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ABSTRACT 
 

3D RECONSTRUCTION USING A SPHERICAL SPIRAL SCAN 
CAMERA 

 

Construction of 3D models representing industrial products/objects is commonly 

used as a preliminary step of production process. These models are represented by a set 

of points which can be combined by planar patches (i.e. triangulation) or by smooth 

surface approximtions. In some cases, we may need to construct the 3D models of real 

objects. This problem is known as the 3D reconstruction problem which is one of the 

most important problems in the field of computer vision. 

 In this thesis, a sytem has been developed to transform images of real objects 

into their 3D models automatically. The system consists of a PC, an inexpensive camera 

and an electromechanical component. The camera attached to this component moves 

around the object over a spiral trajectory and observes it from different view angles. At 

the same time, feature points of object surface are tracked using a tracking algorithm 

over object images. Then tracked points are reconstructed in 3D space using a stereo 

vision technique. A surface approximation is fitted to this 3D point set as a last step in 

the process. Open source “Intel®-OpenCV”  C library is used both in image capturing 

and in image processing. 
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ÖZET 
 

KÜRESEL SP�RAL TARAYICI KAMERA �LE 3B GER�ÇATIM 

 

 Endüstriyel ürünlerin/nesnelerin 3B modellerinin olu�turulması genellikle üretim 

sürecinin ilk adımı olarak kullanılmaktadır. Bu modeller noktalar kümesiyle gösterilir 

ve bu noktalar üçgen gibi düzlemsel elemanlarla veya düzgün yüzey yakla�ımlarıyla  

birle�tirilir. Ancak bazı durumlarda gerçek nesnelerin 3B modellerini olu�turmamız 

gerekebilir. Bu problem 3B geriçatım problemi olarak bilinir ki; bu problem bilgisayarla 

görme alanının en önemli problemlerinden biridir. 

 Bu tezde gerçek nesnelerin görüntülerinden 3B modellerine otomatik geçi�i 

sa�layan bir 3B geriçatım sistem geli�tirilmi�tir. Sözkonusu sistem bir PC, dü�ük 

maliyetli bir kamera ve elektromekanik bir parçadan olu�maktadır. Elektromekanik 

parçaya ba�lı kamera nesne etrafında spiral bir yörüngede hareket ettirilerek nesneyi 

de�i�ik açılardan görmesi sa�lanmı�tır. Aynı zamanda bir takip algoritmasıyla, nesne 

yüzeyinde belirleyici niteli�i olan noktaların, nesne görüntüleri üzerindeki takibi 

yapılmı�tır. Bir “ikili görme” tekni�i kullanılarak takip edilen noktaların 3B geriçatımı 

yapılmı�tır. Son adım olarak geriçatımı yapılmı� olan 3B nokta kümesinden bir yüzey 

yakla�ımı elde edilmi�tir. Kameradan görüntü alımı ve i�lenmesinde açık kaynak kodlu 

“Intel®-OpenCV” C kütüphanesi kullanılmı�tır. 
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CHAPTER 1 
 

INTRODUCTION 

 

3D reconstruction is a transformation from 2D images of real objects or scenes 

to 3D computer models which is traditionally an important field of computer vision. 

After years of theoretical development, in recent years the interest in 3D reconstruction 

systems have been rapidly growing. Such systems are being implemented for many 

applications in practice such as industrial vision, virtual reality, computer aided design 

(CAD), medical visualization, movie effects, game industry, advertising, e-commerce 

etc.  

3D reconstruction usually consists of two steps. First step is acquiring 3D points 

from scenes that can be done by range scanners or multiple view systems. The 

techniques for acquiring 3D points from multiple views are widely investigated by 

researchers due to their low cost and real-time performance. The output of such systems 

is usually unorganized 3D point clouds. These points are used in the second step which 

involves fitting a mathematical model and getting parameterized surfaces that form a 

3D computer model.  

Without any pre-defined information about observed scene; it is very hard to 

obtain useful 3D models in practice. To simplify the problem some assumptions on the 

objects and environments (such as camera geometry, background, lighting, well 

textured surfaces etc.) are used in this thesis.  

In “(Sainz et al. 2002)”, authors represent a voxel-carving algorithm to obtain a 

3D voxel-based surface model from multiple views, which uses uncalibrated cameras. 

While “(Mülayim et al.2003)” and “(Williams 2003)” use single axis turn table move to 

reconstruct silhouette based models. These methods involve carving a voxelized piece 

of virtual material that contains the objects. Drawback of such system is extensive 

computation time. “(Sainz et al. 2002)” presents a method to improve run-time speed of 

the space carving algorithms.  

In “(Siddiqui et al. 2002a)” and “(Siddiqui et al. 2002b)” a method is described 

for 3D surface reconstruction from multiple views. It uses given feature point 

correspondences as input and takes the advantage of projective invariance properties of 

rational B-splines to reconstruct 3D rational B-spline surface model of the object.  
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 In this study, a novel method for 3D reconstruction using a predetermined 

camera and object motion is presented. This method relies on an electromechanical 

system and some assumptions on the environment. Background is assumed to be white, 

lighting is assumed to be constant, object is assumed to be well textured to be able to 

find good features for tracking.  

 Since the final surface model consists of approximation of 3D feature points, a 

high number of feature points is needed. To get more feature points,  the camera should 

be able to scan the object from several viewpoints. Spherical spiral trajectory of camera 

around object is proposed here to reach different views from different sides of the object 

“(Narkbuakaew et al. 2005)”. This is the main advantage of the this study from similar 1 

axis (cylindirical) turn table setups “(Mülayim et al. 2003)”, “(Fremont et al. 2004)”, 

“(Yemez et al. 2004)”, “(Sainz et al. 2004)”. These methods either reconstruct shape 

from silhouette or from stereo. Their common drawback is the limited view angles. 

Another considerable contribution of this thesis is the use of optical flow to track 

feature points to eliminate the point correspondence problem.  

Instead of moving the camera in 2 degrees of freedom (DOF) to get spherical 

spiral scan (SSS); 1 DOF camera move and 1 DOF object move is used to get the same 

effect. SSS is detailed in Chapter 4. General sytem setup illustration can be seen in 

Figure 1.1.  

  

 

 

 

 

 

 

 

 

Figure 1.1. General system setup illustration. 

 

The main focus of the thesis is; recovering and tracking some 2D feature points 

on the images of the objects while object and camera are rotated  in controlled angles 

(along spherical spiral trajectory) by stepper motors and calculating 3D coordinates of 

the feature points by using stereo vision geometry.  
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After completing SSS, 3D positions of feature points are determined. Then 

surface fitting algorithm is applied to the 3D feature points. 

This thesis is organized as follows: 

 Chapter 2 gives a brief overview of camera calibration. Chapter 3 gives the 

background for the use of stereo vision geometry for acquiring depth information. The 

developed system setup is described in Chapter 4. The 3D point acquiring algorithm is 

explained in Chapter 5. Fitting  surface to point clouds is the subject of Chapter 6. 

Finally the thesis ends with a conclusion in Chapter 8. 
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CHAPTER 2 
 

CAMERA CALIBRATION 
 

Camera calibration can be described as the process of determining intrinsic 

parameters (camera center, focal length, skew factor, radial distortion coefficients) and 

extrinsic prameters (rotation and translation from world coordinates) of the camera. In 

Section 2.1 pinhole camera model is described briefly. Section 2.2 and Section 2.3 give 

brief describtion about intrinsic and extrinsic camera calibration respectively. 

 

2.1. Pinhole Camera Model (Perspective Projection Model) 
 

In pinhole camera model, all rays pass from a point called optical center (C) and  

intersects with the image plane at a distance f (focal length). For simlicity the image 

plane is considered to be in front of camera center instead of back (real image plane). 

This is called virtual image plane and an illustration of pinhole camera model with 

virtual image plane can be seen in Figure 2.1. In pinhole camera model, images are 

formed on image plane via perspective projection. 

 

 
 

Figure 2.1. Pinhole camera model.  

(Source: WEB_1) 
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Figure 2.2. Side view of pinhole camera model. 

(Source: (WEB_1) 

 

Considering any 3D point  A(x,y,z) in front of the camera, its image coordinates 

a( ix , iy ) will be; 
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These equations can be easly obtained by using geometrical similarities of 

triangles (see Figure 2.2). This transformation can be represented by the following 

matrix equation: 
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(u, v, w) are the homogeneous coordinates of the point 
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2.2. Intrinsic Camera Calibration 
 

Real cameras are not exactly same as the simplified camera models (e.g Pinhole 

camera model, see Figure 2.1) they have some faults due to physical limitations and the 

production process. These faults are briefly given below. 

Image center. Usually principal axis does not passes through center of image 

plane. In the ideal case image center is at (width/2)u, (height/2)v . But in reality, this is 

not the case. We should take into account the offset from the ideal center, the projection 

matrix becomes;  
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Where  0u   and  0v  are optical center in u and v direction respectively. 

 

 
     

Figure 2.3. Scaling factor. 

 

Different scaling factors for u and v direction (e.g. as in Figure 2.3) is necessary 

especially when the CCD sensors have rectangular geometry. The projection matrix can 

be modified as following to create this effect: 
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where  fkx=α and fk y=β . Here xk  and yk  are different scaling coefficients in u 

and v directions respectively. 

 

 
 

Figure 2.4. Skew factor. 

 

Skew factor. This is the fault that the angle between u and v direction is not 90º 

(see Figure 2.4). A small modification in the projection matrix can correct this effect. 
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Figure 2.5. Radial (Barrel) distortion. 

 

Radial distrortion is caused by imperfections in lens design. Radial distortion 

makes straight lines seem curved in image plane (see Figure 2.5 and Figure 2.6a). 

Radial distortion is a non linear deformation which can not be handled by modifying the 

projection matrix. It is usually handled by approximating the deformation by a 

polynomial; 

 

�+++=′ 32 brarrr  
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where ( r , r ′ ) are the (ideal, distorted) distance of an image point to center and a , b  are 

the parameters of the transform. Usually, the higher degrees of the polynomial are 

ignored. 

If we re-arrange the 3x4 projection matrix given in equation 2.4 we get; 
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In equation 2.5 K is the camera intrinsic matrix. For metric reconstruction; 

camera center, focal length, skew factor and radial distrortion coefficients have to be 

known and have to be corrected before processing the images. Camera intrinsic 

parameters are usually given in camera intrinsic matrix as follows: 
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     (2.6) 

 

In equation 2.6 0u  and 0v are cooridinates of principal point in u and v directions 

respectively,  α  and β  are pixel unit focal lengths in u and v directions respectively, γ  

is skewness factor. Radial distortion parameters a  and b  are also considered as 

intrinsic camera parameters.  

In this paper we do not focus on solving the calibration parameters. For further 

information about camera calibration, readers may refer to “(Zhang 1999)” and “(Zhang 

2000)”.  

Matlab Camera Calibration Toolbox (based on “(Zhang 1999)”) is used here to  

compute the intrinsic parameters of the camera. Then camera intrinsic matrix is 

manually passed to OpenCV for further steps. 
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Figure 2.6.  Images of same scene taken with a short focal length camera with severe 

barrel distortion (a) and long focal length camera with low distortion (b). 

(Source: Hartley et al. 2002) 

 

2.2.1.  Intrinsic Camera Calibration Using Matlab Camera Calibration 

Toolbox 
 

 Matlab Camera Calibration Toolbox is based on “(Zhang 1999)”. The toolbox 

uses at least two views of a planar pattern taken from different orientations. The pattern 

metrics have to be known and entered to the toolbox before calibration process. Such a 

pattern consists of 7x9 squares each of which has the size of 30x30 milimeters. The 

calibration pattern used in this thesis can be seen in Figure 2.7. 

 The user has to click on corresponding corner points at different views. These 

points are used for calibration. The more views are used in process, more sensitive 

calibration parameters are extracted. In this study 5 images of calibration pattern are 

used. One of these images can be seen in Figure 2.7. 

 

 
 

Figure 2.7. A view of the calibration pattern. 
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In equation 2.7 Matlab intrinsic parameter result for our camera (an inexpensive 

USB camera) is shown. 0=γ  in the matrix that means angle between u and v is 90º� 

 

�
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�
�
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�

�

=
100

 115.21561 447.423020

   140.144840445.89271

K   (2.7) 

 

Besides, radial distortion coefficients calculated by the toolbox are: 

 

Kc = [ -0.30414   0.42971   -0.00017   -0.00684 ]  (2.8) 

 

 The toolbox can also undistort the images using camera intrinsic parameters. An 

example of an image before and after undistortion process is shown in Figure 2.8. 

Radial distortion effect can be seen in Figure 2.8 (a). The bended table edge can be 

easily seen in the image caused by radial distortion. The same image after undistorting 

with straight table edge can be seen in Figure 2.8 (b). 

 

     
(a)             (b) 

 

Figure 2.8. (a) An image before undistort process  (b) after undistort process. 

(Source: Hartley et al. 2002) 

 

2.3. Extrinsic Camera Calibration 
 

 Extrinsic camera parameters describe 3D position and orientation of the camera 

in world coordinates. These parameters are given in a rotation matrix and a translation 
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matrix. These parameters are combined in a single transform matrix. Then any 3D point 

can be converted from world coordinates to camera coordinates using transform matrix. 

Once we get the coordinates of 3D points in camera coordinates, then we can easily find 

2D image coordinates of those points using projection matrix described in Section 2.1 

and Section 2.2.  

 

 
 

Figure 2.9. Position and orientation of  pinhole camera in world coordinates. 

(Source: Hartley et al. 2002) 

 

For a 2D vector v, reference system rotation about Z axis, equations can be 

given as below (see Figure 2.10): 

 

 
 

Figure 2.10 A 2D Vector v in two different reference sytems ( XY and YX ′′ ). 
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In matrix form; 
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If we expand it to 3D; rotation about Z axis can be given as below: 
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In matrix form; 
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Then  rotation matrix around z axis is: 
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When we extend equation 2.9 to rotation about y and x axises the full rotation 

matrix (R) becomes: 
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Translation matrix is given as follows: 
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where X, Y and Z are new world coordinates of the camera.  

In this study we used stepper motors to rotate the camera and objects so we know 

the rotation angles around x-y-z (φ , β ,α ) in each step. We also used a fixed radius rod to 

place the camera. So we can easily calculate 3D position of the camera in world 

coordinates using rotation angles and fixed radius (R). R is the distance from projection 

center of the camera to world reference point (0,0,0). Details about experimental setup 

and the calculation of rotation and orientation are given in Chapter 4. 
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CHAPTER 3 
 

3D RECONSTRUCTION FROM MULTIPLE VIEWS 
 

3.1. Single View Geometry 
 

3D reconstruction is the problem of acquiring 3D points of scenes or objects 

from their 2D image views. Looking at a single 2D image, the depth (3rd dimention) is 

not directly accesible even for a human. This can be explained easily; supposing that  

there is a light ray (L) from real point P to image plane that passes through optical 

center (perspective projection). p is the perspective projection of point P on to image 

plane. The point p(u,v) on the image plane, which is the projection of a single point 

P(x,y,z) does not carry any information on where P is located along the ray (L). See 

Figure 3.1. 
 

 
 

Figure 3.1. Missing of depth while projecting. 

 

 As can be seen in Figure 3.1, projected coordinates of 3D points A,P and B are 

(u,v). Although 3D coordinates are different, their image coordinates are same. 3D 

reconstruction is the inverse process of projection. Given 2D coordinates of a point p, 

we have to determine which 3D point corresponds to p. It is clear that a single view is 

insufficient for this decision. More views are needed. 
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3.2. Two View Geometry (Stereo Vision) 
 

 Assume that there are two fully calibrated cameras (i.e. camera centers, focal 

lengths, pixel ratios, skewness, radial distrortion coeffitions, 3d positions and 

orientations in world coordiantes are known) as illustrated in Figure 3.2. Both cameras 

are observing the same scene/object. Suppose that there is a point (P) in the scene 

visible in both left and right cameras. Let (pl) be the projection of (P) onto left camera’s 

image plane and (pr) be the projection of (P) onto right camera’s image plane. Since 

image coordinates of (pl), (pr)  and camera parameters are known, (P) can be 

reconstructed as intersection of two light rays (Ll) and (Lr).  

 

 
 

Figure 3.2. Stereo vision. 

  

In practice, two rays will not intersect due to calibration, feature localization and 

feature tracking errors (see Figure 3.3). However, the 3D position of P(x,y,z) can still be 

estimated. The approach used in this study is to construct a line segment perpendicular 

to the two rays where two rays are closest to each other. And then the mid point of the 

line segment is used as the reconstructed point. “(Forsyth et al.2003)”. When this line 

segment is longer than a predetermined thresholding value; the reconstructed point is 

determined as wrong reconstructed point. And the wrong reconstructed points are not 

recorded as reconstructed points. 

In practice, the biggest problem of stereo vision is correspondence problem. 

Correspondence problem is the problem of finding which point on left image matches 

which point on right image or vice versa. There are different solutions for 

correspondence problem in literature. In this thesis, a different technique is used to deal 
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with correspondence problem. That is why we do not focus on solving the 

corrsepondence problem in this thesis. The readers who are interested in solving the 

correspondence problem directed to “(Forsyth et al.2003)” and “(Hartley et al 2002)”. 

 In this thesis, a moving camera and moving object are used to form stereo 

vision. An optical flow based tracking algorithm “(Lucas et al. 1981)” is used to avoid 

correspondence problem. The tracking algorithm enables us to track the feature points 

in each view, so we know corresponding 2D image coordinates of feature points. Since 

stepper motor driven objects’/scenes’ feature  points displacement are small enough in 

images, tracking algorithm easily tracks feature points without losing them. The 

OpenCV implementation of Lucas&Kanade Pyramidial Tracking Algorithm is used in 

this study.  

 

 
 

Figure 3.3. Crossing lines in stereo vision. 

 
 The realistic model illustrated in Figure 3.3 is used in this study for 3D 

reconstruction 

Given camera parameters and feature correspondence in two views, the goal is to 

reconstruct  3D positions of feature points. One should keep in mind that intrinsic 

camera parameters are pre-calculated for later use, and extrinsic parameters are 

calculated once in a few steps of stepper motors. Extrinsic parameters (translation and 

orientation) of camera are easily calculated using rotation angles of stepper motors. 

Calculation of camera’s 3D position and orientation will be explained in next chapter. 

Here we will assume that intrinsic and extrinsic parameters are known, and we will just 

focus on how to reconstruct 3D point using 3D geometry.  

Reconstruction from more than two views is not disccused in this thesis. 
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CHAPTER 4 

 

EXPERIMENTAL SETUP:  

SPHERICAL SPIRAL SCAN MECHANISM 
 

 Classical turn-table based 3D reconstruction  approaches in stereo vision usually 

uses single axis rotation tables “(Mülayim et al. 2003)” , “(Williams 2003)”, “(Fremont, 

V., and  Chellali R. 2004)”. Single axis rotation tables gives limited view of the object. 

In this study we developed a 2 degree of freedom (DOF) system to get more views of 

the object. Our 2DOF setup moves the camera in a hemispherical spiral trajectory. 

Camera’s optical axis is oriented to observe the object(s) while it is moving in spherical 

trajectory.  

 

 
 

Figure 4.1. Illustration of experimetal setup used in this thesis. 

 

The spherical and cartesian coordinates can be related by: 
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If we extend the unit sphere to R radius sphere; equations in 4.1 become: 
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β
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=
=

  (4.2) 

 

where R is distance from camera optical center to world coordinate system origin  in 

this study (see Figure 4.2).  

 

 
 

Figure 4.2. Isometric view of hemispherical spiral. 
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(a) 

 

 
(b) 

 

Figure 4.3.  A 2-turn spherical spiral, world and camera coordinate systems used in the 

thesis. (a) side view and (b) top view. 

 

Experimental setup used in this thesis consists of two stepper motors, two 

stepper motor drivers controlled by PC parallel port and a USB camera. One of the 

stepper motors is placed vertically and the other is placed horizontally so that their 

axises are perpendicular to each other. The intersection point of these axises ( see Figure 
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1.1 and Figure 4.3) is accepted as the origin of the world coordinate system (WCS) (X-

Y-Z). Z-axis is chosen to be along vertical motor axis and Y-axis is chosen to be along 

horizontal motor axis. From now on we will call vertical motor as z-motor because it 

rotates the object around Z axis. And we will call horizontal motor as y-motor because 

it rotates the camera around Y axis. Camera coordiante system (CCS) (i-j-k) is 

illustrated in Figure 4.3. Camera optical axis is always aligned with the line that passes 

through the origin of CCS and the origin of WCS. 

Figure 4.4. shows change of z and y motor rotation angle (α , β ) in time t  while 

SSS is in process.  

 

 
 

Figure 4.4. Rotation angle-time graph in spherical spiral scan process. 

 

 
 

Figure 4.5. A view of experimental setup. 
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4.1. Stepper Motors 
 

Stepper motors are electromechanical devices that converts electrical pulses to 

shaft (rotor) rotations. A  stepper motor consists of a static body (stator) and rotating 

shaft (rotor). The rotors have permanent magnets attached to them. Around the stators 

there are series of coils that create magnetic field. When motor is energyzed, permanent 

magents and coils interacts with each other. If coils are energized in a sequence, the 

rotor rotates forward or backwards. Figure 4.6 shows a typical stepper motor.  

 

 
 

Figure 4.6. Stepper motor. 

 

Stepper motor rotors rotate in certain angles that is dependent on number of 

phases and number of rotor teeth they have. And rotation angle per step is calculated 

with the formula given below, 

 

r
s Nm.

360�

=θ  (4.3) 

 

where m  is the number of phases and rN is the number of rotor poles (See Figure 4.6). 

Both z-motor and y-motor used in this study has 4 phases and 50 rotor teeth so they have 

 

�

�

8.1
50.4

360 ==sθ    (4.4) 

 

step degree. In our experiments each step corresponds to �8.1 .Each motor needs 200 

steps for �360  rotation. To complete 2-turn SSS process in “t” time (See Figure 4.3), z-
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motor has to rotate �720  (or 400 steps) and in the same time y-motor has to rotate �90  

(or 50 steps). That means y-motor has to rotate one step ( �8.1 ) in eachs 8 steps ( �4.14 ) 

of z-motor. When we use this information in the coordinate transformations (Eq.4.2), 

the spherical spiral trajectory can be computed as shown in Figure 4.7.  

 

 

 

 

 

 

 

 

 

(a)      (b) 

 

 

 

 

 

 

 

 

 

(c) 

 

Figure 4.7. Discrete spherical spiral formed by stepper motors. 

 

 In Figure 4.7 there are 400 points that cover 400* �8.1 = �720  (2-turn spherical 

spiral). That means α starts from �0  and increases to �720 . And β  starts from �90  and 

decreases �8.1  in each �4.14   step of α .  

 Stepper motors can also be driven in half step mode with a �9.0  step angle. But 
�8.1 is enough for tracking algorithm not to lose tracking in this study, so half step drive 

is not considered to be necessary.  
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  Figure 4.8 shows an image sequence of a test object observed by the camera 

over the spherical spiral trajectory.  

 

 
 

Figure 4.8. Image sequence of a test object observed by the camera. 
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CHAPTER 5 

 

3D RECONSTRUCTION ALGORITHM 
 

 A flow chart of the proposed 3D reconstruction algorithm can be seen in Figure 

1.3. The algorithm is built on Intel’s OpenCV library to be able to use many pre-

implemented codes, such as image capturing function cvCaptureFromCAM(), 

undistorting function cvUnDistortOnce(), feature point detection function 

cvGoodFeaturesToTrack(), optical flow based function for feature point tracking 

cvCalcOpticalFlowPyrLK() etc. 

 In this study we captured 320x240 pixel images with 24 bit color depth in RGB 

with an inexpensive USB camera. Since color is not  completely necessary in this 

application, we converted the images to 8 bit depth gray-scale images. After an initial 

camera calibration step, the following procedure is implemented. 

 Reconstruction process starts at the side of the hemispherical spiral ( �0=α  and 
�90=β  ) and it ends in end point of the spiral ( �720=α  and �0=β ) (See Figure 4.2 

and Figure 4.7). Considering Figure 4.7 it can be seen that the reconstuction algorithm 

consists of 400 step. In each step, a new image is captured, feature points are detected 

on the image or tracked (if already detected).  

Once in every 10 steps (18°) 3D reconstruction is done using the algorithm 

explained in Section 3.2 and feature points are cleared. New feature points are re-

detected on the image, z-motor and  y-motor (so the camera) are driven to next positions 

via parallel port of the computer. The biggest problem of reconstruction once in every 

10 steps (18°) is that; sensitivity of reconstruction is decreasing when camera optical 

axis come near parallel to Z axis of WCS. It is because when the angle between two 

camera’s optical axis is decrease; the position of reconstructued point change in great 

value corresponding to small angle changes. To alleviate this problem we used an 

uniform angle in 3D to make sure that angle between two optical axises are not less than 

some value (i.e. 18°). On the other hand once in 10 step reconstruction has uniform 

angle in 2D. In Figure 5.9 incorrect reconstructed points can be seen on the box object. 
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Figure 5.1. Flow chart of presented 3D reconstruction algorithm. 
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1. 0=α  

2. 90=β  

3. get new image from the camera (I1) 

4. undistort the (I1) image (using intrinsic parameters of camera) 

5. detect feature points on the image 

6. store image coordinates of feature points on memory (L) 

7. for step=1 to 400 ; step=step+1 

8.   get new image from the camera (I2) 

9.   undistort the I2 image 

10.   track feature points on I1 and I2 using optical flow 

11.   store new image coordinates of feature points on memory (R) 

12.   if (step mod 10 = 0) 

13.    3d reconstruction using stored image coordiantes (L and R) 

   (See Section 3.2) 

14.    reset feature points (clear all feature points) 

15.    detect feature points on the image  

(new feature points are detected on the same image) 

16.    store feature point image coordinates on memory (L) 

17.   end if 

18.   rotate z-motor one step forward 

19.   �8.1*step=α  (or �8.1+= αα ) 

20.   if (step mod 8 =0 ) 

21.    rotate y-motor one step forward 

22.    �8.1−= ββ  

23.   end if 

24. end for 

 

 

Algorithm 1. Psuedo code of the algorithm. 
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Key decisions such as 2-turns of spherical spiral and one reconstruction in each 

of 10 steps are made based on results from initial experiments. Underlined parts of the 

algorithm will be explained in the rest of this chapter. 

Before 3D reconstruction algorithm runs; the object has to be placed to the WCS 

origin and motors have to be placed to their startup position ( 00=α  and 090=β , see 

Figure 4.3). Descriptions of underlined steps of the algorithm are given in followig 

sections. 

The algorithm works as follows: 

First, the camera startup position is initialized (line 1 and line 2. Then a new 

image is captured from the USB camera and undistorted (line 3 and line 4). Feature 

points of the image are detected in line 5 (see Section 5.1) and stored in memory (line 

6). After these initialization steps, SSS processes start in line 7: 

A counter counts from 1 to 400 while the object rotates 720° (400 steps of 1.8° 

turns)(lines 18, 19). At each 8th step; camera rotates one step (1.8°) (lines 20,21,22,23). 

This relative movement makes the camera move in a spherical trajectory (see Figure 4.4 

and Figure 4.7). In each of 400 steps feature points are tracked and stored in the 

memory (lines 8,9,10,11). At each 10th step of the counter; 3D reconstruction is done 

(line 13). After reconstruction is done, scanning process is restarted with cleared feature 

point coordinates (lines 14,15,16). While features are being reinitialized (lines 15 and 

16) camera position is stationary. 

 

5.1. Feature Point Detection 
 

A feature point is a point in an image that has a well-defined position and can be 

robustly detected “(WEB_3 2005)”. As in many computer vision applications, corners 

are chosen to be used as feature points. In this study cvGoodFeaturesToTrack() function 

of OpenCV library is used. This algorithm determines strong corners on images 

“(WEB_2 2004)” . A corner on images is searched  in a small region of interest using 

eigenvalues of the matrix shown below. A point on an image is identified as a corner 

when eigenvalues corresponding to that point have high values. 
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where xD  and yD are the first derivatives in x and y directions respectively “(WEB_2 

2004)”. Above matrix is calculated for all pixel points on the image with a small region 

of interest. Eigenvalues are found by solving a linear system corresponding to nxn 

matrix A. 

 

AX = Xλ  (5.2) 

 

The scalar λ  is called eigenvalue of A  corresponding to eigenvector 

0≠∈ nRX  “(WEB_4 2006)”. Equation 5.2 can also be written as: 

 

0)( =− XIA λ  (5.3) 

 

where I is the identity matrix.  Equation 5.3 leads to 

 

0)det( =− IA λ  (5.4) 

 

When we solve equation 5.4 for the 2x2 matrix given in equation 5.1 then eigenvalues 

can be written in closed form as: “(WEB_2 2004)”. 
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If 01 ≈λ  and 02 ≈λ  then there is no feature in this pixel, if 01 ≈λ  and 2λ  is 

equal to some large positive value then an edge is found in that pixel, if both 1λ  and 2λ  

are large values, then a corner is found “(WEB_5 2005)” . These corners can  be refined 

using some threshold value (t). If 1λ > 2λ >t where t is some threshold, pixels that have 

their eigenvalues less than t are eliminated and not considered as corner points. 

The feature detection algorithm “cvGoodFeaturesToTrack()” that is built in 

OpenCV works as follow: “The function first calculates the minimal eigenvalue for 

every pixel of the source image and then performs non-maxima suppression (only local 

maxima in 3x3 neighborhood remain). The next step is rejecting the corners with the 

minimal eigenvalue less than qualityLevel*<max_of_min_eigen_vals>. Finally, the 
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function ensures that all the corners found are distanced enough from one another by 

getting two strongest features and checking that the distance between the points is 

satisfactory. If not, the point is rejected” “(WEB_2 2004)”. 

The function takes source image, 2 image memory for eigenvalues calculation 

process, a multiplier value (quality level) which specifies minimal accepted quality of 

image corners, a limit value which specifies minimum possible Euclidean distance 

between returned corners as input parameters. It returns number of detected corners and 

image coordinates of detected corners. In experiments 0.01 multiplier used for quality 

level of corners and 10 pixel distance is used for possible distance between each corners 

detected. 

 In this study we worked on two objects for reconstruction. First one is a well 

textured box like object made of paper. This object has no concavities on its surfaces so 

it is relatively easy object to reconstruct. Second object we used is piece of egg carton, 

relatively complex due to its concavities on surfaces and being not well textured. We 

put additional paints on its surface to simplify feature detection and tracking. Images of 

original objects are shown in Figure 5.2.  

 

 
   (a)      (b) 

 

Figure 5.2.  Test objects used in this thesis for 3D reconstruction. (a) a box (b) a piece 

of egg carton. 

 

Figure 5.3 shows images of test objects after feature point detection algorithm. 

Feature points are represented as bold circles. 
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(a)       (b) 

 

Figure 5.3.  Feature point detected images of test objects (a) box image with 118 

detected feature points (b) egg carton with 97 detected feature points. 

 

5.2. Tracking of Feature Points 
 

 Tracking of feature points while camera is moving on its spherical spiral 

trajectory alleviates the correspondence problem. Since losing tracking of feature points 

will cause reconstruction of the points in incorrect positions, feature tracking is one of 

the most fundamental steps in this study. In order to track a pixel in an image its 

velocity vectors have to be calculated. This representation is called velocity field or 

optical flow field of the image.  

Optical flow methods try to calculate the motion between two image frames that 

are taken at times t and t+ t∆ . Optical flow can be defined as an apparent motion of 

images brightness. Let ),,( tyxI  be the image brightness at time t of an image sequence.  

Main assumptions on calculating optical flow is that: Brightness smoothly 

depends on a particular image coordinates in greater part of the image. Brightness of 

every point of a moving or static object does not change in time “(WEB_2 2004)”.  

Optical flow field calculated from image sequence of rotating sphere is given 

below. 
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  Image #1                Image #2             Optical Flow Field 

 

Figure 5.4. A rotating sphere from left to right and corresponding optical flow field 

(Source: WEB_6 2006) 

 

If  some point in an image is moving, t∆  time later the point displacement is 

( x∆ , y∆ ). When Taylor series for brightness ),,( tyxI  is written: 
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where c represents the higher order terms which are small enough to be ignored. When 

above assumptions are applied to equation 5.6, we have, 
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and 

 

0=
∂
∂+

∂
∂+

∂
∂

dt
t
I

dy
y
I

dx
x
I

 (5.8) 

 

Dividing equation 5.8 by dt  and re-arranging equation 5.8 such that 

 

u
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v
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dy =             (5.10) 



 32 

where u and v are speeds of point moving in x and y directions respectively, gives the 

equation called optical flow constraint equation: 
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In equation 5.11 
t
I

∂
∂

 term is about how fast the intensity chages at a given pixel 

in time. 
x
I

∂
∂

 and 
y
I

∂
∂

 are about how rapidly intensity chages on going across the picture. 

Different solutions to equation 5.11 are given in “(Lucas and Kanade, 1981)” and 

“(Horn and Schunck,1981)”. We have used OpenCV implemetation of optical flow 

calculation which uses the Pyramidial Lucas&Kanade Technique. Readers who are  

interested in details about Lucas&Kanade technique should refer to “(Lucas et al. 

1981)”. 

 Figure 5.5 shows a sequence of images while 112 feature points are being 

tracked. It can  be easily seen that the box rotates in counterclockwise direction (also 

can be imagined as camera rotation around the objectin clockwise direction). Figure 5.6 

shows a sequences of egg carton images with 101 feature points being tracked. Image 

coordinates of all feature points are recorded in tracking process. (Coordinates (x,y) of 

an arbitrary feature point are also given in Figure 5.5.) 
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(a) Image #1 

 

 

 

 

 

 

 

             (159,167) 

(b) Image #2 

 

 

 

 

 

 

 

             (171,166) 

(c) Image #3 

 

Figure 5.5. Feature point tracking over the box test object. 
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(a) Image #1 

 

 
(b) Image #2 

 

 
 (c) Image #3 

 
Figure 5.6. Feature point tracking over the egg carton test object. 
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5.3. 3D Reconstruction of Tracked Feature Points 
 

Given camera parameters and feature point correspondences obtained by 

tracking in two views, the goal will be to reconstruct the 3D coordinates of the feature 

point. Lets write camera’s 3D positions in matrix format assuming that cameras are 

reduced to one point (optical center). Coordinates of the left camera, 
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coordinates of the right camera: 
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Since we know the spherical coordinates of the camera defined by α , β  and R , 

cartesian camera coordinates (x,y,z) can be calculated  easily by using  equation 4.2. 

Where α and β  are stepper motor’s rotation angles in current position of camera and R 

is the radius of the sphere shown in Figure 4.1. 

 

Image coordinates of any feature point (p) on left image, 
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corresponding coordinate of same feature point on right image is: 
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where i and j  are image coordinates in u and v directions respectively. First we have to 

reconstruct two light rays (lines) lL  and rL . A 3D line equation  in parametric form can 

be written as: 

 

VtPL
�

+= 0    (5.16) 

 

where 0P  is start point of line, t is the parameter whose value is varied to define points 

on the line and V
�

is a vector defining the direction of the line. When we write the lines 

lL  and rL starting from camera’s optical centers; 

w
llll VtCL
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+=    (5.17) 

 

and  

 

w
rrrr VtCL
�

+=    (5.18) 

 

In equation 5.17 and 5.18; lt  and rt  are parameters that define points on both 

lines. w
lV
�

 and w
rV
�

 are vectors that define directions of both lines lL  and  rL . We should 

keep in mind that all variables given above are in WCS. 

Since the only apriori information is on the image coordinates of feature points, 

w
lV
�

and  w
rV
�

 can be obtained by applying rotation matrix to CCS vectors lV
�

 and rV
�

, 

where  lV
�

 and rV
�

 are unit vectors from optical center to feature points on the image 

plane (see Figure 5.7). 
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Figure 5.7. The vector defining the direction of reconstruction lines. 

 

The 3D positions of the feature point p and the optical center C are: 

  

�
�
�

�

�

�
�
�

�

�

=

z

y

x

p

p

p

p    or   kpjpipp zyx

���
++=    (5.19) 

 

�
�
�

�

�

�
�
�

�

�

=

z

y

x

C

C

C

C   or  kCjCiCC zyx

���
++=    (5.20) 

 

then reconstruction line direction vector V
�

 is: 
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C is the origin of the camera coordinate system so  kjiC
���

000 ++=  and all 

images on image plane has 3rd coordinates equal to camera’s focal length. If we put 

these together 
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where xp  and yp  are feature point coordinates on image in u and v directions 

respectively and f is focal length (in terms of pixels) pre calculated during camera 

calibration. If pixels are not squares xp , yp  and f  have to be adjusted accordingly. 

The camera used in this study has square pixels. If we write feature point coordinates in 

vector format using equation 5.14 and 5.15. 
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And 
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Equation 5.23 and 5.24 are direction vectors in camera coordinate system. 

Before using them in equation 5.17 and 5.18 they have to be converted to world 

coordinate sytem using transformation matrix. If w
lV
�

and  w
rV
�

are corresponding unit 

WCS vectors of lV
�

and  rV
�

then 
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when we rewrite equation 5.17 and 5.18;  
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In equation 5.27 and 5.28 we can see that  parametric equations of two lines are 

fully known. Next step is finding the intersection point or more generally finding the 3D 

point that is closest to the two lines (see Figure 3.3). 

Parameters that makes two lines closest to each other are given by 
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where rl CCS −=
�

 and (• ) denotes dot products of vectors. Applying equation 5.29 

and 5.30 to equation 5.27 and 5.28 two 3D points will be acquired. The middle point 
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between these two points is retrieved as the 3D reconstructed point of the observed 

feature point.  

 Applying reconstruction process to all feature points, a set of 3D points are 

acquired. These points can be considered as “point clouds” with no structural 

information. The next step is fitting a mathematical model to the point clouds (so-called 

“surface fitting”). Figure 5.8 shows reconstructed point clouds of test objects. 

 

 
 (a) 

 
 (b) 

 

Figure 5.8. Reconstructed 3D point clouds of test objects. (a) box  (b) egg carton. 
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Incorrect reconstructed 

points on the top of the box 

 

 

 

 

 

 

Figure 5.9. Reconstructed points of the box using non uniform angle. 
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CHAPTER 6 
 

SURFACE FITTING 
 

 The final step of the 3D reconstruction procedure presented in this thesis is 

fitting a parameterized 3D model to the acquired point clouds. After fitting such a 

model to point clouds, various high level computer vision process can be applied to the 

3D scene, such as texture mapping, 3D object recognition etc. There are many surface 

fitting techniques in literature “(Siddiqui, M. and Sclaroff, S. 2002a)”, “(Zwicker et al. 

2004)”, “(Yvart et al 2005)” . The presented method for surface fitting is quite easy and 

fast, although it cannot be applied to objects with various topologies.  

The technique is based on projecting all reconstructed points on to an initial 

meshed hemisphere that covers all points, and back projecting the hemisphere’s 

meshpoints towards the point clouds. Choosing radius of hemisphere (R), equal to 

radius of spherical spiral (see Chapter 4) is a good idea, since we know that all 

reconstructed points will be inside the hemisphere. When an (mxn) meshed, R radius 

hemisphere is initialized all points are projected on to the hemisphere recording their 

vector magnitudes (Here all reconstructed points and mesh points are represented as 

vectors where start point of vectors are WCS origin and end points are 3D point 

coordnates). Then new coordinates of mesh points are calculated with the help of 

projected vector’s magnitudes. The average of k-nearest vector magnitudes are set to be 

the magnitudes of mesh points. Finally initial vector magnitude of mesh point is 

replaced with that average magnitude keeping the direction of the initial vector. Surface 

fitting algorithm is given below (also see Figure 6.1): 

 

1. create a hemisphere with mesh interval (mxn) 

2. project all points on to hemisphere recording the directions and magnitudes. 

3. for all mesh points (mxn) 

a. find k-nearest projected vectors on hemisphere to the mesh point (m,n) 

b. calculate average magnitude of k-nearest vectors on the hemisphere 

c. set new magnitude of mesh point as calculated average magnitude 

d. calculate new Cartesian coordinates of mesh point with the help of new 

magnitude and keeping the initial direction. 
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Figure 6.1. A meshed hemisphere with 20x15 Intervals. 

 

In the subject of surface fitting, we also worked on synthetic data points. These 

point clouds consist of 50400 points. Although the points are created using 

mathematical equations, the relations between points are assumed not to be known in 

the surface fitting process. These synthetic data helped us to observe the performance of 

surface fitting on point clouds. Figure 6.2.a shows point clouds corresponding to a 

synthetic object, while Figure 6.2.b shows points projected on the hemisphere and 

Figure 6.2.c shows back-projected (fitted) hemisphere on the point clouds. During 

surface fitting to synthetic data 10 nearest vectors are used to calculate the new 

magnitude of mesh point. 
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     (a)                 (b)                   (c) 

 

Figure 6.2.  A synthetic data set with 50400 points (a), projected data points on to 

hemisphere (b) and fitted surface on to data points with mesh size (25x20) 

Figure 6.3 shows fitted surface to test object point clouds. 

 

 
(a) Isometric view of egg carton point clouds  

clouds (2033 points) 
(b) fitted surface to egg carton point (25x20 size 

mesh) 
 

 
(c) Top view of box point clouds  

(2376 points) 
(d) top and side view of fitted surface to box point   

clouds (20x15 size mesh) 
 

Figure 6.3. Point clouds with corresponding surfaces. 
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 Figure 6.4 shows a smooth surface model of the egg carton. Fit function of The 

Mathematica software is used to obtain the model. The mathematica code is given 

below where EggC.txt is the text file that contains reconstructed 3D point coordinates. 

 
xyz = ReadList["c:\EggC.txt", {Real, Real, Real}]; 
polynomial = Flatten[Table[x^i y^j, {i, 0, 4}, {j, 0, 4}]] 
f[x_, y_] = Fit[xyz, polynomial, {x, y}] 
Plot3D[f[x, y], {x, -70, 70}, { y, -70, 70}, PlotRange -> {-50, 5}, BoxRatios -> {6, 6,  
           5}, PlotPoints -> 50, ViewPoint -> {1, 2, -2}]; 
 

 

 
 

Figure 6.4. Egg carton surface. Fitted using the Mathematica software. 
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CHAPTER 7 
 

CONCLUSIONS 
  

 In this thesis, an electromechanical setup is developed to acquire images of test 

objects from different view angles. The main difference between the developed setup 

and the one axis turn table based applications is that the developed setup has two 

rotational degrees of freedom. We defined a spherical spiral motion around the test 

object which helped us to get images not only from sides but also from top of the 

objects. Since stepper motors are used for rotating the camera and objects, some 

mechanical vibrations occur which cause to lose tracking. These vibrations can be 

reduced using servomotors instead of the stepper motors. However this solution will 

increase the cost and the complexity of the system. The inhomogenuity in lighting 

conditions is another important factor that degrades system perormance. 

 In the reconstruction process feature tracking algorithm is used to alleviate the 

point correspondence problem. Reconstruction is done by using stereo vision geometry 

where one image is assumed to be left image, and second image is assumed to be right 

image. Feature points are tracked between left and right image. Extrinsic camera 

parameters of the viewing positions of left and right image are calculated by using 

stepper motor rotation angles. After reconstructing the points, over spherical spiral 

trajectory an unorganized point clouds are acquired. 

 Reconstruction time of an object depends on the trajectory of the camera. Since 

mechanical vibrations increase with rotation velocity of steppers causing tracking 

algorithm to lose features, we added some delays between the steps of the algorithm. In 

this thesis we used a 2-turn spherical spiral trajectory move for the camera where 

reconstruction time is about 200 seconds. Since mechanical moving time is much 

greater than the computational time, computational time for reconstruction is ignored.  

 To reduce incorrect reconstructed points three main process are made. First a 

thresholding value added to the line segment between crossing lines which was 

described in Section 3.2. Second process is using uniform angle while reconstructing 

the points which was described in Chapter 5. And last process was to eliminate the 

feature points which displacements are small than some thresholding value while 
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tracking. This process alleviate the incorrect reconstructions of feature points that are 

collected to the side of objects while the object is rotating.  

 Surface fitting algorithm presented in this thesis is quite easy and fast compared 

to iteration based fitting techniques. For a point clouds which contains about 2000 

points, to fit  25x20 mesh size surface, complete fitting time is about 1 second on a PC 

with a Pentium 4, 3GHz CPU,  and 512 MB RAM. Although this technique cannot be 

applied to all kind of objects such as objects with holes, the technique can be used with 

appropriate objects due to its simplicitiy and speed. Texture mapping which can be 

considered as a possible next step is not studied in this thesis. 

 Although the 3D reconstruction and surface fitting results achieved in this thesis 

are satisfactory, the performance can be significantly improved by hybrid techniques 

(E.g. combining silhouette based reconstruction techniques and feature tracking based 

reconstruction techniques). 

 A more robust electromechanical setup design (minimizing vibrations), 

refinement in 3D reconstruction, improving surface models and application of texture 

mapping can be listed as the possible research problems that should be addressed in the 

future. 
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APPENDIX A 

 

COMPUTER SOFTWARE 
  

 In this thesis, Microsoft  Visual C++ 6.0 and OpenCV libaray is used to 

develop the required algorithm. Matlab is also used to calculate the camera intrinsic 

matrix. The developed 3D reconstruction system is consist of two individual parts. First 

one is reconstruction and second one is fitting. The programs that includes these 

algoritms will be briefly described below. These computer programs are given in a CD. 

This CD also contains a README text file that describes the computer programs. 

 

mscthesis.cpp: This is the source code that contains reconstruction algorithm. 

The code originally modified from lkdemo.c which is the demo software of 

Lucas&Kanade tracking algoirthm supplied by OpenCV Library. This source code gets 

images from USB camera, controls the electromechanical component via parallel port 

and writes the reconstruction results into text files. 

 

rotate.h :This source code calculates the rotation matrix needed by 

mschesis.cpp. 

 

line3d.h: This source code calculates the closest points of two 3D lines. The 

code also contains some gemetrical calculations such as intersection of line and plane, 

plane point distance etc. 

 

SurfaceFit.cpp: This source code takes a text file that contains 3D point 

coordinates as an input. The text file is created by mscthesis.cpp. Then this algorithm 

calculates a surface approximation to that points. Mesh point coordinates are stored in a 

text file as a result of fitting process. 

 


