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ABSTRACT 

 
Sorption, diffusion and permeation data were obtained for water vapour in water 

borne acrylic paint films and in the pure binder of the paints which is 

methylmethacrylate-co-butylacrylate copolymer. Paint films which have the same 

formulation but contain different amount of binder were characterized to determine 

elements and their form, distribution of the ingredients, structure, functional groups, 

degradation temperature, glass transition temperature and roughness of the surfaces 

using energy dispersive X-ray (EDX), X-ray diffraction, map diagrams, scanning 

electron microscope, fourier transform infrared spectroscopy, thermal gravimetry, 

differential scanning calorimetry (DSC) and atomic force microscope, respectively.  

Diffusivity and solubility of water in the paint films were measured at T= 30 oC 

while for the pure copolymer film similar data were collected at T= 30 oC and T= 40 oC, 

using a new type of gravimetric sorption apparatus called magnetic suspension balance. 

Fickian sorption is observed for both the paint films and the pure copolymer.  

Diffusivity and permeability of water increases while the maximum water 

sorption capacity decreases with decreasing binder fraction in the paint films. Scanning 

electron microscope pictures and map diagrams show a nonhomogeneous distribution 

and flocculation of the pigments in the paint films with low binder content. Transport 

properties (diffusivity, permeability, water sorption capacity) of the pure copolymer are 

similar to those determined for the paint film containing 40% binder. 

The sorption data for the paint films and the pure copolymer were interpreted 

using Flory-Huggins theory and ENSIC model, respectively. The Zimm and Lundberg 

cluster integral was used to determine the extend of clustering of water molecules. 

According to the predictions, water form clusters both in the paint films and in the pure 

copolymer. Degree of clustering and the change of mean cluster size with sorption 

appears to be larger for the pure copolymer. 
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ÖZ 

 
Aynı formülasyona sahip fakat ba�layıcı madde oranları farklı su bazlı akrilik 

boya filmleri ile bu boya filmlerinin ba�layıcı maddesi olan metilmetakrilat-ko-

bütilakrilat kopolimeri içerisinde su buharının sorpsiyon, yayınım ve geçirgenli�ine dair 

veriler elde edilmi�tir. Boya filmleri, yapılarında yer alan elementler ile bulundukları 

formların, da�ılımlarının, genel olarak yapının, fonksiyonel grupların, bozunma ve 

camsı geçi� sıcaklıkları ile yüzey pürüzlülük de�erlerinin bulunması amacıyla enerji 

da�ılımı X ı�ınları (EDX), X ı�ınları kırınımı, harita diagramları, taramalı elektron 

mikroskopu, fourier transform kızılötesi spektroskopisi, termal gravimetri, taramalı 

diferansiyel kalorimetri ve atomik kuvvet mikroskopu kullanılarak karakterize 

edilmi�lerdir.   

Suyun boya filmleri içerisindeki yayınım ve çözünürlü�ü a�ırlık ölçümüne 

dayalı yeni tip bir sorpsiyon cihazı olan manyetik askılı terazi kullanılarak 30 oC 

sıcaklıkta ölçülürken benzer veriler saf kopolimer filmi için 30 oC ve 40 oC’ de 

toplanmı�tır.  

Azalan ba�layıcı miktarına paralel olarak boya filmlerinin yapılarında 

barındırabilecekleri maksimum su tutma kapasitelerinde bir azalma görülürken suyun 

yayınım ve geçirgenlik katsayısı de�erlerinde artı� gözlenmi�tir. Taramalı elektron 

mikroskop resimleri ve harita diagramları ba�layıcı içeri�i az olan boya filmlerinde 

pigmentlerin homojen bir �ekilde da�ılmayarak topakla�malar olu�turduklarını 

göstermi�tir. Saf kopolimerin ta�ınım özelliklerinin (yayınım, geçirgenlik, su tutma 

kapasitesi) %40 ba�layıcı içeren film için elde edilen de�erlere yakın oldu�u 

belirlenmi�tir. 

Boya filmlerinin ve saf kopolimerin sorpsiyon verisi sırasıyla Flory-Huggins 

teorisi ve ENSIC modeli kullanılarak de�erlendirilmi�tir. Zimm ve Lundberg’in 

geli�tirdi�i model kullanılarak su moleküllerinin filmler içerisinde ne derece 

kümelenme olu�turdukları belirlenmi�tir. Hesaplamalara göre, su hem boya filmleri 

hemde saf kopolimer içerisinde kümelenmeler olu�turmaktadır. Kümelenmenin derecesi 

ve ortalama kümelenme büyüklük de�erinin saf kopolimerde artı� gösterdi�i tespit 

edilmi�tir. 
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CHAPTER 1 

 

INTRODUCTION 

 
Paints are often used for their decorative and protective functions. An 

underlying substrate can be easily deteoriated by the presence of moisture in the 

substrate or at the surface of the substrate. Deteoriating effects of water can be direct or 

indirect. When exposed to water in liquid or vapor form, paint eventually swells and 

peeling is observed. In addition, water in the paint favors corrosion reactions and 

growth of organisms, consequently paint losses its protective and decorative properties. 

To know  the barrier properties of the paint, its water transport properties must be 

known. Nowadays, solvent borne paints are being substitued by water borne paints due 

to pressure of the regulations which aimed at reducing the emission of volatile organic 

compounds (VOCs). Success in chosing the most appropriate formulation for the water 

borne paints coming into the market depends on predicting drying rate of water from the 

paint which requires to know transport properties of water in the paint. 

Previous studies have shown that paint ingredients which can be grouped as 

binders, solvents, pigments, additives, fillers and extenders have strong influence on 

structure of the paint films, hence on the diffusion process (Paul, 1985; Bierwagen, 

1987; Brown et al., 1997; Barbucci et al., 1998; Corfias et al., 1999; van der Wel and 

Adan, 1999; George and Thomas, 2000; Bin Liu et al., 2002; Landolt et al., 2002). 

The main objectives of this study are to measure permeability, diffusivity, and 

solubility, of water in water borne acrylic based paint containing methylmethacrylate-

co-butylacrylate copolymer as a binder, to characterize structure of the paint films and 

to determine the relationship between the structure and transport properties. 

In this study, the effect of binder content on the transport properties of water was 

investigated. For this purpose, four types of paints which have the same formulation but 

differ in the binder amount as 40%, 30%, 20% and 10% were utilized. 

To find the relationship between the transport properties and the structure, these 

paint films were characterized using scanning electron microscope (SEM), energy 

dispersive X-ray (EDX), fourier transform infrared spectroscopy (FTIR), thermal 
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gravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction 

(XRD) and atomic force microscope (AFM). 

Transport properties of small molecules in the polymers are measured by 

classical techniques given by Crank and Park (1968) and also by new advanced 

electronic, magnetic or nuclear magnetic resonance techniques (Mamaliga et al., 2003). 

In this study, magnetic suspension balance which is one of the most reliable and 

sensitive apparatus among other gravimetric sorption techniques was used to determine 

transport properties of water in both the paint films and the pure copolymer film. 

Sorption data were fitted by the Flory-Huggins theory and ENSIC model to be able to 

predict maximum water sorption capacity of the films. Thermodynamic models were 

also utilized to predict the extend of clustering and mean cluster size of water 

molecules. 

From practical point of view, industry uses permeability coefficient of water to 

directly determine barrier properties of the paint films. Based on this concern, 

permeability of water in the paint and the pure copolymer films was also measured. 

The thesis consists of four sections. The equations describing the sorption, 

diffusion and permeation processes are presented in Chapter 2. Chapter 3 gives general 

information about the paint and discusses the effect of its ingredients on diffusion 

behaviour of paint–penetrant systems. Experimetal techniques used for characterizing  

the samples and for measuring permeability, diffusivity and solubilities are discussed in 

Chapter 4. Experimental data and model predictions are discussed in Chapter 5 and 

general conclusions and possible suggestions for future work are summarized at the end 

of the thesis. 
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CHAPTER 2 
 

MODELING OF DIFFUSION, SORPTION AND 

PERMEATION PROCESSES 
 

In this chapter, typical sorption kinetics are discussed and equations describing 

the permeation process and the sorption process for both constant diffusion coefficient 

and variable diffusion coefficient cases are given. Furthermore, thermodynamic theories 

for modeling equilibrium isotherms are discussed. 

 

2.1 Basic Equations 

 

The transport of a penetrant molecule through a polymer film depends on the 

solubility of that penetrant molecule within that polymeric membrane and diffusivity 

through that system. The transport of some vapours in rubbery polymers follows a 

Fickian behaviour if the penetrant molecule is small enough that the relaxation motion 

of the polymer chains occurs in a faster rate in comparison to rate of diffusion of small 

penetrant molecules. For one dimensional case, Fickian type diffusion can be described 

by the Fick’s first and second law; 

 

                                                            J
x
C

D =
∂
∂−                                                        (2.1) 

 

                                                        )
x
C

(D(C)
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C
∂
∂

∂
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∂
∂                                                 (2.2) 

 

In Equations 2.1 and 2.2, J is the the amount of permeant passing through the unit area 

of the film in unit time, D is the diffusion coefficient, C is the concentration of penetrant 

molecules, x is the coordinate in the direction of flux, and t is the time. 
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2.2 Modeling of Sorption Process 
 

2.2.1 Constant Diffusion Coefficient Case 
 

During the sorption process the paint films with a thickness of L are placed into 

the multi-tray sample holders in which one side of the films is exposed to the water 

vapour and the other side of the films is based on the impermeable wall of the sample 

holder. Important assumptions utilized to model this process is that the diffusion of 

water vapour through the polymeric based paint films is one dimensional Fickian type 

diffusion. There is no chemical reaction between the water vapour and ingredients of 

the paint material. The paint films are subjected to pure deionized water vapour.  

Finally, the vapour pressure of the water is small enough that at the end of  each 

absorption step, the change in the thickness of the sample can be ignored and diffusion 

coefficient is independent of the concentration. Under these assumptions, sorption 

process is described by Equation 2.3; 

 

                                                                
2

2

x
C

D
t
C

∂
∂=

∂
∂                                                   (2.3) 

 

Initially, the concentration of the water, Co, in the paint is the same everywhere; 

 

                                                          t=0  → C= C0                                                                                (2.4) 

 

At times greater than zero, the concentration of the penetrant at the surface is constant 

and equal to its equilibrium concentration, Ceq. 

 

                                                       t>0 → x= L  C=Ceq                                               (2.5) 

 

and concentration gradient at the lower surface is zero since it is impermeable to 

penetrant. 

 

                                                      t>0, x= 0,   0
x
C =

∂
∂                                                   (2.6) 
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Analytical solution of the equations given in Equations 2.3 through Equation 2.6 is 

given by Crank (1975).  
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If Equation 2.7 is integrated between the limits of x = 0 to x= L then dimensionless 

uptake is obtained as follows; 
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Crank has shown that at short times as t goes to zero, Equation 2.8 can be simplified as 

shown below; 
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Equation 2.9 points out that for short time interval, mass change curve becomes linear 

and diffusion coefficient value can be easily obtained from the slope of the 
'

'
t

M
M

∞

versus 

t  graph.  

 

2.2.2 Variable Diffusion Coefficient Case 
 

Experimental sorption curves are not properly described by analytical solution 

given by Equation 2.9 when both diffusion coefficient and the thickness of the film 

change through a particular step. In this case model equations to determine diffusion 

coefficients need to be modified. Recently Alsoy and Duda (2002) have analyzed 

unsteady- state sorption of a vapour or liquid by a polymer to investigate the influence 

of the moving phase boundary associated with polymer swelling and diffusion- induced 

convection. According to their formulation, the species continuity equations for the 

solvent denoted by 1 and polymer denoted by 2. 
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are converted to the following equation; 
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after introducing a diffusive flux ( )211
o
1 ��	J −= , a new concentration variable, 

22

1
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q = , and a new length variable ( ) �=

x

0
22 dxV	tx,ξ . If diffusive flux is expressed 

in terms of new length and concentration variables, 
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and is substitued into Equation 2.12, then the sorption process is described by the 

following equation: 
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Equation 2.14 is a nonlinear equation which is subject to the following initial and 

boundary conditions: 
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This formulation can be put into a dimensionless form utilizing the following 

dimensionless variables.  
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In systems involving polymers, concentration dependence of small molecule in the film 

is usually described by an exponential function. Based on this fact, following expression 

can be proposed: 

 

                                                 [ ]*
1o �qexpDD =                                                           (2.19) 

 

where the exponent α  is allowed to vary with concentration as follows: 

 

                                            ( )[ ]1o121 ww�exp�� −=                                                    (2.20) 

 

At very low sorption rates, �  approaches to zero, thus, diffusion coefficient remains 

constant (D=Do). 

The solution of equations (2.17) through (2.20) gives concentration of solvent in 

the film (polymer) as a function of position and time. When integrated, theoretical 

uptake curve is generated. The diffusion coefficient is obtained by minimizing the 

difference between the experimental and theoretical uptake curves. 

 

2.3 Typical Sorption Kinetics 
 

When the penetrant molecules diffuse through the polymeric systems, polymers 

can show different responses to this process. According to this response, sorption 

kinetics can be categorized as Case I, Case II and Case III diffusion (Ghi et al., 2000). 

Case I diffusion is also named as Fickian diffusion. In this case the rate of diffusion is 

significantly slower than the rate of relaxation of the polymer chains. In the Fickian 
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sorption when the fractional mass versus square root of time graph is drawn, firstly a 

linear part appears. Then the curve reaches to a saturation level. If the sorption process 

is a Fickian one, the desorption and absorption curves should overlap (van der Wel and 

Adan, 1999). In Case II diffusion, the rate of penetrant diffusion is greater than the rate 

of relaxation of the polymer chains. Case III sorption is also known as anomalous 

diffusion and this is a general name because there is not only one type of  anomalous 

diffusion. Some of them are two-stage sorption and the others are sigmoidal sorption. 

As the name suggests, in the two stage sorption the curve exhibits two parts as firstly 

fast Fickian absorption and secondly slow non-Fickian absorption. In Sigmoidal 

sorption, S shaped curve is seen. Figure 2.1 shows typical sorption curves mentioned 

here. 

 

              
                           (a)                                                                        (b) 

    
                             (c)                                                                     (d) 

Figure 2.1: Typical sorption curves: a) Fickian absorption curve, b) Case II absorption 
curve, c) Two-stage absorption curve, d) Sigmoidal absorption curve (Source: van der 
Wel and Adan, 1999).  
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2.4 Modeling of Permeation Process 
 

In the permeation experiments one side of the film with thickness L is exposed 

to the water vapour, which can be called as feed side and the other side is exposed to the 

atmosphere in the upper volume of the permeation cell and it can be called as permeate 

side. To model permeation process through paint films, it is assumed that transport 

through the films is one dimensional and can be represented by Fickian diffusion with 

an effective diffusivity, Deff. 

 

                                                   
x
C

DJ eff ∂
∂−=                                                            (2.21) 

 

Furthermore, it is assumed that film with a thickness of L is thin so that steady-

state condition is achieved in the film even though the concentrations on the lower and 

upper compartments may change with time. If it is considered that diffusion coefficient 

is independent of concentration, then, Equation 2.21 can be integrated from x = 0 to  x = 

L to find the following expression for the flux, J. 

 

                                                  )C(C
L

D
J 1u1L

eff −=                                                    (2.22) 

 

where C1L and C1u are the concentration of permeant at lower and upper surfaces of the 

membrane. If a linear equilibrium relationship between vapour and polymer phase 

exists, 

 

                                                    C1L  =  P1L. Seff                                                        (2.23) 

 

                                                   C1u  =  P1u. Seff                                                                                      (2.24) 

 

then, amount of permeant passing through the membrane per unit time per unit area, J, 

is given as follows 
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L
SD

J 1u1L
effeff. −=                                                  (2.25)                   

where P1L and P1u are partial pressure of the permeant in lower and upper compartments 

respectively. The product Deff.Seff  in Equation 2.25 is called as permeability coefficient, 

Peff. Molecules permeating through the membrane cause an increase in partial pressure 

of the permeant in the upper volume of the cell. If vapour phase is assumed to be ideal, 

then an increase in pressure of the permeant is given by the following expression; 

 

                                                      J.A
dt

dP
RT
V 1uu =                                                        (2.26) 

 

where Vu is the volume of the upper cell, A is the area of the membrane and T is the 

temperature in the upper compartment. If Equations 2.25 and 2.26 are combined; 
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V
A

L
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1u1Leff
u

1u −=                                              (2.27) 

 

and if partial pressure of the permeant in the lower compartment is maintained constant, 

then Equation 2.27 can be integrated between the limits; 

 

                                          t = 0           P1u = P1ui                                                        (2.28) 

 

                                           t = t           P1u = P1u(t)                                                     (2.29) 

 

to give following expression; 
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Permeability coefficient, Peff, can be calculated from the slope of 
1u(t)1L

1ui1L
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   vs time 

graph.  
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2.5. Modeling of Equilibrium Isotherm 
 

The Flory-Huggins thermodynamic theory is used for correlating the water 

sorption isotherms (Barrie, 1968; Perrin et al,. 1997; Rodriguez et al., 2003). Barrie 

(1968) notes that the theory is useful for describing water sorption behaviour in 

hydrophobic polymers. Perrin et al. (1997) showed that the water sorption isotherm in 

hydrophilic cellulose acetate can be well described by the Flory-Huggins theory for 

activities less than 0.7.  

According to the Flory-Huggins theory, the relation between activity of water 

vapour, aw, and its volume fraction in the polymer, φw is given as follows (Prausnitz et 

al., 1986). 

 

                                   2
wwww )�(1)�(1ln�lna −+−+=                                            (2.31)

                                                                                                                    

In this expression, χ represents the Flory-Huggins interaction parameter which provides 

how much a penetrant can dissolve the polymer. If χ  value is less than 0.5, then the 

penetrant is a good solvent for the polymer. 

The deviation from the Flory-Huggins thermodynamic theory especially at high 

penetrant activities lead to another approach derived by Perrin (Perrin et al., 1997). This 

model called as ENSIC model takes into account both penetrant-polymer and penetrant-

penetrant interactions by introducing a second interaction parameter, ks for mutual 

penetrant interactions. The interactions between the polymer and penetrant are reflected 

by the parameter kp, which is comparable to the Flory-Huggins interaction parameter χ. 

These two constants are related to the penetrant volume fraction in the polymer by the 

following equation. 

  

                                           
( )[ ]
( ) pps

wps
w /kkk

1akkexp
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−
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=                                                   (2.32) 

  

The thermodynamic theories can also be used to determine extend of clustering. 

Water is a unique penetrant due to its polar nature, thus, it can hydrogen bond with itself 
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and can form clusters. Zimm and Lundberg describe a mathematical approach to 

determine the extend of clustering based on a cluster integral, Gww, which can be 

calculated from the equilibrium sorption isotherm as follows (Rodriguez et al., 2003)  
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where Vw is the partial molar volume of the water. The quantity Gww/Vw indicates 

whether clustering takes place or not. If Gww/Vw = -1, the solution is ideal, indicating 

that water molecules do not affect the distribution of other water molecules. If 

Gww/Vw>0, water molecules tend to cluster, whereas if Gww/Vw<-1, the water molecules 

prefer to remain isolated. 
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CHAPTER 3 

 

GENERAL INFORMATION ABOUT PAINT AND 

EFFECTS OF ITS INGREDIENTS ON DIFFUSION 

BEHAVIOUR OF PAINT-PENETRANT SYSTEMS 

 
In order to protect the surfaces from some corrosive, deteoriating materials and 

obtain aesthetic appearance, one of the most effective and commonly used way is to 

coat the surfaces with paints. Paint has a complex structure containing many functional 

ingredients. The properties of paint such as adhesion, color, thickness, viscosity, drying 

time and barrier property are strongly influenced by its ingredients. 

In the first part of this chapter, general information about the paint ingredients 

are given. In the second part, the effects of paint ingredients on diffusion process are 

discussed. 

 

3.1 Ingredients of Paint Material 
 

Generally paint constituents are grouped in five categories: vehicles, solvents, 

pigments, additives, fillers and extenders (Weismantel, 1981; van der Wel and Adan, 

1999). Polymer also named as vehicle is the binder material in which other ingredients 

are solubilised or dispersed. They represent the  matrix structure of the coating and they 

are key elements to predict the durability of the coating (Bierwagen, 1987). Solvents 

adjust the viscosity of the paint material, pigments give the desired color to the paint 

while additives increase the stability of the paint material.  

 

3.1.1 Vehicles 
 

The vehicle is responsible from a continious paint film formation and well 

adhesion to the substrate. The vehicles are divided into six groups as solid thermoplastic 

film formers,  lacquer- type film formers, oxidizing film formers, room temperature 
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catalyzed film formers, heat cured film formers and emulsion type film formers 

(Weismantel, 1981). 

 

3.1.2 Solvents 
 

Solvents are used  to improve the application properties of paint materials. Most 

important function of a solvent is to reduce viscosity sufficiently so that the coating can 

be easily applied. In addition, solvents control levelling, flow, gloss, drying time and 

durability. Solvents dissolve the film former of coating solution. They separate and keep 

apart the droplets of film former in emulsion coatings.  

Paints are categorised as waterborne and solvent borne paints. For the solvent 

borne paints, solvents are often classified as hydrocarbons and oxygenated solvents. 

Hydrocarbon solvents are grouped as aliphatic and aromatic. They  differ in the way in 

which the carbon atoms are connected in the molecule. This characteristic structural 

difference affects the chemical and toxicological properties of the solvent (Weismantel, 

1981).  

In water borne paints, function of solvent is performed by water. Water borne 

coatings have low viscosity so brushability is higher and their flammability is lower. In 

addition, they are environmentally friendly products, since the emission of volatile 

organic compounds from solvent borne coatings is a major concern. However, the 

disadvantages of water borne coatings may arise from their easy foaming properties and 

high cost. Furthermore, drying time for water borne paints is longer and some defects in 

the form of cracks are frequently observed and water may react with some materials 

(Kristoffersson  et al., 1998). The most common applications of water borne coatings is 

latexes. Latex can be defined as a stable colloidal dispersion of a polymeric substance in 

an aqueous medium. Microstructure development of latex coatings can be divided into 

three stages: 1)Water evaporation and transformation from a suspension to a porous 

medium. 2) Deformation of latex particles due to capillary pressure 3) Final coating 

properties development (gloss, opacity, brightness) formed by heat, pressure, aging etc. 

(Keddie, 1997; Kristoffersson  et al., 1998; Le Pen et al., 2003). In comparison to water 

soluble polymers (water can dissolve the binder) polymeric content of the latex is higher 

and at the same time viscosity does not increase, due to the low glass transition 

temperature, there is no need to add plasticizer (Kristoffersson et al., 1998). 
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3.1.3 Pigments 
 

Paint pigments are solid grains or uniform size particles (Weismantel, 1981). 

They are insoluble and dense substances which are suspended into the coating 

formulation (van der Wel and Adan, 1999). Paint pigments must be unreactive to 

perform their functions. According to their origin and compositions, pigments are 

classified into three groups as inorganic, organic, and dispersed pigments (Paul, 1985). 

Three important aspects of pigmentation are opacity, color and gloss control. 

Opacity is the ability of paint to hide the substrate. Color is due to the ability of 

pigments to absorb certain wavelenghts of visible light and reflect the other 

wavelenghts. Pigments also control the gloss of paint by affecting the texture of the 

coating surface (Weismantel, 1981). By absorbing UV radiation pigments prevent the 

degradation of the polymer. Pigment absorbtion spectra and whether the pigment has 

photocatalyst property or not are important subjects for a good protection. Some of the 

most popular pigments are titanium dioxide, iron oxide, aluminium flakes and zinc 

oxide. 

 

3.1.4 Additives 
 

Additives are used in relatively small amount to improve the performance of 

coatings (Weismantel, 1981; van der Wel and Adan, 1999). Some necessary properties 

which cannot be supplied by the binder or pigments are given by additives to the paint. 

Additives also improve certain properties of the vehicle like  speed of drying, and 

resistance to fading (Weismantel, 1981). The most important additives are pigment 

dispersants, rheology modifiers, levelling additives, and antifoams. Antifoams prevent 

foam formation. Levelling agents facilitate spreading of the paint over the substrate 

surface and homogeneous film formation. Rheology modifiers are used to adjust the 

viscosity of paint. Pigment dispersants supply well, homogeneous  distribution of the 

pigments through the paint (van der Wel and Adan, 1999).  
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3.1.5 Fillers and Extenders 
 

Fillers are generally used to lower the paint price. They increase the hardness of 

the paint material. Talc, clay, chalk, quartz, are the filler materials used for these 

purposes (van der Wel and Adan, 1999).  

Extenders are type of inorganic pigments. They are mainly added to the paint 

systems to a) control the rheological properties of paints, b) reduce settling tendency of 

pigments, c) improve flow properties, d) reduce gloss, e) increase the opacity of white 

hiding pigments, f) improve mechanical properties, g) increase the  barrier properties of 

paint films (resistance of films towards diffusion of water and agressive gases) (Paul, 

1985).   

 

3.2 Effects of Paint Ingredients on Diffusion Process 
 

Transport properties of polymers may exhibit differences when they are used as 

paint constituents. Because, besides polymer; paint consists of pigments, solvents, 

additives, fillers and extenders, and each of these ingredients affects transport behaviour 

(van der Wel and Adan, 1999).  

 

3.2.1 Effects of Pigments on Diffusion Process  
 

To obtain a high quality  paint  essential amount of pigments must be contained 

in the paint material due to their useful contributions. The amount of pigments and 

fillers relative to the amount of binder is known as pigment volume concentration 

(PVC). It is known that inorganic pigments and extenders are dense, and impermeable 

substances and their solubilities are less or they are non soluble. Because of these 

properties, pigments improve the barrier properties of paints. In order to perform their 

functions all of the pigments must be completely wetted by the binder material. Thus, 

binder should be found in the paint in a sufficient amount. When the amount of binder is 

such that the total pigment volume is completely wetted, PVC is called as critical 

pigment volume concentration (CPVC). If the amount of pigments is increased 

unlimitedly, percentage of binder decreases to a very low amount, in other words if 

CPVC is exceeded  all of the pigments cannot be wetted by the binder material 
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completely. In this case, the structure of the paint becomes porous and the rate of water 

transport through the paint increases. Consequently, the barrier properties of the paint 

significantly decreases. Bin Liu et al., (2002) investigated the effect of changing 

pigment amount on the water vapour diffusion behaviour of alkyd based coatings. They 

used micaceous iron oxide as the pigment material in the coatings and PVC was 

changed as 40%, 50%, 60%, and 70%. Their results have shown that diffusion 

coefficient of water in the coating decreased when PVC increased up to 60% as 

illustrated in Figure 3.1. Based on these results, they have concluded that 60% 

corresponds to CPVC above which pigment binder interface becomes porous due to 

insufficient wetting of pigments, thus, diffusion coefficient increases.  

 

 
Figure 3.1: Effect of PVC on the diffusion coefficients of water diffusing through alkyd 

coatings (Source: Bin Liu et al., 2002).  
 

Barbucci et al. (1998) also found that diffusion coefficient of water in 

flourinated coating changes with PVC. Their results are tabulated in Table 3.1. 

 
Table 3.1: Diffusion coefficient of water in flourinated coatings at different PVC.   
                 (Source: Barbucci et al., 1999). 
 

PVC D (cm2/s) 

0 2.5x10-5 

7 4.0x10-5 

10 2.1x10-5 
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Not only the binder amount but also the size, shape and the geometry of the 

pigment influence the CPVC (Paul, 1985) and coating durability (Bierwagen, 1987). In 

an ideal case of pigmentation, the pigments should be well dispersed. Degree of 

dispersion of the pigment is closely related to the coating protection capacity since 

pigments and polymer interact in the coating. Moreover, if flocculation occurs, the 

pigment particles cannot be wetted completely and the wetting process is not successful. 

For this reason even if the CPVC is not exceeded, due to the insufficient wetting of the 

pigments, a porous structure can be observed and barrier property of the paint decreases. 

Brown et al. (1997) studied the effect of PVC and the size of the latex particles on the 

pigment distribution  in water-borne coatings. They reported that heterogeneous 

distribution and forming clusters in the pigment crystals cause to high water vapour 

permeability in emulsion paints. They stated that pigment clustering is due to size and 

size distribution of latex particles as well as the number and size distribution of the 

pigment particles. 

 

3.2.2 Effects of Additives and Fillers on Diffusion Process 
 

Paint is a very complex structure containing many groups. The polarity of these 

groups are usually different from each others, especially in water borne paints, the 

polarity difference between the groups increases. One of the important functions of the 

additives is to enable compatibility between these different groups in the paint. 

However, additives are known as hydrophilic materials, thus, they cause an increase in 

water permeation rate and a decrease in barrier property of the paint (van der Wel and 

Adan, 1999). One of the commonly used additives are pigment dispersants. They 

provide a physical barrier around pigment particles to prevent flocculation (Brisson and 

Haber, 1991). In order to investigate the type of dispersion agent on the barrier 

properties of water borne epoxy coating, Landolt et al. (2002) performed experiments 

by using two types of coating with the same formulation containing polyacrylic acid and 

polyamine salt as dispersing agent. In Figure 3.2 water uptake behaviours of the 

coatings were represented. According to the figure, water uptake values of the coating 

which contain polyacrylic acid is higher which means that it has relatively bad barrier 

properties in comparison to the coating containing polyamine salt. This result showed 
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that the type of dispersing agent used in the paint significantly affects the barrier 

properties of the coating. 

        

                       (a)                                                            (b) 

Figure 3.2: Water uptake as a function of immersion time: (a) for the coating containing 
polyacrylic acid and (b) for the coating containing polyamine salt (Source: Landolt et 
al., 2002). 

 

The diffusion process in the polymeric systems also depends on the type of the 

filler. If the filler added to the polymer is compatible with the polymer matrix, it is 

expected to cause decreasing free volume within the polymer matrix and forming a 

torturous path for the permeating molecules. Geometrical properties of the filler 

material influence the tortuosity. In the case of incompatible filler usage, pores form at 

the filler-polymer interface so permeability increases (George and Thomas, 2000). 

Corfias et al. (1999) investigated the effect of fillers on the barrier properties of 

polyurethane based film coated on galvanized steel. In the experiments three types of 

coating with different filler materials were used, for all of the coating materials the 

binder material was polyurethane. A clear coat (binder alone), coating with alumina 

silicates, coating with neutral fillers and chromates were used in the experiments. Their 

results indicated that number of pores in the chromated system  was low since 

chromates stabilized the structure of the coating due to electrostatic interactions. Thus, 

coating with chromate as a filler material was found to have better barrier property to 

water diffusion compared to other coatings. 
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CHAPTER 4 

 

EXPERIMENTAL STUDIES 

 
Experimental studies can be grouped into three categories as characterization, 

permeation and diffusion studies. In the first part of this chapter, all characterization 

techniques  used to identify the structure of the paint films  are introduced. In the second 

part, details of the experimental set-ups and procedures followed for measuring 

permeability and diffusivities are discussed.  

 

4.1 Materials  
 

In this study four types of paints which have the same formulation but differ in 

the binder amount as 40%, 30%, 20%, 10% were utilized. The binder used in paint 

formulation is methylmethacrylate-co-butylacrylate copolymer. Paint samples were 

supplied by Akril Kimya A.�. Some experiments were done by using binder alone 

(methylmethacrylate-co-butylacrylate copolymer) in order to compare the results 

obtained from the experiments in which paint samples were used. Binder material was 

supplied by Organik Kimya A.� in the form of an emulsion consisting of 50%  

copolymer, 50% water and 110 ppm residual methylmethacrylate.    

 

4.2 Film Preparation Method 
 

Paint films were prepared by casting the solution onto a clean and smooth glass 

substrate through an automatic film applicator (Sheen-1133N).  For characterization 

studies, all paint films were prepared by using a blade with a thickness of 300 µm. For 

permeability and diffusion studies  paint films were prepared using the blades with a 

gap of 120, 250, and 300 µm. In order to evaporate the water contained in the films, 

they were dried in the vacuum oven at 100 oC for an hour. Dried films were placed in a 

deionised water bath to detach them from the glass substrate easily. Duration time in the 

water bath was different for each film ranging from 30 seconds to 37 minutes. For the 
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final drying process the detached films were again replaced in a vacuum oven at a 

temperature of 100 oC for 72 hours.  

 

4.3 Characterization Studies 
 

4.3.1 Scanning Electron Microscope (SEM) 
 

Scanning Electron Microscope (Philips XL 30 S FEG) was used to determine 

structure of the paint films from their opaque and glossy surfaces at various 

magnifications using secondary electron imaging (SEI) and back scattering (BS) 

detectors. In addition, cross sectional micrographs were taken to measure average 

thickness of the paint films using only SEI detector. At the same time SEI mode 

allowed to observe possible structural differences between opaque and glossy sides of 

the paint films. In BS mode, compositional contrast was seen in the images of the paint 

films, and this contrast was used to evaluate the distribution of different phases and 

compounds in the paint  films.   

 

4.3.2 Energy Dispersive X-ray (EDX) 
 

EDX analysis was carried out on the opaque surfaces to determine the elements 

in the paint films. In this analysis, data were collected from 20 randomly chosen points 

and by taking arithmetic mean of these values, average weight percent of the elements 

found in the films was calculated.   

The elements investigated in the EDX  were represented by a different colour 

and map diagrams were formed. By using these diagrams, the degree of homogenity in 

the distribution of the elements in the paint films with different binder amount was 

observed. 

 

4.3.3 Fourier Transform Infrared Spectroscopy (FTIR) 
 

FTIR spectrophotometer (Shimadzu 8601 PC) was used  to obtain functional 

groups in the paint samples. The resolution was 4 cm-1. The range of the wavenumber 

was between 400 and 4600 cm-1. Sensitive pyroelectric type of DLATGS (deuterium 
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triglyceride sulfide which is adapted by L-alanine ) element was mounted on the FTIR –

8601 PC as a detector.   

 

4.3.4 Thermal Gravimetry (TGA) 
 

In order to observe  changes in thermal events in the paint films related to 

changing binder amount, thermal gravimetric analysis was done by using Shimadzu 

TGA-51. The samples were placed into the alumina crucible. Weight of the  samples 

was 8.683, 9.164, 7.989, 9.968 mg for the paint films which have 40%, 30%, 20%, 10% 

binder, respectively. Samples were heated up to 1000 oC with a heating rate of 10 
oC/min. During the heating of the samples, nitrogen gas was used as the purge gas with 

a flow rate of  30 ml/min except that in the paint with 30% binder, the flow rate of the 

nitrogen gas was 40 ml/min.  TG analysis of the pure copolymer with a weight of 9.46 

mg was done under the same conditions except that the heating process was applied up 

to 600 oC. 

 

4.3.5 Differential Scanning Calorimetry (DSC) 
 

Differential Scanning Calorimetry (Shimadzu DSC-50) was used to determine 

the glass transition temperatures of the paint films. Films whose weights change 

between 2.6 –3.4 mg were placed into the aluminium crucible. Then, they were heated 

up to 500 oC with a heating rate of 1 oC /min until 30 oC and  5 oC/min above 30 oC 

using nitrogen as a  purge gas with a flowrate of 40 ml/min. 

 

4.3.6 X-Ray Diffraction (XRD)  
 

Philips X’Pert Pro diffractometer was used to investigate the crystalline form of 

the elements present in the paint films. The operating conditions  were 45 kV and 45 

mA. CuKα  radiation, λ = 0.15406 Ao, was carried out. The range for the X-ray scan 

was made over  2θ values of 5-70 oC with a scan speed of 0.06o/second. X’Pert 

Graphics & Identify software was used to record the XRD intensities.  The data 

collector was X’Pert data collector. The crystalline peaks were identified by matching 
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with standard reference patterns from PCDFWin database maintained by the 

International Centre for Diffraction Data (ICDD).  

 

4.3.7 Atomic Force Microscope (AFM) 
 

AFM was used to measure the roughness of the paint films. Analysis was done 

by using Digital Instrument Multimode Nanoscope SPM 4, and both in contact mode. 

The measurements were carried out in ambient air. In contact mode, OTR8-35 Si 

cantilever was used. The lenght of the cantilever and the resonance frequency were 

between  100-200 µm and 73-24 kHz, respectively.  

 

4.4 Solid-Liquid Ratio Analysis  
 

The solid-liquid ratio of the liquid  paint samples and also pure copolymer were 

investigated by using Sartorius Moisture Analyzer (MA 100) device. The liquid samples 

were cast onto the aluminium pans and the initial mass of the samples and the tares of 

the pans were measured in the Sartorius Electronic Balance that has a resolution of 0.1 

mg. Standard drying was selected as heating program and the temperature was set to 70 
oC. Until the temperature reach the set value, an empty pan was placed into the device. 

While changing the pans, the maximum temperature deviations caused by opening of 

the device is 4 oC for a minute. Thus, it could be said that the drying kinetics of the 

samples was studied under constant temperature. Drying period in the moisture analyzer 

device was two hours. At the end of the first drying period, the dried samples except 

pure copolymer were placed into a vacuum oven which works under vacuum at 80 oC.  

At certain time intervals,  weight of the samples  was measured  and the drying process 

continued until no change in weight of the samples was observed which lasted for two 

weeks.  

 

4.5 Permeability Studies 
 

Permeability studie were performed in a vessel consisting of three separable 

parts as shown in Figure 4.1. A schematic diagram of the permeability set up is 

illustrated in Figure 4.2. The bottom part contains a small bath filled with the solvent 
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used in the permeability studies. In this study, deionized water, 2.9% and 5% (by 

weight) NaCl solutions were used as solutes. The middle part of the set up consists of a 

hole whose diameter is 3.83 cm. The inside diameter of the middle part is 5.8 cm. Films 

were cut in such a manner that their diameters are nearly equal to the inside diameter of 

the middle part so that  area of the hole is fully covered. The films were placed into the 

section by using vacuum gress oil. The ring was put over the films to keep the constant 

position of the films and prevent any possible leakage which may be seen in the areas 

other than effective hole area. In most of the experiments the rings were renewed in 

order to prevent contamination which may remain from the previous experiments. The  

last part which is the upper part of the permeation set up consists of a probe to read the 

humidity of the upper section. When the solvent transport proceeds through the films, 

an increase in relative humidity of the upper section is read by the probe and the relative 

humidity, time and temperature data collected are stored in the internal memory of the 

probe (Datalogger SK-L 200 TH).  

During typical permeation experiments the bottom of the middle part was 

covered tightly with the parafilm and then the film under investigation was placed to the 

upper part of the middle section and ring was placed over the film. The upper part 

which contains humidity sensor was linked to the middle section and exposed to dry air 

during six hours. Just before the drying air was passed through the system, the initial 

humidity was recorded. These humidity values changed from one experiment to another 

between the range of 29.9- 58.3%. Drying of the films was performed by using an air 

pump (EP-6500). First of all, the air was pumped to the drying column which contains 

anhydrous CaSO4 and molecular sieve 5A and then it was transported to the upper part 

of the permeation set up with a flowrate of 610 ml/min. At the end of the drying 

process, the humidity of the upper section was completely lowered to the value of 5%. 

The purpose of drying the upper part of the films was to remove water  in the films. As 

it was explained in the film preparation method section, the  films detached from the 

glass substrate were placed into the oven which works under vacuum at 100 oC during 

72 hours. However, when they are exposed to the atmosphere, they absorb some amount 

of  water vapour from the air due to the concentration gradient. Another reason for six 

hours drying was to allow uniform concentration in the upper part of the set-up. After 

the drying process was completed, the parafilms under the middle section was removed 

and the middle and upper sections was linked together to the bottom section. The set up 

was completely tighted by the help of steel rings placed on top of the upper part and 
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when  tight connection was provided between all parts of the device, computer program 

was immediately started to record increasing relative humidity values caused by the 

water transport through the membrane. Time interval to collect the relative humidity 

and  temperature data  was selected as 10 seconds.  

 

                 

Figure 4.1: Digital photograph of the permeation set-up. 

 

 

 

                               

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Schematic diagram of the permeation set-up 
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4.6 Diffusion Studies 
 

4.6.1 Magnetic Suspension Balance 
 

Magnetic Suspension Balance consists of four groups as main sorption column, 

controlling unit, computer and supporting units as shown in Figure 4.3. Main sorption 

column consists of microbalance, suspension magnet, coupling housing, measuring load 

decoupling, thermostats and the measuring cell. Electromagnet is inside the 

microbalance. The resolution of the microbalance is 1 µg, the maximum load is 5 g, and 

the reproducibility of the measurements is ±  2 µg. The operating pressure and 

temperature of the column are 150 bars and 250 oC, respectively. The important parts of 

the supporting units are water bath, vacuum pump, pressure gauge, solvent flask, and 

cold trap. The function of the water bath (accuracy is ± 0.5 oC, and the operating range 

is between 5 and 150 oC) which stands near to the column is to keep the main sorption  

column at a desired temperature. The vapour pressure of the solvent is measured by a 

pressure transducer operating within the range of vacuum up to 1 atm. with an accuracy 

of 0.25 % full scale. Vacuum is applied to the column by using rotary vane pump which 

can apply vacuum up to 0.0001 mbar. A cold trap is installed between the sorption 

column and the vacuum pump in order to prevent the corrosion of  vacuum pump 

caused by the suction of the solvent vapours in the column. Solvent vapour is prepared 

in a solvent flask inserted into a constant temperature bath. 

In diffusion  experiments, multi-tray sample holder was used to place the films 

into the measuring cell. Before experiments are started, the column was heated up to 60 
oC by using water bath and during the heating of the column, vacuum was applied in 

order to remove water desorbed by the paint films due to this heating process. Then, the 

program in the software was started and  the system is allowed to reach equilibrium in 

24 hours. After this preliminary part was completed, experiments were performed in 

two ways. In one way, sorption process was started by sending the solvent vapour at 

room temperature to the system. For this purpose, solvent vapour was trapped in the line 

between the column and solvent valves. The pressure gauge reads the saturated pressure  

of the solvent at the ambient temperature. Meanwhile the program in the software was 

started and the weight differences under vacuum was recorded until 4-30 measuring  

data points were supplied. Then the column valve was opened and solvent vapour was 
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sent into the column. This procedure was repeated until  the operating pressure of the 

solvent vapour becomes equal to the saturated vapour pressure of the solvent in the 

flask at that temperature. In the second way, vapour-liquid equilibrium at a desired 

temperature was attained in the solvent flask and solvent vapour was sent to the column 

by opening the valves. After the polymer sample reached to the equilibrium state, the 

valve was closed and a sudden change in the vapour pressure of the solvent was induced 

by increasing the temperature of the constant temperature bath. Then, solvent vapour at 

a new vapour pressure level was sent to the column. This procedure was repeated until 

temperature of the solvent vapour in the flask reached to 5 oC below the temperature of 

the column. 

 

         
Figure 4.3: Schematic diagram of experimental set-up for measuring sorption and 

diffusivities. 
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CHAPTER 5 

 

RESULTS AND DISCUSSIONS 

 

In this chapter, first of all the results of characterization studies are discussed. 

Then, permeability and equilibrium sorption studies are discussed. Finally, the results of 

diffusion studies are given. 

 

5.1 Characterization of the Paint Films 

 

5.1.1 Determination of the Thickness and Morphology of the Paint  

         Films Using Scanning Electron Microscope 
 

Figures 5.1 through 5.4 show the scanning electron micrograph pictures of the 

paint films having 40%, 30%, 20%, 10% binder, respectively. Thickness of each film 

listed in  Table 5.1, was determined from an average of 6 or 7 measurements.  

 

Table 5.1: Average thickness of the paint films. 

 

Sample 

 
Number of points taken 

for thickness 
measurements 

 
Average thickness 

(micron) 

40% Binder 6 106.7 

30% Binder 7 100.2 

20% Binder 6 116.6 

10% Binder 6 141.3 

 

 

From the figures it can be seen that the structure of the paint films having 40% 

and 30% binder exhibits similarities with each other. These paint films have relatively 

less porous structure in comparison to paint films having 20% and 10% binder. The 

structural similarity also exists for the paint films having 20% and 10% binder. 

According to the cross sectional micrographs, the porosity of these films is relatively 

high. 
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Figure 5.1: Scanning electron micrograph taken over the cross section of the paint.   
                  Binder content: 40%  
 

                          
Figure 5.2: Scanning electron micrograph taken over the cross section of the paint.  
                  Binder content: 30%  
 



 30

                         
Figure 5.3: Scanning electron micrograph taken over the cross section of the paint.  
                  Binder content: 20%  
 

                         
Figure 5.4: Scanning electron micrograph taken over the cross section of the paint.  
                  Binder content: 10%  

 

5.1.2 Surface Micrographs of the Paint Films 

 

When the paint films are detached from the glass substrate, it was observed that, 

the side which is back to the substrate is smooth and glossy, while the side which is 

exposed to the air is rough. For this reason, micrographs were taken from both sides of 

the films to observe any possible difference in the surface structure of the paint films as 

shown in Figures 5.5 through 5.8.  
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                            (a)                                                                     (b) 
Figure 5.5: Surface micrographs of the paint having 40% binder at 2500 magnification;  
                  (a): opaque side, (b): glossy side. 

 

             
                            (a)                                                                        (b) 
Figure 5.6: Surface micrographs of  the paint having 30% binder at 2500 magnification; 
                  (a): opaque side, (b): glossy side. 
 

              
                         (a)                                                                          (b) 
Figure 5.7: Surface micrographs of the paint having 20% binder at 2500 magnification;  
                  (a): opaque side, (b): glossy side. 
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                             (a)                                                                      (b) 
Figure 5.8: Surface micrographs of  the paint having 10% binder at 2500 magnification;  
                  (a): opaque side, (b): glossy side. 
 

When micrograph of opaque and glossy sides are compared with each others, it 

was seen that the relatively high roughness of the opaque sides is obvious for all of the 

paint films. Another important result can be obtained by comparing the surface 

micrographs of the paint films with each others as shown in Figures 5.9a through 5.9d. 

According to these micrographs the paint having 40% binder almost have a non porous 

structure.  When the binder amount in the paints decrease from 40% to 10%, more 

porous structure was observed in the films and this situation can be observed from both 

glossy and opaque sides of the films. It is well known that porous structure formation is 

a result of the pigment flocculation caused by insufficient wetting of pigments by the 

binder.  

Figure 5.9 shows that in the paint having 40% binder, there is a matrix structure 

on which the pigments and other fillers exhibit relatively homogeneous distribution. 

However, as binder percentage decreases, pigment distribution becomes 

nonhomogeneous. Especially in paints having 20% and 10% binder, pigment 

flocculation and related to that some pores formed can be clearly seen. From the same 

figure it can be seen that although micro structure of the all paint films exhibit 

differences, it is difficult to distinguish the paint structures having 40% and 30% binder 

and also paints having 20% and 10% binder are similar. The remarkable difference in 

paint structures is observed when the binder amount is reduced from 40% to 20%.   
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                            (a)                                                                         (b) 

 

       
    (c)                                                 (d) 

Figure 5.9: Surface micrographs of the paint films taken from opaque sides at 20000  
                  magnification for the paint films having; (a): 40%, (b): 30%, (c): 20%, (d):   
                  10% binder.  
 

In the micrographs of the films taken by using BS detector, the compositional 

contrast give a good visual distinction between the copolymer matrix, pigments and 

pores contained in the paint films. As it is known that, the light regions in the 

micrographs show the heavier molecules and the dark regions show the lighter 

molecules. Also black regions seen in the graphs are attributed to the presence of the 

pores. Surface micrographs of each paint film taken at BS mode are shown in Figures 

5.10 through 5.13. The presence of white regions in each graph indicates titania 

molecules in the structure.  
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Figure 5.10: Surface micrographs taken at BS mode for the paint film having 40%  
                    binder at 2000X magnification. 
 

 
Figure 5.11: Surface micrographs taken at BS mode for the paint film having 30%  
                    binder at 2000X magnification. 
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Figure 5.12: Surface micrographs taken at BS mode for the paint film having 20%  
                    binder at 2000X magnification. 
 

 
Figure 5.13: Surface micrographs taken at BS mode for the paint film having 10%  
                     binder at 2000X magnification. 
 

5.1.3 Fourier Transform Infrared Spectroscopy Analysis 
 

Figures 5.14 through 5.17 show that FTIR spectrums of the each paint film do 

not exactly overlap with each others but there are many common peaks. These are 

characteristic peaks expected from the methylmethacrylate-co-butylacrylate copolymer 

and some pigments added to the paint.  
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Common peak ranges at the spectrum are as follows: 

3600-3060 cm-1: OH group is observed due to the presence of water. In addition, C-H 

streching vibrations absorb in between 3000-2900 cm-1. 

1797.53 cm-1; 1751.24 cm-1: All saturated esters have strong sharp absorption peak at 

about 1740 cm-1 due to the C=O streching mode.  

1720.39-1635.52 cm-1: Liquid H2O absorbs near 1640 cm-1. In acrylates and 

methacrylates C=O absorb at 1725 cm-1.  

1260-1000 cm-1: In the paint films this range corresponds to strong Si-O bands. It is 

known that silica absorbs near 1100 cm-1 . 

700-500 cm-1:  TiO2 has its strongest bands in the 700-500 cm-1 region and all paint 

samples gave peaks between these wavelenghts (Colthup et al., 1990). 

Vitala et al. (2000) studied the morphology, microstructure, and chemical 

composition of pure and Ca and P doped TiO2 films. They reported that TiO2 show a 

strong broad absorption band in the region 1000-400 cm-1and this bands correspond to 

the formation of Ti-O-Ti bonds. In their spectra the bands between 600-450 cm-1 was 

attributed to the amorphous TiO2. Burgos and Langlet (1999) mentioned about the TiO2 

sol-gel reactions and in IR studies they found bands belonging to Ti-O and Ti-O-Ti 

groups in the range of 800-400 cm-1. All paint films used in this study exhibit 

absorbtion bands between the values mentioned above, which confirm the presence of 

TiO2.  

Reig et al. (2002) proposed constant ratio method for the quantitative analysis of 

calcite and quartz in geological samples. They reported that calcite is one of the three 

crystalline forms of calcium carbonate, the other ones are aragonite and vaterite, and all 

of these crystal minerals are represented by the same chemical formula but do not 

exhibit same infrared spectrum. Although there are three types of calcium carbonate 

crystal, the most commonly seen form of calcium carbonate is calcite. In their article 

FTIR spectrums of calcite is given as 1420, 875 and 712 cm-1. The band which 

represent the silica was reported as 798 and 779 cm-1 and stated that quartz is one of the  

minerological forms of the silica and there are large amount of quartz in the nature. 

Sönmez and Cebeci (2003) stated that IR bands at 854.4 and 875.6 cm-1 are 

characteristics of the carbonate in calcite.  
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Figure 5.14: FTIR spectrum of the paint film having 40% binder. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.15: FTIR spectrum of the paint film having 30% binder. 
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Figure 5.16: FTIR spectrum of the paint film having 20% binder. 
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Figure 5.17: FTIR spectrum of the paint film having 10% binder. 
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Figure 5.18: FTIR spectrum of the pure copolymer. 

 

5.1.4 Elemental Composition of the Paint Films 
 

EDX results were obtained for each paint film by analysing randomly selected 

20 different points over their opaque sides and results were evaluated by taking  average 

of the values collected from these points. Average weight percent of elements present in 

the paint films are represented in Table 5.2. According to the EDX results the common 

elements seen in each film are carbon, oxygen, titanium, calcium, silicon, aluminium, 

magnesium, and sodium. The average amount of carbon element decreases as the binder 

percentage decreases, however, oxygen amount remains nearly the same. According to 

the X-ray analysis results, all elements except oxygen and carbon are found as oxygen 

containing compounds in the paint, while carbon is only seen in calcite besides binder 

material. Since these oxygen containing elements are found in a significant amount in 

the paint having 10% binder, it is not surprising to see relatively high amount of oxygen 

and low amount of carbon in this paint. 
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Table 5.2: Average weight percent of elements present in the paint films. 

Binder 
(%) 

C O Na Mg Al Si Ca Ti 

40 50.3 37.4 0.7 0.9 1 3.2 2.7 3.8 
30 45.2 40.9 0.8 1 1.1 3.8 3.4 3.8 
20 41.6 42.3 0.7 1.1 1 3.3 4.3 5.7 
10 26.9 42.2 0.9 1.3 1.5 5.2 9.4 12.5 

 
 

5.1.5 Map of the Paint Films 
 

In Figures 5.19 through 5.22 map diagrams of the paint films are shown. 

According to these figures map diagrams belonging to 40% and 30% binder indicate 

relatively homogeneos distribution of elements. Especially in the paint having 40% 

binder a homogeneous distribution is very remarkable. In paint having 30% binder 

calcium element which is represented by blue colour exhibits some flocculations in 

some regions. The formation of flocculations in silicon and calcium elements in the 

paint having 20% binder is very obvious. The most heterogeneous distribution of 

elements is observed in the paint having 10% binder, as shown in Figure 5.22.  

 

 

 
Figure 5.19: Map of the paint film having 40% binder at 2000X magnification; blue:  
                    calcium, green: titanium, magenta: silicon, yellow: oxygen, red:     
                    magnesium, white: carbon. 
 

 



 41

 

 
Figure 5.20: Map of the paint film having 30% binder at  2500X magnification; blue:  
                    calcium, green: titanium, magenta: silicon, yellow: oxygen, red:   
                    magnesium, white: carbon. 
 
 
 
 
 

 

 
Figure 5.21: Map of the paint film having 20% binder at 3500X magnification; blue:  
                    calcium, green: titanium, magenta: silicon, yellow: oxygen, red:  
                    magnesium, white: carbon. 
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Figure 5.22: Map of the paint film having 10% binder at 5000X magnification; blue:  
                    calcium, green: titanium, magenta: silicon, yellow: oxygen, red:  
                    magnesium, white: carbon. 
 

 

5.1.6 Roughness of the Paint Films 

 

The roughness of the paint films was measured using Atomic Force Microscope 

in contact mode. For this purpose, each paint film was scanned at five different surfaces 

over 100 µm x 100 µm areas. According to the AFM results, the average overall 

roughness of the paint films having 40%, 30%, 20% and 10% binder are 133.8, 124.7, 

144.3 and 144.3 nm, respectively in terms of Ra values. Here Ra, the height variance of 

the line/surface, corresponds to the following expression (Cannon and Pethrick, 2002). 

 

                                                        avg

n

i
i ZZ

n
1 −�                                                        (5.1) 

 

5.1.7 Thermal Analysis 
 

Figures 5.23 and 5.24 show the TGA curves of the paint films and pure 

copolymer film, respectively. According to these results, degradation process of the 

paint films occur at two steps, whereas the thermal degradation of the pure copolymer 

film occur at one step. Another difference in the degradation mechanism of the paint 

films and pure copolymer is that at the end of the degradation process all paint films left 
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thermally stable char. However, pure copolymer film degraded until losing all of its 

mass, a thermally stable char was not observed. In Table 5.3, degradation temperatures 

of the films and mass losses are summarized. It is seen that if the binder amount in the 

paint decreases, the total mass loss of the paint decreases.   

 

Table 5.3: Degradation temperature and mass loss of the films. 

Sample Total 
mass 
loss (%) 

First step  
mass loss 
(%) 

Second 
stepmass 
loss (%) 

Tonset 

of first 
step 
(oC) 

Tendset  

of first 
step 

(oC) 

Tonset  of 
second 

step 
(oC) 

Tendset of 
second 
step 

(oC) 
40% 

binder 
47.51 26.36 24.49 257.4 411 667.1 776.2 

30% 
binder 

43.67 21.22 24.24 258.3 409.2 668.9 775 

20% 
binder 

39.82 15.38 24.94 269.4 400.3 663.8 776.3 

10% 
binder 

34.88 9.21 24.89 276.2 400.1 661.7 785.7 

Pure 
binder 

99.18 - - 263.6 599.9 - - 

 
 

Mass loss in the first step is associated with the decomposition of the binder 

material, methylmethacrylate-co-butylacrylate. Thus, in this step when the binder 

amount in the paint films decreases, mass losses decreases and the temperature range of 

the degradation process becomes narrow. For pure copolymer the temperature range for 

the degradation process is large compared to the paint films since in this case the sample 

contains 100% binder. The second step mass loss is attributed to the degradation of 

calcite into calciumoxide and carbondioxide by the following reaction. 

 

                                         CaCO3(s)              CaO(s) + CO2(g)                                  (5.2) 

 

 At the end of second step mass loss, the residual thermally stable char contains 

CaO and titania which are both stable over 1000 oC.  
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Figure 5.23: TG curves of the paint films. 
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Figure 5.24: TG curve of the pure copolymer. 
 
 

5.1.8 Differential Scanning Calorimetry Analysis of the Paint Films 
 

Figures 5.25 through 5.29 show the DSC curves of the paint and pure copolymer 

films. According to these curves, paint films exhibit two exothermic decomposition 

peaks while the pure copolymer exhibits a single decomposition peak. During the 
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organic fractions. However, in the case of pure copolymer degradation process is 

endothermic since the oxygen content in the structure of pure copolymer is not enough 

to initiate the decomposition. 

During the DSC analysis, glass transition temperatures of the paint films were 

determined as 34.14 oC, 34.11 oC, 32.82 oC and 33.96 oC while the glass transition 

temperature of the pure copolymer was found as 31.67 oC. These results suggest that  

addition of pigments, fillers and other additives does not significantly influence the 

glass transition temperature of the paint films. This situation may be caused due to the 

weak interaction between the pigments and the acrylic binder. Similar result was 

reported by Perera (2004). To determine enthalpy of the thermal degradation process, 

the area under the whole exotherm was integrated and the results are summarised in 

Table 5.4. Experimental data for the four different paint films were then gathered in 

Figure 5.30, plotting measured ∆H (kJ/kg) vs % binder content. The results show a good 

correlation of heat output with polymer concentration. Thus, it appears that 

determination of heat output from thermal decomposition of organic fraction in the 

paint by using DSC may be used to estimate binder concentration in the paint films. 

 

Table 5.4: Decomposition peak temperatures and heat of decomposition of the binder. 
Sample Tonset (oC) Tendset(oC) ∆H (kj/kg) 

40% binder 214.1 498.5 364.5 
30% binder 220.1 477.8 271.4 
20% binder 226.8 494.1 182.9 
10% binder 233.3 499.9 107 
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Figure 5.25: DSC curve of the paint film having 40% binder. 
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Figure 5.26: DSC curve of the paint film having 30% binder. 
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Figure 5.27: DSC curve of the paint film having 20% binder. 
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Figure 5.28: DSC curve of the paint film having 10% binder. 
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Figure 5.29: DSC curve of the pure copolymer. 
 

        
 

 
Figure 5.30: Heat of decomposition as a function of binder content. 
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the paint and give white colour to the paint. The crystalline peaks of this compound are 

observed at o2θ = 23.2, 29.5, 31.5, 36, 39.5, 43.2, 47.2, 47.5, 48.5, 56.5, 57.5, 58.2, 

60.8, 61, 61.5, 63.1, 64.8, 65.6, 69.2. These values are compatible with the study of 

Jeoung-Ah (2004). In that study, microstructure and chemical compositions of paper 

composite porcelain was characterized by using XRD and SEM techniques. Titanium is 

in the form of titania (TiO2) and gave peaks at the o2θ angles of 27.5, 36, 39.3, 41.3, 

44.2, 54.5, 56.7, 62.8, 64.1, 65.7, 69.1, 69.8. It is one of the commonly used pigments in 

the paint industry and gives white colour like calcite but it is more expensive than 

calcite. For this reason instead of titania, calcite is preferred, but the amount of calcite 

should not exceed certain level since calcite does not meet all the requirements offered 

by the titania (Tiarks et al., 2003).  

 

 
Figure 5.31: X-ray diffraction diagram of the paint films 
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5.2 Solid-Liquid Ratio of the Samples 

 

In Table 5.5, the weight losses due to the evaporation of water from the samples 

after each drying process were represented. According to the table, the most significant 

loss at the end of the first drying belongs to the pure copolymer. As it is determined in 

Table 5.5, after the evaporation of the water the remaining solid ratios of the samples 

are very close to each others. As an average the samples lost their water content at a 

percentage of 26.5 % at the end of the drying process. 

 
Table 5.5: Mass loss values of the samples after the first and second drying processes. 

Sample Mass loss at  
70 oC (%) 

Mass loss at  
80 oC under 
vacuum (%) 

Total mass loss 
(%) 

Remaining 
solid at the end 
of the drying 
processes(%) 

40 % binder 13.4 17 28 72 
   30% binder 15.4 14.4 27.6 72.4 

20 % binder 21.5 4.8 25.3 75 
10 % binder 20.9 5.2 25 75 
Pure binder 35.36 - - - 

 
 

For the paints having 40% and 30% binder, total mass lost is almost equally 

shared between the drying  steps. However, paints having 20% and 10% binder mainly 

lost their masses after the first step. This is due to the fact that in the paints with higher 

binder content diffusional resistance to transport of water and other volatile components 

is larger than that in paints with lower binder content. 

 

5.3 Permeation Studies  

 

Permeation studies were carried out to determine water vapour permeability 

coefficient of pure copolymer and the paint films with binder contents of 40%, 30%, 

20%, 10%. In addition to deionized water, 2.9% wt and 5% wt NaCl solutions were 

used as solutes in order to simulate rain conditions. Permeation experiments using 

deionized water as a solute were performed by exposing the sides of the paint films to 

deionized water. The films were reversed to see the effect of surface structure on the 

permeability coefficient. When NaCl is used as the solute, only smooth and glossy sides 

of the films were exposed to the feed (solute) source. The thickness of films used in the 
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experiments are different from each others, thus the change of relative humidity in the 

upper compartment was plotted as a function of time normalized with the thickness of 

the films as illustrated in Figures 5.32 through 5.34. Permeability coefficient of water 

vapour was calculated from the slope of linear portion of 
1u(t)1L

1ui1L

PP
PP

ln
−
−

 vs time graph and 

the results were tabulated in Table 5.6. When the binder amount decreases, permeability 

coefficient of the paint films increases with the increase in the porosity of the films as 

shown by SEM pictures in Figures 5.10 through 5.13. Pore formation in the films is 

associated with pigment flocculation due to insufficient wetting of the pigment particles 

by the binder. The permeability coefficient of the pure copolymer is very close to that of 

the paint film with the binder content of 40%, since this paint film contains a relatively 

homogeneous and nonporous structure, similar to the structure of the pure copolymer 

film. An insignificant difference in permeability coefficients was observed for the paint 

films having 40%, 30% and 20% binder when their opaque and glossy sides were 

exposed to water vapour. However, for the paint film containing 10% binder, 

permeability coefficient is almost two times higher when its glossy surface was exposed 

to the water vapour. This result can be explained by the difference in roughness of the 

surfaces. In AFM, the roughness of the glossy surfaces were determined while 

measurements could not be taken on opaque surfaces due to very high roughness values. 

When opaque side of the paint film is exposed to the feed source, water molecules first 

permeate through a much more rough surface, thus see a higher resistance to their 

transport at the beginning of the process. The increase in resistance to the permeation of 

water molecules causes smaller permeability coefficients since these values are 

determined from the data collected especially at early times of the permeation process. 

The largest overall roughness value was determined for the paint films with the binder 

contents of 20% and10%. Thus, the difference in permeability coefficients determined 

by exposing different sides to the water vapour is greatest for the paint film having 10% 

binder. It should be also noted that, the linear permeation model given by Equation 

(2.30) is valid for a longer time period for the pure copolymer and paint films 

containing 40% and 30% binder. 

When NaCl solution was used as a solute, permeability coefficient of water 

vapour decreases for the pure copolymer and the paint films having 40%, 30% binder, 

since partial pressure of water vapour on the feed side, consequently, the concentration 

difference through the film decreases. An increase in permeability coefficients was 
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observed for the films with lower binder contents of 20% and 10%. As explained 

before, this is due to the fact that the validity of permeation model for these films is 

quite limited. Infact, as expected the increase in relative humidity of the upper 

compartment is lower when the surfaces of these films are exposed to NaCl solution. 

This can be seen by comparing Figures 5.32 and 5.34 which plot the change of relative 

humidity wih respect to normalized time. 

Permeability coefficient of water in coatings/paint films strongly depends on the 

coating formulation which influence the final structure of the film. Hulden and Hansen 

(1985) reported the permeability coefficient of water in acrylic latex coating as  

28.3x10-12 mol/s.cm.kPa. The paint films used in this study are also acrylic latex 

coatings and the value reported by Hulden and Hansen (1985) is close to the 

permeability coefficient of water in the paint film with the lowest binder content of 

10%.  

 
Table 5.6: Permeability coefficients of water vapour through pure copolymer and paint 

films which are in equilibrium with saturated vapour of deionized water and 
NaCl solutions. 

Binder 
(%) 

Deionized water 
(opaque side) 

Peffx1012 
(mol/s.cm.kPa) 

Deionized water 
(glossy side) 

Peff x1012 

(mol/s.cm.kPa) 

2.9 wt % NaCl 
(glossy side) 

Peff x1012 

(mol/s.cm.kPa) 

5 wt % NaCl 
(glossy side) 

Peff x1012 

(mol/s.cm.kPa) 
100 0.73 0.73 0.36 - 
40 0.77 0.79 0.71 0.73 
30 1.53 1.84 1.22 0.76 
20 12.46 14.85 17.5 14.98 
10 18.63 35.3 45.87 - 
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Figure 5.32: The change in relative humidity in the upper compartment when glossy    
                     sides of the films are exposed to deionized water vapour.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.33: The change in relative humidity in the upper compartment when opaque  

         sides of the films are exposed to deionized water vapour.  
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Figure 5.34: The change in relative humidity in the upper compartment when glossy  
                    sides of the films are in equilibrium with the water vapour of aqueous 2.9   
                    wt % NaCl solution.  
 

5.4 Equilibrium Isotherms 
 

Figures 5.35 through 5.38 gives the vapour-sorption equilibrium data for water-

paint systems. Volume fraction of water in the copolymer/paint was plotted against the 

activity of the water vapour calculated from Equation (5.3);  

 

                                                      =wa
)(TP
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1

water
o

1                                                    (5.3) 

   

Experimental data shows that water sorption capacity of the paint films 

decreases as their binder content decreases indicating that water sorption in the paint 

films takes place in the binder fraction. This result is in accordance with the expectation 

since pigments are generally dense, inorganic compounds with hydrophobic nature.       

Equilibrium isotherms of paint systems were successfully fitted by the Flory-

Huggins thermodynamic theory and the Flory-Huggins interaction parameters, χ, for the 

paint films with the binder contents of 40%, 30%, 20% and 10% were found as 2.07, 

2.07, 2.22, 2.61, respectively. All of the interaction parameters are greater than 0.5 

indicating that water is not a good solvent for the paint films. Maximum water sorption 

capacity of the films, corresponding to activity equals to one, cannot be determined 
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experimentally due to condensation risc in the column when the temperature of the 

water vapour is equal to the temperature of the column. On the other hand, utilizing the 

Flory-Huggins thermodynamic theory these values were predicted as 6.4%, 6.4%, 

5.28% and 3.3% for the paint films containing 40%, 30%, 20% and 10% binder, 

respectively. In the case of ideal pigmentation, a decrease of water solubility in the paint 

film is expected when volume fraction of impermeable pigment increases (van der Wel 

and Adan, 1999). This observation is in agreement with the results reported in this study 

since the increase in volume fraction of the pigments is equivalent to the decrease in the 

volume fraction of the binder.   

 

 

 

 

 

 

 

 

 

 

Figure 5.35: Water vapour sorption equilibria for the paint containing 40% binder at  
         T= 30 oC. 

 

 

 

 

 

 

 

 

 

 

Figure 5.36: Water vapour sorption equilibria for the paint containing 30% binder at  
         T= 30 oC. 
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Figure 5.37: Water vapour sorption equilibria for the paint containing 20% binder at  

         T= 30 oC. 
 

 

 

 

 

 

 

 

 

 

 
Figure 5.38: Water vapour sorption equilibria for the paint containing 10% binder at  

         T= 30 oC. 
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copolymer was predicted as 6.43% slightly higher than the water sorption capacity of 

the paint films with the binder contents of 40% and 30%. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.39: Equilibrium isotherm of the pure copolymer for T= 30 oC and 40 oC. 

 

A significant degree of upturn in sorption data at high activities can be due to 

clustering of water molecules or plasticization of the polymer matrix induced by water 

sorption (Schult and Paul, 1996). The extend of clustering of water molecules inside the 

polymer matrix can be determined by the Zimm and Lundberg cluster integral 

(Rodriguez et al., 2003). Figure 5.40 shows the clustering function, Gww/Vw as a 

function of water vapour activity for the pure copolymer film. For all water activities, 

Gww/Vw values are much greater than zero indicating that water molecules tend to 

cluster. Figure 5.41 shows the variation of mean cluster size (MCS) as a function of the 

volume fraction of water in the pure copolymer. The mean cluster size defines the mean 

number of water molecules in excess of the mean water concentration in the 

neighbourhood of a given water molecule (Rodriguez et al., 2003). The large increase in 

the MCS with the volume fraction of water also shows a strong tendency for water to 

form cluster in the pure copolymer. Infact, large value of ks (ks= 4.372) compared to kp 

value (kp= 0.00361) indicates that mutual interactions between water molecules are 

much more important than the interaction between the copolymer and water molecules.  
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Figure 5.40: Clustering function as a function of water vapour activity for the pure  

         copolymer film. 
 

 

 

 

 

 

 

 

 

 
 
Figure 5.41: Mean cluster size as a function of the volume fraction of water in the pure  

        copolymer film. 
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Figure 5.42: Clustering function as a function of water vapour activity for the paint film  

         containing 40% binder.  
 

 

 

 

 

 

 

 

 

 
Figure 5.43: Clustering function as a function of water vapour activity for the paint film  

         containing 30% binder.  
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.44: Clustering function as a function of water vapour activity for the paint film  

         containing 20% binder.  
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Figure 5.45: Clustering function as a function of water vapour activity for the paint film  

         containing 10% binder.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.46: Mean cluster size as a function of the volume fraction of water in the paint  

        film containing 40% binder. 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 5.47: Mean cluster size as a function of the volume fraction of water in the paint    

        film containing 30% binder. 

Activity 

G
w

w
/V

w
 

0

0.05

0.1

0.15

0.2

0.25

0 0.02 0.04 0.06 0.08

Flory-Huggins
model

Experimental
data

Volume fraction of water 

0

0.05

0.1

0.15

0.2

0.25

0 0.02 0.04 0.06 0.08

Flory-Huggins
model

Experimental
data

Volume fraction of water 

M
ea

n 
cl

us
te

r s
iz

e 

M
ea

n 
cl

us
te

r s
iz

e 

4.8

5

5.2

5.4

0 0.25 0.5 0.75 1

Flory-Huggins
model

Experimental
data



 61

 

 
 
 
 
 
 
 
 
 
 
Figure 5.48: Mean cluster size as a function of the volume fraction of water in the paint  

         film containing 20% binder. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.49: Mean cluster size as a function of the volume fraction of water in the paint  

         film containing 10% binder. 
 

The tendency of water molecules to form clusters in the pure copolymer and the 

paint films indicates that the water is not a good solvent for both pure copolymer and 
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films, 
o

ot

MM
MM

−
−

∞

were drawn against the square root of time, t , and the results are 

shown in Appendix A in Figures A1 through A4. In these curves, model 1 corresponds 

to analytical solution given by Equation 2.9, while model 2 represents the numerical 

model discussed in section 2.2.2. First of all, diffusivities were calculated from the 

analytical solution using all experimental data. In cases when data was not fitted by the 

analytical solution, numerical model was adapted. In these cases, perfect fit of data with 

model 2 indicated that diffusion coefficient within that particular activity step is not 

constant. The concentration dependence of diffusion coefficient of water was described 

by Equation 2.20 and the exponents 1�  and 2� in this equation determined from the best 

fit of the data were listed in Table 5.7. 1�  and 2�  both equal to zero corresponds to 

constant diffusivity case (model 1). All uptake curves are concave with respect to the 

t  axis and the initial region is linear. These two observations suggest that sorption 

kinetics of water vapour in the paint films may follow Fickian sorption. 

 

Table 5.7 Parameters 1�  and 2�  in Equation 2.20 for varying water concentrations in  
                paint films. 

% Binder T (oC) average�  1�  2�  

40 30 0.009 0.01 450 

40 30 0.014 0 0 

40 30 0.021 0 0 

30 30 0.009 0.01 400 

30 30 0.017 0.05 700 

30 30 0.019 0 0 

20 30 0.004 0.01 800 

20 30 0.009 0.01 2000 

20 30 0.012 0.01 2000 

20 30 0.015 0.01 1500 

10 30 0.006 0.01 770 

10 30 0.001 0.05 3000 

10 30 0.012 0.01 1900 
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The diffusivities of water in the paint films are listed in Tables 5.8 through 5.11. 

These values correspond to the average weight fraction of water calculated by Equation 

5.4 (Hong et al., 1998). 

 

                                ( )initialmequilibriuinitialaverage ��0.7� −+=�                                      (5.4) 

 
Table 5.8: Diffusivity data for water - paint system containing 40% binder at 30 oC.  
Linitial (µm) Psolvent (Pa) 

initial�  mequilibriu�  Dx107 (cm2/s) 

 37.3 2075 0 0.013 0.39 
38.3 2500 0.013 0.015 1.5 
38.5 3500 0.016 0.024 2.9 

 

 

Table 5.9: Diffusivity data for water - paint system containing 30% binder at 30 oC.  
Linitial (µm) Psolvent (Pa) 

initial�  mequilibriu�  Dx107 (cm2/s) 

66 2280 0 0.014 1.27 
68 2860 0.014 0.018 1.87 
69 3260 0.018 0.021 10 

 

 

Table 5.10: Diffusivity data for water - paint system containing 20% binder at 30 oC.  
Linitial (µm) Psolvent (Pa) 

initial�  mequilibriu�  Dx106 (cm2/s) 

121 580 0 0.006 3.17 
122 1630 0.006 0.009 2.02 
123 2500 0.009 0.013 1.78 
124 3000 0.013 0.017 1.5 

 

 

Table 5.11: Diffusivity data for water - paint system containing 10% binder at 30 oC.  
Linitial (µm) Psolvent (Pa) 

initial�  mequilibriu�  Dx106(cm2/s) 

130 1970 0 0.009 3.06 
132 2400 0.009 0.01 1.7 
133 2950 0.01 0.013 0.99 

 

 

Figure 5.50 plots diffusivities of all paint films as a function of average weight 

fraction of water. The diffusion coefficient of water increases with decreasing binder 

fraction in the paint. This was an expected result since paint structure changes from an 
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almost nonporous to porous one as the binder amount decreases from 40% to 10% as 

shown by the SEM pictures in Figure 5.9.  

 

 

Figure 5.50: Diffusion coefficient of water in the paint films as a function of its average  
         weight fraction at T=30 oC. 

 

In paint films containing 20% and 10% binder, amount of binder is not sufficient 

to wet the pigments, thus pigment flocculation and consequently pore formation is 

clearly observed in these films, facilitating water transport. For paint films containing 

20% and 10% binder, diffusivity decreases slightly while for the paint film containing 

30% binder it increases almost one order of magnitude with increasing weight fraction 

of water in the film. A slight increase in diffusivity with increasing water content  was 

observed for the paint film containing 40% binder. The increase in diffusion coefficient 

is associated with the plasticization of the binder by the water, while the decrease in 

diffusivity is due to clustering of water molecules. The results suggest that when the 

binder fraction of the paint film is low (20% and 10% respectively), clustering is 

dominant, thus diffusivity decreases. For the paint films containing 40% and 30% 

binder, plasticization effect is dominant over the whole activity range, consequently, 

diffusivity increases.  

Perez et al. (1999) determined the diffusion coefficient of water in a water-borne 

acrylic paint as 0.71x10-7 cm2/sec which has the same order of magnitude for the paint 

film containing 40% binder. 
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5.5.2 Diffusion Studies with Pure Copolymer Film 

 

Diffusion coefficient of water in the pure copolymer film was determined at 30 
oC and 40 oC. Experimental mass uptake curves are given in Figures A5 through A6. 

Experimental data collected at 40 oC were all fitted well by the Crank’s analytical 

solution (model 1) except the last activity step. However, deviation from the analytical 

solution was observed in evaluating the data at 30 oC, thus diffusivities in these cases 

were determined from the numerical model (model 2). The constants 1�  and 

2� determined from the fit of numerical model to the data are listed in Table 5.12 and 

5.13. Water sorption in pure copolymer also follows Fickian diffusion since all uptake 

curves are concave to the t  axis and their initial initial regions are linear. The 

diffusivities at 30 oC and 40 oC corresponding to average weight fraction of water in the 

copolymer are listed in Tables 5.14 and 5.15, respectively and diffusion coefficient 

values as a function of average weight fraction of water was represented in Figure 5.51. 

 The diffusivity increases with rising temperature due to an increase in mobility of water 

molecules. At each temperature, plasticization effect of water molecules  is dominant at 

low activities, thus diffusivity increases and reaches to a maximum after which 

clustering of water molecules becomes more important, consequently, diffusivity 

decreases. The increase  in diffusivity associated with the plasticization effect is due to 

increased segmental polymer mobility caused by water molecules. On the other hand, 

when water molecules form cluster its effective diameter increases, which decreases 

mobility of the water molecules or the diffusion coefficient.    

For pure copolymer films, the dominant effect of clustering at high activities is 

an expected result since the large increase in mean cluster size with the sorption was 

observed as shown in Figure 5.41.  

 
Table 5.12: Parameters 1�  and 2�  in Equation 2.20 for varying water concentrations in  
                   pure copolymer film for T= 30 oC. 

� average 1�  2�  

0.005 0.05 700 

0.009 0 0 

0.025 0.05 300 
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Table 5.13: Parameters 1�  and 2�  in Equation 2.20 for varying water concentrations in  
                   pure copolymer film for T= 40 oC. 

� average 1�  2�  

0.002 0 0 

0.004 0 0 

0.005 0 0 

0.007 0 0 

0.012 0 0 

0.023 0.05 250 

 

 

Diffusivities of water in the pure copolymer film at  T= 30 oC  are close to the 

values determined in the paint film containing 40% binder. This result is consistent with 

those of sorption and permeation studies. Specifically, permeability and maximum 

water sorption capacity of the pure copolymer are close to the values determined for the 

paint film with the binder content of  40%. 

 

 

 

 

 

 

 

 

 

Figure 5.51: Diffusion coefficient of water in the pure copolymer as a function of its  
         average weight fraction at  30 oC and 40 oC. 

 

Table 5.14: Diffusivity data for water- pure copolymer system at T= 30 oC 
Linitial (µm) Psolvent (Pa) 

initial�  mequilibriu�  Dx107(cm2/s) 

80 2040 0 0.007 0.75 

80.6 2620 0.007 0.010 3 

82.1 3500 0.016 0.029 2.24 
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Table 5.15: Diffusivity data for water- pure copolymer system at T= 40 oC 

Linitial (µm) Psolvent (Pa) 
initial�  mequilibriu�  Dx107(cm2/s) 

80 2040 0 0.0034 4.68 

80.3 2620 0.0034 0.0046 4.93 

80.4 3160 0.0046 0.0058 8.50 

80.5 3640 0.0058 0.008 5.44 

80.7 4120 0.008 0.013 4.80 

81.1 5200 0.013 0.027 3.34 
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CONCLUSIONS AND SUGGESTIONS FOR FUTURE 

WORK 

 
In this study, transport properties (permeability, solubility, diffusivity) of water 

in water borne acrylic based paint and in methylmethacrylate-co-butylacrylate 

copolymer used as a binder in the paint were measured. Furthermore, the structure of 

the paint films which have the same formulation but differ in binder amount as 40%, 

30%, 20% and 10% was determined using different characterization tools. 

Paint samples were supplied by Akril Kimya A.�. and no information was 

provided about the paint ingredients and their compositions except the composition of 

the binder.  Energy dispersive X-Ray (EDX) analysis allowed to determine common 

elements in all paint films which can be listed as carbon, oxygen, calcium, titanium, 

silicon, magnesium, aluminium, and sodium. According  to the X-ray analysis, titanium 

element in the paint is found  as titania while calcium is in the form of calcite both of 

which are mostly used as pigment and filler material in the paint formulations. Scanning 

electron microscope pictures have shown that as the amount of binder decreases from 

40% to 10%, the structure of the films changes from almost nonporous to a porous one. 

Porous structure formation is a result of the pigment flocculation due to insufficient  

wetting of pigments by the binder. Map diagrams of the paint films have shown that in 

paint films with low contents of binder (20%, 10%) distribution of the pigments is not 

homogeneous. Thermal gravimetric analysis indicated that pure copolymer degrades at 

one step without leaving a thermally stable char, while paint films decompose at two 

steps leaving  thermally stable char which contains CaO and titania which are both 

stable above 1000 oC. Based on differential scanning calorimetry analysis, it was 

observed that the pure copolymer exhibits one endothermic decompositon peak while 

paint films exhibit two exothermic decomposition peaks. Glass transition temperature of 

the pure copolymer (Tg= 31.67 oC ) was found to be slightly lower than those of the 

paint films (34.1 oC, 34.1 oC, 32.8 oC, 33.9 oC for the paint films in the order of 

decreasing binder amount). Solid content of the paint films (%) increases from 72% to 

75% as the amount of binder decreases from 40% to 10%. 

Sorption data when presented by plots of 
o

ot

MM
MM

−
−

∞

 as a function of t  have 

shown that sorption kinetics for both the paint films and the pure copolymer film may 
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be classified as Fickian type since the initial regions of the curves are linear and are 

always concave with respect to axis above the linear portion. Diffusivities were 

determined by fitting either the analytical or numerical model to the sorption data. 

Diffusivities increase with increasing  water content of the films due to plasticization 

effect of water, while they tend to decrease when water molecules form clusters. 

Predictions have shown that water form clusters  both in the paint films and in the pure 

copolymer. Degree of clustering and the change of mean cluster size with sorption 

appears to be larger for the pure copolymer. 

Diffusivity of water increases with decreasing binder fraction in the paint film. 

This is due to pore formation and nonhomogeneous distribution of the pigments in the 

paint films with low binder content. 

Vapour-sorption equilibrium data were fitted by the Flory-Huggins theory and 

ENSIC model for the paint films and the pure copolymer, respectively. Predictions from 

these theories have shown that maximum water sorption capacity of the paint films 

decreases with decreasing binder fraction in the paint film. Permeability coefficient of 

water also increases as the amount of binder in the paint film decreases. Maximum 

water sorption capacity, diffusivity and permeability of water in the paint film 

containing 40% binder are similar to the corresponding values determined for the pure 

copolymer film. This result suggests that the paint sample containing  40% binder 

shows the best barrier property against water.  

Combined with the characterization studies, it can be concluded that binder 

fraction in the paint is important since it directly influences the homogeneous 

distribution, flocculation of the pigments and pore formation in the structure, 

consequently, the water transport and the barrier property of the paints. 

Future work should involve the measurement of diffusivity and solubility of 

monomers of the binder (methylmethacrylate and butylacrylate) and the atmospheric 

gases (O2, N2) in the paint films. The former data are required to predict the emission of 

these monomers from the paint while the latter data are required to further determine the 

barrier property of the paint when it is applied on outdoor surfaces.  
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APPENDIX  
 

 
 
 
 

Figure A1: Fractional mass uptake curves of the paint film containing 40% binder 
for water vapour pressures of (a): 2075 Pa, (b):2500 Pa, (c):3500 Pa 

Fr
ac

tio
na

l m
as

s 
up

ta
ke

 

 



 75

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 Figure A2: Fractional mass uptake curves of the paint film containing 30% binder 

for water vapour pressures of (a):2280 Pa, (b): 2860 Pa, (c): 3260 Pa. 
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Figure A3: Fractional mass uptake curves of the paint film containing 20% binder for 

water vapour pressures of (a): 580 Pa, (b): 1630 Pa, (c):2500 Pa, (d): 3000 
Pa. 
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Figure A4: Fractional mass uptake curves of the paint film containing 10% binder for 

water vapour pressures of (a):1970 Pa, (b): 2400 Pa, (c): 2950 Pa. 
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Figure A5: Fractional mass uptake curves of the pure copolymer film at T= 30 oC for 

water vapour pressures of (a): 2040 Pa, (b): 2620 Pa, (c): 3500 Pa. 
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Figure A6:  Fractional mass uptake curves of the pure copolymer film at T= 40 oC for 

water vapour pressures of (a): 2040 Pa, (b): 2620 Pa, (c): 3160 Pa, (d): 
4120 Pa, (e): 5200 Pa. 


