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ABSTRACT 
 

 

The growth of large-scale transactional databases, time-series databases and 

other kinds of databases has been giving rise to the development of several efficient 

algorithms that cope with the computationally expensive task of association rule 

mining.  

In this study, different algorithms, Apriori, FP-tree and CHARM, for 

exploiting the hidden trends such as frequent itemsets, frequent patterns, closed 

frequent itemsets respectively, were discussed and their performances were evaluated. 

The perfomances of the algorithms were measured at different support levels,  and the 

algorithms were tested on different data sets (on both synthetic and real data sets). 

The algorihms were compared according to their, data preparation performances, 

mining performance, run time performances and knowledge extraction capabilities. 

The Apriori algorithm is the most prevalent algorithm of association rule 

mining which makes multiple passes over the database aiming at finding the set of 

frequent itemsets for each level. The FP-Tree algorithm is a scalable algorithm which 

finds the crucial information as regards the complete set of prefix paths, conditional 

pattern bases and frequent patterns by using a compact FP-Tree based mining 

method. The CHARM is a novel algorithm which brings remarkable improvements 

over existing association rule mining algorithms by proving the fact that mining the 

set of closed frequent itemsets is adequate instead of mining the set of all frequent 

itemsets. 

 Related to our experimental results, we conclude that the Apriori algorithm 

demonstrates a good performance on sparse data sets. The Fp-tree algorithm extracts 

less association in comparison to Apriori, however it is completelty a feasable 

solution that facilitates mining dense data sets at low support levels. On the other 

hand, the CHARM algorithm is an appropriate algorithm for mining closed frequent 

itemsets (a substantial portion of frequent itemsets) on both sparse and dense data sets 

even at low levels of support. 

 



“Büyük Veri Gruplarındaki Gizli İlişkilerin Ortaya Çıkarılmasında 
Kullanılan Algoritmaların Karşılaştırılması”  

 
ÖZ 

 

Geniş ölçekli hareketli (transactional), zaman-serisi ve diğer türdeki veri 

tabanlarındaki büyüme, ilişki bulma (association rule) madenciliği konusunun yoğun 

işlem sürecinin üstesinden gelebilen etkili birçok algoritmanın geliştirilmesini 

beraberinde getirmiştir. Bu çalışmada, sırasıyla frequent itemsets, frequent patterns, 

closed frequent itemsets gibi gizli eğilimleri ortaya çıkarmada kullanılan Apriori, FP-

tree ve CHARM gibi çeşitli algoritmalar tartışılmakta ve performansları 

değerlendirilmektedir. Söz konusu algoritmaların performansları farklı (sentetik ve 

gerçek) veri grupları  üzerinde test edilmiş ve çeşitli eşik (support) seviyeleri için 

ölçülmüştür. Algoritmalar veri hazırlama, madencilik, toplam çalışma performansları 

ve bilgi çıkarım yetileri açısından karşılaştırılmıştır. 

İlişki bulma (association rule) madenciliğinin en temel algoritması olan 

Apriori, her seviyedeki frequent itemset grubunu bulma amacına yönelik olarak veri 

tabanı üzerinde çoklu geçişler yapmaktadır. FP-tree algoritması bellekte az yer 

kaplayan FP-tree tabanlı bir madencilik yöntemi kullanarak tüm prefix paths, 

conditional pattern bases ve frequent patterns gruplarına ilişkin önemli bilgileri 

bulan ölçeklendirilebilir bir algoritmadır. CHARM, tüm frequent itemset grubunu 

ortaya çıkarmak yerine closed frequent itemset grubunu ortaya çıkarmanın yeterli 

olabileceğini kanıtlayarak mevcut ilişki bulma (association rule) madenciliği 

algoritmaları üzerine kayda değer gelişmeler ekleyen yepyeni bir algoritmadır. 

Deneysel sonuçlarımıza dayanarak, Apriori algoritmasının seyrek (sparse) 

veri grupları üzerinde iyi performans gösterdiği sonucuna varmış bulunmaktayız. FP-

tree algoritması, Apriori algoritmasına kıyasla daha az ilişki bulmakla beraber, yoğun 

(dense) veri gruplarında düşük eşik (support) seviyelerinde de madenciliği mümkün 

kılan tek algoritmadır. Diğer taraftan, CHARM algoritması hem seyrek (sparse) hem 

de yoğun (dense) veri grupları üzerinde düşük eşik (support) seviyelerinde closed 

frequent itemset grubu (frequent itemset gurubun büyük bir kısmı ya da tamamı) 

hakkındaki bilgiyi çıkarmak için uygun bulunmuştur. 
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Chapter 1 

 

INTRODUCTION 

 

 

1.1 Motivation 

In the last decade, we have seen an explosive growth in our capabilities to 

both generate and collect data. Advances in scientific data collection (e.g. from 

remote sensors or from space satellites), the widespread introduction of bar-codes 

for almost all commercial products, and the computerization of many business 

(e.g. credit card purchases) and government transactions (e.g. tax returns) have 

generated a flood of data. Advances in storage technology, such as faster, higher 

capacity and cheaper storage devices (e.g. magnetic discs, CD-ROMS), better 

database management systems, and data warehousing technology, have allowed 

us to transform this data deluge into “mountains” of stored data. 

Representative examples of such huge data, mentioned above, can easily 

be found in the business world. One of the largest databases in the world was 

created by Wal-Mart (a U.S. retailer) which handles over 20 million transactions a 

day [Babcock, 1994]. Most health-care transactions in the U.S. are being stored in 

computers, yielding multi-gigabyte databases, which many large companies are 

beginning to analyze in order to control their costs and improve quality. Mobil Oil 

Corporation, is developing a data warehouse capable of storing over 100 terabytes 

of data related to oil exploration [Harrison, 1993].   

Such volumes of data clearly exceed the performance of traditional manual 

methods of data analysis such as spreadsheets and ad-hoc queries. Those methods 

can create informative reports from data, but cannot analyze the contents of those 

reports in order to focus on important knowledge. For this reason, a significant 

need exists for a new generation of techniques and tools with the ability to 

intelligently and automatically assist human in analyzing the mountains of data 

nuggets of useful knowledge. These techniques are the subject of the emerging 

field of data mining and knowledge discovery in databases (KDD for short).  

 Data mining may have simply three major components: Clustering, 

Classification, Link Analysis (Association Rule Mining or Sequence Analysis).
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 Mining frequent patterns or itemsets is an essential problem in many data 

mining applications including association rules, correlations, sequential rules, 

episodes, multi-dimensional patterns and many other important discovery tasks. 

Actually, the results of the investigation presented by “www.kdnuggets.com” 

(given in Figure 1.1 below) shows us that the usage of “Association Rule Mining 

Techniques” possesses the 9% of the overall data mining studies.  

 

Usage Statistics of Data Mining Techniques 

 

Figure 1.1: The percentage of “association rules” among other  

data mining techniques (http://www.kdnuggets.com). 

 

 The general structure of the association rule mining algorithms is that they 

make multiple passes over the data. Each pass, starts with a seed set for generating 

new potentially large sets, called candidate sets. Then the supports of candidate 

sets during the pass over the data are found (scan step). At the end of the pass, 

actually large candidate sets are determined (prune step). These candidates 

become the seed for the next pass (for the join step). 

 

1.2 Objective 

In this study, we considered the problem of Mining Association Rules 

between items in large databases of sales transactions. The task of mining 

association rules over market basket data was first introduced by Rakesh Agrawal, 
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Tomasz Imielinski and Arun Swami in 1993 [Agrawal, Imielinski, and Swami, 

1993(May)], and frequently used since then. 

An example of such an association rule might be that 98% of customers 

that purchase tires and auto accesories also get their automative services done. 

Other applications include catalog design, add-on sales, store layout, and 

customer segmentation based on buying patterns. The databases involved in these 

applications are very large. Therefore, it is imperative to have fast algorithms to 

handle these computations. 

In this study, three algorithms for mining associaiton rules have been 

discussed (analyzed in detail), implemented and their performances are compared 

using both different data sets and different treshold (known as support) levels. 

Underlying data sets are “Northwind” database (which is a sample data set 

obtained from Microsoft Access Database), and different kinds of synthetic data 

sets. 

 

1.3 Structure of the Study 

As is mentioned in Section 1.1, there are many data mining techniques. 

These techniques were explained more or less on their own. In Chapter 2, we 

introduced the scope and the mission of Data Mining and Knowledge Discovery 

in Databases(KDD) including both the descriptive and the predictive methods. 

Chapter 3 discusses the Associaiton Rule Mining Task, introduces Apriori, 

FP-Tree and CHARM algorithms in detail.  

In Chapter 4, features of the sample data set and the synthetic data set are 

visualized and the generation of a synthetic data sets are described. Afterwards, 

the proposal with respect to our modification in the CHARM algorithm is given. 

Chapter 5 is concerned with the presentation and discussion of all the  

experimental results. The comparison of the algorithms is also under the scope of  

this chapter. 

Chapter 6 summarizes our main findings and the benefits of the Apriori, 

FP-tree and CHARM algorithms. It also points out some future research issues. 
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Chapter 2 

 

DATA MINING AND KNOWLEDGE DISCOVERY 

 

 

2.1 Overview and Definitions 

Databases today can range in size into the terabytes — more than 

1,000,000,000,000 bytes of data. Within these masses of data, there may lie 

hidden information of strategic importance. But when there are so many trees, 

how meaningful conclusions can be drawn about the forest? The newest answer is 

data mining, which is being used both to increase revenues and to reduce costs. 

The potential returns are enormous. Challenging organizations worldwide are 

already using data mining to locate and appeal to higher-value customers, to 

reconfigure their product offerings to increase sales, and to minimize their losses 

[Kennedy, Reed and Roy, 1998] [Fayyad, Piatetsky-Shapiro, Smyth and 

Uthurusamy, 1996] [Dhar and Stein, 1997]. 

Data mining is a process that uses a variety of data analysis tools to 

discover patterns and relationships in data that may be used to make valid 

predictions. The first and simplest analytical step in data mining is to describe the 

data — summarize its statistical attributes (such as means and standard 

deviations), visually review it using charts and graphs, and look for potentially 

meaningful links among variables (such as values that often occur together).  

In data mining process, collecting, exploring and selecting the right data 

are critically important. But data description alone cannot provide an action plan. 

A predictive model based on patterns has to be determined from known results, 

then that model has to be tested on results outside the original sample. A good 

model should never be confused with reality, but it can be a useful guide for 

understanding the business.  

Historically, the notion of finding useful patterns (or nuggets of 

knowledge) in raw data has been given various names, including knowledge 

discovery in databases, data mining, knowledge extraction, information discovery, 

information harvesting, data archeology, and data pattern processing. 
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The term Knowledge Discovery in Databases, or KDD for short, was first 

used in 1989 to refer to the broad process of finding knowledge in data, and to 

emphasize the “high-level” application of particular data mining methods. The 

term Data Mining has been commonly used by statisticians, data analysts and the 

Management Information Systems (MIS) community, while KDD has been 

mostly used by artificial intelligence and machine learning researchers.  

Some other important terms frequently used throughout this chapter are as 

follows: 

 Pattern: Pattern is an expression E in a language L describing facts in a 

subset FE of F. E is called a pattern if it is simpler than the enumarion of 

all facts in FE. For example the expression “If income < $t, then person has 

defaulted on the loan” would be one such pattern for an appropriate choice 

of t.  

 Model: Model can be considered as a function prototype in data mining. A 

model can be descriptive or predictive. A descriptive model helps us to 

understand processes or behaviors. For example, an association model 

describes consumer behaviour. A descriptive model is an equation or set of 

rules that makes it possible to predict an unseen or unmeasured value(the 

dependent variable or output) from known values(independent variables or 

input). 

A pattern can be thought of as instantiation of a model, e.g., f(x) = 3x2 + x 

is a pattern whereas f(x) = ax2 + bx is a model. 

 Induction:  A technique that infers generalizations from the information in 

the data. 

 Deduction: Deduction infers information that is a logical consequence of 

the data. 

 Training data set: A data set used to estimate or train a model. 

 Test data set: A data set independent of the training data set, used to fine-

tune the estimates of the model parameters(i.e., weights). 

 

2.2 Goals of Data Mining 

Data mining is a tool, not a magic wand. It does not sit in the database 

watching what happens and send the chief an e-mail when it sees an interesting 
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pattern. However, it doesn’t eliminate the need to understand data, or to 

understand analytical methods. In this sense, data mining assists business analysts 

with finding patterns and relationships in the data. 

Predictive relationships found via data mining are not necessarily causes of 

an action or behavior [Westphal and Blaxton, 1998]. For example, data mining 

might determine that males with incomes between X$ and Y$ who subscribe to 

certain magazines are likely purchasers of another product. By taking the 

advantage of this pattern, say by aiming at the sales who fit the pattern,  there is 

no need in terms of market manager to consider any of the other factors cause the 

customers to buy the product. 

To ensure meaningful results, it’s vital to understand the data. The quality 

of the output will often be sensitive to outliers, irrelevant columns or columns that 

vary together (such as age and date of birth), the way the data encoded, and the 

data left in and the data excluded. Data mining algorithms vary in their sensitivity 

to such data issues, but it is still unwise to depend on a data mining product to 

make all the right decisions on its own. 

Data mining will not automatically discover solutions without guidance. 

Rather than setting the vague goal, data mining might be used to find the 

characteristics of customers who make large purchase on a specific pattern. Also, 

the patterns found as a result of the data mining process may be very different. For 

this reason, it should be better to consider and evaluate all the results.  

Although a good data mining tool shelters the analysts from the low level 

statistical techniques, it requires to understand the workings of the tools and the 

algorithms on which they are based. 

Data mining does not replace skilled satatistical analysts or managers, but 

rather gives them a powerful new tool to improve the job they are doing. Any 

company that knows its business and its customers is already aware of many 

important, high-payoff patterns that its employees have observed over the years. 

What data mining can do is to confirm such empirical observations and find new, 

subtle(hard to determine) patterns. 
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2.3 Data Mining and Data Warehousing 

A related area is data warehousing, which refers to the recently popular 

MIS trend for collecting and cleaning transactional data and making them 

available for online retrieval [Fayyad, Piatetsky-Shapiro, Smyth and Uthurusamy, 

1996]. 

Frequently, the data to be mined is first extracted from an enterprise data 

warehouse into a data mining database or data mart (Figure 2.1). There is some 

real benefit if the data is already part of a data warehouse. The problems of 

cleansing(or cleaning: refers to a step in preparing data for a data mining activity) 

data for a data warehouse and for data mining are very similar. If the data has 

already been cleansed for a data warehouse, then it most likely will not need 

further cleaning in order to be mined [Pyle, 1999].  

The data mining database may be a logical rather than a physical subset of 

the data warehouse, provided that the data warehouse or DataBase Management 

System (DBMS) can support the additional resource demands of data mining. If it 

cannot, then a separate data mining database should better be chosen. 

 

Figure 2.1: Data mining data mart extracted from a data warehouse. 

 

A data warehouse is not a requirement for data mining. Setting up a large 

data warehouse that consolidates data from multiple sources, resolves data 

integrity problems, and loads the data into a query database can be an enormous 

task, sometimes taking years and costing millions of dollars. Data can be mined 

from one or more operational or transactional databases(Figure 2.2). This new 

database behaves as a kind of data mart. 
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Figure 2.2: Data mining data mart extracted from operational databases. 

 

2.4 Data Mining and OLAP 

One of the most common questions is related with the difference between 

data mining and OLAP (On-Line Analytical Processing). However, they are very 

different tools that can also complement each other. 

After a new set of principles proposed by Codd(1993) [Codd, 1993], 

OLAP tools focus on providing multi-dimensional data analysis, which is superior 

to SQL (Standart Query Language) in computing summaries and breakdowns 

along many dimensions. 

OLAP is part of the spectrum of decision support tools. Traditional query 

and report tools describe what is in a database. OLAP goes further; it is used to 

answer why certain things are true. The user forms a hypothesis about a 

relationship and verifies it with a series of queries against the data. For example, 

an analyst might want to determine the factors that lead to loan defaults. He or she 

might initially hypothesize that people with low incomes are bad credit risks and 

analyze the database with OLAP to verify (or disprove) this assumption. If that 

hypothesis were not borne out by the data, the analyst might then look at high debt 

as the determinant of risk. If the data did not support this guess either, he or she 

might then try debt and income together as the best predictor of bad credit risks. 

In other words, the OLAP analyst generates a series of hypothetical 

patterns and relationships and uses queries against the database to verify them or 

disprove them. OLAP analysis is essentially a deductive process. But what 

happens when the number of variables being analyzed is in the dozens or even 

hundreds? It becomes much more difficult and time-consuming to find a good 

hypothesis (let alone be confident that there is not a better explanation than the 

one found), and analyze the database with OLAP to verify or disprove it [Berry 

and Linoff, 1997] [Codd, 1993]. 

Data mining is different from OLAP because rather than verifying 

hypothetical patterns, it uses the data itself to uncover such patterns. It is 

essentially an inductive process. For example, an analyst who wants to identify 
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the risk factors for loan default uses a data mining tool. The data mining tool 

might discover that people with high debt and low incomes are at bad credit risks, 

but it might go further and also discover a pattern the analyst could not think, such 

as that age is also a determinant of risk. Here is where data mining and OLAP can 

complement each other.  

 

2.5 Data Mining, Machine Learning and Statistics 

Data mining takes advantage of advances in the fields of artificial 

intelligence (AI) and statistics. Both disciplines have been working on problems 

of pattern recognition and classification. Both communities have made great 

contributions to the understanding and application of neural nets and decision 

trees [Westphal and Blaxton, 1998]. 

Data mining does not replace traditional statistical techniques. Rather, it is 

the result of  major changes in the statistical investigations. The development of 

most statistical techniques was, until recently, based on elegant theory and 

analytical methods that worked quite well on the large amounts of data being 

analyzed. The increasing power of computers and their lower cost, has been 

giving rise to the need of analyzing enormous data sets with millions of  rows. As 

a result, new techniques based on brute-force exploration of possible solutions 

have been developed [Quinlan, 1993]. 

New techniques include relatively recent algorithms like neural nets and 

decision trees, and new approaches to older algorithms such as discriminant 

analysis. With the increasing power of computers on the huge volumes of 

available data, these techniques can approximate almost any functional form or 

interaction on their own. Traditional statistical techniques rely on the modeler to 

specify the functional form and interactions. 

The key point is that, data mining is the application of these and other AI 

and statistical techniques to common business problems in a fashion that makes 

these techniques available to the skilled knowledge worker as well as the trained 

statistics professional. Data mining is a tool for increasing the productivity of 

people trying to build predictive models. 
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2.6 Data Mining and Hardware/Software Trends 

A key enabler of data mining is the major progress in hardware price and 

performance. The dramatic 99% drop in the price of computer disk storage in just 

the last few years has radically changed the economics of collecting and storing 

massive amounts of data. At $10/megabyte, one terabyte of data costs 

$10,000,000 to store. This doesn’t even include the savings in real estate from 

greater storage capacities [Westphal and Blaxton, 1998]. 

The drop in the cost of computer processing has been equally dramatic. 

Generation of chips for each task greatly increases the power of the CPU, while 

allowing further drops on the cost curve. This is also reflected in the price of 

RAM (random access memory), where the cost of a megabyte has dropped from 

hundreds of dollars to around a dollar in just a few years. While the power of the 

individual CPU has greatly increased, the real advances in scalability stem from 

parallel computer architectures. Virtually, all servers today support multiple CPUs 

using symmetric multi-processing, and clusters of these servers can be created that 

allow hundreds of CPUs to work on finding patterns in the data. 

Advances in database management systems to take advantage of this 

hardware parallelism also benefit data mining. If there is a large or complex data 

mining problem requiring a great deal of access to an existing database, native 

DBMS access provides the best possible performance in terms of data mining 

[Fayyad, Piatetsky-Shapiro, Smyth and Uthurusamy, 1996]. 

As a result, by the help of these trends many of the performance barriers 

for finding patterns in large amounts of data have been eliminated. 

 

2.7 Data Mining Applications 

Data mining is increasingly popular because of the substantial contribution 

it can make. It can be used to control costs as well as providing contribution to 

revenue increases. 

Many organizations are using data mining to help manage all phases of the 

customer life cycle, including acquiring new customers, increasing revenue from 

existing customers, and retaining good customers. By determining characteristics 

of good customers (profiling), a company can target prospects with similar 

characteristics. By profiling customers who have bought a particular product the 



 

11

company can focus attention on similar customers who have not bought that 

product (cross-selling). By profiling customers who have left, a company can act 

to retain customers who are at risk for leaving, because it is usually far less 

expensive to retain a customer than acquire a new one [Westphal and Blaxton, 

1998]. 

Data mining offers value across a broad spectrum of industries. 

Telecommunications and credit card companies are two of the leaders in applying 

data mining to detect the frequent usages in their services. Insurance companies 

and stock exchanges are also interested in applying this technology to reduce 

fraud. Medical applications are another fruitful area: data mining can be used to 

predict the effectiveness of surgical procedures, medical tests or associations 

between genes. Companies active in the financial markets use data mining to 

determine market and industry characteristics as well as to predict individual 

company and stock performance. Retailers are making more use of data mining to 

decide which products to stock in particular stores (and even how to place them 

within a store), as well as to assess the effectiveness of promotions and coupons. 

Pharmaceutical firms are mining large databases of chemical compounds and of 

genetic material to discover substances that might be candidates for development 

as agents for the treatments of disease. 

 

2.8 Successful Data Mining 

There are two keys to have success in data mining. First is coming up with 

a precise formulation of the problem. A focused statement usually results in the 

best payoff. The second key is using the right data. After the data is chosen, it 

may be needed to be transformed and combined in significant ways. The more the 

model builder can play with the data, build models, evaluate results, and work 

with the data some more, the better the resulting model will be [Pyle, 1999].  

Consequently, the degree to which a data mining tool supports this 

interactive data exploration is more important than the algorithm it uses. Ideally, 

the data exploration tools (graphics/visualization, query/OLAP) are well-

integrated with the analytics or algorithms that build the models [Cleveland, 

1994]. 
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2.9 Visualization and Summarization of Data 

Before building predictive models, the data must be summarized and 

understood. The summarization studies start by gathering a variety of numerical 

summaries (including descriptive statistics such as averages, standard deviations 

and so forth) and looking at the distribution of the data. It may be required to 

produce cross tabulations (pivot tables) for multi-dimensional data [Wainer, 

1997]. 

Graphing and visualization tools are a vital aid in data preparation. Their 

importance to effective data analysis cannot be overemphasized. Data 

visualization most often provides the “Aha!” leading to new insights and success. 

Some of the common and very useful graphical displays of data are histograms or 

box plots that display distributions of values. Scatter plots in two or three 

dimensions of different pairs of variables can be used in order to understand the 

nature of the data set. 

Visualization works because it exploits the broader information bandwidth 

of graphics as opposed to text or numbers. It allows people to see the forest and 

zoom in on the trees. Patterns (or itemsets), relationships, exceptional values and 

missing values are often easier to perceive when shown graphically, rather than as 

lists of numbers and text. 

The problem in using visualization stems from the essential fact that 

models have many dimensions or variables because it is restricted to show these 

dimensions on a two-dimensional computer screen or paper. For example, one 

may wish to view the relationship between credit risk and age, sex, marital status, 

own-or-rent, years in job, etc. Consequently, visualization tools must use clever 

representations to collapse n dimensions into two.  

Powerful and sophisticated data visualization tools are being developed 

increasingly, but they often require people to train their eyes through practice in 

order to understand the information being conveyed. 

 

2.10 The Primary Methods of Data Mining 

The two high-level primary goals of data mining in practice tend to be 

prediction and description [Fayyad, Piatetsky-Shapiro, Smyth and Uthurusamy, 

1996]. Prediction involves using some variables or fields in the database to predict 
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unknown or future values of other variables of interest. Description focuses on 

finding human-interpretable patterns describing the data. The relative importance 

of prediction and description for particular data mining applications can vary 

considerably. However, in the context of data mining, description tends to be 

more important than prediction. This is in contrast to pattern recognition and 

machine learning applications (such as speech recognition) where prediction is 

often the primary goal (see Lehmann 1990, for a discussion from a statistical 

perspective) [Lehman, 1990]. 

In predictive models, the values or classes to be predicted are called the 

response or dependent variables. The values used to make the prediction are 

called the predictor or independent variables. Predictive models are built, or 

trained, using data for which the value of the response variable is already known. 

This kind of training is sometimes referred to as supervised learning, because 

calculated or estimated values are compared with the known results. Some of the 

essential predictive methods described in this chapter are classification, time-

series, neural networks, decision trees, k-nearest neighbour, regression, logistic 

regression, discriminant analysis and genetic algorithms.  

By contrast, descriptive methods are sometimes referred to as 

unsupervised learning because there is no already-known result to guide the 

algorithms. Some of the important descriptive data mining methods explained in 

this chapter are clustering and link analysis (association rule discovery and 

sequence analysis). 

 

2.10.1 Descriptive Methods 

2.10.1.1 Clustering 

Clustering divides a database into different groups. The goal of clustering 

is to find groups that are very different from each other, and whose members are 

very similar to each other. Unlike classification (see Predictive Methods below), 

in clustering it is unknown what the clusters will be, or by which attributes the 

data will be clustered. Consequently, someone who is knowledgeable in this 

technique must interpret the clusters. Often it is necessary to modify the clustering 

by excluding variables that have been employed to group instances, because upon 

examination the user identifies them as irrelevant or not meaningful. 
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After the clusters that reasonably segment the database have been found, 

these clusters may then be used to classify new data. Some of the common 

algorithms used to perform clustering include Kohonen Feature Maps and K-

means [Berry and Linoff, 1997]. 

Clustering must not be confused with segmentation. Segmentation refers to 

the general problem of identifying groups that have common characteristics. 

Clustering is a way to segment data into groups that are not previously defined, 

whereas classification is a way to segment data by assigning it to groups that are 

already defined. 

 

2.10.1.2 Link Analysis 

Link analysis is a descriptive approach to exploring data that can help to 

identify relationships among values in a database. The two most common 

approaches to link analysis are association discovery (or association rule mining) 

and sequence discovery (or sequence analysis).  

Association discovery finds rules about items that appear together in an 

event such as a purchase transaction. Market-basket analysis is a well-known 

example of association discovery.  

Sequence analysis is same as association discovery, except that the time 

sequence of events is also considered. For example, “20% of the people who buy 

the product X buy the product Y within 4 months”.  In sequence analysis the input 

data is a set of sequences, called data-sequences. Each data sequence is an ordered 

list of transactions (or itemsets), where each transaction is a set of items (literals). 

A sequential pattern also consists of a list of sets of items. The problem is to find 

all sequential patterns with a user-specified minimum support, where the support 

of a sequential pattern is the percentage of data sequences that contain the pattern. 

An example of such a pattern is that customers typically rent “Star Wars”, then 

“Empire Strikes Back” and then “Return of Jedi”. 

Associations are written as A => B, where A is called the antecedent or 

left-hand side (LHS), and B is called the consequent or right-hand side (RHS). For 

example, in the association rule “If people buy a hammer then they buy nails”, the 

antecedent is “buy a hammer” and the consequent is “buy nails.” 
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Determining the proportion of transactions that contain a particular item or 

itemset is easy: they are simply counted. The frequency with which a particular 

association (e.g., the itemset “hammers and nails”) appears in the database is 

called its support or prevalence. If 15 transactions out of 1,000 consist of 

“hammer and nails”, the support for this association would be 1.5%. A low level 

of support (say, one transaction out of a million) that may indicate the particular 

association isn’t very important — or it may indicate the presence of bad data 

(e.g., “male and pregnant”). 

To discover meaningful rules, also the relative frequency of occurrence of 

the items and their combinations must be considered. With occurrence of item A 

(the antecedent), how often does item B (the consequent) occur? In other words, 

what is the conditional predictability of B, given A? Using the above example, 

this would mean asking “When people buy a hammer, how often do they also buy 

nails?” Another term for this conditional predictability is confidence. Confidence 

is calculated as a ratio: (frequency of A and B)/(frequency of A).  

Lift is another measure of the power of an association. The greater the lift, 

the greater the influence that the occurrence of A has on the likelihood that B will 

occur. Lift is calculated as the ratio (confidence of A => B) / (frequency of B). 

Figure 2.3 given below illustrates these concepts in more detail.  

It can be seen from the below associations that the likelihood that a 

hammer buyer will also purchase nails (30%) is greater than the likelihood that 

someone buying nails will also purchase a hammer (19%). The prevalence of this 

hammer-and-nails association (i.e., the support is 1.5%) is high enough to suggest 

a meaningful rule. 
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Figure 2.3: Illustration of concepts on a sample database. 

 

Association algorithms find these rules by doing the equivalent of sorting 

the data while counting occurrences so that they can calculate confidence and 

support. The efficiency with which they can do this is one of the differentiators 

among algorithms. This is especially important because of the combinatorial 

explosion that results in enormous numbers of rules, even for market baskets in 

the express lane. Some algorithms will create a database of rules, confidence 

factors, and support that can be queried (for example, “all associations in which 

ice cream is the consequent, that have a confidence factor of over 80% and a 

support of 2% or more”). 

Another common attribute of association rule generators is the ability to 

specify an item hierarchy. An item hierarchy allows to control the level of 

aggregation and experiment with different levels (with different support levels). 

Association or sequence rules are not really rules, but rather descriptions 

of relationships in a particular database. There is no formal testing of models on 
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other data to increase the predictive power of these rules. Rather there is an 

implicit assumption that the past behavior will continue in the future. 

It is often difficult to decide what to do with the discovered association 

rules. In store planning, for example, putting associated items physically close 

together may reduce the total value of market baskets — customers may buy less 

overall because they no longer pick up unplanned items while walking through the 

store in search of the desired items. 

Graphical methods may also be very useful in seeing the structure of links 

[Cleveland, 1994]. In Figure 2.4 each of the circles represents a value or an event. 

The lines connecting them show a link. The thicker lines represent stronger or 

more frequent linkages, thus emphasizing potentially more important relationships 

such as associations. For instance, looking at an insurance database to detect 

potential fraud might reveal that a particular doctor and lawyer work together on 

an unusually large number of cases. 

 

 
Figure 2.4: Linkage diagram. 

 

2.10.2 Predictive Methods  

2.10.2.1 Classification 

Classification problems aim to identify the characteristics that indicate the 

group to which each case belongs. This pattern can be used both to understand the 

existing data and to predict how new instances will behave [Breiman, Friedman, 

Olshen and Stone, 1984]. For example, one may want to predict whether 

individuals can be classified as likely to respond to a direct mail solicitation, 

vulnerable to switching over to a competing long-distance phone service, or a 

good candidate for a surgical procedure. 

Data mining creates classification models by examining already classified 

data (cases) and inductively finding a predictive pattern. These existing cases may 

come from an historical database, such as people who have already undergone a 

particular medical treatment or moved to a new long-distance service. They may 
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come from an experiment in which a sample of the entire database is tested in the 

real world and the results used to create a classifier. For example, a sample of a 

mailing list would be sent an offer, and the results of the mailing used to develop 

a classification model to be applied to the entire database. Sometimes an expert 

classifies a sample of the database, and this classification is then used to create the 

model which will be applied to the entire database. 

 

2.10.2.2 Regression 

Regression uses existing values to forecast what other values will be. In 

the simplest case, regression uses standard statistical techniques such as linear 

regression. Unfortunately, many real-world problems are not simply linear 

projections of previous values [Breiman, Friedman, Olshen and Stone, 1984]. For 

instance, sales volumes, stock prices, and product failure rates are all very 

difficult to predict because they may depend on complex interactions of multiple 

predictor variables. Therefore, more complex techniques (e.g., logistic regression, 

decision trees, or neural nets) may be necessary to forecast future values. 

 

2.10.2.3 Time Series 

Time series forecasting predicts unknown future values based on a time-

varying series of predictors. Like regression, it uses known results to guide its 

predictions. Models must take into account the distinctive properties of time, 

especially the hierarchy of periods (including such varied definitions as the five- 

or seven-day work week, the thirteen-“month” year, etc.), seasonality, calendar 

effects such as holidays, date arithmetic, and special considerations such as how 

much of the past is relevant [Berry and Linoff, 1997] [Breiman, Friedman, Olshen 

and Stone, 1984].  

 

2.10.2.4 Neural Networks 

Neural networks are of particular interest because they offer a means of 

efficiently modeling large and complex problems in which there may be hundreds 

of predictor variables that have many interactions. Neural nets may be used in 

classification problems (where the output is a categorical variable) or for 
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regressions (where the output variable is continuous) [Kennedy, Reed and Roy, 

1998] [Quinlan, 1993]. 

A neural network (Figure 2.4) starts with an input layer, where each node 

corresponds to a predictor variable. These input nodes are connected to a number 

of nodes in a hidden layer. Each input node is connected to every node in the 

hidden layer. The nodes in the hidden layer may be connected to nodes in another 

hidden layer, or to an output layer. The output layer consists of one or more 

response variables. 

 

 

Figure 2.5: A neural network with one hidden layer. 

 

Some of the applications where hundreds of variables may be input into 

models with thousands of parameters (node weights) include modeling of 

chemical plants, robots and financial markets, and pattern recognition problems 

such as speech, vision and handwritten character recognition [Kennedy, Reed and 

Roy, 1998]. 

Users must be conscious of several facts about neural networks:  

First, neural networks are not easily interpreted. There is no explicit 

rationale given for the decisions or predictions a neural network makes.  

Second, they tend to overfit the training data unless very obligatory 

measures, such as weight decay and/or cross validation, are used cleverly. This is 

due to the very large number of parameters of the neural network which will fit 

any data set arbitrarily well when allowed to train to convergence. 

Third, neural networks require an extensive amount of training time unless 

the problem is very small. Once trained, however, they can provide predictions 

very quickly. 

Fourth, they require a lot of data preparation time than other methods. In 

this sense, the most successful implementations of neural network involve very 

careful data cleansing(or cleaning), selection, preparation and pre-processing.  
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One advantage of neural network models is that they can easily be 

implemented to run on massively parallel computers with each node 

simultaneously doing its own calculations [Quinlan, 1993]. 

 

2.10.2.5 Decision Trees 

Decision tree models are commonly used in data mining to examine the 

data and its rules that will be used to make predictions. A number of different 

algorithms may be used for building decision trees including CHAID (Chi-

squared Automatic Interaction Detection), CART (Classification And Regression 

Trees), Quest, and C5.0 [Breiman, Friedman, Olshen and Stone, 1984] [Quinlan, 

1993].  

Decision trees are a way of representing a series of rules that lead to a 

class or value. For example, one may wish to classify loan applicants as good or 

as bad credit risks. Figure 2.6 shows a simple decision tree that solves this 

problem while illustrating all the basic components of a decision tree: the decision 

node, branches and leaves. 

 

 

Figure 2.6: A simple decision tree. 

 

Decision trees make few passes through the data (no more than one pass 

for each level of the tree) and they work well with many predictor variables. As a 

consequence, models can be built very quickly, making them suitable for large 

data sets [Breiman, Friedman, Olshen and Stone, 1984]. 

 

2.10.2.6 K-Nearest Neighbor and Memory-Based Reasoning (MBR) 

When trying to solve new problems, people often look at solutions to 

similar problems that they have previously solved. K-nearest neighbor (k-NN) is a 

classification technique that uses a version of this same method. It decides in 

which class to place a new case by examining some number — the “k” in k-
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nearest neighbor — of the most similar cases or neighbors (Figure 2.7). It counts 

the number of cases for each class, and assigns the new case to the same class to 

which most of its neighbors belong. 

 

 

Figure 2.7: K-nearest neighbor (N is a new case. It would be assigned to the class X because the 

seven X’s within the ellipse out number the two Y’s). 

 

The main purpose of applying k-NN is to find a measure of the distance 

between attributes in the data and then calculate it. While this is easy for numeric 

data, categorical variables need special handling. For example, what is the 

distance between blue and green? One must then have a way of summing the 

distance measures for the attributes. Once the distance between cases can be 

calculated, then, one may select the set of already classified cases to use as the 

basis for classifying new cases, decide how large a neighborhood in which to do 

the comparisons, and also decide how to count the neighbors themselves (e.g., 

more weight might be given to nearer neighbors than farther neighbors). 

K-NN models are very easy to understand when there are few predictor 

variables. They are also useful for building models that involve non-standard data 

types, such as text. The only requirement for being able to include a data type is 

the existence of an appropriate metric. 

 

2.10.2.7 Logistic Regression 

Logistic regression is a generalization of linear regression. It is used 

primarily for predicting binary variables (with values such as yes/no or 0/1) and 

occasionally multi-class variables. Because the response variable is discrete, it 

cannot be modeled directly by linear regression. Therefore, rather than predicting 

whether the event itself (the response variable) will occur, the model to predict the 

logarithm of the odds of its occurrence is built. This logarithm is called the log 

odds. The odds ratio: probability of an event occurring / probability of the event 
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not occurring, has the same interpretation as in the more casual use of odds in 

games of chance or sporting events.  

When it is said that the odds are 3 to 1 that a particular team will win a 

soccer game, it means that the probability of their winning is three times as great 

as the probability of losing. So it is deduced that they have a 75% chance of 

winning and a 25% chance of losing. Similar terminology can be applied to the 

chances of a particular type of customer (e.g., a customer with a given gender, 

income, marital status, etc.) replying to a mailing.  

 

2.10.2.8 Discriminant Analysis 

Discriminant analysis is the oldest mathematical classification technique, 

having been first published by R. A. Fisher in 1936 [Lehman, 1990] to classify the 

famous Iris botanical data into three species. It finds hyper-planes (e.g., lines in 

two dimensions, planes in three, etc.) that separate the classes. The resultant 

model is very easy to interpret because all the user has to do is to determine on 

which side of the line (or hyper-plane) a point falls. Training is simple and 

scalable. The technique is very sensitive to patterns in the data. It is used very 

often in certain disciplines such as medicine, the social sciences, and field 

biology. 

Discriminant analysis is not popular in data mining due to three main 

reasons. First, it assumes that all of the predictor variables are normally 

distributed (i.e., their histograms look like bell-shaped curves), which may not be 

the case. Second, unordered categorical predictor variables (e.g., red /blue/green) 

cannot be used at all. Third, the boundaries that separate the classes are all linear 

forms (such as lines or planes), but sometimes the data just can’t be separated that 

way. 

 

2.10.2.9 Genetic Algorithms 

Genetic algorithms are not used to find patterns, but rather to guide the 

learning process of data mining algorithms such as neural nets. Essentially, 

genetic algorithms act as a method for performing a guided search for good 

models in the solution space. 
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They are called genetic algorithms because they follow the pattern of 

biological evolution in which the members of one generation (of models) compete 

to pass on their characteristics to the next generation (of models), until the best 

(model) is found. The information to be passed on is contained in 

“chromosomes,” which contain the parameters for building the right model. 

While genetic algorithms are an interesting approach to generating and 

optimizing models, they add a lot of computational overhead. 
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Chapter 3 

 

ASSOCIATION RULE MINING AND ALGORITHMS 

 

 

3.1. Overview 

Consider a supermarket with a large collection of items. Typical business 

decisions that the management bureau of such a supermarket has to make include: 

what to put on sale, how to design coupons, how to place merchandise on shelves 

in order to maximize the profit, etc. Analysis of past transaction data is a 

commonly used approach in order to improve quality of such decisions. Until 

recently, however, only global data about the cumulative sales during some time 

period (a day, a week, a month, etc.) was available on the computer. However, 

progress in bar-code technology has made it possible to store the so called basket 

data that stores items purchased on a per-transaction basis. 

In this chapter, we consider the problem of “mining” a large collection of  

basket data type transactions for finding association rules between sets of items. 

We present three different association rule mining algorithms: Apriori algorithm, 

Frequent Pattern Tree (FP-tree) algorithm and CHARM algorithm. Although 

these algorithms serve to the same purpose, they are fundamentally different from 

each other and each algorithm brings new approaches and solutions to the 

association rule mining problem. 

 

3.2 Association Rule Mining Problem 

3.2.1 Problem Definition and Decomposition 

The problem of finding all association rules falls within the purview of 

database mining [Anwar, Beck and Navathe, 1992] [Agrawal, Imielinski and 

Swami, 1993(December)] [Holsheimer and Siebes, 1994] [Michalski, Kerschberg, 

Kaufman and Ribeiro, 1992] [Stonebraker et al, 1993] [Tsur, 1990], also called 

knowledge discovery in databases [Han, Cai and Cercone, 1992] [Lubinsky, 

1989] [Piatestsky-Shapiro, 1991]. Related work includes the induction of 

classification rules [Chen, Park and Yu, 1998] [Catlett, 1991] [Fayyad, Weir and 

Djorgovski, 1993] [Han, Cai and Cercone, 1992] [Quinlan, 1990], discovery of 
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causal structures [Cooper and Herskovits, 1992] [Pearl, 1992], learning of logical 

definitions [Muggleton and Feng, 1992] [Quinlan, 1990], fitting of functions to 

data [Langley, Simon, Bradshaw and Zytkow, 1987] [Schaffer, 1990], and 

clustering [Anwar, Beck and Navathe, 1992] [Cheeseman et al, 1988] [Fisher, 

1987].  

Association rule mining problem was first introduced in 1993 by R. 

Agrawal, T. Imielinski and A. Swami [Agrawal, Imielinski, and Swami, 

1993(May)]. The following is a formal statement of the problem: Let I = i1, i2, . . 

., im be a set of literals, called items. Let D be a set of transactions, where each 

transaction T is a set of items such that T  I. Associated with, each transaction is 

a unique identifier, called its transaction identifier (TID or tid ). It is said that a 

transaction T contains X, a set of some items in I, if X  T. An association rule is 

an implication of the form X  Y , where X  I, Y  I, and X  Y = . The rule 

X  Y holds in the transaction set D with confidence c if c% of transactions in D 

that contain X also contain Y . The rule X  Y has support s in the transaction set 

D if s% of transactions in D contain X  Y.  

In a more simpler form the problem may be defined as follows: Given a set 

of transactions D, the problem of mining association rules is to generate all 

association rules that have support and confidence greater than the user-specified 

minimum support (called minsup) and minimum confidence (called minconf) 

respectively. D could be a data file, a relational table, or the result of a relational 

expression. 

The problem of discovering all association rules can be decomposed into 

two sub-problems [Agrawal, Imielinski, and Swami, 1993(May)]: 

1. Find all sets of items (itemsets) that have transaction support above 

minimum support. The support for an itemset is the number of transactions that 

contain the itemset. Itemsets with minimum support are called large itemsets, and 

all others small itemsets. 

2. Use the large itemsets to generate the desired rules. The general idea is 

that if, say, ABCD and AB are large itemsets, then one can determine if the rule 

AB  CD holds by computing the ratio conf = support(ABCD) / support(AB). If 

conf  minconf, then the rule holds (the rule will surely have minimum support 

because ABCD is large). 
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3.2.2 Discovering Large Itemsets and the Notation Used 

Algorithms for discovering large itemsets make multiple passes over the 

data. In the first pass, we count the support of individual items and determine 

which of them are large, i.e. have minimum support. In each subsequent pass, we 

start with a seed set of itemsets found to be large in the previous pass. We use this 

seed set is used for generating new potentially large itemsets, called candidate 

itemsets, and count the actual support for these candidate itemsets during the pass 

over the data. At the end of the pass, we determine which of the candidate 

itemsets are actually large, and they become the seed for the next pass. This 

process continues until no new large itemsets are found. 

The Apriori algorithm and Apriori-like algorithms generate the candidate 

itemsets to be counted in a pass by using only the itemsets found large in the 

previous pass without considering the transactions in the database. The basic 

intuition is that any subset of a large itemset must be large. Therefore, the 

candidate itemsets having k items can be generated by joining large itemsets 

having k-1 items, and deleting those that contain any subset that is not large. This 

procedure results in generation of a much smaller number of candidate itemsets. 

It is assumed that items in each transaction are kept sorted in their 

lexicographic order. It is straightforward to adapt these algorithms to the case 

where the database D is kept normalized and each database record is a <TID, 

item> pair, where TID is the identifier of the corresponding transaction. 

The number of items in an itemset is called its size, and can itemset of size 

k is called a k-itemset. Items within an itemset are kept in lexicographic order. The 

notation c[1]  ...  c[2]  . . .  c[k] is used to represent a k-itemset c consisting of 

items c[1], c[2], . . .c[k], where c[1]<c[2]< . . . <c[k]. If c = XY and Y is an m-

itemset, Y is also called an m-extension of X. Associated with each itemset is a 

count field to store the “support” for this itemset. The count field is initialized to 

zero when the itemset is first created. In Figure 3.1 the notation used in the 

Apriori and Apriori-like algorithms (Apriori-like algorithms are variants of 

Apriori algorithm, they also depend on the candidate generation philosophy) is 

summarized. 
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Figure 3.1: Notation used in Apriori and Apriori-like algorithms. 

 

3.3 Apriori Algorithm  

An association rule mining algorithm, Apriori, was developed in 1993 by 

IBM’s Quest Project Team [Agrawal, Imielinski and Swami, 1993(December)] 

for mining large transactional databases. Figure 3.2 gives the Apriori algorithm. 

The algorithm makes multiple passses over the database, and each pass has three 

steps: 1) Scan Step, 2) Prune Step, 3) Join Step.  

In the first pass the algorithm simply counts item occurences to determine 

the frequent 1-itemsets (itemsets with 1 item). A subsequent pass, say pass k, 

consists of two phases. First, the frequent itemsets Lk-1 (the set of all frequent (k-

1)-itemsets) found in the (k-1)th pass are used to generate the candidate itemsets 

Ck, using the apriori-gen() function. This function first joins Lk-1 with Lk-1, the 

joining condition being that the lexicographically ordered first k-2 items are the 

same. Next, it deletes all those itemsets from the results of the join step that have 

some (k-1) subset that is not in Lk-1 yielding Ck. The algorithm now scans the 

database. For each transaction, it determines which of the candidates in Ck are 

contained in the transaction using the hash-tree data structure and increments the 

count of those candidates. At the end of each pass, Ck is examined to determine 

which of the candidates are frequent, yielding Lk. The algorithm terminates when 

Lk (the set of all frequent itemsets) becomes empty. 
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Figure 3.2: Algorithm Apriori. 

 

3.3.1 Apriori Candidate Generation  

The apriori-gen function takes as argument Lk-1, the set of all large (k1)-

itemsets. It returns a superset of the set of all large k-itemsets. The function works 

as follows. First, in the join step, Lk-1 is joined with Lk-1: 

insert into Ck 

select p.item1, p.item2, ..., p.itemk-1, q.itemk-1 

from Lk-1 p, Lk-1 q 

where p.item1 = q.item1, . . ., p.itemk-2 = q.itemk-2, p.itemk-1 < q.itemk-1; 

 

Next, in the prune step, all itemsets c  Ck are deleted such that some (k-1)-subset 

of c is not in Lk-1: 

for all itemsets c  Ck do 

for all (k-1)-subsets s of c do 

if (s  Lk-1) then 

delete c from Ck; 
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As an example, let L3 be 1 2 3, 1 2 4, 1 3 4, 1 3 5, 2 3 4. 

After the join step, C4 will be 1 2 3 4, 1 3 4 5. The prune step will delete 

the itemset 1 3 4 5 because the itemset 1 4 5 is not in L3. We will then be left 

with only 1 2 3 4 in C4. 

 

3.3.1.1 Correctness  

It must be shown that Ck  Lk. Clearly, any subset of a large itemset must 

also have minimum support. Hence, if the algorithm extends each itemset in Lk-1 

with all possible items and then deletes all those whose (k-1)-subsets are not in Lk-

1, we will be left with a superset of the itemsets in Lk. 

The join step is equivalent to extending Lk-1 with each item in the database 

and then deleting those itemsets for which the (k-1)-itemset obtained by deleting 

the (k-1)th item is not in Lk-1. The condition p.itemk-1 < q.itemk-1 simply ensures 

that no duplicates are generated. Thus, after the join step, Ck  Lk. By similar 

reasoning, the prune step, where we delete from Ck all itemsets whose (k-1)-

subsets are not in Lk-1, also does not delete any itemset that could be in Lk. 

 

3.3.1.2 Counting Candidates of Multiple Sizes in One Pass 

Rather than counting only candidates of size k in the kth pass, the 

algorithm also counts the candidates C’k+1, where C’k+1 is generated from Ck, etc. 

Note that C’k+1  Ck+1 since Ck+1 is generated from Lk. This variation can pay off 

in the later passes when the cost of counting and keeping in memory additional 

C’k+1  Ck+1  candidates becomes less than the cost of scanning the database. 

 

3.3.1.3 Membership Test 

The prune step requires testing that all (k1)-subsets of a newly generated 

k-candidate-itemset are present in Lk-1. To make this membership test fast, large 

itemsets are stored in a hash table.  

 

3.3.2 Apriori Subset Function 

Candidate itemsets, Ck, are stored in a hash-tree. A node of the hash-tree 

either contains a list of itemsets (a leaf node) or a hash table (an interior node). In 

an interior node, each bucket of the hash table points to another node. The root of 
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the hash-tree is defined to be at depth 1. An interior node at depth d points to 

nodes at depth d+1. Itemsets are stored in the leaves. When an itemset c is added, 

the algorithm starts from the root and goes down the tree until it reaches a leaf. At 

an interior node at depth d, the algorithm decides which branch to follow by 

applying a hash function to the dth item of the itemset. All nodes are initially 

created as leaf nodes. When the number of itemsets in a leaf node exceeds a 

specified threshold, the leaf node is converted to an interior node. 

Starting from the root node, the subset function finds all the candidates 

contained in a transaction t as follows. If we are at a leaf, the algorithm finds 

which of the itemsets in the leaf are contained in t and add references to them to 

the answer set. If we are at an interior node and we have reached it by hashing the 

item i, the algorithm hashes on each item that comes after i in t and recursively 

applies this procedure to the node in the corresponding bucket. For the root node, 

the algorithm hashes on every item in t. 

To see why the subset function returns the desired set of references, 

consider what happens at the root node. For any itemset c contained in transaction 

t, the first item of c must be in t. At the root, by hashing on every item in t, the 

algorithm ensures that it only ignores itemsets that start with an item not in t. 

Similar arguments apply at lower depths. The only additional factor is that, since 

the items in any itemset are ordered, if we reach the current node by hashing the 

item i, the algorithm only needs to consider the items in t that occur after i. 

If k is the size of a candidate itemset in the hash-tree, we can find in O(k) 

(in the order of k) time whether the itemset is contained in a transaction by using a 

temporary bitmap. Each bit of the bitmap corresponds to an item. The bitmap is 

created once for the data structure, and reinitialized for each transaction. This 

initialization takes O(size(transaction)) time for each transaction [Agrawal, 

Imielinski, and Swami, 1993(May)]. 

 

3.3.3 Apriori Buffer Management 

In the candidate generation phase of pass k, Apriori needs storage for large 

itemsets Lk-1 and the candidate itemsets Ck. In the counting phase, the algorithm 

needs storage for Ck and at least one page to buffer the database transactions. 
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First, assume that Lk-1 fits in memory but that the set of candidates Ck does 

not. The apriori-gen function is modified to generate as many candidates of Ck as 

will fit in the buffer and the database is scanned to count the support of these 

candidates. Large itemsets resulting from these candidates are written to disk, 

while those candidates without minimum support are deleted. This procedure is 

repeated until all of Ck has been counted. 

 

3.4 Frequent Pattern Tree Algorithm 

The second algorithm evaluated is the Frequent Pattern Tree (FP-tree for 

short) algorithm which is proposed by J. Han, J. Pei, and Y. Yin in 1999 [Han, Pei 

and Yin, 1999]. FP-tree algorithm mines the frequent patterns without generating 

candidate sets. 

According to J. Han, J. Pei, and Y. Yin, the algorithm is of a novel FP-tree 

structure, which is an extended prefix-tree structure for storing compressed, 

crucial information about frequent patterns. Such a structure facilitates an efficient 

FP-tree-based mining method, FP-growth, for mining the complete set of frequent 

patterns by pattern fragment growth. Efficiency of mining is achieved with three 

techniques: (1) a large database is compressed into a highly condensed, much 

smaller data structure, which avoids costly, repeated database scans, (2) the FP-

tree-based mining adopts a pattern fragment growth method to avoid the costly 

generation of a large number of candidate sets, and (3) a partitioning-based, 

divide-and-conquer method is used to decompose the mining task into a set of 

smaller tasks for mining confined patterns in conditional databases, which 

dramatically reduces the search space.  

Based upon the performance studies managed by J. Han, J. Pei, and Y. Yin 

[Han, Pei and Yin, 1999], it was claimed that the FP-growth method is efficient 

and scalable for mining both long and short frequent patterns, and is about an 

order of magnitude faster than the Apriori algorithm and also faster than some 

recently proposed frequent pattern mining methods. 

The running examples (designed by J. Han, J. Pei, and Y. Yin) presented 

in this Section are taken from [Han, Pei and Yin, 1999]. 

 

 



 

32

3.4.1 Main Idea Behind Frequent Pattern Tree 

Most of the studies before the FP-tree algorithm, such as [Agrawal and 

Srikant, 1994] [Grahne, Lakshmanan and Wang, 2000] [Klemettinen, Mannila, 

Ronkainen, Toivonen and Verkamo, 1994] [Lent, Swami and Widom, 1997] [Ng, 

Lakshmanan, Han and Pang, 1998] [Park, Chen and Yu, 1995] [Sarawagi, 

Thomas and Agrawal, 1998] [Savasere, Omiecinski and Navathe, 1995], adopt an 

Apriori-like approach, which is based on an anti-monotone Apriori heuristic 

[Agrawal and Srikant, 1994]: if any length k pattern is not frequent in the 

database, its length (k +1) super-pattern can never be frequent. The essential idea 

is to iteratively generate the set of candidate patterns of length (k + 1) from the set 

of frequent patterns of length k (for k1), and check their corresponding 

occurrence frequencies in the database. 

The Apriori heuristic achieves good performance gain by (possibly 

significantly) reducing the size of candidate sets. However, in situations with 

prolific frequent patterns, long patterns, or quite low minimum support thresholds, 

an Apriori-like algorithm may still suffer from the following two nontrivial costs: 

It is costly to handle a huge number of candidate sets. For example, if there 

are 104 frequent 1-itemsets, the Apriori algorithm will need to generate more than 

107 length-2 candidates and accumulate and test their occurrence frequencies. 

Moreover, to discover a frequent pattern of size 100, such as a1,...,a100, it must 

generate more than 2100 1030 candidates in total. This is the inherent cost of 

candidate generation, no matter what implementation technique is applied.  

As is seen, it is tedious to repeatedly scan the database and check a large 

set of candidates by pattern matching, which is especially true for mining long 

patterns. 

After some careful examinations performed by J. Han, J. Pei, and Y. Yin 

[Han, Pei and Yin, 1999], it is believed that the bottleneck of the Apriori-like 

method is at the candidate set generation and test. If one can avoid generating a 

huge set of candidates, the mining performance can be substantially improved. 

This problem is attacked in the following three aspects: 

First, a novel, compact data structure, called frequent pattern tree, or FP-

tree for short, is constructed, which is an extended prefix-tree structure storing 

crucial, quantitative information about frequent patterns. Only frequent length-1 
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items will have nodes in the tree, and the tree nodes are arranged in such a way 

that more frequently occurring nodes will have better chances of sharing nodes 

than less frequently occurring ones. 

Second, an FP-tree-based pattern fragment growth mining method, is 

developed, which starts from a frequent length-1 pattern (as an initial suffix 

pattern), examines only its conditional pattern base (a “sub-database” which 

consists of the set of frequent items co-occurring with the suffix pattern), 

constructs its (conditional) FP-tree, and performs mining recursively with such a 

tree. The pattern growth is achieved via concatenation of the suffix pattern with 

the new ones generated from a conditional FP-tree. Since the frequent itemset in 

any transaction is always encoded in the corresponding path of the frequent 

pattern trees, pattern growth ensures the completeness of the result. In this 

context, mining method of the FP-tree algorithm is not Apriori-like restricted 

generation-and-test but restricted test only. The major operations of mining are 

count accumulation and prefix path count adjustment, which are usually much less 

costly than candidate generation and pattern matching operations performed in 

most Apriori-like algorithms. 

Third, the search technique employed in mining is a partitioning-based, 

divide-and-conquer method rather than Apriori-like bottom-up generation of 

frequent itemsets combinations. This dramatically reduces the size of conditional 

pattern base generated at the subsequent level of search as well as the size of its 

corresponding conditional FP-tree. Moreover, it transforms the problem of finding 

long frequent patterns to looking for shorter ones and then concatenating the 

suffix. It employs the least frequent items as suffix, which offers good selectivity. 

All these techniques contribute to substantial reduction of search costs. 

 

3.4.2 Frequent Pattern Tree Design and Construction 

Let I = a1,a2,...,am be a set of items, and a transactional database DB 

=T1,T2,...,Tn, where Ti (i  [1..n]) is a transaction which contains a set of items 

in I. The support (or occurrence frequency) of a pattern A, which is a set of items, 

is the number of transactions containing A in DB. A, is a frequent pattern if A's 

support is no less than a predefined minimum support threshold, ξ. 
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Given a transaction database DB and a minimum support threshold, ξ, the 

problem of finding the complete set of frequent patterns is called the frequent 

pattern mining problem. 

To design a compact data structure for efficient frequent pattern mining, 

let's first examine an example.  

Example 3.1: Let the transaction database, DB, be the first two columns 

of Figure 3.3 and  support = 3 (ξ = 3). 

According to J. Han, J. Pei, and Y. Yin [Han, Pei and Yin, 1999], a 

compact data structure can be designed based on the following observations: 

1. Since only the frequent items will play a role in the frequent pattern 

mining, it is necessary to perform one scan of DB to identify the set of frequent 

items (with frequency count obtained as a by-product). 

2. If the set of frequent items of each transaction are stored in some 

compact structure, repeatedly scanning of DB may be avoided. 

3. If multiple transactions share an identical frequent item set, they can be 

merged into one with the number of occurrences registered as count. It is easy to 

check whether two sets are identical if the frequent items in all of the transactions 

are sorted according to a fixed order. 

4. If two transactions share a common prefix, according to some sorted 

order of frequent items, the shared parts can be merged using one prefix structure 

as long as the count is registered properly. If the frequent items are sorted in the 

frequency descending order, there will be better chances that more prefix strings 

can be shared. 

 

 

Figure 3.3: A transactional database as running example. 
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Figure 3.4: The FP-tree in Example 3.1. 

 

With these observations, a frequent pattern tree can be constructed as 

follows: 

First, a scan of DB derives a list of frequent items according to ξ = 3, 

(f:4); (c:4); (a:3); (b:3); (m:3); (p:3), (the number after “:” indicates the support), 

in which items ordered in frequency descending order. This ordering is important 

since each path of a tree will follow this order. The frequent items in each 

transaction are listed in this ordering in the rightmost column of Figure 3.3. 

Followingly, create the root of a tree and label it “null”. Scan the DB for 

the second time. The scan of the first transaction leads to the construction of the 

first branch of the tree: (f:1); (c:1); (a:1); (m:1); (p:1). Notice that the frequent 

items in the transaction are ordered according to the order in the list of frequent 

items. For the second transaction, since its (ordered) frequent item list f, c, a, b, 

m shares a common prefix f, c, a with the existing path f, c, a, m, p, the count 

of each node along the prefix is incremented by 1, and one new node (b:1) is 

created and linked as a child of (a:2) and another new node (m:1) is created and 

linked as the child of (b:1). For the third transaction, since its frequent item list f, 

b shares only the node f with the f prefix subtree, f's count is incremented by 

1, and a new node (b:1) is created and linked as a child of (f:3). The scan of the 

fourth transaction leads to the construction of the second branch of the tree, (c:1); 

(b:1); (p:1). For the last transaction, since its frequent item list f, c, a, m, p is 

identical to the first one, the path is shared with the count of each node along the 

path incremented by 1. 
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To facilitate tree traversal, an item header table is built in which each item 

points to its occurrence in the tree via a head of node-link. Nodes with the same 

item-name are linked in sequence via such node-links. After scanning all the 

transactions, the tree with the associated node-links is shown in Figure 3.4.  

  

3.4.2.1. Formal Definition of a Frequent Pattern Tree 

According to the above explanations as regards Example 3.1, a formal 

definition for a frequent patern tree can be concluded. A frequent pattern tree (or 

FP-tree in short) is a tree structure defined below: 

1. It consists of one root labeled as “null”, a set of item prefix subtrees as 

the children of the root, and a frequent-item header table. 

2. Each node in the item prefix subtree consists of three fields: item-name, 

count, and node-link, where item-name registers which item this node represents, 

count registers the number of transactions represented by the portion of the path 

reaching this node, and node-link links to the next node in the FP-tree carrying the 

same item-name, or null if there is none. 

3. Each entry in the frequent-item header table consists of two fields, 1) 

item-name and 2) head of node-link, which points to the first node in the FP-tree 

carrying the item-name.  

 

3.4.2.2 Frequent Pattern Tree Construction Algorithm 

Based on the above definitions, FP-tree construction algorithm developed 

by J. Han, J. Pei, and Y. Yin [Han, Pei and Yin, 1999] is as follows: 

Input: A transactional database DB and a minimum support threshold ξ. 

Output: Its frequent pattern tree, FP-tree 

Method: The FP-tree is constructed in the following steps. 

1. Scan the transaction database DB once. Collect the set of frequent items 

F and their supports. Sort F in support descending order as L, the list of frequent 

items. 

2. Create the root of an FP-tree, T , and label it as “null”. For each 

transaction, Trans, in DB do the following: Select and sort the frequent items in 

Trans according to the order of L. Let the sorted frequent item list in Trans be 
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([pP],T), where p is the first element and P is the remaining list. Call 

insert_tree([pP], T). 

The function insert_tree([pP], T) is performed as follows: If T has a child 

N such that N.item-name = p.item-name, then increment N's count by 1; else 

create a new node N, and let its count be 1, its parent link be linked to T , and its 

node-link be linked to the nodes with the same item-name via the node-link 

structure. If P is non-empty, call insert_tree(P,N) recursively. 

Analysis: From the FP-tree construction process, it can be seen that one 

needs exactly two scans of the transaction database, DB: the first collects the set 

of frequent items, and the second constructs the FP-tree. According to the big-O 

notation, the cost of inserting a transaction Trans into the FP-tree is O(Trans), 

where Trans is the number of frequent items in Trans. 

  

3.4.2.3 Compactness of Frequent Pattern Tree 

J. Han, J. Pei, and Y. Yin claims that several important properties of FP-

tree facilitates frequent pattern mining [Han, Pei and Yin, 1999]. 

Lemma 3.1: Given a transaction database DB and a support threshold ξ, 

its corresponding FP-tree contains the complete information of DB in relevance to 

frequent pattern mining [Han, Pei and Yin, 1999]. 

Lemma 3.1 states that, each transaction in the DB is mapped to one path in 

the FP-tree, and the frequent itemset information in each transaction is completely 

stored in the FP-tree. Moreover, one path in the FP-tree may represent frequent 

itemsets in multiple transactions without ambiguity since the path representing 

every transaction must start from the root of each item prefix subtree.  

Lemma 3.2: Without considering the (null) root, the size of an FP-tree is 

bounded by the overall occurrences of the frequent items in the database, and the 

height of the tree is bounded by the maximal number of frequent items in any 

transaction in the database [Han, Pei and Yin, 1999]. 

Lemma 3.2 states that, for any transaction T in DB there exists a path in 

the FP-tree starting from the corresponding item prefix subtree so that the set of 

nodes in the path is exactly the same set of frequent items in T. Since no frequent 

item in any transaction can create more than one node in the tree, the root is the 

only extra node created not by frequent item insertion, and each node contains one 
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node-link and one count information, there is a bound on the size of the tree as 

stated in the Lemma 3.2. The height of any p-prefix subtree is the maximum 

number of frequent items in any transaction with p appearing at the head of its 

frequent item list. Therefore, the height of the tree is bounded by the maximal 

number of frequent items in any transaction in the database, if we do not consider 

the additional level added by the root.  

Lemma 3.2 shows an important benefit of FP-tree: the size of an FP-tree is 

bounded by the size of its corresponding database because each transaction will 

contribute at most one path to the FP-tree, with the length equal to the number of 

frequent items in that transaction. Since there are often a lot of sharing of frequent 

items among transactions, the size of the tree is usually much smaller than its 

original database. Unlike the Apriori-like method which may generate an 

exponential number of candidates in the worst case, under no circumstances, may 

an FP-tree with an exponential number of nodes be generated. 

FP-tree is a highly compact structure which stores the information for 

frequent pattern mining. Since a single path “a1  a2  ...  an” in the a1-prefix 

subtree registers all the transactions whose maximal frequent set is in the form of 

“a1  a2  ...  ak” for any 1  k  n, the size of the FP-tree is substantially 

smaller than the size of the database and that of the candidate sets generated in the 

association rule mining. 

The items in the frequent itemset are ordered in the support-descending 

order: More frequently occurring items are arranged closer to the top of the FP-

tree and thus are more likely to be shared. This indicates that FP-tree structure is 

usually highly compact. 

 

3.4.3 Mining Frequent Patterns using Frequent Pattern Tree 

Construction of a compact FP-tree ensures that subsequent mining can be 

performed with a rather compact data structure. Some interesting properties of FP-

tree which facilitate frequent pattern mining are as follows. 
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3.4.3.1 Node-Link Property  

 Node-Link property says that: For any frequent item ai, all the possible 

frequent patterns that contain ai can be obtained by following ai's node-links, 

starting from ai's head in the FP-tree header [Han, Pei and Yin, 1999]. 

This property is based directly on the construction process of FP-tree. It 

facilitates the access of all the pattern information related to ai by traversing the 

FP-tree once following ai's node-links. 

Example 3.2: Let’s examine the mining process based on the constructed 

FP-tree shown in Figure 3.4. Based on node-link property, we collect all the 

patterns that a node ai participates by starting from ai's head (in the header table) 

and following ai's node-links. We examine the mining process by starting from 

the bottom of the header table. 

For node p, it derives a frequent pattern (p:3) and two paths in the FP-tree: 

f:4, c:3, a:3, m:2, p:2 and c:1, b:1, p:1. The first path indicates that string “(f; c; 

a; m; p)” appears twice in the database. Notice that, although string f, c, a 

appears three times and f itself appears even four times, they only appear twice 

together with p. Thus, to study which string appear together with p, only p's prefix 

path f:2, c:2, a:2, m:2 is counted. Similarly, the second path indicates string “(c, 

b, p)” appears once in the set of transactions in DB, or p's prefix path is c:1, b:1. 

These two prefix paths of p, “(f:2, c:2, a:2, m:2), (c:1; b:1)”, form p's sub-

pattern base, which is called p's conditional pattern base (i.e., the sub-pattern base 

under the condition of p's existence). Construction of an FP-tree on this 

conditional pattern base (which is called p's conditional FP-tree) leads to only one 

branch (c:3). Hence, only one frequent pattern (cp:3) is derived. (Notice that a 

pattern is an itemset and is denoted by a string here.) The search for frequent 

patterns associated with p terminates. 

For node m, it derives a frequent pattern (m:3) and two paths f:4, c:3, a:3, 

m:2 and f:4, c:3, a:3, b:1, m:1. Notice that, p appears together with m as well, 

however, there is no need to include p here in the analysis since any frequent 

patterns involving p has been analyzed in the previous examination of p. Similar 

to the above analysis, m's conditional pattern base is, (f:2, c:2, a:2), (f:1, c:1, a:1, 

b:1). By constructing an FP-tree on it, m's conditional FP-tree, f:3, c:3, a:3, a 
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single frequent pattern path, can be derived. Then, one can call FP-tree-based 

mining recursively, i.e., call mine(f:3, c:3, a:3m). 

Figure 3.5 shows “mine (f:3, c:3, a:3m)” function which involves mining 

three items (a), (c), (f) in sequence. The first derives a frequent pattern (am:3), and 

a call “mine (f:3, c:3am)”; the second derives a frequent pattern (cm:3), and a 

call “mine (f:3cm)"; and the third derives only a frequent pattern (fm:3). Further 

recursive call of “mine (f:3, c:3am)” derives (cam:3), (fam:3), and a call 

“mine(f:3cam)”, which derives the longest pattern (fcam:3). Similarly, the call 

of “mine (f:3cm)”, derives one pattern (fcm:3). Therefore, the whole set of 

frequent patterns involving m is (m:3), (am:3), (cm:3), (fm:3), (cam:3), (fam:3), 

(fcam:3), (fcm:3). This indicates a single path FP-tree can be mined by 

outputting all the combinations of the items in the path. 

 

 

Figure 3.5: A conditional FP-tree built for m, i.e., “FP-tree m”. 
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Similarly, node b derives (b:3) and three paths: f:4, c:3, a:3, b:1, f:4, 

b:1, and c:1, b:1. Since b's conditional pattern base: (f:1; c:1; a:1), (f:1), (c:1) 

generates no frequent item, the mining terminates. Node a derives one frequent 

pattern (a:3), and one subpattern base, (f:3; c:3), a single path conditional FP-

tree. Thus, its set of frequent patterns can be generated by taking their 

combinations. Concatenating them with (a:3), the set (fa:3), (ca:3), (fca:3) is 

generated. Node c derives (c:4) and one subpattern base, (f:3), and the set of 

frequent patterns associated with (c:3) is (fc:3). Node f derives only (f:4) but no 

conditional pattern base. The conditional pattern bases and the conditional FP-

trees generated are summarized in Figure 3.6. 

 

 

Figure 3.6: Mining of all-patterns by creating conditional (sub)-pattern bases. 

 

3.4.3.2 Prefix Path Property  

Prefix Path property says that: In order to calculate the frequent patterns 

for a node ai in a path P, only the prefix subpath of node ai in P need to be 

accumulated, and the frequency count of every node in the prefix path should 

carry the same count as node ai [Han, Pei and Yin, 1999]. 

Let the nodes along the path P be labeled as a1,...,an in such an order that a1 

is the root of the  prefix subtree, an is the leaf of the subtree in P, and ai (1  i  n) 

is the node being referenced. Based on the process of construction of FP-tree, for 

each prefix node ak (1  k < i), the prefix subpath of the node ai in P occurs 

together with ak exactly ai: count times. Thus, every such prefix node should carry 

the same count as node ai. Notice that a postfix node am (for i < m  n) along the 
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same path also co-occurs with node ai. However, the patterns with am will be 

generated at the examination of the postfix node am, enclosing them here will lead 

to redundant generation of the patterns that would have been generated for am. 

Therefore, it is satisfactory to examine the prefix subpath of ai in P.  

For example, in Example 3.2, node m is involved in a path f:4, c:3, a:3, 

m:2, p:2, to calculate the frequent patterns for node m in this path, only the prefix 

subpath of node m, which is f:4, c:3; a:3, need to be extracted, and the frequency 

count of every node in the prefix path should carry the same count as node m. 

That is, the node counts in the prefix path should be adjusted to f:2, c:2, a:2. 

Based on this property, the prefix subpath of node ai in a path P can be 

copied and transformed into a count-adjusted prefix subpath by adjusting the 

frequency count of every node in the prefix subpath to the same as the count of 

node ai. The so transformed prefix path is called the transformed prefixed path of 

ai for path P. 

Notice that the set of transformed prefix paths of ai form a small database 

of patterns which co-occur with ai. Such a database of patterns occurring with ai is 

called ai's conditional pattern base, and is denoted as “pattern_base  ai”. Then one 

can compute all the frequent patterns associated with ai in this ai-conditional 

pattern base by creating a small FP-tree, called ai's conditional FP-tree and 

denoted as “FP-tree  ai”. Subsequent mining can be performed on this small, 

conditional FP-tree. The processes of construction of conditional pattern bases 

and conditional FP-trees have been demonstrated in Example 3.2. 

This process is performed recursively, and the frequent patterns can be 

obtained by a pattern growth method, based on the following lemmas and 

corollary [Han, Pei and Yin, 1999].  

Lemma 3.3 (Fragment growth): Let  be an item-set in DB, B be 's 

conditional pattern base, and  be an itemset in B. Then the support of    in 

DB is equivalent to the support of  in B. 

According to the definition of conditional pattern base, each 

(sub)transaction in B occurs under the condition of the occurrence of  in the 

original transaction database DB. If an itemset  appears in B   times, it appears 

with  in DB  times as well. Moreover, since all such items are collected in the 

conditional pattern base of ,    occurs exactly  times in DB as well.  



 

43

Corollary (Pattern growth): Let  be a frequent itemset in DB, B be 's 

conditional pattern base, and  be an itemset in B. Then    is frequent in DB if 

and only if  is frequent in B. 

This corollary is the case when  is a frequent itemset in DB, and when 

the support of  in 's conditional pattern base B is no less than , the minimum 

support threshold.  

Based on the corollary , mining can be performed by first identifying the 

frequent 1-itemset, , in DB, constructing their conditional pattern bases, and then 

mining the 1-itemset, , in these conditional pattern bases, and so on. This 

indicates that the process of mining frequent patterns can be viewed as first 

mining frequent 1-itemset and then progressively growing each such itemset by 

mining its conditional pattern base, which can in turn be done similarly. Thus, a 

frequent k-itemset mining problem can succesfully be transformed into a sequence 

of k frequent 1-itemset mining problems via a set of conditional pattern bases. The 

only needed is “pattern growth”. There is no need to generate any combinations of 

candidate sets in the entire mining process. 

Finally, when the FP-tree contains only a single path, the property on 

mining all the patterns is provided . 

Lemma 3.4 (Single FP-tree path pattern generation): Suppose an FP-

tree T has a single path P. The complete set of the frequent patterns of T can be 

generated by the enumeration of all the combinations of the subpaths of P with the 

support being the minimum support of the items contained in the subpath. 

Let the single path P of the FP-tree be  a1:s1  a2:s2  . . .  ak:sk. The 

support frequency si of each item ai (for 1  i  k) is the frequency of ai co-

occurring with its prefix string. Thus any combination of the items in the path, 

such as ai, . . ., aj (for 1  i, j  k), is a frequent pattern, with their co-occurrence 

frequency being the minimum support among those items. Since every item in 

each path P is unique, there is no redundant pattern to be generated with such a 

combinational generation. Moreover, no frequent patterns can be generated 

outside the FP-tree. 
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3.4.3.3 Pattern Fragment Growth Algorithm  

Based on the above lemmas and properties, Pattern Fragment Growth (FP-

Growth for short) algorithm is used for mining the frequent patterns on FP-tree 

[57]. 

Input: FP-tree constructed based on the algorithm described in Section 

3.4.2.2. The parameters in order to construct a FP-tree were a DB (transactional 

database) and a minimum support threshold . 

Output: The complete set of frequent patterns. 

Method: Call FP-growth (FP-tree ; null). 

 

Figure 3.7: Pattern Fragment Growth (FP-Growth) Algorithm. 

 

Analysis: With the properties and lemmas in the above sections, it is 

shown that the FP-growth algorithm, given in Figure 3.7, correctly finds the 

complete set of frequent itemsets in transaction database DB. 

As shown in Lemma 3.3, FP-tree of DB contains the complete information 

of DB in relevance to frequent pattern mining under the support threshold . 

If an FP-tree contains a single path, according to Lemma 3.4, its generated 

patterns are the combinations of the nodes in the path, with the support being the 

minimum support of the nodes in the subpath. Thus, we have lines (1)-(3) of the 

procedure (Figure 3.7). Otherwise, we construct conditional pattern base and mine 

its conditional FP-tree for each frequent itemset ai. The correctness and 
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completeness of prefix path transformation are shown in the Prefix-Path propery 

section, and thus the conditional pattern bases store the complete information for 

frequent pattern mining. According to Lemma 3.3 and its corollary, the patterns 

successively grown from the conditional FP-trees are the set of sound and 

complete frequent patterns. Especially, according to the fragment growth 

property, the support of the combined fragments takes the support of the frequent 

itemsets generated in the conditional pattern base. Therefore, we have lines (4)-(8) 

of the procedure.  

Let's now examine the efficiency of the algorithm. The FP-growth mining 

process scans the FP-tree of DB once and generates a small pattern-base 
iaB  for 

each frequent item ai, each consisting of the set of transformed prefix paths of ai. 

Frequent pattern mining is then recursively performed on the small pattern-base 

iaB  by constructing a conditional FP-tree for 
iaB . As reasoned in the analysis of 

Fp-tree Construction algorithm, an FP-tree is usually much smaller than the size 

of DB. Similarly, since the conditional FP-tree, “FP-tree  ai”, is constructed on 

the pattern-base 
iaB , it should be usually much smaller and never bigger than 

iaB . Moreover, a pattern-base 
iaB  is usually much smaller than its original FP-

tree, because it consists of the transformed prefix paths related to only one of the 

frequent items, ai. Thus, each subsequent mining process works on a set of usually 

much smaller pattern bases and conditional FP-trees. Moreover, the mining 

operations consists of mainly prefix count adjustment, counting, and pattern 

fragment concatenation. This is much less costly than generation and test of a very 

large number of candidate patterns. Thus the algorithm is efficient. 

From the algorithm and its reasoning, one can see that the FP-growth 

mining process is a divide-and-conquer process, and the scale of shrinking is 

usually quite dramatic. If the shrinking factor is around 20100 for constructing 

an FP-tree from a database, it is expected to be another hundreds of times 

reduction for constructing each conditional FP-tree from its already quite small 

conditional frequent pattern base. 

Even in the case that a database may generate an exponential number of 

frequent patterns, the size of the FP-tree is usually quite small and will never grow 

exponentially. For example, for a frequent pattern of length 100, “a1, . . . , a100”, 



 

46

the FP-tree construction results in only one path of length 100 for it, such as “a1; 

 . . .  a100”. The FP-growth algorithm will still generate about 1030 frequent 

patterns (if time permits!), such as “a1, a2, . . ., a1 a2, . . ., a1a2a3, . . ., a1...a100”. 

However, the FP-tree contains only one frequent pattern path of 100 nodes, and 

according to Lemma 3.4, there is even no need to construct any conditional FP-

tree in order to find all the patterns. 

 

3.5 Closed Association Rule Mining Algorithm 

The task of mining association rules consists of two main steps. The first 

involves finding the set of all frequent itemsets(frequent subsets of transactions). 

The second step involves testing and generating all high confidence rules among 

itemsets. However, it may not be necessary to mine all frequent itemsets in the 

first step, instead it may be sufficient to mine the set of closed frequent itemsets, 

which is much smaller than the set of all frequent itemsets. Also it may not be 

necessary to mine the set of all possible rules. Because any rule between frequent 

itemsets may be equivalent to some rule between closed itemsets. Thus many 

redundant rules can be eliminated. 

In this sense, the CHARM is an efficient algorithm for mining all closed 

frequent itemsets. It is proposed by M. Zaki and C.-J. Hsiao [Zaki and Hsiao, 

1999]. The abbreviation “CHARM” stands for “closed association rule mining”, 

the letter ‘H’ is gratuitous. 

The running examples (developed by M. Zaki and C.-J. Hsiao) presented 

in this Section are taken from [Zaki and Hsiao, 1999]. 

 

3.5.1 General Definitions and “Itemset-Tidset” Pairs 

The association mining task can be stated as follows: Let I = 1, 2, . . .;m 

be a set of items, and let T = 1, 2, . . ., n be a set of transaction identifiers or 

tids. The input database is a binary relation   I x T . If an item i occurs in a 

transaction t, we write it as (i; t)  , or alternately as it. Typically the database 

is arranged as a set of transactions, where each transaction contains a set of items. 

For example, consider the database shown in Figure 3.7, used as a running 

example throughout this section. Here I = A, C, D,  T, W, and T = 1, 2, 3, 4, 5, 
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6. The second transaction can be represented as C2, D2, W2; all such pairs 

from all transactions, taken together form the binary relation . 

A set X  I is also called an itemset, and a set Y  T is called a tidset. For 

convenience an itemset A, C, W is written as ACW, and a tidset 2, 4, 5 is 

written as 245. The support of an itemset X, denoted (X), is the number of 

transactions in which it occurs as a subset. An itemset is frequent if its support is 

more than or equal to a user-specified minimum support (minsup) value, i.e., if 

(X)  minsup. 

We know that, an association rule is an expression 2
p

1 XX  , where 

X1 and X2 are itemsets, and X1  X2 = . The support of the rule is given as (X1 

 X2) (i.e., the joint probability of a transaction containing both X1 and X2), and 

the confidence as p = (X1  X2) = (X1) (i.e., the conditional probability that a 

transaction contains X2, given that it contains X1). A rule is frequent if the itemset 

X1  X2 is frequent. A rule is confident if its confidence is greater than or equal to 

a user-specified minimum confidence (minconf) value, i.e, p  minconf. 

According to these overviews, the association rule mining task consists of 

two steps [Agrawal, Mannila, Srikant, Toivonen, and Verkamo, 1996]: 1) Find all 

frequent itemsets, and 2) Generate high confidence rules. Let’s now examine 

these steps in a more realistic way. 

 

3.5.1.1 Finding Frequent Itemsets 

This step is computationally and I/O intensive. Consider Figure 3.8, which 

shows a bookstore database with six customers who buy books by different 

authors. It shows all the frequent itemsets with minsup = 50% (i.e., 3 

transactions). ACTW and CDW are the maximal-by-inclusion frequent itemsets 

(i.e., they are not a subset of any other frequent itemset). 

Let I = m be the number of items. The search space for the enumeration 

of all frequent itemsets is 2m, which is exponential in m. One can prove that the 

problem of finding a frequent set of a certain size is NP-Complete, by reducing it 

to the balanced bipartite clique problem, which is known to be NP-Complete 

[Gunopulos, Mannila, and Saluja, 1997] [Zaki and Ogihara, 1998]. However, if it 

is assumed that there is a bound on the transaction length, the task of finding all 
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frequent itemsets is essentially linear in the database size, since the overall 

complexity in this case is given as O(r  n  2l), where T = n is the number of 

transactions, l is the length of the longest frequent itemset, and r is the number of 

maximal frequent itemsets. 

 

 

Figure 3.8: Generating Frequent Itemsets. 

 

3.5.1.2 Generating Confident Rules 

This step is relatively straightforward; rules of the form 'XX'X p  , 

are generated for all frequent itemsets X (where X'  X, and X'  ), provided p 

 minconf. For an itemset of size k there are 2k  2 potentially confident rules that 

can be generated. This follows from the fact that we must consider each subset of 

the itemset as an antecedent, except for the empty and the full itemset. The 

complexity of the rule generation step is thus O(s  2l), where s is the number of 

frequent itemsets, and l is the longest frequent itemset (note that s can be O(r  2l), 

where r is the number of maximal frequent itemsets). For example, from the 

frequent itemset ACW we can generate 6 possible rules (all of them have support 

of 4):  

 

 

3.5.2. Closed Association Rule Mining 

The set of closed frequent itemsets (which has smaller cardinality than the 

set of all frequent itemsets) is necessary and sufficient for the CHARM algorithm 

to capture all the information about frequent itemsets. 
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3.5.2.1 Partial Order and Lattices 

We first introduce some lattice theory concepts (see [Daveyand and 

Priestley, 1990] for a good introduction). Let P be a set. A partial order on P is a 

binary relation , such that for all x; y; z  P, the relation is: 1) Reflexive: x  x. 

2) Anti-Symmetric: x  y and y  x, implies x = y. 3) Transitive: x  y and y  z, 

implies x  z. The set P with the relation  is called an ordered set, and it is 

denoted as a pair (P,). We write x < y if x  y and x  y. 

Let (P,) be an ordered set, and let S be a subset of P. An element u  P is 

an upper bound of S if s  u for all s  S. An element l  P is a lower bound of S 

if s  l for all s  S. The least upper bound is called the join of S, and is denoted 

as V S, and the greatest lower bound is called the meet of S, and is denoted as  

S. If S = x, y, it can also be written x V y for the join, and x  y for the meet.  

An ordered set (L, ) is a lattice, if for any two elements x and y in L, the 

join x V y and meet x  y always exist. L is a complete lattice if V S and  S 

exist for all S  L. Any finite lattice is complete. L is called a join semilattice if 

only the join exists. L is called a meet semilattice if only the meet exists. 

Let denote the power set of S (i.e., the set of all subsets of S). The 

ordered set ( (S), ) is a complete lattice, where the meet is given by set 

intersection, and the join is given by set union. For example the partial orders 

( (I), ), the set of all possible itemsets, and ( (T ), ), the set of all possible 

tidsets are both complete lattices. 

The set of all frequent itemsets, on the other hand, is only a meet-

semilattice. For example, consider Figure 3.9, which shows the semilattice of all 

frequent itemsets founded in the example database (from Figure 3.8). For any two 

itemsets, only their meet is guaranteed to be frequent, while their join may or may 

not be frequent. This follows from the well known principle in association mining 

that, if an itemset is frequent, then all its subsets are also frequent. For example, 

AC  AT = AC  AT = A is frequent. For the join, while AC V AT = AC  AT 

= ACT is frequent, AC  DW = ACDW is not frequent. 
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Figure 3.9: Meet Semilattice of Frequent Itemsets. 

 

3.5.2.2 Finding Closed Itemsets 

Let the binary relation   I x T be the input database for association 

mining. Let X  I, and Y  T . Then the mappings 

 

define a Galois connection between the partial orders ( (I), ) and ( (T ), ), 

the power sets of I and T , respectively. A (X, t(X)) pair is denoted as X x t(X), 

and a (i(Y ), Y) pair is denoted as i(Y) x Y . Figure 3.9 illustrates the two 

mappings. The mapping t(X) is the set of all transactions (tidset) which contain 

the itemset X, similarly i(Y) is the itemset that is contained in all the transactions 

in Y. For example, t(ACW) = 1345, and i(245) = CDW. In terms of individual 

elements, for example t(ACW) = t(A)  t(C)  t(W) = 1345  123456  12345 

= 1345. Also i(245) = i(2)  i(4)  i(5) = CDW  ACDW  ACDTW = CDW. 

The Galois connection satisfies the following properties (where X, X1, X2 

 (I) and Y, Y1, Y2  (T )): 

1) X1  X2  t(X1)  t(X2).  

For ACW  ACTW, we have t(ACW) = 1345  135 = t(ACTW). 



 

51

2) Y1  Y2  i(Y1)  i(Y2).  

For example, for 245  2456, we have i(245) = CDW  CD = i(2456). 

3) X  i(t(X)) and Y  t(i(Y )).  

For example, AC  i(t(AC)) = i(1345) = ACW. 

Let S be a set. A function c : (S)  (S) is a closure operator on S if, 

for all X; Y  S, c satisfies the following properties: 1) Extension: X  c(X). 2) 

Monotonicity: if X  Y, then c(X)  c(Y ). 3) Idempotency: c(c(X)) = c(X). A 

subset X of S is called closed if c(X) = X. 

Lemma 3.5: Let X  I and Y  T . Let cit(X) denote the composition of 

the two mappings i   t(X) = i(t(X)). Dually, let cti(Y ) = t   i(Y ) = t(i(Y )). Then 

cit: (I)  (I) and cti: (T )  (T ) are both closure operators on itemsets 

and tidsets respectively. 

A closed itemset is defined as an itemset X that is the same as its closure, 

i.e., X = cit(X). For example the itemset ACW is closed. A closed tidset is a tidset 

Y = cti(Y). For example, the tidset 1345 is closed. 

 

Figure 3.10: Galois Connection. 

 

The mappings cit and cti, being closure operators, satisfy the three 

properties of extension, monotonicity, and idempotency. Also the application of i 

  t or t   i is called a round-trip. Figure 3.11 illustrates this round-trip starting 

with an itemset X. For example, let X = AC, then the extension property says that 

X is a subset of its closure, since cit(AC) = i(t(AC)) = i(1345) = ACW. Since AC 

 cit(AC) = ACW, it is concluded that AC is not closed. On the other hand, the 

idempotency property says that once we map an itemset to the tidset that contains 

it, and then map that tidset back to the set of items common to all tids in the tidset, 
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we obtain a closed itemset. After this, no matter how many such round-trips we 

make, we cannot extend a closed itemset. For example after one round-trip for 

AC, the closed itemset ACW is obtained. If another round-trip is performed on 

ACW, cit(ACW) = i(t(ACW)) = i(1345) = ACW is obtained. 

 

Figure 3.11: Closure Operator: Round-Trip. 

 

For any closed itemset X, there exists a closed tidset given by Y , with the 

property that Y = t(X) and X = i(Y ) (conversely, for any closed tidset there exists 

a closed itemset). We can see that X is closed by the fact that X = i(Y ), then 

plugging Y = t(X), we get X = i(Y ) = i(t(X)) = cit(X), thus X is closed. Dually, Y 

is closed. For example, we have seen above that for the closed itemset ACW the 

associated closed tidset is 1345. Such a closed itemset and closed tidset pair X x Y 

is called a concept. 

 

 

Figure 3.12: Galois Lattice of Concepts. 
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A concept X1 x Y1 is a subconcept of X2 x Y2, denoted as X1 x Y1  X2 x 

Y2, iff X1  X2 (iff Y2  Y1). Let B() denote the set of all possible concepts in 

the database, then the ordered set (B(), ) is a complete lattice, called the Galois 

lattice. For example, Figure 3.12 shows the Galois lattice for our example 

database, which has a total of 10 concepts. The least element is the concept C x 

123456 and the greatest element is the concept ACDTW x 5. Notice that the 

mappings between the closed pairs of itemsets and tidsets are anti-isomorphic, 

i.e., concepts with large cardinality itemsets have small tidsets, and vice versa. 

 

3.5.3 Closed Frequent Itemsets Versus All Frequent Itemsets 

We may now define the join and meet operations on the concept lattice 

(see [52] for the formal proof): The set of all concepts in the database relation , 

given by (B(),) is a (complete) lattice with join and meet given by 

join: (X1 x Y1) V (X2 x Y2) = cit(X1  X2) x (Y1  Y2) 

meet: (X1 x Y1)  (X2 x Y2) = (X1  X2) x cti(Y1  Y2) 

For the join and meet of multiple concepts, we simply take the unions and 

joins over all of them. For example, consider the join of two concepts, (ACDW x 

45) V (CDT x 56) = cit(ACDW  CDT) x (45  56) = ACDTW x 5. On the other 

hand their meet is given as, (ACDW x 45)  (CDT x 56) = (ACDW  CDT) x 

cti(45  56) = CD x cti(456) = CD x 2456. Similarly, we can perform multiple 

concept joins or meets; for example, (CT x 1356) V (CD x 2456) V (CDW x 245) 

= cit(CT  CD  CDW) x (1356  2456  245) = cit(CDTW) x 5 = ACDTW x 5. 

The support of a closed itemset X or a concept X x Y is defined as the 

cardinality of the closed tidset Y = t(X), i.e, (X) = Y = t(X). A closed itemset 

or a concept is frequent if its support is at least minsup. Figure 3.13 shows all the 

frequent concepts with minsup = 50 % (i.e., with tidset cardinality at least 3). The 

frequent concepts, like the frequent itemsets, form a meet-semilattice, where the 

meet is guaranteed to exist, while the join may not. 
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Figure 3.13: Frequent Concepts. 

 

Theorem 3.1: For any itemset X, its support is equal to the support of its 

closure, i.e., (X) = (cit(X)). 

Proof: The support of an itemset X is the number of transactions where it 

appears, which is exactly the cardinality of the tidset t(X), i.e., (X) = t(X). Since 

(cit(X)) = t(cit(X)), to prove the Theorem 3.1, t(X) = t(cit(X)) have to be shown. 

Since cti is closure operator, it satisfies the extension property, i.e., t(X)  

cti(t(X)) = t(i(t(X))) = t(cit(X)). Thus t(X)  t(cit(X)). On the other hand since cit is 

also a closure operator, X  cit(X), which in turn implies that t(X)  t(cit(X)), due 

to property 1) of Galois connections. Thus t(X) = t(cit(X)). 

According to M. Zaki and C.-J. Hsiao [Zaki and Hsiao, 1999], this 

theorem states that all frequent itemsets are uniquely determined by the frequent 

closed itemsets (or frequent concepts). Furthermore, the set of frequent closed 

itemsets is bounded above by the set of frequent itemsets, and is typically much 

smaller, especially for dense datasets (where there can be orders of magnitude 

differences). To illustrate the benefits of closed itemset mining, contrast Figure 

3.9, showing the set of all frequent itemsets, with Figure 3.13, showing the set of 

all closed frequent itemsets (or concepts). It is seen that while there are only 7 

closed frequent itemsets, there are 19 frequent itemsets. This example clearly 

illustrates the benefits of mining the closed frequent itemsets. 
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3.5.4 Closed Association Rule Mining Algorithm Design 

CHARM is unique in that it simultaneously explores both the itemset 

space and tidset space, unlike all previous association mining methods which only 

exploit the itemset space [Zaki and Hsiao, 1999]. Furthermore, CHARM avoids 

enumerating all possible subsets of a closed itemset when enumerating the closed 

frequent sets, which rules out a pure bottom-up search. This property is important 

in mining dense domains with long frequent itemsets, where bottom-up 

approaches are not practical (for example if the longest frequent itemset is l, then 

bottom-up search enumerates all 2l frequent subsets). 

The exploration of both the itemset and tidset space allows CHARM to use 

a novel search method that skips many levels to quickly identify the closed 

frequent itemsets, instead of having to enumerate many non-closed subsets. 

Further, CHARM uses a two-pronged pruning strategy. It prunes candidates based 

not only on subset infrequency (i.e., no extensions of an infrequent itemset are 

tested) as do all association mining methods, but it also prunes branches based on 

non-closure property, i.e., any non-closed itemset is pruned. Finally, CHARM 

uses no internal data structures like Hash-trees [Agrawal, Mannila, Srikant, 

Toivonen, and Verkamo, 1996] or Tries [Brin, Motwani, Ullman, and Tsur, 1997]. 

The fundamental operation used is an union of two itemsets and an intersection of 

their tidsets.  

 

Figure 3.14: Complete Subset Lattice. 

Consider Figure 3.14 which shows the complete subset lattice over the five 

items in the example database given in Figure 3.9. The idea in CHARM is to 

process each lattice node to test if its children are frequent. All infrequent, as well 
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as non-closed branches are pruned. Notice that, the children of each node are 

formed by combining the node by each of its siblings that come after it in the 

branch ordering. For example, A has to be combined with its siblings C; D; T and 

W to produce the children AC; AD; AT and AW.  

A sibling need not be considered if it has already been pruned because of 

infrequency or non-closure. While many search schemes are possible (e.g., 

breadth-first, depth-first, best-first, or other hybrid search), CHARM performs a 

depth-first search of the subset lattice. 

It is assumed that for any itemset X, there is access to its tidset t(X), and 

for any tidset Y there is access to its itemset i(Y). CHARM actually enumerates 

all the frequent concepts in the input database. Recall that a concept is given as a 

pair X x Y , where X = i(Y) is a closed itemset, and Y = t(X) is a closed tidset. 

The algorithm can start the search for concepts over the tidset space or the itemset 

space. However, typically the number of items is a lot smaller than the number of 

transactions, and since the CHARM ultimately interested in the closed itemsets, 

the algorithm starts the search with the single items, and their associated tidsets. 

 

3.5.4.1 Basic Properties of Itemset-Tidset Pairs 

Let f : (I)  N be a one-to-one mapping from itemsets to integers. For 

any two itemsets X1 and X2, it is said that X1  X2 iff f(X1)  f(X2). f defines a 

total order over the set of all itemsets. For example, if f denotes the lexicographic 

ordering, then itemset AC < AD. As another example, if f sorts itemsets in 

increasing order of their support, then AD < AC if support of AD is less than the 

support of AC. 

Let’s assume that the algorithm is processing the branch X1 x t(X1), and it 

is needed to combine it with its sibling X2 x t(X2). That is X1  X2 (under a 

suitable total order f). According to the foundations of  M. Zaki and C.-J. Hsiao 

[Zaki and Hsiao, 1999], the main computation in CHARM relies on the following 

properties: 

1. If t(X1) = t(X2), then t(X1  X2) = t(X1)  t(X2) = t(X1) = t(X2). Thus 

we can simply replace every occurrence of X1 with X1  X2, and remove X2 from 

further consideration, since its closure is identical to the closure of X1  X2. In 

other words, we treat X1  X2 as a composite itemset. 
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2. If t(X1)  t(X2), then t(X1  X2) = t(X1)  t(X2) = t(X1)  t(X2). Here 

we can replace every occurrence of X1 with X1  X2, since if X1 occurs in any 

transaction, then X2 always occurs there too. But since t(X1)  t(X2) we cannot 

remove X2 from consideration; it generates a different closure. 

3. If t(X1)  t(X2), then t(X1  X2) = t(X1)  t(X2) = t(X2)  t(X1). In this 

we replace every occurrence of X2 with X1  X2, since wherever X2 occurs X1 

always occurs. X1 however, produces a different closure, and it must be retained. 

4. If t(X1)  t(X2), then t(X1  X2) = t(X1)  t(X2)  t(X2)  t(X1). In this 

case, nothing can be eliminated; both X1 and X2 lead to different closures. 

 

Figure 3.15: Basic Properties of Itemsets and Tidsets. 

Figure 3.15 pictorially depicts the four cases. It is seen that only closed 

tidsets are retained after two itemset-tidset pairs are combined. For example, if the 

two tidsets are equal, one of them is pruned (property 1). If one tidset is a subset 

of another, then the resulting tidset is equal to the smaller tidset from the parent, 

and that parent is eliminated (properties 2 and 3). Finally if the tidsets are unequal, 

then those two and their intersection are all closed. 

Example 3.3: Before formally presenting the CHARM algorithm, we want 

to show how the four basic properties of itemset-tidset pairs are exploited in 

CHARM to mine the closed frequent itemsets. 
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Figure 3.16: CHARM: Lexicographic Order. 

 

 

Figure 3.17: CHARM: Sorted by Increasing Support. 

 

Consider Figure 3.16, initially there are five branches, corresponding to 

the five items and their tidsets from the example database (recall that the 

algorithm uses minsup = 3 as an input parameter). To generate the children of 

item A (or the pair A x 1345) the CHARM algorithm combines it with all siblings 

that come after it. When two pairs X1 x t(X1) and X2 x t(X2) are needed to be 

combined, the resulting pair can be calculated as (X1  X2) x (t(X1)  t(X2)). In 

other words, CHARM is supposed to perform the intersection of corresponding 

tidsets whenever it needs to combine two or more itemsets.  

When A is tried to be extended with C, the property 2 will be processed, 

i.e., t(A) = 1345  123456 = t(C). Thus, A will be removed and replaced with 

AC. Combining A with D produces an infrequent set ACD, which is pruned. 

Combination of AC (A) with T produces the pair ACT x 135; property 4 holds 

here, so nothing can be pruned. When A is tried to be combined with W it will be 

seen that t(A)  t(W). According to property 2, the algorithm replaces all 



 

59

unpruned occurrences of A with AW. Thus, AC becomes ACW and ACT 

becomes ACTW. At this point there is nothing further to be processed from the A 

branch of the root. 

The algorithm now starts to process the C branch. When C is needed to be 

combined with D, it will be observed that property 3 holds, i.e., t(C)  t(D). This 

means that wherever D occurs C always occurs. Thus D can be removed from 

further consideration, and the entire D branch is pruned; the child CD is replaced 

with D. Exactly the same scenario occurs with T and W. Both the branches are 

pruned and are replaced by CT and CW as children of C. Continuing in a depth-

first manner, the algorithm next processes the node CD. Combining it with CT 

produces an infrequent itemset CDT, which is pruned. Combination with CW 

produces CDW and since property 4 holds, nothing can be removed. Similarly the 

combination of CT and CW produces CTW. At this point all branches have been 

processed. 

Finally, CTW x 135 is removed since it is contained in ACTW x 135. As it 

is seen, in just 10 steps the CHARM algorithm is able to identify the all 7 closed 

frequent itemsets. 

 

3.5.4.2 Pseudo-Code Description 

The algorithm starts by initializing the set of nodes to be examined to the 

frequent single items and their tidsets in Line 1. The main computation is 

performed in CHARM-EXTEND which returns the set of closed frequent itemsets 

C. The pseudo-code of the algorithm, proposed by M. Zaki and C.-J. Hsiao [Zaki 

and Hsiao, 1999], is given in Figure 3.18 below. 

 

 

Figure 3.18: The CHARM Algorithm. 
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CHARM-EXTEND is responsible for testing each branch for viability. It 

extracts each itemset-tidset pair in the current node set, Nodes (Xi x t(X), Line 3), 

and combines it with the other pairs that come after it, (Xj x t(Xj ), Line 5), 

according to support-based ordering shown in Figure 3.17 above. The 

combination of the two itemset-tidset pairs is computed in Line 6. The routine 

CHARM-PROPERTY tests the resulting set for required support and also applies 

the four properties discussed above. Note that this routine may modify the current 

node set by deleting itemset-tidset pairs that are already contained in other pairs. It 

also inserts the newly generated children frequent pairs in the set of new nodes 

NewN. If this set is non-empty, the CHARM-EXTEND is processed recursively 

in depth-first manner (Line 8). Then the possibly extended itemset X, of Xi, is 

inserted in the set of closed itemsets, since it cannot be processed further; at this 

stage any closed itemset containing Xi has already been generated. Then the 

algorithm returns to Line 3 to process the next (unpruned) branch. 

The routine CHARM-PROPERTY simply tests if a new pair is frequent, 

discarding it if it is not. It then tests each of the four basic properties of itemset-

tidset pairs, extending existing itemsets, removing some subsumed branches from 

the current set of nodes, or inserting new pairs in the node set for the next (depth-

first) step. 

  

3.5.4.3 Branch Reordering 

The CHARM algorithm purposely lets the itemset-tidset pair ordering 

function in Line 5 remain unspecified. The usual manner of processing is in 

lexicographic order shown in Figure 3.16, but one may specify any other total 

order. The most promising approach is to sort the itemsets based on their support. 

The motivation is to increase opportunity for non-closure based pruning of 

itemsets. A quick look at properties 1 and 2 tells us that these two situations are 

preferred over the other two cases. For property 1, the closure of the two itemsets 

is equal, and thus Xj can be discarded and Xi can be replaced with Xi  Xj . For 

property 2, Xi can still be replaced with Xi  Xj. Note that in both these cases the 

algorithm does not insert anything in the set of new nodes. Thus the more the 

occurrence of case 1 and 2, the fewer levels of search the CHARM performs. In 

contrast, the occurrence of cases 3 and 4 results in additions to the set of new 
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nodes, requiring additional levels of processing. Note that the reordering is 

applied for each new node set, starting with the initial branches. 

Since t(Xi) = t(Xj) or t(Xi)  t(Xj) is a desired situation, it follows that the 

itemsets should be sorted in increasing order of their support. Thus, larger tidsets 

occur later in the ordering and the occurrence of properties 1 and 2 is maximized. 

By similar reasoning, sorting by decreasing order of support doesn’t work very 

well, since it maximizes the occurrence of properties 3 and 4, increasing the 

number of levels of processing. 

Example 3.4: Figure 3.14 shows how CHARM works on the example 

database if we sort itemsets in increasing order of support. We will use the 

pseudo-code to illustrate the computation.  

The algorithm initializes Nodes = A x 1345, D x 2456, T x 1356, W x 

12345, C x 123456 in Line 1. At Line 3 the algorithm first processes the branch 

A x 1345 (X = A is set in Line 4); it will be combined with the remaining siblings 

in Line 5. AD is not frequent and is pruned. The algorithm next looks at A and T; 

since t(A)  t(T), AT is simply inserted in NewN. Next, it is found that t(A)  

t(W). Thus, all occurrences of A is replaced with AW (that is X = AW), which 

means that also AT in NewN is changed to ATW. Looking at A and C, the 

algorithm finds that t(A)  t(C). Thus, AW becomes ACW (X = ACW), and 

ATW in NewN becomes ACTW. At this point CHARM-EXTEND is invoked 

with the non-empty NewN (Line 8). But since there is only one element, the 

CHARM-EXTEND immediately returns after adding ACTW x 135 to the set of 

closed frequent itemsets C (Line 9). 

When the CHARM-EXTEND returns, the A branch has been completely 

processed, and  X = ACW is added to C. The other branches are examined in turn, 

and the final C is produced as shown in Figure 3.17. One final note; the pair CTW 

x 135 produced from the T branch is not closed, since it is subsumed by ACTW x 

135, and it is eliminated in Line 9. 

 

3.5.5 Correctness and Efficiency 

Theorem 3.2 (Correctness): The CHARM algorithm enumerates all 

closed frequent itemsets. 
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Proof: CHARM correctly identifies all and only the closed frequent 

itemsets, since its search is based on a complete subset lattice search. The only 

branches that are pruned as those that either do not have sufficient support, or 

those that result in non-closure based on the properties of itemset-tidset pairs. 

Finally, CHARM eliminates the few cases of non-closed itemsets that might be 

generated by performing subsumption checking before inserting anything in the 

set of all closed frequent itemsets C. 

Theorem 3.3 (Computational Cost): The running time of CHARM is O(l 

 C), where l is the average tidset length, and C is the set of all closed frequent 

itemsets. 

Proof: Note that starting with the single items and their associated tidsets, 

while a branch is being processed the following cases might occur: Let Xc denote 

the current branch and Xs the sibling it is tried to be combined with it. The Xs 

branch is pruned if t(Xc) = t(Xs) (property 1). Xc is extended to become Xc  Xs if 

t(Xc)  t(Xs) (property 2). Xs is pruned if t(Xc)  t(Xs), and Xs  is extended to 

become t(Xc)  t(Xs) (property 3). Finally a new node is only generated if there 

remained a new possibly closed set due to properties 3 and 4. Also note that each 

new node in fact represents a closed tidset, and thus indirectly represents a closed 

itemset, since there exists a unique closed itemset for each closed tidset. Thus 

CHARM performs on the order of O(C) intersections. If each tidset is on average 

of length l, an intersection costs at most 2  l. The total running time of CHARM is 

thus 2  l  C or O(l  C). 

Theorem 3.4 (I/O cost): The number of database scans made by CHARM 

is given as 











 I

C
O , where C is the set of all closed frequent itemsets, I is the set of 

items, and  is the fraction of database that fits in memory. 

Proof: The number of database scans required is given as the total 

memory consumption of the algorithm divided by the fraction of database that 

will fit in memory. Since CHARM computes on the order of O(C) intersections, 

the total memory requirement of CHARM is O(l  C), where l is the average 

length of a tidset. The total database size is l  I, and the fraction that fits in 

memory is given as   l  I. The number of data scans is then given as (l  C)=( 

 l  I) = C=(  I). 
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Note that in the worst case C can be exponential in I, but this is rarely 

the case in practice. 
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Chapter 4 

 

IMPLEMENTATION OF ALGORITHMS 

AND 

SAMPLE DATA SETS 

 

 

In order to compare the algorithms, experimental studies using different 

data sets (two synthetic data sets and a real data set) and different support levels 

have been conducted. In this chapter we present our approaches with respect to 

the implementation stages of the Apriori, the FP-tree and the CHARM algorithms.  

All the experiments were performed on a 600 MHz Intel Pentium PC 

machine with 128 megabytes main memory, running on Microsoft Windows/NT. 

All the programs were source coded in JAVA due to its Collections Framework 

(java.util package)’s advantages which provides magical facilities for 

implementing the data structures. As a Java Virtual Machine we utilized the one 

running on Java Standart Development Kit - Version  1.4.1. 

  

4.1 Implementation of Algorithms and Comparison Criteria 

The Apriori, the FP-tree and the CHARM algorithms are explained in 

detail in Chapter 3. In this section, we present our implementation techniques and 

programming approaches for the algorithms. 

 

4.1.1 Input Parameters of the Algorithms 

All algorithms take the following input parameters: 

 Support (user specified treshold) percentage.  

 Input file name (an input data set). 

 Output file name (the file that contain the output of the algorithm). 
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4.1.2 Outputs Generated by the Algorithms 

4.1.2.1 Data Features 

 input file name 

 number of elements 

 number of fields(or items) 

 number of transactions 

 longest transaction size 

 average transaction size 

 

4.1.2.2 Performance Statistics 

 data preparation time 

 mining time 

 run time 

 

4.1.2.3 Number of Associations 

The associations extracted by the algorithms are not identical. In other 

words, they depend on the nature of the algorithm. Apriori algorithm finds all 

“frequent itemsets” which satisfy the treshold. Since FP-tree algorithm designed 

for pattern the mining problem, it extracts all “prefix path”, “conditional pattern 

base” and “frequent pattern” information. CHARM algorithm eliminates non-

closed itemsets while determining frequent itemsets, and finally it presents us all 

“closed frequent itemsets”. 

 

4.1.3 Implementation of Apriori Algorithm 

Most of the algorithms which have candidate generation and testing 

procedures(like Apriori algorithm) use special data structures or techniques in 

order to manage the “search” task. These sophisticated techniques play 

remarkable roles on the performances of the algorithms. 

When we take a look at IBM’s Quest team project described in Section 

3.3, we see that the Apriori algorithm has apriori-gen() and subset() sub-functions 

performing candidate generation and membership (subset) testing respectively. To 

reduce the time needed for the membership testing, the Apriori algorithm uses a 

hash-tree for storing large itemsets. 
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Since the FP-tree and the CHARM algorithms weren’t need any special 

search techniques, like-wise, we ordinarily prefered to use the sequential search 

technique in the implementation of the Apriori algorithm. Considering this, the 

pseudo-code of the Apriori algorithm which we used in in our source code 

implementation has been given in Figure 4.1. 

 

Figure 4.1: Pseudo-code of Apriori algorithm used in our study. 

 
4.1.4 Implementation of FP-Tree Algorithm 

As we described in Chapter 3, the FP-tree algorithm includes the following 

two steps: 

1) Composing the frequent pattern tree by “FP-tree Construction 

algorithm”. 

2) Mining  frequent patterns with “Pattern Fragment Growth algorithm”. 

These steps are described in Section 3.4.2.2 and in Section 3.4.3.3 respectively. In 

our source code implementation we obeyed the same routines. 

 

4.1.5 Implementation of CHARM Algorithm 

In the course of both the investigation step and the source code 

implementation step, we realized that the pseudo-code description of the CHARM 

algorithm, proposed by M.J. Zaki and C.-J. Hsiao [Zaki and Hsiao, 1999] had 

some notation deficiencies due to which we could not manage to find all closed 

frequent itemsets. 

 

4.1.5.1 Deficiency Observations in the Pseudo-Code Description 

The main idea behind the CHARM algorithm is described in Chapter 3. 

Example 3.3 describes how the algorithm works in a bird’s eye view. However, 
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when we take a close look at the pseudo-code we can easily see the following 

fundamental deficiency in CHARM-EXTEND (in Figure 3.11 - line 6):  

For all Xi, since the variable X itself is combined with each node 

according to the condition f(j) > f(i), it will also contain the non-frequent items. 

This observation caused us to make some modifications in the pseudo-code of the 

algorithm. 

 

4.1.5.2 Modifications in the Pseudo-Code Description 

We first substituted the assignment X = X  Xj  (in CHARM-EXTEND-

line 6) with X = Xi  Xj. This substitution yielded adding two more variables,  

and , to the pseudo-code. Succedingly, the variable X in line 4 substituted with 

the variable   and moreover the assignment   = t(Xi) added to line 4. In this 

sense, variable X in line 9 substituted with  and the assignment C = C    

added to line 9. As shown in Figure 4.2 (b), also the sub-routine CHARM-

PROPERTY was re-arranged by modifying the lines 4 and 6.  

Through the help of these modifications, we can obtain the set of closed 

frequent itemsets, C, for each item in Nodes. However, when the set of all closed 

frequent itemsets for the transactional database is considered, it goes without 

saying that we need one more sub-routine to find all closed frequent itemsets for 

the whole transactional database. 

The GET-CLOSED function has been designed to determine and prune the 

non-closed itemsets in C. Consider C = { ACTW x 135, ACW x 1345, CDW x 

245, CD x 2456, CTW x 135, CT x 1356, CW x 12345, C x 123456 } be a set of 

closed itemset-tid pairs processed by CHARM-EXTEND. Since the itemsets 

ACTW and CTW have the same tidset, GET-CLOSED simply will the prune the 

pair CTW x 135 as it is also a subset of ACTW. Note that the main idea behind 

the GET-CLOSED function is based on the basic properties of itemset-tidset 

pairs.  
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Figure 4.2: The main pseudo-code of the CHARM algorithm and Modifications in the pseudo-

code are shown in (a) and (b) respectively. 

 

4.1.5.3 Impacts of Modifications on CHARM Algorithm 

After the proposed modifications, the CHARM algorithm is as follows:  

Let C be a set of closed frequent itemsets for each node. The main 

computation for the composition of C is performed by the CHARM-EXTEND 

function. It extracts each itemset-tidset pair, (Xi x t(Xi)), in the current node set, 

Nodes, and combines it with the other pairs that come after it, (Xj x t(Xj)). The 

CHARM-PROPERTY function tests the resulting set for the required support and 

also applies the itemset-tidset properties. Note that, this routine modifies the 

current node set by deleting itemset-tidset pairs that are already contained in other 

pairs. It also inserts the newly generated children frequent pairs in the set of new 

nodes, newN. If this set is non-empty, the next(unpruned) branch is processed 

recursively in the dept-first manner. Then, the possibly extended itemset  with 
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the current tidset  can be inserted to the set of closed itemsets, since it cannot be 

processed furher. At this stage, any closed itemset containing x  pair has 

already been granted. After finding all the closed frequent itemsets for each node, 

the GET-CLOSED function is called. This function simply prunes the smaller-

length itemsets in C that have the same tidsets. As a result, the remaining set 

refers to the set of  of all closed frequent itemsets. 

 

4.1.6 Comparison Criteria 

Algorithms were compared according to their data preparation times, 

mining times, run times and the number of associations they extracted. 

 

4.1.6.1 Data Preparation Time 

Before mining the data set the algorithm has to prepare the data for its 

requirements (for the mining process). Thus, data preparation step can vary from 

algorithm to algorithm.  

Since Apriori already makes multiple passes over the data during the 

mining process, just reading the data set is adequate for its data preparation. The 

CHARM algorithm is supposed to compose the “Nodes” in order to start the 

mining process. So that, the data preparation for the CHARM algorithm includes 

first reading the data set and then composing the “Nodes” in an ascending order. 

Data preparation for the FP-tree algorithm includes scanning the transactional 

database once, collecting the set of frequent items and their supports and sorting 

the frequent items in a support descending order. We did not consider the FP-tree 

construction process as a data preparation step, because it is a special kind of 

process on its own. 

 

4.1.6.2 Mining Time  

Each algorithm evaluated in this study uses different strategies to mine 

data sets. Apriori algorithm makes multiple passes over the database. Each pass 

consists of scanning, pruning and joining steps. At the end of each joining step, 

the algorithm generates new candidates for the next pass. The mining process 

continues until no more candidades can be generated. The FP-tree algorithm first 

constructs a FP-tree and then starts to mine the frequent patterns according to 
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pattern fragment growth(FP-growth) algorithm. The CHARM  uses itemset-tidset 

properties in order to perform the mining process. It searches the subset lattice in 

a dept-first manner. The routine CHARM-PROPERTY tests the resulting set for 

required support and also applies the four itemset-tidset properties. This routine 

also inserts the newly generated children frequent pairs in the set of new nodes, 

NewN. If this set is non-empty we recursively call the CHARM-EXTEND 

function and process new nodes in a depth-first manner (Figure 4.2 (b) CHARM-

EXTEND – line 8). This mining process continues until no more branches left. 

 

4.1.6.3 Run Time 

The  run time of the algorithms has been calculated by simply adding the 

mining time to the data preparation time: run_time = data_preparation_time + 

mining_time. As we were involved in the performance measurement we did not 

take into account of the time needed for IO (Input / Output) routines in the 

calculation of the run time. 

 

4.1.6.4 Number of Associations 

The word “association” includes frequent patterns, frequent itemsets, 

sequential patterns, etc. The Apriori Algorithm finds all frequent itemsets, the FP-

tree algorihm first determines the prefix paths, then develops the conditional 

pattern bases and finally finds all the frequent patterns. The CHARM algorithm 

finds the closed frequent itemsets which may have smaller cardinalities than the 

set of all frequent itemsets. 

 

4.2 Synthetic Data Generation and Statistical Anaylsis of the Data Sets 

The algorithms were tested on three different data sets: A real data set and 

two synthetic data sets.  

The real data set, “Northwind”, is a sample database taken from Microsoft 

Access Database. Only the “order_details” table of this database is used in this 

study. The statistical features of Northwind (only the order_details table) table are 

decribed in Section 4.2.2.  

Having tested the algorithms on the Northwind database, we had been 

involved in the observation of behaviours of the algorithms on synthetic data sets 
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having less and more elements than Northwind. In this sense, we produced two 

different data sets which have 1000 and 5000 transactions. These synthetic data 

sets were simulated using a pre-defined probability mass tables, that is, the 

probability of occurences of the items and the number of transactions that the data 

set contain were pre-designated.  The synthetic data generation routines that we 

used in our study are described in Section 4.2.1 and the statistical features of the 

synthetic data sets with 1000 and 5000 transactions are described in Section 4.2.3 

and Section 4.2.4 respectively.  

 

4.2.1 Synthetic Data Set Generation 

We managed 5 steps for generating a synthetic data sets. Our data 

generation procedure as follows: 

1) Determine the borders of the data sets. Such as; 

 maximum transaction size: 20 

 number of items (or fields): 50 

 number of transactions: 1000 and 5000 

2) To hold the “Transaction Size Distributions” and the “Item 

Distributions” define two matrices, Transaction_Size_Matrix (1 x 20) and 

Item_Matrix (1 x 50). The Transaction_Size_Matrix and the Item_Matrix are 

shown in Figure 4.3. 

 

Figure 4.3: Pre-designated probability distributions for synthetic data generation: Transaction Size 

Distribution and Item Distribution. 
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3) Sort the probabilitiy of occurences that Transaction_Size_Matrix 

contain (in a descending order). 

4) Extend the probability of occurences of items that Item_Matrix hold. In 

other words, create a 1 x 1000 matrix (let it be A_Matrix) that will contain the 

items according to their probability of occurences. For example, in A_Matrix, the 

item “1” will occupy the first 1000*0.077 place and item 2 will occupy the 

following 1000*0.069 place,...,etc. As a result, the A_Matrix will contain the 

items from 1 to 50 in a consecutive order:  <1...1 , 2...2 , 3...3 , .  .  . , 47 47 , 48, 49 

, 50>. In this sense, you can see that the size of the A_Matrix will be 1000. 

5) Having determined the data features, designated the probability of item 

occurences and the probability of transaction size occurences in 4 steps, the data 

generation algorithm can be proceeded as it is shown in Figure 4.4. 

 

 
Figure 4.4: Synthetic data generation algorithm. 

 

 The sub-routine getTransactionSize() in line 3 generates a random number 

(according to uniform distribution) between 0 and 1 and returns the index which 

corresponds to the random number in Transaction_Size_Matrix.  

 The sub-routine getItem() in line 5, generates a random number (according 

to uniform distribution) between 1 and 1000 (the size of the A_Matrix) and 

returns the value(item id) that corresponds to the random number in A_Matrix. 
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4.2.2 Statistical Analysis of “Northwind” Database 

The features and the statistical analysis of the order_details table of the 

Northwind database are given in Figure 4.5 and Figure 4.6 respectively. 

 

 
Figure 4.5: Features of “order-details” table of “Northwind” database. 

 
 

 

Figure 4.6: Statistical anaysis of “order-details” table of “Northwind” database. 
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4.2.3 Statistical Analysis of “Synthetic Data  Set with 1000 Transactions” 

The features and the statistical analysis of the “Synthetic Data Set with 

1000 Transactions” are given in Figure 4.7 and Figure 4.8 respectively. 

 

 
Figure 4.7: Features of “Synthetic Data  Set with 1000 Transactions”. 

 
 
 

 

Figure 4.8: Statistical anaysis of “Synthetic Data Set with 1000 Transactions”. 
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4.2.4 Statistical Analysis of “Synthetic Data Set with 5000 Transactions” 

The features and the statistical analysis of the “Synthetic Data Set with 

1000 Transactions” are given in Figure 4.9 and Figure 4.10 respectively. 

 

 
Figure 4.9: Features of “Synthetic Data  Set with 5000 Transactions”. 

 

 

Figure 4.10: Statistical anaysis of “Synthetic Data Set with 5000 Transactions”. 
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Chapter 5 

 

RESULTS AND DISCUSSION 

 

 

As the result of the experimental study, we revealed the performance 

statistics and the knowledge extraction capabilities of the algorithms. In this 

chapter, we visualize, evaluate and compare the results obtained from our 

experimental study as regards the “performance statistics” and knowledge 

extraction capabilities” of the algorithms. 

   

5.1 Comparison of the Data Preparation Times 

As is mentioned in Section 4.1.6.1, all algorithms have to make 

preparations over the data set before they start mining. Since each algorithm 

utilize a different strategy for its mining process, it is expected that the data 

preparation times of the algorithms differ from each other.    

We know that, since the Apriori algorithm already makes multiple passes 

over the data during the mining process, it is sufficient for the algorithm just 

reading the data set once for its data preparation step. However, as described in 

Section 4.1.6.1, the FP-tree the CHARM algorithms have additional steps for their 

data preparations. When these extra steps of FP-tree and CHARM algorithms are 

taken into consideration, it is expected that the Apriori algorithm should be more 

efficient in terms of data preparation performance than the FP-tree and the 

CHARM algorithms. 

Accordingly, when we take a glance at the experimental results in Figure 

5.1 we see that the CHARM algorithm spends much more time than the FP-tree 

algorithm. This inferiority of CHARM stems from the time spent for generating 

the set of Nodes. Actually, while the FP-tree algorithm composes the header table 

and determines the frequent items of each transaction with reference to the order 

of the items in the header table, the CHARM algorithm first finds the frequent 

items and then determines the tidsets for each frequent item to be inserted to the 

set of Nodes. 
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The experimental results shown in Figure 5.1(a), Figure 5.1(b) and Figure 

5.1(c) reveal that the features of the data set which the algorithm is executed for 

influence the data preparation performance of the algorithm to a large extend. 

When the size (the number of elements) of the data set grows, the gap between the 

data prepration time of the algorithms exaggerates. 

The support levels may also effect the data preparation performances of 

some algorithms. As shown in Figure 5.1(a), Figure 5.1(b) and Figure 5.1(c) 

respectively, at high support levels (where many items are able to be pruned at the 

outset) the FP-tree and the CHARM algorithms spend less time for the data 

preparation (i.e., for Northwind data as we increase the support from 0,5% to 

6,0% support, the data preparation time for the CHARM algorithm decreases from 

1,212 secs to 0,601 secs). Since the Apriori algorithm independently preparares 

the data set for its mining process from the support level, the data preparation 

performance of the algorithm goes linear (i.e., for Northwind data it is 

approximately 0,6 secs) through all supports levels. Additionally, at high support 

levels (such as 6,0%) due to the elimination of infrequent items at the initial steps, 

the data preparation performances of the algorithms are almost similar [Figure 

5.1(a)]. 

Consequently, due to the fact that the algorithms initially should read the 

data set at least once, the FP-tree and the CHARM algorithms can never exceed 

the data preparation performance of the Apriori algorithm even sparse data sets or 

high support levels concerned. 
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Data Preparation Times of the Algorithms 

Figure 5.1: The “Data Preparation Times” of the algorithms for different data sets and 

at different support levels are given in (a), (b) and (c). 
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5.2 Comparison of the Mining Times of the Algorithms 

As is described in Chapter 3, each algorithm uses a different kind of 

mining technique developed in the wake of its herediterial philosophy.  

The Apriori algorithm makes as many passes in order to find the most 

frequent itemsets as the user specified support permits. Each pass includes the 

scanning, the pruning and the joining (candidate generation) steps. At the end of 

each pass the algorithm prepares a new data set (called the candidate set) for the 

next pass. For this reason, it is expected that Apriori may not show a good 

performance on dense data sets (where many itemsets cannot be pruned and form 

the candidate sets for the next pass).  

The FP-tree algorithm first constructs the FP-tree and then mines the 

frequent patterns. The mining process is performed by the FP-growth algorithm. 

As is described in Section 3.4.3.3, the FP-growth algorithm uses a partitioning-

based divide-and-conquer process over the compact FP-tree structure. Apart from 

the Apriori algorithm, the FP-tree algorithm never deals with the candidate set 

generation and testing. Additionally, the compactness of the FP-tree provides 

many advantages in terms of mining performance when compared with Apriori. 

The CHARM algorithm implements a depth-first mining strategy for 

mining the closed frequent itemsets instead of mining the set of all frequent 

itemsets. The itemset-tidset properties, described in Section 3.5.4.1, make 

significant contributions to the performance of the aforesaid mining process.  

However, in circumstances including the frequent occurences of the 3rd and the 

4th itemset-tidset properties for the pairs in newN (Section 3.5.4.2), the CHARM 

algorithm is expected to show an inferior mining performance in comparison to 

Apriori. 

 

  



 

80

Mining Times of the Algorithms 

Figure 5.2: The “Mining Times” of the algorithms for different data sets and 

at different support levels are given in (a), (b) and (c). 

 

Obviously, we see from the experimental results [Figure 5.2(a), Figure 

5.2(b), Figure 5.2(c)] that although the mining performance of the FP-tree 

algorithm remains almost the same, the mining performance of the Apriori and the 
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CHARM algorithms are effected from the changes in support levels and from the 

change in the size of the data sets, to a great extend. In other words, when 

compared with Apriori and CHARM, the FP-tree algorithm shows a robust 

mininig performance [i.e., the mining time is almost the same at the supports 

0,015% and 0,060% as shown in Figure 5.2(b)]. 

The experimental results show that, on small data sets [Figure 5.2(b) and 

Figure 5.2(c)] of few transactions the CHARM algorithm shows a better mining 

performance than Apriori. However, for mining large data sets, like 5000 

transactions [Figure 5.2(c)], the Apriori algorithm is considerably superior to 

CHARM. 

Another obvious point of the experimental results is that, when compared 

with the Apriori and the CHARM, even in unfavourable conditions (such as at 

low support levels or on large transactional data sets) the FP-tree algorithm shows 

a spectacularly rapid mining performance. This result can be explained by the 

compactness of the FP-tree which is described in Section 3.4.2.3. In other words, 

the whole size of an FP-tree is bounded by the overall occurrences of the frequent 

items in the database. For this reason, the FP-tree algorithm shows almost the 

same mining performance for all conditions (robustness). 

The experiments [Figure 5.2(a), Figure 5.2(b), Figure 5.2(c)] show that, 

the time needed for the FP-tree construction decreases by the increase in the 

support level. This situation stems from the following reason:  As the size of the 

header table shrinks at higher support levels, the FP-tree construction algorithm 

uses less insert-tree() calls and this leads to spend less time for the FP-tree 

construction process. 

The Apriori is the fundamental algorithm of association rule mining, thus 

many algorithms like CHARM have been developed over the Apriori algorithm. 

Nonetheless, they still cannot compete with the Apriori algorithm in some cases: 

Apriori demonstrates a better mining performance on relatively sparse data sets in 

comparison to CHARM. By “relatively sparse” we mean the data sets or 

databases containing more enough zero entries(unmarked fields or items), in other 

words, the ratio number of fields / number of elements for the data database is 

smaller.  Since the Apriori algorithm stores and processes only the non-zero 

entries, it takes the advantage of pruning most of the infrequent items during the 
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first few passes. This advantage of the Apriori algorithm can be seen from the 

experiments shown in Figure 5.2(a), Figure 5.2(b), Figure 5.2(c) obviously. While 

the CHARM algorithm shows a better mining performance on small and dense 

data sets [Figure 5.2(a)], Apriori’s mining performance is superior to CHARM on 

large and sparse data sets [Figure 5.2(b),  Figure 5.2(c)]. 

However, the increase in the ratio of number of fields / number of elements 

provides considerably faster mining performance to the CHARM algorithm. On 

such cases [Figure 5.2(a)], the inrease in the probability of enumarating the unique 

tidsets for itemsets will decrease the probability of the occurence of the 3rd and 

the 4th itemset-tidset properties for the pairs in newN; thus, CHARM will 

consume less time for mining the complete set of closed frequent itemsets. 

 

5.3 Comparison of the Run Times of the Algorithms 

In our study, as we described in Section 4.1.6.3, the run time was 

calculated simply by adding the mining time to the data preparation time, and the 

output routines were discarded during the calculation of run time. 

Since the most time consuming computations of the Apriori and the 

CHARM algorithms are carried out during the mining process, the run time 

performance graphics of these two algorithms resemble their mining time 

graphics. However, even the ratio of (average mininig time+ FP-tree construction 

time) / average data preparation time obtained from the experiments regarding 

the FP-tree algorithm never exceeds 1. 
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Run Times of the Algorithms 

Figure 5.3: The “Run Times” of the algorithms for different data sets and 

at different supports are given in (a), (b) and (c). 
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According to the experimental results [Figure 5.3(a), Figure 5.3(b), Figure 

5.3(c)], the Apriori (which can be referred as an obselete algorithm) still shows a 

better performance on sparse data sets and at high support levels than the 

CHARM algorithm. That is, when the measurement for the data set having 5000 

transactions given in Figure 5.3(c) is observed, it is seen that while the run time of 

CHARM responds with an exponential increase to the support level decreases, the 

run time of the Apriori algorithm almost goes linear. However, the idea behind 

enumarating the only the closed frequent itemsets instead of coping with all 

frequent itemsets and the depth-first mining strategy of the CHARM algorithm 

presents us many agvanteges for mining databases of small transactions [Figure 

5.3(a), Figure 5.3(b)] in comparison to Apriori.    

When the results of the overall processing performances, “run times”, of 

the algorithms taken in all round, the Apriori and the CHARM algorithms cannot 

compete with the FP-tree algorithm which uses a divide-and-conquer search 

tecnique for mining the frequent patterns on compact FP-trees. 

 

5.4 Comparison of the Knowledge Extraction Capabilities of the Algorithms 

 To compare the knowledge extraction capabilities of the algorithms, we 

measured the number of associations extracted by the algorithms at different 

support levels on the 3 three data sets cited.  

 As it is described in Section 4.1.6.4, patterns, itemsets or sequences are all 

considered as a part of associations. In our study, since we were simply involved 

in the investigation of the algorithm which was capable of finding much more 

associations than the other algorithms, we never evaluated what the information, a 

pattern or an itemset, tells. 

 Experimental results given in Figure 5.4, Figure 5.5 and Figure 5.6, shows 

us that the number associations are quite sensible to the support levels. As 

expected, algorithms extract more information at low support levels. The number 

of associations as to Apriori and CHARM, presented in Figure 5.5(a) and Figure 

5.5 (c) respectively, increase exponentially as the support decreases. But in small 

data sets this increase can almost be linear [Figure 5.4(a) and Figure 5.4(c)]. 
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Associations for Northwind Data Set 

Figure 5.4: The number of associations for Northwind Data Set generated by the algorithms 

at different support levels are given in (a), (b) and (c). 
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Associations for Synthetic Data Set with 1000 Transactions 

Figure 5.5: The number of associations for Synthetic Data Set with 1000 Transactions  

generated by the algorithms at different support levels are given in (a), (b) and (c). 
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Associations for Synthetic Data Set with 5000 Transactions 

Figure 5.6: The number of associations for Synthetic Data Set with 5000 Transactions 

generated by the algorithms at different support levels are given in (a), (b) and (c). 

 

According to the results shown in Figure 5.5(a) and Figure 5.5(c), at low 

support levels (like 0,010%), the number of associations (closed itemsets) 

extracted by CHARM is less than the number of associations (itemsets) found by 
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the Apriori algorithm. This situation can be seen also from the results of the 

experiments for the Northwind data. As is seen from the Figure 5.4(a) and Figure 

5.4(c), although the Apriori and the CHARM algorithms extract the same number 

of associatons at high support levels (such as 6,0%), when we decrease the 

support from 6,0% to 0.5% Apriori becomes more consistent succeedingly. Since 

we managed the tests at very high support levels on the Synthetic data set with 

5000 transactions [Figure 5.6(a), Figure 5.6(b) and Figure 5.6(c)], the number of 

associations is considerably low when compared with the test results as to 

Synthetic data set with 1000 transactions [Figure 5.5(a), Figure 5.5(b) and Figure 

5.5(c)]. 

As is described in Section 3.4, since the term pattern refers to both an 

itemset and its occurrence(such as <{a,b,d,e,f}, 3>), patterns include crucial 

information in terms of association rule mining. But unfortunately, when we 

observe the results of the experiments shown in Figure 5.4(b), Figure 5.5(b) and 

Figure 5.6(b), we see that the number of patterns generated by the FP-tree 

algorithm are remarkably at low levels when compared with the itemsets extracted 

by the Apriori and the CHARM algorithms. The experimental results show us that 

even at low support levels the number of patterns are still in unconsiderable 

amounts in comparison to Apriori and CHARM. However, since the frequent 

patterns are generated by composing the set of prefix paths and conditional pattern 

bases respectively, one may claim that also these two sets serve us information to 

some extend. But as we emphasized, such kind of semantical claims are not under 

the scope of this study. 
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Chapter 6 

 

CONCLUSION 

 

 

6.1 Introduction 

The principal purpose of this study is the comparison of association rule 

algorithms. The typical application of association rules in practice is the market 

basket analysis, where the items represent products and the records represent the 

point of sales data at large departmental stores. These kinds of databases are 

generally sparse, i.e. the longest frequent itemsets are relatively short. However, 

there are many real-life data sets that are very dense, i.e they contain very long 

frequent itemsets of 30-40 items. Over these data sets it is almost impossible to 

overcome the exponential (NP-Complete) computation task through the use of 

unsophisticated algorithms. Although sophisticated algorithms developed in order 

to break the so-called bottle-neck of association rule mining task, it is not easy for 

the administrative stuff to choose the appropriate algorithm that is able to meet his 

needs. For this purpose, many algorithms (such as Apriori, Apriori-some, Apriori-

all, AClose, CMaxMiner, MAFIA, MaxMiner, CHARM, Pincer-Search, FP-tree, 

All-MFS, etc.) have been proposed, evaluated and compared in the literature. 

Although there have been several studies conducted to compare different 

algorithms for association rules [Agrawal, Imielinski and Swami, 

1993(December)] [Agrawal, Imielinski, and Swami, 1993(May)] [Sarawagi, 

Thomas and Agrawal, 1998] [Savasere, Omiecinski and Navathe, 1995] 

[Agrawal, Mannila, Srikant, Toivonen, and Verkamo, 1996] [Brin, Motwani, 

Ullman, and Tsur, 1997] [Gunopulos, Mannila, and Saluja, 1997] [Zaki and 

Hsiao, 1999] [Han, Pei and Yin, 1999], we have not found any study for 

comparison of the three most commonly used algorithms using different support 

levels, different database sizes and structures. The algorithms evaluated in this 

study are: 

 Apriori Algorithm 
 Frequent Pattern Tree(FP-tree) Algorithm 
 CHARM Algorithm 
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The above algorithms were chosen for the implementation and comparison 

due to the fact that although they serve to the same purpose they use different 

techniques for mining. The source codes were written in JAVA. JAVA was 

choosen to be environment since it provides many facilities both to 

implementation of the data structures by its Collections Framework package 

(java.util) and access the databases by Java Database Connectivity package 

(java.sql). The source codes of the algorithms were processed on an Intel Pentium 

machine with 600 MHz processor and 128 megabytes main memory on three 

different data sets containing 2155, 7134, 35,861 elements and 77, 50, 50 fields 

(items) respectively. 

 

6.2 Evaluation of the Algorithms 

According to our observations, the performances of the algorithms are 

strongly depend on the support levels and the features of the data sets (the nature 

and the size of the data sets).  

Apriori uses the downward closure property to prune the search space. In 

this sense, a pass over the database is made at each level to find the frequent 

itemsets among the candidates. In high levels of support or in sparse data sets 

such as market basket data, Apriori is an efficient algorithm which is able to give 

all associations for each length of itemset.  

In comparison to the Apriori and the CHARM algorithms, the FP-tree 

algorithm finds less associations. However, it is a fast, compact and a scalable 

(robust) algorithm that solves the candidate generation problem. Therefore, it is 

feasible to use the FP-tree algorithm for mining dense data sets on low levels of 

support(when fewer associations satisfy us).  

The CHARM algorithm provides orders of magnitude improvement over 

existing methods of association rules when mining times and run times are 

considered. It is based on the closure properties that help us for mining the closed 

frequent itemsets. Closed frequent itemsets are the unique subsets of frequent 

itemsets that contains the substantial portion of all frequent itemsets. Therefore, 

the CHARM algorithm is completely an appropriate solution for mining both the 

dense data sets on low levels of support(when some of the frequent itemsets may 

be ignored). 
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6.3 Future Work 

Mining Larger Data Sets: The results of the experiments were adequate 

for us to arrive at a conclusion with respect to the relative performances of the 

algorithms. However, investigating the behaviours of the algorithms on larger data 

sets of 1,000,000 elements can be interesting.  

Storage of Larger Data Sets: As is mentioned above, the task of storing 

such huge data sets on the memory is a serious problem. Accordingly, even if the 

hardware permits to store the whole data set in the memory, storing the length-2 

candidates of complexity 2number of frequent items for the Apriori algorithm will be 

impossible, no matter what the capacity of the hardware will be. To overcome the 

overflow problem, the elements of the database can be considered as bits 

including 0 and 1, so that the memory allocation for the data set can be reduced 

from average transaction length * number of transactions (bytes) to number of 

transactions * number of fields (bits). 

Correlations among the Elements of Synthetic Data Set: The two 

synthetic data sets, used in this study, only differ from each other by the number 

of transactions (also by the number of elements) they contain. The comparison of 

the algorithms can be performed on the data sets that have correlations among the 

items and among the size of transactions. Through the help of such an 

investigation, the tendency of the knowledge extraction capabilities and the 

sensitivity of the performances of algorithms to data sets of various distributions 

may be concluded.  
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