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ABSTRACT 

 

Friedel Crafts acylation of 2-Methoxynaphthalene was carried out over various 

ion-exchanged β zeolites (Mn+β, where Mn+: In3+, Zn2+, Al3+, Fe3+, La3+) with various 

anhydride (acetic, propionic and benzoic anhydrides), or acyl chloride (acetyl, propionyl 

and benzoyl chlorides) acylating reagents. The results suggested that selectivity towards 

the 6-substituted products was higher with the larger size anhydrides, propionic and 

benzoic anhydrides. The metal cation type within the zeolite significantly influenced the 

extent of conversion and product distribution. That La3+ exchanged zeolite displayed 

higher selectivity for the 6-position acylated product with anhydrides ascribed mainly to 

narrowing of channels by the presence of La(OH)2+ ions that leave no room for the 

formation of more bulky isomeric forms and to enhanced Bronsted acidity of the 

zeolite. With acyl chlorides, the recovery of ketone products was found to be 

remarkably low. 1-Acyl-2-methoxynaphthalenes actively underwent deacylation when 

acyl chlorides were used as the acylation reagent. 
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ÖZ 
 
 

Bu çalõşmada 2-Metoksinaftalinin In3+, Zn2+, Al3+, Fe3+ve La3+ iyonlarõyla 

değişime uğramõş β-zeolitleri üzerinde çeşitli anhidrit (asetik, propiyonik, ve benzoik 

anhidritler) ya da açil klorür (asetil, propiyonil, ve benzoil klorür) açilleme reaktifleriyle 

Friedel-Crafts açillenmesi incelenmiştir. Sonuçlar göstermiştir ki, propiyonil ve 

benzoiyik anhidrit gibi büyük boyutlu anhidritlerle 6-pozisyonundan açillenmiş ürüne 

olan seçimlilik daha yüksektir. Zeoilitin içindeki metal katyon tipi de dönüşümü ve ürün 

dağõlõmõnõ önemli ölçüde etkilemektedir La 3+ ile değişime uğramõş zeolit hacimli 

izomerlerin oluşumu için hiç yer bõrakmayan La(OH)2+ iyonunun varlõğõndan dolayõ 

daralan kanallar ve artan Bronsted asitliği yüzünden 6-pozisyonundan açillenmiş ürün 

için daha yüksek seçimlilik göstermiştir. Açil klorürlerle keton ürünlerinin geri 

kazanõmõnõn oldukça düşük olduğu saptanmõştõr. Açil klorürler açilleyici reaktif olarak 

kullanõldõğõnda 1-Açil-2-metoksinaftalin deaçillenmeye uğramõştõr.  
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CHAPTER 1 
 

INTRODUCTION 
 

 

Friedel Crafts acylation of aromatics is an essential method for synthesis of 

aromatic ketones, such as 2-acetyl-6-methoxynaphthalene and p-methoxyacetophenone, 

used largely as intermediates in the fine chemical industry (Olah, 1973). The selective 

acylation of 2-MN (2-methoxynaphthalene) is of particular interest. The acylation of 2-

MN in the presence of a catalytic amount of conventional Lewis acids gives the major 

products 6-AcMN (6-acyl-2-methoxynaphthalene) and 1-AcMN (1-acyl-2-

methoxynaphthalene). 6-AcMN is recognised to be an important intermediate for the 

production of an anti-inflammatory drug, (S)-Naproxen (Figure 1.1.) , when the acyl 

group is the acetyl or propionyl group (Davis et al. 1998;Harrington et al. 1997).  
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Since that time, various studies reporting the effect of reaction parameters on 

acylation of 2-MN over zeolites have appeared. Heinichen et al.(1999) studied the 

influence of postsynthesis treatment such as calcination and acid treatment of zeolite 

beta in the acylation of 2-MN with acetic anhydride and reported that calcination of 

zeolite β (beta) under high heating rate enhanced the catalytic activity of inner surface 

due to the formation of extraframework alumina species in the micropores and acid 

treatment of zeolite β enhanced the catalytic activity of outer surface due to the 

extraction of extraframework alumina species out of the micropores and due to the 

formation of silanol groups. Kim et al. (2000) studied the effect of zeolite type, solvent 

type, reaction temperature, amount of solvent, and amount of catalyst on the acylation 

of 2-MN with acetic anhydride. They observed that only zeolite β exhibited good 

regioselectivity to desired 2-acetyl-6-methoxynaphthalene and obtained the highest      

2-MN conversion at 120 0C. Andy and his co-workers (2000) carried out surface 

poisoning experiments of acylation of 2-MN over zeolite β and reported that formation 

of 1-acetyl-2-methoxynaphthalene occurs on the external surface of zeolite. Das et al. 

(2000) studied the influence of type of acylating agent, reaction temperature, and zeolite 

structure in the acylation of 2-MN using H-Mordenite, H-β, and H-Y zeolites as 

catalysts and acetyl chloride and acetic anhydride as acylating agents. They reported 

that acetic acid formed in the reaction with acetic anhydride was not reactive, as 

separate experiments carried out with acetic acid showed that it has no acylation activity 

under the reaction conditions. Cassagrande and his co-workers (2000) studied the effect 

of zeolite pre-treatment, catalyst-substrate ratio, and reaction temperature on acylation 

of 2-MN with propionic and benzoic anhydrides over H-β zeolites.   

Yet, to my knowledge, there is not any existing report that investigated the 

catalytic effect of ion-exchanged β- zeolites on acylation reactions of 2-MN, though it is 

known that the type and amount of metal cation on zeolite may influence the strength 

and distribution of acid sites. Gunnewegh et al. (1996) studied the acylation of 2-MN 

over Zn2+ exchanged MCM-41. In this study, it is reported that Zn-MCM-41/acetyl 

chloride combination is less favourable than the H-MCM-41/acetic anhydride 

combination for both selectivity and regenerability. The leaching of zinc is reported as 

another problem for the Zn-MCM-41/acetyl chloride combination as well. 

In literature, a few studies in which ion exchanged –Y, mordenite and ZSM-5 

zeolites were used in acylation of various arenes other than 2-MN, exist. Chiche and co-
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workers showed that rare-earth-exchanged –Y could catalyse the acylation of 

alkylbenzenes with carboxylic acids (Chiche et al 1986; Gauthier et al.1989). In their 

study, para isomer is reported to be the predominant isomer produced, which is also 

observed in Friedel-Crafts reactions catalysed by conventional Lewis acids. Gaare and 

Akporiaye (1996) studied the acylation of anisole over lanthanum exchanged Y type 

zeolites. They found that LaY was very active in the acylation of anisole and reported 

that the yield increased with the level of La in zeolite. Laidlaw and coworkers (2001) 

reported that Zn- and Fe- exchanged zeolites (–Y, mordenite and ZSM-5) were very 

active on the benzoylation of toluene. The extensive leaching of Zn was observed in the 

reactions, while Fe mostly remained on the zeolite . 

In this study, the catalytic activity of the cation-exchanged β-zeolite in acylation 

of 2-MN (Figure 1.2.), using various anhydride and acyl chloride reagents is reported. 

The metal cations loaded onto zeolite by ion-exchange method were In3+, Zn2+, Al3+, 

Fe3+, and La3+. Acylation studies were also carried out over H+-Y and Mn+-Y, however,  

the results from the –Y type zeolite are not presented in this study, since the conversion 

of 2-MN (20-30% ) and selectivity to the 6-acylated isomer (20-30% ) were 

substantially low. 

 

Figure 1.2. Acylation of 2-Methoxynaphthalene 

 

Before covering the experimental methods, reporting and discussing the results 

obtained throughout this study, it is necessary to give a much more detailed background 

on Friedel-Crafts acylation of aromatics with either Lewis acids or heterogeneous 

catalysts and on zeolite chemistry and on their features such as acidity and shape-

selectivity that makes them preferable in catalytic applications. 
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CHAPTER 2 

 

FRIEDEL-CRAFTS ACYLATION OF AROMATICS 

 

2.1. INTRODUCTION 

 

The term “Friedel-Crafts (FC) chemistry” has been used to cover an ever-

increasing number of reactions related to the first aluminium chloride reaction 

discovered by Friedel and Crafts in 1877. They observed by accident that, an 

alkylhalogenide or acylhalogenide reacted with benzene in the presence of anhydrous 

AlCl3 forming alkyl- or acyl-substituted aromatic, respectively. They continued working 

on this subject and found out that a whole class of Lewis acids could catalyse this and 

many other related reactions such as dealkylation, polymerization, and isomerisation. 

As a result of their work, it became generally accepted that a reaction combining two or 

more organic molecules through the formation of carbon to carbon bonds under the 

influence of anhydrous AlCl3 or related catalysts, is a Friedel-Crafts reaction. 

Later on, Bronsted acids and Lewis-Bronsted acid associations were found to 

also catalyse these reactions, extending the original scope of the Friedel-Crafts reaction 

to any substitution, isomerisation, elimination, cracking, polymerisation or addition 

reaction taking place under the effect of Lewis or Bronsted acids. The principal 

relationship between these different reactions is their electrophilic reaction mechanism. 

There seems to be no fundamental reason to limit the scope of Friedel-Crafts reactions 

to the formation of C-C bonds. The formation of many other bonds such as C-N, C-O, 

C-S, and C-X is in harmony with the general Friedel-Crafts mechanistic principle. 

Nevertheless, since the Friedel and Crafts were exclusively limited to the substitution of 

aromatic substrates, it is proper to use the name Friedel-Crafts for those reactions 

involving the formation of a new carbon-carbon bond by electrophilic substitution on an 

aromatic ring in the presence of Lewis or Bronsted acid as catalyst (Espeel, 1999). 

  

 

The                     group is named as acyl group. Acylation reaction is a reaction 

whereby an acyl group is introduced into a compound. In this context, the Friedel-Crafts 
C

O

R
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acylation reaction is the reaction whereby an acyl group is effectively introduced into an 

aromatic ring. 

In Friedel-Crafts acylation reactions, either acyl chlorides or carboxylic acid 

anhydrides are used as acylating reagents. The product of the reaction is an aryl ketone. 

In the following sections Friedel-Crafts acylation reactions and their 

mechanisms are explained according to the type of catalyst used. 

 

2.2.FRIEDEL-CRAFTS ACYLATION REACTIONS WITH HOMOGENEOUS 

LEWIS-ACID CATALYSTS 

 

If the aromatic compound to be acylated is not highly reactive, it is a necessity to 

add at least one equivalent of a Lewis acid catalyst to the reaction mixture.  

In the case of Lewis acid catalysts such as AlCl3, the first step in Friedel-Crafts 

acylation reaction appears to be the formation of an electrophilic acylium ion from an 

acyl halide in the following way (Solomons,1992): 

 

 

 

 

 

  Step 2. 
 

 

The remaining steps in Friedel-Crafts acylation reactions are as follows: 
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In the last step, AlCl3 (Lewis acid) forms a complex with the ketone(a Lewis 

base): 

 
               

After the reaction is over, treating the complex with water liberates the ketone: 
 

 

 

As it is clear from the mechanism, the Lewis acid catalyst can not be 

regenerated and formation of corrosive waste product such as HCl occurs as a result 

of the hydrolysis of intermediate complex. 
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2.3. FRIEDEL-CRAFTS ACYLATION REACTIONS OVER   

HETEROGENEOUS ZEOLITE CATALYSTS 

 
In heterogeneous zeolite-catalysed Friedel-Crafts acylation reaction, a 

mechanism similar to Lewis acid catalysed reaction is assumed to apply, in which the 

adduct is formed by the interaction of the surface acid sites with an acylating agent. The 

plausible mechanism is given below (Das, 2000): 

 

 

 

 

 

 

 

 

2.4. FRIEDEL-CRAFTS ACYLATION OF 2-METHOXYNAPHTHALENE 
 
In the Friedel-Crafts acylation of 2-MN, the presence of the electron-donating 

methoxy group must be taken into account in order to figure out the reaction. The 
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presence of this electron-donating group activates the 1-, 6-, and 8- positions of the 

naphthalene ring.  

 

 

 

 

 

The 1-position is more active than the other two positions and the 6-position 

is more stable than the other two positions, so acylation of 2-MN generally occurs at 

this kinetically favored 1-position at low temperatures and at the thermodynamically 

favored 6-position at high temperatures. At high temperatures, in the reaction 

mixture, migration of the acyl group from 1- to 6-position which is named as 

transacylation and protiodeacylation of the acyl group at the 1-position of 1-AcMN 

are possible. These two reactions may result in the formation of the 

thermodynamically  favored product which is 6-AcMN. Steric hindrance to acylation 

is reported in the order 1- > 8- > 6-position (Das, 2000). Therefore, the isomerisation 

of the sterically hindered ketone 1-AcMN to sterically less hindered isomers like 6-

AcMN and 8-AcMN (8-Acyl-2-methoxynaphthalene) will be favored. 

In homogeneous catalytic systems, the acylation of 2-MN results in a mixture of 

1-AcMN and 6-AcMN initially, and later 1-AcMN is converted to 6-AcMN in a long 

reaction time (Gore, 1964; Giordano et al.,1990). Since the homogeneous catalyst 

provides free catalytic sites, acyl group at the sterically hindered 1-position migrates 

to the more stable 6-position. On the other hand, in heterogeneous catalytic systems, 

most of catalytic sites are fixed on external surfaces and inner pores. Therefore, the 

selectivity of the products will be changed in accordance with the restriction imposed 

on the sites. Gunnewegh et al., in 1996 and Choudary et al., in 1998, reported that 

over fixed catalytic sites without a geometric restriction 1-AcMN converted back 

only to 2-MN even at high temperatures (Figure 2.1.). S.D.Kim and co-workers 

(2000), on the other hand, reported that over H-Beta, by contrast, 1-AcMN reacted to 

yield not only 2-MN but also 6-AcMN at temperatures higher than 120 0C, when acyl 

group is the acetyl group. They also tested deacylation of 6-AcMN over H-Beta and 

OCH3
18   

6

2-Methoxynaphthalene



 

 9

found out that deacylation of 6-AcMN occurs at 180 0C but not at 120 0C. 6-AcMN 

did not convert back to 1-AcMN . 

 

Figure 2.1. Protiodeacylation of 1-AcMN 

 

In heterogeneous catalytic systems, diffusion characteristics of reactant and 

product molecules must also be taken into account while trying to figure out the 

selective acylation of 2-MN. Bharathi investigated the diffusion characteristics of 

acetylated 2-MN inside the large pore zeolites. He calculated the three largest 

dimensions of 2-MN, 1-Ac-2-MN (1-acetyl-2-methoxynaphthalene), 6-Ac-2-MN (2-

acetyl-6-methoxynaphthalene), and 8-Ac-2-MN (8-acetyl-2-methoxynaphthalene) as 

(10Å x 6Å x 2,8Å), (10,3Å x 8,1Å x 4,1 Å), (12,3Å x 6,2Å x 2,8Å), and (10,5Å x 7,8Å 

x 2,8Å ), respectively. Moreover, he studied the chemical interaction between the 

zeolite guest-host molecules using energy minimization calculations by carrying out the 

diffusion of these molecules along the a-direction in the 12-membered channels of 

mordenite, L, and β zeolites. For zeolite β, the diffusion energy barrier found for 2-MN, 

1-Ac-2-MN, 6-Ac-2-MN, and 8-Ac-2-MN were 9.4, 275.18, 16.5, and 320.2 kJ mol-1, 

respectively. The diffusivity parameter found for 2-MN,1-Ac-2-MN, 6-Ac-2-MN, and 

8-Ac-2-MN were 0.965, 0.762, 0.971, and 0,797, respectively. The diffusivity value is 

always between 0 and 1, and values closer to 1 indicate higher diffusivity. Both of these 

results imply that the pore dimensions, shape of the pores and their correspondence to 

the size and shape of the molecules determine the diffusion characteristics of molecules. 

These results also imply that there will be high selectivity for the diffusion of 6-Ac-2-

MN in the case of zeolite β, since it has the highest diffusivity and the diffusion energy 

barrier for it is the smallest compared with those of other molecules. Thus, zeolite β 

OCH3

CO

R

OCH3

H+-Zeol
-
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seems to be a suitable catalyst for the shape selective acylation of 2-MN to 6-Ac-2-MN 

(Bharathi et al., 1999). 

  



 

   11

CHAPTER 3 

 

BACKGROUND: ZEOLITE CHEMISTRY AND CATALYSIS 
 

3.1. INDUSTRIAL IMPORTANCE OF ZEOLITE CATALYSIS 

 

Zeolites exist in nature and have been known for almost 250 years as 

aluminosilicate minerals. Most common examples of zeolites are clinoptilolite, 

faujasite, offretite, ferrierite, and chabazite. Today most of these and many other 

zeolites are of great interest in many fields. Out of these fields, catalysis is the most 

essential application of zeolites in terms of financial market size, but not in terms of 

tons of production per year (Weitkamp et. al, 1999).  

Zeolites exhibit unusually high activity for various acid catalyzed reactions. The 

properties that makes zeolites proper for heterogeneous catalytic applications are given 

in literature as follows: 

1. Zeolites have porous crystal structures made up of channels and cages 

that allow a  large surface area thus a large number of catalytic sites. They have pores 

with one or more discrete sizes between 0,2 and 2 nm (Tosheva, 2001). 

2. They have exchangeable cations allowing the introduction of cations with 

various catalytic properties. If these cationic sites are exchanged to H+, they can have a 

high number of strong acid sites (Bhaita, 2000) 

3. Since they are solid, they can easily be removed from products and 

therefore they are environmentally benign. No waste or disposal problems is observed 

with zeolites ( Espeel et al., 1999). 

4. Their molecular sieve action can be used to control which molecules 

have access to and which molecules can depart from the active sites which is defined as 

shape-selectivity.  

But unfortunately from the catalytic perspective, naturally occuring forms of 

zeolites are of limited value, because (Weitkamp, 2000) 

1. They almost always contain undesired impurity phases, 

2. Their chemical composition changes from one deposit to another and even from one 

stratum to another in the same deposit, 

3. Nature has not optimized their properties for catalytic applications”  
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Studies on synthesis of new zeolite structures and their catalytic applications 

exhibited an amazing growth with the advent of synthetic zeolites in the period from 

1948 to 1959. Initially, new zeolite-based catalysts were investigated for applications in 

the petrochemical industries and with the introduction of synthetic faujasites zeolites X 

and Y on an industrial scale in fluid catalytic cracking of heavy petroleum distillates in 

1962, zeolite catalysis has undergone rapid and dynamic advances (Weitkamp, 1999).  

Today about 100 zeolites which do not have natural counterparts are known and some 

of them have great practical importance in many applications.(Bhatia, 2000). In addition 

to increased use in petrochemicals manufacture, zeolite catalysis is expanding into the 

areas of specialty and fine chemical synthesis. It is possible with the establishment of a 

relationship between the acid properties of the zeolite catalysts and the outcome of the 

reaction that a drug molecule or one of its intermediates will be synthesized over a 

zeolite-based catalyst in the near future (Davis, 1998). 

 

3.2. ZEOLITE CHEMISTRY 

 

 3.2.1. Chemical Structure   

 

Zeolites are hydrated aluminosilicates that are built from an infinitely extending 

three-dimensional network of SiO4 and [AlO4]-1 tetrahedra. These tetrahedra join 

together in through shared oxygen atoms with various regular arrangements, to form 

hundreds of different three-dimensional crystal frameworks (Breck, 1974). The zeolite 

framework contains channels, channel intersections and/or cages. Inside these voids are 

water molecules and small cations  (Weitkamp, 2000). Since the trivalent aluminum is 

bonded to four oxygen anions, each AlO4 tetrahedron in the framework bears a net 

negative charge which is balanced by a cation, generally from the group IA or IIA 

(Tosheva, 2001). The chemical composition of zeolites may be represented by the 

emprical formula:  

z H2O.. y(AlO2
-)

x)(SiO2
m+

y/m
A
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where A is a cation with the charge m, (x + y) is the number of tetrahedra per 

crystallographic unit cell and x/y is the so-called framework silicon / aluminum ratio  

nSi / nAl.  SiO4 and AlO4 building blocks of zeolites are given in Figure 3.1. 

 

 
Figure 3.1. SiO4 and AlO4 building blocks of zeolites (Weitkamp, 2000) 

 

According to the increasing framework Si / Al ratio, zeolites are categorized as: 

( i ) low Si / Al zeolites (1 to 1.5, zeolite A, zeolite X ); ( ii ) intermediate Si / Al 

zeolites (~ 2 to 5, mordenite ); ( iii ) high Si / Al zeolites (~ 10 to 100, ZSM-5, Beta ); 

and ( iv ) silica molecular sieves ( silicalite-1 ). As the Si / Al ratio of a zeolite 

increases, its cation content decreases, its thermal stability increases, and its surface 

selectivity changes from hydrophilic to hydrophobic. Silica molecular sieves ( silicalite-

1 ) have a neutral framework, are hydrophobic in nature, and have no ion exchange or 

catalytic properties, since [AlO4]-1 tetrahedra do not exist in the framework structure 

(Tosheva, 2001). 

 

3.2.2. Surface Acidity 

 

The feature that enables the separation of zeolites from all-silica minerals, is the 

substitution of metals other than silicon such as aluminum into the crystalline 



 

   

framework. The replacement of SiO4 tetrahedra by the [AlO4]-1tetrahedra in the zeolite 

framework results in excess negative charge that needs to be neutralized by cations. 

Compensation of the negative charge by associated cations like H+ , Na+ , K+ , Ca2+ , 

and NH4
+ generates the acid sites. The catalytic activity of the zeolites is attributed to 

the existence of these acid sites and the proton affinity at the charged framework. The 

catalytic activity of acid sites is either Bronsted or Lewis in character(Hindle, 1997). If 

the acid site is of Bronsted type, it acts as a proton donor. If the acid site is of Lewis 

type, it acts as an electron acceptor. A description of acidity in general, and surface 

acidity more specifically, requires the determination of the nature, the strength, and the 

number of acid sites. 

If the charge compensating cation associated with the tetrahedral aluminum is 

ammonium, heating  the zeolite between 300-400oC would cause the zeolite surface 

obtain the capacity to act as a proton donor and therefore act as a Bronsted acid. If the 

zeolite is heated to a temperature higher than 450oC, formation of Lewis acid site and 

zeolitic water would occur (Weitkamp, 2000). Ward proposed that two Bronsted acidic 

sites are needed for the formation of a single Lewis (electron acceptor) acidic site 

(Figure 3.2.) (Ward, 1996). 

  

Figure 3.2. Formation of 
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Bronsted and Lewis acid sites in zeolytes 

 of the Bronsted acid sites is the same regardless of the 

ration. The proton attached to a framework oxygen atom 

on and aluminum atoms results in the so-called bridged 
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hydroxyl group which is the site responsible for the Bronsted acidity of zeolites (Corma, 

1995). On the other hand, the precise chemical nature of Lewis acid sites is less clear. 

For some time, they were looked upon as tricoordinated aluminum and / or 

tricoordinated, positively charged silicon in the framework (Weitkamp, 2000).  

However, Kühl, in 1977, was able to show that silicon in dehydroxylated zeolites 

remains tetracoordinated and much of the aluminum is converted to octahedral rather 

than trigonal coordination. Kühl concluded that  [ ( AlO)+ ]n
n+  units removed from the 

zeolite framework act as true Lewis sites (Kühl, 1977 ). 

 

3.2.3. Pore Structure and Molecular Sieving  

 

There are mainly two types of pore structures of zeolites. One of them provides 

an internal pore system comprised of interconnected cage-like voids, e.g. Zeolite A and 

Zeolite Y. The other one provides a three dimensional system of uniform channels, e.g. 

ZSM-5 has set of straight parallel pores intersected by a set of perpendicular zigzag 

pores or a one-dimensional channel system composed of only straight parallel pores as 

in ZSM-22 ( See Figure 3.1.). 

In most of the zeolites, crystalline voids make up from 20 to 50% of the crystal 

volume (Breck, 1974). 

The diameters of the windows or pore leading into the voids vary according to 

the arrangement of the tetrahedral units. The size of aperture depends on the number of 

oxygen atoms present in the ring. The apertures can have 8, 10, or 12 oxygen atoms and 

zeolites are classified according to this number of oxygen atoms as 8, 10, or 12 oxygen 

membered ring zeolites. The size of the aperture is also dependent on the sizes of nearby 

cations, which may partially block it. 

Zeolite Beta, familiar with its disordered framework,  has a three-dimensional 

intersecting, 12-membered ring channel system. Two mutually perpendicular straight 

channels, with a cross-section of 0.76 x 0.64 nm, run in the a- and b-directions. A 

sinusoidal channel of   0.55 x 0.55 nm runs parallel to the c-direction (Jansen, 1997 ). 

Schematic presentation of the channel system of zeolite Beta is given in Figure 3.3. 
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Figure 3.3. Schematic presentation of the 

       channel system of zeolite Beta (Jansen, 1997) 

 

Molecular sieving is the selective adsorption of molecules, whose dimensions 

are below a certain critical size, into the intracrystalline void system of a molecular 

sieve.  The use of kinetic diameter of a molecule is very popular for comparison with 

zeolite pore dimensions. But, it is not only the kinetic diameter of a molecule that 

determines whether it is adsorbed in a given zeolite or not, but also the shape of the 

molecule in relation to the shape of the pore openings (Weitkamp et al., 1999) 

 

3.3. SHAPE SELECTIVITY 

 

As acidic, basic, or redox catalysts, zeolites essentially act in a way similar to 

their homogeneous counterparts. However, because of their specific nature, these solid 

microporous materials sometimes show a behavior not observed in the homogeneous 

phase. Shape selectivity of zeolites is such kind of a behavior. 

In zeolites , most of the active sites are located in the well-defined and molecularly 

sized pores and cages. Throughout a reaction, the transforming molecules are 

continuously exposed to steric limitations imposed by the zeolite structure, possibly 

changing the course of the reaction and finally resulting in product distributions 

showing deviations from those obtained in the homogeneous phase. In this context, 

molecular shape selectivity can be described as the restrictions imposed on guest 

molecules by size and shape of the zeolite pores. There are three types of molecular 

shape selectivity observed associated with zeolites (Espeel et al., 1999): 
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1)Reactant selectivity implies that those molecules with high diffusivity will 

react preferentially and selectively, while molecules excluded from the zeolite interior 

will only react on the external surface of the zeolite (Figure 3.4.). 

 

Figure 3.4.Reactant selectivity (www.keele.ac.uk/depts/ch/postgrad/spc/webpage3.html) 

 

2)Product selectivity implies that products with high diffusivity will be 

preferentially desorbed, while the bulkier molecules will be converted and equilibrated 

to smaller molecules which will diffuse, or eventually react to form larger species which 

will block the pores (Figure 3.5.). 

Figure 3.5. Product selectivity (www.keele.ac.uk/depts/ch/postgrad/spc/webpage3.html) 

 

3)Transition state selectivity takes place when certain reactions are prevented as 

the transition state necessary for them to proceed is not reached because of the space 

restrictions (Figure 3.6.). 

 

Figure3.6.Transition state selectivity (www.keele.ac.uk/depts/ch/postgrad/spc/webpage3.html) 
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Modification of the shape selective properties of zeolites is possible with 

different approaches for catalytic purposes. Most of these approaches not only change 

the shape selective but also the acid properties of zeolites. It is in fact impossible to 

change these properties independently. These approaches are given as follows: 

(i) Cation exchange: Small cations like H+ and Na+ can be replaced by larger 

cations such as K+ , Rb+ , Cs+ , using the ion-exchange method. This replacement results 

in the narrowing of the pore diameter of the zeolite channels in addition to a change in 

the number and strength of the Bronsted acid sites. 

(ii) Deposition of inorganic oxides: By deposition of inorganic oxides in the 

pores of the zeolite, the effective pore diameter is reduced and the steric constraints on 

reactants, transition state or products are enhanced. Deposition of these oxides also 

changes the acidic and basic properties of the zeolite. 

(iii) Crystal size: The crystal size of zeolite catalysts can be varied by adapting 

the synthetic conditions. By increasing crystal size, the fractional amount of sites on the 

outside of the crystal in comparison to the total amount of sites decreases and 

consequently the center of catalytic activity shifts from extra to intrazeolitic. 

(iv) Deactivation of the external surface: For small crystals, the active sites on 

the external surface largely contribute to the catalytic activity of the material. In the case 

of Bronsted acid sites, they can be deactivated by deposition of inorganic oxides or 

neutralized by chemical reaction with organosilanes which are too bulky to diffuse 

through the intracrystalline voids. By silylation, the hydrophobicity of the materials is 

enhanced. 

(v) Deposition of organic bases: Deposition of organic bases in the 

intracrystalline voids narrows the pore apertures and so enhances the steric constraints 

on molecular diffusion.(Espeel et al.,1999) 

 

3.4. ION EXCHANGE 

 

The cations of zeolites are distributed within the same intercrystalline pore 

systems as the zeolitic water and can be mobile like the zeolite water as a result of the 

open structure of zeolite. But, unlike the water, cations are not free to leave the crystals, 

if they are not replaced by their electrochemical equivalent of other cations since 

neutralization of the anionic charge of the aluminosilicate framework is required. The 

nature of the cations in a zeolite structure can be easily and simply changed. A variety 
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of ionic forms can be prepared using alkali and alkaline earth or transition metals and 

rare earth ions. Sometimes, the exchange reaction may go to completion or fail to do so, 

depending on the nature of the ion, the zeolite, and the temperature. Changes in ionic 

nature may result in marked changes of zeolite properties like thermal stability, sieving, 

and sorptive and catalytic function (Bhatia, 2000).  

Usually, ion exchange is applied by simply contacting the zeolite with a salt 

solution of a different cation at ambient temperature, or at elevated temperature if an 

accelerated exchange rate is desired. The exchange reaction, in which one type of cation 

is replaced with another, assumes an equilibrium state that is specific to the particular 

zeolite and particular cations (Kühl, 1999). 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 



 

   

CHAPTER 4 

 
EXPERIMENTAL STUDY 

 

4.1. CATALYST PREPARATION 

 

4.1.1. Preparation of H-ββββZeolite 

 

Zeolite Beta in pronated form (H-β) was obtained by the calcination of NH4-β-

zeolite (Zeolyst International, CP-814E, SiO2/Al2O3 mole ratio: 25) at 550°C for 10 h in 

air atmosphere (Figure 4.1.). 

 

Figure 4
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. Preparation of  H-β Zeolite 

ion Exchange of Zeolites 

etal cations were loaded onto the zeolite by stirring 5 g of NH4-β zeolite in a 

tion of 0.3 M of the proper metal chloride or metal nitrate at 80°C for 4 h. 

 the ion-exchange process, the zeolite suspension was filtered, washed 

y by deionised water and finally dried at 120°C overnight.  
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4.2. ZEOLITE CHARACTERIZATION 

 
BET surface areas of calcined zeolite samples were measured on a Micrometrics 

ASAP-2010. The cation content of samples was determined by flame atomic absorption 

method using Solaar M atomic absorption system and by ICP-emission method using 

Varian-96 Inductively Coupled Plasma Atomic Emission Spectrometer. By ICP-

emission method La3+ and In3+ content of zeolites were determined. By atomic 

absorption method Zn2+ and Fe3+ content of zeolites were determined. For the cation 

content analysis, the dissolved zeolite samples were prepared according to the 

microwave digestion method which is summarised below:   

Over 50 mg of zeolite sample, a mixture of 3 mL HNO3, 2 mL HF, and 1 mL 

HClO4 were added and this mixture was heated in the Ethos Plus Microwave Labstation 

furnace according to the following heating program: The mixture was heated to 120 0C 

and hold at this temperature for 3.5 minutes under 500 W power. Then it was heated to 

150 0C and hold at this temperature for 3.5 minutes under 600 W power. As the next 

step, it was heated to 190 0C and kept at this temperature for 4 minutes under 550 W 

power. Then, the sample was held at the same temperature under 600 W power this 

time. At the end of the program, the solutions were diluted to a final volume of 25 ml. 

The solutions prepared for ICP analysis were diluted according to a dilution factor of 

100. The solutions prepared for atomic adsorption analysis were diluted according to a 

dilution factor of 2. For ICP analysis, 1, 5, and 10 ppm of La3+and In3+ cations 

containing standard solutions were prepared. For atomic absorption analysis, 1, 2, and 5 

ppm of Zn+2 cation and 1, 2, 5, and 10 ppm of Fe3+ cation containing standard solutions 

were prepared. 

The characteristics of catalysts are given in Table 4.1. 
  

Bronsted and Lewis acidities of zeolites were examined by FTIR analysis of 

pyridine-sorbed zeolites following a procedure given by Kaneda. After calcination of 

each zeolite catalyst, it was placed in a glass vessel. Then pyridine-saturated nitrogen 

stream was passed through the glass tube for 1 hour. Then, the apparatus was heated to 

150 0C and kept at this temperature under a nitrogen stream for 2 hours in order to 

remove excess pyridine. The resulting zeolite (1 mg) was mixed with potassium 

bromide (100 mg), ground with agate mortar, extruded to a disk, and subject to FTIR 

measurement. IR Spectra of samples were recorded between 1400-1700 cm-1 
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wavelength (resolution:2 ; number of scans:200) by a Nicolet Magna 550 FTIR 

spectrometer and processed with a computer equipped with it. The specific peaks of 

interest were at 1543 and 1448 cm-1 in these spectra. According to the literature these 

peaks could be assigned as C=C stretching of pyridine adsorbed at Bronsted and Lewis 

acid sites, respectively (Kaneda et al., 1998). 

 

Table 4.1.Physico-chemical properties of the ion-exchanged β-zeolites used in the study                     

    M-n+- Metal Cation Content,    

wt% 

BET surface area 

(m2/g) 

Micropore Volume 

(cm3/g) 

      H+ -    584  0.192 

      In3+ 2.1    461  0.160 

      Zn2+ 1.9    452  0.148 

      Al3+ NDa    445  0.145 

      Fe3+ 3.4    459  0.145 

      La3+ 0.7    395  0.133 

aND:Not Determined 

 

4.3. ACYLATION REACTIONS 

 

Acylation reactions were carried out in a 50 ml three necked round-bottom flask 

connected to a condenser in an oil bath under nitrogen atmosphere (Figure 4.2). The 

freshly activated (550°C, 10 h) 1 g of catalyst was added quickly into the flask while 

still hot. 10 mmol 2-Methoxynaphthalene(Merck, purity >99%), 20 mmol acylating 

reagent and 4.5 mmol tetradecane(Merck, purity >99%)  as an internal standard were 

dissolved in 20 ml nitrobenzene(Merck, purity >99%)  which was previously dried over 

CaCl2 and distilled before use, and then introduced into the reaction flask through a 

dropping funnel. As acylating agent acetic anhydride (Merck, purity >98%), propionic 

anhydride (Fluka, purity >98%), benzoic anhydride (Fluka, purity >98%), acetyl 

chloride (Fluka, purity >98%), propionyl chloride (Merck, purity >98%), and benzoyl 

chloride (Riedel, purity >99%) molecules were used.  

  



 

   23

 

 

Figure 4.2. Experimental set-up designed for acylation of 2-MN reactions 

 

The reactions were performed for 24 h at 130°C unless otherwise stated. 

Aliquots of samples were taken periodically and analysed by GC and GC/MS 

techniques.  The identity of products was confirmed by comparison of their GC and 

GC/MS spectra with those of authentic samples. GC/MS spectra of samples was taken 

with Varian Star 3400 CX gas chromatograph and Varian Saturn 2000 GC/MS/MS 

mass spectrometer. 

 

4.3.1 GC Method 

 

The samples were analysed by GC (Shimadzu GC-17A) on a 30-m fused silica 

capillary column(5% Dimethylsiloxane, 95% phenyldimethylsiloxane) and with a FID 

detector. The GC program applied throughout the analysis is as follows: the column 

temperature was 40 0C at the beginning of the program and it was heated with a rate of 

10 0C/min up to 250 0C. The column was kept at 250 0C for 5 minutes. Throughout the 
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analysis the injector and detector temperatures were kept constant at 330 0C and 340 0C, 

respectively. The analysis was performed on split mode with a split ratio of 1/50.  

A sample gas chromatogram of the reactant and reaction products according to 

the given temperature program is given in Figure 4.3. 

 

Figure 4.3. A sample gas chromatogram of reactant and reaction products 

 

  4.3.2 Calculation of Reactant and Product Amount on GC 

 

For the calculation of amount of reactant and products, initially response factor 

of each reactant and product for the set temperature program of GC was determined. As 

internal standard tetradecane was used. The amount of internal standard does not change 

throughout the reaction, so the response factor of each compound was determined 

according to the amounts and areas under the peaks of internal standard and standard 

compound of interest. For the determination of response factor of a compound , a 

known amount of standard compound together with a known amount of internal 

standard dissolved in the reaction solvent and diluted with dichloromethane is injected 

to GC. After the analysis is completed according to the set temperature program, the 

following equation is used for the determination of response factor: 

 

 



 

   

 

 

In order to calculate the amount of both reactant and products at any time of 

reaction, aliquots of reaction sample taken from the reaction flask at that time were 

injected to GC. At the end of GC analysis, taking the amount of tetradecane and the area 

under the tetradecane peak into account, the following equation was used in order to 

calculate the amount of reactant and products at that time:  

 

 

4.3.3. Calculation of 2-MN Conversion and Product Selectivity, Product Yield and 

Product Recovery 

 

2-MN conversion at any time is calculated using the following equation: 

         

           where (2-MN)i is the weight of 2-MN at the beginning of the r

MN)t is the weight of 2-MN at time t. 

Selectivity of an isomer at any time was calculated using the follo

 

where (mol of isomer)t is the weight of isomer at time t and 

isomers)t is the sum of moles of all isomers at time t. 
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Product yield of a molecule was calculated according to the following equation: 

 

Product recovery at any time of reaction is calculated according

equation:  

 

 

4.4. SYNTHESIS OF AUTHENTIC COMPOUNDS 

 

1-Acyl-2-methoxynaphthalenes were synthesised by acylation 

stoichiometric amount of AlCl3 with the corresponding acyl chloride

dichloromethane solution of 2-methoxynaphthalene was cooled down

chloride was added gradually and stirred for an hour at -15°C. At the e

the mixture was added dilute HCl solution and the product w

dichloromethane and purified by recrystallisation using petroleum ethe

chromatography on silica gel using hexane-dichloromethane(8:2) as elu

2-Acetyl-6-Methhoxynaphthalene was commercially available.

6-Acyl-2-Methoxynaphthalene compounds were recovered from z

acylation of 2-MN through column chromatography using hexane-

(8:2) as eluent. 
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CHAPTER 5 
 

RESULTS AND DISCUSSION 
 

 

5.1. ACYLATION OF  2-METHOXYNAPHTHALENE WITH ANHYDRIDES 
 
 

Some general remarks can be drawn on the basis of the results from acylation 

reactions performed with anhydrides. Regardless of the structure of anhydride and metal 

type on the zeolite used, 1-acyl and 6- acyl methoxynaphthalene products were the 

major acylation products, while selectivity of other acylated isomers was <10% overall. 

Except the reactions with propionic acid, 8-acyl isomer of other ketone products 

comprised the most (3-5%). Overall ketone selectivity was generally >95%. No 

indication of protiodeacylation reaction (Harvey et al. 1992;Al-Kaabi et al.1998) or 

intermolecular trans-acylation reactions (Fromentin et al., 2000), which were reported to 

be principal reaction types responsible for deacylation of 1-acyl-2-methoxynaphthalene 

primary product, were observed in the presence of anhydrides.(See Figure 5.1.) 

Figure 5.1. Acylation of 2-MN with acetic anhydride over H+-β at 130oC  
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5.1.1. Acylation of 2-Methoxynaphthelene with Acetic Anhydride 

 

5.1.1.1. Activity of Catalyst 

 

Figure 5.1 shows the reaction run for the acylation of 2-MN with acetic 

anhydride over H+-β at 130°C. Apparently the conversion was almost ceased after 6 h 

of reaction time and there appears to be no interconversion between product types. This 

case of 2-MN conversion with H+-β can be generalised for other cation exchanged beta 

zeolites. If 2-MN conversion values at 2nd and 24th hours in Table 5.1. are examined, it 

can be seen that, except Zn2+-β  zeolite, longer reaction times slightly increased the 2-

MN conversion at 130 0C. So for longer reaction times, rate of 2-MN conversion is 

almost ceased and catalyst seems to deactivate.  

With the H+-β and In+3-β zeolites, the elevation of reaction temperature to 160°C 

increased the conversion rate, though the maximum 2-MN conversion was comparable 

to that obtained at the lower reaction temperature after 24 h of reaction. The acylation 

reactions were terminated at this conversion level due to catalyst deactivation. The 

elevation of reaction temperature did not show any significant effect on the product 

selectivity as well. 
 

5.1.1.2. Effect of Cation Type on Acylation Reactions 
 

The results of acylation reactions of 2-MN with acetic anhydride over ion 

exchanged β zeolite are presented in Table 5.1. Longer reaction times slightly lowered 

the 6-Ac-2-MN product selectivity, while the 1-Ac-2-MN selectivity increased slightly 

in general when reactions were performed with acetic anhydride. 

Ion exchanging the β zeolite influenced its catalytic activity for acylation 

reactions. At 130°C, although the conversion rate and maximum conversion of 2-MN 

were the highest with In3+-β, this catalyst gave rise to the lowest selectivity for 6-Ac-2-

MN. The conversion of 2-MN with other cation-exchanged zeolites was either 

comparable to or less than that observed with H+-β zeolite. The greatest selectivity for 

6-Ac-2-MN product was obtained with La3+-β zeolite. However, the conversion of 2-

MN was lower with this catalyst than with H+-β. Although the 6-Ac-2-MN selectivity 

was lower with In+3-β zeolite compared with La3+-β zeolite which shows the highest  
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6-Ac-2-MN selectivity, 6-Ac-2-MN yield was the highest with In3+-β zeolite. Zn2+ -

exchanged zeolite displayed the lowest activity to the acetylation reaction and gave the 

lowest 6-Ac-2-MN yield.  

 
Table 5.1.Acylation of 2-methoxynaphthalene by acetic anhydride over Mn+-β zeolite. 
 
 
Cation Time Conversion Product Selectivity% Product Yield% 

Mn+- (h) % 1-AcMN 6-AcMN 1-AcMN 6-AcMN 

H+ 2 40 28 65 11 26 

 24 48 30 62 14 30 

H+a 2 47 27 68 13 32 

 24 47 30 63 14 30 

In3+ 2 46 37 56 17 26 

 24 58 41 53 23 31 

Zn2+ 2 20 28 66 6 13 

 24 36 29 64 11 23 

Al3+ 2 34 27 65 9 22 

 24 46 30 63 14 29 

Fe3+ 2 32 29 64 9 21 

 24 43 32 61 14 26 

La3+ 2 34 19 75 7 26 

 24 41 21 73 9 30 

H+(II)b 2 34 26 67 9 23 

 24 49 34 60 17 29 

In3+a 2 56 41 53 23 30 

 24 61 43 50 26 31 

 
 

aat 160°C 
bsecond catalytic cycle 
 

 

The regio-selectivity of acylation reactions should be influenced by the 

geometry of channels within zeolite. The introduction of larger cations reduced the 
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effective size of  exchanged zeolites (Table 4.1.), La3+ loaded zeolite having the lowest 

BET surface area. However, intrinsic activity of cations can also play direct role in 

conversion of 2-MN and regio-selectivity of the products. It was reported that different 

metal halide compounds revealed different regio-selective activity to the acylation of 2-

MN when used in catalytic amounts (Art et al., 1994). 

FTIR analyses of pyridine adsorbed samples revealed that H+-, In3+, Fe3+ Al3+-

and La3+-β zeolites contained Bronsted acidity, while Zn2+ exchanged β zeolites 

contained both Bronsted and Lewis acid sites (Figure 5.2). The specific peaks of interest 

were at 1543 and 1448 cm-1 in these spectra and assigned as C=C stretching of pyridine 

adsorbed at Bronsted and Lewis acid sites, respectively. The zinc exchanged zeolite 

possessed the highest proportion of Lewis sites compared with other zeolites. It has 

been reported that La3+exchange enhances the Bronsted acid strength of zeolites (Gaare 

et al. 1996; Lee et al. 1987). Bronsted acid sites appear to be more important in 

polarisation of anhydride into a more electrophilic species which then attacks the 

benzene ring resulting in the formation of ketone. 
 

5.1.1.3. Test of Regenerability  

 

The regenerability of H+-β zeolite was checked for a second catalytic cycle using 

acetic anhydride as acylating agent at 130°C . The previously used zeolite sample was 

calcined at 550°C for 10 h again and used as catalyst in acylation reactions taking all 

other parameters same. The reactions were carried out for 24 h. 

Use of H+-β zeolite in the second catalytic cycle decreased the 2-MN conversion 

rate, though the maximum 2-MN conversion was comparable to that obtained in the 

first catalytic cycle. Use of H+-β zeolite in the second catalytic cycle did not have any 

significant effect on the product selectivity. Therefore, H+-β zeolite can be considered 

regenerable. 
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            Figure 5.2. FTIR spectra for the pyridine adsorbed β zeolites 
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5.1.2 Acylation of 2-Methoxynaphthalene with Propionic and Benzoic Anhydrides 

 

Table 5.2. presents the results from the acylation of 2-MN with propionic 

anhydride or benzoic anhydride. The comparison of the data given in Tables 5.1. and 

5.2. indicates that regio-selectivity of products is dependent on the anhydride structure 

used. The higher ether conversion and selectivity to the acylation at 6-position were 

achieved with propionic and benzoic anhydrides than with acetic anhydride over H+-β. 

Yet, benzoic anhydride afforded a slower reaction rate. This may be due to slower 

diffusion of bulkier benzoic anhydride. Molecular size of 1-acyl products should follow 

the order benzoyl>propionyl>acetyl. Hence, the formation of more bulky isomers, such 

as 1-acyl isomer, should be disfavoured owing to sterical constraints placed by the 

geometry of straight channels within the zeolite, which has 7.6 x 6.4 Å opening. 

 

Table 5.2.  

Acylation of 2-methoxynaphthalene by propionic or benzoic anhydride over Mn+-β zeolite 

  Time  Product Selectivity% 

Anhydride Mn+- (h) Conversion% 1-AcMN 6-AcMN 

Propionic H+ 2 36 12 75 

  24 50 11 75 

 In3+ 2 35 13 75 

  24 56 13 75 

 La3+ 2 28 7 81 

  24 43 7 79 

Benzoic H+ 2 23 20 74 

  24 64 22 72 

 In3+ 2 29 71 29 

  24 45 60 38 

 La3+ 2 2 12 88 

  24 3 9 91 

 

With propionic anhydride, the overall selectivity to the 1- and 6- position 

acylation was lower (85-87%), this being due to the formation of a diacylated ether 
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product (3-4%) and increased selectivity to an acylated isomer with unknown structure 

(6-7%). Analogous to those with acetic anhydride, somewhat higher conversion was 

achieved over Inβ, yet product distribution was comparable. The conversion was lower 

and 6-position acylation was more selective over La3+-β. 

The conversion of 2-MN with benzoic anhydride over In3+-β was lower 

compared to that achieved with H+-β, and the selectivity trend altered in favour of 1-

benzoyl-2-methoxynaphthalene product with the catalyst. In the case of La3+-β, the 

conversion was only <3%. These results indicate that penetration of bulky anhydride 

through catalyst pores is highly restricted with the presence of cations and eventually 

blocked with the presence of La3+.  
 

5.2. ACYLATION OF 2-METHOXYNAPHTHALENE WITH ACYL HALIDES 

 

Activity of catalysts was distinctly different for acylation reactions with acyl 

chlorides as compared to the reactions with anhydrides. Some distinct features were 

observed when the reactions were performed in the presence of acyl halides: the product 

recovery was substantially low with acyl halides and excluding the reaction performed 

over Fe3+-β with acetyl chloride, 1-acyl substituted product was significantly lowered as 

the reaction proceeded (Figure 5.3. and Tables 5.3. and 5.4.).  

Figure 5.3. Acylation of 2-MN with acetyl chloride over H+-β at 130oC 
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The reaction mixture appeared dark brown or black, while it was yellow for the 

reactions with acid anhydrides. These indicate that catalytic activity was altered by the 

interaction of some primary or secondary reagents present within the reaction medium 

that favoured condensation reactions and deacylation of 1-acyl isomer. 

Excluding La3+-β, metal exchanged β zeolites resulted in higher conversion than 

those attained with H+-β after 24 hour of acylation reaction with acetyl chloride. 

However product recovery determined by GC was significantly low. The results with 

Zn2+-β appear to be interesting. The higher conversion over Zn2+-β which has relatively 

higher Lewis acidity accompanied lower 1-Ac-2-MN and higher 8-Ac-2-MN selectivity 

(Table 5.3). Conversion values with La3+-β were comparable to those achieved with H+-

β. Nevertheless, the product recovery was the highest.   
 

Table 5.3. 

Acylation of 2-methoxynaphthalene by acetyl chloride over Mn+-β zeolite. 

 
Time  Product Product Selectivity% 

Mn+- (h) Conversion% Recovery%a 1-AcMN 8-AcMN 6-AcMN 

H+ 2 37 50 29 11 61 

 24 38 50 19 14 68 

In3+ 2 44 28 25 15 60 

 24 46 25 8 15 73 

Zn2+ 2 60 37 8 23 69 

 24 59 43 2 28 70 

Al3+ 2 34 59 27 9 62 

 24 46 47 16 12 71 

Fe3+ 2 32 59 29 4 64 

 24 43 44 32 11 61 

La3+ 2 37 75 39 8 53 

 24 39 74 26 10 64 
aBased on 2-methoxynaphthalene consumed. 

With propionyl chloride formation of a molecule with an unknown isomeric 

form and a molecular weight of 232 was determined. Its relative selectivity was 35 and 

28% at the second hour of reaction and 27 and 12% after 24 h, with H+-β and Zn2+-β, 

respectively. On the other hand, 1-acyl substituted product selectivity was negligible 

with Zn2+-β analogous to the case with acetyl chloride (Table 5.4). 
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Table 5.4. 

Acylation of 2-methoxynaphthalene by acyl chlorides over Mn+-β zeolite. 

   

 

Time 

  

 

Product 

 

Product Selectivity% 

Acyl 

chloride 

Mn+- (h) Conversion% Recoverya 1-ACMN 6-ACMN 8-ACMN 

Propionyl H+ 2 45 74 18 41 6 

  24 53 64 12 47 6 

 Zn2+ 2 69 45 1 56 11 

  24 74 45 2 72 13 

Benzoyl H+ 2 66 59 50 38 5 

  24 79 50 30 56 6 

 Zn2+ 2 72 77 38 46 5 

  24 81 51 22 61 6 
aBased on 2-methoxynaphthalene consumed. 

 

The 1-acyl selectivity was still high for the reaction with benzoyl chloride. In 

comparison, Zn2+-β is more active in deacetylation and selective formation of 6-acyl-2-

methoxynaphthalene directly. Probably, most of the 1-benzoyl-2-methoxynaphthalene 

product forms at the outer surface of the catalyst mainly over Zn2+-β and that it is 

improbable for this isomer to penetrate to active centres within the narrow sized 

channels to undergo deacylation which accounts for the higher recovery of 1-benzoyl-2-

methoxynaphthalene. 
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CHAPTER 6 
 

CONCLUSION 
 

On the basis of the mentioned results, it can be stated that cation-exchanging the 

β-zeolite remarkably alters its activity in acylation of 2-MN and product regio-

selectivity as well. La+3-β yielded higher 6-acyl-2-methoxynaphthalene selectivity. 

However 2-MN conversion was lower with ion-exchanged β and even negligible with 

La+3-β when benzoic anhydride was used as acylating reagent probably due to size 

incompatibility between the cation blocked channels and transition states, and lesser 

diffusibility of the anhydride. With acetic anhydride, H+-β zeolite showed the same 

catalytic activity in the second catalytic cycle in the acylation reaction. Overall ketone 

selectivity for the acylation reactions with acyl chloride reagents was found to be 

significantly low due to facile formation of carbonaceous materials. 1-Acyl-2-

methoxynaphthalenes were noticed to undergo deacylation in the presence of acyl 

chloride, while no such attitude occurred with anhydrides.  
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