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İZMİR



We approve the thesis of Aslı DENİZ
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ABSTRACT

MEASURE THEORY ON TIME SCALES

In this thesis, we have studied measure theory adapted to time scales. delta and

nabla-measures were first defined by Guseinov in 2003, then in a further study, the re-

lationship between Lebesgue delta-integral and Riemann delta-integral were introduced

in detail by Guseinov and Bohner. In 2004, Cabada established the relationship between

delta-measure and the classical Lebesgue measure, moreover, Lebesgue delta-integral and

the classical Lebegue integral. Finally, delta-measurability of sets was studied by Rzezu-

chovsky in 2005. In this study, we have adapted basic concepts of the measure theory to

time Scales, by using definitions and properties given in these papers. With the help of

related papers, Lebesgue-Stieltjes measure has been constructed on time scales and the

link between Lebesgue-Stieltjes measure and Lebesgue-Stieltjes delta-measure and also

link between Lebesgue-Stieltjes delta-integral and Lebesgue-Stieltjes integral have taken

place.
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ÖZET

ZAMAN SKALASINDA ÖLÇÜ TEORİSİ

Bu tezde, zaman skalasına uyarlanmış ölçü teorisini çalıştık. Lebesgue delta

ve nabla-ölçümü ilk olarak Guseinov tarafından 2003’te tanımlanmış, daha geniş bir

çalışmayla Guseinov ve Bohner, Lebesgue delta-integral ve Riemann delta-integral

arasındaki ilişkiyi ortaya koymuştur. 2004’te Cabada, delta-ölçümü ve klasik Lebesgue

ölçümü, bunun yanında Lebesgue delta-integral ve klasik Lebesgue delta-integral

arasındaki ikişkiyi açıklamıştır ve 2005’te Rzezuchovski kümelerin delta-ölçülebilirliği

üzerine çalışmıştır. Bu çalışmada, belirtilen makalelerideki tanım ve özellikleri kul-

lanarak ölçüm kuramındaki temel kavramları zaman skalasına uyarladık. Belirtilen

makalelerin yardımıyla Lebesgue-Stieltjes delta-ölçümünü tanımladık ve Lebesgue-

Stieltjes delta-integral ve Lebesgue-Stieltjes integral arasındaki bağlantıya yer verdik.
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CHAPTER 1

INTRODUCTION TO MEASURE AND TIME SCALES

Measure theory was born in order to generalize a geometric concept the ”length”

to subsets of the real numbers , then area and volume applications took place by applying

the theory to two and three dimensional spaces. In this thesis, the classical Lebesgue mea-

sure theory has been adapted to time scales and for simplicity, we have been concerned

about the real line. The measure constructed on time scales is different from the classical

Lebesgue measure. In the classical Lebesgue measure, single point set has measure zero,

consequently for a, b ∈ R and a ≤ b, measures of [a, b], [a, b), (a, b), (a, b] are equal, that

is, the difference of endpoints, whereas, for the measure constructed on a time scale, the

single point set may have measure different from zero, depending on the character of the

point, as a result, it is natural that different types of intervals with the same endpoints may

have different measures.

Observing a special case, that is time scale is the real numbers itself, then two

measures, Lebesgue measure and the measure on time scales coincide. Furthermore,

for the case that the time scale is the integers, then any intervals measure turns into its

cardinality number.

Finally, there is a strict relation between the classical Lebesgue integral and the

integral constructed on measure on time scales and the difference between two structures

comes from the difference of single point set’s measures.

1.1. Basic Concepts in Measure Theory

Around the beginning of the 20th century, the theory of measure was originated.

At that time it was realized that, in order to get a better understanding of the structure of

functions it was necessary to make a through study of the subsets of Euclidian spaces. To

study these sets, it became clear that notions such as ”length” and ”area” needed to be

generalized.

E. Borel in 1898 was the first to establish a measure theory on the subsets of the

real numbers known as Borel sets. In 1902, H. Lebesgue presented Lebesgue measure
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and integral constructed on measure theory which could be applied to a wider class of

functions than the Riemann integral did. In 1918, C. Caratheodory introduced and studied

on outer measures. And especially in the first half of the 20th century, other developments

followed on this theory.

In this section, we will introduce the general concept of measure, Caratheodory

extension, measurable functions and integral of measurable functions.

Definition 1.1 Let A be a nonempty collection of subsets of a nonempty set X . The

collection A is called an algebra of sets (or simply an algebra) if it satisfies the following

properties:

i) If A,B ∈ A, then A ∪B ∈ A.

ii) If A ∈ A, then Ac ∈ A, Ac = X \ A.

In addition to being an algebra, if
∞⋃

n=1

An belongs to A for every sequence

{An}n∈N, A is said to be a σ-algebra and the pair (X,A) is called a measurable space

and the sets in A, measurable sets.

Definition 1.2 Let (X,A) be a measurable space. A set function µ : A → [0,∞] is said

to be a measure if

i) µ(
∞⋃

j=1

Aj) =
∞∑

j=1

µ(Aj), Aj ∈ A, j = 1, 2, ..., that is, µ is countably additive.

ii) µ(∅) = 0.

If A is a σ-algebra on a set X and µ is countably additive measure on A, then (X,A, µ)

is called a measure space.

Proposition 1.1 Consider the measure space (X,A, µ).

1) Let A and B be subsets of X , such that A ⊂ B. Then µ(A) ≤ µ(B).

2) If {Ak} is a sequence of arbitrary subsets of X that belong to A, then,

µ(
∞⋃

k=1

Ak) ≤
∞∑

k=1

µ(Ak).

3) a) If {Ak} is an increasing sequence of sets then µ(
∞⋃

k=1

Ak) = lim
k→∞

µ(Ak).

b) If {Ak} is a decreasing sequence of sets then µ(
∞⋂

k=1

Ak) = lim
k→∞

µ(Ak).
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Proof (Roussas 2004).

Definition 1.3 Let P(X) be the power set of X . An outer measure µ∗ : P(X) → [0,∞]

is a function defined from P(X) to nonnegative extended real line that satisfies:

a) µ∗(∅) = 0.

b) µ∗ is monotone i.e., if A ⊆ B ⊂ X , then µ∗(A) ≤ µ∗(B).

c) µ∗(
∞⋃

k=1

Ak) ≤
∞∑

k=1

µ∗(Ak) where {Ak} is any infinite sequence of subsets of X .

Definition 1.4 (Caratheodory) Let X be a set and µ∗ be an outer measure on X . A subset

B of X is said to be µ∗-measurable if for each subset A of X ,

µ∗(A) = µ∗(A ∩B) + µ∗(A ∩Bc) (1.1)

holds where Bc denotes the complement of B, Bc = X \B.

Proposition 1.2 Let M(µ∗) denote the family of all µ∗-measurable sets of X . Then

(X, M(µ∗), µ∗) is a measure space.

Proof (Roussas 2004).

Definition 1.5 Lebesgue outer measure on R is the measure defined on the semiring

S = {[a, b) : a, b ∈ R, anda ≤ b} by λ([a, b)) = b − a and call λ∗ the outer measure

generated by λ. Lebesgue measure is the measure that assigns any interval its length.

A subset I of R is called an interval if for every x, y ∈ R with x < y, we have [x, y] ⊂ I .

If I has any one of the forms [a, b), [a, b], (a, b] or (a, b) with −∞ < a < b < ∞, then I

is called a bounded interval and its length is defined by |I| = b− a. If I is not bounded,

then its length is said to be infinite.

Proposition 1.3 Lebesque outer measure λ∗ on R is translation invariant in the sense

that if x ∈ R and A ⊂ R, then λ∗(A) = λ∗(A + x).

Proof (Dönmez 2001).

Definition 1.6 A Borel set is any set obtained from open sets by countably many opera-

tions, each operation consisting of taking unions, intersections or complement.
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Theorem 1.1 Every Borel set is measurable. In particular, each open set and each closed

set is measurable.

Proof (Royden 1988).

Definition 1.7 If µ∗ is an outer measure of X , then a relation involving the elements of

X is said to hold almost everywhere (or that it holds for almost all x), shortly a.e., if the

set of all points for which the relation fails to hold is a null set.

Definition 1.8 An extended real-valued function f is said to be measurable if the set

{x : f(x) > α} is measurable for each real number α.

It should be noted that if f is a measurable function and E is a measurable subset

of domain of f , then the function obtained by restricting f to E is also measurable.

Proposition 1.4 Let (X,A) be a measurable space, f and g be real valued measurable

functions on A, α be a real number. Then αf , f + g, f − g, fg, sup fn, inf fn, limfn,

limfn and
f

g
are also measurable.

Proof (Cohn 1997).

Proposition 1.5 Let (X,A) be a measurable space, let A be a subset of X that belongs

toA and f be a [0, +∞]-valued measurable function on X . Then, there exists a sequence

{Sn} of simple functions on X which satisfies

S1 ≤ S2 ≤ ... and f = lim
n→∞

Sn.

Proof (Rudin 1987).

Definition 1.9 The function χA defined by

χA =





1 if x ∈ A

0 if x ∈ E \ A
(1.2)

is called the characteristic function of E and a linear combination of the characteristic

functions as

S =
n∑

i=1

αiχAi
(1.3)

is called a simple function where Ais are pairwise disjoint sets with Ai = {t : S(t) = αi},

i = 1, 2, ..., n.
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Definition 1.10 Let (X,A, µ) be a measure space. Let E be a measurable set and S be a

simple function that takes positive values αi on the measurable sets Ai i = 1, 2, ...n and

is zero elsewhere. The integral of S is defined with respect to corresponding measure µ

as ∫

E

Sdµ =
n∑

i=1

αiµ(E ∩ Ai). (1.4)

Definition 1.11 Let (X,A, µ) be a measure space and f be a nonnegative measurable

function defined on a measurable set E. The integral of f is defines as
∫

E

fdµ = sup

∫

E

Sdµ. (1.5)

where the supremum is taken over all nonnegative simple functions S, such that S ≤ f .

Definition 1.12 Let (X,A, µ) be a measure space and f be a measurable function which

takes both positive and negative values defined on a measurable set E. The integral of f

on E is defines as ∫

E

fdµ =

∫

E

f+dµ−
∫

E

f−dµ (1.6)

where f+ = max{0, f} and f− = max{0,−f}, provided that at least one of the integrals
∫

E
f+dµ or

∫
E

f−dµ has finite value, otherwise
∫

E
fdµ is undefined. If both

∫
E

f+dµ and
∫

E
f−dµ are finite, f is said to be integrable on E. When one of

∫
E

f+dµ and
∫

E
f−dµ is

finite but not both,
∫

E
fdµ is said to exist but with infinite value.

Proposition 1.6 Let (X,A, µ) be a measure space, f , g be real-valued integrable func-

tions on X , α be a real number. Then,

a) αf and f + g are integrable.

b)
∫

αfdµ = α
∫

fdµ.

c)
∫

(f + g)dµ = α
∫

fdµ + α
∫

gdµ.

d) If f(x) ≤ g(x) for ∀x ∈ X , then
∫

fdµ ≤ ∫
gdµ.

Proof (Cohn 1997).

Proposition 1.7 Let (X,A, µ) be a measure space, f and g be [−∞, +∞] valued mea-

surable functions on X with f = g a.e.. If either
∫

fdµ or
∫

gdµ exists, then both exist

with
∫

fdµ =
∫

gdµ.

Proof (Cohn 1997).
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1.2. Basic Concepts in Time Scales

The theory of time scale was introduced by Stefan Hilger in his Ph. D. thesis in

1988 which has supervised by Bernd Auldbach in order to unify continuous and discrete

analysis. However, since there are many other time scales than just the set of real numbers

or the set of integers, one has a much more general result so unification and extension can

be given as two main features of the theory of time scale.

In this section, we will introduce the theory of time scale by giving some basic

concepts which we will use in this study. We refer to (Bohner and Peterson 2001) for

more information.

Definition 1.13 A time scale is an arbitrary nonempty closed subset of the real numbers.

Thus, R itself, Z, N, hZ where h is a positive constant, union of any closed intervals as

[0, 1] ∪ [2, 3] ∪ [8, 9], or any closed intervals plus some single points as [0, 1] ∪ {4, 6, 8}
can be given as examples of time scales whereas Q, C, any subset of real numbers that is

not closed or not union of closed intervals or single points are not time scales.

Throughout this thesis we denote a time scale by the symbol T. We will begin

with three basic operators on T, that is forward jump operator, backward jump operator

and grainess function.

Definition 1.14 Let T be a time scale. We define the forward jump operator σ : T → T

by

σ(t) := inf{s ∈ T : s > t} (1.7)

and the backward jump operator ρ : T→ T by

ρ(t) := sup{s ∈ T : s < t}. (1.8)

If σ(t) > t, we say t is right-scattered, while if ρ(t) < t, we say t is left-scattered.

If t is both right-scattered and left-scattered, we say t is isolated. Also, if σ(t) = t, then

t is called right-dense and if ρ(t) = t, then t is called left-dense. If t is both right-dense

and left-dense, then we say t is a dense point. For special cases if t = maxT, σ(t) = t

and if t = minT, ρ(t) = t.

6



Definition 1.15 The function µ : T→ [0,∞) is defined by

µ(t) := σ(t)− t. (1.9)

is called grainess function.

Definition 1.16 A function f : T → R is said to be rd-continuous if it is continuous at

all right-dense points and the left-sided limits exist on left-dense points.

Definition 1.17 Assume f : T → R is a function and let t ∈ Tk. Here Tk is a new term

derived from T, if T has a left scattered maximum m, then Tk = T − {m}. Otherwise,

Tk = T. Then we define delta derivative f∆(t) to be the number provided it exists with

the property that given any ε > 0, there is a neighborhood U of t (i.e, U = (t−δ, t+δ)∩T
for some δ > 0 ) such that

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ ε|σ(t)− s| for all s ∈ U. (1.10)

f∆(t) is called the delta derivative of f at t.

Moreover, we say that f is ∆-differentiable on Tk provided f∆(t) exists for all

t ∈ Tk. The function f∆ : Tk → R is then called the delta (∆) derivative of f on Tk.

Theorem 1.2 Assume f : T → R is a function and let t ∈ Tk. Then we have the

following:

(i) If f is differentiable at t, then f is continuous at t.

(ii) If f is continuous at t and t is right-scattered, then f is differentiable at t with

f∆(t) =
f(σ(t))− f(t)

µ(t)
.

(iii) If t is right-dense, then f is differentiable at t if and only if the limit

lim
s→t

f(t)− f(s)

t− s

exists as a finite number, in this case

f∆(t) = lim
s→t

f(t)− f(s)

t− s
.

(iv) If f is differentiable at t, then f(σ(t)) = f(t) + µ(t)f∆(t).

7



Proof (Bohner and Peterson 2001).

Definition 1.18 A function f : T → R is called regulated, provided its right-sided limit

exists at all right-dense points in T and its left-sided limit exists at all left-dense points.

Definition 1.19 A continuous function f : T→ R is called pre-differentiable with region

of differentiation D, provided D ⊂ Tk, Tk\D is countable and contains no right-scattered

elements of T, and f is differentiable at each t ∈ D.

Theorem 1.3 Let f : T → R be a regulated function. Then there exists a function F ,

which is pre-differentiable with region of differentiation D such that

F∆(t) = f(t) holds for all t ∈ D.

Here F is called pre-antiderivative of f .

Proof (Bohner and Peterson 2001).

Definition 1.20 Let f : T → R be a regulated function. We define an indefinite integral

of a regulated function f by ∫
f(t)∆t = F (t) + c,

where c is an arbitrary constant and F is a pre-antiderivative of f . We define the Cauchy

integral by ∫ s

r

f(t)∆t = F (s)− F (r) for all r, s ∈ T.

A function F : T→ R is called an antiderivative of f : T→ R , provided

F∆(t) = f(t) holds for all t ∈ Tk.

Theorem 1.4 Let f : T→ R be an rd-continuous function, t0 ∈ T and t ∈ Tk

F (t) :=

∫ t

t0

f(s)∆s

is antiderivative of f .

Proposition 1.8 If f : T→ R is an rd continuous function and t ∈ Tk, then
∫ σ(t)

t

f(s)∆s = µ(t)f(t).

Proof (Bohner and Peterson 2001).
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CHAPTER 2

MEASURE ON TIME SCALE

It is necessary to generalize the geometric concept of ”length” defined for inter-

vals and the generalization is called measure, specifically delta (∆) measure and nabla

(∇) measure on time scales.

Measure theory on time scales was first constructed by Guseinov (Guseinov,

2003), (Guseinov and Bohner, 2003) then further studies were made by Cabada-Vivero

(Cabada and Vivero, 2004)and Rzezuchowski (Rzezuchowski, 2005). In this chapter, we

will first give how ∆-measure was constructed in detail and using the philosophy which is

included by the related papers, we will adapt general concepts of measure theory to time

scales.

2.1. Constructing ∆-Measure

Let T be a time scale, σ and ρ be the forward and the backward jump operators

defined on T respectively as given in Definition 1.14. Let =1 denote the class of all

bounded left closed and right open intervals of T of the form

[a, b) = {t ∈ T : a ≤ t < b, a, b ∈ T}. (2.1)

When a = b, the interval reduces to the empty set. On the class of =1 of semi-closed

intervals, a set function m1 : =1 → [0, +∞] is defined which assigns each interval [a, b)

its length i.e.,

[a, b) → m1

(
[a, b)

)
= b− a. (2.2)

The set function m1 is countably additive measure on =1. Indeed,

1) m1([a, b)) = b− a ≥ 0 since b ≥ a.

2) m1

( ∞⋃
i=1

[ai, bi)
)

=
∞∑
i=1

m1

(
[ai, bi)

)
for pairwise disjoint intervals [ai, bi).

3) m1(∅) = m1([a, a)) = a− a = 0 holds for any a ∈ T.

9



Caratheodory extension µ∆ of m1 is described by following this procedure: First

outer measure is defined on all subsets of T by using m1, then some of these sets which

satisfies countably additivity is picked.

Definition 2.1 Let E be any subset of T. If there exists at least one finite or countable sys-

tem of intervals Ij ∈ =1 (j = 1, 2, ...) such that E ⊂
⋃
j

Ij , then m∗
1(E) = inf

∑
j

m1(Ij)

is called the outer measure of E, where the infimum is taken over all coverings of E by a

finite or countable system of intervals Ij ∈ =1.

Definition 2.2 A property that holds everywhere except for a null set is said to hold ∆-

almost everywhere, shortly ∆-a.e. in measure theory on time scale.

The outer measure is always nonnegative but could be infinite so that in general

we have 0 ≤ m∗
1(E) ≤ ∞. In case there is no such covering of E, we say E is not

coverable by finite or countable system of intervals and the outer measure of this set is

equal to infinity, i.e., m∗
1(E) = ∞.

It is the problem although m∗
1 is defined for any subset of T, it is not countable

(even finite) additive. Our aim is to find a σ-algebra where m∗
1 is countably additive

and contains the algebra on which m1 is defined. The condition which was given by

Caratheodory exhibits the required restriction for this. In the following defnition, this

restriction is adapted to time scales.

Definition 2.3 A set E ⊂ T is called m∗
1-measurable or ∆-measurable if for each interval

I ⊂ =1

m∗
1(I) = m∗

1(I ∩ E) + m∗
1(I ∩ Ec) (2.3)

where Ec = T− E.

The next proposition will give us a more flexible criterion for ∆-measurability of

a set in a time scale.

Proposition 2.1 If E is a ∆-measurable set, then for any set A ⊂ T

m∗
1(A) = m∗

1(A ∩ E) + m∗
1(A ∩ Ec) (2.4)

holds for all A ∈ T whether A is ∆-measurable or not.

10



Proof As in (Craven 1982).

This identity is the desired property of additivity for the outer measure m∗
1.

Roughly, this equality shows E and Ec are disjoint enough in order to divide any set

A in the sense of additivity.(Bartle 1992)

Proposition 2.2 The family of all m∗
1-measurable subsets denoted by M(m∗

1) of T forms

a σ-algebra.

Proof

a) For ∀E ∈ M(m∗
1) we need to prove first Ec ∈ M(m∗

1). Setting E = (Ec)c, Equation

2.4 holds, that is,

m∗
1(A ∩ (Ec)c) + m∗

1(A ∩ Ec) = m∗
1(A ∩ E) + m∗

1(A ∩ Ec) = m∗
1(A)

for any A ⊂ T, which implies Ec ∈ M(m∗
1).

b) Let E1 and E2 be disjoint m∗
1-measurable sets on T. We need to prove if E1 ∪ E2 is

m∗
1-measurable or not. For all A ⊂ T

m∗
1(E1 ∪ E2) < m∗

1(A ∩ (E1 ∪ E2)) + m∗
1(A ∩ (E1 ∪ E2)

c)

is obvious. Using the subadditivity property of outer measure and rewriting the right hand

side of the inequality

m∗
1(E1 ∪ E2) < m∗

1((A ∩ E1)− E2)) + m∗
1((A ∩ E1) ∩ E2))

+ m∗
1((A− E1) ∩ E2)) + m∗

1((A− E1)− E2))

= m∗
1(A ∩ E1) + m∗

1(A− E1)

= m∗
1(A)

which implies

m∗
1(E1 ∪ E2) = m∗

1(A ∩ (E1 ∪ E2)) + m∗
1(A ∩ (E1 ∪ E2)

c).

We have shown that M(m∗
1) is an algebra. Now, let E =

∞⋃
j=1

Ej where Ej ∈ M(m∗
1).

∞⋃
j=1

Ej = E1 ∪ (Ec
1 ∩ E2) ∪ (Ec

1 ∩ Ec
2 ∩ E3) ∪ ...

and let

Bn =
n⋃

j=1

Ej, B0 = ∅.

11



Then Bn ∈ M(m∗
1), that is, for any A ⊂ T, m∗

1(A) = m∗
1(A ∩Bn) + m∗

1(A ∩Bc
n),

m∗
1(A ∩Bn) = m∗

1((A ∩Bn) ∩ En) + m∗
1((A ∩Bn) ∩ Ec

n)

= m∗
1(A ∩ En) + m∗

1(A ∩Bn−1).

Working in the same way

m∗
1(A ∩Bn) =

n∑

k=1

m∗
1(A ∩ Ek).

Thus

m∗
1(A) =

n∑

k=1

m∗
1(A ∩ Ek) + m∗

1(A ∩Bc
n)

≥
n∑

k=1

m∗
1(A ∩ Ek) + m∗

1(A ∩ Ec)

Letting n →∞, we get

m∗
1(A) ≥

∞∑

k=1

m∗
1(A ∩ Ek) + m∗

1(A ∩ Ec)

≥ m∗
1(

∞⋃

k=1

(A ∩ Ek)) + m∗
1(A ∩ Ec)

≥ m∗
1(A ∩ (

∞⋃

k=1

Ek)) + m∗
1(A ∩ Ec)

= m∗
1(A ∩ E) + m∗

1(A ∩ Ec) ≥ m∗
1(A)

Whence M(m∗
1) forms a σ-algebra. 2

Caratheodory extension theorem says that shortly for given m1 can be extended to

m∗
1 defined on the unique σ-algebra that contains the σ-algebra on which m1 is defined.

The family of all m∗
1-measurable sets is a σ-field and m∗

1 restricted to that σ-field is

a countably additive measure denoted by µ∆, that is, measure constructed on time scales.

Proposition 2.3 (Increasing Sequence Theorem and Decreasing Sequence Theorem)

If {En} is an increasing sequence of sets in T, then

µ∆(
∞⋃

n=1

En) = lim
n→∞

µ∆(En). (2.5)

Similarly, if {En} is a decreasing sequence of sets in T, then

µ∆(
∞⋂

n=1

En) = lim
n→∞

µ∆(En). (2.6)

In other words, ∆-measure on T is continuous.

12



Proof Let An ∈ M(m∗
1) and {An}n∈N be a nondecreasing sequence of sets. If µ∆(Aj) =

∞ for some j, µ∆(An) = ∞ for all n ≥ j, µ∆(An) → µ∆(
∞⋃

n=1

An) = ∞ so we may

assume that µ∆(An) < ∞ for all n. Then,

∞⋃
n=1

An = A1 ∪ (Ac
1 ∩ A2) ∪ ... ∪ (Ac

n−1 ∩ An) ∪ ...

= A1 ∪ (A2 \ A1) ∪ ... ∪ (An \ An−1) ∪ ...

Thus

µ∆(
∞⋃

n=1

An) = µ∆(A1 ∪ (Ac
1 ∩ A2) ∪ ... ∪ (Ac

n−1 ∩ An) ∪ ...)

= µ∆(A1 ∪ (A2 \ A1) ∪ ... ∪ (An \ An−1) ∪ ...)

= µ∆(A1) + µ∆(A2 \ A1) + ...µ∆(An \ An−1) + ...

= lim
n→∞

(µ∆(A1) + µ∆(A2 \ A1) + ... + µ∆(An \ An−1))

= lim
n→∞

(µ∆(A1) + µ∆(A2)− µ∆(A1) + ... + µ∆(An)− µ∆(An−1))

= lim
n→∞

µ∆(An).

This establishes continuity from below which plays an essential role in the theory of

Lebesgue integration.

Now, let {An}n∈N be a non-increasing sequence of sets as n → ∞
and let µ∆(An0) < ∞. Then An0 − An is increasing for n > n0 and
∞⋃

n=n0

(An0 − An) = An0 −
∞⋂

n=n0

An i.e., as n →∞, An0 − An ↑ An0 −
∞⋂

n=n0

An. Thus

µ∆(An0 − An) ↑ µ∆(An0 −
∞⋂

n=n0

An)by Equation 2.5.

Since

µ∆(An0 − An) = µ∆(An0)− µ∆(An)

and

µ∆(An0 −
∞⋂

n=n0

An) = µ∆(An0)− µ∆(
∞⋂

n=n0

An),

we have

µ∆(An) ↓ µ∆(
∞⋂

n=n0

An) = µ∆(
∞⋂

n=1

An). 2

The hypothesis that µ∆(A1) < ∞ can not be omitted from this proposition. A

counter example can be given as follows:
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Consider the Lebesgue measure on R, then the corresponding measure is the

classical Lebesgue measure. For An = [n,∞) ⊂ T = R, {An} ↓ ∅ whereas

µ∆(An) = λ(An) = ∞ 6→ µ∆(∅) = λ(∅) = 0. In order to avoid this contradiction,

we assume that there exists j ∈ N such that µ∆(Aj) is finite, then for all n ≥ j, µ∆(An)s

are also finite.

Lemma 2.1 Any single point set {t0} ⊂ T is m∗
1-measurable.(Rzezuchowski 2005)

Proof We have to prove that for every A ⊂ T, the following equality holds:

m∗
1(A) = m∗

1(A ∩ {t0}) + m∗
1(A\{t0}). (2.7)

It is obvious when t0 6∈ A, so let t0 ∈ A. It is easy to see that if maxT ∈ A, Equality 2.7

holds. Let A ⊂ T− {maxT}. In this case

m∗
1(A) ≤ m∗

1(A ∩ {t0}) + m∗
1(A\{t0}) (2.8)

is always true so we only need to prove the opposite side. Let
⋃
i∈I

[ai, bi), I ⊂ N be a

covering of A as

m∗
1(A) = inf{

∑
i∈I

(bi − ai) : A ⊂
⋃
i∈I

[ai, bi); ai, bi ∈ T, ai < bi, I ⊂ N}. (2.9)

We define a covering of A\{t0} and another of {t0}. If t0 6∈ [ai, bi), then we include

this interval to the covering of A\{t0}. If t0 ∈ [ai, bi), then we include its subinterval

[t0, σ(t0)) into the covering of {t0} and if any of intervals [ai, t0) or [σ(t0), bi) is non-

empty, we include it to the covering of A\{t0}. Considering all [ai, bi), we actually get

the required two coverings. Moreover, the sum of lengths of intervals in both coverings is

equal to
∑
i∈I

(bi − ai) which finally implies

m∗
1(A) ≥ m∗

1(A ∩ {t0}) + m∗
1(A\{t0}). 2

Suppose that T has a finite maximum τ0. Obviously the set X = T− {τ0} can be

represented as a finite or countable union of intervals of the family =1 and therefore it is

∆-measurable. Furthermore, the single point set {τ0} = T − X is ∆-measurable as the

difference of two ∆-measurable sets T and X but {τ0} does not have a finite or countable

covering intervals of =1, therefore, the single point set {τ0} and also any ∆-measurable

subset of T containing τ0 have ∆-measure infinity.
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Theorem 2.2 ∆-measure of a single point set {t0} ⊂ T− {maxT} is given by

µ∆({t0}) = σ(t0)− t0 = µ(t0) (2.10)

where µ denotes the Grainess function given in Definition 1.15. (Guseinov 2003)

Proof If t0 is right-scattered, {t0} = [t0, σ(t0)) ∈ =1. Therefore {t0} is ∆-measurable

and we have

µ∆({t0}) = m1([t0, σ(t0))) = σ(t0)− t0 (2.11)

which is the desired result. For other words, if we have any covering of {t0}, then every

interval containing t0 must also include [t0, σ(t0)) and on the other hand this last interval

itself is the smallest covering of {t0}.

Now, consider the case when t0 is right-dense. In this case there exists a decreasing

sequence of sets such that {tk} of points of T such that [t0, t1) ⊃ [t0, t2) ⊃ ... and tk > t0

and tk → t0, {t0} =
∞⋂

k=1

[t0, tk). Hence {t0} is ∆-measurable as a countable intersection

of ∆-measurable sets and by Proposition 2.3 we have

µ∆({t0}) = lim
k→∞

µ∆([t0, tk)) = lim
k→∞

(tk − t0) = 0 (2.12)

and so the equation 2.10 holds for this case as well. 2

The following lemma permits us to use this fact to other specific sets in T.

Lemma 2.3 The set of all right-scattered points of T is at most countable, that is, there

are {ti}i∈I ⊂ T, I ⊂ N such that

T \DR = SR = {ti}i∈I (2.13)

where DR denotes the all right-dense points and SR denotes the all right-scattered points

of T.(Cabada and Vivero 2004)

Proof Let g : T∼ → R be defined as

g(t) =





t if t ∈ T
ti if t ∈ (ti, σ(ti)).

Here, T∼ is obtained by filling the blanks (ti, σ(ti)) of T where ti < σ(ti). It is ob-

vious that the function g is monotone increasing on T∼. Since the set of points where a

monotone function has discontinuities is at most countable (see (Carter and Brunt 2000)),

we arrive the desired result. 2
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Remark 2.4 From now and on, we will express the extension of a set E ⊂ T as

E∼ = E ∪
⋃
i∈IE

(ti, σ(ti)) where IE denotes the indices set of right-scattered points of E.

Corollary 2.5 The sets SR and DR introduced in Lemma 2.3 are both ∆-measurable.

Proof SR is a countable union of single point sets, so ∆-measurable. Consequently, DR

is ∆-measurable as the difference of two ∆-measurable sets T and SR. 2

We have proved that a single point subset of T is ∆-measurable for the first step

in order to show all types of intervals are also ∆-measurable. We will use the fact that

by adding or subtracting endpoints to [a, b), which we exactly know ∆-measurable, we

obtain other types of intervals are ∆-measurable.

The next theorem, which was established by Guseinov, gives ∆-measure of any

interval by using this fact.

Theorem 2.6 If a, b ∈ T and a ≤ b, then

a) µ∆

(
[a, b)

)
= b− a.

b) µ∆

(
(a, b)

)
= b− σ(a).

If a, b ∈ T− {maxT} and a ≤ b, then

c) µ∆

(
(a, b]

)
= σ(b)− σ(a).

d) µ∆

(
[a, b]

)
= σ(b)− a.(Guseinov 2003)

Proof

a) All intervals of the family =1 are ∆-measurable so the first formula is obvious since

µ∆([a, b)) = m1([a, b)) = b− a.

b) In order to prove the second one we write [a, b) = {a} ∪ (a, b). Hence, by additivity,

µ∆([a, b)) = µ∆({a} ∪ (a, b))

µ∆([a, b)) = µ∆({a}) + µ∆((a, b))

µ∆((a, b)) = µ∆([a, b))− µ∆({a})
= b− a− (σ(a)− a)

= b− σ(a).
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c) In order to prove this assertion, we can use b) with the identity (a, b] = (a, b) ∪ {b} as

µ∆((a, b]) = µ∆((a, b) ∪ {b})
= µ∆((a, b)) + µ∆({b})
= b− σ(a) + σ(b)− b

= σ(b)− σ(a).

d) For this case we can use c) with the identity [a, b] = {a} ∪ (a, b].

µ∆([a, b]) = µ∆({a} ∪ (a, b])

= µ∆({a}) + µ∆((a, b])

= σ(a)− a + σ(b)− σ(a)

= σ(b)− a. 2

Remark 2.7 An important property of Lebesgue measure in R is its translation invari-

ance, given in Definition 1.3. Nevertheless, it is not satisfied for ∆-measure in general

except for some typical time scales. First of all, we need to restrict our attention to the

subsets of T− {maxT}. If the grainess function µ is a function which has different val-

ues for distinct points, ∆-measure of a subset E ⊂ T− {maxT} does not coincide with

the ∆-measure of the subset Ek ⊂ T−{maxT} that is obtained by shifting E k units for

all possible k values since ∆-measure of a set is dependent to µ and differs from point to

point.

However, there are some special cases. For instance, taking µ(t) = h with h

is any positive constant, corresponding time scale is unique i.e., T = hZ, ∆-measure

is translation invariant. For this case, time scale is countable since there is one to one

correspondence with integers. Here, we can use the fact that for all subsets of T can be

written as the union of countable number of single point sets with ∆-measure h, thus for a

set with n element has ∆-measure nh. Shifting the set k = hr units where r is any integer,

there is no change for the value of measure because a shifted set can be represented as

union of the set of shifted points and ∆-measure of each shifted single point set stays the

same, so does the ∆-measure of the shifted set which containing them. Briefly, ∆-measure

is translation invariant for the case T = hZ where h is any positive real number.

Remark 2.8 It should be taken into account that although for an arbitrary subset

A ⊂ R and the set aA + b = {at + b : t ∈ A},
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i) λ∗(aA + b) = |a|λ∗(A),

ii) If A is Lebesgue measurable, so is aA + b

do not hold for an arbitrary time scale. First of all, since A ⊂
∞⋃
i=1

[ai, bi) corresponds

A + b ⊂
∞⋃
i=1

[ai + b, bi + b) for this case, it is easy to see that λ∗(A + b) = λ∗(A) which

implies translation invariance. Thus, as it has been given in Remark 2.7, translation

invariance is only satisfied for special cases, i.e., T = R and T = hZ where h is a

positive constant.

For instance, let us consider a special time scale T = hZ where h is any positive

constant.

m∗
1(A) = m∗

1(
n⋃

i=1

{ai}) =
n∑

i=1

m∗
1({ai}) =

n∑
i=1

h = nh.

For a constant k = hr,

m∗
1(kA) = m∗

1(
n⋃

i=1

{kai}) =
n∑

i=1

m∗
1({kai}) =

n∑
i=1

h = nh.

2.2. Relation Between Lebesgue Measure and Lebesgue ∆-Measure

Before generalizing the relations, it is convenient to exhibit that a time scale T is

Lebesgue measurable. In fact it is not difficult to see that any time scale is a Borel set (see

Definition 1.6) and so Lebesgue measurable from Theorem 1.1.

Now, let us compare two outer measures, Lebesgue outer measure λ∗ defined on

R and the outer measure m∗
1 defined on T. By λ, we mean the usual Lebesgue measure

on R and λ∗ the corresponding outer measure, that is,

λ∗(A) = inf{
∑
j∈J

(βj − αj) : A ⊂
⋃
j∈J

[αj, βj] , αj, βj ∈ R, αj ≤ βj, J ⊂ N}. (2.14)

Lemma 2.9 If E ⊂ T− {maxT}, then the following properties are satisfied:

i) m∗
1(E) ≥ λ∗(E).

ii) If E does not include right-scattered points, then m∗
1(E) = λ∗(E).

iii) The sets DR and SR = T\DR are Lebesgue measurable and λ(SR) = 0 but

µ∆(E ∩ SR) =
∑
i∈IE

(σ(ti)− ti)
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where IE indicates the indices set for all right-scattered points in E.

iv) m∗
1(E) =

∑
i∈IE

(σ(ti)− ti) + λ∗(E).

v) m∗
1(E) = λ∗(E) if and only if E has no right-scattered points.

(Cabada and Vivero 2004, Rzeuchowski 2005)

Proof

i) If one compares these two following equalities

λ∗(E) = inf{
∑
j∈J

(βj − αj) : E ⊂
⋃
j∈J

[αj, βj], αj ≤ βj, J ⊂ N} (2.15)

m∗
1(E) = inf{

∑
i∈I

(bi − ai) : E ⊂
⋃
i∈I

[ai, bi), ai ≤ bi, I ⊂ N} (2.16)

then can see that every interval [ai, bi) which may arise in the definition of m∗
1(E) is also

among intervals [ai, bi] which appear in the definition of λ∗(E). So the infimum defined

by λ∗(E) is surely less than or equal to the one defined by m∗
1(E) thus λ∗(E) ≤ m∗

1(E)

is showed.

ii) Since λ∗(E) ≤ m∗
1(E) has been proved in i), the only relation we need to prove is the

opposite one i.e., λ∗(E) ≥ m∗
1(E).

Suppose {[αj, βj] : j ∈ J, J ⊂ N} is any covering of E. We fix ε > 0 and prove

that there exists a covering {[ai, bi), i ∈ I, I ⊂ N} such that

m∗
1(E) = inf{

∑
i∈I

(bi − ai) : E ⊂
⋃
i∈I

[ai, bi); ai, bi ∈ T, ai < bi, I ⊂ N}

with
∑
i∈I

(bi − ai) ≤
∑
j∈J

(βj − αj) + ε. (2.17)

We eliminate first all intervals [αj, βj] which do not intersect T − {maxT} and denote

the remaining set of indices by I . For i ∈ I , we put ai = σ(αi) and for bi, we consider

two cases:

1) If βi 6∈ T we put bi = ρ(βi) then bi 6∈ E in view of the inclusion E ⊂ DR.

2) If βi ∈ T, we have two possibilities:

a) βi 6∈ E, we put bi = βi.

b) βi ∈ E, we pick bi from (βi, β +
ε

2i
) ∩ T, it is possible as βi is not scattered. Due to the
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construction we have ai, bi ∈ T for all i ∈ I , E ⊂ ⋃
i∈I [ai, bi) and we obtain Inequality

2.17. The choice of ε > 0 was arbitrary, so m∗
1(A) ≤ λ∗(A), the proof is complete.

iii) Let tk ∈ T− {maxT}. Then {tk} ⊆ [tk − ε, tk + ε) holds for each ε > 0 and so

λ∗{tk} ⊆ λ∗
(
[tk − ε, tk + ε)

)
= 2ε

and since ε is arbitrary, λ∗({tk}) = 0 which implies {tk} is Lebesgue measurable with

measure zero. Since the set of all right-scattered points of any time scale is at most

countable,

λ(
⋃
i∈IT

{tk}) =
∑
i∈IT

λ({tk}) = 0.

On the other hand,

µ∆(E ∩ SR) =
∑
i∈IE

(σ(ti)− ti) ≤ (b− a) = µ∆([a, b))

is obvious from Lemma 2.1 we are able to replace m∗
1 with µ∆.

vi) Suppose that E ⊂ T− {maxT}. Since SR is Lebesgue measurable with λ(SR) = 0,

λ∗(E) = λ∗(E ∩ (SR ∪ (R\SR))) = λ∗(E ∩ SR) + λ∗(E ∩ (R\SR)).

Since E ⊂ T,

λ∗(E) = λ∗(E ∩ SR) + λ∗(E ∩ (T\SR))

Furthermore E ∩ SR ⊂ SR and λ(SR) = 0, we obtain λ(E ∩ SR) = 0, finally we get

λ∗(E) = λ∗(E ∩ (T\SR)).

On the other hand, by Corollary 2.5, we write

m∗
1(E) = m∗

1(E∩SR)+m∗
1(E∩(T\SR)). Here E∩(T\SR) ⊂ DR, hence

m∗
1(E ∩ (T\SR)) = λ∗(E ∩ (T\SR)) = λ∗(E) from ii).

Thus

m∗
1(E) =

∑
i∈IE

(σ(ti)− ti) + λ∗(E).

v) Combining ii) and iv), the proof is completed. 2

Proposition 2.4 Let E ⊂ T. Then E is Lebesgue ∆-measurable if and only if it is

Lebesgue measurable. In such a case, for E ⊂ T− {maxT} the following is true:

i) µ∆(E) =
∑
i∈IE

(σ(ti)− ti) + λ(E).

ii) λ(E) = µ∆(E) if and only if E has no right-scattered point (Cabada and Vivero

2004).
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Proof Suppose that E ⊂ T is ∆-measurable.

a) Let A,E ⊂ T− {maxT}. Using the identity R \ E = (T \ E) ∪ (R \ T),

λ∗(A) ≤ λ∗(A ∩ E) + λ∗(A ∩ (R\E)) turns into (2.18)

λ∗(A) ≤ λ∗(A ∩ E) + λ∗(A ∩ [(T \ E) ∪ (R \ T)])

≤ λ∗(A ∩ E) + λ∗(A ∩ (T \ E)) + λ∗(A ∩ (R \ T))

= λ∗(A ∩ E) + λ∗(A ∩ (T \ E)) since A ∩ (R \ T) = ∅.

Here, λ∗(A ∩ E) = m∗
1(A ∩ E)−

∑
i∈IA∩E

(σ(ti)− ti),

λ∗(A ∩ (T\E)) = m∗
1(A ∩ (T\E))−

∑
i∈IA∩(T\E)

(σ(ti)− ti).

Whence

λ∗(A) ≤ m∗
1(A ∩ E)−

∑
i∈IA∩E

(σ(ti)− ti)

+ m∗
1(A ∩ (T\E))−

∑
i∈IA∩(T\E)

(σ(ti)− ti).

Since E is ∆-measurable, we have

m∗
1(E) = m∗

1(E ∩ A) + m∗
1(E ∩ (T\A))

and the relation
∑

i∈IE∩A

(σ(ti)− ti) +
∑

i∈IE∩(T\A)

(σ(ti)− ti) =
∑

i∈IE∩T

(σ(ti)− ti).

Inequality 2.18 turns into

λ∗(E) ≤ m∗
1(E)−

∑
i∈IE∩T

(σ(ti)− ti) = λ∗(E) (2.19)

Finally, from 2.18 and 2.19, we obtain

λ∗(A) = λ∗(A ∩ E) + λ∗(A ∩ (R\E))

so E is also Lebesgue measurable.

b) Let E ⊂ T− {maxT}, A contains the maximum point τ0 of T. We have

λ∗(A) ≤ λ∗(A ∩ E) + λ∗(A ∩ (R \ E)) (2.20)
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Let A = B ∪ {τ0}. Then Inequality 2.20 turns into

λ∗(A) ≤ λ∗((B ∪ {τ0}) ∩ E) + λ∗((B ∪ {τ0}) ∩ (R \ E))

≤ λ∗(B ∩ E) + λ∗({τ0} ∩ E) + λ∗(B ∩ (R \ E)) + λ∗({τ0} ∩ (R \ E))

≤ λ∗(B ∩ E) + λ∗(B ∩ (R \ E)) + λ∗({τ0})
= λ∗(B ∩ E) + λ∗(B ∩ (R \ E)).

Then the same procedure is followed as i) to show E is Lebesgue measurable.

c) Now suppose that E contains the maximum point τ0 of T. It is obvious that if E is ∆-

measurable, then E \{τ} is ∆-measurable, so E \{τ} is Lebesgue measurable too. Since

a single point set {τ0} is Lebesgue measurable and using the fact that the union of two

Lebesgue measurable sets is Lebesgue measurable, (E \ {τ0}) ∪ {τ0} = E is Lebesgue

measurable as well.

Let E be Lebesgue measurable, then it is ∆-measurable and the proof follows

similarly. 2

Remark 2.10 By using the identities given by Proposition 2.4, we get

µ∆(E) = λ(E∼) where E ⊂ T− {maxT}
and E∼ the extension of E introduced in Remark 2.4.

Proof Consider the identity:

µ∆(E) =
∑
i∈IE

(σ(ti)− ti) + λ(E)

=
∑
i∈IE

λ((ti, σ(ti))) + λ(E)

= λ(
⋃
i∈IE

(ti, σ(ti)) + λ(E)

= λ(
⋃
i∈IE

(ti, σ(ti)) ∪ E)

= λ(E∼). 2

Corollary 2.11 If a set E is Lebesgue measurable, then E ∩ T is ∆-measurable.

Proof Suppose that E ⊂ T. Then by Proposition 2.4, E is ∆-measurable if and only if

E is Lebesgue measurable.

Now suppose that E ∩ (R\T) 6= ∅ i.e., E has some points that do not belong to T.

We knowT is Lebesgue measurable and if E is also Lebesgue measurable, the intersection
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of two Lebesgue measurable sets is also Lebesgue measurable hence ∆-measurable, this

ends the proof. 2

Now we give the concept of Lebesgue ∇-measure on T as Guseinov defined (Gu-

seinov 2003). Let =2 denote the family of intervals of T of the form (a, b] = {t ∈
T : a < t ≤ b} with a, b ∈ T and a ≤ b. Obviously, (a, a] is the empty set. Let

m2 : =2 → [0,∞] be the set function on =2 that assigns each interval (a, b] its length

i.e., m2 : b − a → m2((a, b]) = b − a. Then m2 is a countably additive measure on =2.

Similar to µ∆, an outer measure m∗
2 on the family of all subsets of T is given as follows:

Let D be any subset of T. If there exists at least one finite or countable system of inter-

vals Uj ∈ =2 (j = 1, 2, ...) such that D ⊂
⋃
j

Uj , then m∗
2 = inf

∑
j

m2(Uj). If there is

no such covering of D, then m∗
2(D) = ∞. The family M(m∗

2) of all m∗
2-measurable (or

∇-measurable) subsets of T is a σ-algebra where a subset D is said to be m∗
2-measurable

if

m∗
2(A) = m∗

2(A ∩D) + m∗
2(A ∩Dc) (2.21)

holds for all A ∈ T, Dc = T −D. Then, we take the restriction of m∗
2 to M(m∗

2), which

is denoted by µ∇. This µ∇ is countably additive measure on M(m∗
2).

Theorem 2.12 For each t0 ∈ T− {minT}, the ∇-measure of the single point set {t0} is

given by

µ∇({to}) = t0 − ρ(t0). (2.22)

Proof As in the proof of Theorem 2.2.

Theorem 2.13 If c, d ∈ T, then µ∇((c, d]) = c− d, µ∇((c, d)) = ρ(d)− c.

If c, d ∈ T− {minT}, then µ∇([c, d)) = ρ(d)− ρ(c), µ∇([c, d]) = d− ρ(c).

Proof As in the proof of Theorem 2.6.

Remark 2.14 In case T = R, both measures coincide and equal to the usual Lebesgue

measure. Another special case where these two measure coincide is the case T = hZ

where h is any positive constant.
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CHAPTER 3

∆-MEASURABLE FUNCTIONS

3.1. ∆-Measurable Functions

Our aim is to go to details on ∆-measurable functions with properties, important

theorems and results in order to understand the concept of Lebesgue ∆-integral.

In this chapter ∆-measurable functions are introduced specifically and compari-

son of Lebesgue measurable and ∆-measurable functions as Cabada-Vivero established

take place in detail. Furthermore, we will introduce some properties of functions which

expresses conditions for measurability of functions on time scales.

Definition 3.1 We say that f : T→ R is ∆-measurable if for every α ∈ R, the set

f−1([−∞, α)) = {t ∈ T : f(t) < α} (3.1)

is ∆-measurable.

To begin with, we will focus on simple function as given by Definition 1.9. How-

ever, in order to construct Lebesgue ∆-integral, we will be concerned about the case that

S is ∆-measurable.

Remark 3.1 It is easy to verify that the relationship between simple functions and ∆-

measurable sets, that is, S =
n∑

i=1

αiχAi
is ∆-measurable if and only if each Ai is ∆-

measurable set.

Proof First suppose that the simple function S : T→ R is ∆-measurable. By Definition

3.1, the set

S−1([−∞, α)) = {t ∈ T : S(t) < α} (3.2)

is ∆-measurable for all α ∈ R with α1 < α2 < ... < αn.

i)If α < α1, then S−1([−∞, α)) = ∅ which is known ∆-measurable.

ii) If α1 < α < α2, then S−1([−∞, α)) = A1 is ∆-measurable.

iii) Let α2 < α < α3. In this case, S−1([−∞, α)) = A1 ∪ A2 is ∆-measurable. From ii),

A2 is ∆-measurable too since the difference of ∆-measurable sets is ∆-measurable.
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Repeating this procedure, for any value of α, the corresponding set
k⋃

i=1

Ai, k =

1, 2, ..., n is ∆-measurable, we reach the result, each Ai is ∆-measurable.

Now, suppose that each Ai is ∆-measurable for i = 1, 2, ...n. Then for 0 ≤ k ≤
n, the union

k⋃
i=1

Ai is also ∆-measurable which corresponds the set {t ∈ T : S(t) <

α} for some α ∈ R. For every α ∈ R there exists union
k⋃

i=1

Ai we conclude that the

corresponding simple function S is ∆-measurable. 2

The following proposition gives different versions of the definition of ∆-

measurable function.

Proposition 3.1 Let f be an extended real valued function whose domain is ∆-

measurable set E ⊂ T. Then the following statements are equivalent:

i) For each real number α, the set {t ∈ E : f(t) < α} is ∆-measurable.

ii) For each real number α, the set {t ∈ E : f(t) ≥ α} is ∆-measurable.

iii) For each real number α, the set {t ∈ E : f(t) ≤ α} is ∆-measurable.

iv) For each real number α, the set {t ∈ E : f(t) > α} is ∆-measurable.

These statements imply

v) For each real number α, the set {t ∈ E : f(t) = α} is ∆-measurable.

Proof As in (Royden 1988).

Theorem 3.2 Let f is ∆-measurable on E ⊂ T and f = g ∆-a.e., then g is ∆-

measurable too.

Proof Considering the definition of ∆-measurability and equivalence ∆-a.e., the differ-

ence between sets A = {t : f(t) > α} and B = {t : g(t) > α} is nothing but the set with

∆-measure zero, that is,

µ∆((A \B) ∪ (B \ A)) = 0.

Thus,

µ∆(A \B) = 0 and µ∆(B \ A) = 0.

Without losing of generality let us assume f is ∆-measurable. Considering B = A ∪
(B \A) where right hand side of the equation is ∆-measurable since it is the union of two

∆-measurable sets, this ends the proof. 2
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Proposition 3.2 Let f and g be real valued ∆-measurable functions defined on E ⊂ T,

α a real number. Then αf , f + g, f − g, fg, sup fn, inf fn, limfn, limfn and
f

g
are also

∆-measurable.

Proof As in (Cohn 1997).

Corollary 3.3 Let {fn(t)} be a sequence of ∆-measurable functions on E ⊂ T. If this

sequence is convergent with lim fn(t) = f(t), then f(t) is ∆-measurable too.

Proof As in (Dönmez 2001).

Corollary 3.4 Let f1(t) and f1(t) be two ∆-measurable functions defined on a ∆-

measurable subset of T. Then max{f1(t), f2(t)} and min{f1(t), f2(t)} are ∆-

measurable.

Proof As in (Dönmez 2001).

Theorem 3.5 Every constant function defined on a ∆-measurable set E is ∆-measurable.

Proof Let f(t) = c for all t ∈ E, where c ∈ R. For the set {t ∈ E : f(t) = c > α}, it is

convenient to consider α in two cases:

i) For α ≥ c this set corresponds E which is known ∆-measurable.

ii) For α < c this set corresponds the empty set which is already known ∆-

measurable. 2

Proposition 3.3 If f1 and f2 are ∆-measurable functions, then the set {t : f1(t) ≤ f2(t)}
is ∆-measurable.

Proof As in (Dönmez 2001).

Corollary 3.6 Now, it is easy to see in order that f is ∆-measurable, it is necessary and

sufficient that both f+ and f− are ∆-measurable functions, where f+ = max{0, f} and

f− = max{0,−f}.

Proof As in (Aliprantis and Burkinshaw 1998).

Theorem 3.7 f is a ∆-measurable function if and only if for any α1 < α2, α1, α2 ∈ R,

the set {t ∈ T : α1 < f(t) < α2} is ∆-measurable.
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Proof As in (Craven 1982).

Remark 3.8 For simplicity let us use the definition of ∆-measurable as follows: f is

∆-measurable if and only if for any open interval I ⊂ T, f−1(I) is ∆-measurable.

Using this fact, we will integrate two concepts: continuity and measurability.

Proposition 3.4 Let f be a function defined on a totally discrete time scale T. Then f is

∆-measurable.

Proof It is known that a single point set so any countable union of single point sets is

∆-measurable. Hence T can be representded as a countable union of single point sets

which are known ∆-measurable, for any function f defined on this time scale, f−1(I),

that is, inverse image of any open interval under f can also be represented as some union

of single point sets so f is ∆-measurable. 2

This shows ∆-measurability of any function defined on a time scale which only

has isolated points. We need to specify the time scale as it has just have isolated points,

not dense-points, otherwise we are not able to generalize this fact to all possible functions

that are defined on any other time scale because of the fact that we are not able to know the

character of a function on right-dense points, whether inverse image of any open interval

is ∆-measurable or not.

Remark 3.9 It is easy to see that if f is defined on a subset of a totally discrete time scale

T, then f is ∆-measurable.

Corollary 3.10 Let f be defined on any time scale T and let f |SR
represent the function

which is obtained by inducing f to the set of all right-scattered points of T. Then f |SR
is

∆-measurable on SR.

Proposition 3.5 If f is rd-continuous, then f is ∆-measurable.

Proof In order to show ∆-measurability of f , we will use definition of ∆-measurable

function given by Remark 3.8 and identity

f−1(I) = f |−1
DR

(I) ∪ f |−1
SR

(I) (3.3)

where f |SR
represents the function which is obtained by inducing f to the set of all right-

scattered points of T and f |DR
represents the function which is obtained by inducing
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f |SR
to the set of all right-dense points of T. From Corollary 3.10, f |SR

is ∆-measurable

so we need to show f |DR
is a ∆-measurable function.

f |DR
is continuous so for a given ε > 0, there exists a δ > 0 such that

|f |DR
(s)− f |DR

(t)| < ε for all s ∈ (t− δ, t + δ)

In another way

(t− δ, t + δ) = {s ∈ T : |f |DR
(s)− f |DR

(t)| < ε}
= {s ∈ T : f |DR

(t)− ε < f |DR
(s) < f |DR

(t) + ε}

The left hand side of the equation is ∆-measurable so is the right hand side. By Re-

mark 3.8, f |DR
is ∆-measurable, so it is obtained the right hand side of Equality 3.3 is

∆-measurable set, so is f−1(I) for any interval I ⊂ T, thus f is ∆-measurable func-

tion. 2

Corollary 3.11 Let f be a continuous function defined on T. Then f is ∆-measurable.

Remark 3.12 It is easy to see that if an rd-continuous function f is defined on a ∆-

measurable set E ⊂ T, then f is ∆-measurable function.

The next proposition is given with this restriction which generalizes the link be-

tween measurability and continuity.

Proposition 3.6 Let f be defined on a ∆-measurable subset E of T. Then f is ∆-

measurable if the set of all right-dense points of E where f is discontinuous is a set

of ∆-measure zero.

Proof Let us classify E into three parts:

i) Crd = {t ∈ E : f is continuous at t and t is right-dense}

ii) Drd = {t ∈ E : f is discontinuous at t and t is right-dense}

iii) Ers = {t ∈ E : t is right-scattered}

Thus, E = Crd∪Drd∪Ers. Let µ∆(Drd) = 0. We will approach to Drd, by defining a de-

creasing sequence of ∆-measurable sets. Let {Kn}n∈N be the sequence of ∆-measurable

sets such that

Drd ⊂ Kn ⊂ (Drd ∪ Crd) for all n ∈ N.
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By defining Dn =
⋂
r≤n

Kr, we obtain a decreasing sequence of sets {Dn}n∈N. Let

Drd =
∞⋂

n=1

Dn. It is obvious that f is continuous on Fn, where Fn is the complement

of Dn with respect to Drd ∪ Crd i.e., Fn = (Drd ∪ Crd) \Dn. Hence the restriction f |Fn

of f is continuous which implies that f |Fn is ∆-measurable from Corollary 3.11.

{Fn} is an increasing sequence of sets as a result of {Dn} is decreasing. Taking

the limit as n →∞, Drd ∪ Crd = Dn ∪ Fn,

Drd ∪ Crd = lim
n→∞

(Dn ∪ Fn)

= ( lim
n→∞

Dn) ∪ ( lim
n→∞

Fn)

= (
∞⋂

n=1

Dn) ∪ (
∞⋃

n=1

Fn)

= (Drd) ∪ (
∞⋃

n=1

Fn).

Using this fact, we will investigate ∆-measurability of the function f defined on

E = Drd ∪ (
∞⋃

n=1

Fn) ∪ Ers and similar to Equation 3.3,

f−1(I) = (f |−1
Drd

(I)) ∪ (f |−1S∞
n=1 Fn

(I)) ∪ (f |−1
Ers

(I))

= (f |−1
Drd

(I)) ∪ (
∞⋃

n=1

f |−1
Fn

(I)) ∪ (f |−1
Ers

(I)).

The right hand side of the equation is ∆-measurable since it is a countable union of ∆-

measurable sets, so is the left hand side, this ends the proof. 2

Theorem 3.13 Let f : T → R+ ∪ {0} be a ∆-measurable function. There exists a

sequence {ϕn} of ∆-measurable simple functions such that 0 ≤ ϕn(t) ↑ f(t) holds for

all t ∈ T.

Proof Let f : T→ R+ ∪ {0} be a ∆-measurable function and let

Ai
n = {t ∈ T : (i− 1)2−n ≤ f(t) < i2−n} for i = 1, 2, ...n2n

Note that Ai
n ∩ Aj

n = ∅ if i 6= j. Since f is a ∆-measurable function, then each Ai is

∆-measurable set. For each n we define a sequence of ∆-measurable simple functions

{ϕn} as ϕn =
n2n∑
i=1

2−n(i− 1)χAi
n

such that 0 ≤ ϕn(t) ≤ ϕn+1(t) ≤ f(t) holds for all

t ∈ T and all n ∈ N.
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Furthermore, if t is fixed, then 0 ≤ f(t) − ϕn(t) ≤ 2−n holds for all sufficiently

large n. Thus, ϕn ↑ f(t) holds for all t. (Rudin 1987) 2

Theorem 3.14 f is ∆-measurable if and only if it can be represented as the limit of a

sequence of ∆-measurable simple functions which is uniformly convergent.

Proof If f(t) is the limit of a uniformly convergent sequence of ∆-measurable functions,

then f(t) is ∆-measurable from the previous theorem.

Conversely, let us consider any ∆-measurable function f(t) and let m and n are

two positive integers. If

m

n
≤ f(t) <

m + 1

n
then take fn(t) =

m

n

Since
m

n
is rational number and fn(t) takes at most countable values and ∆-measurable,

hence fn(t)s are each simple functions.

|f(t)− fn(t)| ≤ |m + 1

n
− m

n
| = 1

n

As n tends to infinity, fn(t) approaches to f(t) which gives the definition of uniformly

convergence for {fn(t)}n∈N. (Dönmez 2001) 2

3.2. Lebesgue Measurable and Lebesgue ∆-Measurable Functions

In order to compare measurable functions and ∆-measurable functions, we need

to define a function f on T, extend it and denote the extension as f∼ to the interval T∼ as

follows:

f∼(t) =





f(t) if t ∈ T
f(ti) if t ∈ (ti, σ(ti))

(3.4)

for some i ∈ I , where {ti}i∈I represents the set of all right-scattered points in T and T∼

is the extension of T as given in Remark 2.4.

Proposition 3.7 Let f be defined from T to the extended real line and f∼ is the extension

of f introduced in Equation 3.4. Then f is ∆-measurable function if and only if f∼ is

Lebesgue measurable function.(Cabada and Vivero 2004)

Proof Suppose that f is ∆-measurable i.e., for any real number α, f−1([−∞, α)) =

Aα is a ∆-measurable set. We need to prove for each α, f∼−1([−∞, α)) is Lebesgue

30



measurable.

f∼−1([−∞, α)) = {t ∈ T ∪
⋃
i∈IT

(ti, σ(ti)) : f∼(t) < α}

= {t ∈ T : f∼(t) < α} ∪ {t ∈
⋃
i∈IT

(ti, σ(ti)) : f∼(t) < α}

= {t ∈ T : f(t) < α} ∪ {t ∈
⋃
i∈IT

(ti, σ(ti)) : f∼(t) < α}

= {t ∈ T : f(t) < α} ∪ ( ⋃
i∈IAα

(ti, σ(ti))
)

= Aα ∪ (
⋃
IAα

(ti, σ(ti))
)

= A∼
α .

Since f is ∆-measurable function from the assumption, Aα is a ∆-measurable set, further-

more from Proposition 2.4, it is Lebesgue measurable. Hence f∼−1([−∞, α)) = A∼
α is

Lebesgue measurable since it is represented as countable union of Lebesgue measurable

sets.

Now suppose that f∼−1 is Lebesgue measurable. Using the identity:

f∼−1([−∞, α)) ∩ T = f−1([−∞, α)),

we conclude that T and f∼−1([−∞, α)) is Lebesgue measurable, then f−1([−∞, α)) is

∆-measurable from Corollary 2.11. 2

In this way we can easily see the relation between the usual Lebesgue integral and

Lebesgue- ∆ integral which we will consider in the next chapter.
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CHAPTER 4

∆-INTEGRAL

By definition, a Riemann integrable function is bounded and its domain is a closed

interval. These two restriction make the Riemann integral inadequate to fulfill the require-

ments of many scientific problems. H. Lebesgue introduced a concept of an integral based

on measure theory that generalizes the Riemann integral. It has the advantage that at the

same time it treats both bounded and unbounded functions and allows their domains to

be more general sets. Also, it gives more powerful and useful convergence theorems than

the Riemann integral does.(Aliprantis and Burkinshaw 1998)

In this chapter, we will give the general concept of Riemann ∆-integral was intro-

duced by Guseinov and Kaymakcalan (Guseinov and Kaymakcalan, 2002), by defining

Darboux ∆-sum and Darboux ∆-integral first without going to details just giving basics in

order to compare and integrate with Lebesgue ∆-integral and show Riemann ∆-integral

is a special form for Lebsegue ∆-integral. Further, we will introduce Lebesgue ∆-integral

considering firstly ∆-measurable simple functions’ integrals. Finally comparison of both

∆-integral and Lebesgue integral of ∆-measurable functions follow taking into account

Cabada-Vivero’s related paper (Cabada and Vivero 2004).

4.1. Riemann ∆-Integral

Let T be a time scale, [a, b) be a half closed interval in T, a partition of [a, b) is

any ordered subset P = {t0, t1, ...tn} ⊂ [a, b] where a = t0 < t1 < ... < tn = b.

Let f be a real valued bounded function defined on [a, b) ⊂ T.

Here we set

M = sup{f(t) : t ∈ [a, b)}, m = inf{f(t) : t ∈ [a, b)},

Mi = sup{f(t) : t ∈ [ti−1, ti)}, mi = inf{f(t) : t ∈ [ti−1, ti)}.

The upper Darboux ∆-sum U(f, P ) and the lower Darboux ∆-sum L(f, P ) of the func-

tion f are defined by

U(f, P ) =
n∑

n=1

Mi(ti − ti−1), L(f, P ) =
n∑

n=1

mi(ti − ti−1) (4.1)
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with respect to the partition P . The upper Darboux integral U(f) of f from a to b is

defined by

U(f) = inf{U(f, P )}, (4.2)

and the lower Darboux integral L(f) of f from a to b is defined by

L(f) = sup{U(f, P )}. (4.3)

Definition 4.1 f is said to be ∆-integrable from a to b if L(f) = U(f). In this case, we

write
∫ b

a
f(t)∆t for this common value and call this integral, the Darboux ∆-integral.

Lemma 4.1 For every δ > 0 there exists at least one partition P : a = t0 < t1 < ... <

tn = b of [a, b) such that for each i ∈ {1, 2, ...n} either ti − ti−1 ≤ δ or ti − ti−1 > δ and

ρ(ti) = ti−1, where ρ denotes the backward jump operator in T.(Guseinov 2003)

Proof (Guseinov 2003).

Theorem 4.2 A bounded function f on [a, b) is ∆-integrable if and only if for each ε > 0,

there exists δ > 0 such that

U(f, P )− L(f, P ) < ε. (4.4)

for all partitions P ∈ ℘δ where ℘δ denotes the set of all partitions P that posses the

property indicated in Lemma 4.33.(Guseinov 2003)

Proof (Guseinov 2003).

We now give the concept of Riemann ∆-integral.

Definition 4.2 Let f be a bounded function on [a, b) and let P : a = t0 < t1 < ... <

tn = b be a partition of [a, b). In each interval [ti−1, ti), where i = 1, 2, ...n, we choose

an arbitrary point ξi and form the sum

S =
n∑

i=1

f(ξi)(ti − ti−1). (4.5)

We call S a Riemann ∆-sum of f corresponding to the partition P .

We say that f is Riemann ∆-integrable form a to b if there exists a number I with

the following property: For each ε > 0 , there exists δ > 0 such that |S − I| < ε for

every Riemann ∆-sum S of f corresponding to a partition P ∈ ℘δ, with the property

that was given in Lemma 4.33, independent of the way in which we choose ξi ∈ [ti−1, ti),

i = 1, 2, ...n. It is easy to see that such a number I is unique. The number I is the

Riemann ∆-integral of f from a to b.
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Theorem 4.3 A bounded function f on [a, b) is Riemann ∆-integrable if and only if it is

(Darboux) ∆-integrable, in which case the values of the integrals are equal.

Proof (Guseinov 2003).

4.2. Lebesgue ∆-Integral

Definition 4.3 Let E ⊂ T be a ∆-measurable set and let S : T → [0, +∞) be a ∆-

measurable simple function with S =
n∑

i=1

αiχAj
, Aj = {t : S(t) = αi}.

The Lebesgue ∆-integral of S on E is defined as

∫

E

S(s)∆s =
n∑

i=1

αiµ∆(Ai ∩ E). (4.6)

Proposition 4.1 Let {En}n∈N be an increasing sequence of ∆-measurable sets and let S

be a nonnegative ∆-measurable simple function on E = lim
j→∞

Ej . Then

∫

E

S(s)∆s = lim
j→∞

∫

Ej

S(s)∆s. (4.7)

Proof Let S take value αi on each ∆-measurable set Ai. Then
∫

Ej

S(s)∆s =
n∑

i=1

αiµ∆(Ej ∩ Ai) (4.8)

and taking the limit of both sides as j →∞,

lim
j→∞

∫

Ej

S(s)∆s = lim
j→∞

n∑
i=1

αiµ∆(Ej ∩ Ai)

=
n∑

i=1

αi lim
j→∞

µ∆(Ej ∩ Ai)

=
n∑

i=1

αiµ∆

( ∞⋃
j=1

(Ej ∩ Ai)
)

=
n∑

i=1

αiµ∆

(
(
∞⋃

j=1

Ej) ∩ Ai

)

=
n∑

i=1

αiµ∆(E ∩ Ai)

=

∫

E

S(s)∆s 2
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Lemma 4.4 Let E ⊂ T − {maxT} be a ∆-measurable set, S : T → [0,∞) be a ∆-

measurable simple function with S =
n∑

i=1

αiχAi
and S∼ be the extension of S given by

Equation 3.4, of the form S∼ =
n∑

i=1

αiχA∼i where A∼
i = Ai ∪ (

⋃
i∈IAi

(ti, σ(ti))). Then S∼

is Lebesgue measurable and Lebesgue integrable with
∫

E

S(s)∆s =

∫

E∼
S∼(s)ds (4.9)

where E∼ is the extension of E as given in Remark 2.4.(Cabada and Vivero 2004)

Proof Measurability of S∼(t) is obvious from the fact that extension of ∆-measurable

function is Lebesgue measurable. Furthermore, E∼ ∩ A∼
i = (E ∩ Ai)

∼. Since S∼ is

Lebesgue measurable simple function on E∼, then it is Lebesgue integrable with

∫

E∼
S∼(s)ds =

n∑
i=1

αiλ(E∼ ∩ A∼
i )

=
n∑

i=1

αiλ(E ∩ Ai)
∼

=
n∑

i=1

αiµ∆(E ∩ Ai)

=

∫

E

S(s)∆s. 2

Definition 4.4 Let E ⊂ T be a ∆-measurable set and let f : T → [0, +∞] be a ∆-

measurable function. The Lebesgue ∆-integral of f on E is defined as
∫

E

f(s)∆s = sup

∫

E

S(s)∆s

where the supremum is taken over all ∆-measurable nonnegative simple functions S such

that S ≤ f defined on T.

Theorem 4.5 (Beppo Levi’s Lemma Adapted to Time Scale) Assume that a sequence

{fn}n∈N of ∆-integrable functions on a ∆-measurable set E satisfies fn(t) ≤ fn+1(t) ∆-

a.e., for all n ∈ N and lim
n→∞

∫

E

fn(s)∆s < ∞. Then there exists a ∆-integrable function

f such that fn ↑ f and hence
∫

E

fn(s)∆s ↑
∫

E

f(s)∆s.

Proof As in (Aliprantis and Burkinshaw 1998).
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Theorem 4.6 (Fatou’s Lemma Adapted to Time Scale) Let {fn(t)}n∈N be a sequence

of ∆-integrable functions defined on a ∆-measurable set E such that fn(t) ≥ 0 ∆-a.e.

and lim

∫

E

fn(s)∆s < ∞. Then, limfn(t) defines a ∆-integrable function on the ∆-

measurable set E and
∫

E

limfn(s)∆s ≤ lim

∫

E

fn(s)∆s. (4.10)

Proof Without loss of generality, we suppose that fn(t) ≥ 0 holds for all t ∈ E. We

define a sequence {gn}n∈N such that gn(t) = inf{fi(t) : i ≥ n} for each t ∈ N. Since

each fi(t), i ≥ n is ∆-measurable, then gn(t)s are ∆-measurable and ∆-integrable with

0 ≤ gn(t) ≤ fn(t) holds for all n ∈ N. By Theorem 4.5, there exists a ∆-measurable

function g(t) such that gn(t) ↑ g(t) ∆-a.e.

It follows that g(t) = limfn(t) and
∫

E

g(t) =

∫

E

limfn(t).

∫

E

limfn(s)∆s =

∫

E

g(s)∆s = lim

∫

E

gn(s)∆s ≤ lim

∫

E

fn(s)∆s (4.11)

Whence ∫

E

limfn(s)∆s ≤ lim

∫

E

fn(s)∆s 2 (4.12)

Theorem 4.7 (Monotone Convergence Theorem Adapted to Time Scale) Let {fn}n∈N

be an increasing sequence of nonnegative ∆-measurable functions defined on a ∆-

measurable set E and let f(t) = lim fn(t) ∆-a.e.

Then ∫

E

limf(s)∆s = lim

∫

E

fn(s)∆s. (4.13)

Proof As in (Aliprantis and Burkinshaw 1998).

Theorem 4.8 (Lebesgue Dominated Convergence Theorem Adapted to Time Scale) Let

g be ∆-integrable function over E and let {fn} be sequence of ∆-measurable functions

such that

| fn(t) |≤ g(t)

on E and for almost all t in E we have f(t) = lim fn(t). Then
∫

E

f(t)∆t = lim

∫

E

fn(t)∆t.

Proof As in (Aliprantis and Burkinshaw 1998).
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Remark 4.9 Let {fn}n∈N be an increasing (or decreasing) sequence of functions defined

on T and let f∼n (t) is the extension of fn as defined previously. Then {f∼n }n∈N is an

increasing (or decreasing) sequence of functions defined on the extension of T∼, which

is defined in Remark 2.4.

The next lemma exhibits the relation between the classical Lebesgue integral and

Lebesgue ∆-integral of nonnegative ∆-measurable functions.

Lemma 4.10 Let E ⊂ T be a ∆-measurable set and do not include the maximum point

of T, if T is bounded from above, let f : T → [0, +∞] be a ∆-measurable function and

f∼ be the extension of f as Equation 3.4. Then
∫

E

f(s)∆s =

∫

E∼
f∼(s)ds (4.14)

where E∼ = E ∪ (
⋃
IE

(
ti, σ(ti))). (Cabada and Vivero 2004)

Proof We will approach to f(t) by a sequence of nonnegative ∆-measurable simple

functions {Sn}n∈N such that for all t ∈ T

i) 0 ≤ Sn(t) ≤ Sn+1(t) ≤ f(t) and

ii) lim
n→∞

Sn(t) = f(t).

We can extend the elements of this sequence as

i) 0 ≤ S∼n (t) ≤ S∼n+1(t) ≤ f∼(t) and

ii) lim
n→∞

S∼n (t) = f∼(t) since monotonicity stays the same.

By using Theorem 4.7,
∫

E

f(s)∆s = lim
n→∞

∫

E

Sn(s)∆s

= lim
n→∞

∫

E∼
S∼n (s)ds

=

∫

E∼
f∼(s)ds. 2

Definition 4.5 Let E ⊂ T be a ∆-measurable set and let f : T→ R be a ∆-measurable

function. We say that f is Lebesgue ∆-integrable on E if at least one of the elements
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∫
E

f+(s)∆s or
∫

E
f−(s)∆s is finite, where f+ and f− are the positive and negative part

of f respectively. In this case, we define the Lebesgue ∆-integral of f on E as
∫

E

f(s)∆s =

∫

E

f+(s)∆s−
∫

E

f−(s)∆s. (4.15)

Proposition 4.2 Let let f and g be real-valued ∆-integrable functions on a ∆-

measurable set E ⊂ T and let a be a real number. Then

a) af and f + g are ∆-integrable on E.

b)
∫

E
af(s)∆s = a

∫
E

f(s)∆s.

c)
∫

E
(f(s) + g(s))∆s =

∫
E

f(s)∆s +
∫

E
f(s)∆s.

d) If f(t) ≤ g(t) holds for each t ∈ E then,
∫

E
f(s)∆s ≤ ∫

E
g(s)∆s.

Proof As in (Royden 1988).

Remark 4.11 Note that Lebesgue integral has the same value on I = [a, b] , (a, b] , [a, b),

or (a, b). However, the integral with respect to µ∆, differs depending on endpoints.

Suppose that f is ∆-integrable on [a, b).

i)
∫

[a,b]

f(s)∆s =

∫

[a,b)∪{b}
f(s)∆s

=

∫

[a,b)

f(s)∆s +

∫

{b}
f(s)∆s

=

∫

[a,b)

f(s)∆s + f(b)µ(b).

ii)
∫

[a,b)

f(s)∆s =

∫

{a}∪(a,b)

f(s)∆s

=

∫

{a}
f(s)∆s +

∫

(a,b)

f(s)∆s

= f(a)µ(a) +

∫

(a,b)

f(s)∆s
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Thus
∫

(a,b)

f(s)∆s =

∫

[a,b)

f(s)∆s− f(a)µ(a).

iii)
∫

(a,b]

f(s)∆s =

∫

(a,b)∪{b}
f(s)∆s

=

∫

(a,b)

f(s)∆s +

∫

{b}
f(s)∆s

=

∫

[a,b)

f(s)∆s− f(a)µ(a) + f(b)µ(b).

Theorem 4.12 Let E ⊂ T − {maxT} be a ∆-measurable set, f : T → R be a ∆-

measurable function and f∼ be the extension of f as given in Equation 3.4. Then, f is

Lebesgue ∆-integrable on E if and only if f∼ is Lebesgue integrable on E∼ where E∼ is

defined by Remark 2.4. In that case, the following equality holds:
∫

E

f(s)∆s =

∫

E∼
f∼(s)ds. (4.16)

(Cabada and Vivero 2004)

Proof We begin with considering the equality
∫

E

f(s)∆s =

∫

E

f+(s)∆s−
∫

E

f−(s)∆s.

It is obvious that (f+)∼ = (f∼)+ and similarly (f−)∼ = (f∼)−. Substituting these

identities
∫

E

f(s)∆s =

∫

E

f+(s)∆s−
∫

E

f−(s)∆s

=

∫

E∼
(f+)∼(s)ds−

∫

E∼
(f−)∼(s)ds

=

∫

E∼
(f∼)+(s)ds−

∫

E∼
(f∼)−(s)ds

=

∫

E∼
f∼(s)ds. 2

Theorem 4.13 Let E ⊂ T − {maxT} be a ∆-measurable set. If f : T → R is ∆-

integrable on E, then
∫

E

f(s)∆s =

∫

E

f(s)ds +
∑
i∈IE

f(ti)µ(ti). (4.17)
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Proof We have
∫

E

f(s)∆s =

∫

E∼
f∼(s)ds and E∼ = E ∪ (

⋃
i∈IE

(ti, σ(ti))).

Using these identities
∫

E

f(s)∆s =

∫

E∼
f∼(s)ds =

∫

E∪Si∈IE
(ti,σ(ti))

f∼(s)ds

=

∫

E

f∼(s)ds +

∫
S

i∈IE
(ti,σ(ti))

f∼(s)ds

=

∫

E

f(s)ds +
∑
i∈IE

∫

(ti,σ(ti))

f(ti)ds

=

∫

E

f(s)ds +
∑
i∈IE

f(ti)µ(ti). 2

Theorem 4.14 (Approximation of ∆-Integral) Let f be an rd-continuous function on

an interval I ⊂ T and let {In} be a sequence of intervals such that for all In ⊂ I ,
∞⋂

n=1

In = {a} . Then

lim
n→∞

1

µ∆(In)

∫

In

f(s)∆s = f(a). (4.18)

Proof We will use the fact that
∞⋂

n=1

In = {a} implies {µ∆(In)} → µ(a), where µ denotes

the grainess function. We need to consider in two cases: where a is a right-dense point

and where a is a right-scattered point.

Suppose first a is a right-scattered point, then 4.18 is obvious from the definition

of integral.

Suppose now a is a right-dense point. For this case, f is continuous. By continuity,

for any ε > 0, there exists δ > 0 such that

|t− a| < δ ⇒ |f(t)− f(a)| < ε

Then

f(a)− ε < f(t) < f(a) + ε.

Integrating over any interval In ⊂ [a− δ, a + δ]∫

In

(f(a)− ε)∆s <

∫

In

f(s)∆s <

∫

In

(f(a) + ε)∆s

(f(a)− ε)

∫

In

∆s <

∫

In

f(s)∆s < (f(a) + ε)

∫

In

∆s

(f(a)− ε)µ∆(In) <

∫

In

f(s)∆s < (f(a) + ε)µ∆(In)

f(a)− ε <
1

µ∆(In)

∫

In

f(s)∆s < f(a) + ε
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−ε <
1

µ∆(In)

∫

In

f(s)∆s− f(a) < ε

| 1

µ∆(In)

∫

In

f(s)∆s− f(a)| < ε.

Whence

lim
n→∞

1

µ∆(In)

∫

In

f(s)∆s = f(a). 2

Remark 4.15 By using the definition of differentiation for right-dense points,

d

dt

∫

[a,t)

f(s)∆s = lim
c→∞

∫
[a,t+c)

f(s)∆s− ∫
[a,t)

f(s)∆s

c

= lim
n→0

1

c

∫

[t,t+c)

f(s)∆s

= lim
n→ 0

1

µ∆([t, t + c))

∫

[t,t+c)

f(s)∆s

= f(t).

By using the definition of differentiation for right-scattered points,

d

dt

∫

[a,t)

f(s)∆s =

∫
[a,σ(t))

f(s)∆s− ∫
[a,t)

f(s)∆s

µ(t)

=

∫
[t,σ(t))

f(s)∆s

µ(t)

=
f(t)µ(t)

µ(t)

= f(t).

As a result, provided that f is rd-continuous and bounded function on [a, b), the

classical method of evaluating
∫

f in terms of an antiderivative is applicable in the mea-

sure theory on time scale:
∫

[a,b)

f(s)∆s = F (b)− F (a)

where F is antiderivative of f , F ′(t) = f(t) for each t ∈ [a, b).

4.3. Relation Between Lebesgue ∆-Integral and Riemann ∆-Integral

Here is a comparison of the Lebesgue ∆-integral with the Riemann ∆-integral

which was established by Guseinov, (Guseinov 2003).

Theorem 4.16 Let [a, b) be a half closed bounded interval in T and f be a bounded real-

valued function on [a, b). If f is Riemann ∆-integrable from a to b, then f is Lebesgue
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∆-integrable on [a, b) and
∫ b

a
f(s)∆s =

∫
[a,b)

f(s)∆s, where the left hand side of the

equation is the Riemann ∆-integral and the right hand side of the equation is the Lebesgue

∆-integral.

Proof Suppose that f is Riemann ∆-integrable from a to b. Then, for each positive

integer k we can choose δk > 0, (δk → 0 as k → ∞ ) and a partition Pk : a = t
(k)
0 <

t
(k)
1 < ...t

(k)
n(k) = b of [a, b) such that Pk ∈ ℘δk

and U(f, Pk)− L(f, Pk) < 1/k. Hence

lim
k→∞

L(f, Pk) = lim
k→∞

U(f, Pk) =

∫ b

a

f(s)∆s. (4.19)

By replacing the partitions Pk with finer partitions if necessary, we can assume that for

each k partition Pk+1 is a refinement of the partition Pk. Let us set

m
(k)
i = inf{f(t) : t ∈ [t

(k)
i−1, t

(k)
i )}, M

(k)
i = sup{f(t) : t ∈ [t

(k)
i−1, t

(k)
i )} (4.20)

for i = 1, 2, ..., n(k) and define sequences (ϕk) and (φk) of functions on [a, b) as

ϕk(t) = m
(k)
i and φk(t) = M

(k)
i for t ∈ [t

(k)
i−1, t

(k)
i ), i = 1, 2, ..., n(k). (4.21)

Then (ϕk) is a non-decreasing and (φk) is a non-increasing sequences of simple ∆-

measurable functions with

ϕk ≤ ϕk+1, φk ≥ φk+1, ϕk ≤ f ≤ φk (4.22)
∫

[a,b)

ϕk(s)∆s = L(f, Pk),

∫

[a,b)

φk(s)∆s = U(f, Pk) (4.23)

Since f is bounded, the sequences (ϕk) and (φk) are bounded by 4.21 and 4.20. Taking

into account, the monotonicity 4.22 we conclude that there exist the limit functions

ϕ(t) = lim
k→∞

ϕk(t), φ(t) = lim
k→∞

φk(t), t ∈ [a, b). (4.24)

It follows from 4.22 that

ϕ(t) ≤ f(t) ≤ φ(t), t ∈ [a, b). (4.25)

The functions ϕ and φ are ∆-measurable as limits 4.24 of the ∆-measurable functions

ϕk and φk, respectively. Lebesgue’s dominated convergence theorem (see Theorem 4.8)

implies that ϕ and φ are Lebesgue ∆-integrable on[a, b) and

lim
k→∞

∫

[a,b)

ϕk(s)∆s =

∫

[a,b)

ϕ(s)∆s and lim
k→∞

∫

[a,b)

φk(s)∆s =

∫

[a,b)

φ(s)∆s (4.26)
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Therefore passing on to the limit in 4.23 as k →∞, we get
∫

[a,b)

ϕ(s)∆s =

∫

[a,b)

φ(s)∆s =

∫ b

a

f(s)∆s (4.27)

and we have ∫

[a,b)

[φ(s)− ϕ(s)]∆s = 0. (4.28)

Since in addition φ(s) − ϕ(s) ≥ 0 for all s in [a, b), 4.28 implies ϕ(s) = φ(s) for ∆-

almost every t in [a, b) So f(t) = ϕ(t) ∆-a.e. on [a, b). It follows that f is Lebesgue

∆-integrable, and the Lebesgue ∆-integral of f over [a, b) coincides with the Riemann

∆-integral of f from a to b. 2

The next theorem gives a Lebesgue Criterion for Riemann ∆-integrability.

Theorem 4.17 Let f be a bounded function defined on the half-closed bounded interval

[a, b) of T. Then f is Riemann ∆-integrable from a to b if and only if the set of all right-

dense points of [a, b) at which f is discontinuous is a set of ∆-measure zero. (Guseinov

2003)

Proof Suppose that f is Riemann ∆-integrable from a to b. For each positive integer k,

let a partition Pk of [a, b) and the functions ϕk, φk, ϕ and φ be defined as in the proof of

Theorem 4.16. Let us set

Λ =
∞⋃

k=1

Pk, Λrd = {t ∈ [a, b) : t ∈ Λ and t is right-dense}. (4.29)

G = {t ∈ [a, b) : f is discontinuous at t}, Grd = {t ∈ G : t is right-dense} (4.30)

A = {t ∈ [a, b) : ϕ(t) 6= φ(t)}. (4.31)

Assume that t is a point in [a, b) such that

ϕ(t) = f(t) = φ(t) (4.32)

and that t is not in Λ. Then f is continuous at t, otherwise there would exist ε > 0 and a

sequence (tj), lim tj = t, such that |f(tj)−f(t)| > ε for each j. But then φ(t) ≥ ϕ(t)+ε

which contradicts the assumption 4.32. Note that for each right-scattered point t of [a, b),

4.32 holds. Indeed, it is easy to see that all right-scattered points of [a, b) belong to Λ

(that is, they are partition points). Therefore for each right-scattered point t of [a, b)

and all sufficiently large k, we have ϕk(k) = φk(t) = f(t) and hence ϕ(t) = φ(t).

Consequently,

Grd ⊂ (A ∪ Λrd) (4.33)
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Further, µ∆(A) = 0 and µ(Λrd) = 0 by the fact that Λ and therefore Λrd, is at most

countable and that each right-dense point has ∆-measure zero so from 4.33 we get that

µ∆(Grd) = 0 and the first part of the theorem is proved. Conversely, suppose that the

set of all right-dense points of [a, b) at which f is discontinuous is of ∆-measure zero:

µ∆(Grd) = 0. For each positive integer k, we choose δk > 0 (δk → 0 as k → ∞) and

a partition Pk : a = t
(k)
0 < t

(k)
1 < ... < t

(k)
n(k) = b of [a, b) such that Pk∈ ℘δk

and that

Pk+1 is a refinement of Pk. Further, let ϕk, φk, ϕ, φ be defined as in the proof of Theorem

4.16 so for each k we have ϕk ≤ ϕk+1, φk ≥ φk+1, ϕk ≤ f ≤ φk and ϕ(t) = lim
k→∞

ϕk,

φ(t) = lim
k→∞

φk, ϕ(t) ≤ f(t) ≤ φ(t), t ∈ [a, b).

Now suppose that t ∈ [a, b) is a right-dense point and that f is continuous at t.

Then, given ε > 0, there exists δ > 0 such that sup f − inf f < ε, where the supremum

and infimum are taken over (t − δ, t + δ) = {s ∈ [a, b) : t − δ < s < t + δ}. For all

sufficiently large k, a subinterval of Pk containing t will be lain in (t − δ, t + δ) and so

φk(t)− ϕk(t) < ε. But ε is arbitrary so ϕ(t) = φ(t). Next, at each right-scattered point t

of [a, b) we have, as above in the first part of the proof, ϕ(t) = φ(t).

So we have shown that ϕ(t) = φ(t) provided either t is right-dense and f is

continuous at t or right scattered. Therefore, we have the inclusion A ⊂ Grd where A and

Grd defined by 4.30 and 4.31, respectively. Hence, since µ∆(Grd) = 0 by our assumption,

we get µ∆(A) = 0. Consequently, ϕ(t) = φ(t) holds ∆-a.e on [a, b). This implies that
∫
[a,b)

ϕ(s)∆s =
∫
[a,b)

φ(s)∆s and therefore, we get lim
k→∞

L(f, Pk) = lim
k→∞

U(f, Pk). This

shows that f is Riemann ∆-integrable on [a, b). 2

Proposition 4.3 Let f : [a, b) → R be a monotone function. Then it is Lebesgue ∆-

integrable.

Proof Suppose first that f is an increasing function. It is convenient to show f is Riemann

∆-integrable so is Lebesgue ∆-integrable. We need to show that for any partition P ∈ ℘δ

as given in Definition 4.1,

U(f, P )− L(f, P ) < ε for every ε > 0.

where

U(f, P ) =
∑
ti∈P

Mi(ti − ti−1) and L(f, P ) =
∑
ti∈P

mi(ti − ti−1)

with

Mi = sup{f(t) : t ∈ [ti−1, ti)} and mi = inf{f(t) : t ∈ [ti−1, ti)}
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Thus,

U(f, P )− L(f, P ) =
∑
ti∈P

(Mi −mi)(ti − ti−1).

Now we need to consider two cases: where ti−1 is a right-dense point and where ti−1 is a

right-scattered point for the partition P ∈ ℘δ, δ > 0. For ti − ti−1 < δ, ti−1 is understood

a right-dense point, for ti − ti−1 > δ, ti−1 is then a right-scattered point

∑
ti∈P

(Mi −mi)(ti − ti−1) =
∑

ti∈(DR∩P )

(Mi −mi)(ti − ti−1)

+
∑

ti∈(SR∩P )

(Mi −mi)(ti − ti−1).

i) For t ∈ SR ∩ P , then Mi = mi = f(ti−1). Thus

∑

ti∈(SR∩P )

(Mi −mi)(ti − ti−1) =
∑

ti∈(SR∩P )

(f(ti−1)− f(ti−1))(ti − ti−1) = 0

ii) For t ∈ DR ∩ P , then Mi = f(t−i ) = lim
t→ti

f(t) and mi = f(ti−1). Thus

∑
ti∈DR∩P

(Mi −mi)(ti − ti−1) =
∑

ti∈(DR∩P )

(f(t−i )− f(ti−1))(ti − ti−1).

Whence

∑
ti∈P

(Mi −mi)(ti − ti−1) =
∑

ti∈(DR∩P )

(f(t−i )− f(ti−1))(ti − ti−1)

≤
∑

ti∈(DR∩P )

(f(ti)− f(ti−1))(ti − ti−1)

where ti − ti−1 < δ for any δ > 0, so

≤
∑

ti∈(DR∩P )

(f(ti)− f(ti−1))δ

Taking δ as

δ =
ε∑

ti∈(DR∩P )(f(ti)− f(ti−1))

then we get

U(f, P )− L(f, P ) < ε

which implies Riemann ∆-integrability and Lebesgue ∆-integrability as well, this ends

the proof. 2
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CHAPTER 5

NOTES ON THE MEASURE THEORY ON TIME

SCALE

In this chapter we will introduce Lebesgue-Stieltjes measure adapted to time

scales and connect the new structure with the notion of classical Lebesgue-Stieltjes mea-

sure. We will begin with the concept of the Riemann-Stieltjes ∆-integral. The Dutch

mathematician Thomas Stieltjes (1856-1894) studied on integrating one function with re-

spect to another function. His ideas were originally developed as an extension of the

Riemann integral, known as the Riemann-Stieltjes integral. The subsequent combina-

tion of his ideas with the measure theoretic approach of Lebesgue has resulted in a very

powerful and flexible concept of integration. (Carter and Brunt 2000)

5.1. Riemann-Stieltjes-∆ Integral

Definition 5.1 Let T be a time scale, [a, b) ⊂ T with a ≤ b. A partition P of [a, b) is a

finite ordered set of points P = {t0, t1, ...tn} such that a = t0 < t1 < ... < tn = b. A

partition P ′ of [a, b) is said to be finer than P if P ⊆ P ′. Let α : T→ R is an increasing

function. The symbol ∆αk(t) denotes the difference ∆αk(t) = α(tk)(t) − α(tk−1)(t) so

that
n∑

k=1

∆αk(t) = α(b)− α(a) where α : T→ R.

A sum of the form

S(P, f, α) =
n∑

k=1

f(ξk)∆αk(t)

is called a Riemann-Stieltjes ∆-sum of f with respect to α where ξi ∈ [tk−1, tk).

We say that f is Riemann ∆-integrable with respect to α if for every ε > 0, there

exists δ > 0 with P ∈ ℘δ such that

|S(P, f, α)− A| < ε for every choice of points ξk ∈ [tk−1, tk).

The unique number A is the Riemann ∆-integral of f from a to b with respect to α de-

noted by
∫ b

a
f(s)∆α(s). The functions f and α are referred to as the integrand and the
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integrator respectively.

Remark 5.1 For the special case α(t) = t, then the integral turns into Riemann ∆-

integral and denoted by
∫ b

a
f(s)∆s.

Remark 5.2 Suppose that T = hZ, let f : [a, b) → R, be a bounded function, α :

[a, b) → R be an increasing bounded function. Then the unique partition P ∈ ℘δ is

a = t0 < t1 = a + h < t2 = a + 2h < ... < tn = a + nh = b.

Then,
∫ b

a

f(s)∆α(s) =

∫ a+nh

a

f(s)∆α(s)

=

∫ a+h

a

f(s)∆α(s) +

∫ a+2h

a+h

f(s)∆α(s) + ... +

∫ a+nh

a+(n−1)

f(s)∆α(s)

= f(a)
{
α(a + h)− α(a)

}
+ f(a + h)

{
α(a + 2h)− α(a + h)

}
+ ...

+f(a + (n− 1)h)
{
α(a + nh)− α(a + (n− 1)h)

}

=
n∑

k=1

f
(
a + (k − 1)h

){
α(a + kh)− α

(
a + (k − 1)h

)}
.

Remark 5.3 Suppose that α : [a, b) → R, α(t) = c, c is any constant. Then for any

partition ∫ b

a

f(s)∆α(s) = 0 since for any k, ∆αk(t) = 0.

Remark 5.4 Suppose that f : [a, b) → R, f(t) = c, where c is any constant. Then for

any partition
∫ b

a

f(s)∆α(s) = c

∫ b

a

∆α(s)

= c lim
n→∞

n∑

k=1

{
α(tk)− α(tk−1)

}

= c lim
n→∞

{
α(t1)− α(t0) + α(t2)− α(t1) + ... + α(tk)− α(tk−1)

}

= c lim
n→∞

n∑

k=1

{
α(tk)− α(t0)

}

= c
(
α(b)− α(a)

)
.

5.2. Lebesgue-Stieltjes ∆-Measure

In this section, we define a new concept Lebesgue-Stieltjes ∆ and ∇-measure

and by using this measure, we will define an integral adapted to time scale specifically
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Lebesgue-Stieltjes ∆-integral. We will also establish the relation between Lebesgue-

Stieltjes measure and Lebesgue-Stieltjes ∆-measure and as a result, between Lebesgue-

Stieltjes integral and Lebesgue-Stieltjes ∆- integral. The original Lebesgue-Stieltjes mea-

sure is defined by introducing a premeasure µ on all intervals of R as

i) µ([a, b)) = α(b−)− α(a−),

ii) µ([a, b]) = α(b+)− α(a−),

iii) µ((a, b]) = α(b+)− α(a+),

iv) b > a, µ((a, b)) = α(b−)− α(a+),

where α : R→ R is an increasing function and

α(a−) = lim
t→a−

α(t) and α(a+) = lim
t→a+

α(t).

Our aim is to generalize this measure to time scales. We will begin with defining

a premeasure mα
1 : T → [0, +∞] on =α, the family of all intervals of T by using a

monotone increasing function α : T→ R, taking domain into account, as

i) mα
1 ([a, b)) = α(b−)− α(a−),

ii) mα
1 ([a, b]) = α(σ(b)+)− α(a−),

iii) mα
1 ((a, b]) = α(σ(b)+)− α(σ(a)+),

and if b > σ(a),

iv) mα
1 ((a, b)) = α(b−)− α(σ(a)+).

The open interval (a, σ(a)) is empty set and we define mα
1 (a, σ(a)) to be zero. Ob-

viously, [a, a) and (a, a] are also empty sets and have premeasures zero but it is seen from

the definition and need not be specified separately. It is obvious that mα
1 is a countably

additive measure on =α.

The Lebesgue-Stieltjes ∆-outer measure (mα
1 )∗ associated with α is the function

defined on all subsets of T by

(mα
1 )∗(E) = inf

∞∑
i=1

mα
1 (In)
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provided that there exists at least one finite or countable covering system of intervals

In ⊂ =α of E as E ⊂
∞⋃

n=1

In. If there is no such covering of E we say (mα
1 )∗(E) = ∞.

Let A ⊂ T. If

(mα
1 )∗(A) = (mα

1 )∗(A ∩ E) + (mα
1 )∗(A ∩ Ec)

holds, then we say E is (mα
1 )∗-measurable (or α∆). M((mα

1 )∗), the family of all (mα
1 )∗-

measurable subset of T forms a σ-algebra. We restrict (mα
1 )∗ to M((mα

1 )∗) and denote

by µα
∆. This is the Lebesgue-Stieltjes ∆-measure generated by α.

Remark 5.5 All intervals on T are α∆-measurable since any interval can be covered

by itself which is the smallest cover, thus for any interval I, premeasure mα
1 (I) and α∆-

measure µα
∆(I) coincide.

i) µα
∆([a, b)) = α(b−)− α(a−),

ii) µα
∆([a, b]) = α(σ(b)+)− α(a−),

iii) µα
∆((a, b]) = α(σ(b)+)− α(σ(a)+),

iv) b > σ(a), µα
∆((a, b)) = α(b−)− α(σ(a)+).

Proposition 5.1 Let {c} ⊂ T. Then it is µα
∆-measurable and

µα
∆({c}) = µα

∆([c, c]) = α(σ(c)+)− α(c−). (5.1)

Proof It is obvious from Remark 5.5 and single point set is covered by itself as closed

interval, which is the smallest cover. 2

Any choice of interval while evaluating the α-measure of a single point set gives

us different results. Although [c, c] and [c, σ(c)) has the same ∆-measure, it differs while

considering α∆-measure, because in α∆-measure, we concern about one sided limits of

an increasing function α, at the endpoints of given intervals. Furthermore, theory does

not contradict. Considering these two intervals: [c,c] and [c, σ(c)), corresponding α∆-

measures:

µα
∆([c, c]) = α(σ(c)+)− α(c−). (5.2)

µα
∆([c, σ(c))) = α(σ(c)−)− α(c−). (5.3)
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Comparing the right hand side of the equalities: µα
∆([c, c]) ≥ µα

∆([c, σ(c))). Taking into

monotone property of measure, the reason is

[c, c] ⊇ [c, σ(c)). (5.4)

In order to show Inequality 5.4, we need to consider two cases: where c is a right-scattered

and where c is a right-dense point of interior of T. Let c is a right-scattered point, then

σ(t) > t, thus [c, c] = [c, σ(c)). Let c is a right-dense point, then σ(t) = t, thus [c, σ(c))

corresponds the empty set which is included by any other set, thus [c, c] ⊇ [c, σ(c)).

Summarizing these two results, we obtain [c, c] ⊇ [c, σ(c)), consequently µα
∆([c, c]) ≥

µα
∆([c, σ(c))).

Remark 5.6 From Proposition 5.1, is it seen why ∆-measure of maxT is infinity. The

reason is that we are not able to approach to maxT from the right hand side. Further-

more we are not allowed to take the limit of the minimum point of T from the left hand

side. Thus, we say α∆-measures of maximum and minimum points of a time scale and

also α∆-measure of any set containing at least one of them are undefined (∞).

However, up to now, ∆-measure of the minimum point of a bounded below time

scale has been introduced as an ordinary interior point of the time scale because the

formula µ∆({t0}) = σ(t0) − t0 stays the same but extending theory, replacing measure

with respect to an increasing function, it is seen that a single point set has α∆-measure

α(σ(t0)
+) − α(t−0 ) and because of the fact that the limit from left hand side at t0 is

undefined, we finally get this result.

Let T = R, then α∆ and α measures coincide since for all t ∈ T, σ(t) = t. Let

T = Z, then

i) µα
∆([a, b)) = α(b)− α(a),

ii) µα
∆([a, b]) = α(b + 1)− α(a),

iii) µα
∆((a, b]) = α(b + 1)− α(a + 1),

iv) For b > a + 1, µα
∆((a, b)) = α(b)− α(a + 1).

Here we are not interested in right-sided and left-sided limits because all functions defined

on Z is continuous by Proposition 3.4.

50



Let α : T → T, α(t) = t, then α∆-measure turns in to ∆-measure introduced by

Guseinov. (Guseinov 2003)

i) µα
∆([a, b)) = b− a,

ii) µα
∆([a, b]) = σ(b)− a,

iii) µα
∆((a, b]) = σ(b)− σ(a),

iv) For b > σ(a), µα
∆((a, b)) = b− σ(a).

Let us introduce the concept of Stieltjes∇-measure on time scales. Let α : T→ R

be a monotone increasing function. We define a set function mα
2 on the family of all

intervals of T denoted by =α as follows:

i) mα
2 ([a, b)) = α(ρ(b)−)− α(ρ(a)−),

ii) mα
1 ([a, b]) = α(b+)− α(ρ(a)−),

iii) mα
1 ((a, b]) = α(b+)− α(a+),

For a < ρ(b),

iv) mα
1 ((a, b)) = α(ρ(b)−)− α(a+),

where The Lebesgue-Stieltjes ∇-outer measure (mα
2 )∗ of a set E associated with α is

the function defined on all subsets of T by (mα
2 )∗(E) = inf

∞∑
i=1

(mα
2 )(In) provided that

there exists at least one finite or countable covering of intervals In ⊂ =α of E such that

E ⊂
∞⋃

n=1

In. If there is no such covering of E, we say that (mα
2 )∗(E) = ∞.

By restriction of the outer measure to the family of all α∇-measurable sets we

obtain a countably additive measure denoted by µα
∇. Similarly, any set includes maximum

or minimum of a time scale has α∇-measure infinity.

Remark 5.7 All intervals on T are α∇-measurable since any interval can be covered

by itself which is the smallest cover, thus for any interval I, premeasure mα
2 (I) and α∇-

measure µα
∇(I) coincide so

i) µα
∇([a, b)) = α(ρ(b)−)− α(ρ(a)−),

ii) µα
∇([a, b]) = α(b+)− α(ρ(a)−),
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iii) µα
∇((a, b]) = α(b+)− α(a+),

For a < ρ(b),

iv) µα
∇((a, b)) = α(ρ(b)−)− α(a+).

Let T = R, then α∇-measure and α-measure coincide since for all t ∈ T, ρ(t) = t.

Let T = Z, then,

i) µα
∇([a, b)) = α(b− 1)− α(a− 1),

ii) µα
∇([a, b]) = α(b)− α(a− 1),

iii) µα
∇((a, b]) = α(b)− α(a),

iv) For b > a + 1, µα
∇((a, b)) = α(b− 1)− α(a).

Let α : T → T, α(t) = t, then α∆-measure turns in to ∆-measure introduced by

Guseinov. (Guseinov 2003)

i) µα
∇([a, b)) = ρ(b)− ρ(a),

ii) µα
∇([a, b]) = b− ρ(a),

iii) µα
∇((a, b]) = b− a,

iv) For b > σ(a), µα
∇((a, b)) = ρ(b)− a.

Proposition 5.2 Let {c} ⊂ T. Then it is µα
∇-measurable and

µα
∇({c}) = µα

∇([c, c]) = α(c+)− α(ρ(c)−). (5.5)

Proof Proof is obvious from Remark 5.7.

Example 5.8 Let T = [0, 3] ∪ {4} ∪ [6, 9] and

α(t) =





3− e−t if 0 ≤ t ≤ 1

4 if 1 < t < 3

2t + 1 if 3 ≤ t < 7

t2 if 7 ≤ t ≤ 9

Find the α∆-measure and α∇-measure of the following sets:

{4}, [3, 6), (8, 9], {3}, {7}, [0, 1).
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Solution. Let us first consider the α∆-measures of the sets.

a) µα
∆({4}) = µα

∆([4, 4]) = α(σ(4)+)− α(4−) = α(6+)− α(4−) = 4.

b) µα
∆([3, 6)) = α(6−)− α(3−) = 9.

c) µα
∆((8, 9]) = α(σ(9)+)−α(σ(8)−) = α(9+)−α(8−) = ∞ since α(9+) is not defined.

d) µα
∆({3}) = µα

∆([3, 3]) = α(σ(3)+)− α(3−) = α(4+)− α(3+) = 3.

e) µα
∆([7, 8]) = α(σ(8)+)− α(7−) = α(8+)− α(7−) = 49.

f) µα
∆([0, 1)) = α(1−)− α(0−) = ∞ since α(0−) is not defined.

Now, let us consider α∇-measures of the given sets.

a) µα
∇({4}) = µα

∇([4, 4]) = α(4+)− α(ρ(4)−) = α(4+)− α(3−) = 5.

b) µα
∇([3, 6)) = α(ρ(6)−)− α(ρ(3)−) = α(4−)− α(3−) = 5.

c) µα
∇((8, 9]) = α(9+)− α(8+) = ∞ since α(9+) is not defined.

d) µα
∇({3}) = µα

∇([3, 3]) = α(3+)− α(ρ(3)−) = α(3+)− α(3−) = 3.

e) µα
∇([7, 8]) = α(8+)− α(ρ(7)−) == α(8+)− α(7−) = 39.

f) µα
∇([0, 1)) = α(ρ(1)−)− α(ρ(0)−) = ∞ since α(ρ(0)−) is not defined.

5.3. Lebesgue-Stieltjes Measurable Sets and Lebesgue-Stieltjes ∆-

Measurable Sets

In order to compare Lebesgue-Stieltjes measurable sets and Lebesgue-Stieltjes ∆-

measurable sets, we need to extend α because α-measure of intervals (ti, σ(ti)) for ti is

any right-scattered point is not defined. Obviously, α(σ(ti)
−) which is defined on T and

equals to α(σ(ti)) since any function is left continuous at left-scattered point, also α(t+i )

is defined on T and equals to α(ti) since any function is right continuous at right-scattered

points, the interval seems to have α-measure α(σ(ti)) − α(ti). Although it is practically

correct, the approach is theoretically wrong because of the fact that for α-measure of

(ti, σ(ti)), α has to be defined on a set that includes this interval. Thus, we need to extend
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α. The extension could be any function whose reduction to T corresponds α, monotone

everywhere and continuous at scattered points. A proper choice would be as follows:

α∼(t) =





α(t) if t ∈ T
α(σ(ti))− α(ti)

σ(ti)− ti
t if t ∈ (ti, σ(ti))

(5.6)

which is a linear function at each (ti, σ(ti)), where tis are right-scattered points and con-

tinuous not only at right-scattered, but also at left-scattered points provided that we are

able to write α∼(t+i ) = α(ti) where ti is a right-scattered point and α∼(t−i ) = α(ti) where

ti is a left-scattered point.

Remark 5.9 When we consider α-measure, in order to extend α we will follow this proce-

dure, but for any other functions extension, the previous method (see Equation 3.4) stays

the same.

Remark 5.10 Although we know the usual Lebesgue measure of any measurable sub-

sets of intervals of the form (ti, σ(ti)), we are not able to evaluate Lebesgue-Stieltjes

∆-measure of such subsets since even any point’s α-measure depends on a function that

we generate. Thus, we can just find the relation between α-measure and α∆-measure of a

subset of T.

Proposition 5.3 Let [a, b) be a half closed bounded interval of T with a, b ∈ T −
{minT}. Then

i) µα
∆([a, b)) = µα∼([a, b)) +

∑
i∈I[a,b)

(α(σ(ti))− α(ti)).

ii) µα
∆([a, b)) = µα∼([a, b)∼).

where [a, b)∼ is the extension of set as given in Remark 2.4 and µα∼ is the Lebesgue-

Stieltjes measure generated by α∼.

Proof

i) Suppose that {t1, t2, ...t, b} ⊂ [a, b)∩SR = I[a,b) such that a ≤ t1 ≤ t2 ≤ ... ≤ b. Let t

be the largest element of the sequence of right-scattered points. Then [a, b) can be written
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as follows:

[a, b) = [a, t1] ∪ [σ(t1), t2] ∪ ... ∪ [t, b), so

µα∼([a, b)) = µα∼([a, t1] ∪ [σ(t1), t2] ∪ ... ∪ [t, b))

= µα∼(
[a, t1]

)
+ µα∼(

[σ(t1), t2]
)

+ ... + µα∼(
[t, b)

)

= α∼(t+1 )− α∼(a−) + α∼(t+2 )− α∼(σ(t1)
−) + ... + α∼(b−)− α∼(σ(t)−)

= α∼(b−)− α∼(a−)−
∑

i∈I[a,b)

(α∼(σ(ti)
−)− α∼(t+i ))

= α(b−)− α(a−)−
∑

i∈I[a,b)

(α(σ(ti))− α(ti)).

Thus, we obtain

µα∼([a, b)) = µα
∆([a, b))−

∑
i∈I[a,b)

(α(σ(ti))− α(ti)).

ii) (α(σ(ti))− α(ti)) = (α(σ(ti)
−)− α(ti)

+) = µα∼((ti, σ(ti))),

so µα∼([a, b))−
∑

i∈I[a,b)

(α(σ(ti))− α(ti)) = µα∼([a, b)∼), and we get the desired re-

sult. 2

Remark 5.11 Obviously we can generalize Proposition 5.3 to any α∆-measurable set

E ⊂ T− {maxT, minT} as

i) µα
∆(E) = µα∼(E) +

∑
i∈IE

(α(σ(ti))− α(ti)).

ii) µα
∆(E) = µα∼(E∼).

5.4. Lebesgue-Stieltjes ∆-Integral

We will begin with considering Lebesgue-Stieltjes ∆-integral of a simple function.

Definition 5.2 Let T be a time scale, α : T → R be an increasing function, µα
∆ be

the Lebesgue-Stieltjes ∆-measure defined on T, S : T → R be a nonnegative α∆-

measurable simple function such that S(t) =
n∑

i=1

aiχAi
where Ais are pairwise disjoint

α∆-measurable sets with Ai = {t : S(t) = ai}. Then we define Lebesgue-Stieltjes ∆-

integral of S on a α∆-measurable set E as
∫

E

S(s)∆α(s) =
n∑

i=1

aiµ
α
∆(Ai ∩ E). (5.7)

55



If for some k, ak = 0 and µα
∆(Ak ∩ E) = ∞, we define akµ

α
∆(Ak ∩ E) = ∞.

Example 5.12 Let α and T be defined in Example 5.8. Let

S1(t) =





1 if 0 ≤ t ≤ 3

4 if 3 < t ≤ 9

and let

S2(t) =





1 if 0 ≤ t < 3

4 if 3 ≤ t ≤ 9.

Evaluate the integral of S1 and S2 on [1, 8] with respect to α and compare the results.

Solution. [0, 3] ∩ [1, 8] = [1, 3] and (3, 9] ∩ [1, 8] = (3, 8] and α∆-integral of S1 on [1, 8]

is
∫

[1,8]

S1(s)∆α(s) = 1.µα
∆([1, 3]) + 4.µα

∆((3, 8])

where

µα
∆([1, 3]) = α(σ(3)+)− α(1−)

= α(4+)− α(1−)

= 9− (3− e−1)

= 6 + e−1

and

µα
∆((3, 8]) = α(σ(8)+)− α(σ(3)+)

= α(8+)− α(σ(3)+)

= 64− 9

= 55.

Thus, we have
∫

[1,8]

S1(s)∆α(s) = 1.(6 + e−1) + 4.55

= 226 + e−1.
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[0, 3) ∩ [1, 8] = [1, 3) and [3, 9] ∩ [1, 8] = [3, 8] and from the definition,

the α∆-integral of S2 on [1, 8] is
∫

[1,8]

S2(s)∆α(s) = 1.µα
∆([1, 3)) + 4.µα

∆([3, 8]).

where

µα
∆([1, 3)) = α(3−)− α(1−)

= 4− (3− e−1)

= 1 + e−1

and

µα
∆([3, 8]) = α(σ(8)+)− α(3−)

= α(8+)− α(3−)

= 64− 4

= 60.

Thus,
∫

[1,8]

S1(s)∆α(s) = 1.(1 + e−1) + 4.60

= 241 + e−1.

Although these two simple functions are nearly the same, the reason of the difference of

integrals is the change of the discontinuity point.

Lemma 5.13 Let E be an α∆-measurable set of T−{maxT, , minT}, let S : T→ R be

a simple function with S(t) =
n∑

i=1

aiχAi
where Ais are pairwise disjoint α∆-measurable

sets with Ai = {t : S(t) = ai} and S∼ =
n∑

i=1

aiχA∼i be the extension of S as Equation 3.4

and A∼
i and E∼

i be the extensions of Ai and Ei respectively as in Remark 2.4, α∼ be the

extension of α as in Equation 5.6 and corresponding measures be denoted by µα∼ and µα
∆

usual Lebesgue-Stieltjes measure and Lebesgue-Stieltjes ∆-measure respectively. Then
∫

E

S(s)∆α(s) =

∫

E∼
S∼(s)dα∼(s).
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Proof We will use the fact that for each ci, S(t) = ci for t ∈ Ai, then S∼(t) = ci for

t ∈ A∼
i . Furthermore, µα

∆(Ai ∩ E) = µα∼(A∼
i ∩ E∼) = µα∼(Ai ∩ E)∼. Multiplying by

ai and summing from i = 1 to i = n we have
n∑

i=1

aiµ
α
∆(Ai ∩ E) =

n∑
i=1

aiµ
α∼(Ai ∩ E)∼.

We get the integral of S(t) on measurable set E with respect to α on the left hand side

of the equation and the integral of S∼(t) on measurable set E∼ with respect to α∼ on the

right hand side of the equation. Thus we get
∫

E

S(s)∆α(s) =

∫

E∼
S∼(s)dα∼(s).

We know that if a set A ⊂ T is α∆-measurable, then A is α-measurable. 2

Definition 5.3 Let E ⊂ T be an α∆-measurable set and let f : T → [0, +∞] be an

α∆-measurable function. The Lebesgue-Stieltjes ∆-integral of f on E is defined as
∫

E

f(s)∆α(s) = sup

∫

E

S(s)∆α(s)

where the supremum is taken over all α∆-measurable nonnegative simple functions S

such that S ≤ f defined on T.

The next lemma exhibits the Lebesgue-Stieltjes integral and Lebesgue-Stieltjes

∆-integral of functions. Since the proof is similar to comparison of Lebesgue ∆-integral

and usual Lebesgue integral we do not give the proof.

Lemma 5.14 Let E ⊂ T− {maxT, minT} be an α∆-measurable set, f : T→ [0, +∞]

be an α∆-measurable function and f∼ be the extension of f as in Equation 3.4. Then
∫

E

f(s)∆α(s) =

∫

E∼
f∼(s)dα(s)

where E∼ denotes the set defined in Remark 2.4.

Definition 5.4 Let E ⊂ T be a α∆-measurable set and let f : T → R be a α∆-

measurable function. We say that f is Lebesgue-Stieltjes ∆-integrable on E if at least

one of the elements
∫

E
f+(s)∆α(s) or

∫
E

f−(s)∆α(s) is finite, where the positive and

negative parts of f , f+ and f− respectively. In this case, we define the Lebesgue-Stieltjes

∆-integral of f on E as
∫

E

f(s)∆α(s) =

∫

E

f+(s)∆α(s)−
∫

E

f−(s)∆α(s).
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Theorem 5.15 Let E ⊂ T− {maxT, minT} be an α∆-measurable set. If f : T→ R is

α∆-integrable on E, then
∫

E

f(s)∆α(s) =

∫

E

f(s)dα(s) +
∑
i∈IE

f(ti)(α(σ(ti))− α(ti))

with IE denotes the set of indices of the right-scattered points of E.

Proof
∫

E∼
f∼(s)dα∼(s) =

∫

E∪S(ti,σ(ti))

f∼(s)dα∼(s)

=

∫

E

f∼(s)dα∼(s) +

∫
S

(ti,σ(ti))

f∼(s)dα∼(s)

=

∫

E

f(s)dα(s) +
∑
i∈IE

∫

(ti,σ(ti))

f(ti)dα∼(s)

=

∫

E

f(s)dα(s) +
∑
i∈IE

f(ti)(α(σ(ti))− α(ti)).

and we conclude that by Lemma 5.14,
∫

E

f(s)∆α(s) =

∫

E

f(s)dα(s) +
∑
i∈IE

f(ti)(α(σ(ti))− α(ti)). 2

59



CHAPTER 6

CONCLUSION

The goal of this study is to adapt basic concepts of measure theory to time scales.

For this purpose, we began with expanding three basic papers on this subject. We have

tried to make the idea of the related papers more general. We have made a specific study

on ∆-measurable functions which did not take place on these papers.

These works inspired us to adapt another concept known as Stieltjes measure to

time scales. In these thesis, we have improved a new concept Stieltjes measure on time

scales, which is general form of measure on time scales. Lebesgue-Stieltjes measure

is a general form of classical Lebesgue measure so Stieltjes measure adapted to time

scales had to be a general form of measure on time scales. Thus, we have constructed a

new measure, depending on an increasing function α, which coincides with the classical

Lebesgue-Stieltjes measure, taking time scale as real numbers and which coincides with

Lebesgue measure on time scales, which was introduced by Guseinov, taking α as the

identity function defined on the same time scale.

It was known that the maximum point of a time scale, or any ∆-measurable set

containing this maximum point is infinity. Generalizing the measure, we have found out

that, not only the measure of the maximum, but also the measure of the minimum point

of a time scale or the measure of any ∆-measurable set containing this minimum point is

undefined which was not seen on Lebesgue measure on time scales.

With the help of this new structure, we have constructed an integral, Lebesgue-

Stieltjes integral on time scales. Moreover, we have established the relationship between

these two integrals, classical Lebesgue-Stieltjes integral and the Lebesgue-Stieltjes inte-

gral by using similar idea of Cabada and Vivero.
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Ankara).

Guseinov S. G. and Kaymakcalan B., 2002. ”Basics on Riemann Delta and Nabla Inte-
gration on Time Scales”, J. Difference Equations Appl., No. 8, pp. 1001-1017.

Guseinov, S.G., 2003. ”Integration on Time Scales”, Elseiver Academic Press, No. 285,
pp. 107-127.

Guseinov S. G. and Bohner M., 2003. ”Riemann and Lebesgue Integration”, Advances
in Dynamic Equations on Time Scales, pp. 117-163.

Roussas, G. G., 2004. ”An Introduction to Measure Theoretic Probability”, (Elseiver
Academic Press, California).

Royden, H.L., 1988. ”Real Analysis”, (Macmillan, New York).

Rudin, W., 1987. ”Real and Complex Analysis”, (McGraw-Hill, New York).

Rzezuchowski, T., 2005. ”A Note on Measures on Time Scales”,Demonstratio Mathemat-
ica, Vol.38, No. 1 pp. 79-84.

61


