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ABSTRACT 

 

CHEMOMETRIC STUDIES FOR CLASSIFICATION OF OLIVE OILS 

AND DETECTION OF ADULTERATION 
 

The aim of this study is to classify extra-virgin olive oils according to variety, 

geographical origin and harvest year and also to detect and quantify olive oil 

adulteration. In order to classify extra virgin olive oils, principal component analysis 

was applied on both fatty acid composition and middle infrared spectra. Spectral data 

was manipulated with a wavelet function prior to principal component analysis. Results 

revealed more successful classification of oils according geographical origin and variety 

using fatty acid composition than spectral data. However, each method has quite good 

ability to differentiate olive oil samples with respect to harvest year.  

Middle infrared spectra of all olive oil samples were related with fatty acid 

profile and free fatty acidity using partial least square analysis. Orthogonal signal 

correction and wavelet compression were applied before partial least square analysis. 

Correlation coefficient and relative error of prediction for oleic acid (highest amount 

fatty acid) were determined as 0.93 and 1.38, respectively. Also, partial least square 

regression resulted in 0.85 as R2 value and 0.085 as standard error of prediction value 

for free fatty acidity quantification. 

In adulteration part, spectral data manipulated with principal component and 

partial least square analysis, to distinguish adulterated and pure olive oil samples, and to 

quantify level of adulteration, respectively. The detection limit of monovarietal 

adulteration varied between 5 and 10% and R2 value of partial least square was 

determined as higher than 0.95. Hazelnut, corn-sunflower binary mixture, cottonseed 

and rapeseed oils can be detected in olive oil at levels higher than 10%, 5%, 5% and 

5%, respectively.  
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ÖZET 
 

ZEYTİNYAĞLARININ SINIFLANDIRILMASI VE TAĞŞİŞİN 

BELİRLENMESİ İÇİN KEMOMETRİK ÇALIŞMALAR 
 

Bu çalışmada naturel sızma zeytinyağlarının elde edildiği zeytinin türüne, 

yetiştirildiği coğrafi bölgeye ve hasat yılına göre sınıflandırması ve zeytinyağında 

tağşişin nitelik ve nicelik yönünden araştırılması amaçlanmıştır. Asal bileşenler analiz 

yöntemi yağların sınıflandırılması için yağ asitleri kompozisyonuna ve orta bölge kızıl 

ötesi spektra verilerine uygulanmıştır. Spektral veri, asal bileşenler analizinden önce 

dalga analizi ile işlenerek sıkıştırılmıştır. Sonuçlar, coğrafi bölgeye ve türe göre 

sınıflandırmada, yağ asitleri kompozisyonunun spektra verisinden daha başarılı 

olduğunu göstermektedir. Her iki analitik yöntemin zeytinyağı örneklerini hasat yılına 

göre ayırma kabiliyeti vardır.  

Bütün yağ örneklerinin spektra verileri ile yağ asidi profilleri ve serbest yağ 

asitliği arasında bağlantı kurmak için kısmi en küçük kareler analizi kullanılmıştır. En 

küçük kareler analizinden önce, ortogonal sinyal düzeltme filtresi ve dalga analizi 

sıkıştırma kullanılmıştır. Oleik asitin korrelasyon katsayısı (R2) ve bağıl hata tahmin 

değeri sırasıyla 0.93 ve 1.38 olarak belirlenmiştir. Diğer taraftan serbest yağ asitliğinin 

belirlenmesi için en küçük kareler regresyonunda R2 değeri 0.85 ve hata tahmin değeri 

0.085 olarak belirlenmiştir. 

Bu çalışmanın son kısmında, spektral veri asal bileşenler analizi ile işlenerek 

tağşişin nicelik bakımından tespitinde kullanılmıştır. Yapılan tağşiş miktarının 

belirlenmesi içinse, spektral veri en küçük kareler analizine tabi tutulmuştur. Tağşiş 

yapmak için seçilen türe göre, tek tip zeytinyağlarının tağşiş miktarının 

belirlenmesindeki limit 5% ile 10% arasında değişirken, R2 değerinin 0.95’ten daha 

yüksek olduğu bulunmuştur. Diğer taraftan, tağşiş için kullanılan fındık, mısır-ayçiçek 

ikili karışımı, pamuk tohumu ve kolza tohumu gibi yağların zeytinyağının içinde 

belirlenebildikleri miktarlar sırasıyla %10, %5, %5 ve %2 olarak tespit edilmiştir. 
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CHAPTER 1 
 

INTRODUCTION 
 

Olive oil`s recent popularity could be attributed to its sensorial characteristics as 

well as its potential health benefits. These benefits have been related to its well-

balanced fatty acid composition, where oleic acid is the main component, and to the 

presence of minor biomolecules, such as vitamins and natural antioxidants (Matos, et al. 

2007). 

Olive oil constitutes various chemical components including triacylglycerols, 

free fatty acids, phosphatides as the major components and also minor components such 

as phenolic compounds, hydrocarbons etc. With increasing consumer demand for high 

quality olive oil, oil produced from olives of just one variety (monovarietal) or one 

geographical region have been appeared on the market. Therefore, it has become 

important to characterize each monovarietal olive oil by its chemical and sensorial 

properties. Chemical composition of olive oils might also differ due to the influence of 

geographical, agronomic and technological factors (Aparicio and Luna 2002). 

Differences in composition depending on geographic origin or variety are the basis of 

the legislations such as Protected Denomination of Origin (PDO) and Protected 

Geographical Indication (PGI). PDO and PGI certifications allow labelling of food 

products with growing areas and provide extra economical benefits for producers of 

designated areas. Consequently, there is a need to develop reliable analytical methods 

for geographical and varietal classification and adulteration determination of olive oils 

(Ulberth and Buchgraber 2000, Babcock and Clemens 2004). 

To characterize each olive oil variety few series of chemical compounds or a 

univariate statistics is not adequate. Instead multivariate analysis techniques should be 

applied to a number of variables (chemical compounds and/or sensory descriptors). The 

multivariate data analysis enables the extraction of meaningful information from the 

large amount of data such as chemical and sensorial properties of olive oil (Aparicio 

and Luna 2002). Multivariate data analysis can be used for both classification and 

regression issues. It is common to employ principal component analysis (PCA) which 

shows the relation between observations to classify olive oil with respect to variety or 

geographical origin.  
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Chromatographic methods have been generally preferred in classification and 

adulteration studies. Although chromatographic methods supply high degree of 

precision, there is an increasing demand for rapid, inexpensive and effective techniques 

for determination of authenticity of olive oils. Infrared spectroscopy combined with 

chemometric techniques is one of the promising rapid methods (Downey 1998). FT-IR 

(fourier transform infrared spectroscopy) is a quite suitable analysis tool for oil and fat 

analysis because it could be applied directly to samples without any chemical treatment 

(Bendini, et al. 2007). High number of data generated as a result of IR measurements 

makes it necessary to use multivariate data analysis tools. Therefore, FT-IR 

spectroscopy combined with PCA could be performed for varietal and geographical 

characterization whereas its combination with partial least square (PLS) has been 

widely used for quantification of adulteration.  

In mid-infrared spectra the intensity and the exact frequency at which the 

maximum absorbance of the bands appears imply differences among complex samples 

of similar nature (Guillén and Cabo 1999). Fatty acids are one of the major ingredients 

that olive oil contains in its chemical structure. Thus, a relationship between spectra and 

the quantity of each individual fatty acid can be introduced with PLS analysis. In 

addition, a relationship could also exist between spectral data and oil quality parameters 

such as free fatty acidity (FFA) value.  

The aim of this study is to apply chemometric techniques for the classification of 

extra-virgin olive oil samples according to variety, geographical origin and harvest year 

using two different data sets (1) fatty acid profile obtained from gas chromatography 

(GC) analysis and (2) spectral data obtained from FT-IR. Discrimination ability of these 

two methods was also compared and discussed. Another aim is to detect and quantify 

olive oil adulteration with other vegetable or seed oils using chemometric techniques. 

Furthermore, the relation between FT-IR spectra versus fatty acid profile and FFA was 

studied in accordance with chemometric techniques.  
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CHAPTER 2 
 

 OLIVE OIL 
 

2.1. Brief History 
 

 As it is known today, olive tree was domesticated about 6,000 years ago in 

Mediterranean shores of Syria and Palestine. It expanded to Anatolia via Cyprus and to 

Egypt via Crete (Luchetti 2002). 

Phoenicians were responsible for the spread of the olive tree to western regions, 

since they traded with other maritime centers. In the 14th and 12th centuries B.C., they 

introduced it to the Greek mainland. Olive culture reached Spain, Italy and Northern 

Africa, and then spread into Southern France with the contributions of Greek colonies 

(Luchetti 2002). Olive trees were planted in the entire Mediterranean basin under 

Roman rule Romans used oil as a food beside its application as ointment, 

pharmaceuticals and in lighting (lampante oil). In ancient Egypt, olive plant was 

cultivated in order to obtain its oil and it was used in religious ceremonies (Harwood 

and Aparicio 2000).  

Major progress in olive processing started with invention of screw press by 

Greeks. The equipment was improved and disseminated by Romans. The fall of Roman 

Empire caused a reduction in olive cultivation until Middle Ages. During the 1900s, 

mechanical extraction systems were emerged as a result of studies on percolation and 

centrifugation. The Centriolive plant, the first industrial decanter based on the 

continuous centrifugation of the olive paste, was founded toward the end of 1960s. 

Despite the improvement in pressing systems, some countries still use the same pressing 

system today as they did in the past centuries (Harwood and Aparicio 2000). 

 

2.2. World Olive Oil Production  
 

Mediterranean countries which produce 98 percent of world’s olive oil are the 

leaders of olive oil production. European Community (EC) accounts for 79% world’s 
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olive oil production and within EC Spain, Italy and Greece supply more than 98% of 

EC production. 

The world olive oil consumption is also concentrated in the producing countries. 

European Union (EU) consumes 71% of world’s olive oil and Italy, Spain and Greece 

are responsible from 67% of this consumption. Table 2.1 presents geographical 

distribution of world olive oil production and consumption.  

 

Table 2.4. Geographical distribution of world olive oil consumption and production 

(average percentages between crop seasons 2000 and 2006) (Source: 

International Olive Oil Council (IOOC) 2007) 

 

 Production (%) Consumption (%) 

Spain 39.54 24.0 

Italy 24.57 32.1 

Greece 14.49 11.1 

Tunisia 5.20 1.6 

Syria 4.80 4.3 

Turkey 4.30 2.0 

Morocco 2.20 2.0 

France < 0.2 3.9 

others 4.90 19.1 
 

Turkey produces 4.3% of world’s olive oil and is sixth biggest world olive oil 

producer. In world olive oil consumption, Turkey shares also the sixth place in world 

olive oil consumption with Morocco.  

According to IOOC (2007), Spain has produced 1,108,700 t followed by Italy 

with 591,700 t in 2006/07 crop year. The estimates for Greek olive oil production stand 

at approximately 370,000 t while the figure for Tunisia comes to around 170,000 t. 

Turkey is in the fifth place and has produced 166 000 t followed by Syria (154 000 t) 

and Morocco (75 000 t) (IOOC 2007).  
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2.3. Production of Olive Oil 
 

2.3.1. Olive Harvesting and Washing  
 

Harvesting generally takes place at the end of the autumn or in the beginning of 

the winter. The purpose of preliminary washing is to remove any foreign material that 

could damage machinery or contaminate the oil (Vossen 1998). 

 

2.3.2. Milling and Olive Paste Mixing (Malaxation) 
 

Olive crushing, the first step of olive oil production is employed to produce a 

paste with easily extractable oil droplets. Two types of machines are used to crush 

olives: stone mills and stainless steel hammermills. 

The olive paste is slowly and continuously mixed to bring small oil droplets in 

contact with each other to form larger droplets by breaking up the oil/water emulsion. 

The mixing time could be 20-30 minutes and temperature of the olive paste does not 

exceed 22-25 0C (Aparicio and Harwood 2000, Vossen 1998).  

 

2.3.3. Oil Extraction from the Paste 
 

The next step is the extraction of the oil from the paste and fruit water (water of 

vegetation). Oil can be extracted by pressing, centrifugation, percolation, or through 

combinations of different methods (Vossen 1997). 

 

2.3.3.1. Traditional Press 
 

Traditional pressing is a discontinuous oil extraction method. In this method the 

ground olives are pressed in cloth bags then the liquid mix is rested in a series of tanks 

to separate the oil (Aktas, et al. 2001). 
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2.3.3.2. Continuous System (by Centrifugation) 
 

The centrifugation method is a continuous or on-line process by which the oil is 

separated from the solids and water in the same process as in a decantation. The 

efficiency of the oil extraction increases with savings in time. However, the contact time 

between the oil and the fermenting fruit water decreases (Vossen 1998). 

 

2.3.3.2.1. Three-phase System Decanter 
 

In the three-phase system decanter, water is added to the system. As the 

centrifuge rotated at a high speed (3500-3600 rpm), non-miscible liquids (olive oil and 

vegetation water) are separated by proper nozzles from oil pomace due to specific 

weights differences This liquid is then taken to a vertical centrifuge where the olive oil 

is separated from the fruit vegetable water (Harwood and Aparicio 2000). 

 

2.3.3.2.2. Two-phase System Decanter 

 
 Two-phase system decanter functions under the same principle as three-phase 

system decanters but only two phases (oil, sludge) are obtained. If fresh olives are 

processed, no additional water is required for the separation process. Compared to 

three-phase decanting, this process is more advantageous. Firstly the throughput rate of 

produced oil is higher because no additional water is required to produce the pulp; then 

energy and water consumption is also reduced as a result of the lower processing 

quantity. Moreover wastewater production decreases considerably (Coputa, et al. 2003). 

 

2.4. Definitions of Olive Oil 
 

Olive oil is a vegetable oil obtained solely from the fruit of the olive tree (Olea 

europaea L.). It is produced by processes that do not alter its natural state (without the 

use of solvents or re-esterification processes) and does not include other kind of oils 

(IOOC 2007).  

Extra virgin (extra natural leaky) olive oil: The oils that have free fatty acidity, 

expressed as oleic acid, of not more than 1.0 gram per 100 gram (EU 1991; Turkish 
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Food Codex 2000). On the other hand, IOOC (2007) defines olive oils with the acidity 

not more than 0.8 gram per 100 gram as extra virgin olive oil. 

Virgin (natural first) olive oil: Free fatty acidity of this class should not be more 

than 2.0 gram per 100 gram (EU 1991; Turkish Food Codex 2000; IOOC 2007).  

Ordinary virgin (natural second) olive oil: Free fatty acidity should not be more 

than 3.3 gram per 100 gram (EU 1991; Turkish Food Codex 2000; IOOC 2007).  

Refined Olive Oil: The oil that is obtained from virgin oil by refining methods 

without causing any change in triglyceride structure of raw olive oil. The free fatty 

acidity should not be more than 0.3 gram per 100 gram (Turkish Food Codex, 2000; 

IOOC 2007). On the other hand, maximum free fatty acidity of refined olive oil is given 

not to be more than 0.5 gram per 100 gram in EU (European Union) regulations (1991). 

Riviera olive oil: The oil that is obtained by mixing refined olive oil with natural 

olive oil that can directly be consumed as a food. The free fatty acidity should not be 

more than 1.5 gram per 100 gram (Turkish Food Codex, 2000). According to EU (1991) 

and IOOC (2007), the mixture of refined and virgin olive oil is named as olive oil with 

free fatty acidity not more than 1 gram per 100 gram.  

Refined Pomace oil: Oil that is obtained by refining methods not causing any 

change in triglyceride structure of raw pomace oil. Refined pomace oil can be marketed 

directly or by mixing with natural olive oil. The free fatty acidity should not be more 

than 0.3 gram per 100 gram (Turkish Food Codex 2000; IOOC 2007).  

Mixed (olive) pomace oil: The oil that is obtained by mixing refined pomace oil 

and virgin olive oil and can be consumed directly as a food. The free fatty acidity 

should not be more than 1.5 gram per 100 gram (Turkish Food Codex 2000). IOOC 

(2007) stated maximum free fatty acidity as 1 gram per 100 gram.  

 

2.5. Composition of Olive Oil 
 

Olive oil is composed of two main fractions which are saponifiables and 

unsaponifiables. Saponifiable constituents (triacylglycerols, free fatty acids, 

phosphatides) constitute 95-98% of olive oil whereas 2-5% of olive oil are 

unsaponifiables (fatty alcohols, wax esters, hydrocarbons, tocopherols and tocotrienols, 
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phenolic compounds, volatiles, pigments, minor glyceridic compounds, phospholipids 

and triterpenic acids) (Aparicio and Harwood 2000, Cert, et al. 2000). 

Saponifiable fraction mainly composed of triacylglycerols. Also, most of the 

fatty acids in olive oil exist as triacylglcerols. Turkish Food Codex (2000), IOOC 

(2007) and EU (1991) restricted the amount of the individual fatty acids within the 

specified limits listed in Table 2.2.  

 

Table 2.5. Fatty acid compositions of cooking olive oil, cooking pomace oil and extra 

virgin olive oil (Source: Turkish Food Codex 2000, IOOC 2007, EU 1991) 

 

 
Olive and olive-pomace oil 

(Turkish Food Codex 
2000, IOOC 2007) 

Extra virgin oil (EU 1991) 

Myristic acid ≤ 0.05 ≤ 0.1 

Palmitic acid 7.5-20 - 

Palmitoleic acid 0.3-3.5 - 

Palmitoleic acid ≤ 0.3 - 

Heptadecenoic acid ≤ 0.3 - 

Stearic acid 0.5-5.0 - 

Oleic acid 55.0-83.0 - 

Linoleic acid 3.5-21.0 - 

Linolenic acid ≤  0.91 ≤ 0.9 

Arachidic acid ≤ 0.6 ≤ 0.7 

Gadoleic acid ≤ 0.4 - 

Behenic acid ≤ 0.22 ≤ 0.3 

Lignoceric acid ≤ 0.2 ≤ 0.5 
1 IOOC states this value ≤ 1 
2 This value of olive-pomace oil should be ≤ 0.3 

 

Oleic acid, as the characteristic monounsaturated fatty acid of olive oil, 

constitutes 55-83% of total fatty acids. High intake of oleic acid in the Mediterranean 

region was reported to be the reason for decreases in the rates of coronary artery disease 

and also total mortality (Grundy 1997). Also, olive oil improves the lipid profile; 
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therefore, decreases cardiovascular risk by reducing the ratio of low density 

lipoprotein/high density lipoprotein (Martínez-González and Sánchez-Villegas 2004).  

 

2.6. Monovarietal Characterization  
 

Monovarietal olive oil is the oil produced from certain olive cultivars of certain 

region. To characterize each monovariety, first chemical and sensory properties of olive 

oils have to be determined. Then, the effect of external parameters (climate, ripeness 

and extraction systems) on sensory and chemical characteristics of the same 

monovarietal virgin olive oils has to be studied. 

Each monovarietal olive oil is identified with its own chemical characteristic. 

Mean concentration of some chemical compounds of diverse European monovarietal 

virgin olive oils are given in Table 2.3. In the studies given in Table 2.3, olive ripeness 

was normal and extraction system was three-phase centrifugation system.  

 

Table 2.6. Chemical characteristics of European monovarietal virgin olive oils (mean 

values) obtained from olive trees cultivated in different geographical origins  

(Source: Aparicio and Luna 2002) 

 

 
 

The differences among the chemical compositions of each variety allow the 

discrimination. Application of univariate approach to each of the chemical compounds 
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neglects any interaction between several of the factors that determine the compositional 

profile of the classes of oil compounds. It was pointed out that the classes of compounds 

that make up olive oil are biosynthesised through independent and genetically 

controlled pathways that determine the ratios of all the homologous components of each 

chemical class (Bianchi, et al. 2001). Multivariate statistical analysis allows the use of 

chemical variables taking into account the interactions between the chemical 

compounds. There are numerous studies involving the classification of olive oil samples 

using chemical and sensorial properties with chemometrics. Stefanoudaki, et al. (2000) 

was able to characterize three European olive oil varieties with sensory data described 

by a trained panel. Also fatty acids, fatty alcohols, polycyclic triterpenes and squalene 

were used to differentiate monovarietal olive oils. Firstly, PCA was applied to the 

analytical data to reveal the compounds (variables) with the highest weights (loadings). 

Then using these most influential variables linear discriminant analysis (LDA) was 

performed and 96% correct group classification was achieved (Giasante, et al. 2003). 

Analytical parameters such as fatty acid profile, triacylglycerols and sterols were also 

used in other studies. Brescia, et al. (2003) described how cultivar differences can be 

established between Italian oils, obtained from single varieties, based on acid, sterol, 

and triacylglycerols differences determined by chemometrics. Both PCA and DA 

indicated that triacylglycerols and fatty acid composition provided the best basis for 

differentiation of olive oils among cultivars. Also, applicability of triacylglycerols and 

fatty acid for classification of French olive oils (Aix-en-Provence, Haute-Provence, 

Nyons, Nice and Valleé des Baux de Provence) was studied. A linear discriminant 

analysis was applied to the samples. In this study 37 parameters were used in 

differentiation of registered designations of origin: Nyons, Nice and Haute-Provence 

(Ollivier, et al. 2006).  

Recently, there is an increasing interest on rapid measurements for classification 

studies instead of chromatographic techniques. Casale, et al. (2007) employed combined 

information from headspace mass spectrometry (HS-MS) and visible spectroscopy for 

the classification of Ligurian olive oils. Application of LDA, after feature selection, was 

sufficient to differentiate the three geographical denominations of Liguria (Riviera dei 

Fiori, Riviera del Ponente Savonese and Riviera di Levante). The success was 100% in 

classification and close to 100% in prediction. Similarly, HS-MS designed for the 

sensory characterization and classification of extra virgin olive oil on the basis of its 

protected designation of origin, olive variety and geographical origin is reported in 
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another study. Results revealed that an average of ca. 87% of samples correctly 

classified and a specificity of ca. 97% was obtained with HS-MS in combination with 

appropriate chemometric treatment (López-Feria, et al. 2008). Also, electronic nose and 

an electronic tongue, in combination with multivariate analysis, have been used to 

verify the geographical origin and the uniqueness of specific extra virgin olive oils. The 

results of this study stated that neural networks have provided very satisfactory for the 

analysis of results and have indicated that the electronic nose as the most appropriate 

tool for the characterization of the analyzed oils (Cosio, et al. 2006). Forina, et al. 

(2007) focused on usefulness of visible spectra with chemometrics in the extra virgin 

olive oil geographical characterization. The developed class models for West Liguria 

Protected Designation of Origin (PDO) olive oils can be differentiated from other olive 

oil samples (Greece, Spain and Tunisia) with 100% sensitivity and specificity. In a 

further study, chemometric treatment of near infrared (NIR) reflectance spectra was 

applied for the classification of five geographically close registered designations of 

origin (RDOs) of French virgin olive oils (Aix-en-Provence, Haute-Provence, Nice, 

Nyons and Vallée des Baux). Partial least square-discriminant analysis (PLS-DA) was 

used as multivariate statistical tool for the classification of French RDOs. The results 

were quite satisfactory, in spite of the similarity of cultivar compositions between two 

denominations of origin (Aix-en-Provence and Vallée des Baux) (Galtier, et al. 2007). 

Downey, et al. (2003) examined visible and NIR spectra for their ability to classify 

extra virgin olive oils from the eastern Mediterranean on the basis of their geographic 

origin. A correct classification rate of 93.9% on the prediction set was achieved using 

factorial discriminant analysis on raw spectral data over the combined wavelength 

range. 

 

2.6.1. Factors Affecting Olive Oil Composition 
 

The major challenge to characterize olive oil according to cultivar and 

geographical origin is variation of its composition with respect to factors such as: 

environmental (soil, climate), agronomic (irrigation, fertilization), cultivation 

(harvesting, ripeness), and technological (post-harvest storage and extraction system). 

There are numerous studies involving the effects of these factors on sensory properties 

and chemical composition of olive oil (Aparicio and Luna 2002). Torres, et al. (2005) 
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stated that the amount of total phenols was strongly affected by the extraction method 

(two-phase centrifugation and pressure). Gutiérrez, et al. (1999) pointed out the 

correlation between chemical components and the ripeness index of olive oil. Results of 

the 1998 season indicated that the irrigation treatments had a significant effect in the 

oxidative stability, polyphenols and the composition of fatty acids of olive oil (Faci, et 

al. 2002).  

Climate has a great influence on the chemical composition of vegetable oils and 

its effect on monovarietal characterization was widely studied by the scientists. Boggia, 

et al. (2002) studied with olive oils from the three geographical areas which were 

mentioned in the PDO regulation and obtained in 1998/99 and 1999/2000 harvest years. 

31 variables determined by chemical-physical analyses were used to classify oils on the 

basis of their geographical origin. For 1998/99 harvest year, class-models of the three 

geographical areas were obtained with good predictive ability. However, the oil samples 

obtained from the 1999/2000 crop season were different from similar samples obtained 

in the previous year. These years showed clearly different climatic conditions. In 1998-

99, high summer temperatures and poor autumn rainfalls contributed to limiting Dacus 

oleae infestation and improving oil quality. On the contrary, in the following year lower 

summer temperatures favored the spreading of the infestation, and strong autumn winds 

and rainstorms further worsened olive oil quality. Also, the effect of climate on fatty 

acid composition of Sicilian cultivars collected in nine years of cultivars was studied. 

PCA revealed that only olive oils samples of 1999-2000 year are always grouped 

together and slightly separated from the others. Similar to previously mentioned study, 

this year was characterized by bad climatic conditions and a widespread infestation 

which leads to differentiation of this harvest year (D’Imperio, et al. 2007). Salvador, et 

al. (2002) detected significant statistical differences in quality indices and major fatty 

acid and sterol compositions with respect to the year of production, with the exception 

of total phenols. 

 

2.6.2. Application of Fourier Transform Infrared Spectrometry for 

Monovarietal Olive Oil Characterization 
 

As a rapid analysis technique, mid-infrared spectroscopy supplies high speed 

measurement, moderate instrument cost and relative ease of sample presentation, 
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especially for liquid and paste material (Downey 1998). Infrared spectroscopy uses 

interaction of electromagnetic radiation with a sample to obtain both qualitative and 

quantitative chemical information (Harwood and Aparicio 2002). MIR radiation is 

defined as the infrared radiation between 4000 and 400 cm-1 wavenumber. The 

interaction of infrared radiation with matter causes it to be absorbed and also the 

chemical bond in a sample vibrates. Functional groups, chemical structural fragments 

within molecules, tend to absorb infrared radiation in the same wavenumber range, 

without regard to the structure of the rest of the molecule (Smith 1996).  

Attenuated total reflection (ATR) sample accessories have greatly eased the 

analysis of solids, liquids, semisolids, and thin films. A schematic diagram of an ATR 

accessory is shown in Figure 2.1. ATR cell includes a crystal of highly-refractive 

material (e.g. ZnSe). The test sample is layered on the top surface of the crystal. 

Infrared radiation enters at one end undergoes total internal reflection at the top and 

bottom faces, and then exit from the other end to the detector. A small evanescent wave 

is generated at each point of reflection, which goes a short distance inside any sample in 

contact with the top face. This interaction results in the absorption of radiation by the 

sample and the consequent attenuation of the input signal at a number of wavelengths, 

thus producing an absorption spectrum (Downey 1998). 

 

 

 
 

 

Figure 2.1. A schematic diagram of an attenuated total reflectance accessory  

(Source: Downey 1998) 

 

MIR spectra contain information about the complete chemical composition and 

physical state of the material under analysis. Therefore, high number of data is 

generated (Downey 1998). Multivariate data analysis is required to extract the relevant 

information from these spectra.  

Despite availability of FT-IR with ATR and chemometrics for monovarietal 

classification of olive oil, there are not many studies involving classification of 

from source to dedector ATR crystal 

sample 
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monovarietal olive oils using FT-IR and chemometric analysis. Bendini, et al. (2007) 

collected FT-IR spectra of 84 monovarietal virgin olive oil samples from eight Italian 

regions and manipulated fingerprint region data by PCA. Discrimination of majority of 

samples coming from the Emilia Romagna, Sardinian and Sicilian region was achieved. 

In another study, applicability of FTIR to distinguish extra virgin olive oils from four 

European countries, in combination with multivariate analysis, was investigated. Both 

PLS-DA and genetic algorithm (GA)-PLS was applied independently and results 

confirmed that PLS-LDA approach produced a cross-validation success rate of 96%, 

whereas the GA-PLS approach achieved a 100% cross-validation success rate. Also, 

Caetano, et al. (2007) reported application of FT-IR spectroscopy to discriminate 

between Italian and non-Italian and between Ligurian and non-Ligurian olive oils. Two 

chemometric techniques, classification and regression trees and support vector 

machines based on the Gaussian kernel and the recently introduced Euclidean distance-

based Pearson VII Universal Kernel, successfully achieved to discriminate olive oil 

samples between various geographical origins.  

 

2.7. Geographical Indications 
 

In order to protect high-quality agricultural products based on their geographical 

origin, EU established legislations to designate geographical indicators (GIs). GIs are 

special signs that can add economic value to the agricultural products in markets. They 

symbolize cultural identity of region of origin by representing the skills of its population 

and natural resources. Also, they create indistinguishable characteristics for the products 

(Addor and Grazioli 2002).  

Two types of GI designations were established by EU Council Regulation: 

Protection of Designations of Origin (PDO) and Protection of Geographical Indication 

(PGI). PDO labeling means that the product is produced, processed, and prepared within 

the specified geographical region. On the other hand, PGI designation means that the 

product is produced, processed, or prepared in a certain geographical area, and the 

quality, reputation, or other characteristics are attributable to that area. Even though part 

of the production process is carried out outside that area, products quality and reputation 

could still be ascribed to that geographical region. These designations could be used in 

labelling of olive oil, produced in particular geographical region, with typical 
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characteristics linked to natural factors, to the environment, and to the traditions of that 

region (Babcock and Clemens 2004, Ozen, et al. 2005).  

As a high-value agricultural product, GIs were applied to olive oil in European 

Union. Therefore, there is an economic basis for identifying characteristics that 

distinguish PDO olive oils.  

 

2.8. Adulteration  
 

Agricultural products having PDO or PGI labels might have high market price 

so they are attractive targets for adulteration. Adulteration of food products involves the 

replacement of high-cost ingredients with lower grade and cheaper substitutes (Tay, et 

al. 2002). Actually, blend edible oils can be prepared only for suitable products, but if 

the resulting blend deviates from the mixture proportions given on the label, or if the 

blend is traded as genuine, it means the oil is adulterated (Ulberth and Buchgraber 

2000).  

Olive oil is also one of the agricultural products that is often adulterated with 

cheaper oils. Consumers generally prefer olive oil for its health benefits and they could 

feel cheated to receive oil that does not provide their expectations. Adulteration 

received much more attention after the toxic oil syndrome resulting from consumption 

of olive oil spiked with aniline-denatured rapeseed oil that affected more than 20,000 

people. Oils widely used for olive oil adulteration include olive pomace oil, corn oil, 

peanut oil, cottonseed oil, sunflower oil, soybean oil, and poppy seed oil (Harwood and 

Aparicio 2002). 

 

2.8.1. Methods to Detect Adulteration of Olive Oil 
 

Monitoring authenticity of edible oils is carried out using instrumental 

techniques that provide data about their qualitative and quantitative composition. There 

exist numerous methodologies to qualify and quantify vegetable or seed oils in olive oil. 

Examples of some standard techniques involving the application chromatographic 

methods are provided in this section.  

The limits of total and desmethyl sterol compositions of olive oil are given in 

EC (1991). Sterol composition significantly varies in between vegetable oils and this 
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variation can be used to detect adulteration (Aparicio and Aparicio-Ruíz 2000). 

Saponification method and analysis of trimethylsilylether with capillary column GC 

was applied to detect seed oil adulteration (IOOC 2007). Another method is 

determination of saturated fatty acids at 2-position of triacylglycerols. Main saturated 

fatty acids of olive oil are palmitic and stearic acids and they can not be more than 1.5 

percent at 2-position of triacylglycerols for virgin olive oil. The methyl esters can be 

prepared and then analyzed with thin-layer chromatography. (EC 1991, Aparicio and 

Harwood 2000). Triacylglcerides of vegetable oils can also be analysed to confirm the 

purity of vegetable oils. During triacylglcerides analysis by high performance liquid 

chromatography (HPLC), out of the entire chromatogram, the only peaks which are 

taken into consideration are trilinolein and Equivalent Carbon Number 42 (ECN42) 

(Christopoulou, et al. 2004). Determination of trilinolein content was used for the 

detection of adulteration of olive oil with other vegetable oils (EC 1991). Nowadays, the 

trilinolein content has been replaced by the ΔECN42. Christopoulou, et al. (2004) stated 

that the limit for the ΔECN42 in olive oil is satisfactory for the detection of adulteration 

of an olive oil with oils: sunflower, soybean, cotton, corn, walnut, sesame, safflower, 

canola and rapeseed. The established limit for the ΔECN42 is not satisfactory for 

detecting percentages lower than or equal to 5% of hazelnut, almond, peanut and 

mustard oils in mixtures with olive oil. Wax esters are other components of olive oil 

that can be used for adulteration detection. Wax determination involves the use of 

capillary column gas-liquid chromatography (EC 1991). They are very useful to 

distinguish refined olive oil and olive–pomace oils from virgin olive oil because virgin 

olive oil has a higher content of C36 and C38 waxes than of C40, C42 and C44 whereas the 

other oils have an inverse relation (Aparicio and Aparicio-Ruíz 2000).  

 

2.8.2. Emerging Techniques to Detect Adulteration of Olive Oils with 

an Emphasis on IR Spectroscopy 
 

Methods of food adulteration have become more sophisticated due to its 

economic profits. There is an increasing demand for the development of new rapid and 

sensitive methods instead of traditional time-consuming and expensive analysis 

techniques. There exist several new emerging methods mainly focusing on this subject.  
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Headspace autosampler directly coupled to a mass spectrometer (ChemSensor) 

was employed to detect hazelnut oil adulteration. Using PLS and principal component 

regression analysis, minimum adulteration levels of 7 and 15% can be detected in 

refined and virgin olive oils, respectively (Peña, et al. 2005). Poulli, et al. (2007) 

described the differentiation of virgin olive from olive-pomace, corn, sunflower, 

soybean, rapeseed and walnut oils using total synchronous fluorescence spectra with 

PLS. Olive-pomace, corn, sunflower, soybean, rapeseed and walnut oil were detected in 

virgin olive oil at levels of 2.6%, 3.8%, 4.3%, 4.2%, 3.6%, and 13.8% (w/w), 

respectively. Also, differential scanning calorimeter was employed to detect 

adulteration of extra virgin olive oil with refined hazelnut oil and results revealed that 

thermal properties of cooling thermograms were affected by hazelnut oil addition at a 

concentration as low as 5% (Chiavaro, et. al 2008). 

Also, use of spectroscopy which includes IR and Raman techniques combined 

with chemometric methods is a relatively new approach to determine authenticity of 

olive oil. NIR, MIR, and Raman spectroscopic techniques were used to quantify the 

amount of olive pomace oil adulteration in extra virgin olive oil. Developed PLS model 

using data by Raman spectroscopy had R2 of 0.997 and standard error of 1.72%. In 

addition, NIR and middle infrared (MIR) techniques also provided good predictions 

with a R2 value greater than 0.99 (Yang and Irudayaraj 2001). Christy, et al. (2004) 

studied NIR spectroscopy to detect and quantify adulteration of olive oil with soy, 

sunflower, corn, walnut and hazelnut oils. PCA of all spectral data revealed 100% 

classification of mixtures according to adulterant. Quantification of adulterant in olive 

oil was performed by PLS which was resulted in error limits of ± 0.57% (corn oil), 

±1.32% (sunflower oil), ±0.96% (soy oil), ±0.56% (walnut oil) and ±0.57% (hazelnut 

oil). 

Detection of olive oil adulteration with hazelnut oil is a real challenge due to its 

very similar chemical composition to olive oil. There are studies involving the 

application of FT-IR with chemometrics to detect hazelnut oil adulteration. FT-IR 

equipped with a ZnSe-ATR accessory was used to detect the adulteration of extra-virgin 

olive oil with hazelnut oil. FT-IR data was manipulated with discriminant analysis. 

However, adulteration of virgin olive oil with hazelnut oil could be detected only at 

levels of 25% and higher (Ozen, et al. 2002). Baeten, et al. (2005) obtained better 

results in their study which involves application of Raman and MIR spectroscopies to 

determine the level of hazelnut oil in olive oil. In this study, MIR spectra worked better 
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than Raman spectra. Results of stepwise linear discriminant analysis indicated that MIR 

spectra of unsaponifiables matter of samples allowed detection of adulteration at a level 

of 8% for blends obtained by mixing Turkish hazelnut and olive oils.  

Other vegetable or seed oils were also used to adulterate olive oil and FT-IR was 

also suggested as the possible adulteration detection method. Olive oil and sunflower 

adulterated olive oil samples (20ml/l) were analyzed by FT-IR equipped with ZnSe-

ATR accessory. According to this study, DA was able to classify the samples as pure 

and adulterated. PLS model developed to determine the level of mixing resulted in R2 

value of validation set of 0.974 which indicated success of the model (Tay, et al. 2002). 

Vlachos, et al. (2006) also studied the determination of olive oil adulteration with 

vegetable oils (sunflower oil, soybean oil, sesame oil, corn oil) using FT-IR. A linear 

relation was obtained between percent adulteration and height of the band shift at 3009 

cm-1 of FT-IR spectra which can be used to determine extra virgin olive oil adulteration 

with different types of vegetable oils. In this study, the detection limit for olive oil 

adulteration is 9% if the adulterant is corn oil or sesame seed oil while it is lower (6%) 

if the adulterant is sunflower or soybean oil. 

 

2.9. Use of Chemometric Techniques to Determine Authenticity of 

Olive Oil  
 

The authenticity determination of olive oil can be differentiated into 2 main 

scopes which are:  

– characterization and denomination of geographical origin and 

– identification and quantification of economic adulteration (Ulberth and 

Buchgraber 2000). 

In authentication of food products numerous chemical compounds create 

multivariate data. Chemometric techniques deal with the multivariate data to extract 

relevant information and to organize them into meaningful structures (Harwood and 

Aparicio 2000). The multivariate data analysis aims to display multidimensional data in 

a lower space without loss of any significant information to group samples with similar 

properties and to classify observations on the basis of their similarities (Massart, et al. 

1988). 
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As an example fatty acid profile of olive oils from different varieties or 

geographical regions could result in generation of multivariate data sets for olive oil 

authentication. Also, spectroscopic techniques are generally applied for authentication 

because spectra contain information about the complete chemical composition of the 

olive oil. Therefore, multivariate data analysis is required to extract the relevant 

information from the spectra or fatty acid profile of olive oil (Downey 1998).  

If a data set includes N observations of K variables, they can be arranged in a [N 

X K] matrix X. The relative sizes of K and N is important to be able to employ 

multivariate methods. Spectroscopic or chromatographic data sets containing higher 

number of K than N prevents direct application of many multivariate methods (because 

the product matrix XTX, required in the calculations, cannot be inverted). PCA and PLS, 

data reduction methods, are most useful for this kind of data sets (Defernez and 

Kemsley 1997).    

 

2.9.1. Principal Component Analysis (PCA) 
 

PCA, being one of the commonly applied chemometric tools among the 

techniques to model complex data sets, aims to represent the n-dimensional data 

structure in a smaller number of dimensions, usually two or three. So, the groupings of 

observations, outliers, etc., which define the structure of the data set can be observed 

(Massart, et al. 1988).  

PCA is given as an abstract mathematical transformation of the original data 

matrix which can be presented as 

 

    X = T.P+E                                                     (2.1) 

 

where X is the original data matrix; T are the scores, and have as many rows as 

the original data matrix; P are the loadings, and have as many columns as the original 

data matrix; and E is the error matrix (Brereton 2003).  

In order to apply PCA, X-variables are expected to be collinear. The collinearity 

means that the variability exists in X matrix and carries most of the available 

information. Therefore, redundancy and smaller variabilities can be removed. Then, 

PCA aims to express the main information in the variables by the so-called PCs of X 
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(Marten and Naes 1989). The PCs are oriented so that the first PC describes as much as 

possible of the original variation between the objects.  

Two PCs are two lines orthogonal to each other and together they define a plane 

in K-dimensional variable space. All the observations are projected onto this plane and 

structure of the investigated data set can be visualized. The co-ordinate values of the 

observations on this plane are called scores and this configuration is called scores plot 

(Eriksson, et al. 2001).  

Scores plot displays the similarities and differences between observations. On 

the other hand, loadings plot can be constructed for two PCs to observe the most 

important original variables. The important variables are placed in the longest distance 

from the origin and are responsible for the pattern seen among observations. In addition, 

correlated variables which are in the same or opposite directions on a straight line 

through the origin of loading plot can be determined (Euerby and Petersson 2003).  

PCA analysis can also be used to develop a modelling technique called soft 

independent modelling of class analogy (SIMCA) which is one of the most commonly 

used class-modelling tools in chemometrics. In SIMCA, PCA is performed for each 

class separately and this results in a PC model for each class. The class distance can be 

calculated as the geometric distance from the PCs models. Each group may be bounded 

by a region of space representing 95% confidence that a particular object belongs to a 

class. The residual variance of a variable of a class is used for estimating the modelling 

power of a particular variable (Brereton 2003). On the other hand, discriminatory power 

measures how well a variable discriminates between two classes. This differs from the 

modelling power in the sense that a variable being able to model one class well, it does 

not necessarily imply being able to discriminate two groups effectively (Berrueta, et al. 

2007). 

 

2.9.2. Partial Least Square Analysis (PLS) 
 

The regression extension of PCA is named as PLS. The technique is a two-block 

regression method that is also based on principal component models. If the independent 

variables is called X matrix, the dependent or response variables constitute Y matrix, 

response variables are called the Y matrix (Bye 1995). Both X and Y matrices are 

decomposed into smaller matrices as given below: 
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       X=T.P+E                                        (2.2) 

   Y=T.Q+F       (2.3) 

 

 where Y is the matrix of dependent variables; X is the matrix of independent 

variables; T and U are the scores matrices; P are the loadings of X matrix; E is the error 

matrix of X-Matrix; Q is loading matrix of Y-Matrix; and F is the error matrix for Y-

Matrix (Otto 1997). 

The PLS analysis involves the determination of PLS components that describe 

the variation of Y-data. The first PLS component is a line in X variable space which 

should approximate the observations and correlate with Y vector.  First PLS usually is 

not enough to describe the variation in the Y-data. So, the second PLS component 

describe the remaining variation as much as possible. Second PLS component is also a 

line orthogonal to first PLS component and it improves the description of X data and 

provides good correlation with Y remained after first component. Also, the vectors of 

two PLS components have the ability to predict y data (Eriksson, et al. 2001).  
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CHAPTER 3 

 

EXPERIMENTAL STUDY 
 

3.1. Materials 
 

3.1.1. Olive and Olive Oil Samples 
 

Two independent sets of olive oil samples were used in the analysis. In the first 

set, olive varieties used in oil production were provided by Olive Research Institute 

(Izmir, Turkey) and Olive Nursery (Edremit, Turkey). Each variety as listed in Table 

3.1 was obtained from Izmir but the varieties Ayvalik and Gemlik were also obtained 

from Edremit. 15-25 kg of olives from each cultivar were picked from trees and then 

milled with a maximum 5 kg capacity laboratory scale olive oil mill (TEM Spremoliva, 

Italy). At least two different batches of oil were obtained from each cultivar. Samples 

were obtained both in 2005/06 (1st) and 2006/07 (2nd) harvest years. The samples were 

listed in Table 3.1. 

 

Table 3.1. Olive varieties and olives of different geographical regions 

 

Sample name Sample code 

Ayvalik A 

Gemlik G 

Memecik M 

Erkence E 

Nizip N 

Ayvalik (Edremit) AE 

Gemlik (Edremit) GE 
 

Second class of oil includes extra-virgin olive oil samples, which belong to 30 

different locations of Aegean region of Turkey, and they were obtained from the same 

olive oil producer for two consecutive harvest years. Figure 3.1 represents north and 
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south of Aegean region where the olives were obtained from. There are 25 and 22 olive 

oil samples belonging to 2005/06 and 2006/07 harvest years, respectively. The olive oil 

samples were coded either as north (N) or south (S) according to the region where 

olives came from (Table 3.2). Also, numbers besides N or S represent the first or second 

harvest year. While mainly Ayvalik variety is cultivated in north Aegean, Memecik is 

the dominant variety in south part of Aegean region. The samples were kept in dark 

glass bottles and stored at 8 oC until further analysis. Analysis was performed within 2-3 

months following extraction and receival of the oils. 

 

Figure 3.1. Commercial olive oil samples belonging to North (N) and South (S) of 

Aegean region (Source: World Sites Atlas 2008) 
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Table 3.2. Commercial olive oil samples from north and south parts of Aegean Region of Turkey belonging to 2005/06 and 2006/07 harvest 

years 

Sample No Geographic origin Sample code Harvest year Sample No Geographic origin Sample code Harvest year 

1 Ezine (N) Ez 1st-2nd 16 Tepekoy (S) Tep 1st-2nd 

2 Ezine Gulpinar (N) Ez-org 1st 17 Bayindir (S) Bay 1st 

3 Kucukkuyu1 (N) Kuckuy1 1st-2nd 18 Odemis (S) Ode 2nd 

4 Kucukkuyu2 (N) Kuckuy2 1st 19 Tire (S) Tire 2nd 

5 Altinoluk (N) Altol 1st-2nd 20 Selcuk (S) Sel 1st-2nd 

6 Altinoluk-sulubaski (N) Altol-sb 1st 21 Kusadasi (S) Kus 2nd 

7 Edremit (N) Edr 1st-2nd 22 Germencik (S) Ger 2nd 

8 Havran (N) Hav 1st-2nd 23 Aydin (S) Ayd 1st-2nd 

9 Burhaniye (N) Bur 1st-2nd 24 Ortaklar (S) Ort 1st-2nd 

10 Gomec (N) Gom 1st-2nd 25 Kosk (S) Kosk 2nd 

11 Ayvalik (N) Ayv 1st-2nd 26 Dalaman (S) Dal 2nd 

12 Altinova (N) Altov 1st-2nd 27 Kocarli (S) Koc 1st-2nd 

13 Zeytindag (N) Zey 1st-2nd 28 Erbeyli (S) Erb 2nd 

14 Akhisar (N) Akh 1st 29 Çine (S) Cine 2nd 

15 Menemen (N) Men 1st 30 Milas (S) Mil 1st-2nd 24
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3.1.2. Chemical Reagents  
 

Reagents used in chemical analysis were obtained from Riedel-de Haën and 

Sigma-Aldrich and they are either high performance HPLC or analytical grade. In 

chromatographic analysis, fatty acid methyl esters containing C8-C24 (2%-11% relative 

concentration) was used as reference standard (Supelco # 18918). 

 

3.2. Methods 
 

3.2.1. Determination of Percent Free Fatty Acids 
 

European Official Methods of Analysis (EEC 1991) was used for the 

determination of free fatty acid value in terms of % oleic acid. 1 g potassium hydrogen 

phthalate (KHC8H4O4) was dried in oven at 110 0C for 2 hours. 0.4 g of potassium 

hydrogen phthalate was put into a flask, and 75 ml distilled water and few drops of 

phenolphthalein (0.5 g phenolphthalein in 50 ml 95% ethanol (v/v)) were added. 1 

mol/L potassium hydroxide (KOH) was prepared with distilled water and it was 

standardized with previously prepared potassium hydrogen phthalate. 150 mL diethyl 

ether-ethanol (1:1) mixture was neutralized with KOH with the addition of 

phenolphthalein. Since the expected acidity value is <1, 20 g oil sample was dissolved 

in diethyl ether-ethanol solution. The sample solution was titrated with 0.1 mol/L 

solution of KOH until the indicator changes color (the pink color of the phenolphtalein 

persists for at least 10 seconds). Acidity is expressed as percentage of oleic acid with 

the equation given below: 

 

m
McV

m
McV

×
××

=×××
10

100
1000

  (3.1) 

 

where: 

V = the volume of titrated KOH solution used in milliliters; 

c = the exact concentration in moles per liter of the titrated solution of KOH 

used; 
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M = the molar weight in grams per mole of the acid used to express the result 

(=282); 

m = the weight in grams of the sample. 

 

3.2.2. Gas Chromatography Analysis  
 

3.2.2.1. Sample Preparation  
 

European Official Methods of Analysis (EEC, 1991) was used for the 

preparation of methyl esters. 100 mg oil sample was weighed in 20 mL centrifuge tubes. 

The samples were dissolved in 10 mL n-hexane and saponified to their methyl esters 

with the addition of methanolic potassium hydroxide solution (11.2 g in 100 mL). The 

sample solution was vortexed for 30 s and centrifuged for 15 min. Clear supernatant 

was transferred into 2 mL autosampler vial for chromatographic analysis. 

 

3.2.2.2. Analytical Conditions 
 

Chromatographic analyses were performed on an Agilent 6890 GC (Agilent 

Technologies, Santa Clara, USA) equipped with Agilent 7683 autosampler. The 

instrumental configuration and analytical conditions were presented in Table 3.3.  

 

Table 3.3. Chromatographic method for the analysis of fatty acid methyl esters 

 

Instrumentation  

Chromatographic system Agilent 6890 GC 

Inlet Split/splitless 

Detector FID 

Automatic sampler Agilent 7683 

Liner Split liner (p/n 5183-4647) 

Column 100 m x 0,25 mm ID, 0.2 μm HP-88 (J&W 
112-88A7) 

(cont. on next page) 
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Table 3.3. (cont.) Chromatographic method for the analysis of fatty acid methyl esters  

Experimental Conditions GC-FID  

Inlet temperature 250 oC 

Injection volume 1μL 

Split ratio 1/50 

Carrier Gas Helium 

Head pressure 2 mL/min constant flow 

Oven temperature 175oC, 10 min, 3oC/min, 220oC, 5 min 

Detector temperature 280 oC 

Detector gases Hydrogen:40mL/min; Air:450mL/min; 
Helium make-up gas:30mL/min 

 
Fatty acids used in the analysis were myristic acid (C14:0), palmitic acid 

(C16:0), palmitoleic acid (C16:1), stearic acid (C18:0), oleic acid (C18:1), linoleic acid 

(C18:2), arachidic acid (C20:0), linolenic acid (C18:3) and behenic acid (C22:0). Each 

sample was analysed at least two times with GC. 

 

3.2.3. FT-IR Analysis 
 

All infrared spectra (4000-650 cm-1) were acquired with a Perkin Elmer 

Spectrum 100 FT-IR spectrometer (Perkin Elmer Inc., Wellesley, MA). This instrument 

was equipped with a horizontal ATR sampling accessory (ZnSe crystal) and a 

deuterated tri-glycine sulphate (DTGS) detector.  

Horizontal ATR accessory was used to collect the spectral data of oil. The 

resolution was set at 2 cm-1 and the number of scans collected for each spectrum was 

128. ZnSe crystal was cleaned with hexane in between sample runs. Measurements 

were conducted more at least two times. 

 

3.3. Preparation of Adulterated Samples and Binary Olive Oil 

Mixtures 
 

Monovarietal olive oil adulteration was performed by mixing E and AE with N. 

The percentage of N added into E and AE varied between 2-20% (vol/vol). On the other 
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hand, vegetable and seed oil adulteration was implemented with the addition of 

hazelnut, sunflower-corn binary mixture, cottonseed and rapeseed oil into commercial 

olive oil samples. Each four commercial olive oil samples were randomly selected from 

north and south regions and mixtures of oils from north and south were prepared 

speretaly. Then each mixture was blended with hazelnut oil to obtain two sets of 2-50% 

(vol/vol) adulterated samples. For cottonseed and rapeseed oil adulteration, four 

commercial olive oil samples belonging to north were mixed with rapeseed and 

cottonseed oils. For sunflower-corn oil adulteration, sunflower-corn oil binary mixtures 

were prepared at different concentrations (0-100% vol/vol) and mixed with blend of 

four commercial olive oil samples belonging to north at 2-20% (vol/vol). Composition 

of each oil sample in mixture was presented in Table 3.5. 

 

Table 3.5. Percentages of sunflower, corn and olive oil in 2-20% adulterated mixtures 
 

Sunflower oil (%) Corn oil (%) Olive oil (%) 

1 1 98 

2 0 98 

0 2 98 

2.5 2.5 95 

5 0 95 

0 5 95 

5 5 90 

10 0 90 

0 10 90 

7.5 7.5 85 

10 5 85 

5 10 85 

10 10 80 

15 5 80 

5 15 80 

20 0 80 

0 20 80 
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3.4. Statistical Analysis 
 

Data analysis was performed using multivariate statistical methods with SIMCA 

software (Umetrics, Sweden). Both fatty acid profile and FT-IR spectral were 

statistically analysed. Whole FT-IR spectra of the samples were not used in the data 

analysis. Two portions of whole spectra (3620-2520 and 1875.5-675 cm-1) where there 

are most significant differences in the peak intensities, were selected to be employed. 

 

3.4.1. Pre-treatment of Data 
 

In order to transform the data into a form suitable for PCA and PLS, the data is 

often pre-treated. Within this concept, both fatty acid composition and spectral data 

were scaled and mean centered.  

Signal correction and compression techniques are quite applicable to MIR 

spectra. Wavelets analysis is a widely used spectral compression technique preferred in 

classification studies. Its main abilities are compressing and de-noising complicated 

signals. Wavelets are small oscillating waves having the capability of probing a signal 

according to scale, that is, bandpass of frequencies. There are different wavelet 

functions such as Daubechies, Symmlet and Coiflet. Among wavelet functions 

Daubechies-10 was chosen and wavelet analysis used as a spectral data pre-treatment 

method before classification approaches (PCA) (Eriksson, et al. 2000). Orthogonal 

signal correction (OSC) is a signal correction technique and it is used to construct a 

filter that removes the part from the spectral matrix X that is definitely unrelated to Y. 

The removed part should be mathematically orthogonal to Y (Wold, et al. 1998). In this 

study, OSC in combination with wavelet analysis was applied on spectral data for 

quantification issues (PLS).   

 

3.4.2. Classification 
 

The discrimination of olive oil samples was achieved with PCA, which is a 

multivariate projection method designed to extract and display the systematic variation 

in a data matrix X. It is important to accurately determine the number of components 

that should be included in the model since it is linked to the difference between the 
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degree of fit and the predictive ability. Degree of fit increases as the number of 

components increases but predictive ability does not necessarily increase after a certain 

model complexity. Therefore, it is important to reach an optimal balance between fit 

and predictive ability. 

Results of PCA are visualized by scores, loadings and Coomans’ plots. Score 

plots were constructed to observe principal groupings among observations. To 

determine the variables responsible from the groupings among observations loading 

plots were used. Also, Coomans’ plot is used to interpret results of SIMCA and to 

discriminate two classes.  In this plot, the distance from the model for class 1 is plotted 

against that from model 2. The critical distances (usually at 95% of confidence level) 

are indicated on both axes. So, four regions are defined on the plot: class 1, class 2, 

overlap of classes 1 and 2, and outer region (far from both classes). By plotting objects 

in this plot it is easy to visualize how certain a classification is. Scores and Coomans’ 

plots were employed for discrimination of samples according to variety, geographical 

origin, and harvest year and also for differentiation of adulterated samples from pure 

samples. Classification studies were performed by setting 9 GC variables and FT-IR 

spectra as independent variable data set.  

 

3.4.3. Quantification 
 

Quantification of fatty acid profile and free fatty acidity using MIR spectra was 

implemented. The whole observation data set was divided into validation and 

calibration sets. PLS was employed on calibration set relating MIR spectra (X block) 

with fatty acid profile and free fatty acidity value (Y block). The ability of the PLS 

model was inspected with validation set. The predictability of the models was tested by 

computing the standard error of calibration (SEC) for the calibration data set,  the 

standard error of prediction (SEP) for the validation data set and the relative error of 

prediction (REP): 
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where Yi, iŶ  and Y  are observed, predicted percentage of each fatty acid and average 

observed fatty acid of observations, respectively; m and n are the number of samples in 

the calibration and prediction sets, respectively.  

Quantification of hazelnut, sunflower-corn, cottonseed and rapeseed oil in olive 

oil and also N in blend of E-N and AE-N was performed by PLS regression analysis, 

which relates the FT-IR absorbance of each adulterated samples and monovarietal 

mixture (X block) with the percentages of adulterant oil and a monovarietal in that 

mixture (Y block). For hazelnut, cottonseed and rapeseed oil, adulterated olive oil 

samples randomly divided into two as the calibration and validation data.  

On the other hand, due to the low number of samples, the data belonging to 

mixture of two monovarieties were not divided into two as the calibration and validation 

data sets. Instead, cross-validation technique was used to asses the model performance. 

Cross validation evaluates the data by excluding selected samples in the PLS regression 

model and then building a model for the remaining. The model is tested using the 

samples excluded from the model and the error values for the predicted observations are 

calculated. New samples are then excluded from the model set and a new model is built. 

This procedure is repeated until all samples in the PLS model have been excluded once. 

After predicting all the observations once by the cross-validation technique, the error 

values between predicted and calculated response (% of adulterant in this case) were 

used to calculate error criterion;  (SEP) as given in equation 3.3.  
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CHAPTER 4 

 

RESULTS and DISCUSSIONS 
 

4.1. Classification of Lab Scale Extracted Olive Oils 
 

Olive varieties used in this study are commercially important cultivars in olive 

oil production. All varieties except Nizip are mainly cultivated in west part of Turkey. 

Nizip, on the other hand, originates from southeast part of Turkey. Five varieties (A, G, 

M, E and N) used in this study were obtained from the same orchard in Izmir which is 

in the middle part of Aegean region and two of these varieties (A and G) were also 

supplied from another orchard in north part of the same region (Edremit) for two 

consecutive harvest years. Same extraction system was used in obtaining the oils. Data 

of FFA values of the olive oil samples were presented in Table 4.1. The acidity values 

varied between 0.94 and 0.13 belonging to 1st harvest year of the N and M varieties, 

respectively. None of the olive oils has the acidity value higher than 1% which is the 

maximum accepted value of EU (1991) for extra virgin olive oil classification. 

 

Table 4.1. Free fatty acid values of lab scale extracted olive oils expressed as % oleic 

acid 

 

Harvest year 
Variety 

2005  2006  

Ayvalik (A) 0.38±0.07c  0.31±0.1bc 

Gemlik (G) 0.13±0.03a  0.16±0.02ab 

Memecik (M) 0.24±0.02bc 0.33±0.1c 

Erkence (E) 0.16±0.03a 0.14±0.01a 

Nizip (N) 0.94±0.18d 0.45±0.3db 

Ayvalik-Edremit (AE) 0.32±0.02c 0.80±0.04d 

Gemlik-Edremit (GE) 0.17±0.02ab 0.25±0.06bc 

a,d Values in each column with different superscript letters present significant differences (P< 
0.05). 
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Data from GC and FT-IR analysis of oils in combination with chemometrics 

were employed for the classification of samples. The variety effect was investigated 

using the varieties grown in Izmir. On the other hand, comparison of two varieties (A 

and G) from two different areas (Izmir and Edremit) provided information about the 

effect of growing location.  

 

4.1.1. Classification using GC Data 
 

Fatty acid profile of olive oil samples, determined by GC analysis, presented in 

Table 4.2. Fatty acid content of each variety was the average of at least two GC 

measurements for each batch of oil. The monounsaturated fatty acids have great 

importance because of their nutritional implication and their effect on oxidative stability 

of oils (Aparicio, et al. 1999). As the most abundant fatty acid in olive oil, the amount 

of oleic acid varied remarkably between the olive oil samples. The oleic acid content 

was at the lowest concentration (66.32%) for M variety of 1st harvest year and (63.57%) 

for E variety of 2nd harvest year. On the other hand, the highest oleic acid concentration 

was observed for GE variety for two consecutive harvest years (72.05% for 1st and 

72.95% for 2nd harvest years). The content of linoleic acid varied between 8.88% for GE 

and 14.95% for E varieties for 1st harvest year whereas its content was between 16.89% 

for E and 7.41% for GE varieties belonging to 2nd harvest year. Also, fatty acid 

composition of each variety changed with respect to year of harvesting. In other studies, 

similar fatty acid profile for Ayvalık variety and flesh oil of Memecik variety was 

determined (Ozkaya, et al. 2008, Nergiz and Engez 2000). On the other hand, Tanılgan, 

et al. (2007) observed higher oleic and lower linoleic acid contents for Ayvalık (C18:1 

is 79% and C18:1 is 6.8%) and Gemlik (C18:1 is 81.1%, C18:2 is 4.9%) varieties. The 

difference could be due to extraction method, olive ripeness or harvest year differences. 

The 9 GC variables of 122 observations were used as the multivariate data set. 

The data set were submitted to PCA to visualize the presence of principal groupings. 

Figure 4.1 shows the score plot of lab scale extracted olive oil samples. 

 

 



 34 

Table 4.2. Fatty acid profiles (% of total fatty acids) of lab scale extracted olive oil samples 

 Variety C14:0 C16:0 C16:1 C18:0 C18:1 C18:2 C18:3 C20:0 C22:0 

2005           

 A 0.03±0.00 14.24±0.37 0.84±0.01 2.77±0.09 69.58±0.44 11.22±0.11 0.45±0.02 0.75±0.01 0.13±0.02 

 G 0.01±0.00 14.01±0.75 0.93±0.07 2.92±0.06 70.67±1.21 10.13±0.39 0.39±0.03 0.78±0.02 0.15±0.06 

 M 0.02±0.00 14.95±0.73 0.89±0.05 2±0.08 66.32±0.96 14.5±0.72 0.35±0.04 0.86±0.01 0.11±0.03 

 E 0.01±0.00 14.09±0.88 0.75±0.07 2.39±0.09 66.44±1.59 14.95±0.85 0.38±0.02 0.86±0.03 0.12±0.02 

 N 0.01±0.01 15.19±0.52 0.81±0.47 4.57±0.37 68.35±0.97 9.95±0.22 0.49±0.02 0.53±0.05 0.09±0.02 

 AE 0.02±0.00 14.16±0.25 1.03±0.02 2.29±0.02 69.03±0.23 11.33±0.09 0.42±0.04 0.67±0.02 0.13±0.03 

 GE 0.01±0.00 13.72±0.31 1.06±0.02 3.19±0.17 72.05±0.31 8.88±0.21 0.37±0.04 0.59±0.01 0.14±0.06 

2006           

 A 0.02±0.00 16.51±0.37 2.65±0.03 2.08±0.03 65±0.26 12.69±0.16 0.49±0.02 0.42±0.01 0.13±0.02 

 G 0.01±0.00 14.45±0.45 2.07±0.21 3.37±0.39 71.2±1.65 7.82±0.66 0.49±0.02 0.48±0.02 0.12±0.01 

 M 0.02±0.00 12.71±0.62 1.29±0.03 2.13±0.10 72.88±0.61 10.01±0.16 0.46±0.01 0.4±0.02 0.12±0.01 

 E 0.02±0.00 14.62±0.31 1.6±0.04 2.28±0.07 63.57±0.46 16.89±0.43 0.52±0.01 0.4±0.01 0.12±0.01 

 N 0.01±0.00 14.98±0.65 1.54±0.02 5.1±0.19 67.21±0.66 10.14±0.14 0.32±0.01 0.56±0.02 0.13±0.02 

 AE 0.02±0.00 15.03±0.64 1.87±0.06 2.11±0.09 66.29±0.45 13.77±0.33 0.39±0.01 0.4±0.02 0.13±0.02 

 GE 0.01±0.00 13.48±0.40 2.08±0.09 3.13±0.12 72.95±0.53 7.41±0.12 0.39±0.01 0.43±0.02 0.11±0.01 
 

34
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Figure 4.1. PCA score plot of the fatty acid profile of lab scale extracted olive oil 

samples for two harvest years 
 

In Figure 4.1, first PC accounted for 35.6% of total variation whereas second PC 

explained much less 19.6%. In score plot the area inside the ellipse presents 95% 

confidence. Some varieties were grouped together and differentiation of cultivars with 

respect to harvest years was apparent.  

Loading plot obtained from PCA of fatty acid data is represented in Figure 4.2. 

Variables C18:1, C18:2, C18:3 and C16:1 were far from the origin and this means that 

they have an important effect on the classification of oil samples with respect to 

cultivar, geographical origin and harvest year. The high discrimination power of C16:0, 

C18:1 and C18:2 were also stated in the classification of Sicilian cultivars with respect 

to cultivar and geographical effects (D`Imperio, et al. 2007). 
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Figure 4.2. PCA loading plot of the fatty acid profile of lab scale extracted olive oil 

samples 

 

Coomans’ plot is an extremely useful tool to visualize principal groupings, in 

which the two axes represent the distance of individual model. In Coomans’ plot; PCA 

model of each class were built separately and two class models are plotted against each 

other with the critical levels as straight lines displaying the boundaries. Any sample 

having a distance to the corresponding centroid greater than the critical distance is 

considered as being outside the class model and, as a consequence, rejected as an outlier 

for the specific category. Coomans’ plot using fatty acid compositions was constructed 

for discrimination of olive oil samples (Figure 4.3).  
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Figure 4.3. Coomans’ plot for the classification of olive oil samples with respect to 

variety and harvest year using fatty acid profile 

 

PCs of 14 class models belonging to two harvest years were calculated 

independently and general statistics of each model was listed in Table 4.3. Among 

them, A2 and N2 models were preferred to be plotted against each other since they have 

different fatty acid profile. Inspection of Figure 4.3 revealed that using fatty acid 

profiles, each sample of A2 and N2 were correctly plotted in its critical limits apart from 

the origin which indicates quite good discrimination of two models. Also, most of the 

other models were identified as separate classes and placed in the outer space of A2 and 

N2 models. Only N1 plotted in the GE2 class model. Also M2 and AE1, having similar 

fatty acid compositions, can not be differentiated from each other. These observations 

revealed that harvest year and cultivar significantly influence fatty acid composition of 

olive oil. Usefulness of fatty acid composition in differentiation of Calabrian (Lanteri, et 

al. 2002) and Sicilian (D`Imperio, et al. 2007) cultivars was also demonstrated 

previously.  
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Table 4.3. PCA class models developed with fatty acid profile and general statistics of 

each class model 

 

PCA class 
models 

Number of 
PCs 

R2X(cum) 
(%) 

PCA class 
models 

Number of 
PCs 

R2X(cum) 
(%) 

A1 3 94.9 E2 3 78.6 

A2 4 97.4 N1 1 75.8 

G1 2 88.9 N2 2 96.8 

G2 3 92.7 AE1 2 84.2 

M1 3 89.7 AE2 4 94.4 

M2 3 92.8 GE1 3 94.7 

E1 4 98.3 GE2 2 61.5 
R2X(cum): Cumulative sum of squares of all the X's explained by all extracted components 

 

Also, effect of cultivar was studied by constructing A and G classes. Each class 

includes samples belonging to two different growing locations (Izmir and Edremit) and 

harvest years (2005/06 and 2006/07). PCA analysis was applied to each class. A class 

was described with 2 PCs accounting for 74.6% of total variation whereas G class was 

described with 7 PCs accounting for 99.6% of total variation. For A and G classes 

Coomans’ plot is given in Figure 4.4. General examination of the Figure 4.4 reveals 

successful discrimination of A and G classes except some samples of A. So, regardless 

to growing location and harvest year, cultivar seems to have the ability in differentiation 

of olive oil samples. 
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Figure 4.4. Coomans’ plot for classification with respect to cultivar using fatty acid 

composition (▲: A, ●: G) 

 

In order to investigate the effect of growing location on fatty acid profile, PCA 

was performed separately on varieties A and G from two different areas (Izmir and 

Edremit). The general statistics of each class models are presented in Table 4.4. 

Coomans’ plot was constructed for both A-AE and G-GE including two consecutive 

harvest years (Figure 4.5). 

 

Table 4.14. PCA class models developed for location effect with fatty acid profile and 

general statistics of each class model 

 

PCA class 
models of 

A-AE 

Number of 
PCs 

R2X(cum) 
(%) 

PCA class 
models of 

G-GE 

Number of 
PCs 

R2X(cum) 
(%) 

A1 3 94.6 G1 3 96.3 

A2 4 97.5 G2 3 93.4 

AE1 2 84 GE1 4 87 

AE2 4 92.7 GE2 2 84.2 
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Figure 4.5. Coomans’ plot for classification with respect to geographical origin and 

harvest year for (a) Ayvalık (b) Gemlik olive oil varieties using fatty acid 

composition (▲:A1-G1, ■:AE1-GE1, ●:A2-G2, ▼:AE2-GE2) 
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Figure 4.5(a) displays Coomans’ plot in which A2 and AE2 plotted against each 

other using fatty acid profiles. Samples of 2nd harvest year, A2 and AE2, were accepted 

by their own class models. On the other hand, samples of 1st harvest year, A1 and AE1 

were plotted among the critical limits of A2 and AE2 model. Similarly, quite successful 

differentiation of G2 and GE2 is observed in Figure 4.5(b). According to these 

observations, geographical origin and harvest year have significant influence on fatty 

acid profile of the olive oil. A previous study on Sicilian olive oils suggested that 

although the effect of the cultivar is predominant in the olive oil classification based on 

the fatty acid composition, a minor but well defined geographic effect is also present 

(D`Imperio, et al. 2007). In another study, Stefanoudaki, et al. (1999) was able to 

discriminate olive oil samples with respect to growing location based on altitude and 

also stated that at low-altitude areas, other environmental factors such as relative 

humidity and rainfall significantly differ. 

 

4.1.2. Classification using FT-IR Data 
 

FT-IR has become an emerging tool with the advantages of short analysis time 

and easy sample preparation for the authentication and classification of olive oil. Figure 

4.6 illustrates typical olive oil spectra obtained in this study.  
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Figure 4.6. Typical olive oil FT-IR spectrum 
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In mid-IR spectrum, the peaks around 2950-2800 cm-1 region are due to C-H 

stretching vibrations of –CH3 and –CH2 groups. The large peak around 1745 cm-1 results 

from C=O double bond stretching vibration of carbonyl groups. Peaks around 1470-

1200 cm-1  region corresponds to CH bending of –CH3 and –CH2. Fingerprint region lay 

between 1250-700 cm-1 which is due to stretching vibration of C-O ester group and CH2 

rocking vibration (Harwood & Aparicio 2000). The entire spectral profiles of each olive 

oil sample used in this study were similar. Thus, 3520-2520 cm-1 and 1875.5-675 cm-1 

spectral ranges, where some differences were observed in the absorbance units, were 

used in data analysis.  Wavelet analysis was applied as a compression technique to 

spectral data to increase the computational efficiency and also to enhance the 

classification studies. 125 observations were manipulated with PCA and score plot of 

first two PCs was illustrated in Figure 4.7. The first and second PCs described 49% and 

18.5% of total variation, respectively.  
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Figure 4.7. PCA score plot of the spectral data of lab scale extracted olive oil samples  

 

Although samples of same varieties of 1st or 2nd harvest year such as E, GE and 

AE were grouped separately, most varieties could not be differentiated from each other. 

So, Coomans’ plot was constructed to more apparently visualize the discrimination of 

samples with respect to varieties or years (Figure 4.8). 14 class models were developed 
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and overall statistics of these models was given in Table 4.5. Actually, each sample of 

A2 and N2 were placed on its own model region. However, in the outer space of A2 and 

N2 models, the only classification was observed for sample groups of AE2 and GE2, 

and most of the other samples were completely spread not showing any groupings.In an 

another study, Bendini, et al. (2007) used fingerprint region of FT-IR spectra with PCA 

to classify monovarietal olive oil samples from different regions of Italy belonging to 

only 2004 harvest year and was able to discriminate most of monovarietal virgin olive 

oil samples. To demonstrate the discrimination ability of harvest year, each variety 

belonging to two consecutive harvest years were also plotted against each other on the 

same graph and results revealed that all cultivars could be differentiated according to 

harvest year. Further application of PCA on spectral data of olive varieties for each 

harvest year separately reveals better differentiation of cultivars using Coomans’ plot. 

Boggia, et al. (2002) stated that variation of climatic conditions from one year to the 

next affects the olive oil quality. 
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Figure 4.8. Coomans’ plot for the classification of olive oil samples with respect to 

variety and harvest year using spectral data 
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Table 4.5. PCA class models developed for FT-IR classification data and general 

statistics of each class model 

 

PCA class 
models 

Number of 
PCs 

R2X(cum) 
(%) 

PCA class 
models 

Number of 
PCs 

R2X(cum) 
(%) 

A1 3 91.8 E2 5 95.5 

A2 5 97 N1 3 93.1 

G1 2 74.5 N2 2 96.8 

G2 4 93.3 AE1 2 88.6 

M1 3 94.1 AE2 5 91.8 

M2 2 72.8 GE1 2 84.8 

E1 4 96.9 GE2 3 85.6 
 

In order to observe the effect of cultivar, A and G classed were created 

regardless to the growing location and harvest year. PCA was applied to each class and 

Coomans’ plot was constructed. Since two classes could not be discriminated from each 

other, the plot was not given. In conclusion FT-IR spectra manipulated with PCA do not 

have the ability to differentiate the cultivars A and G regardless to the growing location 

and harvest year. 

Figure 4.9 represents Coomans’ plot constructed using mid-IR spectra to 

differentiate A & G varieties grown in two different regions. Each plot employed 4 class 

models and general statistics was given in Table 4.6.  
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Figure 4.9. Coomans’ plot for classification with respect to geographical origin and 

harvest year for (a) Ayvalık (b) Gemlik olive oil varieties using spectral 

data (▲: A1-G1, ■: AE1-GE1, ●: A2-G2, ▼: AE2-GE2) 
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Table 4.6. PCA class models developed for location effect with FT-IR data and general 

statistics of each class model 

 

PCA class 
models of 

A-AE 

Number of 
PCs 

R2X(cum) 
(%) 

PCA class 
models of 

G-GE 

Number of 
PCs 

R2X(cum) 
(%) 

A1 3 89.5 G1 2 75.9 

A2 5 94.6 G2 5 95.3 

AE1 2 86.3 GE1 2 83.3 

AE2 6 86.2 GE2 3 84.7 
 

Although, most samples of the A2 and AE2 classified correctly (Figure 4.9(a)), 

some samples of G2 were plotted beyond its critical limits (Figure 4.9(b)). A clear 

discrimination can not be observed between A and AE, G and GE for the 1st harvest 

year. In another study (Tapp, et al. 2003), more distinct differentiation compared to our 

study was achieved using FT-IR, however olive oil samples from different countries 

which possessed more variable chemical properties were used. 

Results show that application of PCA to fatty acid composition is quite 

successful for the classification of olive oil samples with respect to variety, 

geographical origin and harvest year. On the other hand, mid-IR spectra can not supply 

distinct varietal, geographical or seasonal grouping as much as fatty acid composition 

does. Nevertheless with the advantage of rapid and easy analysis ability, FT-IR can be 

used for the more general authentication issues with respect to harvest year and variety.   

 

4.2. Classification of Commercial Olive Oils 
 

Commercial olive oil samples belonging to North (N) and South (S) Aegean 

regions were obtained in 2005/06 (1st) and 2006/07 (2nd) harvest years. Table 4.7 

presented free fatty acidity value of the samples. The acidity of the analysed samples 

was not higher than 1 except Men variety of the 1st harvest year whose acidity was 

determined as 1.2. On the other hand, fatty acid profile and spectral data implied 

differences among not only N and S geographical origins but also 1st and 2nd harvest 

years. Thus, chemometric analysis was applied on GC and FT-IR data to differentiate 

samples according to geographical origin and harvest year.  
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Table 4.7. Free fatty acid values of commercial olive oils expressed as % oleic acid 

2005-2006 2006-2007 

 Sample code Acidity  
(% oleic) Sample code Acidity  

(% oleic) Sample code Acidity  
(% oleic) Sample code Acidity  

(% oleic) 
North Ez 0.44 Hav 0.52 Ez 0.42 Ayv 0.40 

 Ez-org1 0.33 Bur 0.43 KucKuy 0.33 Altova 0.32 

 KucKuy1 0.48 Gom 0.40 Altol 0.40 Zey 0.55 

 KucKuy2 0.56 Ayv 0.60 Edr 0.41   

 Altol 0.38 Altova 0.57 Hav 0.36   

 Altol-sulbas 0.37 Zey 0.60 Bur 0.38   

 Edr 0.38   Gom 0.44   

South Akh 0.86 Mil 0.86 Tep 0.22 Ort 0.25 

 Men 1.20   Bay 0.83 Kosk 0.36 

 Tep 0.31   Ode 0.34 Dal 0.28 

 Bay 0.77   Tire 0.31 Koc 0.34 

 Sel 0.38   Sel 0.46 Erb 0.39 

 Ayd 0.84   Kus 0.59 Cine 0.26 

 Ort 0.72   Ger 0.35 Mil 0.52 

 Koc 0.84   Ayd 0.26   

47
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4.2.1. Classification using GC Data 
 

The fatty acid profiles of commercial olive oil samples belonging to 1st and 2nd 

harvest years were given in Table 4.8 and 4.9, respectively. Fatty acid content of each 

sample was the average of at least two GC measurements. For the 1st harvest year, 

content of oleic acid was the highest for Kuckuy1 (72.18%) and lowest for Men (69.82 

%) while for 2nd harvest year it was at its highest amount for Tire (75.29%) and lowest 

amount for Kuckuy (70.20%). Inspection of Table 4.8 and 4.9 revealed that oleic acid 

was at higher amounts for the oils obtained from South than North for both 1st and 2nd 

harvest years. As the most abundant saturated fatty acid, palmitic acid was higher for 

North than South in both years. Also, content of linoleic acid was higher for 1st harvest 

year compared to 2nd year. 
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Table 4.8 . Fatty acid profiles (% of total fatty acids) of commercial olive oil samples belonging to 2005/06 harvest year 

 C14:0 C16:0 C16:1 C18:0 C18:1 C18:2 C20:0 C18:3 C22:0 
North          

Ez 0.02±0.00 13.26±0.01 0.70±0.00 2.77±0.01 71.99±0.09 10.09±0.05 0.58±0.02 0.46±0.03 0.14±0.02 
Ez-org 0.02±0.01 12.75±0.03 0.57±0.00 2.87±0.03 70.97±0.08 11.57±0.01 0.67±0.02 0.47±0.00 0.11±0.02 

Kuckuy1 0.02±0.00 13.28±0.03 0.68±0.01 2.81±0.01 72.18±0.10 9.84±0.05 0.60±0.02 0.43±0.03 0.15±0.02 
Kuckuy2 0.02±0.00 12.79±0.06 0.59±0.01 3.08±0.03 71.38±0.07 10.82±0.04 0.68±0.02 0.46±0.04 0.17±0.05 

Altol 0.02±0.00 13.35±0.02 0.69±0.01 2.78±0.01 72.11±0.02 9.89±0.03 0.62±0.02 0.44±0.05 0.10±0.02 
Altol-sb 0.02±0.01 12.40±0.03 0.60±0.01 3.00±0.03 71.82±0.05 10.87±0.02 0.63±0.01 0.48±0.02 0.17±0.03 

Edr 0.02±0.00 13.32±0.02 0.68±0.00 2.80±0.01 72.04±0.09 9.92±0.04 0.61±0.01 0.45±0.00 0.17±0.04 
Hav 0.02±0.00 12.92±0.01 0.59±0.00 3.19±0.01 71.45±0.06 10.50±0.06 0.69±0.00 0.50±0.03 0.14±0.01 
Bur 0.02±0.00 13.14±0.05 0.62±0.01 2.93±0.02 71.87±0.02 10.11±0.02 0.65±0.02 0.49±0.03 0.17±0.05 
Gom 0.02±0.01 13.16±0.02 0.63±0.01 2.95±0.02 71.86±0.14 10.12±0.07 0.65±0.02 0.46±0.02 0.14±0.01 
Ayv 0.02±0.00 13.28±0.09 0.64±0.01 2.93±0.02 71.69±0.70 10.18±0.05 0.67±0.01 0.46±0.00 0.13±0.01 

Altov 0.02±0.00 13.15±0.03 0.66±0.01 2.91±0.02 71.58±0.13 10.48±0.02 0.60±0.01 0.45±0.03 0.14±0.03 
Zey 0.04±0.03 12.72±0.10 0.61±0.01 3.07±0.03 71.33±0.15 10.86±0.04 0.68±0.02 0.51±0.01 0.18±0.08 

South          
Akh 0.02±0.00 13.19±0.22 0.68±0.04 3.28±0.52 71.81±0.20 9.75±0.55 0.68±0.03 0.45±0.00 0.13±0.01 
Men 0.02±0.00 12.80±0.04 0.75±0.00 3.65±0.02 69.82±0.10 11.69±0.04 0.71±0.01 0.45±0.04 0.11±0.02 
Tep 0.02±0.00 12.68±0.04 0.83±0.00 3.25±0.01 71.60±0.21 10.40±0.05 0.65±0.32 0.46±0.03 0.11±0.01 
Bay 0.02±0.00 12.2±0.03 0.65±0.01 2.92±0.01 74.39±0.01 8.42±0.05 0.78±0.00 0.44±0.02 0.12±0.01 
Sel 0.02±0.00 12.48±0.01 0.73±0.00 3.33±0.02 70.36±0.04 11.76±0.02 0.78±0.00 0.41±0.02 0.14±0.05 
Ayd 0.02±0.00 12.63±0.13 0.70±0.02 3.06±0.04 72.60±0.27 9.63±0.04 0.76±0.01 0.47±0.02 0.14±0.03 
Ort 0.02±0.00 12.31±0.07 0.76±0.01 3.28±0.01 73.03±0.15 9.34±0.07 0.72±0.02 0.42±0.01 0.12±0.06 
Koc 0.02±0.00 12.26±0.30 0.69±0.01 3.39±0.18 73.51±0.38 8.87±0.12 0.67±0.01 0.46±0.03 0.12±0.04 
Mil 0.02±0.00 12.06±0.05 0.69±0.01 2.70±0.02 72.99±0.11 10.13±0.02 0.83±0.01 0.44±0.01 0.13±0.02 
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Table 4.9. Fatty acid profiles (% of total fatty acids) of commercial olive oil samples belonging to 2006/07 harvest year 

 

 C14:0 C16:0 C16:1 C18:0 C18:1 C18:2 C20:0 C18:3 C22:0 
North          

Ez 0.01±0.00 14.08±0.26 1.36±0.00 2.57±0.06 70.33±0.22 10.72±0.10 0.34±0.01 0.46±0.01 0.14±0.01 
Kuckuy 0.02±0.00 12.99±0.01 1.08±0.00 2.77±0.01 70.20±0.06 11.93±0.05 0.37±0.00 0.48±0.01 0.16±0.03 

Altol 0.02±0.00 13.48±0.12 1.17±0.01 2.72±0.02 71.03±0.16 10.47±0.03 0.43±0.00 0.51±0.01 0.16±0.01 
Edr 0.02±0.00 13.09±0.25 1.10±0.01 2.76±0.09 71.65±0.29 10.34±0.06 0.39±0.00 0.50±0.00 0.15±0.01 
Hav 0.02±0.00 12.62±0.05 0.99±0.01 2.87±0.03 71.74±0.05 10.71±0.07 0.39±0.00 0.50±0.01 0.15±0.00 
Bur 0.02±0.00 12.92±0.06 1.03±0.00 2.85±0.02 70.92±0.11 11.22±0.05 0.39±0.00 0.50±0.01 0.15±0.01 

Gom 0.02±0.00 13.18±0.22 1.04±0.01 2.92±0.09 70.51±0.26 11.26±0.07 0.39±0.00 0.51±0.02 0.16±0.02 
Ayv 0.02±0.00 13.49±0.04 1.17±0.02 2.74±0.03 70.73±0.12 10.84±0.01 0.39±0.00 0.49±0.00 0.14±0.01 

Altov 0.02±0.00 13.16±0.26 1.17±0.02 2.78±0.08 71.71±0.52 10.10±0.32 0.42±0.01 0.49±0.01 0.15±0.02 
Zey 0.02±0.00 12.61±0.01 1.06±0.02 2.69±0.01 71.99±0.02 10.62±0.01 0.38±0.00 0.48±0.01 0.15±0.00 

South          
Tep 0.02±0.00 12.76±0.50 1.19±0.01 2.70±0.12 74.30±0.46 7.89±0.15 0.48±0.01 0.50±0.00 0.16±0.00 
Bay 0.02±0.00 11.49±0.04 1.04±0.00 2.46±0.02 75.17±0.03 8.79±0.04 0.47±0.00 0.44±0.00 0.12±0.00 
Ode 0.02±0.00 11.50±0.08 1.13±0.01 2.75±0.04 74.13±0.12 9.41±0.04 0.48±0.00 0.46±0.01 0.13±0.01 
Tire 0.02±0.00 12.03±0.07 1.09±0.01 2.35±0.02 75.29±0.10 8.16±0.04 0.49±0.01 0.44±0.01 0.13±0.01 
Sel 0.02±0.00 12.36±0.23 1.14±0.03 2.76±0.12 74.21±0.60 8.46±0.69 0.45±0.02 0.47±0.01 0.15±0.03 
Kus 0.02±0.00 11.59±0.03 0.90±0.00 2.81±0.01 74.61±0.05 9.07±0.04 0.43±0.00 0.46±0.00 0.12±0.01 
Ger 0.02±0.00 12.77±0.13 1.26±0.01 2.72±0.05 72.86±0.20 9.25±0.06 0.51±0.00 0.48±0.01 0.13±0.01 
Ayd 0.02±0.00 12.73±0.81 1.11±0.03 2.99±0.23 73.24±0.89 8.78±0.18 0.47±0.02 0.50±0.03 0.15±0.03 
Ort 0.02±0.00 12.62±0.40 1.27±0.15 2.67±0.21 73.76±0.29 8.56±0.61 0.49±0.01 0.47±0.01 0.13±0.01 

Kosk 0.02±0.00 11.51±0.03 1.12±0.01 2.74±0.02 74.14±0.06 9.40±0.03 0.48±0.02 0.46±0.00 0.12±0.01 
Dal 0.02±0.00 11.50±0.02 1.06±0.01 2.83±0.01 74.63±0.06 8.89±0.05 0.48±0.00 0.47±0.01 0.13±0.00 
Koc 0.02±0.00 12.10±0.03 1.09±0.01 2.76±0.00 74.18±0.05 8.80±0.05 0.46±0.01 0.47±0.02 0.12±0.01 
Erb 0.02±0.00 11.52±0.07 1.07±0.03 2.75±0.02 74.36±0.1 9.22±0.06 0.48±0.00 0.45±0.02 0.13±0.01 
Cine 0.02±0.00 12.08±0.57 1.09±0.03 2.73±0.13 74.28±0.50 8.75±0.02 0.46±0.01 0.47±0.02 0.12±0.00 
Mil 0.02±0.00 12.81±0.82 1.15±0.01 2.69±0.17 72.19±0.81 10.06±0.19 0.48±0.02 0.47±0.03 0.12±0.02 

50
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The data including 9 GC variables were submitted to PCA to visualize the 

presence of principal groupings. The PC modelling resulted in a model with 2 PCs 

where first and second PCs explaining, 33.8% and 26.7% of total variation, 

respectively. Figure 4.10 is the score plot of olive oil samples belonging to N and S 

regions obtained at two consecutive harvest years. The discrimination of olive oil 

samples with respect to geographical origin was very clear for 2nd harvest year. 

However, some samples of S1 can not be differentiated from sample group of N1 in 

score plot. On the other hand, harvest year seemed to have quite good ability on 

differentiation. Variation of chemical composition in two consecutive years can be due 

to changes in climatic conditions (rainfall, temperature and humidity) (Aparicio and 

Luna 2002).  
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Figure 4.10. PCA score plot of the fatty acid profile of commercial olive oil samples 

(N1: olive oils from north in 2005/06, S1: olive oils from south in 2005/06, 

N2: olive oils from north in 2006/07, S2: olive oils from south in 2006/07) 

 

Figure 4.11 showed the loading plot of first 2 PCs. In the first component, 

dominating fatty acids were C18:1 and C18:2 which were responsible from the 
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separation of N from S. First PC with the contribution of second PCs brings the 

information of variables C16:1 and C20:0 and these fatty acids were encoded for 

harvest year discrimination. Thus, the model interpretation suggested that samples of S 

had higher C18:1 content compared to samples of N. Also, C16:1 was lower for 2nd 

harvest year, whereas C20:0 was higher for the same year.  
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Figure 4.11. PCA loading plot of the fatty acid profile of commercial olive oil samples 

 

Coomans’ plot was constructed for the classification of samples using fatty acid 

profiles (Figure 4.12). Four PCA classes (N1, S1, N2 and S2) were calculated 

independently and N2 and S2 as the class were plotted against each other. The number 

of PCs and R2X (cum) of the each PCA class model were given in Table 4.10. 

Examination of Coomans’ plot revealed that only few samples belonging to N2 and S2 

were drawn in the outside of their critical limits. Samples of N1 and S1 were identified 

as two different classes correctly placed in the outer space of N2 and S2 models. 

According to this plot, analysis of fatty acids with PCA has the ability to discriminate 

oil samples with respect to geographical origin and harvest year. A study on Cornicabra 

virgin olive oil also revealed significant statistical differences in quality indices, major 
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fatty acids and sterol compositions with respect to the year of production, with the 

exception of total phenols (Salvador, et al. 2003). 

 

Table 4.10. PCA class models for fatty acid profile of commercial olive oils and general   

statistics of each class model 

 

PCA class models Number of PCs R2X(cum) (%) 

N1 3 79.9 

N2 3 83.9 

S1 2 59 

S2 3 81.9 
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Figure 4.12. Coomans’ plot of the fatty acid profile of commercial olive oils for the 

discrimination with respect to geographical origin and harvest year (▲: N2, 

■: S2, ●: N1, ▼: S2) 
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4.2.2. Classification using FT-IR Data 
 

The entire range of spectra looks almost similar for each olive oil sample unless 

one observes very closely. Multivariate data analysis is therefore required to extract the 

relevant information from these spectra. Spectral compression (Wavelet analysis) was 

applied to reduce the size of spectral data which increase the efficiency of the model. 

PCA was performed with data set containing 115 observations and score plot was 

constructed (Figure 4.13).  
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Figure 4.13. PCA score plot of spectral data of commercial olive oil samples (N1: olive 

oils from north in 2005/06, S1: olive oils from south in 2005/06, N2: olive 

oils from north in 2006/07, S2: olive oils from south in 2006/07) 

 

First and second PCs described 37.8% and 13.3% of total variation, respectively. 

A careful analysis of the graph allowed separation of N from S with some exceptions of 

S placed in between the samples of N. On the other hand samples of 1st harvest year 

were generally plotted in the left whereas 2nd harvest year placed in the right side of the 

scores plot. Coomans’ plot was constructed to represent the discrimination of samples 
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with respect to variety and harvest year (Figure 4.14). The plot consisted of N1, S1, N2 

and S2 PCA class models where N2 and S2 as the class models placed against each 

other. The number of PCs and R2X (cum) of the each PCA class model were given in 

Table 4.11. 
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Figure 4.14. Coomans’ plot of the FT-IR spectra for the discrimination with respect to 

geographical origin and harvest year (▲:N2, ■:S2, ●:N1, ▼:S2) 

 

Analysis of Figure 4.14 revealed that discrimination of N2 and S2 was achieved 

except some samples. The samples of N1 and S1 were correctly plotted beyond the 

critical limits of N2 and S2 models but they can not be differentiated from each other 

very well.  
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Table 4.11. PCA class models and general statistics of each class model 
 

PCA class models Number of PCs R2X (cum) (%) 

N1 6 82.9 

N2 6 81.7 

S1 6 85.7 

S2 6 81.7 
 

Although the ability of FT-IR for the differentiation of olive oil samples with 

respect to geographical origin is low, different harvest years can be sufficiently 

identified. When compared with spectral data fatty acid profile obtained from GC 

supplied more discrete chemical information for the classification of commercial olive 

oils with respect to geographical origin.   

 

4.3. Relation between FT-IR Profile-Free Fatty Acid Value and FT-IR 

Profile-Fatty Acid Profile Obtained with GC Measurement 
 

Each olive oil type has its own fatty acid profile and spectral property. It is 

stated that spectral features of oils vary with the degree of unsaturation (Harwood and 

Aparicio 2000). In addition, FFA content is one of the most important factors for the 

determination of quality and economic value of olive oils. The importance of providing 

fast and accurate methods to identify quality parameters such as fatty acid profile and 

FFA content has been recently stressed (Iñón, et al. 2003). FT-IR is a rapid analysis 

technique that implies the differences between chemical composition and structures of 

oil samples. Therefore, manipulation of FT-IR data with chemometrics was studied for 

the determination of FFA values and fatty acid profile of olive oil samples.   

PLS analysis was applied to data to check whether there is a correlation between 

FT-IR spectra vs. fatty acid profile and FFA value of olive oils obtained with traditional 

analysis techniques. The spectral data vs. fatty acid profile and FFA value of both 

extracted and commercial olive oil were included in the analysis. The data set was 

divided into calibration and validation sets with 60 and 27 observations, respectively. In 

order to enhance the predictive power of the PLS models, OSC was applied to remove 

systematic variation in X (spectral data) that is not related with Y (fatty acid 
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percentage). Wavelength compression was also selected to increase the efficiency and 

speed. Using PLS algorithm, fatty acid profile and FFA of each olive oil sample was 

predicted relating spectral data (X variable) with fatty acid data and FFA (Y variables) 

obtained with analytical methods. The PLS regression analysis was resulted in 6 PCs 

explaining 79.2% of total variation (Y) with a predictive ability of 70%. As the major 

fatty acid of olive oil ranging between 66-75% in our samples predicted and actual 

percentages of C18:1 for calibration and validation sets was illustrated in Figure 4.15. 

The R2 (cal) is 0.98 which indicated good prediction of C18:1 percentage from spectral 

data. In order to test the predictive ability, the values of validation set were predicted 

using the proposed model. Although R2 value (0.93) of the validation set was lower, 

quite good prediction of oleic acid amount (%) was achieved with the proposed PLS 

model. 
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Figure 4.15. PLS regression of actual vs. predicted oleic acid percentage of the 

calibration set and validation sets (R2 (cal): regression coefficient of the 

calibration set) 

 

C16:0 constitutes the highest proportion of saturated fatty acids ranging from 

11.5 to 16.5% of total fatty acids of the analysed samples. The observed vs. predicted 

C16:0 percentage of the calibration determined using PLS regression, was shown in 

Figure 4.16. The predictive ability of PLS model for C16:0 was lower than C18:1. Also, 
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obtained PLS regression for C16:0 was tested with validation set (Figure 4.16) and 

resulted in R2 value of 0.71. 
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Figure 4.16. PLS regression of actual vs. predicted palmitic acid percentage of the 

calibration and validation sets 

The regression curve was plotted and validation step was applied for each fatty 

acid. The R2 values of calibration set and error criterions (SEC, SEP and REP) were 

given in Table 4.12. REP value was selected as the error criterion to decide applicability 

of spectral data in determination of fatty acid content. Best results were obtained for the 

MUFAs and C18:1 with REP value lower than 2%. MUFAs are important because of 

their nutritional implication (Aguilera, et al. 2005) and C18:1 is the characteristic 

MUFA of olive oil. Also, REP was lower than 5% for C16:0 which is the highest 

amount of saturated fatty acid of olive oil. Good predictions were achieved for C18:2 

and PUFA with REP values around 5%. However REP values were quite high for other 

fatty acids. Higher amount fatty acids seemed to have high R2, SEC and SEP values 

whereas their REP values were quite low. So, they performed better in terms of PLS 

model efficiency compared to lower amount fatty acids. In overall consideration, 

MUFAs constituting highest proportion can be predicted best from the MIR data 

followed by SFAs and PUFAs. Galtier and Dupuy (2007) reported similar results using 

NIR data for fatty acid profile determination of virgin olive oils. 
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Table 4.12. Summary of proposed PLS model of the regression between FT-IR spectra     

and fatty acid profile for both calibration and validation sets 

 

Fatty acid Fatty acid range % R2 (cal)a R2 (val)b SECc SEPd REPe 

C14:0 0.01-0.03 0.25 0.22 0.0033 0.0085 22.23 

C16:0 11.49-16.51 0.85 0.71 0.43 0.66 4.87 

C16:1 0.57-2.65 0.93 0.81 0.13 0.23 19.32 

C18:0 2-4.57 0.83 0.55 0.23 0.41 16.63 

C18:1 63.57-75.29 0.97 0.93 0.48 0.97 1.39 

C18:2 7.41-16.89 0.97 0.93 0.38 0.66 6.04 

C20:0 0.34-0.86 0.69 0.64 0.07 0.07 14.87 

C18:3 0.32-0.52 0.83 0.56 0.06 0.07 14.89 

C22:0 0.11-0.18 0.11 0.18 0.02 0.02 13.63 

SFAf 14.4-20.55 0.97 0.79 0.37 0.6 3.53 

MUFAg 64.72-76.2 0.97 0.94 0.49 0.86 1.21 

PUFAh 7.68-17.74 0.98 0.94 0.37 0.63 5.53 
aPLS regression correlation coefficient for calibration samples, bPLS regression correlation coefficient for 
validation samples,  cstandard error of calibration, d standard error of prediction, erelative error of 
prediction, fsaturated fatty acids, gmonounsaturated fatty acids, hpolyunsaturated fatty acids 

 

The PLS regression model of FFA values ranging from 0.3 to 1.2 was given in 

Figure 4.17. Using the calibration set, PLS model resulted in R2 and SEC values given 

as 0.89 and 0.08, respectively. These values indicated good prediction of FFA value 

from spectral data. The validation of the proposed PLS regression for FFA was 

accomplished by evaluation of the validation data set. The results of the PLS regression 

of the validation set was also illustrated in Figure 4.17. R2 and SEP values were 

determined as 0.84 and 0.085, respectively. These values indicated successful 

presentation of FFA values using FT-IR spectra.  
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Figure 4.17. PLS regression of actual vs. predicted FFA of the calibration and validation 

sets 

 

In other studies specific regions of FT-IR spectra were used for the FFA 

determination and similar results were obtained. In the previous studies, wider % free 

fatty acid range was employed by adding oleic acid to olive oil samples (Iñón, et al. 

2003; Bertran, et al. 1999, Bendini, et al. 2007, Ismail, et al. 1993). According to the 

results reported in this study and obtained by other authors also, use of FT-IR 

spectroscopy with chemometrics is determined as a good alternative to standard 

methods for FFA percentage analysis of olive oils belonging to different categories and 

origin. 

Multivariate analysis of FT-IR data has the potential to predict some of the fatty 

acids and FFA value of the virgin olive oil samples. Therefore, with the advantage of 

simple and rapid sample analysis ability, FT-IR is applicable for quick determination of 

characteristic fatty acids and FFA value. 

 

4.4. Determination of Adulteration 
 

Adulteration was performed either by mixing N monovariety with AE and E 

monovarieties or by mixing hazelnut, sunflower-corn binary mixture, cottonseed and 

rapeseed oil with olive oil. PCA was applied to differentiate non-adulterated olive oil 

from adulterated oils. Scores and Coomans’ plot were constructed to visualize 
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differentiation. Moreover, quantification of adulterant in the mixture was determined by 

PLS. To test the performance of PLS, cross validation was conducted for monovarietal 

olive oil adulteration due to low number of samples. On the other hand, calibration 

model was developed and tested by validation set for hazelnut, sunflower-corn, 

cottonseed and rapeseed adulteration.  

 

4.4.1. Monovarietal Olive Oil Adulteration 
 

For monovarietal adulteration, blends of varieties AE-N and E-N were prepared. 

Each cultivar yields high amounts of oil (monovarietal) and AE variety has an important 

economic potential with its high quality oil in Turkish market and is preferred by 

consumers due to its sensory characteristics. E has also a promising economic value. 

While AE and E are widely cultivated in West part of Turkey, N is a cultivar grown in 

Southeast region of Turkey and has different sensory characteristics than AE and E.  

PCA was performed initially to extract information and to examine the 

qualitative differences of samples. There were two distinct data sets containing 19 and 

20 observations belonging to spectral data of AE-N and E-N mixtures, respectively. 

Wavelet analysis was performed for compression of the spectral data containing more 

than 4000 variables to increase the efficiency and computational speed. Scores plots for 

the first two PCs explaining 72.1% of total spectral variation for AE-N model and 

77.9% of total spectral variation for E-N model were constructed (Figure 4.18). 

According to Figure 4.18(a), samples of pure AE were distributed in the right while AE-

N mixtures were placed in the left side. Similar grouping was also observed for E-N 

model except for samples containing 2% N which overlap with pure samples (Figure 

4.18(b)). Thus in the further analysis 2% N was excluded from observations of E-N 

mixture.  
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Figure 4.18. PCA scores plot of (a) AE-N and (b) E-N mixtures (na indicates non-

adulterated samples, numbers near a notation indicates adulteration %) 
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Figure 4.19(a) represents Coomans’ plot of AE-N model with 4 PCs for 

adulterated and 2 PCs for non-adulterated classes describing 79% and 86.9% of total 

variation, respectively. AE samples were successfully discriminated from samples of 

AE-N mixtures. On the other hand, PCA of E and E-N class models yielded 3 PCs 

explaining 92% and 4 PCs explaining 96.7% of total spectral variation, respectively. 

Differentiation of E from E-N mixture was represented in Figure 4.19(b). Samples of 

AE-N mixture were placed in its region far from the samples of AE which exhibits 

better differentiation than E-N model. This could be due to a more pronounced 

difference in chemical structure composition of AE and N.  
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Figure 4.19. Coomans’ plot for the discrimination of (a) AE from AE-N mixture (b) E 

from E-N mixture (● AE and E ▲AE-N and E-N mixture) 

         (cont. on next page) 
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Figure 4.19. (cont.) Coomans’ plot for the discrimination of (a) AE from AE-N mixture 

(b) E from E-N mixture (● AE and E ▲AE-N and E-N mixture) 

 

Quantification of the percentage of N in AE-N and E-N oil mixtures was 

performed using PLS algorithm. The data set to be analysed contains 19 and 17 

observations belonging to AE-N and E-N models, respectively. The predictive ability 

and R2 values of the models were sufficient. However, to enhance the predictive power 

of the PLS models, OSC was applied to remove systematic variation in X (spectral data) 

that is not related with Y (percent adulteration), and also wavelength compression was 

selected to increase the efficiency and speed. The PLS regression analysis resulted in 2 

PCs explaining 99.5% and 99.4% of variation (Y) with a predictive ability of 98.6% and 

96.9% for AE-N and E-N data sets, respectively. The Figure 4.20 shows the 

concentration values obtained from PLS models versus actual concentration of N in E 

and AE.  
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Figure 4.20. PLS regression of predicted vs. actual N olive oil content in (a) AE-N and 

(b) E-N mixtures 
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The difference between the actual concentration and the predicted N 

concentration is small and correlation coefficients, R2, for the observed vs. predicted 

curves are 0.99 for N in AE and 0.99 for N in E. In order to validate the developed 

models, cross validation was applied by removing one sample at a time. The removed 

sample was predicted with model created using the remaining observations and the 

procedure was repeated until each sample was excluded once. N content (%) in AE and 

E predicted from PLS model using cross validation was given in Table 4.13. SEP and 

R2 parameters were employed to evaluate the goodness of fit of the cross validation data 

set, and these values were calculated with respect to the results of cross validation. 

Cross validation results of AE-N model yielded 0.9 as SEP value and 0.98 as R2 value 

whereas E-N model resulted in 1.22 as SEP and 0.97 as R2 values. High coefficient of 

determination and low SEP values indicate success of the PLS regression models. The 

PLS regression model appears to have a reasonable ability to estimate the N percentage 

in AE even at percentages about 5. Also N amount in E could be determined at a level ≥ 

5%.  

 

Table 4.13. Predicted (obtained by cross validation) and actual N content in AE and E 

samples using PLS model 

 

Actual N 
content [%] in AE 

Predicted N 
content [%] in AE 

Actual N 
content [%]  in E 

Predicted N 
content [%] in E 

0 -0.55 0 -1.86 

0 -0.46 0 -1.03 

0 4.05 0 0.51 

0 3.9 0 -0.13 

2 2.63 0 4.12 

2 2.83 0 -0.64 

2 1.79 5 5.53 

5 5.94 5 5.57 

5 4.32 5 6.93 

5 5.50 10 9.85 

10 10.19 10 10.22 

10 10.42 15 15.60 
(cont. on next page) 
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Table 4.13. (cont.) Predicted (obtained by cross validation) and actual N content in AE 

and E samples using PLS model  

 

Actual N 
content [%] in AE 

Predicted N 
content [%] in AE 

Actual N 
content [%]  in E 

Predicted N 
content [%] in E 

10 11.45 15 14.22 

15 15.17 15 15.33 

15 14.78 20 19.32 

15 12.75 20 19.85 

20 19.42 20 19.26 

20 19.46   

20 19.16   

 

4.4.2. Hazelnut Oil Adulteration of Olive Oil 
 

The olive oil and hazelnut oil spectra were given in Figure 4.21. As olive oil and 

hazelnut oil sample looks similar along the entire wavelength range, distinct spectral 

zones were shown in Figure 4.21 to better visualize the differences of two spectra. 

However, any notable difference between olive and hazelnut oil spectra can not be 

observed because they have quite similar chemical profile. As the spectra of hazelnut 

and olive oil can not be differentiated to the naked eye, PCA was employed to be able 

extract relevant information from spectral data.  
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Figure 4.21. The spectra of olive oil and hazelnut oil around (a) 3080-2800 cm-1 (b)  

          2875.5-675 cm -1 regions ( —  olive oil,  — hazelnut oil) 

 

PCA was applied to data set containing 148 observations including both non-adulterated 

and hazelnut oil adulterated olive oil samples. Non-adulterated samples included 
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commercial olive oil samples of both North and South Aegean region. Adulterated 

samples were obtained by adulterating North and South olive oil between 2-50%. 

Wavelet analysis was applied for the compression of spectral data. Scores plot with 2 

PCs describing 75% of total variance was constructed (Figure 4.22).  
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Figure 4.22. PCA scores plot of non-adulterated olive oil (na) and adulterated olive oil 

(a) samples (numbers near a notation indicates adulteration %) 

 

A careful examination of Figure 4.22 revealed distinct grouping of non-

adulterated and adulterated samples except for the samples containing hazelnut oil 

lower than 10%. Therefore, 2 and 5% adulterated samples were excluded and Coomans’ 

plot was constructed to observe the differentiation of non-adulterated olive oil class 

with 4 PCs accounting for 0.79 of total variance from adulterated olive oil samples with 

4 PCs accounting for 0.83 of total variance (Figure 4.23). 
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Figure 4.23. Coomans’ plot for the classification of olive oil and hazelnut adulterated 

olive oil samples (● olive oil ▲ hazelnut oil adulterated olive oil) 

 

Most samples of pure and adulterated olive oil were correctly plotted in their 

critical limits. However some samples were placed in the region where they could be 

classed as neither pure nor adulterated oil. Ozen and Mauer (2002) also studied hazelnut 

oil adulteration of olive oil with FT-IR spectra in combination with chemometrics but 

could not detect olive oil adulteration with 5-20% hazelnut oil. In another study, 

hazelnut adulteration at a level >8% could be detected analysing unsaponifiable matter 

with FT-MIR in combination with stepwise linear discriminant analysis (Beaten, et al. 

2005). 

Quantification of hazelnut oil content in adulterated oil samples was performed 

using PLS algorithm with the same data set. However, as pointed in PCA part, samples 

containing 2 and 5% hazelnut oil were excluded from the observations. The samples of 

all the adulterated and pure olive oils were randomly divided into a calibration and a 

validation set. OSC was applied to remove systematic variation in X (spectral data) that 

is not related with Y (percent adulteration) and also wavelength compression was 

selected to increase the efficiency and speed. Calibration set consisted of 104 samples 

while the validation set included 31 samples. The model was fitted successfully using 2 
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PCs which explained 98.6% variation of Y (% hazelnut oil) with a predictive ability of 

98.4%. The predicted and actual hazelnut oil amount was presented in Figure 4.24. The 

calculated R2 and SEC values were 0.99 and 2.1, respectively. These values indicated 

good prediction of hazelnut oil percentage from spectral data. The validation of the 

proposed PLS regression was accomplished by evaluation of the validation data set 

(Figure 4.24). R2 and SEP values, as an indication of goodness of the validation, were 

determined as 0.97 and 3.1. Peña, et al. (2005) was able to detect and quantify the 

hazelnut oil adulteration at a level higher than 15% in commercial olive oil by direct 

coupling of HS-MS with multivariate regression techniques and error criterion of the 

prediction set was determined as 1.3. 
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Figure 4.24. PLS regression of actual vs. predicted hazelnut oil concentration in olive 

oil for calibration and validation sets 

 

4.4.3. Adulteration of Olive Oil with Binary Oil Mixture 
 

The spectra of olive oil, corn oil and sunflower oil are provided in Figure 4.25. 

Whole spectra are shown in two distinct wavelength intervals to visualize the spectral 

differences. It is possible to observe differences in the spectra of three oil samples. 

Especially olive oil spectra can easily be differentiated by naked eye from corn and 

sunflower oil samples.  
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Figure 4.25. The spectra of olive oil, corn oil and sunflower oil around  

a) 3080-2800 cm-1 b) 2875.5-675 cm -1 regions (― olive oil, ― corn oil, 

― sunflower oil) 
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PCA was applied to spectral data to discriminate sunflower-corn oil adulterated 

olive oil samples from non-adulterated olive oil samples. Non-adulterated samples 

included commercial olive oil samples belonging to North and South Aegean regions 

whereas for adulteration only some of North olive oil samples were used. Both 

discrimination and quantification studies were performed using total percentage of 

sunflower-corn oil mixture as a single adulterant. As the first step, wavelet analysis was 

performed on spectral data to increase the efficiency of the PCA model. The data set 

contains 167 observations. Score plot for the first 2 PCs explaining 84.7% of total 

spectral variance was illustrated in Figure 4.26.  
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Figure 4.26. PCA scores plot of non-adulterated olive oil (na) and sunflower-corn 

adulterated olive oil (a) samples (numbers near a notation indicates 

adulteration %) 

 

The scores of non-adulterated and 2% adulterated samples were placed together 

in the left whereas scores of ≥5% adulterated samples were located in the right side, 

representing a visual discrimination except 2% adulterated oil samples. Thus, Coomans’ 

plot was constructed excluding 2% adulterated samples. Developed model had 4 PCs 
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for both non-adulterated and adulterated models describing 88.3% and 94.3% of 

variation, respectively (Figure 4.27).  
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Figure 4.27. Coomans’ plot for the classification of olive oil and sunflower-corn 

adulterated olive oil samples (●: olive oil, ▲: adulterated olive oil) 

 

Coomans’ plot revealed that most samples of each class were placed in their 

region. According to scores and Coomans’ plot, a general discrimination of adulterated 

samples from non-adulterated oil samples were achieved except 2% adulterated olive 

oil. There were other studies involving the use of sunflower-olive oil and corn-olive oil 

binary blends for the adulteration detection with FT-IR. Tay, et al. (2002) was able 

discriminate olive oil samples from sunflower adulterated samples at levels between 2-

10%. Also, results of FT-IR analysis indicated that the detection limit for olive oil 

adulteration was 9% if the adulterant is corn oil while it was lower (6%) if the adulterant 

is sunflower oil (Vlachos, et al. 2006).  

PLS analysis was also applied to same data set used in PCA for quantification of 

sunflower-corn oil mixture in olive oil. As previously mentioned, clear differentiation of 

samples containing 2% sunflower-corn mixture could not be achieved. Therefore, these 

samples were excluded from the PLS model. The data set was divided into calibration 
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and validation sets containing 112 and 43 observations, respectively. The spectral data 

was manipulated with OSC and wavelength compression before PLS analysis. The PLS 

regression model of calibration set with 2 PCs can explain 99% of variation with a 

predictive ability of 98.9%. The R2 value of PLS regression curve (Figure 4.28) was 

0.99, and SEC value was determined as 0.78. These results indicated good predictive 

ability of the calibration model. Also, using the PLS regression equation the samples of 

validation set were predicted (Figure 4.28). R2 and SEP values were calculated as 0.98 

and 1.04 exhibiting high predictive ability of the proposed model.  
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Figure 4.28. PLS regression of actual vs. predicted sunflower-corn mixture 

concentration in olive oil for calibration and validation sets 

 

Quantification of sunflower and corn oil was also performed by other 

researchers. Özdemir and Öztürk (2007) focused on quantification of binary and tertiary 

adulteration of olive oil with sunflower and corn oil using NIR in conjunction with 

genetic inverse least square. Overall, SEP ranged between 2.49 and 2.88% (v/v) for the 

binary mixtures of olive and sunflower oil whereas it was between 1.42 and 6.38% (v/v) 

for the ternary mixtures of olive, sunflower and corn oil. In another study, NIR spectra 

of binary mixtures of corn-olive oil and sunflower-olive oil were manipulated with PLS 

to quantify corn and sunflower oil in binary olive oil mixture. The error terms were 

determined as 1.32 and 0.57 for sunflower and corn oils at level of 0-100% (v/v) 

(Christy, et al. 2004). Also, Paulli, et al. (2007) used total synchronous fluorescence and 
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calculated detection limit of adulterant in sunflower-olive and corn-olive oil binary 

mixtures as 4.3% and 3.8%, respectively.  

 

4.4.4. Cottonseed Oil Adulteration of Olive Oil 
 

The spectra of olive oil and cottonseed oil are illustrated in Figure 4.29. To 

observe the visual differences of two spectra, whole spectra were divided into two 

regions as shown in Figure 4.29. The olive oil can be differentiated from cottonseed oil 

by naked eye.  
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Figure 4.29. The spectra of olive oil and cottonseed oil around (a) 3080-2800 cm-1 (b) 

2875.5-675 cm -1 regions (— olive oil, ― cottonseed oil) 

         (cont. on next page) 
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Figure 4.29. (cont.) The spectra of olive oil and cottonseed oil around (a) 3080-2800 

cm-1 (b) 2875.5-675 cm -1 regions (— olive oil, ― cottonseed oil) 

 

Spectral data set containing cottonseed adulterated and non-adulterated olive oil 

samples were subjected to PCA. Non-adulterated samples were consisted of commercial 

olive oil samples belonging to North and South Aegean regions. Adulterated samples 

included olive oil including cottonseed oil between 2-20%. After applying wavelet 

compression to the original data, PCA model was fitted for 99 observations with 5 PCs 

adequately describing 83.9% of the variance. Scores plot for the first 2 PCs, where first 

component describes 59% of total variation and second 10.5%, is illustrated in Figure 

4.30.  
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Figure 4.30. PCA scores plot of non-adulterated olive oil (na) and cottonseed 

adulterated olive oil (a) samples (numbers besides a notation indicates 

adulteration %) 

 

Most of the non-adulterated samples were placed in the left hemisphere. These 

samples were discriminated from the rest whose scores were plotted in the right 

hemisphere. However, adulterated samples containing 2% cottonseed oil were drawn 

close to non-adulterated samples. Therefore, 2% adulterated samples were excluded and 

Coomans’ plot was constructed (Figure 4.31). Non-adulterated class was described with 

5 PCs describing 79.3% variation whereas adulterated class model explained 79% of 

total variation with 3 PCs. 
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Figure 4.31. Coomans’ plot for the classification of olive oil and cottonseed adulterated 

olive oil samples (●: olive oil ▲: adulterated olive oil) 

 

According to Figure 4.31, only few samples were plotted beyond its critical 

limits. It could be concluded that quite good discrimination of olive oil samples from 

cottonseed adulterated olive oil samples was achieved.  

PLS analysis was also applied to the same data set used in PCA for 

quantification of cottonseed oil in olive oil. The spectral data was manipulated with 

OSC wavelength compression before PLS analysis. The PLS analysis yielded a 3 PCs 

model explaining 99.2% variation of Y with a predictive ability of 97.9%. The R2 value 

of PLS regression curve (Figure 4.32) was 0.99, and SEC value was determined as 0.49. 

Hence, calibration model had good predictive ability. In addition, using the PLS 

regression equation the samples of validation set were predicted (Figure 4.32). R2 and 

SEP values were determined as 0.95 and 1.4 exhibiting high predictive ability of the 

proposed model. In a previous study, detection of cottonseed oil adulteration at a level 

of 1% was achieved using ∆ECN42 (Christopoulou, et al. 2004). 
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Figure 4.32. PLS regression of actual vs. predicted cottonseed oil concentration in olive 

oil of calibration and validation sets 

 

4.4.5. Rapeseed Oil Adulteration of Olive Oil 
 

Figure 4.33 displays the spectra of olive oil and rapeseed oil. The whole spectra 

are differentiated into two regions to observe the differences between olive oil and 

rapeseed oil.  
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Figure 4.33. The spectra of olive oil and rapeseed oil around (a) 3080-2800 cm-1 (b)     

2875.5-675 cm -1 regions ( — olive oil, — rapeseed oil) 
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Spectral data set containing rapeseed adulterated and non-adulterated olive oil 

samples were subjected to PCA. After applying wavelet compression to the original 

data, PCA model of the 98 observations resulted in 4 PCs adequately describing 84.2% 

of spectral variation. Figure 4.34 represented scores plot for first 2 PCs where the first 

component describes 61.5% of total variation and second 9.6%. Non-adulterated 

samples, placed in the left side of the scores plot together, differentiated from other 

adulterated samples plotted in the right side. However 2% adulterated samples were 

placed close to non-adulterated samples so they were excluded in further analysis.  
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Figure 4.34. PCA scores plot of non-adulterated olive oil (na) and rapeseed oil 

adulterated olive oil (a) samples (numbers near a notation indicates 

adulteration %) 

 

To discriminate non-adulterated samples from adulterated samples Coomans’ 

plot was constructed (Figure 4.35). Non-adulterated class was explained with 5 PCs 

describing 82.1% total variation and adulterated class was described with 4 PCs 

describing 88.7% of total variation. Quite successful discrimination of olive oil samples 

from adulterated samples was performed. Besides, each grouping of sample points in 
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non-adulterated class model represents different adulteration percentages in ascending 

order from left to right.  
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Figure 4.35. Coomans’ plot for the classification of olive oil and rapeseed adulterated 

olive oil samples (●: olive oil, ▲: adulterated olive oil) 

 

Quantification of rapeseed oil in olive oil was performed with PLS analysis 

using data set used in PCA excluding 2% adulterated samples. The data set was divided 

into calibration and validation sets containing 68 and 26 observations, respectively. The 

spectral data was manipulated with OSC and wavelength compression before PLS 

analysis. The PLS regression analysis on calibration set was resulted in 2 PCs 

explaining 99.4% of variation (Y) with a predictive ability of 99.1%. The R2 value of 

regression curve, represented in Figure 4.36 was 0.99, and SEC value was determined 

as 0.48, respectively. Calibration model with good predictive ability was obtained. Also, 

using the PLS regression equation the samples of validation set were predicted (Figure 

4.36). R2 and SEP values were calculated as 0.93 and 1.32 exhibiting high predictive 

ability of the proposed model. As another approach, the parameter ∆ECN42 was 

employed as a parameter for the detection of fraud of olive oils containing 4% rapeseed 
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oil (Christopoulou, et al. 2004). Also, total synchronous fluorescence spectra could 

discriminate rapeseed oil down to a level of 3.6% (Poulli, et al. 2007). 
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Figure 4.36. PLS regression of actual vs. predicted rapeseed oil concentration in olive 

oil for calibration and validation sets 

 

4.4.6. Determination of Adulteration Regardless of the Type of 

Adulterant  
 

In the last part of this study adulterated oils regardless of the type of adulterant 

were grouped as one adulterant class and it was tried to be determined if PCA still could 

discriminate pure samples from adulterated ones. Observations were classified as 

adulterated including spectra of rapeseed, cottonseed oils and corn-sunflower binary oil 

mixture and non-adulterated olive oil samples. To construct Coomans’ plot (Figure 

4.37) PCA was performed on adulterated and pure classes separately. Non-adulterated 

and adulterated classes were modelled with 4 PCs describing 87.9% variation. Modeling 

adulterated oil samples together means more variable chemical information making 

them difficult to be placed in the same group. Thus, in addition to 2% adulterated 

samples 5% adulterated olive oil samples could not be separated from non-adulterated 

olive oil samples according to scores plot which is not displayed here. So, 2-5% 

adulterated samples were excluded in the further analysis. According to Coomans’ plot 

most samples of adulterated and non-adulterated samples are correctly placed in its 
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region. However, few samples are plotted in the region where they can not be classified 

as non-adulterated or adulterated.  
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Figure 4.37. Coomans’ plot for corn-sunflower binary mixture, cottonseed and rapeseed 

adulterated versus non-adulterated olive oil (●: olive oil, ▲: adulterated 

olive oil) 

 

There are studies involving the application of other analytical and chemometric 

methods to discriminate olive oil from set of different adulterant oils. Availability of 

chromatographic profiles with SIMCA model to distinguish between non-adulterated 

olive oil samples and those adulterated with one of the vegetable oils (sunflower, corn, 

peanut and coconut oils) was illustrated (Capote, et al. 2007). Also, NIR spectra 

manipulated with PCA was able to classify adulterated olive oil samples with respect to 

type of adulterant oil (Christy, et al. 2004).  

To sum up the adulteration determination results, Table 4.14 was constructed 

including results of individual and overall adulteration models. Results of individual 

modeling revealed that monovarietal, sunflower-corn, cottonseed and rapeseed oil 

adulteration can be detected at a level of 5% whereas detection limit is 10% for hazelnut 

oil adulteration. On the other hand, lower detection limit is achieved according to 
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overall adulteration model due to more variable chemical information of overall 

adulteration model 

 

Table 4.14. General results of adulteration determination including individual and 

overall adulteration modeling 

 

 Results of individual adulteration modelling Results of overall 
adulteration model 

 Detection 
limit 

R2 

(cv)a 
R2 

(cal) SEC R2 

(val) SEP Detection limit 

N in AE 5% 0.98 - - - 0.9 - 

N in E 5% 0.97 - - - 1.22 - 

Hazelnut oil 10% - 0.99 2.1 0.97 3.1 - 

Sunflower-corn 
mixture 

5% - 0.99 0.78 0.98 1.04 10% 

Cottonseed 5% - 0.99 0.49 0.95 1.4 10% 

Rapeseed 5% - 0.99 0.48 0.93 1.32 10% 
aR2 (cv): correlation coefficient of cross validation 
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CHAPTER 5 

 

CONCLUSION 

 
In this study, the efficiency of analysis of fatty acid composition and mid-IR spectra 

data with a chemometric tool, PCA, for the differentiation of olive oil samples was 

demonstrated and compared. Results show that application of PCA to fatty acid 

composition is quite successful for the classification of olive oil samples with respect to 

variety, geographical origin and harvest year. On the other hand, mid-IR spectra can not 

supply distinct varietal, geographical or seasonal grouping as much as fatty acid 

composition does. As one of the factors affecting the olive oil composition harvest year 

seems to be significant in discrimination. With the advantage of rapid and easy analysis 

ability, FT-IR still could be used for the more general authentication issues with respect 

to variety, geographical region and harvest year.  

FT-IR was employed to detect adulteration of olive oil with other vegetable and 

seed oils (hazelnut, corn-sunflower binary mixture, cottonseed and rapeseed) and also to 

detect mixture of a monovariety with another variety (N in AE and E). The qualification 

of adulteration was performed by PCA analysis. Scores and Coomans’ plots were 

constructed to visualize differentiation of adulterated from non-adulterated olive oil 

samples. The results of PLS analysis of MIR spectra indicated that detection limit of 

adulteration was determined to be higher than 5% for Nizip (in Ayvalik-Edremit) and 

cottonseed oils, 10% for Nizip (in Erkence), 15% for hazelnut oil and 2% for binary 

mixture of sunflower-corn and rapeseed oils. In conclusion, MIR analysis with 

chemometric techniques could be employed as an efficient tool to detect adulteration of 

extra-virgin olive oil with different edible oils. 

Moreover, a correlation was tried to be established between fatty acid 

compositions and MIR spectra with PLS. The error values obtained for oleic acid 

(constitutes around 99% of MUFA of olive oil) and MUFAs (constitutes around 70% of 

fatty acids) are lower than 2% indicating success of the PLS model. Also, REP was 

lower than 5% for C16:0 whereas good predictions were achieved for C18:2 and PUFA 

with REP values around 5%. Another PLS model was tried to be constructed between 

free fatty acidity and MIR spectra. SEP value was determined as 0.085. Both fatty acid 
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composition and free fatty acidity value analysis require chemical treatments meaning 

excess labor, cost and time. However, multivariate analysis of FT-IR data has the 

potential to predict some of the fatty acids and free fatty acidity of the virgin olive oil 

samples with the advantage of direct analysis opportunity. 
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