples, while the samples prepared by solution intercalation increased the brittleness. 

Tensile strength and elastic modulus of prepared films showed discontinuous 

improvements. Water vapor permeability of nanocomposites showed improvements in 

small OMMT concentrations whereas, WVP of samples with OMMT content higher 

than 3 wt% were very close to that of pristine corn zein. Additionally, better thermal 

stability was obtained from TGA analysis. 
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CHAPTER 5 

 

EXPERIMENTAL 

 
5.1. Materials 

 
Corn zein used in this study was obtained from Sigma-Aldrich. Ethanol (Ethyl 

alcohol) (lab-grade, >99.5%) used as solvent for corn zein was supplied from Panreac. 

Dilution of lab-grade ethanol to 95%(v/v) was done with ultra pure water. 

Nanocomposites were prepared by using the commercial organomodified layered 

silicate montmorillonite Cloisite 10A (125 meq/100g clay) and natural montmorillonite 

Nanofil 116 (116meq/100g clay) were obtained from Southern Clay – Rockwood. 

Glycerol (MW: 92 g/mol) obtained from Fluka was used as plasticizer to overcome the 

brittleness of corn zein. Plasticized corn zein nanocomposites were casted on 

commercial corona treated 40 µm thickness polypropylene (C11/40 µm) films, supplied 

by Polinas Company (Manisa/Turkey). 

 

5.2. Preparation of Corn Zein Nanocomposite Coated PP Films 

 
Corn zein nanocomposite coatings were prepared by solution intercalation 

method. Different amounts of commercial nanoclays (1-3-5-7.5%w/w corn zein) were 

first dispersed in 50 ml of aqueous (95%v/v) ethanol by stirring for 15 minutes. Then, in 

order to open clay stackings, stirred solution was sonicated for 60 minutes by using a 

ultrasonic probe sonicator (Sonix Vibracell 505) working at 40% capacity of its 20±0.05 

kHz output. 2.5g corn zein was dissolved within the clay dispersion at 500C. After 

complete dissolution of zein, 0.64µl of glycerol was added to plasticize the corn zein, 

and then sonication was applied for 60 minutes in order to obtain further penetration of 

plasticized biopolymer chains inside clay platelets. Sonication steps were done in a 

cooling water bath operating at 150C in order to prevent overheating and decomposition 

of corn zein. The prepared CZNC solution was then immediately casted on corona 

discharged commercial polypropylene (PP) films with 40 µm thickness (C11/40) with a 

custom blade of 500µm in height by using automatic constant speed film applicator 
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(Sheen 1133N). Then, the prepared corn zein nanocomposite coated polypropylene 

films (CZNC-PP) were first put in to a vacuum oven at 500C, and -200mbar for 120 

minutes and then the temperature was raised to 1200C for 24 hours in order to achieve 

complete evaporation of solvent. All films were kept in a desiccator to prevent films 

from absorbing water vapor until testing. 

 

5.3. Determination of Film Thickness 

 
 Thicknesses of prepared CZNC-PP films with various clay contents were 

measured with an electronic digital micrometer (293-821, Mitutoyo) with 0.001mm 

sensitivity. The thicknesses used in permeability analysis and mechanical testing 

evaluations were determined by taking at least five different measurements from 

random sections of films. Thicknesses of individual CZNC layers used in oxygen and 

water vapor permeability calculations were determined by subtracting the thickness of 

polypropylene film (40 µm) from the measured total thickness. 

 

5.4. Fourier Transform Infrared (FTIR) Analysis of CZNC-PP Films 

 
 Infrared spectra of the prepared films were obtained by using a FTIR 

spectrometer (Perkin Elmer Spectrum 100) equipped with ATR accessory. Film spectra 

were collected at a resolution of 4 cm-1 and averaging 64 scans by using ZnSe crystal 

and DTGS detector in the 4000-650 cm-1 wave number range. Spectra of the films 

below 650 cm-1 wavenumber range were also obtained by using a FTIR spectrometer 

(Shimadzu FTIR 8201) in transmission mode. FTIR analysis of nanoclay powders were 

done by preparing pellets with KBr. Regular FTIR spectra were collected by averaging 

64 scans at resolution of 4cm-1.  

 

5.5. X-Ray Diffraction (XRD) Analysis of CZNC-PP Films 

 
 X-Ray diffraction (XRD) analyses of the films were carried out by using X’pert 

PRO MRD X-Ray diffractometer (PANalaytical) suitable for thin film analysis. 
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Samples were scanned for diffraction angles 2θ = 0.25 – 8o from the CZNC coated 

surfaces. 

 

5.6. Oxygen Transmission Rate Analysis of CZNC-PP Films 

 
Oxygen transmission rates (OTR) of CZNC coated PP film samples were 

determined by using gas permeation instrument (Dansensor Lyssy, L-100-5000 

Manometric Gas permeability Tester) according to ASTM D3985 standard. OTR 

measurements were conducted at 230C and 0%RH. Gas permeation instrument was 

consisting of two chambers separated by the test film. Analysis was conducted based on 

the concentration difference created by passing oxygen at the upper chamber and by 

creating vacuum in the lower chamber. Before analysis, lower chamber was vacuumed 

to a predefined value controlled by number of undervac cycles. When desired vacuum 

value was reached, the applied vacuum was cut and oxygen was let to permeate through 

lower chamber. Since tester was running in manometric principle, the pressure probe 

was insensitive to type of the gas. Time required to increase the lower chamber pressure 

to predefined value was measured and the transmission rate of the testing gas was 

calculated by the tester by using reference film data. The output of the analysis was 

oxygen transmission rate in ml gas (oxygen) per area (m2) time (day). OTR of films 

were determined by testing three different samples and their average was recorded. 

Oxygen transmission rates of single CZNC layers was calculated from the 

CZNC-PP results by using the following multilayer permeability model since all 

measurements were conducted in the same pressure range and oxygen gas flow. 

∑
=

=
n

i i

i

P
L

P
L

1
         (5.1) 

where n is the number of layers, L and P are the thickness and oxygen transmission rate 

of the multilayer film. Li and Pi on the left hand side of the formula are the thickness 

and oxygen transmission rate of each layer, respectively. 
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5.7. Water Vapor Permeability Analysis of CZNC-PP Films 

 
A water vapor permeability analyzer (Mocon Permatran 3/33) was used to 

investigate the effect of nanocomposite coating layer on water vapor permeability of 

CZNC coated PP films. All water vapor permeability tests were conducted at 37.8 0C 

and 90% RH according to ASTM F1249 standard. The test film was placed between 

two test cells. While test (upper) chamber was continuously flushed with dry nitrogen, 

lower chamber was washed with carrier nitrogen. Carrier nitrogen, was passed through 

ultra pure water to adjust the RH and flowed into the lower cell. As the water vapor 

diffused through the test film, it was carried by nitrogen to the detector in the upper 

chamber. Nitrogen flow rate was set to 100 cm3 per minute. The data was recorded as 

water vapor transmission rate (WVTR). Permeability of the samples (10-2 g (water 

vapor) thickness (mm) per area (m2) time (day) pressure (mmHg)) was calculated by 

using Equation (5.2): 

filmL
RRS

WVTRtyPermeabili *
)( 21 −

=               (5.2) 

Where, R1 is relative humidity at the source expressed as a fraction (R1 = 0.9 for 90% 

RH chamber), R2 is relative humidity of the vapor sink expressed as a fraction (R2 = 0 

for the 0% RH chamber (dry side)), S is the vapor pressure of water at the test 

temperature in inches of mercury and Lfilm is the thickness of the tested film. All films 

were tested for three different samples and the average was reported as the water vapor 

permeability data. WVP of single CZNC layers were calculated by using the multilayer 

permeability equation (Equation 5.1). 

 

5.8. Mechanical Property Determination of CZNC-PP Films 

 
A texture analyzer (TA XT Plus) equipped with a 5 Kgf load cell was used in 

tensile mode to determine the mechanical properties of prepared films according to 

ASTM D-882 standard. Tested films were cut in 10 mm width and 75 mm in length in 

order to provide enough space for film holding. The initial gauge length and testing 

speed were fixed at 25 mm and 10 mm/min, respectively. Reported tensile strength at 
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break and yield strength values were the stress value at the rupture of the films and the 

value when yielding begins, respectively. Percent elongation at break values were 

directly read from stress-strain curve and denotes for the ratio of length of the sample at 

rupture of film to initial length of the sample. Elastic (Young) moduli of films were 

calculated from the slope of linear portion of stress-strain curve. Sample stress – strain 

diagram was given in Figure 5.1. At least five films were tested and the average was 

reported. 

 

5.9. Contact Angle Measurements of CZNC-PP Films 

 
Contact angle analysis of prepared CZNC coated PP films were conducted using 

the initial contact angle method. Initial contact angle of water in air on the CZNC-PP 

surfaces was measured with a contact angle analyzer (Attension Theta Optical 

Tensiometer, KSV Instruments) by dropping a constant 6µl of water on to the CZNC 

surface of the films by using an automatic micro syringe. Distilled water was used a 

probe liquid. An image of water drop was recorded immediately just after dropping 

from the syringe and the contact angle of water drop analyzed digitally by using the 

software of the device. Initial contact angle values of at least ten measurements were 

reported as the average of left and right contact angles.  

 

5.10. Color Measurements of CZNC-PP Films 

 
The color of corn zein nanocomposite coated PP films was assessed using a 

colorimeter (Avantes). PP film having no CZNC coating (L = 90,56, a = 0,35, b = 0,55) 

was used as a background for color measurements of the coated films. In the Hunter 

system, color is represented as a position in a three-dimensional sphere, where the 

vertical axis L indicates the lightness (ranging from black to white), and the horizontal 

axes, indicated by a and b, are the chromatic coordinates (ranging from a: greenness to 

redness and b: blueness to yellowness). Hunter L, a, and b values were averaged from 

five readings across for each coating replicate. The total color difference (∆E) can be 

calculated by the following equation;  
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( ) ( ) ( )222 baLE Δ+Δ+Δ=Δ        (5.3) 

For each film, at least five measurements on different positions of film surface 

were made. The results were expressed as ∆E values, with the substrate PP having no 

CZNC coatings as reference 
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CHAPTER 6 

 

RESULTS AND DISCUSSION 

 
Corn zein nanocomposites (CZNC) were prepared by solution intercalation 

method by using layered silicate nanoclays. Prepared CZNC solutions were coated on to 

commercial Polinas C11/40µm polypropylene (PP) films. The effect of modification of 

clay on the properties of CZNC coated films (CZNC-PP) and as well as single CZNC 

layers was investigated. CZNC solutions were also prepared by using stirring instead of 

sonication processing steps in order to follow the effects of sonication on the final 

properties. Organically modified layered silicate clay Cloisite 10A (CLO10A), and 

unmodified Nanofill 116 (NF116) were used as nanofillers. Resulting films were named 

according to their clay content in CZNC layer such as CLO10A-1% to Clo10A-7.5% 

and NF116-1% to NF116-5% as seen in Table 6.1. Sample codes PP and PPZ were used 

for the commercial polypropylene film and plasticized corn zein coated polypropylene 

film, respectively. Samples starting with CLO10A(Stir) code denotes for the CZNC-PP 

films with CZNC layers prepared by employing stirring instead of sonication step. 

Effects of nanoclay content, nanoclay type and preparation technique of 

nanocomposites on the oxygen transmission rate (OTR) and water vapor permeability 

(WVP) of the coated CZNC layer on the overall film and single CZNC layer were 

investigated. In addition, mechanical, surface and optical properties of prepared CZNC-

PP films were studied. Structural characterizations of the nanocomposites were also 

carried by FTIR and XRD analysis. 

Prepared CZNC were successfully coated onto films since substrate PP was a 

corona treated film for good adhesion of zein coatings. Depending on the nanofiller 

concentration, different film thicknesses in the CZNC layer were observed and tabulated 

in Table 6.1. According to thickness calculations, no direct relationship between 

nanofiller content and CZNC coatings thickness was observed. But it should be noted, 

thicker coatings were obtained for NF116 and CLO10A(Stir) samples. Tabulated film 

thicknesses were used in the evaluation of mechanical properties, oxygen and water 

vapor permeability analysis.  
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Table 6.1. The measured thicknesses of CZNC coated PP films and single CZNC 
coatings according to nanoclay content and type 

Sample Code OMMT Concentration 
(%wt)

Coated Film Thickness 
(µm)

Coating Thickness 
(µm)

PP - 40

PPZ - 46±0.89 6±0.89

CLO10A-1% 1 46.8±1.17 6.8±1.17

CLO10A-3% 3 46.8±0.75 6.7±0.75

CLO10A-5% 5 45.9±0.66 5.9±0.66

CLO10A-7.5% 7.5 47.6±0.80 7.6±0.80

NF116-1% 1 47.68±0.62 7.68±0.62

NF116-3% 3 47.16±0.69 7.16±0.69

NF116-5% 5 48.34±0.76 8.34±0.76

CLO10A(Stir)-3% 3 50.46±0.97 10.46±0.97

CLO10A(Stir)-5% 5 49.76±1.63 9.76±1.63  

 

6.1. Structural Characterization 

 
 Structural characterization of prepared corn zein nanocomposite coated 

polypropylene films were done in order to understand the effect of CZNC structure on 

the performance of films. Nanocomposite structure of the CZNC layers were done by 

using X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) analysis.  

       
X-Ray diffraction is the most commonly used technique to investigate 

nanocomposite structures. Depending on the shape, intensity and position of <001> 

diffraction of layered silicate nanoclays, some idea about the structure of 

nanocomposites can be obtained. Peak shifts to lower angles and broader peaks are  

attributed to intercalated or exfoliated structures depending on the level of changes in 

the XRD chromatograms. Depending on the clay type, XRD analysis can be conducted 

down to 1 or lower theta values in order to achieve proper characterization of 

nanocomposites. 

Characteristic (001) peak of Cloisite 10A nanoclay powder was obtained at 4.65 

theta value indicating a basal spacing of 19.02Å. Position of characteristic Cloisite 10A 

peak was in agreement with the value reported by the producer. XRD analyses of the 

CZNC-PP films were suitable to investigate nanocomposite structure in CZNC layers, 
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since substrate PP films and corn zein matrix of nanocomposite layers gave no 

reflection in the analyzed range. XRD results of CZNC-PP films were given in Figure 

6.1. Primary reflection of Cloisite 10A was disappeared after dispersion of nanoparticles 

within corn zein matrix for all samples as it is seen in the XRD results. 

0.2 1.2 2.2 3.2 4.2 5.2
2θ/degree

Cloisite 10A

CLO10A(Stir)-5%

CLO10A(Stir)-3%

CLO10A-7.5%

CLO10A-5%

CLO10A-3%

CLO10A-1%

 

Figure 6.1. XRD results of Cloisite 10A nanoclay and CZNC coated PP films. Order of 
samples from top to bottom follows the order given in the legend of the plot 

In the literature, disappearance of layered silicate peak is attributed to complete 

exfoliation of nanoclays in the polymer matrix. In the complete exfoliated state of 

nanocomposites, single layered silicate platelets are dispersed in the polymer matrix at 

several directions and far from each other beyond the detection limit of XRD.  

(Pavlidou and Papaspyrides 2008; Yu et al., 2007; Chen and Zhang, 2006; Okamoto, 

2005). As can be seen from the XRD results of CZNC-PP films, characteristic peak of 

nanoclay was disappeared for all clay concentrations. Even high layered silicate content 

of 7.5% and samples prepared without sonication seem to achieve complete exfoliation 

which is inconsistent with the previous studies in the literature. Many biopolymers 

showed partially exfoliated or intercalated nanocomposite structures for concentrations 

higher than 5 wt% (Tang et al., 2008; Rao, 2007; Kvien et al., 2007; Ray et al., 2003). 

Mechanical stirring forces such as stirring and homogenization was also shown to be 

ineffective for delamination of layered silicates resulting in phase separated or partially 

intercalated structures (Bae et al., 2009; Dean and Yu, 2005). 
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 In the existence of literature findings, for higher concentrations of Cloisite 10A, 

intercalated structures that can be identified by small shift of main nanoclay peak to 

lower angles and quite broader peak were expected due to FTIR and permeability 

results. In addition, for the samples prepared by stirring instead of sonication treatments; 

no change in the <001> peak except a slight decrease in peak intensity was expected. 

There might be several reasons for the improper XRD results. XRD is strongly 

dependent to amount of filler content and orientation of fillers in the structure (Ijdo et 

al., 2006). Besides, the thickness of the nanofiller containing CZNC layers was very low 

compared to 40µm PP film, that lead to very small nanoclay contents to be detected in 

the analyzed samples. 

 

6.1.2. Fourier Transform Infrared (FTIR) Analysis 

 
Structural changes occurred due to exfoliation/intercalation of layered silicate 

nanoplatelets can also be followed by FTIR analysis. Composite systems include 

dispersion of filler materials in the polymer matrix and definitely these particles interact 

with the matrix. Bonding of filler with the polymer matrix can be followed from the 

appearance of new bands in the FTIR spectra. Since nanofillers in the nanocomposite 

systems have stronger interactions with the polymer matrix compared to conventional 

composites, FTIR can be used in combination with XRD to examine nanocomposite 

structures. 

 CZNC-PP films were analyzed qualitatively by using FTIR-ATR from the 

CZNC coated side of the films. Since CZNC-PP films could not be grinded to prepare 

pellets with KBr, quantitative analysis could not be made on samples. FTIR spectra of 

Cloisite 10A nanoclay were also obtained in order to interpret the changes in 

nanocomposite system. Qualitative FTIR discussions were done in 850-1150 cm-1 and in 

1450-1800 cm-1 regions where significant changes were observed (Figure 6.2 and 

Figure 6.4 respectively).  

The most representative changes in FTIR spectra of CZNC layers were observed 

in 850-1150 cm-1 region. As can be seen in Figure 6.3, Cloisite 10A nanoclay has a 

single broad band at this interval, but corn zein does not have any peak in this region. 

Even small concentrations of nanoclay leads to arising of a small band at around wave 

number of 1040 cm-1 that is generally assigned to in-plane Si-O bands (bonds oriented 
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parallel to clay layer) (Yu et al., 2007; Ijdo et al., 2006; Chen et al., 2001). Layered 

silicates, in their clay powder form, give a large band in the region 750-1350 cm-1 as 

seen in Figure 6.3, consisting of several Si-O-Si bands overlapping with each other 

depending on the clay type and origin (Cervantes-Uc et al., 2007; Madejova, 2003; 

Johnston and Premachandra, 2001). Opening of layered silicate galleries leads to 

appearance of new Si-O bands (Ijdo et al., 2006; Johnston and Premachandra, 2001). 

Existence of several Si-O bands can be more easily seen in CLO10A-5% spectra due to 

the increase in the nanoclay content. Another in plane Si-O band at 1122 cm-1 with a 

small shoulder was observed Figures 6.2 and 6.3. A new band at 1023.43 cm-1 was 

observed in CLO10A-7.5% coated films which could be attributed to a new Si related 

bond due to changing structure with increasing organomodified nanoclay (Ijdo et al., 

2006; Johnston and Premachandra, 2001).  
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Figure 6.2. FTIR-ATR spectra of prepared CZNC-PP films in 850-1150 cm-1 region 
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Figure 6.3. FTIR spectra of Cloisite 10A nanoclay in 750-1350 cm-1  

Powder FTIR patterns of packed layered silicate platelets only gave in-plane Si-

O bands overlapping with each other. However, a new band appeared at the wave 

number of 1072 cm-1 for the nanocomposite coatings (Figure 6.2). The new arising band 

was assigned to out-of-plane Si-O bonding (bonds oriented normal to clay layer). 

Several nanocomposite studies reported appearance of such bands, attributed to opening 

of clay galleries and fine dispersion (exfoliation or partial exfoliation) of clay platelets 

(Yu et al., 2007; Ijdo et al., 2006; Johnston and Premachandra, 2001). Ijdo and 

coworkers (2006) studied organoclay delamination in solutions and LDPE 

nanocomposites using FTIR-ATR in their patented study. Beside appearance of new 

out-of-plane band, they also reported bandwidth narrowing in 850-1150 cm-1 region due 

to transition to more exfoliated state (Ijdo et al., 2006). Prepared CZNC coatings 

showed narrower bands for smaller clay contents, especially for very slight bands of 1 

wt% and 3 wt% clay loaded samples as seen in Figure 6.2. Additional to discussed new 

bands at 850-1150 cm-1 region, two new organomodified nanoclay bands were appeared 

in the FTIR spectra of CZNC coatings at 522.73 cm-1 and 462.93 cm-1 wave numbers 

assigned to Al-O stretching and Si-O bending (Chen et al., 2001). Similar to nanoclay 

bands of 850-1150 cm-1 region, the bands of Al-O and Si-O became broader with 

increasing OMMT content. Positions and assignments of all FTIR bands observed for 

prepared CZNC were given in Table 6.2 together. 
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Table 6.2. Positions and assignments of characteristic bands of CZNC-PP films, corn 
zein and Cloisite 10A nanoclays  

Sample Wavenumber (cm-1) Assignment

Cloisite 10A

Si-O-Si Bands 1040 in-plane Si-O stretching

1122 in-plane Si-O stretching

1023.43 in-plane Si-O stretching

1072 out-of-plane Si-O stretching

522.73 Al-O stretching 

462.93 Si-O bending

Corn Zein 

1637.49 - 1645.57 Amide I region (C=O stretching)

1528.47 - 1531 Amide II region (N-H bending and C-N Stretching)  

Significant bands at 1528.47cm-1 and 1637.49cm-1 in FTIR-ATR spectra of 

pristine corn zein can be seen in Figure 6.4. These bands were attributed to Amide II 

and Amide I bands of corn zein, respectively. Amide I and amide II regions are 

generally used to follow hydrogen bonding in corn zein. Contribution of plasticizers and 

water molecules to amide regions were also reported in the literature. (Gillgren et al., 

2009; Gao et al., 2006) While Amide II region of nanocomposites showed wavenumber 

shift to 1531 cm-1 in CLO10A-5% sample and no change for CLO10A-7.5%; effect of 

organomodified nanoclay was more significant in the Amide I region. Although position 

of Amide I bands of CLO10A-1% and CLO10A-3% did not change significantly as 

seen in Figure 6.4, appearance of several smaller bands can be attributed to a possible 

exfoliation of nanoclays in the corn zein matrix. Since nanoclays could be oriented in 

several directions for exfoliated state, they might form several different hydrogen bands 

with corn zein matrix. Effect and degree nanoclay delamination and dispersion on the 

formation of H-bonding can be more significantly followed for higher clay content 

CZNC coatings. Amide I band of corn zein (1637.49cm-1) shifted to higher 

wavenumbers; 1643.05cm-1 and 1645.57cm-1 for CLO10A-7.5% and CLO10A-5% 

coatings, respectively. Shifting of Amide I and Amide II bands to higher wavelength 

can be attributed to increased hydrogen bonding (Cervantes-Uc et al., 2007; Gao et al., 

2006; Madejova, 2003).  
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C=O containing molecules of protein based biopolymers are able to form 

hydrogen bonding with the Si-O-Si and –OH containing galleries of MMT particles that 

may result in shifting of Amide bands to higher wave numbers (Yu et al., 2007; Chen 

and Zhang, 2006). As nanoclay delamination and the number of orientations due to 

effective dispersion increases, more bonding sites on nanoclay galleries will be able to 

form new hydrogen bonds. Based on the band shiftings in Amide I and Amide II 

regions, the level of hydrogen bonding was higher for 5 wt% clay loaded samples 

compared to 7.5 wt%. This could be attributed to more efficient dispersion of nanoclays 

in 5 wt% samples. 
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Figure 6.4. FTIR-ATR spectra of prepared CZNC-PP films in 1450-1800 cm-1 region. 
Order of samples from top to bottom follows the order given in the legend 
of the plot.  

 

6.2. Barrier Properties of Corn Zein Nanocomposite Coated Films 

 
 Barrier properties of packaging materials are critical since aim of packaging is to 

preserve the quality of food during storage period before the end use by the customer. 

Ability to restrict oxygen and water vapor permeation is, therefore, important to develop 
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efficient barrier packaging materials. This section deals with the evaluation of oxygen 

and water vapor properties of prepared CZNC-PP coatings. Effect of nanoclay type and 

its content, as well as preparation technique of CZNC was studied in order to investigate 

the barrier performance of corn zein nanocomposites.  

 

6.2.1 Oxygen Barrier Properties 

 
Oxygen transmissions of the uncoated and coated PP films were tabulated in the 

Table 6.3. As seen in the table; oxygen transmission through the films was successfully 

reduced by coating corn zein and its nanocomposites on PP substrate. 

Table 6.3. Oxygen transmission rates (OTR) of Cloisite 10A loaded CZNC coated PP 
films and single CZNC layers 

Sample Code
Nanoclay 

Concentration     
(%wt)

OTR of CZNC-PP films   
(ml/m2 day)

OTR of CZNC Layers    
(ml/m2 day)

PP - 1627.85±311.90 -

PPZ - 605.3±49.92 131.89

CLO10A-1% 1 549.32±5.54 108.12

CLO10A-3% 3 346.38±26.63 60.22

CLO10A-5% 5 370.78±12.98 46.94

CLO10A-7.5% 7.5 403.48±81.99 57.69  

Oxygen barrier performances of prepared coatings were analyzed at 23 oC and 

0% RH. Oxygen barrier improvements obtained by the CZNC coatings on PP substrates 

were also reported as a function of nanoclay concentration in Figure 6.5. Excellent 

oxygen barrier of corn zein and other plant based polysaccharide and protein polymers 

due to the presence of polar interactions in their structure were discussed by many 

authors (Rhim et al., 2006; Hong and Krochta, 2003;2006; Tharanathan, 2003; Padua 

and Wang, 2002). As seen in the Figure 6.5, a thin layer of corn zein coating without 

nanoclays on substrate PP film resulted in 56% decrease in oxygen transmission through 

the film. Such result was expected since oxygen permeability of corn zein is 

significantly lower than polyolefins such as PP and PE; being comparable to well 

known oxygen barriers EVOH and PVDC (Tihminlioglu et al., 2010; Padua and Wang, 
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2002; Miller and Krochta, 1997; Cuq et al., 1998). Oxygen transmission rate of single 

corn zein layer was calculated by using Equation (5.1) and found as 131.89 ml/m2 day. 

This value is 12 fold lower than that of PP film (1627.85 ml/m2 day) being in consistent 

with the literature data. In conformance with the prepared CZNC-PP films, several 

studies showed significant decreases in oxygen transmission with corn zein 

(Tihminlioglu et al., 2010) and whey protein isolate (Hong and Krochta, 2003;2006) 

coatings on polyolefins. Further improvements in oxygen barrier were also obtained by 

the CZNC coatings on PP as seen in Figure 6.5. The maximum improvement, which is 

almost 75 %, was obtained for 3 wt% nanoclay loaded samples. The OTR decreased 

from 1627.85 ml/m2 day to 346.38 ml/m2 day Since no nanocomposite structure exists 

in substrate films, it is obligatory to investigate the effect of nanocomposite structure on 

oxygen transmission for single CZNC layers.  

0

300

600

900

1200

1500

1800

2100

PP PPZ CLO10A-1% CLO10A-3% CLO10A-5% CLO10A-7.5%

O
TR

 o
f C

ZN
C-

PP
 F

ilm
s

(m
l/m

2  d
ay

)

0

30

60

90

120

150

O
TR

 o
f C

ZN
C 

La
ye

rs
(m

l/m
2  d

ay
) 

CZNC-PP

CZNC 

 

Figure 6.5. Oxygen transmission rate (OTR) values of CZNC-PP films (in columns                        
- left y-axis) and single CZNC layers (curve – right y-axis)  

Oxygen transmission rates (OTR) of CZNC layers were calculated OTR and 

tabulated in Table 6.3. Figure 6.5 also illustrates the OTR results of CZNC single layers  

together with CZNC-PP film. As evidenced from the Figure 6.5, the addition of even 

small amount of Cloisite 10A into corn zein decreased the oxygen transmission rate. 

OTR of CZNC layers decreased by 56% and 65% at 3 wt% and 5 wt% Cloisite 10A 

loaded corn zein coatings, respectively. Increased oxygen barrier of the CZNC layers 
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can be interpreted as a result of efficient delamination of nanoclays within the corn zein 

matrix. Improved barrier of LSNC systems are mainly attributed to the formation of 

more tortuous path developed by the well dispersed (partial or totally exfoliated) 

nanoclay platelets within the polymer matrix (Choudalakis and Gotsis, 2009; Bae et al., 

2009; Paul and Robeson, 2008; Yu et al., 2007; Lape et al., 2006). Impermeable layered 

silicate platelets interrupt the movement of permeating gas or water vapor molecules 

and force the molecules to change their direction, resulting in longer permeation path to 

be followed (Nielsen, 1967; Bharadwaj, 2001).  

Continuous decreases in oxygen transmission rates were observed for coated 

CZNC layers up to 5 wt% nanoclay content. This result can be attributed to effective 

dispersion of layered silicates in corn zein matrix. However, the CZNC layer containing 

7.5 wt% Cloisite 10A showed an increase in oxygen transmission rate although 

nanoclay content was 50% higher. Layered silicates are more capable of reducing 

permeation through the film since their aspect ratio (length to thickness ratio) is very 

high compared to conventional fillers. (Choudalakis and Gotsis, 2009; Nielsen, 1967). 

At this point, effective aspect ratio must be considered for interpretation of permeability 

in nanocomposites since agglomeration of layered silicate platelets reduces the effective 

aspect ratio and length of the diffusion path must be travelled by the permeant.  

Generally, a critical limit of layered silicate content was reported by many 

authors, due to the changes in nanostructure after certain nanoclay loadings. Decreased 

efficiency in barrier improvements could be observed because of the decrease 

tortuousity due to the poorer dispersion of layered silicate in the polymer matrix 

(Luecha et al., 2010; Herrera-Alonso et al., 2009; Tunc et al., 2007). In this study, the 

increase in the oxygen transmission rate of CLO10A-7.5% sample can be explained by 

the poorer delamination or agglomerations of nanoclays in the polymer matrix. The 

marginal effectiveness of nanoclay addition was reduced for the CLO10A-7.5% sample, 

even though the oxygen transmission is still significantly lower than the pristine corn 

zein layer. 

 

6.2.2. Water Vapor Barrier Properties  

 
 Polypropylene; being an excellent barrier to water vapor is readily used in many 

packaging applications. CZNC layers applied on PP substrate also contributed to water 
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vapor barrier of prepared CZNC-PP films. In order to investigate the barrier 

performance of nanocomposite coatings, water vapor permeability (WVP) of prepared 

CZNC-PP films were investigated.  

 Although biopolymers does not have strong barrier to water vapor, their coatings 

can be utilized to decrease WVP of synthetic polymers additional to oxygen barrier 

improvements. Tihminlioglu and coworkers (2010) studied effect of corn zein coating 

formulations on WVP of corn zein coated polypropylene films. Although corn zein is 

not a known water vapor barrier, noticeable decreases in WVP of films coated with a 

thin layer of corn zein was reported (Tıhmınlıoğlu et al., 2010). Corn zein 

nanocomposite layers coated on PP substrate films also improved barrier to water vapor 

in our study. Water vapor permeability changes due to the existence of coated corn zein 

nanocomposites on PP films were presented in Figure 6.6. Compared to intense effect of 

CZNC coatings on oxygen transmission rates of coated films, water vapor barrier 

improvements were less significant. While OTR of corn zein was found to be 12 times 

smaller than PP, WVP analysis showed that PP and pristine corn zein layer had similar 

water vapor permeability, 6.62 × 10-2 g mm/m day mmHg for PP and 3.78 × 10-2 g 

mm/m day mmHg for corn zein. Nanocomposite coatings on PP also showed further 

improvement as well. 30% decrease in the WVP of CZNC-PP was achieved compared 

to substrate PP film for CLO10A-5% coated sample. Water vapor permeability results 

of CZNC coated PP films were tabulated in Table 6.4. 

Table 6.4. Water vapor permeability (WVP) results of CZNC-PP films prepared by 
different nanoclays and processing technique 

Sample Code
Nanoclay 

Concentration   
(%wt)

WVP of CZNC-PP films       
(*10-2 g mm / m2 day mmHg)

WVP of CZNC Layers        
(*10-2 g mm / m2 day mmHg)

PP - 6.62±0.21 -

PPZ - 6.02±0.29 3.78

CLO10A-1% 1 5.39±0.15 2.58

CLO10A-3% 3 4.96±0.14 1.99

CLO10A-5% 5 4.57±0.14 1.48

CLO10A-7.5% 7.5 4.91±0.09 2.08

NF116-1% 1 5.55±0.39 3.02
NF116-3% 3 5.62±0.09 3.06
NF116-5% 5 5.31±0.1 2.74

CLO10A(Stir)-3% 3 5.51±0.07 3.36
CLO10A(Stir)-5% 5 5.41±0.31 3.09  
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Figure 6.6. Water vapor permeability (WVP) values of CZNC-PP films (in columns – 
left y-axis) and single CZNC layers (curve – right y-axis) 

Since thicknesses of CZNC layers on PP films are not the same, again single 

CZNC layer permeabilities were calculated from the multilayer model using the 

measured thicknesses. Calculated single layer permeabilities were also plotted in Figure 

6.6. Comparably to the oxygen permeability plot, WVP of nanocomposite coating layers 

also showed distinctive decrease by increasing nanoclay content. 60% decrease for the 

WVP of single corn zein layers was achieved at 5 wt%, CLO10A-5% as seen in Figure 

6.6. Improvements achieved in the water vapor barrier of synthetic and biopolymers by 

using layered silicates were reviewed by many authors in the literature (Paul and 

Robeson, 2008; Ray and Bousmina, 2005; Alexandre and Dubois, 2000).  

As in the case of oxygen permeability, efficient dispersion of layered silicates 

within the polymer matrix form more tortuous path for travelling water molecules. 

Several studies reported decreases in the water vapor permeability for plant based 

biopolymer nanocomposites prepared by montmorillonite (MMT) and other layered 

silicates (Bae et al., 2009; Tang et al., 2008; Tunc et al., 2007). An increase in WVP 

was observed for CLO10A-7.5% sample which is in agreement with the oxgen 

transmission results that could be attributed to more intercalated rather than exfoliated 

character of corn zein nanocomposite layer. 

Compatibility of layered silicate and polymer matrix is determining for effective 

dispersion of particles in a nanocomposite. Layered silicates are only compatible with 
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hydrophilic polymers in their natural form. In order to increase the compatibility of 

layered silicates with hydrophobic polymers, layered silicates are organomodified with 

several compounds. Since corn zein has hydrophobic character, organomodification of 

nanoclays is critical. In order to investigate the effect of organomodification on the 

permeability properties of nanocomposites, CZNC layers were also prepared by using 

unmodified nanoclays, Nanofil 116, and coated on to the PP films. WVP values of films 

coated with Nanofil116 incorporated CZNC were given in Table 6.5 together with 

modified clay, Cloisite 10A, incorporated samples for comparison. 

Table 6.5. WVP results of CZNC-PP films prepared by using modified Cloisite 10A and 
unmodified Nanofil 116 nanoclays 

Sample Code
Nanoclay 

Concentration   
(%wt)

WVP of CZNC-PP films       
(*10-2 g mm / m2 day mmHg)

WVP of CZNC Layers        
(*10-2 g mm / m2 day mmHg)

PPZ - 6.02±0.29 3.78

CLO10A-1% 1 5.39±0.15 2.58

CLO10A-3% 3 4.96±0.14 1.99

CLO10A-5% 5 4.57±0.14 1.48

NF116-1% 1 5.55±0.39 3.02
NF116-3% 3 5.62±0.09 3.06
NF116-5% 5 5.31±0.1 2.74  

CZNC layers prepared by using unmodified Nanofil 116 nanoclays exhibited 

lower barrier improvements compared to modified nanoclay samples. WVP of NF116 

samples were 15-30% higher than CLO10A samples. This is due to the incompatibility 

problem between layered silicate and corn zein polymer matrix that was reported by 

several authors for different polymer-layered silicate systems (Herrera-Alonso et al., 

2009; Magalhaes and Andrade, 2009; Tang et al., 2008). 

Effect of processing on WVP of coated films was also investigated. As it is seen 

in Table 6.6, CZNC layers prepared by employing stirring instead of sonication 

exhibited very low improvements in water vapor barrier. Lower performance of stirring 

samples can be attributed to ineffective entering of zein chains between nanoclay 

platelets because of low mechanical forces exerted to the system. The WVP decrease 

seems to be only due to the existence of impermeable clay platelets rather than 

tortuosity formed by dispersed layered silicates. This situation is more evident when 5% 

samples are compared. Although both CLO10A and CLO10A(Stir) samples have same 
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content and type of nanoclays in corn zein matrix, permeation of water molecules in the 

stirred samples is 2 times more than sonicated samples. 

Table 6.6. WVP results of CZNC-PP films prepared by different techniques. While 
CZNC layer of CLO10A and NF116 films were prepared by using 
sonication, CLO10A(Stir) samples were prepared by stirring only 

Sample Code
Nanoclay 

Concentration   
(%wt)

WVP of CZNC-PP films       
(*10-2 g mm / m2 day mmHg)

WVP of CZNC Layers        
(*10-2 g mm / m2 day mmHg)

PPZ - 6.02±0.29 3.78

CLO10A-3% 3 4.96±0.14 1.99

CLO10A-5% 5 4.57±0.14 1.48

NF116-3% 3 5.62±0.09 3.06
NF116-5% 5 5.31±0.1 2.74

CLO10A(Stir)-3% 3 5.51±0.07 3.36
CLO10A(Stir)-5% 5 5.41±0.31 3.09  

6.2.3. Evaluation of Nanocomposite Performance on Oxygen and 
Water Vapor Barrier of Single CZNC layers  

 
 Effect of Cloisite 10A montmorillonite content on WVP is analogous with the 

oxygen transmission rate results of the CZNC layers. Oxygen and water vapor 

permeability trends were plotted relative to pristine corn zein coating layer for 

convenience in Figure 6.7 together. Depending on the degree of layered silicate 

nanoclay dispersion in the polymer matrix, permeability of water vapor decreased as in 

the case of oxygen due to the tortuous path formed for permeating water molecules. 

Decreasing oxygen and water vapor permeability due to tortuosity can also be explained 

by the employment of permeability models on coated corn zein nanocomposite layers.  
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Figure 6.7. Oxygen and WVP values of CZNC layers relative to permeability of pristine 
corn zein layer 

Several permeability models were developed to understand the effect of fillers 

on the permeability of molecules in composite structures. Permeability models differ in 

their assumptions and considered filler geometry. Models based on rectangular flakes 

can be applied to layered silicate nanocomposite systems. Although theoretical models 

were proposed for conventional microcomposites; tortuosity effect of conventional 

fillers and nanofillers are similar. (Choudalakis and Gotsis, 2009; Sun et al., 2008). 

Permeability models applied on prepared CZNC layers, and their basic assumptions 

were tabulated in Table 4.1. Although theoretical permeability models were developed 

to predict permeability of composite systems for considered aspect ratio of filler, they 

can also be used in reverse form to predict the average aspect ratio of fillers by using 

experimental permeability data. Figure 6.8 shows the relative water vapor permeability 

and oxygen permeability of the single CZNC layer as a function of volume fraction of 

nanoclay. Both water vapor and oxygen experimental permeability data were used for 

fitting of the models given in Table 4.1. 
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Figure 6.8. Permeability models fitted to experimental OTR and WVP data of Cloisite 
10A samples. Aspect ratios found for best fitting models were also reported 

As seen in Figure 6.8, the Nielsen Model (Nielsen, 1967) and Bharadwaj Model 

(S=0 case, random silicate platelet orientation included version of Nielsen Model) 

(Bharadwaj, 2001) gave the best fitting to experimental OTR and WVP data. Both 

Nielsen and Bharadwaj models gave aspect ratios around 94 and 283, respectively for 

OTR and WVP data , which is in good agreement with the reported aspect ratio range 

(10-1000) for layered silicates (Choudalakis and Gotsis, 2009; Ray and Bousmina, 

2006). Bharadwaj model with S=1 gives the same aspect ratio with Nielsen model. S=0 

case of Bharadwaj Equation generally results in higher aspect ratios for exfoliated 

systems since it considers different orientations of silicates resulting in theoretically 

possible shorter paths for permeants. While S=1 situation considers the longest path 

available for permeating molecules and gives same result with Nielsen Model since they 

both consider same nanoclay platelet alignments with same assumptions. Figure 6.9 

illustrates schematic representations of S=1 and S=0 cases. 
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Figure 6.9. Schematic representations of S=1 (regular array, also same for Nielsen 

Model) and S=0 (random array) cases of Bharadwaj Model (Source: 
Bharadwaj, 2001) 

 WVP results of CZNC layers prepared by using unmodified Nanofil 116 were 

also investigated by using permeability models. Models fitted on experimental WVP 

data was given in Figure 6.10. Similar to modified Cloisite 10A nanoclay samples, 

again the best fitting models were Nielsen and random Bharadwaj (S=0) models. 

According to the models, the effective aspect ratio was estimated as 23 and 68, 

respectively from the Nielsen Model and Bharadwaj Model which is quite lower than 

modified Cloisite 10A loaded samples. 
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Figure 6.10. Permeability models fitted to experimental WVP data of Nanofil 116 
samples. Aspect ratios found for best fitting models were also reported 

S = 1 S = 0 
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Predicted effective aspect ratio could also be used to examine the delamination 

efficiency of layered silicates in the polymer nanocomposites. Layered silicate platelets 

are characterized by large aspect ratios in a broad range in their delaminated form (Paul 

and Robeson, 2008). Therefore, the higher calculated aspect ratio could be attributed to 

more exfoliated nanocomposite structures. But it must be emphasized that the applied 

models are only considering available area and/or effective path of permeating 

molecule. Enhanced interactions between clay and polymer matrix and crystallinity 

changes are not considered in these models. 

 

6.3. Mechanical Properties  

 
Mechanical properties of the corn zein nanocomposite coated polypropylene 

films were determined by tensile testing. Mechanical characteristics of plant based 

biopolymer coatings tend to rely strongly on the synthetic substrate of composite 

structure (Lee et al., 2008; Hong et al., 2004; 2005). In this study mechanical 

characteristics of prepared films were mainly coming from the polypropylene base film. 

However, tensile properties of PP films were observed to be significantly affected by 

the corn zein nanocomposite coatings. Sample stress – strain curves representing the 

effect of CZNC coating on polypropylene was given in Figure 6.11.  
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Figure 6.11. Sample stress-strain curves representing the effect of CZNC coating 
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The most significant changes were obtained in the elastic (Young’s) modulus of 

CZNC-PP films. Elastic modulus is the measure of the required force to deform the film 

by a given amount of tension. It is also a measure of stiffness related with the rigidity of 

the film. As long as an acceptable level of elongation before breaking of the film is 

satisfied, high modulus (stiff) materials are desired in food packaging. Elastic modulus 

of prepared CZNC coated PP films were affected by the corn zein coatings at different 

extends depending on the nanoclay type and loading as well as preparation method. 

Elastic modulus of prepared CZNC-PP films evaluated from the stress-strain curves of 

tensile testing are tabulated in the Table 6.7 below. 

Elastic modulus of the base film was unsurprisingly found to be enhanced by the 

corn zein coatings, since stiff but brittle CZNC layer on the PP surface acts like filler in 

composite structure. Improved stiffness of the films became more evident by the 

incorporation of Cloisite 10A as seen in Figure 6.12.  

Table 6.7. Elastic modulus of the prepared CZNC-PP films 

Sample
Nanoclay Content in 

CZNC Layer             
(%)

Elastic Modulus                
(*100 MPa)

PP - 5.83±0.29

PPZ - 8.21±0.48

CLO10A-1% 1 9.12±0.51

CLO10A-3% 3 10.27±0.31

CLO10A-5% 5 11.59±0.43

CLO10A-7.5% 7.5 10.54±0.38

NF116-5% 5 9.54±0.39

CLO10A(Stir)-3% 3 8.27±0.93

CLO10A(Stir)-5% 5 8.20±0.69  
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Figure 6.12. Elastic modulus of the base PP film and CZNC-PP films  

 Modulus of CZNC-PP films increased continuously up to 5 wt% Cloisite 10A 

content and then decreased for Clo10A-7.5% samples. As in the case of conventional 

composites, layered silicate nanocomposites moduli also exhibits strong increases due 

to fine dispersion of mechanically strong clay (Ray and Bousmina, 2006; Alexandre and 

Dubois, 2000). Beside existence of high moduli nanoclay, strong interactions due to 

higher aspect ratio of nanoclays thought to be playing an important role on improved 

stiffness in nanocomposites compared to conventional composite structures (Pavlidou 

and Papaspyrides, 2008; Paul and Robeson, 2008; Petersson and Oksman, 2006; 

Alexandre and Dubois, 2000). Moreover improved stiffness and durability, more brittle 

character of various nanocomposite systems was also reviewed by Pavlidou and 

Papaspyrides (2008) in detail. In our study,5 wt% Cloisite 10A loading can be accepted 

as the optimum clay concentration where interactions between zein matrix and 

nanoclays were maximum; doubling the elastic modulus of base PP film. Nanoclay 

content above 5 wt% resulted in decreased reinforcement, as it was also in good 

agreement with the barrier properties of prepared films. Degree of reinforcement can be 

attributed to the changes in intermolecular forces due to exfoliation/intercalation of 

layered silicates within the corn zein matrix. Decreased marginal or overall efficiency of 

reinforcing after a critical limit was reported in several protein based nanocomposites 

(Yu et al., 2007; Huang and Netravali, 2006; Chen and Zhang, 2006). 
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Reinforcement effect of CZNC layers on CZNC-PP films were differed by the 

compatibility of nanoclays within the corn zein matrix and preparation method. Elastic 

modulus of CZNC-PP films containing 5 wt% nanoclay samples were compared and 

tabulated in Table 6.8. Similar to WVP results, better compatibility of organomodified 

Cloisite 10A was resulted in higher modulus improvement compared to unmodified 

Nanofil 116 montmorillonites. Effectiveness of sonication for the preparation of CZNC 

layers of coated films was again evident. While sonicated Cloisite 10A sample 

successfully increased modulus about 40% compared to pristine zein coated film; 

modulus of stirring sample was nearly the same with the zein coated film.   

Table 6.8. Elastic modulus of CZNC-PP films containing 5 wt% nanoclay  

Sample
Nanoclay Content in 

CZNC Layer             
(%)

Elastic Modulus          
(*100 MPa)

PPZ - 8.21±0.48

CLO10A-5% 5 11.59±0.43

NF116-5% 5 9.54±0.39

CLO10A(Stir)-5% 5 8.2±0.69  

 Corn zein has different mechanical characteristics compared to polyolefins. Corn 

zein is a brittle biopolymer, breaking up before plastic deformation without yielding 

(Selling and Sessa, 2007; Lawton, 2004; Gennadios, 2002). CZNC-PP films exhibited 

yielding that is inherent to substrate PP. Brittle character of corn zein did not alter the 

yielding point of PP films. Moreover, the addition of nanoclay into corn zein increased 

yielding strength of the coated films depending on the nanoclay used and preparation 

method. Yield strength of CZNC-PP films were tabulated in Table 6.9.  Improvements 

in yielding strength can be followed from the Figure 6.13 for Cloisite 10A loaded 

samples. Coated CZNC layers improved the mechanical durability of the base PP films. 

While the yielding strength of corn zein coated films were about 25MPa, modified 

montmorillonite loaded CZNC layers delayed yielding of coated films to 30.9MPa for 

CLO10A-7.5% films. 
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Table 6.9. Yield strength of the CZNC-PP films 

Sample
Nanoclay Content  in 

CZNC Layer             
(%)

Yield Strength                  
(MPa)

PP - 17.51±0.35

PPZ - 24.68±0.79

CLO10A-1% 1 28.09±1.18

CLO10A-3% 3 27.91±1.15

CLO10A-5% 5 30.17±0.86

CLO10A-7.5% 7.5 30.87±0.96

NF116-5% 5 26.92±1.96

CLO10A(Stir)-3% 3 24.68±0.32

CLO10A(Stir)-5% 5 25.28±1.36  
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Figure 6.13. Yield Strength results of the base PP film CZNC coated PP films 

 Since corn zein is a weak and brittle polymer compared to PP with lower tensile 

strength and flexibility; separation of zein coatings was expected for higher strain 

values. It was observed that, corn zein and nanocomposite coatings were loosing their 

mechanical integrity around yielding point of coated films although PP substrate was 

continuing to elongate. Though zein coating layer was broken around yielding, coating 

layer adhered on PP substrate. Breaking of the coatings was changed depending on the 

clay content in the CZNC coatings. While pristine corn zein and CLO10A-1% samples 

were breaking homogeneously from several points throughout the surface of the film, 
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samples containing 3 – 7.5 wt% clay resulted in a couple or single breaking points 

(Figure 6.14). Change in breaking characteristics of CZNC coatings could be attributed 

to increased strong interactions between organomodified Cloisite 10A and zein matrix 

with increasing clay concentration as it was also evidenced from FTIR results.  

 

Figure 6.14. Breaking of the CZNC layers after yielding. Photo on the left shows the 
homogeneous breaking of CZNC layers from several points before 
breaking of CLO10A-1% film. Photo on the right shows the breaking of 
CZNC layer after yielding for CLO10A-5%.  

 Effect of stronger CZNC layers on yield strength of CZNC-PP films is obvious 

as it can be followed from Table 6.9. Stronger H-bonding between layered silicates and 

corn zein chains results in durable CZNC layers. Effect of processing and 

organomodification on the yield strength and elongation at break values of CZNC-PP 

films containing 5 wt% clay were investigated and compared in Tables 6.10 and 6.11. 

Level of improvement in yield strength was significantly higher for organomodified 

Cloisite 10A containing films compared to unmodified Nanofil 116 containing films. 

Efficient delamination of nanoclays and their dispersion in corn zein matrix achieved by 

sonication also reinforced zein layer better compared to stirring samples. 
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Table 6.10. Yield strength of CZNC-PP films containing 5 wt% nanoclay 

Sample Nanoclay Content in 
CZNC Layer (%)

Yield Strength            
(MPa)

PPZ - 24.68±0.79

CLO10A-5% 5 30.17±0.86

NF116-5% 5 26.92±1.96

CLO10A(Stir)-5% 5 25.28±1.36  

Although effective reinforcement provided by organomodified Cloisite 10A due 

to increased interactions with zein matrix in CZNC coatings brought in desirable 

properties such as enhanced elastic modulus and higher yield strength, elongation at 

break of coated PP films decreased dramatically with increasing clay concentration as 

seen in Figure 6.15. As mentioned before, CZNC layer coated on PP surface acts like a 

fiber in a composite structure. Stiffer and stronger corn zein layers formed by the 

dispersion of nanoclays lowered the elasticity of prepared films by creating stress 

concentrated regions on substrate film. Unmodified clay containing and stirring samples 

gave higher elongation at break values compared to modified ones (Table 6.11) 

Continuous decrease in elongation at break was observed in CZNC-PP samples prepred 

by using organomdified Cloisite 10A nanoclay. The elongation value of zein coated PP 

decreased from 683% to 247%. Although flexibility of the all prepared films decreased, 

the maximum elongation before break was still much higher than the yielding strain of 

the films where integrity of the CZNC coating and PP substrate film altered. 
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Figure 6.15. Percent Elongation at break values of CZNC-PP and base PP films 

Table 6.11. Effects of clay amount/type and preparation method on the percent 
elongation at break values of CZNC films  

Sample
Nanoclay Content in 

CZNC Layer             
(%)

Percent Elongation at Break      
(%)

PP - 732.89±56.11

PPZ - 683.76±67.93

CLO10A-1% 1 487.49±37

CLO10A-3% 3 372.19±180.31

CLO10A-5% 5 320.16±25.22

CLO10A-7.5% 7.5 247.1±30.77

NF116-5% 5 427.78±139.78

CLO10A(Stir)-3% 3 581.54±60.65

CLO10A(Stir)-5% 5 385.82±164.85  

 
6.4. Optical and Surface Properties 

 
 Effect of nanoclay content, type and processing method on the optical and 

surface hydrophobicity properties of CZNC layers were also investigated. Surface 

hydrophobicity of the CZNC-PP films were evaluated by contact angle measurements. 

Optical properties of the films were investigated by conducting color measurements, 

examining the total color change. 
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6.4.1. Contact Angle Measurements 

 
Initial contact angle measurements were conducted in order to observe the effect 

of organomodified montmorillonite (Cloisite 10A) content on corn zein nanocomposite 

coated polypropylene films. Contact angle is the measure of hydrophobicity of a 

substance. As hydrophobicity of the surface decreases, water molecules tend to spread 

on surface more readily. Measured water contact angles of the PP substrate and CZNC 

coated films were given in Table 6.12. Values denoted by θ, are the angle of tangent line 

to water drop with the surface as seen in Figure 6.16. 

 

Figure 6.16. Definition of contact angle used in this study 

 Zein coating reduced the contact angle of the film surface from 88.900 to 54.250, 

due to more hydrophilic nature of corn zein. Measured contact angle value for zein 

coating is in good agreement with previously reported glycerol plasticized zein films 

and coatings (Tihminlioglu et al., 2010; Atik et al., 2007; Ghanbarzadeh et al., 2006). 

Addition of even small amount of organomodified Cloisite 10A nanoclay into corn zein 

increased hydrophobicity of CZNC coatings. Increase in hydrophobicity can be 

attributed to the addition of Cloisite 10A with hydrophobic character into the corn zein 

polymer. Effect hydrophobic or hydrophilic character of nanofillers on contact angles of 

nanocomposite films were also reported previously. Decrease in contact angle reported 

by the use of hydrophilic unmodified montmorillonites (Tunc et al., 2007) while 

hydrophobic organomodified MMT increased hydrophobicity of the surface (Rhim et 

al., 2006).  
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Table 6.12. Initial contact angles measured for CZNC-PP samples 

Sample Code Left Angle (θ) Right Angle (θ) Avg. Contact Angle (θ)

PP 89.34±0.67 88.45±1.07 88.90±0.82

PPZ 54.93±1.18 53.57±2.03 54.25±1.45

CLO10A-1% 56.43±1.31 55.68±0.95 56.06±1.02

CLO10A-3% 57.06±1.01 56.17±3.34 56.62±1.93

CLO10A-5% 61.90±0.57 60.36±1.21 61.13±0.89

CLO10A-7.5% 62.38±1.79 60.95±1.76 61.66±1.68

CLO10A-15% 64.76±4.37 61.47±5.65 63.12±4.88  

Measured initial contact angles of the CZNC coatings were in good accordance 

with the water vapor permeability results. The degree of surface hydrophobicity 

increased with increasing OMMT concentration. As degree of surface hydrophobicity 

increased, WVP of CZNC-PP films decreased indicating a possible relationship 

between contact angle changes and water vapor barrier due to changes in the 

nanocomposite structure in the polymer matrix. WVP of the coatings would be 

decreased by the presence of exfoliated OMMT on the surface by limiting water 

molecules to be absorbed by CZNC matrix. Another possibility is that affinity to water 

molecules is decreased due to the more hydrophobic zein coating.  

In this study, contact angles measured for various Cloisite 10A concentrations 

showed small deviations; that can be interpreted as an indication of homogeneous 

surface. Effect of high nanoclay content can be seen in Table 6.12 for CLO10A-15% 

sample. Measured contact angle for CLO10A-15% was higher than all CZNC-PP films. 

Standard deviation of the measurements was also significantly higher than other 

samples that can be attributed to altered homogeneity of the surface due to inefficient 

dispersion of layered silicates.  

 

6.4.2 Color Changes of Films 

 
 Color of corn zein nanocomposite coated polypropylene films are as important 

as barrier and mechanical properties for their possible use as a packaging film. 

Polypropylene is widely used in food packaging applications where display of food is 
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desired. Since PP is an accepted colorless polymer; the effect of CZNC coatings on 

polypropylene were evaluated by using Hunter Method by taking the commercial PP 

film as reference. The total color differences (ΔE) of the coated films were calculated by 

using the L, a, b parameters for different CZNC formulations.  

 Results of the color analysis showed that nanoclay type and loading as well as 

preparation method of CZNC coating layers has significant effect on the color of the 

films. The total color difference of the films represents the cumulative effect of three 

color parameters; L, a, and b. The luminosity or lightness parameter L can have values 

between 0 and 100. As ability of film to reflect light increases, the value of L converges 

to 100. As seen in Table 6.13, the luminosity of the films did not change by the CZNC 

coating. Second color parameter a, is the measure of redness-greenness. Values of a 

changes between -60 (green) and 60 (red); as the material become greener, its value 

converges to -60. As seen in Table 6.13, increase in the clay content resulted in very 

slight change of b parameter in the direction of green color. 

Table 6.13. The total color difference (ΔE) and color parameters of prepared CZNC 
coated PP films for different formulations 

Sample Code OMMT     
(%wt) L a b Total Color Difference      

(ΔE)
PP - 90.38 0.27 -0.13 (Reference)

PPZ - 90.25 -0.07 2.03 2.19
CLO10A-1% 1 90.11 -0.10 2.11 2.28
CLO10A-3% 3 90.15 -0.02 2.35 2.51
CLO10A-5% 5 90.12 -0.20 2.71 2.89

CLO10A-7.5% 7.5 90.19 -0.20 2.72 2.89
NF116-1% 1 89.26 -0.40 3.95 4.28
NF116-3% 3 89.06 -0.37 3.56 3.97
NF116-5% 5 89.19 -0.59 4.58 4.93

CLO10A(Stir)-3% 3 89.71 -0.50 4.05 4.31
CLO10A(Stir)-5% 5 89.81 -0.26 4.62 4.81  

 The most significant contribution to total color change was done by the 

yellowness index b. As materials become yellower, the value converges to 60. The 

applied polymer layers onto the substrate in laminated (Weller et al., 1998) or coated 

(Lee et al., 2008) structures change the color depending on the characteristics of applied 

layer. Higher yellowness of CZNC coated PP films is unsurprising, since corn zein is 
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yellow in its standalone form (Weller et al., 1998). Corn zein coatings were also 

reported to change the color of PP films yellower in different extends depending on the 

plasticizer type (Lee et al., 2008). As seen in Table 6.13, even 6 micron corn zein 

coating without nanoclay loading resulted in increased b value.  

Blending and composting the polymers change the color of resulting films. 

Several studies reported the color change together with transparency that is an 

indication for the miscibility of components (Su et al., 2010; Rotta et al., 2009). Since 

human eye is insensitive to color differences below the value of 3; generally color 

changes below this limit is acceptable in many applications (Hong et al., 2005). The 

color measurement results for CLO10A set of prepared films were tabulated in Table 

6.14. Corn zein nanocomposite coatings prepared by using Cloisite 10A at different 

loadings exerted only small changes to total color difference values. Since the total 

difference values were maximum 2.89, it can be said that the color change is 

insignificant due to the fine delamination of nanoclay platelets within the corn zein 

matrix as it was also evidenced from the FTIR-ATR results. As seen in Tbale 6.14, the 

loaded filler amount increases, the color of CZNC becomes slightly yellower. Casariego 

and coworkers (2009) reported only very slight yellowish color change of chitosan 

nanocomposites, due to fine dispersion of nanoparticles. 

Table 6.14. The total color difference (ΔE) and color parameters of Cloisite 10A loaded 
CZNC coated PP films  

Sample Code OMMT     
(%wt) L a b Total Color Difference     

(ΔE)
PP - 90.38 0.27 -0.13 (Reference)

PPZ - 90.25 -0.07 2.03 2.19
CLO10A-1% 1 90.11 -0.10 2.11 2.28
CLO10A-3% 3 90.15 -0.02 2.35 2.51
CLO10A-5% 5 90.12 -0.20 2.71 2.89

CLO10A-7.5% 7.5 90.19 -0.20 2.72 2.89  

 Besides the nanoclay content; the chemistry of the clay – pristine or 

organomodified montmorillonite, and processing type were observed to be influential 

on the color changes of the corn zein nanocomposite coating layers. Though CZNC 

layers prepared by sonication of Cloisite 10A organomodified montmorillonites showed 
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insignificant color differences compared to base PP film, films coated with zein layers 

containing unmodified Nanofil 116 and coatings prepared without sonication resulted in 

significant total color changes. Effect of modification of montmorillonite and 

preparation technique on the color changes were observed to be more evident in 

coatings prepared by incorporation of 5% nanoclay in CZNC layer. Total color 

differences evaluated for 5% nanoclay content in CZNC layers were tabulated in Table 

6.15 for comparison. 

Table 6.15. Total color difference (ΔE) and color parameters of 5% nanoclay loaded 
CZNC coated PP films 

Sample Code OMMT     
(%wt) L a b Total Color Difference      

(ΔE)
PP - 90.38 0.27 -0.13 (Reference)

PPZ - 90.25 -0.07 2.03 2.19
CLO10A-5% 5 90.12 -0.20 2.71 2.89
NF116-5% 5 89.19 -0.59 4.58 4.93

CLO10A(Stir)-5% 5 89.81 -0.26 4.62 4.81  

 As seen in Table 6.15, inefficient dispersion of layered silicates resulted in 

significant color changes, even detectable by naked eye. Yellowness and total color 

difference of 5% samples prepared by unmodified MMT and without sonication were 

higher compared to CLO10A-5% nanocomposite coating. 
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CHAPTER 7 

 

CONCLUSION 

 
In this study, corn zein nanocomposites (CZNC) prepared by solution 

intercalation method were coated onto polypropylene (PP) films in order to develop a 

novel film system for food packaging applications. The study was focused on the effects 

of montmorillonite addition into corn zein coating layer. Effect of nanoclay content, 

type and processing of CZNC layers on the oxygen and water vapor barrier as well as 

mechanical properties, optical and surface characteristics of corn zein nanocomposite 

coated PP films (CZNC-PP) were investigated. The final films showed good 

compatibility between CZNC coating and PP in terms of appearance and adhesion. 

CZNC coatings applied on PP showed improvements in the barrier properties of the 

bilayer PP films depending on the level of nanoclay content and type in CZNC coating. 

CZNC coating with a thickness of only 5.9 µm successfully improved the barrier 

properties of PP film. Nanocomposite coating reduced the oxygen transmission rates 

(OTR) of prepared films by 4 times compared to base PP film, meanwhile WVP 

decreased by 30% for the films prepared with 5wt% OMMT in the CZNC coating. 

Effect of nanocomposite structure on barrier properties of single corn zein layers 

was also investigated. Extend of barrier improvements were also in good accordance 

with the interactions between layered silicate nanoclays and zein matrix as well as 

nanoclay loading since FTIR-ATR results revealed new bonds within the coated CZNC 

structure due to fine layered silicate delamination. Independent of coating thickness, 

addition of 5wt% Cloisite 10A organomodified nanoclay to corn zein decreased the 

OTR and WVP of single zein coating layers by 65% and 60%, respectively. The 

decreases in permeabilities of the films is believed to be due to the presence of 

dispersed particle layers with large aspect ratios in the polymer matrix. This forces 

permeating molecules to follow a tortuous path through the polymer matrix by 

increasing the effective path length for diffusion. Permeation data was fitted to various 

phenomenological tortuosity based models predicting the permeability of polymer 

nanocomposite filled with nanoclay as a function of clay concentration and aspect ratio 

of nanoplatelets. Since effective aspect ratio is somehow related to level of delamination 
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in the structure, the barrier property improvements are in accordance with the aspect 

ratio. CZNC layer showed higher OTR and WVP for 7.5% wt nanoclay loaded sample 

attributed to reduced exfoliation and possibly some degree of agglomeration of 

nanoclays in nanocomposite structure. Surface characteristics were also in agreement 

with the permeability results. Higher modified nanoclay content increased 

hydrophobicity of CZNC surfaces. 

Mechanical properties of prepared films (elastic modulus and yield strength) 

were significantly improved by the addition of organomodified montmorillonites. While 

elastic moduli of the prepared films were doubled and yield strengths increased by 75% 

compared to PP film; elongation at break of the films decreased due to less flexible zein 

coating.  

Optical properties of CZNC-PP films were found to be affected by the nanoclay 

amount and organomodification. Organomodified montmorillonites finely dispersed in 

corn zein layer changed the color of the films very slightly, and not detectable by naked 

eye. Meanwhile, addition unmodified nanoclay and stirring employed instead sonication 

lead to deterioration of the color of the films. Additionaly, incompatibility between zein 

and unmodified nanoclays resulted in lower barrier and mechanical performance of 

CZNC-PP films. Similarly, stirring was found to be ineffective for the preparation of 

CZNC layers since no significant achievements were obtained compared to the samples  

prepared by sonication.   

In summary, excellent barrier properties of corn zein nanocomposites were 

successfully combined with mechanically strong PP as an eco-friendly promising 

alternative to conventional barrier packaging systems. A novel strategy was proposed to 

put corn zein in use for food packaging applications by nanocomposites.  
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