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ABSTRACT

In this study low temperature photoconductivity of undoped hydrogenated amorphous

silicon(a-Si:H) thin films have been studied to investigate the effect of native and Staebler-

Wronski defects. The study covers undoped a-Si:H films prepared by various deposition

techniques such as DC glow discharge, RF-PECVD with and without H-dilution, RF

magnetron sputtering and hot-wire(HW) CVD.

In the annealed state, the samples were characterized using temperature dependence of

dark conductivity, steady-state photoconductivity, σph, versus light intensity at room

temperature and steady-state photoconductivity versus temperature down to 90 0K at three

different intensities. Activation energy ,EF, of the samples changes from 0.60 eV to 1.0 eV.

σph shows a few orders of magnitude higher values from the dark conductivity and its

magnitude is sample dependent due to differences in deposition conditions. The intensity

dependence of σph ,γ, (σph α Fγ) is close to unity and varies between 0.70 to 0.90, indicating

recombination kinetics through the midgap defect states in the bandgap of a-Si:H. Low

temperature photoconductivity versus 1000/T spectrum shows three distinctly different

regions. In Region I, σph decreases with temperature until a transition temperature. Then

Region II begins, where σph begins to increase resulting a peak in spectrum or remains to be

unchanged until a second transition temperature to Region III, where σph continuously

decreases with T. Transition temperatures and the degree of increase in σph in Region II is

sample dependent. These results indicate the presence of at least two different types of

midgap defect states in the bandgap and exponential tail state present in the annealed state.

In the light soaked state, Staebler-Wronski effect (SWE) was investigated after

exposing the samples to white light illumination of a few suns intensity. The characterization

involves dark conductivity and steady-state photoconductivity at room temperature and σph

versus temperature down to 90 0K for different intensities. Dark conductivity values

decreased a certain factor indicating a slight shift in EF through midgap.  σph values decreased

substantially from its annealed values due to creation of Steabler-Wronski defects in the

bandgap. The intensity dependence of σph become almost equal and close to unity for all the

films even it shows slight variation in the annealed state. The shape of low temperature

photoconductivity spectra becomes almost the same for all samples even drastic differences

were observed in the annealed state. The spectrum is mainly dominated by only two regions.

Region I dominates from room temperature down to 170 0K, where σph decreases with a
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constant slope as T decreases. After that temperature, Region II sets in. σph remains to be

constant until temperature used in this study. Region III can only be detected at higher

intensity and temperatures lower than  90 0K. Results indicate that more defects around the

midgap are created by light, which decrease σph and relatively less defects are created away

from midgap and closer to band edge, which improve σph instead of decreasing it as

temperature decreases. The defect states in Region I responsible for decreasing σph are more

likely that they are neutral silicon dangling bond defects ,D0, and those in Region II

responsible for increasing σph are non-D0 defect states. They act as photosensitising defects

with a very low capture cross-sections for electrons. They could be charged silicon dangling

bonds ,D+ and D-, or floating bonds results in defect models proposed for a-Si:H.



ÖZ

Bu çalõşmada Staebler-Wronski ve doğal elektronik yerelleşmiş kusurlarõ

araştõrmak için katkõlanmamõş hidrojenlendirilmiş amorf silisyum (a-Si:H) ince

filmlerin düşük sõcaklõklardaki fotoiletkenlikleri incelenmiştir. Çalõşma değişik

tekniklerle hazõrlanmõş katkõlanmamõş hidrojenli amorf silisyum ince filmleri

kapsamaktadõr. Bu teknikler; doğru akõm �glow discharge� (SiH4 gazõnõn doğru akõm

altõnda ayrõştõrõlmasõ), radyo dalgasõ plazma yardõmlõ kimyasal buharlaşma (seyreltilmiş

hidrojenli ve seyreltilmemiş hidrojenli), radyo frekanslõ manyetik alandaki argon gazõ

püskürtmesi ve sõcak-katot kimyasal buharlaşmasõ ile büyütme teknikleridir.

           Örnekler tavlanmõş durumda sõcaklõğa bağlõ karanlõk iletkenlik, oda sõcaklõğõnda

õşõk şiddetine bağlõ fotoiletkenlik ve üç farklõ õşõk şiddetinde 90K0�ya kadar sõcaklõğa

bağlõ fotoiletkenlik yöntemleriyle karakterize edilmiştir. Filmlerin aktivasyon enerjileri

0.60eV-1.0eV arasõnda değişmektedir. Fotoiletkenlik değerleri karanlõk iletkenlik

değerlerinden birkaç mertebe yüksektir. Bu farklar farklõ büyütme tekniklerinden dolayõ

örneklere bağõmlõdõr. Fotoiletkenliğin õşõk şiddetine bağõmlõlõğõ ,γ, (σph∝ Fγ), tavlanmõş

durum için 0.70 ile 0.90 arasõnda değişmektedir. Bu değerler rekombinasyon kinetiğinin

bant ortasõ elektronik kusurlardan geçtiğini gösterir. Düşük sõcaklõk fotoiletkenliğinde

iletkenliğin 1000/T�ye bağlõ spektrumu üç farklõ bölge gösterir. 1.Bölge�de

fotoiletkenlik bir geçiş sõcaklõğõna kadar azalõr ve sonra 2.Bölge başlar. 2.Bölge�de

fotoiletkenlik spektrumu ya bir tepe gösterir yada ikinci bir geçiş sõcaklõğõna kadar sabit

kalõr. Fotoiletkenliğin sõcaklõkla azalmaya başladõğõ 2. geçiş sõcaklõğõndan sonra

3.Bölge başlar. 2.Bölge�deki geçiş sõcaklõğõ ve fotoiletkenliğin azalma miktarõ örneklere

bağõmlõdõr. Bu sonuçlar tavlanmõş durumda bant ortasõ düzeyde en az iki tip kusur ve

eksponansiyel olarak artan kuyruk ( tail ) düzeyi olduğunu gösterir.

Staebler-Wronski(SW)  etkisi  õşõk altõnda bozunuma uğratõlmõş durumda,

örneklerin birkaç güneş õşõğõ şiddetinde aydõnlatõlmasõyla araştõrõlmõştõr. Örnekler õşõk

altõnda bozunuma uğratõlmõş durumda, sõcaklõğa bağlõ karanlõk iletkenlik, oda

sõcaklõğõnda õşõk şiddetine bağlõ fotoiletkenlik ve üç farklõ õşõk şiddetinde 90K0 � ya

kadar sõcaklõğa bağlõ fotoiletkenlik yöntemleriyle karakterize edilmiştir. Karanlõk

iletkenlik değerleri Fermi  düzeyindeki hafif kaymanõn göstergesi olarak belirli

oranlarda azalmõştõr. Fotoiletkenlik değerleri SW elektronik kusurlarõnõn oluşmasõndan

dolayõ tavlanmõş durumdaki değerlerinin çok altõndadõr. Fotoiletkenliğin õşõk şiddetine

bağõmlõlõğõ tüm filmler için, tavlanmõş durumda küçük değişmeler göstermesine karşõn,
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1�e oldukça yakõnlaşmõştõr. Düşük sõcaklõk spektrumu tüm filmler için tavlanmõş

durumda büyük farklõlõklar göstermesine karşõn, õşõk altõnda bozunuma uğratõlmõş

durumda hemen hemen aynõdõr. Fotoiletkenlik spektrumunda 90K0 �ya kadar yalnõz 2

bölge baskõn olmuştur. 1. bölge 170K0 �ya kadar baskõndõr ve fotoiletkenlik sabit bir

eğimde sõcaklõkla azalõr. 170K0 geçiş sõcaklõğõndan sonra 2. Bölge başlar ve

fotoiletkenlik 90K0 �ya kadar sabit kalõr. 3. Bölge ancak yüksek õşõk şiddetinde ve daha

düşük sõcaklõklarda gözlenebilir. Sonuçlar, bant boşluğunun ortalarõnda fotoiletkenliği

azaltan kusurlarõn baskõn olduğunu gösterir. Bant ortasõ elektronik düzeylerden

uzaklarda ve bant ucuna yakõn yerlerde, fotoiletkenliği sõcaklõkla azaltmak yerine

arttõran kusurlar nispeten daha az oluşturulur. 1.Bölge�deki fotoiletkenliği azaltan

kusurlar nötür-silisyum sallanan bağlardõr (D0). 2.Bölge�deki fotoiletkenliği arttõran

kusur düzeyleri D0 olmayan (non-D0) kusurlardõr. Bu kusurlar elektronlar için

yakalama kesitleri küçük olan foto-duyarlõ kusurlardõr. Bunlar a-Si:H için önerilen

modellerin sonucuna göre,  yüklü silikon sallanan bağlar (D+ ve D-) ya da  yüzen bağlar

olabilirler.
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CHAPTER 1

INTRODUCTION

Amorphous semiconductors are a class of semiconducting materials that do not

show the long range order typical of crystalline materials with a periodic potential. Most

of the properties of semiconductors arise from the crystalline nature of the material.

This includes the concept of bandgap and band edges. The atoms in crystalline materials

are arranged in a perfect lattice. For example, silicon is an ideal semiconductor in

crystalline form, in which silicon atoms are covalently bonded with four nearest

neighbors in tetrahedral directions. As a result of this configuration, the bonding states,

valance band, are completely occupied with electrons and the antibonding states,

conduction band, are empty.  There is a sharp distinction between valance band and

conduction band which is seen in Figure 1.1. This sharp structure that is evident in

density of states g (E) at many different energies arises directly from long range

periodicity and these energies are called van Hove singularities [1].

As a semiconducting material, silicon is the second most abundant material on

Earth. It is reasonably cheap, chemically and electronically well suited to device

applications whereas it is quite expensive to fabricate single crystal devices. In contrast

amorphous semiconductors do not have perfect long range order, in which the atoms are

randomly oriented but on a local scale the short range order of atoms is maintained

where atoms still have the same number of nearest neighbor atom configuration as in

perfect crystals.  This results in similar energy band structure at higher energies like in

crystalline semiconductors. In the absence of long range order, van Hove singularity is

expected to disappear and be replaced by more gradually decreasing density of states.

These regions of gradually decreasing density of states, g (E), are called band tails. The

valance band tail states are covalent bonds that are weaker than normal. This can

happen when the covalent angle is bent from its equilibrium value. When the band is

stretched due to internal strains, or when some antibonding orbital is mixed in, these

produce potential fluctuations, which push states up and down and prevent any sharp

feature in g (E) as seen in Figure 1.1. All these effects are expected to produce also a

tail of states extending down in energy from the conduction band [2]. These localized

tail states are weakened or modified band states. They do not conduct, which means a

charged carrier trapped in such a state has zero mobility.
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Crystalline semiconductors    Amorphous semiconductors

Figure 1.1.  Band structure for crystalline and amorphous semiconductors.

In addition to the localized tail states, there are also localized deep gap states

around the midgap.  These localized midgap defects are due to loss of the long range

order. They originate from the unsatisfied bonds, dangling bonds [DBs], and weak

bonds. The amount of localized midgap defect states are in the order of 1019-1020 cm-3

in amorphous silicon (a-Si). Therefore, they do not allow this material to be useful for

electronic device applications. It is impossible to increase the conductivity by the

incorporation of impurities as expected to act as donors and acceptors like in crystalline

semiconductors. There were two possible reason for this: First; due to lack of long range

order, the impurity can be incorporated into the random network lattice of the

amorphous material in such a way as to satisfy its bond requirements without leading to

an extra electron (donor) or a missing electron (acceptor). Second; because of random

disorder, there is a high density of localized states throughout the bandgap [3]. Their

density is so high that they effectively pin the Fermi level, all of the extra electrons or

holes that would be contributed by impurities are captured in the high density of

localized states at the Fermi level and preventing its motion. As a result, amorphous

silicon (a-Si) is not a suitable material for electronic device applications.

However, Chittick et al. discovered in 1969 that the incorporation of hydrogen

by decomposition of silane (SiH4) in plasma drastically reduced the density of gap states

by saturating DBs in the amorphous silicon network. Then, this new material is named
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as hydrogenated amorphous silicon (a-Si:H)[4]. The density of localized midgap states

decreased down to 1015-1016 cm-3 in range. This discovery attracted much attention on

hydrogenated amorphous silicon based materials in worldwide. A few years later, in

1975, Spear and Le Comber showed that hydrogenated amorphous silicon could be

doped as n-type or p-type by phosphorus and boron atoms respectively [5]. Because of

the fact that a-Si:H materials can be doped as n-type or p-type, this material have the

chances to be used as p-n junction device and for other electronic device applications.

Right after that, in 1976, Carlson and Wronski made the first a-Si: H solar cell [6].

Those discoveries and outstanding optoelectronic properties of hydrogenated

amorphous silicon over the crystalline counterpart such as a continuously adjustable

bandgap through alloying with germanium, hydrogen and carbon, large optical

absorption coefficient over the visible wavelength range, low densities of midgap states

and capability of depositing large area thin films on various substrate materials

triggered worldwide interest on hydrogenated amorphous silicon based films and their

device applications. Those are thin film transistors for flat panel displays, solar cells for

power generation, xerography, image sensors, radiation detectors, photovoltaic cells for

calculators, watches, photoreceptors, electro photography, led printers and also base for

many other electronic device applications.

The most popular techniques to deposit a-Si: H thin films are direct current (DC)

glow discharge, radio frequency (RF) plasma enhanced chemical vapor deposition

(PECVD), RF magnetron sputtering and Hot-Wire chemical vapor deposition

(HWCVD). In DC Glow discharge deposition process, the plasma is initiated by

applying a direct current (DC) to triode system [7], where the discharge is maintained

between a solid electrode and a grid and the substrate is mounted on a third electrode.

The substrate is grounded, so that energetic ions from the discharge are decelerated as

they move from the cathode to the growing film. On the other hand, in RF-PECVD

deposition process the plasma is initiated by applying an RF signal to diode system,

where the discharge is maintained between two electrodes, one of which serves as the

holder for the substrate. Electrons collide with silane to dissociate the silane molecules

into a mixture of reactive species of ions and free radicals and these species are diffused

to the surface of the substrate [7]. In RF Magnetron sputtering, a gas, usually argon, is

ionized by RF electric field [8]. The positive ions are then accelerated in the electric

field towards a target of the material to be deposited, atoms of the target are kicked out,

and evaporate into the vacuum chamber. By holding a substrate opposite of the target,
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the evaporated material condenses on a substrate and a thin film is formed. The Hot-

Wire Chemical Vapor Deposition (HWCVD), also known as Catalytic Chemical Vapor

Deposition (cat-CVD), is a deposition technique that consists of the thermal

decomposition of SiH4 and H2 mixtures at a resistively heated filament (usually

tungsten or tantalum) at thousands of Kelvin (K0) to produce atomic silicon and

hydrogen, then low H-content device quality a-Si: H films are produced. The HWCVD

has been proven to grow silicon thin films (amorphous and microcrystalline) at

relatively high deposition rates (up to some nm/s) and low substrate temperatures (lower

than 2000C). This makes this technique very feasible to obtain large area thin film

silicon devices onto low cost substrates [9].

As mentioned above in the deposition methods, due to non-equilibrium

deposition process, there exist localized states in the band gap of material. These are

called midgap states originating from impurities or from atoms which have either fewer

or more covalent bonds than desired by their normal valency[2]. These defect states are

believed to be three-fold coordinated silicon DBs[10]. The defect states present as

grown (or in the annealed state)  are called native defect states. They control many

transport properties such as photoconductivity and sub-bandgap absorption in films.

Even though hydrogenation of a-Si network decreased the large density of localized

defect states for an acceptable level, after a short period of time, in 1977 Staebler and

Wronski [11] discovered that dark and photoconductivity measured in a-Si:H thin films

degrade under extended light illumination. This degradation is completely reversible

after annealing the films at temperatures above 1500C in dark. Then the characteristic of

sample is restored to its original values. This effect is intrinsic to a-Si:H films and

known as the Staebler-Wronski effect (SWE). In this effect, new defects are created by

light illumination in the band gap of a-Si:H. Because of this effect, electrical

characteristics of films (dark and steady-state photoconductivity) and conversion

efficiency of solar cells made using a-Si:H absorber layer decrease enormously from its

initial values. Later works showed reversible light induced changes in many other

properties of the material such as photolumiscence[12], density of states measured by

electron spin resonance(ESR)[13], sub-band gap absorption[14], diffusion length of

carriers[15] and solar cell performance[16]. In adition, field effect measurements[17]

also show that new states are created both in  the upper and the lower half of the band

gap, which is also evidenced by photoconductivity measurements using above-band gap
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and sub-bandgap light[18].  Due to light induced changes, the SWE in a-Si:H is the

most diffucult challenge that this material faces before its larger scale applications.

The degradation experiments carried out under 1 sun illumination (1 sun light

intensity is called AM 1.5 with total power of 100mW/cm2) was then later performed

under high intensity (~10-50suns) light soaking to determine the final value of the

localized midgap defect states and thus the stabilized solar cell efficiencies. Both

experiments on either thin films and solar cells indicated that the densities of localized

midgap defect states increases up to 5-7x1017 cm-3. This greatly reduces the solar cell

performances and limited the predicted lifetime for solar cells. Then the new goals were

set by the Standard Material Adisory Research Team (SMART)[19] to reduce the final

density of saturated defect density by changing the deposition conditions. This new

approach was to produce more stable a-Si:H films for solar cells. There are two new

approaches for this goal: First one is to use hydrogen dilution technique in RF-PECVD

and DC Glow discharge systems and second one is development of HWCVD technique.

Hydrogen dilution technique is  the introduction of H2 gas through the silane(SiH4) in

the plasma at some definite ratios, R=(H2)/(SiH4+H2). The dilution ratio may change

from 0 to 10 or to even higher values. It was shown that increasing H2 dilution

ratios(0-10) improves both thin film and solar cell performance after long-term

degradation studies [20-23]. However, increasing the dilution ratio more(R>25), does

not result in more stable a-Si:H films. But microcrystalline phases start forming in the

matrix of a-Si:H. Then most of the electrical and optical parameters such as band gap

and defect densities change. This new material is not hydrogenated amorphous silicon

anymore but hydrogenated microcrystalline silicon(µc-Si:H). The second new approach

to make more stable a-Si:H films was hot-wire CVD deposition process developed at

NREL[9,24]. In  this technique higher substrate temperatures allows the growth of more

stable materials with greater deposition rates and lower hydrogen content. Simple

system design eliminates use of very high frequencies in deposition[25,26].

Since the localized midgap states are modified enormously by the deposition

conditions and they determine the electrical and optical properties of films and solar

cells, their characterization have great importance. Commonly used techniques to

characterize the properties of thin films are summarized below. Optical absorption using

Transmission&Reflection data [27], spectroscopic ellipsometry [28] and photoelectron

spectroscopy [29] techniques are used to probe the extended states at higher energies.

Transient photoconductivity and drift mobility measurement techniques are used to
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probe exponential CB and VB tail states [30]. In addition Subgap absorption

spectroscopy is also used to characterize the VB tail states [31-33]. In a-Si:H thin films,

extended states and exponential valance band tail states are well characterized and

almost the same for good quality films prepared by different deposition techniques. For

example, the slope of the VB tails is around 50meV and that of the CB tails is between

25-30meV for device quality a-Si: H [2]. However the defects localized in the band gap

other than tail states differ enormously in any sample due to deposition conditions.

Therefore, there is no unique a-Si: H thin films as reported by SMART group [19].

Electron spin resonance, (ESR), is one of the fundamental techniques used to probe the

midgap states, which are occupied by single electron, called D0 states [34]. Whereas this

technique is very sensitive to large density of surface states for films of a micron thick.

Space charge limited currents (SCLC) was used to probe defect states over a limited

energy range, around the Fermi level [35]. Capacitance techniques [36] cannot be

applied to the undoped intrinsic a-Si: H films due to its high resistivity. Both SCLC and

capacitance techniques cannot be used on films because these techniques require the use

of thin doped layers as contacts. Steady-state photoconductivity is sensitive to both

density and nature of all defect states acting as the recombination centers between the

quasi-Fermi levels in the bandgap [37]. Sub-bandgap absorption measurements are

sensitive to the densities, nature and energy location of defect states below and above

the midgap [31]. The techniques used to measure sub-bandgap absorption are

Photothermal Deflection Spectroscopy (PDS)[38], Constant Photocurrent Method

(CPM)[39] and Dual Beam Photoconductivity (DBP)[40]. Among these techniques,

PDS is sensitive to transitions from and into the defect states near midgap and is also

sensitive to surface and interface states [41] just like ESR. In contrast, CPM detects

signals from the bulk of the film and is sensitive to defect states only below the Fermi

level. These states are also detected by DBP, which also has the advantage that using

different bias light intensities allows the densities, nature and energy location of midgap

states below as well as above the Fermi level to be investigated. Furthermore,

temperature and intensity dependence of photoconductivity  can also be used to probe

the effects of nature and densities of midgap states over a wide energy range in the

bandgap[42-53].

 Vanier et al. [43] have reported the behavior of Arrhenius plots of low

temperature σph for different light intensities in 1981. The main feature of those plots is

the existence of thermal quenching which is the increasing of σph with decreasing
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temperature in particular temperature ranges. Moreover, the σph maxima and the minima

for different light intensities seem to be thermally activated. Among the models

proposed, some only attempted to explain the general behavior of σph [43,48,54-57]

while the others deal with the physical parameters of the material studied [37,58].

Finally, McMahon and Xi [49], Okamoto et al. [58], Vaillant et al. [59] and

Yoon et al. [51] have used, in their σph simulation, the well known scheme for the

localized gap states in a-Si: H including an exponential energy dependence of the band

tails [60,61] and the [DB] defect with a positive correlation energy [62,63]. However,

these numerical simulations are unable to explain all the experimental features of σph

against 1000/T curves nor do they allow information to be obtained directly on the

physical parameters of a-Si: H.

According to summary above it can be said that the interpretation of the general

behavior of photoconductivity at different temperatures is subject to controversy. In

particular the different features (maximum, minimum, activation energies, variation in

these energies at low temperatures, etc.) on photoconductivity versus 1000/T curves for

different light intensities have not been related directly to the localized states in the

mobility gap[52]. The data published by different groups show that a wide range of

properties can be observed in samples produced under variety of deposition conditions.

Such properties may be correlated with alloy composition and structure, including

hydrogen concentration, silicon-hydrogen bonding configurations, impurity content,

film morphology etc. [43]

Even though there are several diffuculties to characterize the localized defect

states in detail, there are no well established theoretical model for these defect states

yet. Cohen-Fritzsche-Ovshinski (CFO) proposed the first defect model, which consists

of conduction and valence band tail states only.  This model can only explain the

experimental time-of-flight measurement of electrons and holes, which is governed by

the exponential tail states only in the energy range of 0.1 to 0.3 eV from the mobility

edges [64]. Then Stutzmann proposed that weak Si-Si bonds are broken during the light

soaking and they are converted to the neutral silicon DB defects with an increase of

ESR signal and decrease of photoconductivity [65]. Thus, in this model significant

charged defect states, D-and D+, are not present and only a negligible amount of charges

occur from the overlapping of donor-like and acceptor-like defect states around the

Fermi level.  In this model, D-and D0 defect states have positive correlation energy [34].
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In contrast, Adler [10] proposed a model where pairs of oppositely charged DBs

(D+ and D-) get converted into neutral DBs (D0) by trapping electrons and holes. The

model assumes a negative correlation energy for the D defect. This model was

supported by the work of Bar-Yam and Joannopoulos[66] who showed that a

distribution of thermodynamic transition energy levels of the three-fold coordinated Si

DB defects could lead to large concentrations of charged defects, D-and D+, in

inhomogeneous a-Si:H. Alternatively, Pantelides proposed a model that the defect states

in a-Si:H are the combination of three-fold and five-fold coordinated Si DB defects in

contrast to the defect models based on three-fold coordination. These five-fold

coordinated defects are called floating bonds [67]. According to this model, D-and D+

defect states have negative correlation energy like in Adler’s model and large density of

charged defect states, D-and D+, are present in a-Si: H materials.

In 1990, Branz and Silver used the approach of Bar-Yam and Joanopoulos and

considered the thermodynamic equilibrium of the three-fold coordinated Si DB defects

in a-Si: H and showed that potential fluctuations due to material inhomogeneity can

result in large concentrations of charged DB defects [68]. Further support of charged

defects in a-Si: H was proposed by Schumm and Bauer [69] and Powell and Dean [70]

with their “defect pool model”, which also predicted the presence of neutral, negatively

and positively charged silicon DB states with a negative correlation energy. There have

been many results which include light induced ESR (LESR)[71], IR-LESR [72],

electron spin-echo-envelope modulation (ESEEM) study [73], temperature dependence

of photoconductivity [58], sub-bandgap absorption model [31-33], support the idea that

charged defect states with negative correlation energy exist in undoped a-Si: H films.

However, those models cannot explain all the observed experimental results in films

and solar cells consistently.

Recently, Branz[74-76] and Biswas et al.[77,78] proposed new defect models

for the light induced metastability in a-Si:H. The model proposed by  M. Branz[54]

about light-induced metastability is called H-collision model. The model suggests that

recombination of excess carriers creates mobile H atoms and DBs. Normally, mobile H

retraps to DBs and there is no net creation of DBs. Whereas, rare H collisions can

account for the SW effect. Two metastable DBs are created when two mobile H meet

and associate into a metastable complex containing two Si-H bonds, M(Si-H)2. The

created DBs are remote from the M(Si-H)2 center. The model is consistent with

spectroscopic constraints on microscopic SW models and with the kinetic experiments,
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including light-induced annealing and pulsed illumination[75], continuous illumination

below room temperature [76], and excitation with energetic electron beams [79].

The model proposed by Biswas at al. for  the generation of metastable DBs  is

called silicon network rebonding model. It involves breaking of weak silicon bonds and

formation of isolated DBs, through rebonding of the silicon network. Hydrogen motion

is not involved in metastable defect formation. Defect formation proceeds by breaking

weak silicon bonds and formation of DB-floating bond (FB) pairs. The FBs migrate

through the network and annihilate, producing isolated DBs. This is similar to

Pantallide’s Floating bond model. There are three steps for the metastability

mechanism[78]. In the first step, weak silicon bonds are broken from non-radiative

recombination of photoexcited carriers. The bond breaking generates a pair consisting

of a dangling bond and a nearby floating bond. In the second step, the FB diffuses away

from the location of the DB, and migrates through the silicon network since the FB is a

mobile species.  In the third step, two migrating FBs in the network come in close

proximity and recombine generating a new weak bond in the lattice. The net result is to

produce DBs that are spatially separated from each other, consistent with spin resonance

data [73].

There is a strong analogy between the H-collision model proposed by Branz and

the silicon network rebonding model by Biswas at al. The FBs of the silicon network-

rebonding model are the analog of the H in the H-collision model. The mathematics of

defect formation for the silicon network-rebonding model is very similar to the collision

model. There are however major differences in the physics of defect creation. Most

notably, hydrogen is not directly involved in the degradation; instead defect creation

involves rearrangements of the silicon network. Atomic diffusion is not present in

silicon network rebonding model, although the diffusion of H is essential in the H-

collision model. Finally, these models predict most of the observed experimental facts

but they cannot answer all the questions related to the SW effect yet.
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1.1 Thesis Objectives

           The density of states (DOS) and the stability are very fundamental properties of

a-Si: H thin films with respect to their solar cell applications. Sensitivity to light

induced degradation, SWE is known to be an intrinsic property limiting solar cell

applications of a-Si: H. Therefore it is necessary to obtain reliable information about the

nature of the native and light induced defect states. Improved understanding of the

defect states in a-Si: H based materials will lead to further developments in a-Si: H

technologies such as solar power generations and LCD displays. Characterization has

been essential to the advancement and realization of photovoltaics. Almost every

characterization technique that has had application to semiconductor analysis has also

had either direct or modified use for photovoltaic investigations. The objective of this

thesis is to characterize the effects of native and light induced defect states in the

annealed and light soaked states in undoped a-Si: H thin films prepared using different

deposition techniques. For this purpose, steady-state photoconductivity measurements

will be carried out for different light intensities and temperatures down to 90 K. Then,

the results are going to be discussed in terms of existing defect models developed for

undoped a-Si: H. 



CHAPTER 2

MATERIALS AND METHODS

2.1 Sample Preparation

Hydrogenated amorphous silicon, a-Si:H, thin films used in this study were

deposited using DC Glow discharge technique in BP Solarex (Pennsylvania), radio

frequency (RF) plasma enhanced chemical vapor depotision (PECVD) at the

Pennsylvania State University and United Solar Systems Corporation (USSC) of

Michigan, RF magnetron sputtering deposition technique at University of Illinois,

Urbana-Champagne, and Hot-Wire CVD technique at the National Renewable Energy

Laboratory at Colorado. The samples used in this thesis are listed in Table 2.1.

Table 2-1. Samples used in this thesis

DEPOSITION TECHNIQUE DEPOSITION PLACE SAMPLES

RF-PECVD
DILUTED

Pennsylvania State University, PA(USA)
United Solar Systems Corporation (USSC) of
Michigan-USA

  Lj-51
  L12229
  L12231

RF-PECVD
UNDILUTED Pennsylvania State University, PA(USA)

 4m
 Yl-6b
 SN128

RF MAGNETRON
SPUTTERING University of Illinois, Urbana-Champagne-USA  Sputtered

HOT-WIRE CVD National Renewable Energy Laboratory at
Colorado-USA  H608

DC GLOW DISCHARGE BP Solarex (Pennsylvania)-USA
SmartB1
SmartB2
SmA1

 The deposition conditions used to make the undoped a-Si:H thin films using

RF-PECVD system at Penn State University were as follows: the total chamber pressure

was 0.5 torr, pure silane(SiH4) flow was 15 sccm, and the RF power density was
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200 MW/cm2. The substrate temperature, Ts was varied from 180 0C to 300 0C. The gas

was injected through the cathode and the substrates were mounted on the anode for each

film deposition. These were Corning 7059 glass substrates for transmission and

reflection measurements and Corning 7059 glass substrate with preevaporated

Nichrome coplanar electrodes for dark conductivity, steadystate photoconductivity and

sub-bandgap photoconductivity measurements. The  thicknesses of the films vary from

0.7µm to 2.0 µm[80].

Undoped a-Si:H films prepared using DC PECVD system at Solarex Thin Film

Division have following deposition conditions [81]: pure silane flow was 200 sccm,

plasma current was 0.135 mA/cm2, the pressure was 0.5 torr, and  the substrate

temperature between 200 0C and 300 0C. The film thicknesses ranged from 0.5µm to

1.5µm and were deposited onto quartz substrates for transmission and reflection

measurements  and 7059 glass substrate with coplanar NiCr electrodes for conductivity

measurements.

Deposition conditions[82] used to prepare a-Si:H thin films using RF Magnetron

sputterring system in University of Illinois, Urbana-Champagne were deposited in an

ultrahigh vacuum chamber;  the partial pressures of O2, CO and H20 were less than

1x10-9, 1x10-9 and 2.5x10-9 Torr, respectively. The films were grown using high purity

argon and hydrogen gases and a high purity 5 x 12 in. Cystalline silicon target. The total

CH of the films was independently controlled by adjusting the hydrogen partial pressure

in the discharge at a constant substrate temperature of 230 oC. The hydrogen partial

pressure was increased from 0.2 to 1.2 mTorr and the argon partial pressure was kept

constant at 1mTorr. The deposition rate was ~30 to 200 Å/min. and controlled by the

cathod current(0.25-0.80A).

The standard conditions[23] for growing a-Si:H film in National Renewable Energy

Laboratory were 20-50 sccm of SiH4 and 10 mT pressure. A straight or spiral tungsten

filament with a diameter of 0.5 mm and the substrate 4-5 cm above it. A spiral shaped

filament had proven to better accommodate to the thermal stress due to the heating and

cooling of the filament, enabling an increase in the filament lifetime. The filament was

heated by an AC or DC current (14 A) to about 1900 °C.

The deposition systems for DC Glow discharge, RF-PECVD, RF Magnetron

sputtering and HW-CVD techniques are shown in Figure 2.1 to Figure 2.4 respectively.
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Silane Gas Vacuum

Pump

Figure 2.1 DC Glow discharge system.

Silane  Gas

RF    Power

Vacuum Pump

Figure 2.2 Radio Frequency Plasma Enhanced Chemical Vapor Deposition RF

PECVD System.
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Argon Gas

RF Power

Vacuum Pump

Figure 2.3 RF Magnetron sputtering system.

    Silane Gas

    Vacuum Pump

RFPower

Figure 2.4 Hot-wire chemical vapor deposition sysyem.
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2.2 Steady state photoconductivity system

Steady state photoconductivity system was designed for this study at İzmir

Institute of Technology(IZTECH). It consists of a measurement box and ENH(Halogen

Photo Optic Lamp at 250W) white light source as shown in Figure 2.5. ENH white light

source operates under 115V and 2.05A constant current mode. A small fan is fixed to

the housing not to

Figure 2.5 Steady State Photoconductivity System

cause overheating of ENH bulb. The monochromatic, uniformly absorbed, light flux

was obtained using interference bandpass filters with energy hν=E>Eoptical of the sample

studied. The incident white light flux was calibrated using a calibrated silicon detector

for the appropriate interference filters. A-Si:H sample is placed over sample holder and

electrical connections are obtained using BNC connectors. A constant voltage is applied

across the coplanar electrodes and photocurrents were measured using a Keithley

6517A Electrometer. Measurements were carried out in the Ohmic regime of current
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voltage curve. Intensity of monochromatic light was changed using neutral density

filters whose transmission values changes from 0.1% to 50%.  The sample geometry  is

shown in  Figure 2.6a and 2.6b.  Steady-state photoconductivity is calculated using the

measured photocurrent, applied voltage and sample geometry as shown below.

Using Ohm�s law:

R = V/Iph = [1/σph]*[d/(t*l)] (Eq. 2.1)

σph = [Iph*d]/[V*t*l] (Ω-cm)-1 (Eq. 2.2)

where Iph is measured photocurrent, V is the voltage applied across electrodes, d is the

seperation between  electrodes (the length of conductor), t is the thickness of the film, l

is the length of electrodes.

Figure 2.6a Side view of an a-Si:H thin film on glass substrate.

Figure 2.6b Top View of an a-Si:H sample with coplanar geometry.

d

Glass (7059) Substrate

 l

Metal
Contact

           Metal
        Contact

a-Si:H film
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2.3 Annealing System

A vacuum  annealing box was designed and manufactured at IZTECH to anneal

the samples and measure the dc dark conductivity. This is schematically shown in

Figure 2.7.  A vacuum pump connected to the box decreases to the pressure down to 0.5

Torr. Temperature measurement was carried out using Omega CL8500 Meter/Calibrator

with a K-type thermocouple mounted on a glass substrate and fixed on copper block as

shown in Figure 2.8. A 25 watt heater fixed under the copper block heats the sample.

Temperature increases up to 2000 C from room temperature. The samples are annealed

in vacuum about several hours at 1800 C. The dc dark currents were measured by using

Keithley 6517A Electrometer via the electric feed-through connections attached to the

annealing box. The dc dark current measurements are carried out from 1800 C to room

temperature. Then, dc dark conductivities are calculated using applied voltage,

measured dark current and the sample geometry. By plotting semi-log of dark

conductivity versus 1000/T, the slope yields activation energy of dark conductivities,

which is almost equal to the position of the dark Fermi level from the conduction band

mobility edge as shown below:

σD = eµNce[-(Ec-Ef)/kT] = σ0exp[-(Ec-Ef)/kT]    (Eq. 2.3)

where the plot of log(σD) versus 1000/T (called Arrhenius plot) yields Ea= Ec-Ef, the

thermal activation energy of the dark conductivity, and σ0= eµNc is the exponential

prefactor obtained.
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Figure 2.7 Vacuum Annealing System

Figure 2.8 Top view of the sample holder and sample in vacuum annealing box

ANNEALING BOX
0.2 TORR
(UP TO 2000 C)

OMEGA
CL8500
METER,
CALIBRATOR

6517A KEITHLEY
ELECTROMETER

VACUUM PUMP

POWER SUPPLY
TO HEATER

K-type
Thermocouple
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2.4 Light Soaking Station

One of the goals of this study is to investigate the effects of the light induced

defect states (Staebler-Wronski defects)[11] on the electrical properties of undoped a-

Si:H. For this purpose, an ELH(Halogen Photo Optic Lamp at 300W) white light station

was designed and developed at IZTECH as shown in Figure 2.9. White light source uses

300W ELH bulbs and operates under 115V and 2.53A constant current mode. A small

fan is attached to the housing to cool the light bulb and improve its lifetime. Light

soaking was carried out for 10 hours for all samples under the same light intensity(a few

suns).  Samples were cooled using two different fans which blow air on the sample not

to cause annealing effect during the soaking. The sample temperature was below 500  C

during the soaking. Same product of ELH lamps were used throughout the study to

eliminate any effects from the light output variations. After light soaking, the steady-

state photoconductivity at room temperature for different light intensities and low

temperature photoconductivity for three different intensities were carried out.

Figure 2.9.  ELH Light Soaking Station
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2.5 Low Temperature Photoconductivity System  

The main goal of this thesis is to investigate the effects of defect states using

temperature dependence of steady-state photoconductivity. For this reason, an

experimental setup shown in Figure 2.10 has been developed for this study. The system

includes a Coolstar Cold Head model 2/9, an Oxford Cryodrive 1.5 down to 10 0K, a

Leybold Trivac Vacuum Pump,  Termovac Sensor with tungsten filament for vacuum

readings, a water cooling system for Cryodrive. Temperature measurements were done

using Rd-Iron Temperature Sensor. Temperature and Helium flow rate were controlled

using ITC 502 Temperature Controller unit by setting up P-I-D control parameters.

Samples are mounted on a specially designed sample holder. Indium metal flakes were

placed between the contacts and probes for better electrical contact. Red light diode

arrays with λ ≅  660nm are used to provide uniform generation of photocarriers in the

sample. The photocurrents were measured using a Keithley 6517A Electrometer and a

constant voltage was applied from the same unit. Photocurrents were measured in the

Ohmic regime of current-voltage curve.  All the units were controlled using a  computer

program for ease of operation written in Object Bench Software which is seen in

Appendix B. Illumination intensities were changed by changing applied voltage to the

LED�s from 3V to 10V.
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Figure 2.10. Setup used for low temperature photoconductivity measurements.
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CHAPTER 3

ANNEALED STATE BEHAVIOUR OF A-Si:H

3.1      Introduction

It is well known that deposition conditions of undoped a-Si:H films change its

electrical and optical properties substantially. It shows a wide range of as-grown or

annealed state characteristics. In this chapter, undoped a-Si:H films in the annealed state

are characterized using temperature dependence of dark conductivity, steady-state

photoconductivity versus light intensity at room temperature, and steady-state

photoconductivity versus temperatures down to 90 0K at  different light intensities.

3.2.  Activation Energy of Dark Conductivity

Undoped a-Si:H films behave like direct bandgap semiconductor with an  optical

bandgap of 1.70 eV to 1.80 eV and corresponding mobility gap of 1.80 eV to 2.0 eV.

The bandgap is easily modified by the hydrogen content of the film during the

deposition process. The Fermi levels for undoped a-Si:H films are expected to be

around the middle of the bandgap, which indicates its position from the conduction

band mobility edge, even though slightly n-type conduction have been occasionally

reported in the literature. For the samples studied in this thesis, we have developed a

vacuum system as described in Chapter 2 to measure the dark currents through the films

as function of temperature. Dark currents of coplanar a-Si:H thin films were measured

from 180 C to room temperature. Then, dark conductivities were calculated using

applied  voltage, measured dark currents and the sample�s thickness and contact

geometry. Semi-log plot of dark conductivity versus 1000/T, which is called Arrhenius

plot, yields a straight line. The slope of this line is used to calculate the position of dark

Fermi level in the bulk of the film.

Examples of Arrhenius plots for undoped a-Si:H films prepared under different

deposition systems and conditions are summarized in following Figures:  DC GD

samples are on Figure 3.1, RF Magnetron sputtered and HW-CVD films are on Figure

3.2, undiluted RF PECVD films are on Figure 3.3, and diluted RF PECVD films are on

Figure 3.4. Activation energy of dark conductivity, which is equal to the position of
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dark Fermi level, Ef , from the conduction band, indicates that most of the films are

undoped and Fermi level is around the middle of the badgap. As summarized in Table

3.1, only the sample 4m has activation energy of 0.60 eV, which shows slightly n-type

conduction. This type of activation energy values have been occasionally reported for

undoped a-Si:H in the literature.  These values are also summarized in Table 3.1.

Table 3-1. Activation energy values of the samples obtained from the slope of

Arrhenius plots.

DEPOSITION
TECHNIQUE

SAMPLES Activation Energy Ef (eV)

SmartB1 0.93

SmartB2 0.93
DC GLOW
DISCHARGE

SmartA1 0.93

RF MAGNETRON
SPUTTERING Sputtered 0.96

HOT-WIRE CVD H608 0.92

4m 0.6

Yl-6b 0.97
RF-PECVD
UNDILUTED

SN128 0.86

Lj-51 1.02

L12229 0.98
RF-PECVD
DILUTED

L12231 0.98
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Figure3.1.   Arrhenius plot of dark conductivity for a-Si:H films deposited in

DC-Glow-discharge system.
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Figure3.2.   Arrhenius plot of dark conductivity for a-Si:H films deposited in Hot-Wire

CVD and RF-Magnetron Sputtering systems
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Figure3.3 Arrhenius plot of dark conductivity for a-Si:H films deposited in RF-PECVD

system without H�dilution.
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Figure3.4. Arrhenius plot of dark conductivity for a-Si:H films deposited in RF-PECVD

reactor using H-dilution of silane.
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3.3. Steady-state Photoconductivity

Steady state photoconductivity, σph, in a-Si:H thin films shows non-integer

power-law dependence on light intensity, F, or generation rate, G,  as defined by

σph=CGγ where γ is the power and C is a constant. Meaning of  γ has been given in

Appendix A. It represents the nature of recombination kinetics between free electrons

and holes at the extended states. Steady-state photoconductivity measurements at room

temperature were carried out using monochromatic red light with energy, E= 1.87 eV,

which is greater than the optical gap of films studied here. Maximum intensity of

monochromatic light was decreased to lower levels using neutral density filters, then

intensity dependence of photoconductivity was obtained for all the samples in the

annealed state. Due to variations in the deposition conditions, the magnitude of

photoconductivity can show a wide range variations. However, log-log plot of

photoconductivity versus light intensity always shows a straight line. The slope of

straight line yields the power γ. These experimental results are illustrated in the follwing

Figures:  DC GD fims in Figure 3.4,  HW-CVD and RF Magnetron sputtering films in

Figure 3.6, Undiluted RF PECVD films in Figure 3.7, and H-diluted RF-PECVD films

in Figure 3.8.  It can also be seen from Table 3.2 that γ values are less than unity for all

films. They are not equal to 0.5 either, which is a direct indication of recombination of

electrons in the conduction band with free holes in the valence band. However, γ values

less than unity is still representing the recombination of free electrons in the CB  with

free holes in the VB through the recombination centers in the bandgap. For this reason,

intensity dependence of photoconductivity infers that  defect states in the bandgap of

a-Si:H is playing the major role. The values of γ change from 0.72 to 0.90, which is

very close to unity. That could be due to differences in the density and energy

distribution of defect states in the bandgap. It is not possible to obtain further

information about these defect states using the power of intensity, γ.

Even though the values of the exponent γ  are very close to each other among the

films, the magnitude of photoconductivity at 100% intensity of monochromatic light

can have a wide range of values. As summarized in Table 3.2, it changes from 1.0x10-7

(ohm-cm)-1 to 16x10-7 (ohm-cm)-1. This could be due to differences in the densities of

defect states in the bandgap and also differences in the optical gap of samples. Due to

incorporation of hydrogen in the films during deposition, optical gap can change from

1.70 eV for undiluted films and 1.82 eV for diluted films.  However, all films exhibit
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very good photoconductivity as compared with those measured in the dark.

Conductivity increase by a few orders of magnitude upon light exposure. Because of

that the films will serve very good absorber layer for solar cells.  Since

photoconductivity depends  not only on the densities of defect states in the bandgap, but

also their nature, carrier capture cross sections as well as the absorption coefficient and

mobility of free carriers, it cannot be a direct tool to get information about these defect

states.

Table 3-2. Steady-state photoconductivity in the annealed state

DEPOSITION
TECHNIQUE

SAMPLES σD(R.T)(Ω-cm)-1 σPh(100%)(Ω-cm)-1 γ values

SmartB1 8.0x10-10 1.3x10-7 0.85

SmartB2 8.3x10-10 1.7x10-7 0.85
DC GLOW
DISCHARGE

SmartA1 7.0x10-10 1.2x10-6 0.90

RF MAGNETRON
SPUTTERING Sputtered 1.3x10-10 3.4x10-7 0.86

HOT-WIRE CVD H608 6.1x10-10 2.9x10-7 0.89

4m 3.2x10-10 9.2x10-7 0.86

Yl-6b 1.1x10-9 2.6x10-6 0.72
RF-PECVD
UNDILUTED

SN128 1.8x10-9 1.5x10-6 0.76

Lj-51 1.6x10-10 1.0x10-6 0.90

L12229 1.7x10-10 6.2x10-7 0.90
RF-PECVD
DILUTED

L12231 9.2x10-10 1.6x10-6 0.85



30

Figure3.5.  Steady-state photoconductivity measued with monochromatic light of

λ=690nm  at different intensities for DC Glow-discharge a-Si:H films in the annealed

state.
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Figure3.6. Steady-state photoconductivity at λ=690nm for Hot-wire CVD and RF-

Magnetron Sputtering samples in the annealed state.
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Figure3.7. Steady-state photoconductivity at λ=690nm for undiluted RF-PECVD

samples in the annealed state.

Intensity
10-3 10-2 10-1 100 101

σ p
h(

Ω
-c

m
)-1

10-8

10-7

10-6

10-5

Yl-6b 

4m 
SN128



33

Figure3.8.   Steady-state photoconductivity at λ=690nm for diluted RF-PECVD samples

in the annealed state.
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3.4. Low Temperature Photoconductivity

As described above, intensity dependence of steady state photoconductivity at

room temperature allows us to probe the effects of defect states in the bandgap for a

certain energy range since the intensity of light cannot be increased more due to

experimental limitations. However, alternatively the sample temperature at a constant

light intensity can be decreased from room temperature to lower temperatures and the

effects of defect states on measured photoconductivity can be detected extensively.  For

this reason, the samples are mounted in a closed cycle cryostat, which allows light

penetration through a window, and cooled to lower temperatures. At every temperature,

sample was illuminated with a constant intensity of red light and photocurrents were

measured using an electrometer.

 An example of low temperature photoconductivity spectra is shown in Figure

3.9 for DC GD a-Si:H sample SmartB2 for three different light intensity. Begining from

room temperature, photoconductivity increases with increasing intensity  consistent

with previous results. Let us consider only the result of highest intensity F3.  As

temperature decreases, photoconductivity starts decreasing, consistent with an increase

in the recombination centers as quasi-Fermi levels move closer to their respective band

edges. But this decrease continues until temperature T1, where photoconductivity

remains to be constant for a wide range of temperatures. The spectrum becomes flat

until temperature T1*. This is called photosensitization. It is difficult to explain this

effect with increasing mobility, which is one of the determining parameter of

photoconductivity.  But rather it is due to free electron density, n, and therefore free

electron lifetime, τn.. This is unlikely for a defective material , which has continuous

defect distribution in energy throughout the bandgap. As temperature decreases, quasi-

Fermi levels for free electrons and holes move through their respective band edges and

more defect states are converted to recombination centers as defined by Simmons-

Taylor statistics in Appendix A. The increase in the density of recombination centers

must decrease free electron lifetime for a constant light intensity if there are same kind

of recombination centers present in the bandgap. Furthermore, lifetime of free electrons

are not only controlled by the density of recombination centers but also their carrier

capture cross sections. If there are more than one type of defect states, each has different

carrier capture cross sections but second type ,new defects, has very low capture  cross-
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Figure3.9.σpc versus 1000/T graph for different intensities for sample SmartB2 in the

annealed state.
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sections for electron, then free electron lifetime will increase as more second type new

defects  become recombination centers. The degree of improvement in free electron

lifetime is also proportional to the density of second type defect states as well. At

temperature T1 the photosensitization starts for the highest intensity F3. As we go to

lower intensity F2, photoconductivity decreases from room temperature down to

temperature T2, which is lower than T1. Then it becomes flat again. It means that at

intensity F2, quasi-fermi levels reach to new type defect states at lower temperature

since F2 is lower than F3. Similarly, at  the lowest intensity F1, photoconductivity

decreases until temperature T3, which is lower than T2, then becomes flat. These

transition temperatures are thermally activated. The turning point in temperature is

consistent with the theory of Simmons-Taylor, indicating that quasi-Fermi levels reach

to a new type defect states, which have very small capture cross-section for electron

than first type defect states and act as photosensitizing states. This effect is also called

thermal quenching.

Quasi-Fermi levels can be moved by either light intensity at constant

temperature or by temperature at a constant light intensity.  This effect is also seen in

other DC GD a-Si:H films. The summary of low T photoconductivity at a constant

intensity F2 is illustrated in Figure 3.10 for three DC GD samples. The samples

SmartB1 and SmartB2 are from the same deposition run made at 215 0C substrate

temperature and SmartA1 was made at 260 0C substrate temperature with similar other

deposition parameters. The results of SmartB1 and SmartB2 are almost identical within

the experimental error but SmartA1 has factor 5 higher photoconductivity at room

temperature due to differences in defect structure and optical gap. However, they all

show the same type of low T photoconductivity spectrum. Initially photoconductivity

decreases to a certain temperature, then it becomes flat. It later starts decreasing again at

lower temperatures. At the lower temperatures around 100 0K, quasi-Ferimi levels move

so apart and reach to high density of the conduction and the valence band tail states.

They introduce very large recombination centers between quasi-fermi levels and

electron lifetime will decrease continuously. Transition temperature ,T*, at lower

temperature part of the spectrum is different for SmartA1 and SmartB1. It is an

indication that SmartA1 has lower optical gap ,1.70eV, than SmartB1 ,1.80eV. Due to

the fact that the onset of exponential band tails in recombination kinetics is detected

much higher temperature for SmartA1. It is indicated by TA* and TB* on Figure 3.10

for clarity. The



37

Figure3.10.  Low temperature photoconductivity of  DC Glow-discharge samples in the

annealed state.
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turning temperatures are not same for each film due to differences in defect density and

distribution in energy and optical gap of samples  but the shape of spectrum is

consistent for all three samples indicating similar defects distributions throughout the

bandgap.

As seen from the activation energy data and room temperature

photoconductivity results, similar device quality a-Si:H films are also produced using a

RF-PECVD system. An example of low temperature photoconductivity spectrum of

undoped a-Si:H sample 4m prepared without hydrogen dilution of silane gas is shown in

Figure 3.11 for three different light intensities. As intensity icreases from F1 to F3,

spectrum shows a parallel shift to higher values keeping the same shape.

Photoconductivity initially decreases from room T to 250 0K for intensity F3, then it

starts increasing and peaks around temperature 155 0K.  The feature of minimum and

maximum points at the spectrum are clearly seen for three different intensities. In each

one, these points correspond to different temperatures consistent with the theory of

Simmons-Taylor. Photosensitization in this sample is more significant and sets in at

higher temperatures than those observed in DC GD samples. For example; for intensity

F3, undiluted a-Si:H films has transition at 250 0K, however, it happens around 200 0K

for DC GD samples. This effect indicates that new type of defect states resulting in

photosensitization are closer to midgap in undiluted RF-PECVD films and their density

must be higher to cause a peak in low T spectrum. As temperature is decreased further

below the peak temperature ,T1*, photoconductivity exhibits a sharp decrease, where

free electron lifetime decreases due to onset of exponential bandtail states as

recombination centers. In addition, the results of other undiluted RF-PECVD films are

summarized in Figure 3.12. Even though they were made in the same deposition

system, they can exhibit different photosensitization than the sample 4m in Figure 3.11.

Other two undiluted films have characteristics more similar to DC GD samples.

Photoconductivity at highest intensity F2 decreases down to 200 0K, then little

photosensitization sets in. It decreases with much smaller slope than higher temperature

part of the spectrum. Here, new defect states could be closer to band edges burried

under the tail states or their densities might be lower. But their presence is obvious that

slope shows a change.

 Undiluted a-Si:H films deposited using RF-PECVD system generally show

significant photosensitization like the sample 4m in Figure 3.11 and suffer great amount
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Figure3.11.σpc versus 1000/T graph for different intensities for undiluted RF-PECVD

sample 4m in the  annealed state.
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Figure3.12.Low temperature photoconductivity of undiluted RF- PECVD samples in the

annealed state.
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of degradation upon light soaking. To prepare more stable and lower stabilized defect

density material, hydrogen dilution technique was developped[20,21]. In this technique,

silane gas is diluted with hydrogen at different ratios ( H2 / (SiH4 + H2 ) =R ) from 0 to

40 until material changes phase from amorphous to microcrystallinity.  To investigate

the effects of hydrogen dilution process on the defect distribution in the bandgap, low

temperature photoconductivity measurements were carried out in three diluted a-Si:H

films. The spectra for the sample LJ-51 prepared for R=10 at Penn State University are

illustrated in Figure 3.13 for three different intensities. Consistent paralel shift in

photoconductivity spectra is seen as intensity increases from F1 to F3. However, there

are significant differences from previous results. First, photoconductivity at intensity F3

starts decreasing from room T to 250 0K by only 15%. It was around 30-40% for

undiluted sample 4m. Second, it does not show a peak. It rather stays constant until

166 0K, then it starts decreasing again with a constant slope.  Other two lower intensities

also show the same trend and transitions at temperatures consistent with the analysis of

Simmons-Taylor. These transition temperatures are indicated by arrows on the figure

for clarity.

Similar results are also obtained for other diluted a-Si:H films  prepared by low-

hydrogen dilution (exact ratios are not publicised by the Company) at USSC as shown

in Figure 3.14. Diluted sample LJ-51 and low-hydrogen diluted sample L12229 exhibit

almost the same transition temperatures and magnitudes of photoconductivity. The only

difference is that photoconductivity decreases gradually faster in low H-diluted film. As

seen from Figure 3.14, high hydrogen dilution significantly changes the spectrum.

Photosensitization in temperature dependence of photoconductivity starts much earlier

in temperature. It is almost at room temperature.  It remains to be flat until 200 0K then

it starts to decrease continuously. This type of behavior is not observed  in DC GD and

undiluted RF-PECVD films. Onset of photosensitization at room temperature indicates

that photosensitizing defect states are located much closer to midgap in diluted a-Si:H

films, especially in high H-diluted sample, than those in undiluted and DC GD samples.

Because of that the effects of exponential tail states as recombination centers starts at

temperatures as high as 200 0K. Furthermore, high H-diluted films have a factor of 3

higher photoconductivity due to these photosensitizing defect states than other diluted

films.
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Figure3.13.σph versus 1000/T graph for different intensities for diluted RF-PECVD

sample Lj-51 in the  annealed state.
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Figure3.14.Low temperature photoconductivity of diluted RF-PECVD samples in the

annealed state.
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Finally, similar results were obtained for the device quality a-Si:H films

deposited using HW-CVD and RF magnetron sputtering techniques as given Figure

3.15. Photoconductivity starts decreasing from room T down to 250 0K for sputtered

sample and to 200 0K for HW-CVD film. Then, photosensitization sets in as observed in

previous films. It establishes a slight peak at 150 0K for sputtered film, then gradually

decreases to lower temperatures. However, HW-CVD sample shows much wider

photosensitization and peaks around 100 0K. The onset of exponential tail states is

barely seen at 90 0K. This is observed only in HW-CVD samples, indicating that

photosensitizing states are deep in the bandgap, further away from the midgap, and

closer to band edges.

As a conclusion, it is found in this thesis that undoped a-Si:H films prepared

using different deposition conditions and systems have dark Fermi level positions 0.6

eV to 1.0 eV from the conduction band edge. Steady-state photoconductivity measured

at 100% intensity of monochromatic red light shows variation from 1x10-7 (ohm-cm)^-1

to 16x10-7 (ohm-cm)^-1. Its power dependence on light intensity, γ, has a values

between 0.72 and 0.90. Temperature dependence of photoconductivity exhibits three

different regions: Region I is the effect of defect states around midgap, which cause

decrease of photoconductivity as temperature decreases; Region II is the onset of

photosensitization until certain temperature. Depending on its effect, there could be a

peak in the spectrum, a flat region or much slower decrease with temperature;

Region III is the onset of exponential band tail states, where free electron lifetime and

therefore photoconductivity gradually decreases with temperature.
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Figure3.15.Low temperature photoconductivity of Hot-Wire CVD and RF Magnetron

Sputtered samples in the annealed state.
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CHAPTER 4

 STAEBLER-WRONSKI EFFECT

4.1 Introduction

The Staebler-Wronski effect(SWE)[11] is known to be an intrinsic property

limiting solar cell applications of a-Si:H. Electrical properties of a-Si:H deteoriate

when it is illuminated by sun light. Dark and photoconductivity decrease and the density

of paramagnetic defects in the films increases[13,65]. In this chapter, a-Si:H thin films

were studied in the light soaked state to investigate the effect of Staebler-Wronski

defects. The results of annealed state described in Chapter 3 were compared with light

soaked state results to see the consequences of the SWE in different device quality

films. The SWE was monitored with dark conductivity, steady-state photoconductivity

versus light intensity at room temperature, and steady-state photoconductivity versus

temperatures down to 90 cK at  different light intensities.

4.2       Dark Conductivity

After 10 hours white light illumination,  σD measured at room temperature show

a slight degradation from its annealed value. Some films show greater degradation than

others as indicated in Table 4.1.  As given in Chapter 3 that σD is determined by the

dark Fermi level Ef. Degradation of σD corresponds to a shift of Ef towards midgap.

Activation energy data showed that Ef is very close to the middle of the bandgap in

most of the samples. After light soaking, samples become more intrinsic as Ef move

closer to the midgap. This is one of the consequences of SWE in a-Si:H films. More

significant degradation have been observed in samples SN128 and sputtered a-Si:H

films.
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Table 4-1. Room temperature darkconductivity σD (R.T)(Ω-cm)-1 values for the

annealed and light soaked state.

Samples σD (R.T)(Annealed) σD (R.T)(Soaked) σD(A) / σD(S)

SmartB1 8.0x10-10 2.0x10-10 4

SmartB2 8.3x10-10 1.7x10-10 4.88

SmartA1 7.0x10-10 1.8x10-10 3.8

Sputtered 1.3x10-10 8.9x10-12 14.6

H608 6.1x10-10 3.0x10-10 2

4m 3.2x10-10 1.1x10-10 2.9

Yl-6b 1.1x10-9 8.6x10-10 1.28

SN128 1.8x10-9 5.3x10-11 33.9

Lj-51 1.6x10-10 1.1x10-10 1.45

L12229 1.7x10-10 1.1x10-10 1.54

L12231 9.2x10-10 2.0x10-10 4.6
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4.3 Steady-state Photoconductivity

The room temperature steady-state photoconductivity, σph, in undoped a-Si:H

thin films in the light soaked state were measured following a few suns of high intensity

light soaking. The Staebler-Wronski effect in steady-state photoconductivity is

illustrated in Figure 4.1 for DC GD a-Si:H film SmartA1. Log-log plot of σph versus

light intensity obeys a power law as observed in the annealed state. The power γ is 0.90,

which is close to unity and shows no significant change from that of annealed value.

The magnitude of σph measured at 100% light intensity decrease from 1.2 x 10-6

(Ω-cm)-1 to 7.2 x 10-8 (Ω-cm)-1. It shows a degradation by a factor of 16. The Steabler-

Wronski effect is seen as a parallel shift in log-log plot of σph vs light intensity with a

significant degradation in the magnitude of σph. This degradation is due to decrease in

the free electron density, n, in the soaked state. The main parameter determining the free

electron density is the increase in the density of recombination centers, which reduce

the free electron life time τn. This is direct effect that long time white light illumination

of a-Si:H film creates new defect state in the bangap of a Si:H. However, it is not

possible to obtain detailed information about the defect states by just monitoring the

degradation of σph. Now, these defect states are generally named as the

Staebler-Wronski defects or light induced defects.

The effects of the Staebler-Wronski defects were also studied in other undoped

DC GD a-Si:H films under the same period of white light soaking. They are shown in

Figure 4.2 for both annealed and light soaked state. The exponent γ is almost 0.90 for

Smart B1 and Smart B2, which show a slight increase from its annealed value. Both

films show almost identical degradation in σph. It decreases from its annealed state value

of  1.7 x 10-7  (Ω-cm)-1 to 2.6 x 10-8 (Ω-cm)-1. They show a factor of 5 degradation in

σph, which is much less than that of sample Smart A1. However, they are still less

photoconductive than sample Smart A1. They have similar γ values indicating that

distribution of light induced defect states present in the bandgap is similar  for all three

samples. But their densities and energy distributions cannot be determined by looking at

the degradation of σph curves.
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Figure4.1. Steady-state photoconductivity measured with monochromatic light of
λ=690nm  at different intensities for Smart A1  in the annealed  and light soaked state.
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Figure4.2. Steady-state photoconductivity measured with monochromatic light of
λ=690nm  at different intensities for DC Glow-discharge a-Si:H films  in the annealed
and light soaked state.
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Furthermore, the Staebler-Wronski effect in σph are summarized in Table 4.2 and

changes in σph for other samples are shown in following figures: HW-CVD and

sputtered films in Figure 4.3, undiluted RF-PECVD films in Figure 4.4, and Diluted RF-

PECVD films in Figure 4.5. The exponent γ is close to unity in soaked state and has a

value between 0.85 to 0.90 for all films. It increases from 0.70 to around 0.90 for

undiluted RF-PECVD films and shows almost no change for others. The similar  γ

values indicate that all samples have similar Staebler-Wronski defect distribution in

light soaked state even though they had drastically different native defect profiles due to

differences in the deposition conditions in the annealed state.

The consequences of the Staebler-Wronski effect is clearly seen in the

magnitude of σph measured at 100% of light intensity. HW-CVD film shows a

degradation in σph by a factor of 5 and sputtered film by a factor of 10. However, more

degradation is observed in undiluted RF-DECVD samples YL-6B and SN128. Even

though each has different annealed state value, σph is reduced to the values between

2 - 7 x 10-8 (Ω-cm)-1 after 10 hrs of white light soaking. If samples are illuminated

longer under the light, this degradation will continue until a saturation in σph. However,

this procedure takes very long periods of times which was not an intention in this thesis.
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Table 4-2. Steady-state photoconductivity in the annealed(A) and light soaked state(S)

Samples σPh(100%)A
(Ω-cm)-1

γ (A) σPh(100%)S
(Ω-cm)-1

γ (S) σPh (A)
σPh (S)

SmartB1 1.3x10-7 0.85 2.6x10-8 0.90 5

SmartB2 1.7x10-7 0.85 2.7x10-8 0.88 6.3

SmartA1 1.2x10-6 0.90 7.2x10-8 0.90 16.67

Sputtered 3.4x10-7 0.86 3.5x10-8 0.84 9.72

H608 2.9x10-7 0.89 5.8x10-8 0.89 5

4m 9.2x10-7 0.86 7.0x10-8 0.92 13.15

Yl-6b 2.6x10-6 0.72 5.2x10-8 0.90 50

SN128 1.5x10-6 0.76 5.0x10-8 0.87 30

Lj-51 1.0x10-6 0.90 7.5x10-8 0.92 13.33

L12229 6.2x10-7 0.90 5.7x10-8 0.86 10.87

L12231 1.6x10-6 0.85 5.3x10-8 0.81 30.19
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Figure4.3. Steady-state photoconductivity measured with monochromatic light of
λ=690nm  at different intensities for HW-CVD and RF-Magnetron Sputtering a-Si:H
films  in the annealed  and light soaked state.
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Figure4.4. Steady-state photoconductivity measured with monochromatic light of
λ=690nm  at different intensities for undiluted RF-PECVD  a-Si:H films  in the
annealed  and light soaked state.
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Figure4.5. Steady-state photoconductivity measured with monochromatic light of
λ=690nm  at different intensities for diluted RF-PECVD a-Si:H films  in the annealed
and light soaked state.

Intensity
10-3 10-2 10-1 100 101

σ ph
( Ω

-c
m

)-1

10-10

10-9

10-8

10-7

10-6

10-5

Lj-51 Annealed
L12229 Annealed 

Lj-51 Soaked
L12229 Soaked

L12231 Annealed

L12231 Soaked



56

4.4       Low Temperature Photoconductivity

Steady-state photoconductivity measured at room temperature shows a great

deal of decrease after 10 hours of white light soaking. Its power dependence on light

intensity becomes almost similar for all samples with a value between 0.85 and 0.90.

Those results indicate that new defects states, the Staebler-Wronski defects, are created

by light in a continuous distribution of energy in the bandgap. However, it is not

possible to understand the nature of the Staebler-Wronski defects from those results. It

can only be possible to infer that there is an increase in continuous defect states in the

bandgap.

To understand the Staebler-Wronski effect in these a-Si:H thin films, the

investigation was extended to the measurement of σph at several constant intensities for

a wide range of temperatures. Low temperature photoconductivity spectra of DC Glow

Discharge a-Si:H sample SmartB2 for three intensities after 10 hours of light soaking

are shown in Figure 4.6 together with those measured in the annealed state for the same

light intensities.  As seen from the Figure, each spectrum shifts to higher

photoconductivity values as light intensity increases from F1 to F3, which is consistent

with those  of annealed spectra. For the same light intensity, such as F3, σph (F3)

spectrum degrades substantially to lower values due to the Staebler-Wronski effect. The

shape of spectrum also shows differences and similarities from that of annealed state.

For example, σph (F3) starts decreasing from room temperature as temperature

decreases. That indicates that at constant intensity F3, the number of recombination

centers between the quasi-Fermi levels increases as temperature goes down. This is

similar to what observed in the annealed state for high temperature region. However, at

a certain temperature, region II in spectrum sets in, where σph remains to be insensitive

to temperature even though the density of recombination centers increase with

decreasing temperature. In light soaked spectrum, region II sets in at lower

temperatures. It was around 208 0K in the annealed state but region II sets in at 178 0K

in the light soaked state.

It can be inferred that light soaking created defects which have the similar nature

as native defect states. Their density increased. Because of this, quasi-Fermi levels

move slower in energy in the light soaked state. It cannot reach to region II, where

photosensitization becomes dominant,  until 178 0Κ.  After this  transition  temperature, 
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Figure 4.6. σph versus 1000/T graph for different intensities for sample SmartB1 in the

annealed state and light soaked state.
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σph does not show significant decrease but slightly becomes constant until 110 0K.

After that temperature, it is decreasing again with a certain slope. The lowest

temperature region could be the onset of exponential tail state recombination due to

wide opening of quasi-Fermi levels. This onset had started at higher temperatures for

the annealed case, which was around 130 0K.

As the light intensity is decreased rom F3 to F2, room temperature σph decreased

to 6.5x10-8 (Ω-cm)-1. It then decreases when temperature decreases until  166 0K, where

a transition to region II begins. This transition temperature is lower than that of intensity

F3 and consistent with the analysis of Simmons-Taylor. Again, σph remains almost

constant after 166 0K until 100 0K. The onset of region III is barely seen at the last

point. The behavior of the σph spectrum at the lowest intensity is similar to previous

ones that σph decreases in region I until 156 0K. After that temperature, σph remains to be

constant and the onset of tail state recombination cannot be detected in the limit of

lowest temperature. The temperature needs to be decreased further to detect the region

III in the spectrum. As a result, these spectra measured in the light soaked state indicate

that Staebler-Wronski defects are present in the material. There could be more than one

type of Staebler-Wronski defects created by light. First type defects are created around

the midgap, which are also present in the annealed state and responsible for region I.

Second type defects are created closer to the band edges and they are detected at lower

temperatures. They give photosensitizing behaviour and cause no change in σph as

temperature decreases.

The effect of Staebler-Wronski defects were also observed in the low

temperature photoconductivity spectrum of other DC Glow Discharge a-Si:H films. The

results for intensity F2 are shown in Figure 4.7 both in the annealed and light soaked

state. Samples SmartB1 and  SmartB2 exhibit almost identical results since they are

made from the same deposition run. Sample SmartA1 show sligthly higher σph  values.

But in general they show similar spectra. Transition temperature to region II is around

170 °K for all samples and only region II can be observed until 90 °K for ligth intensity

F2. These results can lead to a conclusion that DC Glow Discharge films have similar

Staebler-Wronski defect distributions after ligth soaking.

It was demonstrated that some of undiluted RF-PECVD films have completely

different photoconductivity versus temperature spectra in the annealed   state. The

effects of photosensitizing states were much more substantial that σph  showed a peak  at
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Figure 4.7.Low temperature photoconductivity of  DC Glow-discharge samples

in the annealed and light soaked state at constant intensity F2.
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lower temperatures. These samples were also subjected to the same light soaking

process and  Staebler-Wronski effect was investigated in low temperature σph spectra.

The results of undiluted  RF-PECVD sample 4m are shown in Figure 4.8. σph at room

temperature for each intensity decreased substantially from the corresponding annealed

state value. Further decrease in temperature at constant intensity decreases σph with a

constant slope. It decreases until 170 °K for intensity F2 similar to that observed in DC

Glow Discharge samples. Then, σph remains to be constant. This behaviour of σph in the

soaked state is an important change from  that of annealed state. Because σph decreased

to 250 °K, then it started to increase again and peaked around 140 °K. This peak

completely disappeared after light soaking, then σph spectrum becomes similar to that

observed in DC Glow Discharge samples. Mainly two regions in σph spectrum can be

observed at temperatures down to 90 °K. Even though the native defect density and

distribution were substantially different in the annealed state, the defect distributions

due to Staebler-Wronski effect seem resemble to that of DC Glow Discharge samples.

Both shape and transition temperatures are very close to that of  DC Glow Discharge

and undiluted RF PECVD sample.

To see the characteristics of other undiluted RF PECVD samples in the light

soaked state, σph data for lower temperatures were also measured for three different ligth

intensities. Since these undoped RF-PECVD samples were displaying similar annealed

state characteristics to that of DC Glow Discharge films. As seen from Figure 4.9, these

undoped RF-PECVD samples show large degradation of  σph due to creation of

Staebler-Wronski defects by light. Their σph spectrum shifts downward in magnitude

and displays two regions. σph initially decreases from room temperature until transition

temperature around 170 °K, then it becomes either constant or shows very slight

decrease for a wide temperature region. In region II, photosentisizing defect states play

more dominat role that they improve free electron life time τn , instead of decreasing it.

In the first region, defect states acting as recombination center increases as temperature

decreases and resulting in a decreased electron life time and σph. It can be inferred that

ligth soaking process removes the photosensitizing peaks from low temperature σph

spectrum if it is present in the annealed state. All samples gain similar defect

distribution after ligth soaking process.

The photosensitizing states were more dominant and become effective at higher

temperatures in the annealed state of  a-Si:H  films  prepared  by  hydrogenated  dilution
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Figure 4.8. σph versus 1000/T graph for different intensities for undiluted RF-PECVD

sample 4m in the  annealed state and light soaked state.
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Figure 4.9.Low temperature photoconductivity of undiluted RF- PECVD samples in the

annealed and light soaked state at constant intensity F2.
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technique as seen in previous chapter. The effects of the Staebler-Wronski defects on

diluted RF-PECVD films were investigated under identical light soaking process.

Example of the results for diluted a-Si:H sample LJ-51 is shown in Figure 4.10 for both

annealed and light soaked state. As clearly seen from the figure, σph was almost constant

from room temperature to 160 °K in the annealed state. However, this behavior at

higher temperature region disappears after ligth soaking. Instead of having constant σph,

there is decreasing σph as temperature decreases similar to that observed in previous DC

Glow Discharge and RF-PECVD films in the light soaked state. σph decreases from

room temperature down to temperature of 170 °K, exactly the similar transition

temperature of previous films, then it becomes to be unchanged for lower temperatures.

At transition temperature, photosensitization effect becomes dominant. Again transition

temperature decreases as ligth intensity decreases from F3 to F1. For the diluted

RF-PECVD sample LJ-51, it is 192 °K, 172 °K, and 154 °K for F3, F2 and F1

respectively. This is an indication  that the quasi Fermi levels reach to photosensitizing

state at much lower temperatures for lowest light intensity as described Simmons-

Taylor statistics. Therefore, these transition temperatures are thermally activated.

The results of low temperature σph for other two diluted RF-PECVD films and

that of LJ-51 are summarized in Figure 4.11 for intensity F2. It is conclusive that all

diluted films show similar characteristic low temperature σph spectrum in light soaked

state. The effects of photosensitizing states in region II shifts to much lower

temperatures contrary to that observed in the annealed state. Region I becomes

apparent, the same as soaked state of other samples. Only region I and II can be

observed from room temperature to 90 °K although region II and III were observed in

the annealed state. These diluted a-Si:H films clearly indicate that more Staebler-

Wronski defects are created around the midgap, which effectively reduces the electron

life time and finally σph and hence photosensitizing Staebler-Wronski defects are

created away from midgap. Due to increased density of Staebler-Wronski defects,

quasi-Fermi levels Efn  and Efp cannot reach to exponential tail states and a sharp

decrease in σph have not been observed until 90 °K at intensity  F2. However, at

intensity F3, the onset of exponential tail state recombination is observed below 90 °K.

Finally, the results of device quality a-Si:H films made using HW-CVD

technique and RF magnetron sputtering are shown in Figure 4.12. for both annealed and

ligth soaked states. For both samples, significant photosensitization effect was observed

in the annealed state. It was much more significant in HW-CVD sample. After 10 hours
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Figure 4.10. σph versus 1000/T graph for different intensities for diluted RF-PECVD

sample Lj-51 in the  annealed state and light soaked state.
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Figure 4.11.Low temperature photoconductivity of diluted RF-PECVD samples in the

annealed and light soaked state at constant intensity F2.
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Figure 4.12. Low temperature photoconductivity of Hot-Wire CVD and RF Magnetron

Sputtered samples in the annealed and light soaked state at constant intensity F2.
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of white ligth soaking, more significant Staebler-Wronski effect is seen in sputtered film

that σph at room temperature decreased by factor of 10. However, it is only factor of 5

for HW-CVD sample. As temperature decreases, σph  in region I  starts  decreasing  until

transition temperature. Then photosensitization sets in. Transition temperature is around

178 °K for HW-CVD sample and 150 °K for sputtered sample. σph remains to be

constant in region II for sputtered film but it is slightly increasing until 90 °K for

HW-CVD sample. This increase in σph in region II is less significant than that observed

in annealed state. This type of behaviour in soaked state is observed only in HW-CVD

sample indicating that both photosensitizing defects and free electron lifetime killer

defects are created in a certain proportion; electron lifetime killer defects are around

midgap and electron lifetime sensitizing defects closer to band edges. This is important

difference from other films that more electron life time killer defects around midgap and

less photosensitizing defects closer to band edges are created by light.

The Staebler-Wronski effect results in creation of at least two different types of defect

states. Their effects are only seen in low temperature σph spectrum as region I and

region II in light soaked state.

In conclusion, a wide range of variations in photoconductivity at room

temperature have been measured, indicating the effects of deposition conditions on film

properties. The slope of log-log plot of photoconductivity versus intensity changes from

0.70 to 0.90 in the annealed state and becomes close to unity for all films in the soaked

state. In the annealed state, low temperature photoconductivity spectra show three

regions for DC GD, Sputtered, HW-CVD, and undiluted RF-PECVD films. H-Diluted

RF-PECVD films show only two regions. Region I in the spectra is due to defect states

around the midgap, where free electron lifetime decreases by temperature; Region II is

due to new type of defect states, different from region I, which are closer to the band

edges. In region II, free electron life time and photoconductivity increases or remain to

be constant as temperature decreases; Region III is due to the onset of the exponential

tail states, where free electron lifetime decreases continuously. H-Diluted a-Si:H films

do not show the region I even at room temperature but starts from region II and ends

with region III. In the light soaked state, substantial decrease in photoconductivity due

to Staebler-Wronski defects are observed in all films. All films show almost the same

shape low temperature photoconductivity spectra. Region I is extended to lower

temperatures down to 1700K, then region II with a constant photoconductivity

dominates until 900K. Region III can barely be detected at temperatures below 900K and
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intensities higher than used in the study. These results indicate that there are at least two

types of defect states present in the annealed state: neutral silicon dangling bond, D0,

states and non-D0 states, possibly charged defect states. Light soaking creates more D0

states around the midgap, as well as non-D0 states closer to the band edges.



CHAPTER 5

DISCUSSION AND CONCLUSIONS

Undoped hydrogenated amorphous silicon thin film materials prepared using

different deposition systems have been characterized both in the annealed and light

soaked states. The characterization includes dark conductivity as a function of

temperature, steady-state photoconductivity versus light intensity at room temperature

and steady-state photoconductivity versus temperature for three different intensities. A

qualitative comparison of these results have been carried out to understand the effects of

native and Staebler-Wronski defect states in the bandgap of  a-Si:H thin films prepared

under different deposition conditions.

In the annealed state, undoped a-Si:H films were kept at 180 oC for a few hours,

then dark conductivity was measured as a function of temperature. Dark conductivity

versus 1000/T, also called Arrhenius plot, plots were obtained. The slope of these plots

yields the position of dark Fermi level in the bandgap. As we have explained in Chapter

3, all films show higher activation energy values. It is well established that undoped a-

Si:H have optical gap of 1.70eV to 1.86eV depending on the hydrogen content in the

material. However, electron transport in dark and recombination processes of free

electrons and holes are subject to higher bandgap than the optical gap defined from

optical measurements. This higher bangap was first measured by Wronski et al. in 1989

and defined as �Mobility gap� and later others called it as  �Recombination bandgap�.

Mobility gap of a-Si:H is greater than optical bandgap by 0.1eV to 0.2eV. Our samples

used in this thesis have optical gaps of 1.70eV to 1.82eV and corresponding mobility

gaps varies from 1.90eV to 2.02eV. For undoped a-Si:H films dark Fermi level is

expected to be in the middle of the bandgap which should be around 0.95eV  to 1.0eV.

Our experimental results agree very well with this expectation. Only for the samples 4m

and SN-128 prepared using RF-PECVD deposition system without hydrogen dilution,

activation energy of dark conductivity is 0.60eV  and  0.85eV respectively. These

values show that dark Fermi level is positioned above the middle of the bandgap. Even

though these films are undoped, the impurity concentration levels are very low to cause

such kind of 0.1 to 0.4eV shift in the Fermi level. The reason for having lower

activation energies in undoped films is due to charge distribution of defect state in the

bandgap, which totally determine the position of dark Fermi level. Many reported
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results on undoped a-Si:H film for dark Fermi level show variations from 0.6eV to

0.90eV for the activation energy. The results of dark conductivity as a function of

temperature are consistent for the expected values of dark Fermi level for an undoped

film.

Position of dark Fermi level is an important determining factor for occupation of

midgap defect states in dark. Presence of the midgap defect states can be detected by

measuring  steady-state photoconductivity at room temperature using a monochromatic

light with energy greater than the optical gap. Monochromatic light E = hν > Eopt,

results in excitation of free electrons from the valence band to the conduction band. This

process involves the extended states at higher energies. However the excited free

electrons in the conduction band cannot stay longer over there. They must recombine

with free holes in the valence band in  a certain time. Therefore this recombination

process must go through  certain steps. They might directly recombine with holes in the

valence band or recombination could be through the midgap defect states. Depending on

the dominant recombination process, measured steady-state photoconductivity shows

certain dependence on the intensity of the excitation. To understand the dominant

recombination process, steady-state photoconductivity for different intensities were

measured for all films in the annealed state using the same monochromatic red light. As

given in Chapter 3, the results of  σph  are proportional to light intensity (σph  α  Fγ).  

The power γ has values of close the unity for all the samples studied  here. In Appendix

A, several theoretical models for the recombination process in photoconductivity have

been presented. The values of  γ is  a direct indication of recombination in

photoconductivity. If  γ=0.5, called bimolecular recombination, free electron in the

conduction band recombine directly with the free holes in the valence band.  Midgap

defect states are not involved in this recombination  process. However, experimental

results for the samples do not show such γ values  excluding this type of recombination

in undoped a-Si:H. If  γ=1.0 which is called monomolecular recombination, free

electron in the conduction band recombine with the holes in valence band through

recombination centers in the bandgap. It is direct indication that midgap defect states

around dark Fermi level are involved in the photoconductivity. γ=1.0 means that

mobility lifetime product (µτ)  is constant as intensity  increases. According to

Simmons-Taylor statistics the number of recombination centers will increase as

intensity of excitation increases. Therefore,  µτ product must show a decrease

correspondingly. This type of behavior can only be valid in films with a very low
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constant density of midgap defects at discrete energies as shown by Rose[83]. In

undoped  a-Si:H, measured values of power  γ is close to unity between 0.70 and 1.0.

This type of behavior is not a mixture of two different recombination proceses but

rather an indication of continuous distrubition of defect states in the bandgap, where the

recombination of free electrons take place.                         

Experimental results in the annealed state show values of  γ from 0.8 to 0.95,

which are very close to unity. Again only films prepared with RF-PECVD without

hydrogen dilution exibit γ values around 0.70. This is an indication that density and

distribution of midgap defect states are slightly different in these films. However, the

power γ for all films show that midgap defects states are involved in the recombination

of free electrons in the conduction band with the free holes in the VB. Their distribution

is continuous throughout the bandgap. Due to the differences in their densities,

magnitude of photoconductivity shows large variations. Even though films are prepared

in the same deposition sytem, they can have wide range of photoconductivities. For

example samples prepared at Penn State University using RF-PECVD, those prepared at

USSC using the same deposition system and DC GD films, they are showing the

variations. This behavior was reported in detail  by SMART group that there is no

unique undoped  a-Si:H films with a well defined electrical and optical properties like

single crystalline silicon[19]. The results obtained in the annealed state are consistent

with the generally reported magnitudes of σph in the literature.

Steady-state photoconductivity in the annealed state which is measured for

different intensities gives very limited information about the native midgap defect states

since intensity of light is limited to probe the effects of the defects in the bandgap.

Alternatively, temperature can be used for wider range of defect involvement  in the

recombination process. As given in Appendix A, Simmons-Taylor Statistics predicts the

effects of continuous midgap defect states as tempareture  decreased at constant light

intensity. In the measured photoconductivity both density and nature of midgap defect

states are involved through the carrier capture cross sections. For better understanding

of the continuous midgap defect states, steady-state photoconductivity at three different

light intensity were measured as temperature decreased from room temperature to

90 0K. It is expected that at a constant intensity, quasi-Fermi levels for electrons and

holes are fixed in energy in the bandgap. Only certain part of midgap defect states

around the dark Fermi level are involved in recombination process. It was clearly

measured that γ<1.0 represents active role of these recombination centers. By
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decreasing temperature, quasi-Fermi levels move through their respective  band edges,

electron quasi-Fermi level Efn moves to the conduction band edge Ec and hole quasi-

Fermi level Efp moves through the valance band edge Ev. As a result of this, new

midgap defect states are converted to recombination centers. Their density and nature

are reflected in measured photoconductivity. Low temperature photoconductivity

spectra measured on undoped films show certain characteristic features. Some samples

show similar spectra even though they are made in different deposition systems. The

others exhibit obvious differences in temperature scale.

There are three distinct regions in low tempareture photoconductivity spectra.

Region I is between room temperature and 250 0K which is sample dependent. In this

region, σph decreases with decreasing temperature. It is consistent with increasing

density of recombination centers between quasi-Fermi levels. There is only one type of

dominant recombination center determining free electron lifetime. In region II, σph

remains to be constant or increases as temperature decreases. This region is called

Thermal quenching region or photosensitization region. Transition temperature to

region II is thermally activated. In region II, dominant recombination centers are

different from those in region I. This type of behavior has been also reported before in

the literature[24,43,54]. It is an indication that new types of defect states are converted

to recombination centers between quasi-Fermi levels and they have much lower capture

cross-sections for electrons from those of defects dominating in region I.  Rose called

this type of defects "sensitizing states" or Mc Mahon and Crandall labeled them as

"safe hole traps" in the valence band tails. Region II is definitely due to the effects of

second type of defect states in the bandgap of a-Si: H. It is believed that dominant

defect center around the midgap is neutral silicon dangling bond,  D0 states. They are

dominating the region I of low T spectrum. However, region II is controlled by non-D0

defect states, which could be charged defect states or other type of unknown defects. It

is only possible that defect models predict charged silicon dangling bonds or floating

bonds present in the annealed films.

Third region seen in the low temperature photoconductivity spectrum is detected

at lower temperatures below 100 0K. In this region, σph decreases continuously.  It is

more likely that σph decreases due to the onset of high density of recombination centers

dominating over defects around the midgap. These defects are exponential conduction

and valance band tail states. At this lower temperature, quasi-Fermi levels move very
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close to band edges and hit in the band tail states. The behavior of low temperature σph

spectra are similar for all DC GD films, sputtered sample, and RF-PECVD samples

SN-128 and YL-6B. The degree of thermal quenching or photosensitization is more

substantial in sample 4m deposited by RF-PECVD and also for HW-CVD sample. This

is an indication that non-D0 defect states have higher density in these samples. The

effects of these photosensitizing states are clearly seen in H-diluted samples prepared in

different laboratories. They are more dominating and closer to the middle of the

bandgap. Their effects are seen even at room temperature. Therefore, H-diluted samples

show only region II and region III. H-dilution technique results in more non-D0 defect

states in the material. Even though the magnitude of σph is different in films, the shape

of low T spectrum is similar for the undiluted films. Transition temperatures are sample

dependent and show good agreement among different samples. These transition

temperatures from region I to region II and from region II to region III are thermally

activated as intensity of light  changes. As a conclusion, there are exponential tail states

dominating region III at very low temperatures below 100 0K, and there are at least two

different types of midgap defect states in the bandgap of a-Si:H in the annealed states.

These defects states could be neutral silicon dangling bond defects, D0, and non-D0

defect states; charged defect states or floating bond defect states predicted by the recent

defect models proposed for a-Si:H[67,68,74,78].

In the light soaked state, samples show great deal of degradation in dark and

photoconductivity. Dark conductivity decreases from its annealed value indicating that

dark   Fermi level moves slightly through the midgap. Degradation of photoconductivity

shows that more defect states created by light soaking. These defect states are called

Staebler-Wronski defects. They are annealed out at higher temperature and annealed

state values are restored at temperature above 150 0C. As seen in Chapter 4, HW-CVD

sample and DC GD sample show the least degradation in σph and others show a

degradation factor from 6 to 50. In the intensity dependence of photoconductivity, σph α

Fγ, the power γ becomes almost similar for all films. It is close to unity between 0.85 to

0.95, within the experimental error. This indicates that distribution of defect states after

light soaking becomes almost similar for all films even though they had wide range

differences seen in the annealed state characteristics.

The effects of  Staebler-Wronski effect in the light soaked samples are also

characterized using low temperature photoconductivity study. Even though, large
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differences in the shape of low temperature spectra were detected in films deposited

under different conditions, all samples now show almost the same shape of spectra.

Mainly region I and region II are dominating the spectrum until 90 0K. Region III can

be detected at higher intensity and lower temperatures than 90 0K. Region I becomes

dominant until 170 0K which is lower than that observed in the annealed state. That

means that more defects are created around midgap and they are same type that present

in the annealed state. Transition temperature at different light intensities is thermally

activated. This behavior is consistent with the analysis of Simmons-Taylor Statistics. In

region II, σph remains to be constant for almost all samples independent of deposition

conditions. Region II dominates until 1000K. In this region, there is still

photosensitization not to decrease σph as temperature decreases. This can only be

possible by having defect states with very low capture cross sections for electrons than

the defect states dominating in region I. They must be non-D0 defect states. They were

present in the annealed state and were more dominant in some samples like sample 4m.

But their effects are reduced by the defects created by light. The spectrum of sample 4m

in the soaked state becomes the same as others. Similarly, diluted a-Si:H films showed

the effects of non-D0 states in the annealed state, showing only region II and III in the

annealed state. However, light soaked spectra changed significantly from that of

annealed state and become similar to that of other a-Si:H films. That clearly shows that

more D0 states are created by light around midgap and less non-D0 states are created

closer to the band edges. Staebler-Wronski defects created by light are at least two types

of defects. More D0  defect states are created around midgap, which determine region I

in the spectra and less non-D0 defects are created away from the midgap. They act as

photosensitizing defects since σph remains to be constant in  region II. These defect

states can be detected at temperatures below 160K. They cannot be detected using σph at

room temperature even at the highest light intensity.

                   As a conclusion, light soaking creates Staebler-Wronski defects in the

bandgap. They decrease dark and photoconductivity. There are at least two different

types of Staebler-Wronski defects created by light. One type is more dominant in

density and located around midgap. They are more likely that neutral silicon dangling

bond defect states, D0. Second type of Staebler-Wronski defect states are created away

from midgap and closer to band edges. They act as electron sensitizes. They are

different from D0 states. They are non-D0 defect states; charged silicon dangling bond
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defects, D+ and D-, or floating bond defects. These kinds of defects are resulted from the

new defect models proposed for SWE in a-Si:H. These defect models are �defect pool

model�, �H-collision model� and �silicon rebonding model�. From these experimental

results, only qualitative understanding of these defects and their effects are observed.

Exact analysis of results requires self-consisting analysis of these results using a

detailed numerical modeling based on the Simmons-Taylor Statistics. Then, it can  be

possible to obtain their densities, nature and energy distributions in the bandgap of

a-Si:H.

5.1 Future Proposed Research

In this thesis, only qualitative understanding of Staebler-Wronski defects and

native defects on steady-state photoconductivity for different light intensities and

temperatures were carried out. For better understanding, light calibration with a better

detector will be necessary  to quantify flux and generation rate. Furthermore, a detailed

numerical simulation program must be developed to analyze the results. This will

illuminate the picture of native and light induced defect state located in the bandgap of

a-Si:H.
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APPENDIX A

Simmons-Taylor Statistics and Photoconductivity in a-Si:H

Photoconductivity and its recombination kinetics are used extensively to study

the effects of the density and nature of gap states in semiconductors and insulators.

Because of continuous distribution of gap states in amorphous semiconductors, in

particular hydrogenated amorphous silicon(a-Si:H), the trapping, detrapping and

recombination processes under steady-state illumination condition are more complex

than those in  crystalline semiconductors. In this chapter, the Simmons-Taylor

statistics developed for the recombination kinetics of an arbitrary distribution of gap

states and their effects on photoconductivity are revisited.

A.1 Simmons-Taylor Statistics

A.1.1 Recombination Kinetics

The recombination statistics for an arbitrary distribution of gap states  under

steady-state illumination condition was first envisioned by Rose [83] in a

phenomenonlogical approach and later formulated by Simmons and Taylor [84].

Because of the continuous distribution of states in the bandgap, Simmons-Taylor

statistics is particularly useful to study a-Si:H thin films.  This recombination statistics

lays the foundation for our understanding of various phenomena and plays a critical role

in modeling the experimental data measured in a-Si:H films. In this part, a summary of

Simmons-Taylor statistics is given and its application to a-Si:H is also discussed.

Single level recombination statistics was derived by Schockley and Read[85]

and applied to crystalline semiconductors successfully. For a single trap level at energy

Et in the band gap, four recombination processes, as shown in Fig.A.1, are possible to

determine the occupancy of  that discrete trapping level. ra is the rate at which electrons

are captured into traps  from the conduction band, rb is the rate at which electrons are

thermally emitted to conduction band from a trap, rc is the rate at which holes are

captured into a trap from the valence band and rd is the rate at which holes are thermally

emitted to the valence band from a trap.



AA2

Figure A1. Four recombination processes for a single trap level at energy Et. Ev

represents the valance band edge and Ec is the conduction band edge. Free carriers n and

p are created by the light of generation rate G.

These four rates are given as:

ra= υ σnnNt(1-f)   (Eq. A.1)

rb=fNten (Eq. A.2)

rc= υ σppfNt (Eq. A.3)

rd=Ntep(1-f) (Eq. A.4)

where n: free electron concentration in the conduction band, p: free hole concentration

in the valence band, σn: carrier capture cross section for electrons, σp: carrier capture

cross section for holes, υ  : thermal velocity of free carriers, en: thermal emission

probability for electrons, ep: thermal emission probability for holes, Nt: the density of

trapped level at energy Et per unit volume, f: probability of occupation for a given trap

level. Thermal emission probabilities are given :

(Eq. A.5)
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where Nc and Nv  are effective density of states in the conduction and valance band

respectively.

In the thermal equilibrium:

ra=rb  and  rc= rd (Eq. A.7)

and  occupation function is the Fermi-Dirac function, f(E):

             (Eq. A.8)

where Ef is the thermal equilibrium Fermi level.

In a distribution of gap states, each type of state can have different carrier

capture cross sections for electrons and holes which then requires its own occupation

function.  A species of states is defined by a particular group of states characterized by a

constant ratio, R(S), of carrier capture cross sections:

   (Eq. A.9)

where S represents the type of state (S=1,2,3,….), σn(S,E) and σp(S,E) are the capture

cross sections of electrons and holes at energy E for a specific species of gap states S

respectively. A-Si:H can be modeled as having multiple species of defects, such as band

tail states and dangling bonds, each different species being characterized by the ratio of

the capture cross sections for electrons and holes.  The occupancy function of a

particular type gap states can be derived by setting the net increase of occupancy of that

particular state to be zero in the steady state, i.e., dn/dt=0

then

0= dn/dt=ra-rb- rc+rd (Eq. A.10)

0=νσn(S,E)nN(S,E)(1-f(S,E))-f(S,E)N(S,E)en(S,E)

-νσp(S,E)pf(S,E)N(S,E)+N(S,E)ep(S,E)(1-f(S,E)) (Eq. A.11)
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 Thus the probability of occupation,  f(S,E), of a state level at any energy E is obtained

as:

 

      (Eq. A.12)

It should also be noted that this occupancy function is of the same form as that

originally derived by Shockley and Read [85] for a discrete level state.  This does not

come as a surprise since an arbitrary distribution of gap states can be considered as an

ensemble of single-level states and should obey the same statistics for discrete level

states at the same energy. However,  it should be noted that this occupancy function is

independent of energy distribution of the gap states.

The occupancy function can be expressed as a combination of two modulated

Fermi-Dirac functions at Eft
n

  and Eft
p above and below dark Fermi level Ef, respectively:

(Eq.A.13)

Thus an approximate occupancy function can be derived for the entire energy range of

the gap:

(Eq.A.14)
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Eft
n

  and Eft
p are called the quasi-Fermi levels for trapped electrons and trapped holes,

respectively, which are defined as follows:

  (Eq.A.15)

                           (Eq.A.16)

Two demarcation levels Edn and Edp, as defined by Rose[83], are the energy levels

where the tapped carriers has the same probability for thermal re-emission and

recombination.

These four energy levels are of great importance in our understanding in the

recombination kinetics of photogenerated carriers in a-Si:H and the interpretation of our

experimental results. Eft
n
  and Eft

p establish the distribution of carriers in the gap states

and Edn and Edp, determine these gap states should behave either as recombination

centers or shallow traps.  A comparison with quasi-Fermi levels for free carriers Efn and

Efp reveals that:

Eft
n

 (S) > Efn (S) and Eft
n

 (S) > Edn (S)                                         (Eq.A.17)

Eft
p (S) < Efp (S) and Eft (S) < Edp(S)                                           (Eq.A.18)

at all time under steady-state illumination conditions.  The position of Edn and Edp

relative to Efn and Efp will, however, depend on the  vσn(S, E)n and  vσp(S, E)p:

Efn < Edn and Efp < Edp  if  R(S)n < p                               (Eq.A.19)

Efn > Edn and Efp > Edp) if  R(S)n > p                               (Eq.A.20)
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It should also be noted that both Eft
n

  and Eft
p , Edn and Edp are associated with a specific

species of states in the gap.  Each species of gap states has its own demarcation levels

and quasi-Fermi levels for trapped carriers as illustrated in Fig. A.2.

Figure A2. Schematic diagrams of occupancy function as a function of different species.

For  insulators or intrinsic  semiconductors with υ σn(S, E)n∼ υ σp(S, E)p,

Efn≅ Edn≅ Eft
n and Efp≅ Edp≅ Eft

p. For intrinsic semiconductors with R(S)∼ 1, the difference

between these two quasi-Fermi levels, Eft
n - Efn and Efp - Eft

p are in the order of ∼ kTln2

(18meV at room temperature).  Therefore Efn and Efp are good approximations to Eft
n

and Eft
p, respectively.

Since a-Si:H is highly photoconductive, it is almost always operated under the

condition of n , p > > no,po  The above equations can be simplified to:

       (Eq.A.21)
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                        (Eq.A.22)

                                      (Eq.A.23)

In the thermal equilibrium, the Fermi-Dirac distribution approximation at 00K

is assumed to determine the occupancy of each state at energy E. States below dark

Fermi level, Ef, are occupied and above it are empty. The charge status of each type of

state is determined according to whether they are donor-like or acceptor-like. The

charge neutrality in the thermal equilibrium is maintained by Ef. The net negative

charge in deep defect levels equals to the net positive charge in deep defect levels. Net

positive charge comes from empty donor-like states which lie above Ef  and net

negative charge comes from filled acceptor-like states which lie below Ef. The total

charge in each type of states is integrated throughout the band gap to obtain the charge

neutrality condition in the thermal equilibrium. For a given distribution of defect levels

in the bandgap, the position of Fermi level and relative position of defect levels are

required to be known to determine charge neutrality condition.

In  the non-equilibrium steady-state condition, the net change in the positive

charge density below Ef must be equal to the net change in the negative charge density

above Ef.

    (Eq. A.24)

It can be simplified as following: It is reasonable that the density of free carriers, n and

p, is much smaller than that of trapped electrons and holes in the continuous deep defect

states. Therefore the terms n and p in the previous equation can be disregarded

compared to the others. Then;

         (Eq. A.25)

This is the charge neutrality condition required only to relate p to n.
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The rate of electrons, dn/dt, at which they fall in the conduction band is given by:

(Eq. A.26)

where G is the generation rate across the bandgap, ns is the number of different  type of

states, β is a constant of proportionality. The first term in the right-hand side of the

previous equation is the rate of generation of electrons from band to band, second term

is the rate of electron emission from deep defects to the conduction band, third term is

the rate that electrons are captured by deep defects, fourth term is the rate that electrons

recombine with holes in the valance band. In the steady-state: dn/dt = 0; hence

(Eq. A.27)

βnp is important at only extremely high light intensities (G > 1022 cm–3 s-1) and it is

negligible in the limit of generation rates used to study photoconductivity.

(Eq. A.28)

In the steady-state illumination condition, generation rate ,G, is equal to the

recombination rate, U.

(Eq. A.29)

These equations are genarally used to study photoconductivity in the materials with

multiple type of recombination centers.
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A.1.2 Distinction Between Traps and Recombination Centers

The role of gap states  in the recombination process positioned between the

quasi-Fermi level Efn and the conduction band and those between Efp and the valence

decreases exponentially with energy.  Therefore, a free carrier falling into one of these

gap states will, with a high degree of certainty, be re-emitted to the bands from which it

came.  These gap states are generally referred to as traps.  On the other hand, all gap

states positioned between the two quasi-Fermi levels are referred to as recombination

centers.  Carriers captured by these recombination centers will recombine with other

carriers and most recombination traffic passes through these centers.  This observation

is contrary to what is normally expressed in semiconductor literature where the

recombination efficiency is considered to be a maximum at the center of the energy gap

and to decrease rapidly for higher or lower energies.  The classification of gap states

into traps and recombination centers has very important implications in the

recombination kinetics in a-Si:H films.  Recombination centers govern the lifetimes of

carriers, i.e., the sensitivity of photoconductors.  Trapping states, on the other hand, play

only an indirect role in determining the sensitivity but are primarily responsible for the

large response time observed in most amorphous semiconductors.

A direct relation of the changes in recombination mechanism due to the change

of light intensity and measurement temperature can be readily observed in

photoconductivity.  Photoconductivity is directly determined by the density of

recombination centers, occupancy and capture cross sections and can be probed by the

commonly used excitation by hv>E, as well as by hv less than E. The energy range over

which recombination centers can be studied is determined by light intensity and

temperature.
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A.1.3 Effects of Temperature and Light Intensity on Recombination Kinetics

An increase in illumination intensity leads to an increase in the free-carrier

densities n and p which requires more recombination traffic to take place.  This results

in the movement of quasi-Fermi levels Efn and Efp (and demarcation levels) towards

their respective band edges.  As the quasi-Fermi levels sweep through these gap states,

they will be converted from traps to recombination centers.  Decreasing the

measurement temperature lowers the thermal emission probability of the trapped

charges which leads to increased recombination at the original traps.  This has

essentially the same effect upon the demarcation levels as that of increasing the

illumination intensity.  Schematic diagrams showing the movement of quasi-Fermi

levels with the changes in light intensity and temperature and its effects on occupancy

function are illustrated in Fig. A.3(a) and Fig. A.3(b) respectively. Through the increase

of light intensity and the lowering of measurement temperature, shallow traps will be

converted into recombination centers.  This effect can be utilized to probe the nature of

gap states over a wide energy range of the gap.

Figure A3.(a) Schematic diagrams of occupancy function as a function of different

temperature.

Figure A3.(b) Schematic diagrams of occupancy function as a function of different light

intensity.
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A.2 Photoconductivity in Hydrogenated Amorphous Silicon

A.2.1 Steady-State Photoconductivity

Photoconductivity can be divided into three mechanisms: First; absorption of

photons and generation of free electron-hole pairs, Second; transport of mobile carriers

and Third; recombination of excess free electrons and holes through recombination

centers. Steady-state photoconductivity in a-Si:H is different from that of crystalline

silicon in the following aspects: (1) a-Si:H with a wide bandgap, no,po<<n,p, is a very

good photoconductor, (2) the continuous distribution of gap states in a-Si:H and their

different properties yield a wide range of photoconductivity and recombination kinetics,

(3) in general photoconductivity in a-Si:H is dominated by electrons because

µpτp<<µnτn due to wider valence band tails states where µn and µp are the free carrier

mobility for electrons and holes, τn and τp are the lifetime for electrons and holes

respectively. Photoconductivity σph is directly related to the density of recombination

centers.  Using free-carrier transport model, photoconductivity can be expressed as:

                 (Eq.A.30)

where the n and p are free carrier densities which in turn are determined by the

generation rate G and the density of gap states:

 

                                             (Eq.A.31)

   

                             

                                                            (Eq.A.32)

where τn, and τp are lifetime for free electrons and holes,  nr, and pr, are the density of

electron-occupied and hole-occupied recombination centers, respectively.  The

accounting procedure for nr, and pr, is given below:
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         (Eq.A.33)

                    (Eq.A.34)

When the state distribution lie outside the window between Edn and Edp does not vary

faster than the Boltzmann factor, a good approximation to the recombination centers is

simply the total electron occupied and hole-occupied states between Edn and Edp

          (Eq.A.35)

         (Eq.A.36)

The generation rate G is determined by the external parameters and internal material

parameters as:

                      (Eq.A.37)

where F is the flux of photons in cm-2s-1, R is the reflection coefficient at hν=E, α is the

absorption coefficient of the material at energy hν=E , and d is the thickness of the film.

In general, photoconductivity can exhibit a non-integer power-law dependence

on light intensity F or generation rate G over several orders of magnitude:

  σph = CGγ                           (Eq.A.38)

so that

  µτ ∝  G(γ-1)             (Eq.A.39)

where C is a proportionality constant, and  0.5 ≤ γ ≤ 1.0.  γ = 0.5 represents bimolecular

recombination kinetics, where electrons in the conduction band directly recombine with

the holes in the valence band. γ = 1.0 represents that electrons in the conduction band

recombine with holes in the valence band through the recombination centers in the
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bandgap. It is called monomolecular recombination. Detailed treatment for the intensity

dependence of photoconductivity is given in the next section.

  A.2.2 Intensity Dependence of Photoconductivity

The density of carriers in the respective bands and in levels in the band gap is

changed from thermal equilibrium with optical excitation. These densities can be

obtained from reaction-kinetic arguments. First, the carrier density in the respective

bands is discussed for a number of rather simple reaction-kinetic models in order to

identify the specific influence of certain defect levels.

A.2.2.1 Intrinsic Photoconductivity

The intrinsic photoconductivity involves only electrons and holes in the

conduction and valance bands. They are generated at the same rate Go, and recombine

directly with each other in Figure A4 (a).

(a) (b)        (c)   (d)

Figure A4. (a)Intrinsic photoconductivity, (b)extrinsic photoconductivity involving only

one defect center, (c)involving a different recombination center, (d)involving traps.

 The incremental carrier densities are equal. The change in carrier densities is given by

the difference between generation ,G, and recombination ,U, rates:

         (Eq.A.40)

where this equation is written for high generation rates when the incremental carrier

densities ∆n and ∆p are large compared to the thermally generated densities n0 and p0:

dt
dpnpcGUG

dt
dn

cv =−=−= 0
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          (Eq.A.41)

In steady state, with dn/dt = dp/dt ≡ 0, one obtains with n = p, from the Eq.A.40.

            (Eq.A.42)

which is usually referred to as the bimolecular  recombination relation. Intrinsic

recombination occurs at high generation rates when other recombination paths are

saturated. The intrinsic photoconductivity is ambipolar and is given by

σpc = A G 0.5               (Eq.A.43)

where

In this case γ = 0.5, recombination occurs between free electrons in the CB and free

holes in the VB directly.

A.2.2.2 Extrinsic Photoconductivity

Extrinsic photoconductivity involves levels in the band gap. It is either n- or p-

type. A deep defect center in which carrier generation occurs is called an activator. One

can distinguish three type of extrinsic photoconductivities involving such activators:

•  excitation from an activator with direct recombination into the same type of

level. (Figure A4 (b))

•  excitation from an activator with carrier recombination through another level.

(FigureA.4 (c))

•  excitation into a band from which major trapping occurs before recombination.

(Figure A4 (d))
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When generation and direct recombination involve the same type of activator,

and this activator is seperated far enough from the valance band (Figure A4(a-d)) so

that thermal ionization of the optically generated hole can be neglected, the carrier

density follows the same bimolecular relationship as that for intrinsic carrier

generation:

                  (Eq.A.44)

where the density of holes in activators is represented by pa and the quasi-neutrality

condition by

    pa = n (Eq.A.45)

                 (Eq.A.46)

reflecting monomolecular recombination. The photoconductivity is n-type with

           (Eq.A.47)

At high intensities, depletion of these activators causes saturation of the

photoconductivity induced by high-intensity lasers, which were pulsed in order to

avoid thermal destruction of the material[55,56].

A.2.2.3 Influence of  Traps on Photoconductivity

When photogenerated carries are trapped intermittently before they recombine,

the carrier balance is shifted and three balance equations must be considered:

              (Eq.A.48)

         (Eq.A.49)
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     (Eq.A.50)

plus the quasi-neutrality condition:

     n + nt = pa              (Eq.A.51)

In steady state, all time derivatives vanish. As a consequence, the two terms related to

trapping drop out of Eq.A.48; hence, it becomes identical to the balance equation

(Eq.A.44).

           (Eq.A.52)

The influence of the traps enters through the neutrality condition, yielding

 (Eq.A.53)

Deep traps   tend to be completely filled, i.e.,

     nt ≅  Nt  (Eq.A.54)

Introducing the previous two equations into each other, one obtains for the electron

density

          (Eq.A.55)

for small optical generation rates, i.e., for

Here Eq.A.55 reduces to

              (Eq.A.56)
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which is referred to as a monomolecular recombination relation, and indicates that each

electron finds a constant density of available recombination  sites with pa ≅  Nt. For high

optical generation rates, (Eq.A.54) converts back to (Eq.A.45) ;  pa increases and

becomes  >> Nt , and therefore n ≅   pa .

 γ = 1.0  is valid only if defect density in the bandgap is very low.   Attempts to

explain the 0.5<γ<1 in terms of a mixture of monomolecular and bimolecular

recombination is not possible for such a large range of photoconductivity.  The sub-

linear dependence of photoconductivity on light intensity is a direct consequence of the

continuous distribution of gap states and can be explained by the model proposed by

Rose [83].  When light intensity is increased, the electron and hole quasi-Fermi levels

are moved towards their respective band edges so that the higher lying states are thus

converted into recombination centers.  This increased density of recombination centers

decreases the carrier lifetimes and yields the sub-linear dependence of

photoconductivity on light intensity.  In this study, the effects of the gap states in the

bandgap of a-Si:H are also investigated by measuring steady-state photoconductivity at

room temperature for wide range intensity of monochromatic light.



APPENDIX B

COMPUTER PROGRAM FOR LOW TEMPERATURE
PHOTOCONDUCTIVITY MEASUREMENT

temploop:
close #1
rem ------------------------------------------------------------------

format #1, curr["Current=", "A"], volt["Voltage=", "V"]
input "Enter data file name:?",name$
open #1, file= name$+".dat",desc$,overwrite
open #1, graph= "I-V",overwrite

open #1, screen
rem ------------------------------------------------------------------

input   "Input the Set Temperature in K:?",tset;
input   "enter  range(0-11):?",range;
input   "enter initial value:?",Vin;
input   "enter final value:?",Vson;
input   "enter step value:?",Vstep;
input   "enter delay time(sec):?",t1;

gpibwrite (24,"C3")
gpibwrite (24,"A3")

rem ------------- PROPORTIONAL, INTEGRAL AND DERIVATIVE FOR ITC502----

gpibwrite (24,"P50")
gpibwrite (24,"I00")
gpibwrite (24,"D00")

rem ------------------------------TEMPERATURE SET----------------

tempset$="T"+str$(tset)+"0"
gpibwrite (24,tempset$)
print "Ramping to", tset, "K."

 ramp1:
   gpibwrite(24,"R1")

t=val(mid$(gpibread$(24),3,5))
 t=t/10

 ? "Temperature=",t
if  t<>tset then goto ramp1
print "Temperature is now = ", tset, "K."
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rem ------------6517A initialization-----------------

  b$=str$(range)
gpibwrite(26,"r"+b$+"x")
gpibwrite(26,"B0x")

 gpibwrite(26,"O1x")
gpibwrite(26,"f1x")
gpibwrite(26,"c0x")

       
rem ---------------------------------------------------

loopc:

Vin=Vin+Vstep

loopqqq:

a$=str$(Vin)
gpibwrite(26,"V"+a$+"x")

 gosub delay

loopf:

curr=val(mid$(gpibread$(26),5,12))
gosub delay

akim=val(mid$(gpibread$(26),5,12))

if abs(akim-curr)>1E-5 then goto loopqqq
 volt=Vin

 write #1

if Vin=Vson then goto loopc
gpibwrite(26,"O0x")
? "CHANGE LIGHT LEVEL"

   goto temploop
stop

rem ----------------------------------------------------

delay:
t=time
delay1:if time-t<t1*1000 then goto delay1
        return


