CHEMOMETRIC STUDIES FOR
CLASSIFICATION OF OLIVE OILS AND
DETECTION OF ADULTERATION

A Thesis Submitted to
The Graduate School of Engineering and Sciences of
Izmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Food Engineering

by
Gozde GURDENIZ

July, 2008



We approve the thesis of Gozde GURDENIZ

Assist. Prof. Dr. Banu OZEN
Supervisor

Assist. Prof. Dr. Figen TOKATLI
Co-Supervisor

Assist. Prof. Dr. Figen KOREL
Co-Supervisor

Assoc. Prof. Dr. Durmus OZDEMIR
Committee Member

Assist. Prof. Dr. Fahri YEMiSCiOGLU
Committee Member

15 July 2008
Date

Prof. Dr. Sebnem HARSA
Head of the Department of
Food Engineering

Prof. Dr. Hasan BOKE
Dean of the Graduate School of
Engineering and Science



ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to my advisor, Assist. Prof. Dr. Banu
OZEN for his supervision, guidance, support, encouragement and patience during my
studies.

I would like to appreciate deeply to my co-supervisors Assist. Prof. Dr. Figen
TOKATLI and Assist. Prof. Dr. KOREL for their all kind of support and valuable
comments.

I express my special thanks to Olive Research Institute (Izmir, Turkey) and
Olive Nursery (Edremit, Turkey) for providing olive samples. Taris Olive and Olive Oil
Agricultural Sales Cooperatives Union in Izmir for providing olive oil samples. This
study was performed as a part of CODA project (MIRG-CT-029134) supported by EU
Marie Curie Reintegration Grant.

Also, technical support of IZTECH R&D Center for Environmental Studies in
this research is gratefully acknowledged.

I would like to thank to my friends Pinar KADIROGLU, Derya OCAKOGLU
and Gaye YILDIRIM for their help.



ABSTRACT

CHEMOMETRIC STUDIES FOR CLASSIFICATION OF OLIVE OILS
AND DETECTION OF ADULTERATION

The aim of this study is to classify extra-virgin olive oils according to variety,
geographical origin and harvest year and also to detect and quantify olive oil
adulteration. In order to classify extra virgin olive oils, principal component analysis
was applied on both fatty acid composition and middle infrared spectra. Spectral data
was manipulated with a wavelet function prior to principal component analysis. Results
revealed more successful classification of oils according geographical origin and variety
using fatty acid composition than spectral data. However, each method has quite good
ability to differentiate olive oil samples with respect to harvest year.

Middle infrared spectra of all olive oil samples were related with fatty acid
profile and free fatty acidity using partial least square analysis. Orthogonal signal
correction and wavelet compression were applied before partial least square analysis.
Correlation coefficient and relative error of prediction for oleic acid (highest amount
fatty acid) were determined as 0.93 and 1.38, respectively. Also, partial least square
regression resulted in 0.85 as R” value and 0.085 as standard error of prediction value
for free fatty acidity quantification.

In adulteration part, spectral data manipulated with principal component and
partial least square analysis, to distinguish adulterated and pure olive oil samples, and to
quantify level of adulteration, respectively. The detection limit of monovarietal
adulteration varied between 5 and 10% and R? value of partial least square was
determined as higher than 0.95. Hazelnut, corn-sunflower binary mixture, cottonseed
and rapeseed oils can be detected in olive oil at levels higher than 10%, 5%, 5% and

5%, respectively.
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OZET

ZEYTINYAGLARININ SINIFLANDIRILMASI VE TAGSISIN
BELIRLENMESI ICIN KEMOMETRIK CALISMALAR

Bu caligmada naturel sizma zeytinyaglarimin elde edildigi zeytinin tiiriine,
yetistirildigi cografi bolgeye ve hasat yilina gore siniflandirmasi ve zeytinyaginda
tagsisin nitelik ve nicelik yoniinden aragtirilmasi amaglanmistir. Asal bilesenler analiz
yontemi yaglarin siniflandirilmasi i¢in yag asitleri kompozisyonuna ve orta bolge kizil
Otesi spektra verilerine uygulanmistir. Spektral veri, asal bilesenler analizinden 6nce
dalga analizi ile islenerek sikistirtlmistir. Sonuglar, cografi bolgeye ve tiire gore
siniflandirmada, yag asitleri kompozisyonunun spektra verisinden daha basarili
oldugunu gostermektedir. Her iki analitik yontemin zeytinyagi orneklerini hasat yilina
gore ayirma kabiliyeti vardir.

Biitiin yag orneklerinin spektra verileri ile yag asidi profilleri ve serbest yag
asitligi arasinda baglanti kurmak i¢in kismi en kii¢iik kareler analizi kullanilmistir. En
kiigiik kareler analizinden Once, ortogonal sinyal diizeltme filtresi ve dalga analizi
sikistirma kullanilmistir. Oleik asitin korrelasyon katsayisi (R?) ve bagil hata tahmin
degeri sirasiyla 0.93 ve 1.38 olarak belirlenmistir. Diger taraftan serbest yag asitliginin
belirlenmesi i¢in en kiigiik kareler regresyonunda R? degeri 0.85 ve hata tahmin degeri
0.085 olarak belirlenmistir.

Bu calismanin son kisminda, spektral veri asal bilesenler analizi ile islenerek
tagsigin nicelik bakimindan tespitinde kullanilmistir. Yapilan tagsis miktarinin
belirlenmesi i¢inse, spektral veri en kiigiik kareler analizine tabi tutulmustur. Tagsis
yapmak icin secilen tire gore, tek tip zeytinyaglarinin tagsis miktarinin
belirlenmesindeki limit 5% ile 10% arasinda degisirken, R* degerinin 0.95’ten daha
yiiksek oldugu bulunmustur. Diger taraftan, tagsis i¢in kullanilan findik, misir-ay¢icek
ikili karigimi, pamuk tohumu ve kolza tohumu gibi yaglarin zeytinyaginin ig¢inde

belirlenebildikleri miktarlar sirasiyla %10, %5, %5 ve %2 olarak tespit edilmistir.
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CHAPTER 1

INTRODUCTION

Olive oil's recent popularity could be attributed to its sensorial characteristics as
well as its potential health benefits. These benefits have been related to its well-
balanced fatty acid composition, where oleic acid is the main component, and to the
presence of minor biomolecules, such as vitamins and natural antioxidants (Matos, et al.
2007).

Olive oil constitutes various chemical components including triacylglycerols,
free fatty acids, phosphatides as the major components and also minor components such
as phenolic compounds, hydrocarbons etc. With increasing consumer demand for high
quality olive oil, oil produced from olives of just one variety (monovarietal) or one
geographical region have been appeared on the market. Therefore, it has become
important to characterize each monovarietal olive oil by its chemical and sensorial
properties. Chemical composition of olive oils might also differ due to the influence of
geographical, agronomic and technological factors (Aparicio and Luna 2002).
Differences in composition depending on geographic origin or variety are the basis of
the legislations such as Protected Denomination of Origin (PDO) and Protected
Geographical Indication (PGI). PDO and PGI certifications allow labelling of food
products with growing areas and provide extra economical benefits for producers of
designated areas. Consequently, there is a need to develop reliable analytical methods
for geographical and varietal classification and adulteration determination of olive oils
(Ulberth and Buchgraber 2000, Babcock and Clemens 2004).

To characterize each olive oil variety few series of chemical compounds or a
univariate statistics is not adequate. Instead multivariate analysis techniques should be
applied to a number of variables (chemical compounds and/or sensory descriptors). The
multivariate data analysis enables the extraction of meaningful information from the
large amount of data such as chemical and sensorial properties of olive oil (Aparicio
and Luna 2002). Multivariate data analysis can be used for both classification and
regression issues. It is common to employ principal component analysis (PCA) which
shows the relation between observations to classify olive oil with respect to variety or

geographical origin.



Chromatographic methods have been generally preferred in classification and
adulteration studies. Although chromatographic methods supply high degree of
precision, there is an increasing demand for rapid, inexpensive and effective techniques
for determination of authenticity of olive oils. Infrared spectroscopy combined with
chemometric techniques is one of the promising rapid methods (Downey 1998). FT-IR
(fourier transform infrared spectroscopy) is a quite suitable analysis tool for oil and fat
analysis because it could be applied directly to samples without any chemical treatment
(Bendini, et al. 2007). High number of data generated as a result of IR measurements
makes it necessary to use multivariate data analysis tools. Therefore, FT-IR
spectroscopy combined with PCA could be performed for varietal and geographical
characterization whereas its combination with partial least square (PLS) has been
widely used for quantification of adulteration.

In mid-infrared spectra the intensity and the exact frequency at which the
maximum absorbance of the bands appears imply differences among complex samples
of similar nature (Guillén and Cabo 1999). Fatty acids are one of the major ingredients
that olive oil contains in its chemical structure. Thus, a relationship between spectra and
the quantity of each individual fatty acid can be introduced with PLS analysis. In
addition, a relationship could also exist between spectral data and oil quality parameters
such as free fatty acidity (FFA) value.

The aim of this study is to apply chemometric techniques for the classification of
extra-virgin olive oil samples according to variety, geographical origin and harvest year
using two different data sets (1) fatty acid profile obtained from gas chromatography
(GC) analysis and (2) spectral data obtained from FT-IR. Discrimination ability of these
two methods was also compared and discussed. Another aim is to detect and quantify
olive oil adulteration with other vegetable or seed oils using chemometric techniques.
Furthermore, the relation between FT-IR spectra versus fatty acid profile and FFA was

studied in accordance with chemometric techniques.



CHAPTER 2

OLIVE OIL

2.1. Brief History

As it is known today, olive tree was domesticated about 6,000 years ago in
Mediterranean shores of Syria and Palestine. It expanded to Anatolia via Cyprus and to

Egypt via Crete (Luchetti 2002).

Phoenicians were responsible for the spread of the olive tree to western regions,
since they traded with other maritime centers. In the 14th and 12th centuries B.C., they
introduced it to the Greek mainland. Olive culture reached Spain, Italy and Northern
Africa, and then spread into Southern France with the contributions of Greek colonies
(Luchetti 2002). Olive trees were planted in the entire Mediterranean basin under
Roman rule Romans used oil as a food beside its application as ointment,
pharmaceuticals and in lighting (lampante oil). In ancient Egypt, olive plant was
cultivated in order to obtain its oil and it was used in religious ceremonies (Harwood

and Aparicio 2000).

Major progress in olive processing started with invention of screw press by
Greeks. The equipment was improved and disseminated by Romans. The fall of Roman
Empire caused a reduction in olive cultivation until Middle Ages. During the 1900s,
mechanical extraction systems were emerged as a result of studies on percolation and
centrifugation. The Centriolive plant, the first industrial decanter based on the
continuous centrifugation of the olive paste, was founded toward the end of 1960s.
Despite the improvement in pressing systems, some countries still use the same pressing

system today as they did in the past centuries (Harwood and Aparicio 2000).

2.2. World Olive Oil Production

Mediterranean countries which produce 98 percent of world’s olive oil are the

leaders of olive oil production. European Community (EC) accounts for 79% world’s



olive oil production and within EC Spain, Italy and Greece supply more than 98% of
EC production.

The world olive oil consumption is also concentrated in the producing countries.
European Union (EU) consumes 71% of world’s olive oil and Italy, Spain and Greece
are responsible from 67% of this consumption. Table 2.1 presents geographical

distribution of world olive oil production and consumption.

Table 2.4. Geographical distribution of world olive oil consumption and production
(average percentages between crop seasons 2000 and 2006) (Source:

International Olive Oil Council (IOOC) 2007)

Production (%) Consumption (%)

Spain 39.54 24.0
Italy 24.57 32.1
Greece 14.49 11.1
Tunisia 5.20 1.6
Syria 4.80 43
Turkey 4.30 2.0
Morocco 2.20 2.0
France <0.2 3.9
others 4.90 19.1

Turkey produces 4.3% of world’s olive oil and is sixth biggest world olive oil
producer. In world olive oil consumption, Turkey shares also the sixth place in world
olive oil consumption with Morocco.

According to IOOC (2007), Spain has produced 1,108,700 t followed by Italy
with 591,700 t in 2006/07 crop year. The estimates for Greek olive oil production stand
at approximately 370,000 t while the figure for Tunisia comes to around 170,000 t.
Turkey is in the fifth place and has produced 166 000 t followed by Syria (154 000 t)
and Morocco (75 000 t) (IOOC 2007).



2.3. Production of Olive Oil

2.3.1. Olive Harvesting and Washing

Harvesting generally takes place at the end of the autumn or in the beginning of
the winter. The purpose of preliminary washing is to remove any foreign material that

could damage machinery or contaminate the oil (Vossen 1998).

2.3.2. Milling and Olive Paste Mixing (Malaxation)

Olive crushing, the first step of olive oil production is employed to produce a
paste with easily extractable oil droplets. Two types of machines are used to crush
olives: stone mills and stainless steel hammermills.

The olive paste is slowly and continuously mixed to bring small oil droplets in
contact with each other to form larger droplets by breaking up the oil/water emulsion.
The mixing time could be 20-30 minutes and temperature of the olive paste does not

exceed 22-25 °C (Aparicio and Harwood 2000, Vossen 1998).

2.3.3. Oil Extraction from the Paste

The next step is the extraction of the oil from the paste and fruit water (water of
vegetation). Oil can be extracted by pressing, centrifugation, percolation, or through

combinations of different methods (Vossen 1997).

2.3.3.1. Traditional Press

Traditional pressing is a discontinuous oil extraction method. In this method the
ground olives are pressed in cloth bags then the liquid mix is rested in a series of tanks

to separate the oil (Aktas, et al. 2001).



2.3.3.2. Continuous System (by Centrifugation)

The centrifugation method is a continuous or on-line process by which the oil is
separated from the solids and water in the same process as in a decantation. The
efficiency of the oil extraction increases with savings in time. However, the contact time

between the oil and the fermenting fruit water decreases (Vossen 1998).

2.3.3.2.1. Three-phase System Decanter

In the three-phase system decanter, water is added to the system. As the
centrifuge rotated at a high speed (3500-3600 rpm), non-miscible liquids (olive oil and
vegetation water) are separated by proper nozzles from oil pomace due to specific
weights differences This liquid is then taken to a vertical centrifuge where the olive oil

is separated from the fruit vegetable water (Harwood and Aparicio 2000).

2.3.3.2.2. Two-phase System Decanter

Two-phase system decanter functions under the same principle as three-phase
system decanters but only two phases (oil, sludge) are obtained. If fresh olives are
processed, no additional water is required for the separation process. Compared to
three-phase decanting, this process is more advantageous. Firstly the throughput rate of
produced oil is higher because no additional water is required to produce the pulp; then
energy and water consumption is also reduced as a result of the lower processing

quantity. Moreover wastewater production decreases considerably (Coputa, et al. 2003).

2.4. Definitions of Olive Oil

Olive oil is a vegetable oil obtained solely from the fruit of the olive tree (Olea
europaea L.). It is produced by processes that do not alter its natural state (without the
use of solvents or re-esterification processes) and does not include other kind of oils
(I00C 2007).

Extra virgin (extra natural leaky) olive oil: The oils that have free fatty acidity,

expressed as oleic acid, of not more than 1.0 gram per 100 gram (EU 1991; Turkish
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Food Codex 2000). On the other hand, IOOC (2007) defines olive oils with the acidity
not more than 0.8 gram per 100 gram as extra virgin olive oil.
Virgin (natural first) olive oil: Free fatty acidity of this class should not be more

than 2.0 gram per 100 gram (EU 1991; Turkish Food Codex 2000; IOOC 2007).

Ordinary virgin (natural second) olive oil: Free fatty acidity should not be more

than 3.3 gram per 100 gram (EU 1991; Turkish Food Codex 2000; IOOC 2007).

Refined Olive Oil: The oil that is obtained from virgin oil by refining methods

without causing any change in triglyceride structure of raw olive oil. The free fatty
acidity should not be more than 0.3 gram per 100 gram (Turkish Food Codex, 2000;
IOOC 2007). On the other hand, maximum free fatty acidity of refined olive oil is given
not to be more than 0.5 gram per 100 gram in EU (European Union) regulations (1991).

Riviera olive oil: The oil that is obtained by mixing refined olive oil with natural

olive oil that can directly be consumed as a food. The free fatty acidity should not be
more than 1.5 gram per 100 gram (Turkish Food Codex, 2000). According to EU (1991)
and I0OC (2007), the mixture of refined and virgin olive oil is named as olive oil with
free fatty acidity not more than 1 gram per 100 gram.

Refined Pomace oil: Oil that is obtained by refining methods not causing any

change in triglyceride structure of raw pomace oil. Refined pomace oil can be marketed
directly or by mixing with natural olive oil. The free fatty acidity should not be more
than 0.3 gram per 100 gram (Turkish Food Codex 2000; IOOC 2007).

Mixed (olive) pomace oil: The oil that is obtained by mixing refined pomace oil

and virgin olive oil and can be consumed directly as a food. The free fatty acidity
should not be more than 1.5 gram per 100 gram (Turkish Food Codex 2000). IOOC

(2007) stated maximum free fatty acidity as 1 gram per 100 gram.

2.5. Composition of Olive QOil

Olive oil is composed of two main fractions which are saponifiables and
unsaponifiables. Saponifiable constituents (triacylglycerols, free fatty acids,
phosphatides) constitute 95-98% of olive oil whereas 2-5% of olive oil are

unsaponifiables (fatty alcohols, wax esters, hydrocarbons, tocopherols and tocotrienols,



phenolic compounds, volatiles, pigments, minor glyceridic compounds, phospholipids
and triterpenic acids) (Aparicio and Harwood 2000, Cert, et al. 2000).

Saponifiable fraction mainly composed of triacylglycerols. Also, most of the
fatty acids in olive oil exist as triacylglcerols. Turkish Food Codex (2000), IOOC
(2007) and EU (1991) restricted the amount of the individual fatty acids within the
specified limits listed in Table 2.2.

Table 2.5. Fatty acid compositions of cooking olive oil, cooking pomace oil and extra

virgin olive oil (Source: Turkish Food Codex 2000, IOOC 2007, EU 1991)

Olive and olive-pomace oil
(Turkish Food Codex Extra virgin oil (EU 1991)
2000, I0OC 2007)

Mpyristic acid <0.05 <0.1
Palmitic acid 7.5-20 -
Palmitoleic acid 0.3-3.5 -
Palmitoleic acid <03 -
Heptadecenoic acid <03 -
Stearic acid 0.5-5.0 -
Oleic acid 55.0-83.0 -
Linoleic acid 3.5-21.0 -
Linolenic acid < 091 <0.9
Arachidic acid <0.6 <0.7
Gadoleic acid <04 -
Behenic acid <0.22 <03
Lignoceric acid <0.2 <0.5

"TOOC states this value < 1
? This value of olive-pomace oil should be < 0.3

Oleic acid, as the characteristic monounsaturated fatty acid of olive oil,
constitutes 55-83% of total fatty acids. High intake of oleic acid in the Mediterranean
region was reported to be the reason for decreases in the rates of coronary artery disease

and also total mortality (Grundy 1997). Also, olive oil improves the lipid profile;



therefore, decreases cardiovascular risk by reducing the ratio of low density

lipoprotein/high density lipoprotein (Martinez-Gonzalez and Sanchez-Villegas 2004).

2.6. Monovarietal Characterization

Monovarietal olive oil is the oil produced from certain olive cultivars of certain
region. To characterize each monovariety, first chemical and sensory properties of olive
oils have to be determined. Then, the effect of external parameters (climate, ripeness
and extraction systems) on sensory and chemical characteristics of the same
monovarietal virgin olive oils has to be studied.

Each monovarietal olive oil is identified with its own chemical characteristic.
Mean concentration of some chemical compounds of diverse European monovarietal
virgin olive oils are given in Table 2.3. In the studies given in Table 2.3, olive ripeness

was normal and extraction system was three-phase centrifugation system.

Table 2.6. Chemical characteristics of European monovarietal virgin olive oils (mean
values) obtained from olive trees cultivated in different geographical origins

(Source: Aparicio and Luna 2002)

Varieties of cultivarT  Country P S (@] L Ln PH ER ST MST AA TA
[%]  [%] [%] [%] [%] [mgrkg] [mg/kg] [mg/kg] [mg/kg] [mg/kg] malkg]
Arbequina Spain 14.3 21 753 85 06 5646 226 14326 1547 2049 12478
Cornicabra Spain 8.4 26 787 75 06 2372 455 15193 1524 181.0 7154
Farga Spain 9.4 24 717 86 05 970 431 15516 177.1 360.8 841.0
Hojiblanca Spain 9.0 33 752 95 07 449 296 1946.2 2605 175.8 11465
Imperial Spain 9.7 2.3 801 46 09 907 298 1481.0 180.6 188.3 9457
Lechin Spain 10.5 14 708 139 1.1 1081 266 18069 3274 1359 7347
Morrut Spain 7.6 20 730 137 01 1134 472 14637 1203 1358 6398
Nevadillo Spain 1.0 3.0 753 73 07 501 307 1596.1 186.1 205.1 1069.7
Picual Spain 9.9 32 778 50 07 245 185 13102 160.1 227.1 11627
Redondilla Spain 12.5 1.7 683 141 1.1 11856 37.2 20323 3874 1214 1066.6
Sevillenca Spain 111 1.7 665 17.1 1.0 2150 321 20023 3003 893 9982
Verdial de Huevar Spain 9.0 22 6867 84 0.8 2287 69.1 1606.3 3374 1624 8783
Coratina Italy 9.7 32 769 75 06 814 262 11923 - 65.0 7122
Frantoio Italy 9.5 29 782 74 06 1923 26.2 13253 2453 177.2 8723
Leccino Italy 14.3 1.8 77.7 77 0.8 1776 189 12715 1174 1218 10715
Moraiolo Italy 10.5 22 777 75 06 1012 261 11847 1483 1343 8364
Koroneiki Greece 13.3 20 719 88 07 1472 449 19652 - 2493 5938

t P - palmitic acid; S - stearic acid; O - oleic acid; L - linoleic acid; Ln - linolenic acid; PH - phytol; ER - erythrodiol; ST - total content of
sterols; MST - total content of methyl sterols; AA - total content of aliphatic alcohols; TA - total content of triterpenic alcohols

The differences among the chemical compositions of each variety allow the

discrimination. Application of univariate approach to each of the chemical compounds



neglects any interaction between several of the factors that determine the compositional
profile of the classes of 0il compounds. It was pointed out that the classes of compounds
that make up olive oil are biosynthesised through independent and genetically
controlled pathways that determine the ratios of all the homologous components of each
chemical class (Bianchi, et al. 2001). Multivariate statistical analysis allows the use of
chemical variables taking into account the interactions between the chemical
compounds. There are numerous studies involving the classification of olive oil samples
using chemical and sensorial properties with chemometrics. Stefanoudaki, et al. (2000)
was able to characterize three European olive oil varieties with sensory data described
by a trained panel. Also fatty acids, fatty alcohols, polycyclic triterpenes and squalene
were used to differentiate monovarietal olive oils. Firstly, PCA was applied to the
analytical data to reveal the compounds (variables) with the highest weights (loadings).
Then using these most influential variables linear discriminant analysis (LDA) was
performed and 96% correct group classification was achieved (Giasante, et al. 2003).
Analytical parameters such as fatty acid profile, triacylglycerols and sterols were also
used in other studies. Brescia, et al. (2003) described how cultivar differences can be
established between Italian oils, obtained from single varieties, based on acid, sterol,
and triacylglycerols differences determined by chemometrics. Both PCA and DA
indicated that triacylglycerols and fatty acid composition provided the best basis for
differentiation of olive oils among cultivars. Also, applicability of triacylglycerols and
fatty acid for classification of French olive oils (Aix-en-Provence, Haute-Provence,
Nyons, Nice and Valle¢ des Baux de Provence) was studied. A linear discriminant
analysis was applied to the samples. In this study 37 parameters were used in
differentiation of registered designations of origin: Nyons, Nice and Haute-Provence
(Ollivier, et al. 2006).

Recently, there is an increasing interest on rapid measurements for classification
studies instead of chromatographic techniques. Casale, et al. (2007) employed combined
information from headspace mass spectrometry (HS-MS) and visible spectroscopy for
the classification of Ligurian olive oils. Application of LDA, after feature selection, was
sufficient to differentiate the three geographical denominations of Liguria (Riviera dei
Fiori, Riviera del Ponente Savonese and Riviera di Levante). The success was 100% in
classification and close to 100% in prediction. Similarly, HS-MS designed for the
sensory characterization and classification of extra virgin olive oil on the basis of its

protected designation of origin, olive variety and geographical origin is reported in
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another study. Results revealed that an average of ca. 87% of samples correctly
classified and a specificity of ca. 97% was obtained with HS-MS in combination with
appropriate chemometric treatment (Lopez-Feria, et al. 2008). Also, electronic nose and
an electronic tongue, in combination with multivariate analysis, have been used to
verify the geographical origin and the uniqueness of specific extra virgin olive oils. The
results of this study stated that neural networks have provided very satisfactory for the
analysis of results and have indicated that the electronic nose as the most appropriate
tool for the characterization of the analyzed oils (Cosio, et al. 2006). Forina, et al.
(2007) focused on usefulness of visible spectra with chemometrics in the extra virgin
olive oil geographical characterization. The developed class models for West Liguria
Protected Designation of Origin (PDO) olive oils can be differentiated from other olive
oil samples (Greece, Spain and Tunisia) with 100% sensitivity and specificity. In a
further study, chemometric treatment of near infrared (NIR) reflectance spectra was
applied for the classification of five geographically close registered designations of
origin (RDOs) of French virgin olive oils (Aix-en-Provence, Haute-Provence, Nice,
Nyons and Vallée des Baux). Partial least square-discriminant analysis (PLS-DA) was
used as multivariate statistical tool for the classification of French RDOs. The results
were quite satisfactory, in spite of the similarity of cultivar compositions between two
denominations of origin (Aix-en-Provence and Vallée des Baux) (Galtier, et al. 2007).
Downey, et al. (2003) examined visible and NIR spectra for their ability to classify
extra virgin olive oils from the eastern Mediterranean on the basis of their geographic
origin. A correct classification rate of 93.9% on the prediction set was achieved using
factorial discriminant analysis on raw spectral data over the combined wavelength

range.

2.6.1. Factors Affecting Olive Oil Composition

The major challenge to characterize olive oil according to cultivar and
geographical origin is variation of its composition with respect to factors such as:
environmental (soil, climate), agronomic (irrigation, fertilization), cultivation
(harvesting, ripeness), and technological (post-harvest storage and extraction system).
There are numerous studies involving the effects of these factors on sensory properties

and chemical composition of olive oil (Aparicio and Luna 2002). Torres, et al. (2005)
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stated that the amount of total phenols was strongly affected by the extraction method
(two-phase centrifugation and pressure). Gutiérrez, et al. (1999) pointed out the
correlation between chemical components and the ripeness index of olive oil. Results of
the 1998 season indicated that the irrigation treatments had a significant effect in the
oxidative stability, polyphenols and the composition of fatty acids of olive oil (Faci, et
al. 2002).

Climate has a great influence on the chemical composition of vegetable oils and
its effect on monovarietal characterization was widely studied by the scientists. Boggia,
et al. (2002) studied with olive oils from the three geographical areas which were
mentioned in the PDO regulation and obtained in 1998/99 and 1999/2000 harvest years.
31 variables determined by chemical-physical analyses were used to classify oils on the
basis of their geographical origin. For 1998/99 harvest year, class-models of the three
geographical areas were obtained with good predictive ability. However, the oil samples
obtained from the 1999/2000 crop season were different from similar samples obtained
in the previous year. These years showed clearly different climatic conditions. In 1998-
99, high summer temperatures and poor autumn rainfalls contributed to limiting Dacus
oleae infestation and improving oil quality. On the contrary, in the following year lower
summer temperatures favored the spreading of the infestation, and strong autumn winds
and rainstorms further worsened olive oil quality. Also, the effect of climate on fatty
acid composition of Sicilian cultivars collected in nine years of cultivars was studied.
PCA revealed that only olive oils samples of 1999-2000 year are always grouped
together and slightly separated from the others. Similar to previously mentioned study,
this year was characterized by bad climatic conditions and a widespread infestation
which leads to differentiation of this harvest year (D’Imperio, et al. 2007). Salvador, et
al. (2002) detected significant statistical differences in quality indices and major fatty
acid and sterol compositions with respect to the year of production, with the exception

of total phenols.

2.6.2. Application of Fourier Transform Infrared Spectrometry for

Monovarietal Olive Oil Characterization

As a rapid analysis technique, mid-infrared spectroscopy supplies high speed

measurement, moderate instrument cost and relative ease of sample presentation,
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especially for liquid and paste material (Downey 1998). Infrared spectroscopy uses
interaction of electromagnetic radiation with a sample to obtain both qualitative and
quantitative chemical information (Harwood and Aparicio 2002). MIR radiation is
defined as the infrared radiation between 4000 and 400 cm™ wavenumber. The
interaction of infrared radiation with matter causes it to be absorbed and also the
chemical bond in a sample vibrates. Functional groups, chemical structural fragments
within molecules, tend to absorb infrared radiation in the same wavenumber range,
without regard to the structure of the rest of the molecule (Smith 1996).

Attenuated total reflection (ATR) sample accessories have greatly eased the
analysis of solids, liquids, semisolids, and thin films. A schematic diagram of an ATR
accessory is shown in Figure 2.1. ATR cell includes a crystal of highly-refractive
material (e.g. ZnSe). The test sample is layered on the top surface of the crystal.
Infrared radiation enters at one end undergoes total internal reflection at the top and
bottom faces, and then exit from the other end to the detector. A small evanescent wave
is generated at each point of reflection, which goes a short distance inside any sample in
contact with the top face. This interaction results in the absorption of radiation by the
sample and the consequent attenuation of the input signal at a number of wavelengths,

thus producing an absorption spectrum (Downey 1998).

sample
to dedector ATR crystal from source

Figure 2.1. A schematic diagram of an attenuated total reflectance accessory

(Source: Downey 1998)

MIR spectra contain information about the complete chemical composition and
physical state of the material under analysis. Therefore, high number of data is
generated (Downey 1998). Multivariate data analysis is required to extract the relevant
information from these spectra.

Despite availability of FT-IR with ATR and chemometrics for monovarietal

classification of olive oil, there are not many studies involving classification of
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monovarietal olive oils using FT-IR and chemometric analysis. Bendini, et al. (2007)
collected FT-IR spectra of 84 monovarietal virgin olive oil samples from eight Italian
regions and manipulated fingerprint region data by PCA. Discrimination of majority of
samples coming from the Emilia Romagna, Sardinian and Sicilian region was achieved.
In another study, applicability of FTIR to distinguish extra virgin olive oils from four
European countries, in combination with multivariate analysis, was investigated. Both
PLS-DA and genetic algorithm (GA)-PLS was applied independently and results
confirmed that PLS-LDA approach produced a cross-validation success rate of 96%,
whereas the GA-PLS approach achieved a 100% cross-validation success rate. Also,
Caetano, et al. (2007) reported application of FT-IR spectroscopy to discriminate
between Italian and non-Italian and between Ligurian and non-Ligurian olive oils. Two
chemometric techniques, classification and regression trees and support vector
machines based on the Gaussian kernel and the recently introduced Euclidean distance-
based Pearson VII Universal Kernel, successfully achieved to discriminate olive oil

samples between various geographical origins.

2.7. Geographical Indications

In order to protect high-quality agricultural products based on their geographical
origin, EU established legislations to designate geographical indicators (GIs). Gls are
special signs that can add economic value to the agricultural products in markets. They
symbolize cultural identity of region of origin by representing the skills of its population
and natural resources. Also, they create indistinguishable characteristics for the products
(Addor and Grazioli 2002).

Two types of GI designations were established by EU Council Regulation:
Protection of Designations of Origin (PDO) and Protection of Geographical Indication
(PGI). PDO labeling means that the product is produced, processed, and prepared within
the specified geographical region. On the other hand, PGI designation means that the
product is produced, processed, or prepared in a certain geographical area, and the
quality, reputation, or other characteristics are attributable to that area. Even though part
of the production process is carried out outside that area, products quality and reputation
could still be ascribed to that geographical region. These designations could be used in

labelling of olive oil, produced in particular geographical region, with typical
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characteristics linked to natural factors, to the environment, and to the traditions of that
region (Babcock and Clemens 2004, Ozen, et al. 2005).

As a high-value agricultural product, GIs were applied to olive oil in European
Union. Therefore, there is an economic basis for identifying characteristics that

distinguish PDO olive oils.

2.8. Adulteration

Agricultural products having PDO or PGI labels might have high market price
so they are attractive targets for adulteration. Adulteration of food products involves the
replacement of high-cost ingredients with lower grade and cheaper substitutes (Tay, et
al. 2002). Actually, blend edible oils can be prepared only for suitable products, but if
the resulting blend deviates from the mixture proportions given on the label, or if the
blend is traded as genuine, it means the oil is adulterated (Ulberth and Buchgraber
2000).

Olive oil is also one of the agricultural products that is often adulterated with
cheaper oils. Consumers generally prefer olive oil for its health benefits and they could
feel cheated to receive oil that does not provide their expectations. Adulteration
received much more attention after the toxic oil syndrome resulting from consumption
of olive oil spiked with aniline-denatured rapeseed oil that affected more than 20,000
people. Oils widely used for olive oil adulteration include olive pomace oil, corn oil,
peanut oil, cottonseed oil, sunflower oil, soybean oil, and poppy seed oil (Harwood and

Aparicio 2002).

2.8.1. Methods to Detect Adulteration of Olive Oil

Monitoring authenticity of edible oils is carried out using instrumental
techniques that provide data about their qualitative and quantitative composition. There
exist numerous methodologies to qualify and quantify vegetable or seed oils in olive oil.
Examples of some standard techniques involving the application chromatographic
methods are provided in this section.

The limits of total and desmethyl sterol compositions of olive oil are given in

EC (1991). Sterol composition significantly varies in between vegetable oils and this
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variation can be used to detect adulteration (Aparicio and Aparicio-Ruiz 2000).
Saponification method and analysis of trimethylsilylether with capillary column GC
was applied to detect seed oil adulteration (IOOC 2007). Another method is
determination of saturated fatty acids at 2-position of triacylglycerols. Main saturated
fatty acids of olive oil are palmitic and stearic acids and they can not be more than 1.5
percent at 2-position of triacylglycerols for virgin olive oil. The methyl esters can be
prepared and then analyzed with thin-layer chromatography. (EC 1991, Aparicio and
Harwood 2000). Triacylglcerides of vegetable oils can also be analysed to confirm the
purity of vegetable oils. During triacylglcerides analysis by high performance liquid
chromatography (HPLC), out of the entire chromatogram, the only peaks which are
taken into consideration are trilinolein and Equivalent Carbon Number 42 (ECN42)
(Christopoulou, et al. 2004). Determination of trilinolein content was used for the
detection of adulteration of olive oil with other vegetable oils (EC 1991). Nowadays, the
trilinolein content has been replaced by the AECN42. Christopoulou, et al. (2004) stated
that the limit for the AECN42 in olive oil is satisfactory for the detection of adulteration
of an olive oil with oils: sunflower, soybean, cotton, corn, walnut, sesame, safflower,
canola and rapeseed. The established limit for the AECN42 is not satisfactory for
detecting percentages lower than or equal to 5% of hazelnut, almond, peanut and
mustard oils in mixtures with olive oil. Wax esters are other components of olive oil
that can be used for adulteration detection. Wax determination involves the use of
capillary column gas-liquid chromatography (EC 1991). They are very useful to
distinguish refined olive oil and olive—pomace oils from virgin olive oil because virgin
olive oil has a higher content of Cs¢ and Csg waxes than of C,, C4; and Cas whereas the

other oils have an inverse relation (Aparicio and Aparicio-Ruiz 2000).

2.8.2. Emerging Techniques to Detect Adulteration of Olive Qils with
an Emphasis on IR Spectroscopy

Methods of food adulteration have become more sophisticated due to its
economic profits. There is an increasing demand for the development of new rapid and
sensitive methods instead of traditional time-consuming and expensive analysis

techniques. There exist several new emerging methods mainly focusing on this subject.
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Headspace autosampler directly coupled to a mass spectrometer (ChemSensor)
was employed to detect hazelnut oil adulteration. Using PLS and principal component
regression analysis, minimum adulteration levels of 7 and 15% can be detected in
refined and virgin olive oils, respectively (Pefa, et al. 2005). Poulli, et al. (2007)
described the differentiation of virgin olive from olive-pomace, corn, sunflower,
soybean, rapeseed and walnut oils using total synchronous fluorescence spectra with
PLS. Olive-pomace, corn, sunflower, soybean, rapeseed and walnut oil were detected in
virgin olive oil at levels of 2.6%, 3.8%, 4.3%, 4.2%, 3.6%, and 13.8% (w/w),
respectively. Also, differential scanning calorimeter was employed to detect
adulteration of extra virgin olive oil with refined hazelnut oil and results revealed that
thermal properties of cooling thermograms were affected by hazelnut oil addition at a
concentration as low as 5% (Chiavaro, et. al 2008).

Also, use of spectroscopy which includes IR and Raman techniques combined
with chemometric methods is a relatively new approach to determine authenticity of
olive oil. NIR, MIR, and Raman spectroscopic techniques were used to quantify the
amount of olive pomace oil adulteration in extra virgin olive oil. Developed PLS model
using data by Raman spectroscopy had R? of 0.997 and standard error of 1.72%. In
addition, NIR and middle infrared (MIR) techniques also provided good predictions
with a R? value greater than 0.99 (Yang and Irudayaraj 2001). Christy, et al. (2004)
studied NIR spectroscopy to detect and quantify adulteration of olive oil with soy,
sunflower, corn, walnut and hazelnut oils. PCA of all spectral data revealed 100%
classification of mixtures according to adulterant. Quantification of adulterant in olive
oil was performed by PLS which was resulted in error limits of + 0.57% (corn oil),
+1.32% (sunflower oil), £0.96% (soy oil), +£0.56% (walnut oil) and +0.57% (hazelnut
oil).

Detection of olive oil adulteration with hazelnut oil is a real challenge due to its
very similar chemical composition to olive oil. There are studies involving the
application of FT-IR with chemometrics to detect hazelnut oil adulteration. FT-IR
equipped with a ZnSe-ATR accessory was used to detect the adulteration of extra-virgin
olive oil with hazelnut oil. FT-IR data was manipulated with discriminant analysis.
However, adulteration of virgin olive oil with hazelnut oil could be detected only at
levels of 25% and higher (Ozen, et al. 2002). Baeten, et al. (2005) obtained better
results in their study which involves application of Raman and MIR spectroscopies to

determine the level of hazelnut oil in olive oil. In this study, MIR spectra worked better
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than Raman spectra. Results of stepwise linear discriminant analysis indicated that MIR
spectra of unsaponifiables matter of samples allowed detection of adulteration at a level
of 8% for blends obtained by mixing Turkish hazelnut and olive oils.

Other vegetable or seed oils were also used to adulterate olive oil and FT-IR was
also suggested as the possible adulteration detection method. Olive oil and sunflower
adulterated olive oil samples (20ml/l) were analyzed by FT-IR equipped with ZnSe-
ATR accessory. According to this study, DA was able to classify the samples as pure
and adulterated. PLS model developed to determine the level of mixing resulted in R?
value of validation set of 0.974 which indicated success of the model (Tay, et al. 2002).
Vlachos, et al. (2006) also studied the determination of olive oil adulteration with
vegetable oils (sunflower oil, soybean oil, sesame oil, corn oil) using FT-IR. A linear
relation was obtained between percent adulteration and height of the band shift at 3009
cm™ of FT-IR spectra which can be used to determine extra virgin olive oil adulteration
with different types of vegetable oils. In this study, the detection limit for olive oil
adulteration is 9% if the adulterant is corn oil or sesame seed oil while it is lower (6%)

if the adulterant is sunflower or soybean oil.

2.9. Use of Chemometric Techniques to Determine Authenticity of

Olive Oil

The authenticity determination of olive oil can be differentiated into 2 main

scopes which are:
— characterization and denomination of geographical origin and
— identification and quantification of economic adulteration (Ulberth and

Buchgraber 2000).

In authentication of food products numerous chemical compounds create
multivariate data. Chemometric techniques deal with the multivariate data to extract
relevant information and to organize them into meaningful structures (Harwood and
Aparicio 2000). The multivariate data analysis aims to display multidimensional data in
a lower space without loss of any significant information to group samples with similar
properties and to classify observations on the basis of their similarities (Massart, et al.

1988).

18



As an example fatty acid profile of olive oils from different varieties or
geographical regions could result in generation of multivariate data sets for olive oil
authentication. Also, spectroscopic techniques are generally applied for authentication
because spectra contain information about the complete chemical composition of the
olive oil. Therefore, multivariate data analysis is required to extract the relevant
information from the spectra or fatty acid profile of olive oil (Downey 1998).

If a data set includes N observations of K variables, they can be arranged in a [N
X K] matrix X. The relative sizes of K and N is important to be able to employ
multivariate methods. Spectroscopic or chromatographic data sets containing higher
number of K than N prevents direct application of many multivariate methods (because
the product matrix XX, required in the calculations, cannot be inverted). PCA and PLS,
data reduction methods, are most useful for this kind of data sets (Defernez and

Kemsley 1997).

2.9.1. Principal Component Analysis (PCA)

PCA, being one of the commonly applied chemometric tools among the
techniques to model complex data sets, aims to represent the n-dimensional data
structure in a smaller number of dimensions, usually two or three. So, the groupings of
observations, outliers, etc., which define the structure of the data set can be observed
(Massart, et al. 1988).

PCA is given as an abstract mathematical transformation of the original data

matrix which can be presented as

X = T.P+E 2.1)

where X is the original data matrix; T are the scores, and have as many rows as
the original data matrix; P are the loadings, and have as many columns as the original
data matrix; and E is the error matrix (Brereton 2003).

In order to apply PCA, X-variables are expected to be collinear. The collinearity
means that the variability exists in X matrix and carries most of the available
information. Therefore, redundancy and smaller variabilities can be removed. Then,

PCA aims to express the main information in the variables by the so-called PCs of X
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(Marten and Naes 1989). The PCs are oriented so that the first PC describes as much as
possible of the original variation between the objects.

Two PCs are two lines orthogonal to each other and together they define a plane
in K-dimensional variable space. All the observations are projected onto this plane and
structure of the investigated data set can be visualized. The co-ordinate values of the
observations on this plane are called scores and this configuration is called scores plot
(Eriksson, et al. 2001).

Scores plot displays the similarities and differences between observations. On
the other hand, loadings plot can be constructed for two PCs to observe the most
important original variables. The important variables are placed in the longest distance
from the origin and are responsible for the pattern seen among observations. In addition,
correlated variables which are in the same or opposite directions on a straight line
through the origin of loading plot can be determined (Euerby and Petersson 2003).

PCA analysis can also be used to develop a modelling technique called soft
independent modelling of class analogy (SIMCA) which is one of the most commonly
used class-modelling tools in chemometrics. In SIMCA, PCA is performed for each
class separately and this results in a PC model for each class. The class distance can be
calculated as the geometric distance from the PCs models. Each group may be bounded
by a region of space representing 95% confidence that a particular object belongs to a
class. The residual variance of a variable of a class is used for estimating the modelling
power of a particular variable (Brereton 2003). On the other hand, discriminatory power
measures how well a variable discriminates between two classes. This differs from the
modelling power in the sense that a variable being able to model one class well, it does
not necessarily imply being able to discriminate two groups effectively (Berrueta, et al.

2007).

2.9.2. Partial Least Square Analysis (PLS)

The regression extension of PCA is named as PLS. The technique is a two-block
regression method that is also based on principal component models. If the independent
variables is called X matrix, the dependent or response variables constitute Y matrix,
response variables are called the Y matrix (Bye 1995). Both X and Y matrices are

decomposed into smaller matrices as given below:
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X=T.P+E (2.2)
Y=T.Q+F (2.3)

where Y is the matrix of dependent variables; X is the matrix of independent
variables; T and U are the scores matrices; P are the loadings of X matrix; E is the error
matrix of X-Matrix; Q is loading matrix of Y-Matrix; and F is the error matrix for Y-
Matrix (Otto 1997).

The PLS analysis involves the determination of PLS components that describe
the variation of Y-data. The first PLS component is a line in X variable space which
should approximate the observations and correlate with Y vector. First PLS usually is
not enough to describe the variation in the Y-data. So, the second PLS component
describe the remaining variation as much as possible. Second PLS component is also a
line orthogonal to first PLS component and it improves the description of X data and
provides good correlation with Y remained after first component. Also, the vectors of

two PLS components have the ability to predict y data (Eriksson, et al. 2001).
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CHAPTER 3

EXPERIMENTAL STUDY

3.1. Materials

3.1.1. Olive and Olive Oil Samples

Two independent sets of olive oil samples were used in the analysis. In the first
set, olive varieties used in oil production were provided by Olive Research Institute
(Izmir, Turkey) and Olive Nursery (Edremit, Turkey). Each variety as listed in Table
3.1 was obtained from Izmir but the varieties Ayvalik and Gemlik were also obtained
from Edremit. 15-25 kg of olives from each cultivar were picked from trees and then
milled with a maximum 5 kg capacity laboratory scale olive oil mill (TEM Spremoliva,
Italy). At least two different batches of oil were obtained from each cultivar. Samples
were obtained both in 2005/06 (1) and 2006/07 (2"%) harvest years. The samples were
listed in Table 3.1.

Table 3.1. Olive varieties and olives of different geographical regions

Sample name Sample code
Ayvalik A
Gemlik G

Memecik M
Erkence E
Nizip N
Ayvalik (Edremit) AE
Gemlik (Edremit) GE

Second class of oil includes extra-virgin olive oil samples, which belong to 30
different locations of Aegean region of Turkey, and they were obtained from the same

olive oil producer for two consecutive harvest years. Figure 3.1 represents north and
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south of Aegean region where the olives were obtained from. There are 25 and 22 olive
oil samples belonging to 2005/06 and 2006/07 harvest years, respectively. The olive oil
samples were coded either as north (N) or south (S) according to the region where
olives came from (Table 3.2). Also, numbers besides N or S represent the first or second
harvest year. While mainly Ayvalik variety is cultivated in north Aegean, Memecik is
the dominant variety in south part of Aegean region. The samples were kept in dark
glass bottles and stored at 8 °C until further analysis. Analysis was performed within 2-3

months following extraction and receival of the oils.
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Figure 3.1. Commercial olive oil samples belonging to North (N) and South (S) of

Aegean region (Source: World Sites Atlas 2008)
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Table 3.2. Commercial olive oil samples from north and south parts of Aegean Region of Turkey belonging to 2005/06 and 2006/07 harvest

years
Sample No Geographic origin Sample code  Harvest year  Sample No  Geographic origin ~ Sample code = Harvest year
1 Ezine (N) Ez 1st-2nd 16 Tepekoy (S) Tep Ist-2nd
2 Ezine Gulpinar (N) Ez-org Ist 17 Bayindir (S) Bay Ist
3 Kucukkuyul (N) Kuckuyl 1st-2nd 18 Odemis (S) Ode 2nd
4 Kucukkuyu?2 (N) Kuckuy?2 Ist 19 Tire (S) Tire 2nd
5 Altinoluk (N) Altol Ist-2nd 20 Selcuk (S) Sel Ist-2nd
6 Altinoluk-sulubaski (N) Altol-sb Ist 21 Kusadasi (S) Kus 2nd
7 Edremit (N) Edr Ist-2nd 22 Germencik (S) Ger 2nd
8 Havran (N) Hav Ist-2nd 23 Aydin (S) Ayd Ist-2nd
9 Burhaniye (N) Bur Ist-2nd 24 Ortaklar (S) Ort Ist-2nd
10 Gomec (N) Gom Ist-2nd 25 Kosk (S) Kosk 2nd
11 Ayvalik (N) Ayv 1st-2nd 26 Dalaman (S) Dal 2nd
12 Altinova (N) Altov 1st-2nd 27 Kocarli (S) Koc 1st-2nd
13 Zeytindag (N) Zey Ist-2nd 28 Erbeyli (S) Erb 2nd
14 Akhisar (N) Akh Ist 29 Cine (S) Cine 2nd
15 Menemen (N) Men Ist 30 Milas (S) Mil Ist-2nd




3.1.2. Chemical Reagents

Reagents used in chemical analysis were obtained from Riedel-de Haén and
Sigma-Aldrich and they are either high performance HPLC or analytical grade. In
chromatographic analysis, fatty acid methyl esters containing C8-C24 (2%-11% relative

concentration) was used as reference standard (Supelco # 18918).

3.2. Methods

3.2.1. Determination of Percent Free Fatty Acids

European Official Methods of Analysis (EEC 1991) was used for the
determination of free fatty acid value in terms of % oleic acid. 1 g potassium hydrogen
phthalate (KHCgH4O4) was dried in oven at 110 °C for 2 hours. 0.4 g of potassium
hydrogen phthalate was put into a flask, and 75 ml distilled water and few drops of
phenolphthalein (0.5 g phenolphthalein in 50 ml 95% ethanol (v/v)) were added. 1
mol/L potassium hydroxide (KOH) was prepared with distilled water and it was
standardized with previously prepared potassium hydrogen phthalate. 150 mL diethyl
ether-ethanol (1:1) mixture was neutralized with KOH with the addition of
phenolphthalein. Since the expected acidity value is <1, 20 g oil sample was dissolved
in diethyl ether-ethanol solution. The sample solution was titrated with 0.1 mol/L
solution of KOH until the indicator changes color (the pink color of the phenolphtalein
persists for at least 10 seconds). Acidity is expressed as percentage of oleic acid with

the equation given below:

M ><100_V><C><M
1000 m 10xm

(3.1)
where:

V = the volume of titrated KOH solution used in milliliters;

¢ = the exact concentration in moles per liter of the titrated solution of KOH

used;
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M = the molar weight in grams per mole of the acid used to express the result
(=282);

m = the weight in grams of the sample.

3.2.2. Gas Chromatography Analysis

3.2.2.1. Sample Preparation

European Official Methods of Analysis (EEC, 1991) was used for the
preparation of methyl esters. 100 mg oil sample was weighed in 20 mL centrifuge tubes.
The samples were dissolved in 10 mL n-hexane and saponified to their methyl esters
with the addition of methanolic potassium hydroxide solution (11.2 g in 100 mL). The
sample solution was vortexed for 30 s and centrifuged for 15 min. Clear supernatant

was transferred into 2 mL autosampler vial for chromatographic analysis.

3.2.2.2. Analytical Conditions

Chromatographic analyses were performed on an Agilent 6890 GC (Agilent
Technologies, Santa Clara, USA) equipped with Agilent 7683 autosampler. The

instrumental configuration and analytical conditions were presented in Table 3.3.

Table 3.3. Chromatographic method for the analysis of fatty acid methyl esters

Instrumentation
Chromatographic system Agilent 6890 GC

Inlet Split/splitless

Detector FID

Automatic sampler Agilent 7683

Liner Split liner (p/n 5183-4647)

Column 100 m x 0,25 mm ID, 0.2 pm HP-88 (J&W

112-88A7)

(cont. on next page)
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Table 3.3. (cont.) Chromatographic method for the analysis of fatty acid methyl esters

Experimental Conditions GC-FID

Inlet temperature 250 °C
Injection volume 1uL
Split ratio 1/50
Carrier Gas Helium
Head pressure 2 mL/min constant flow
Oven temperature 175°C, 10 min, 3°C/min, 220°C, 5 min
Detector temperature 280 °C

Hydrogen:40mL/min; Air:450mL/min;

Detector gases Helium make-up gas:30mL/min

Fatty acids used in the analysis were myristic acid (C14:0), palmitic acid
(C16:0), palmitoleic acid (C16:1), stearic acid (C18:0), oleic acid (C18:1), linoleic acid
(C18:2), arachidic acid (C20:0), linolenic acid (C18:3) and behenic acid (C22:0). Each

sample was analysed at least two times with GC.

3.2.3. FT-IR Analysis

All infrared spectra (4000-650 cm™) were acquired with a Perkin Elmer
Spectrum 100 FT-IR spectrometer (Perkin Elmer Inc., Wellesley, MA). This instrument
was equipped with a horizontal ATR sampling accessory (ZnSe crystal) and a
deuterated tri-glycine sulphate (DTGS) detector.

Horizontal ATR accessory was used to collect the spectral data of oil. The
resolution was set at 2 cm™ and the number of scans collected for each spectrum was
128. ZnSe crystal was cleaned with hexane in between sample runs. Measurements

were conducted more at least two times.

3.3. Preparation of Adulterated Samples and Binary Olive Oil

Mixtures

Monovarietal olive oil adulteration was performed by mixing E and AE with N.

The percentage of N added into E and AE varied between 2-20% (vol/vol). On the other
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hand, vegetable and seed oil adulteration was implemented with the addition of
hazelnut, sunflower-corn binary mixture, cottonseed and rapeseed oil into commercial
olive oil samples. Each four commercial olive oil samples were randomly selected from
north and south regions and mixtures of oils from north and south were prepared
speretaly. Then each mixture was blended with hazelnut oil to obtain two sets of 2-50%
(vol/vol) adulterated samples. For cottonseed and rapeseed oil adulteration, four
commercial olive oil samples belonging to north were mixed with rapeseed and
cottonseed oils. For sunflower-corn oil adulteration, sunflower-corn oil binary mixtures
were prepared at different concentrations (0-100% vol/vol) and mixed with blend of
four commercial olive oil samples belonging to north at 2-20% (vol/vol). Composition

of each oil sample in mixture was presented in Table 3.5.

Table 3.5. Percentages of sunflower, corn and olive oil in 2-20% adulterated mixtures

Sunflower oil (%) Corn oil (%) Olive oil (%)

1 1 98
2 0 98
0 2 98
2.5 25 95
5 0 95
0 5 95
5 5 90
10 0 90
0 10 90
7.5 7.5 &5
10 5 85
5 10 85
10 10 80
15 5 80
5 15 80
20 0 80
0 20 80
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3.4. Statistical Analysis

Data analysis was performed using multivariate statistical methods with SIMCA
software (Umetrics, Sweden). Both fatty acid profile and FT-IR spectral were
statistically analysed. Whole FT-IR spectra of the samples were not used in the data
analysis. Two portions of whole spectra (3620-2520 and 1875.5-675 cm™) where there

are most significant differences in the peak intensities, were selected to be employed.

3.4.1. Pre-treatment of Data

In order to transform the data into a form suitable for PCA and PLS, the data is
often pre-treated. Within this concept, both fatty acid composition and spectral data
were scaled and mean centered.

Signal correction and compression techniques are quite applicable to MIR
spectra. Wavelets analysis is a widely used spectral compression technique preferred in
classification studies. Its main abilities are compressing and de-noising complicated
signals. Wavelets are small oscillating waves having the capability of probing a signal
according to scale, that is, bandpass of frequencies. There are different wavelet
functions such as Daubechies, Symmlet and Coiflet. Among wavelet functions
Daubechies-10 was chosen and wavelet analysis used as a spectral data pre-treatment
method before classification approaches (PCA) (Eriksson, et al. 2000). Orthogonal
signal correction (OSC) is a signal correction technique and it is used to construct a
filter that removes the part from the spectral matrix X that is definitely unrelated to Y.
The removed part should be mathematically orthogonal to Y (Wold, et al. 1998). In this
study, OSC in combination with wavelet analysis was applied on spectral data for

quantification issues (PLS).

3.4.2. Classification

The discrimination of olive oil samples was achieved with PCA, which is a
multivariate projection method designed to extract and display the systematic variation
in a data matrix X. It is important to accurately determine the number of components

that should be included in the model since it is linked to the difference between the
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degree of fit and the predictive ability. Degree of fit increases as the number of
components increases but predictive ability does not necessarily increase after a certain
model complexity. Therefore, it is important to reach an optimal balance between fit
and predictive ability.

Results of PCA are visualized by scores, loadings and Coomans’ plots. Score
plots were constructed to observe principal groupings among observations. To
determine the variables responsible from the groupings among observations loading
plots were used. Also, Coomans’ plot is used to interpret results of SIMCA and to
discriminate two classes. In this plot, the distance from the model for class 1 is plotted
against that from model 2. The critical distances (usually at 95% of confidence level)
are indicated on both axes. So, four regions are defined on the plot: class 1, class 2,
overlap of classes 1 and 2, and outer region (far from both classes). By plotting objects
in this plot it is easy to visualize how certain a classification is. Scores and Coomans’
plots were employed for discrimination of samples according to variety, geographical
origin, and harvest year and also for differentiation of adulterated samples from pure
samples. Classification studies were performed by setting 9 GC variables and FT-IR

spectra as independent variable data set.

3.4.3. Quantification

Quantification of fatty acid profile and free fatty acidity using MIR spectra was
implemented. The whole observation data set was divided into validation and
calibration sets. PLS was employed on calibration set relating MIR spectra (X block)
with fatty acid profile and free fatty acidity value (Y block). The ability of the PLS
model was inspected with validation set. The predictability of the models was tested by
computing the standard error of calibration (SEC) for the calibration data set, the
standard error of prediction (SEP) for the validation data set and the relative error of

prediction (REP):

SEC = (3.2)
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i=l

ZH:(YAi _Yi)2

SEP = (3.3)

n

REP = S\ETmeo (3.4)

where i, \fi and Y are observed, predicted percentage of each fatty acid and average

observed fatty acid of observations, respectively; m and n are the number of samples in
the calibration and prediction sets, respectively.

Quantification of hazelnut, sunflower-corn, cottonseed and rapeseed oil in olive
oil and also N in blend of E-N and AE-N was performed by PLS regression analysis,
which relates the FT-IR absorbance of each adulterated samples and monovarietal
mixture (X block) with the percentages of adulterant oil and a monovarietal in that
mixture (Y block). For hazelnut, cottonseed and rapeseed oil, adulterated olive oil
samples randomly divided into two as the calibration and validation data.

On the other hand, due to the low number of samples, the data belonging to
mixture of two monovarieties were not divided into two as the calibration and validation
data sets. Instead, cross-validation technique was used to asses the model performance.
Cross validation evaluates the data by excluding selected samples in the PLS regression
model and then building a model for the remaining. The model is tested using the
samples excluded from the model and the error values for the predicted observations are
calculated. New samples are then excluded from the model set and a new model is built.
This procedure is repeated until all samples in the PLS model have been excluded once.
After predicting all the observations once by the cross-validation technique, the error
values between predicted and calculated response (% of adulterant in this case) were

used to calculate error criterion; (SEP) as given in equation 3.3.

31



CHAPTER 4

RESULTS and DISCUSSIONS

4.1. Classification of Lab Scale Extracted Olive Oils

Olive varieties used in this study are commercially important cultivars in olive
oil production. All varieties except Nizip are mainly cultivated in west part of Turkey.
Nizip, on the other hand, originates from southeast part of Turkey. Five varieties (A, G,
M, E and N) used in this study were obtained from the same orchard in Izmir which is
in the middle part of Aegean region and two of these varieties (A and G) were also
supplied from another orchard in north part of the same region (Edremit) for two
consecutive harvest years. Same extraction system was used in obtaining the oils. Data
of FFA values of the olive oil samples were presented in Table 4.1. The acidity values
varied between 0.94 and 0.13 belonging to 1% harvest year of the N and M varieties,
respectively. None of the olive oils has the acidity value higher than 1% which is the

maximum accepted value of EU (1991) for extra virgin olive oil classification.

Table 4.1. Free fatty acid values of lab scale extracted olive oils expressed as % oleic

acid
Variety Harvest year
2005 2006
Ayvalik (A) 0.38+0.07° 0.31+0.1%
Gemlik (G) 0.13£0.03 0.16+0.02%
Memecik (M) 0.24+0.02" 0.33£0.1°
Erkence (E) 0.16+0.03* 0.14+0.01*
Nizip (N) 0.94+0.18¢ 0.45+0.3%
Ayvalik-Edremit (AE) 0.32+0.02° 0.800.04¢
Gemlik-Edremit (GE) 0.17+0.02% 0.25+0.06™

4 Values in each column with different superscript letters present significant differences (P<

0.05).



Data from GC and FT-IR analysis of oils in combination with chemometrics
were employed for the classification of samples. The variety effect was investigated
using the varieties grown in Izmir. On the other hand, comparison of two varieties (A
and G) from two different areas (Izmir and Edremit) provided information about the

effect of growing location.

4.1.1. Classification using GC Data

Fatty acid profile of olive oil samples, determined by GC analysis, presented in
Table 4.2. Fatty acid content of each variety was the average of at least two GC
measurements for each batch of oil. The monounsaturated fatty acids have great
importance because of their nutritional implication and their effect on oxidative stability
of oils (Aparicio, et al. 1999). As the most abundant fatty acid in olive oil, the amount
of oleic acid varied remarkably between the olive oil samples. The oleic acid content
was at the lowest concentration (66.32%) for M variety of 1 harvest year and (63.57%)
for E variety of 2" harvest year. On the other hand, the highest oleic acid concentration
was observed for GE variety for two consecutive harvest years (72.05% for 1% and
72.95% for 2™ harvest years). The content of linoleic acid varied between 8.88% for GE
and 14.95% for E varieties for 1* harvest year whereas its content was between 16.89%
for E and 7.41% for GE varieties belonging to 2™ harvest year. Also, fatty acid
composition of each variety changed with respect to year of harvesting. In other studies,
similar fatty acid profile for Ayvalik variety and flesh oil of Memecik variety was
determined (Ozkaya, et al. 2008, Nergiz and Engez 2000). On the other hand, Tanilgan,
et al. (2007) observed higher oleic and lower linoleic acid contents for Ayvalik (C18:1
1s 79% and C18:1 is 6.8%) and Gemlik (C18:1 is 81.1%, C18:2 is 4.9%) varieties. The
difference could be due to extraction method, olive ripeness or harvest year differences.

The 9 GC variables of 122 observations were used as the multivariate data set.
The data set were submitted to PCA to visualize the presence of principal groupings.

Figure 4.1 shows the score plot of lab scale extracted olive oil samples.
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Table 4.2. Fatty acid profiles (% of total fatty acids) of lab scale extracted olive oil samples

Variety C14:0 Cl6:0 Clé:1 C18:0 C18:1 C18:2 C18:3 C20:0 C22:0
2005
A 0.03£0.00 14.24+0.37 0.84+0.01 2.77+£0.09 69.58+0.44 11.22+0.11 0.45+£0.02 0.75+0.01 0.13+0.02
G 0.01+£0.00 14.01+0.75 0.93£0.07 2.92+0.06 70.67+1.21 10.13+0.39 0.39+0.03  0.78+0.02 0.15+0.06
M 0.02+0.00  14.95+0.73  0.89+0.05 2+0.08  66.32+0.96 14.5+0.72  0.35+0.04 0.86+0.01 0.11+0.03
E 0.01+£0.00 14.09+0.88 0.75+0.07 2.39+£0.09 66.44+1.59 14.95+0.85 0.38+0.02 0.86+0.03  0.12+0.02
N 0.01+£0.01 15.19+0.52 0.81+0.47 4.57+0.37 68.35£0.97 9.95+0.22 0.49+0.02 0.53+0.05 0.09+0.02
AE 0.02+£0.00 14.16+0.25 1.03+0.02 2.29+0.02 69.03+0.23 11.33+0.09 0.42+0.04 0.67+0.02 0.13+0.03
GE 0.01+£0.00 13.72+0.31 1.06+0.02 3.19+0.17 72.05+£0.31 8.88+0.21  0.37+0.04 0.59+0.01 0.14+0.06
2006
A 0.02+0.00 16.51+0.37 2.65+0.03 2.08+0.03 65+0.26  12.69+0.16 0.49+0.02 0.42+0.01 0.13+0.02
G 0.01+£0.00 14.45+0.45 2.07+0.21 3.37+0.39 71.2+1.65 7.82+0.66 0.49+0.02 0.48+0.02 0.12+0.01
M 0.02+0.00 12.71+0.62 1.29+0.03 2.13+0.10 72.88+0.61 10.01+0.16 0.46+0.01  0.4+0.02  0.12+0.01
E 0.02+0.00 14.62+0.31 1.6+0.04 2.28+0.07 63.57+£0.46 16.89+0.43 0.52+0.01 0.4+0.01  0.12+0.01
N 0.01+£0.00 14.98+0.65 1.54+0.02 5.1£0.19 67.21+0.66 10.14+£0.14 0.32+0.01 0.56+0.02 0.13+0.02
AE 0.02+£0.00 15.03+0.64 1.87+0.06 2.11+£0.09 66.29+£0.45 13.77+0.33 0.39+0.01  0.4+0.02  0.13+£0.02
GE 0.01+£0.00 13.48+0.40 2.08+0.09 3.13+0.12 72.95+0.53 7.41£0.12 0.39£0.01 0.43+0.02 0.11+0.01
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Figure 4.1. PCA score plot of the fatty acid profile of lab scale extracted olive oil

samples for two harvest years

In Figure 4.1, first PC accounted for 35.6% of total variation whereas second PC
explained much less 19.6%. In score plot the area inside the ellipse presents 95%
confidence. Some varieties were grouped together and differentiation of cultivars with
respect to harvest years was apparent.

Loading plot obtained from PCA of fatty acid data is represented in Figure 4.2.
Variables C18:1, C18:2, C18:3 and C16:1 were far from the origin and this means that
they have an important effect on the classification of oil samples with respect to
cultivar, geographical origin and harvest year. The high discrimination power of C16:0,
C18:1 and C18:2 were also stated in the classification of Sicilian cultivars with respect

to cultivar and geographical effects (D Imperio, et al. 2007).
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Figure 4.2. PCA loading plot of the fatty acid profile of lab scale extracted olive oil

samples

Coomans’ plot is an extremely useful tool to visualize principal groupings, in
which the two axes represent the distance of individual model. In Coomans’ plot; PCA
model of each class were built separately and two class models are plotted against each
other with the critical levels as straight lines displaying the boundaries. Any sample
having a distance to the corresponding centroid greater than the critical distance is
considered as being outside the class model and, as a consequence, rejected as an outlier
for the specific category. Coomans’ plot using fatty acid compositions was constructed

for discrimination of olive oil samples (Figure 4.3).
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Figure 4.3. Coomans’ plot for the classification of olive oil samples with respect to

variety and harvest year using fatty acid profile

PCs of 14 class models belonging to two harvest years were calculated
independently and general statistics of each model was listed in Table 4.3. Among
them, A2 and N2 models were preferred to be plotted against each other since they have
different fatty acid profile. Inspection of Figure 4.3 revealed that using fatty acid
profiles, each sample of A2 and N2 were correctly plotted in its critical limits apart from
the origin which indicates quite good discrimination of two models. Also, most of the
other models were identified as separate classes and placed in the outer space of A2 and
N2 models. Only N1 plotted in the GE2 class model. Also M2 and AE1, having similar
fatty acid compositions, can not be differentiated from each other. These observations
revealed that harvest year and cultivar significantly influence fatty acid composition of
olive oil. Usefulness of fatty acid composition in differentiation of Calabrian (Lanteri, et
al. 2002) and Sicilian (D'Imperio, et al. 2007) cultivars was also demonstrated

previously.
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Table 4.3. PCA class models developed with fatty acid profile and general statistics of

each class model

PCA class Number of  R*X(cum) PCA class  Numberof R’X(cum)

models PCs (%) models PCs (%)
Al 3 94.9 E2 3 78.6
A2 4 97.4 NI 1 75.8
Gl 2 88.9 N2 2 96.8
G2 3 92.7 AEl 2 84.2
M1 3 89.7 AE2 4 94.4
M2 3 92.8 GEl 3 94.7
El 4 98.3 GE2 2 61.5

R*X(cum): Cumulative sum of squares of all the X's explained by all extracted components

Also, effect of cultivar was studied by constructing A and G classes. Each class
includes samples belonging to two different growing locations (Izmir and Edremit) and
harvest years (2005/06 and 2006/07). PCA analysis was applied to each class. A class
was described with 2 PCs accounting for 74.6% of total variation whereas G class was
described with 7 PCs accounting for 99.6% of total variation. For A and G classes
Coomans’ plot is given in Figure 4.4. General examination of the Figure 4.4 reveals
successful discrimination of A and G classes except some samples of A. So, regardless
to growing location and harvest year, cultivar seems to have the ability in differentiation

of olive oil samples.
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Figure 4.4. Coomans’ plot for classification with respect to cultivar using fatty acid

composition (A: A, ®: G)

In order to investigate the effect of growing location on fatty acid profile, PCA

was performed separately on varieties A and G from two different areas (Izmir and

Edremit). The general statistics of each class models are presented in Table 4.4.

Coomans’ plot was constructed for both A-AE and G-GE including two consecutive

harvest years (Figure 4.5).

Table 4.14. PCA class models developed for location effect with fatty acid profile and

general statistics of each class model

PCA class Number of RZX(cum) PCA class Number of RZX(cum)
models of PC (%) models of PC (%)
A-AF S o G-GE 5 °
Al 3 94.6 Gl 3 96.3
A2 4 97.5 G2 3 934
AE1 2 84 GEl 4 87
AE2 4 92.7 GE2 2 84.2
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Figure 4.5. Coomans’ plot for classification with respect to geographical origin and
harvest year for (a) Ayvalik (b) Gemlik olive oil varieties using fatty acid

composition (A:A1-G1, m:AE1-GE1, @:A2-G2, V:AE2-GE2)
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Figure 4.5(a) displays Coomans’ plot in which A2 and AE2 plotted against each
other using fatty acid profiles. Samples of 2nd harvest year, A2 and AE2, were accepted
by their own class models. On the other hand, samples of 1st harvest year, A1 and AE1
were plotted among the critical limits of A2 and AE2 model. Similarly, quite successful
differentiation of G2 and GE2 is observed in Figure 4.5(b). According to these
observations, geographical origin and harvest year have significant influence on fatty
acid profile of the olive oil. A previous study on Sicilian olive oils suggested that
although the effect of the cultivar is predominant in the olive oil classification based on
the fatty acid composition, a minor but well defined geographic effect is also present
(D'Imperio, et al. 2007). In another study, Stefanoudaki, et al. (1999) was able to
discriminate olive oil samples with respect to growing location based on altitude and
also stated that at low-altitude areas, other environmental factors such as relative

humidity and rainfall significantly differ.

4.1.2. Classification using FT-IR Data

FT-IR has become an emerging tool with the advantages of short analysis time
and easy sample preparation for the authentication and classification of olive oil. Figure

4.6 illustrates typical olive oil spectra obtained in this study.
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Figure 4.6. Typical olive oil FT-IR spectrum
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In mid-IR spectrum, the peaks around 2950-2800 cm™ region are due to C-H
stretching vibrations of -CH; and —CH, groups. The large peak around 1745 cm™ results
from C=0O double bond stretching vibration of carbonyl groups. Peaks around 1470-
1200 cm™ region corresponds to CH bending of —CH; and —~CH,. Fingerprint region lay
between 1250-700 cm™ which is due to stretching vibration of C-O ester group and CH,
rocking vibration (Harwood & Aparicio 2000). The entire spectral profiles of each olive
oil sample used in this study were similar. Thus, 3520-2520 cm™ and 1875.5-675 cm’™
spectral ranges, where some differences were observed in the absorbance units, were
used in data analysis. Wavelet analysis was applied as a compression technique to
spectral data to increase the computational efficiency and also to enhance the
classification studies. 125 observations were manipulated with PCA and score plot of
first two PCs was illustrated in Figure 4.7. The first and second PCs described 49% and

18.5% of total variation, respectively.
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Figure 4.7. PCA score plot of the spectral data of lab scale extracted olive oil samples

Although samples of same varieties of 1% or 2" harvest year such as E, GE and
AE were grouped separately, most varieties could not be differentiated from each other.
So, Coomans’ plot was constructed to more apparently visualize the discrimination of

samples with respect to varieties or years (Figure 4.8). 14 class models were developed
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and overall statistics of these models was given in Table 4.5. Actually, each sample of
A2 and N2 were placed on its own model region. However, in the outer space of A2 and
N2 models, the only classification was observed for sample groups of AE2 and GE2,
and most of the other samples were completely spread not showing any groupings.In an
another study, Bendini, et al. (2007) used fingerprint region of FT-IR spectra with PCA
to classify monovarietal olive oil samples from different regions of Italy belonging to
only 2004 harvest year and was able to discriminate most of monovarietal virgin olive
oil samples. To demonstrate the discrimination ability of harvest year, each variety
belonging to two consecutive harvest years were also plotted against each other on the
same graph and results revealed that all cultivars could be differentiated according to
harvest year. Further application of PCA on spectral data of olive varieties for each
harvest year separately reveals better differentiation of cultivars using Coomans’ plot.
Boggia, et al. (2002) stated that variation of climatic conditions from one year to the

next affects the olive oil quality.
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Figure 4.8. Coomans’ plot for the classification of olive oil samples with respect to

variety and harvest year using spectral data
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Table 4.5. PCA class models developed for FT-IR classification data and general

statistics of each class model

PCA class  Numberof  R’X(cum) PCA class Number of  R*X(cum)

models PCs (%) models PCs (%)
Al 3 91.8 E2 5 95.5
A2 5 97 N1 3 93.1
Gl 2 74.5 N2 2 96.8
G2 4 93.3 AEl 2 88.6
M1 3 94.1 AE2 5 91.8
M2 2 72.8 GEl 2 84.8
El 4 96.9 GE2 3 85.6

In order to observe the effect of cultivar, A and G classed were created
regardless to the growing location and harvest year. PCA was applied to each class and
Coomans’ plot was constructed. Since two classes could not be discriminated from each
other, the plot was not given. In conclusion FT-IR spectra manipulated with PCA do not
have the ability to differentiate the cultivars A and G regardless to the growing location
and harvest year.

Figure 4.9 represents Coomans’ plot constructed using mid-IR spectra to
differentiate A & G varieties grown in two different regions. Each plot employed 4 class

models and general statistics was given in Table 4.6.
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Figure 4.9. Coomans’ plot for classification with respect to geographical origin and
harvest year for (a) Ayvalik (b) Gemlik olive oil varieties using spectral

data (a: A1-G1, m: AEI-GE1, ®: A2-G2, v: AE2-GE2)
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Table 4.6. PCA class models developed for location effect with FT-IR data and general

statistics of each class model

PCA class Number of  R*X(cum) PCA class Number of  R*X(cum)
models of PC (%) models of PC (%)
A-AE 5 ° G-GE 5 °
Al 3 89.5 Gl 2 75.9
A2 5 94.6 G2 5 95.3
AFEl1 2 86.3 GE1 2 83.3
AE2 6 86.2 GE2 3 84.7

Although, most samples of the A2 and AE2 classified correctly (Figure 4.9(a)),
some samples of G2 were plotted beyond its critical limits (Figure 4.9(b)). A clear
discrimination can not be observed between A and AE, G and GE for the 1°' harvest
year. In another study (Tapp, et al. 2003), more distinct differentiation compared to our
study was achieved using FT-IR, however olive oil samples from different countries
which possessed more variable chemical properties were used.

Results show that application of PCA to fatty acid composition is quite
successful for the classification of olive oil samples with respect to variety,
geographical origin and harvest year. On the other hand, mid-IR spectra can not supply
distinct varietal, geographical or seasonal grouping as much as fatty acid composition
does. Nevertheless with the advantage of rapid and easy analysis ability, FT-IR can be

used for the more general authentication issues with respect to harvest year and variety.

4.2. Classification of Commercial Olive Oils

Commercial olive oil samples belonging to North (N) and South (S) Aegean
regions were obtained in 2005/06 (1) and 2006/07 (2") harvest years. Table 4.7
presented free fatty acidity value of the samples. The acidity of the analysed samples
was not higher than 1 except Men variety of the 1* harvest year whose acidity was
determined as 1.2. On the other hand, fatty acid profile and spectral data implied
differences among not only N and S geographical origins but also 1** and 2™ harvest
years. Thus, chemometric analysis was applied on GC and FT-IR data to differentiate

samples according to geographical origin and harvest year.
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Table 4.7. Free fatty acid values of commercial olive oils expressed as % oleic acid

2005-2006 2006-2007
Sample code (OAA)C(i)(liéEZ) Sample code (OAA)c(i)(ligz) Sample code (°AA>C(i>clieizti}c]) Sample code ((Zc(i)cliétiz)
North Ez 0.44 Hav 0.52 Ez 0.42 Ayv 0.40
Ez-orgl 0.33 Bur 0.43 KucKuy 0.33 Altova 0.32
KucKuyl 0.48 Gom 0.40 Altol 0.40 Zey 0.55
KucKuy2 0.56 Ayv 0.60 Edr 0.41
Altol 0.38 Altova 0.57 Hav 0.36
Altol-sulbas 0.37 Zey 0.60 Bur 0.38
Edr 0.38 Gom 0.44
South Akh 0.86 Mil 0.86 Tep 0.22 Ort 0.25
Men 1.20 Bay 0.83 Kosk 0.36
Tep 0.31 Ode 0.34 Dal 0.28
Bay 0.77 Tire 0.31 Koc 0.34
Sel 0.38 Sel 0.46 Erb 0.39
Ayd 0.84 Kus 0.59 Cine 0.26
Ort 0.72 Ger 0.35 Mil 0.52
Koc 0.84 Ayd 0.26

Ly




4.2.1. Classification using GC Data

The fatty acid profiles of commercial olive oil samples belonging to 1% and 2™
harvest years were given in Table 4.8 and 4.9, respectively. Fatty acid content of each
sample was the average of at least two GC measurements. For the 1% harvest year,
content of oleic acid was the highest for Kuckuy1 (72.18%) and lowest for Men (69.82
%) while for 2" harvest year it was at its highest amount for Tire (75.29%) and lowest
amount for Kuckuy (70.20%). Inspection of Table 4.8 and 4.9 revealed that oleic acid
was at higher amounts for the oils obtained from South than North for both 1% and 2™
harvest years. As the most abundant saturated fatty acid, palmitic acid was higher for
North than South in both years. Also, content of linoleic acid was higher for 1** harvest

year compared to 2™ year.
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Table 4.8 . Fatty acid profiles (% of total fatty acids) of commercial olive oil samples belonging to 2005/06 harvest year

C14:0 C16:0 Cl16:1 C18:0 C18:1 C18:2 C20:0 C18:3 C22:0

North
Ez 0.02+0.00 13.26+0.01 0.704+0.00 2.77+0.01 71.99+0.09 10.09+0.05 0.58+0.02 0.46+0.03 0.1440.02
Ez-org 0.02+0.01 12.75+0.03 0.57+0.00 2.87+0.03 70.97+0.08  11.57+0.01 0.67+0.02 0.47+0.00 0.11+0.02
Kuckuyl 0.02+0.00 13.28+0.03 0.68+0.01 2.81+0.01 72.18+0.10  9.84+0.05 0.60+0.02 0.4340.03 0.15+0.02
Kuckuy?2 0.02+0.00 12.79+0.06  0.59+0.01 3.08+0.03 71.38+0.07 10.82+0.04  0.68+0.02 0.46+0.04 0.17+0.05
Altol 0.02+0.00 13.35+0.02 0.69+0.01 2.78+0.01 72.11+0.02 9.89+0.03 0.62+0.02 0.44+0.05 0.10£0.02
Altol-sb 0.02+0.01 12.40+0.03 0.60+0.01 3.00+0.03 71.82+0.05  10.87+0.02 0.63£0.01 0.48+0.02 0.17+0.03
Edr 0.02+0.00 13.32+0.02  0.68+0.00 2.80+0.01 72.04+£0.09  9.92+0.04 0.61+0.01 0.45+0.00 0.17+0.04
Hav 0.02+0.00 12.92+0.01 0.59+0.00 3.19+0.01 71.45£0.06  10.50+£0.06  0.69+0.00 0.50+0.03 0.14+0.01
Bur 0.02+0.00 13.1440.05 0.62+0.01 2.93+0.02 71.87+0.02 10.11+0.02 0.65+0.02 0.49+0.03 0.17+0.05
Gom 0.02+0.01 13.16+0.02 0.63+0.01 2.95+0.02 71.86+0.14 10.12+0.07 0.65+0.02 0.46+0.02 0.144+0.01
Ayv 0.02+0.00 13.28+0.09 0.64+0.01 2.93+0.02 71.69+0.70 10.18+0.05 0.67+0.01 0.46+0.00 0.13+0.01
Altov 0.02+0.00 13.15+0.03 0.66:0.01 2.91+0.02 71.58+0.13  10.48+0.02 0.60+0.01 0.45+0.03 0.14+0.03
Zey 0.04+0.03 12.72+0.10  0.61+0.01 3.07+0.03 71.33+0.15 10.86+0.04  0.68+0.02 0.5140.01 0.18+0.08

South
Akh 0.02+0.00 13.19+£0.22  0.68+0.04 3.28+0.52 71.81£0.20  9.75+0.55 0.68+0.03 0.45+0.00 0.13%0.01
Men 0.02+0.00 12.80+0.04 0.75+0.00 3.65+0.02 69.82+0.10 11.69+0.04 0.71+0.01 0.45+0.04 0.11+0.02
Tep 0.02+0.00 12.68+0.04 0.83+0.00 3.25+0.01 71.60+0.21 10.40+0.05 0.65+0.32 0.46+0.03 0.11+0.01
Bay 0.02+0.00 12.2+0.03 0.65+0.01 2.9240.01 74.39+0.01 8.42+0.05 0.78+0.00 0.44+0.02 0.12+0.01
Sel 0.02+0.00 12.48+0.01 0.73+0.00 3.33+0.02 70.36+0.04 11.76+0.02 0.78+0.00 0.41+0.02 0.14+0.05
Ayd 0.02+0.00 12.63+0.13 0.70+0.02 3.06+0.04 72.60+0.27 9.63+0.04 0.76+0.01 0.47+0.02 0.14+0.03
Ort 0.02+0.00 12.31+0.07 0.76+0.01 3.28+0.01 73.03+0.15 9.34+0.07 0.72+0.02 0.42+0.01 0.12+0.06
Koc 0.02+0.00 12.26+0.30 0.69+0.01 3.394+0.18 73.51+£0.38 8.87£0.12 0.67+0.01 0.46+0.03 0.124+0.04
Mil 0.02+0.00 12.06+0.05 0.69+0.01 2.70+0.02 72.99+0.11 10.13+0.02 0.83+0.01 0.4440.01 0.13+0.02




0s

Table 4.9. Fatty acid profiles (% of total fatty acids) of commercial olive oil samples belonging to 2006/07 harvest year

C14:0 C16:0 C16:1 C18:0 C18:1 C18:2 C20:0 C18:3 C22:0

North
Ez 0.01£0.00 14.08+£0.26 1.36+0.00 2.57+0.06 70.33+£0.22 10.72+0.10 0.344+0.01 0.46+0.01 0.1440.01
Kuckuy 0.02+0.00 12.99+0.01 1.08+0.00 2.77+0.01 70.20+£0.06  11.93%0.05 0.37+0.00 0.48+0.01 0.16+0.03
Altol 0.02+0.00 13.48+0.12 1.1740.01 2.72+0.02 71.03+0.16 10.47+0.03 0.4340.00 0.51+0.01 0.16+0.01
Edr 0.02+0.00 13.09+0.25 1.10+0.01 2.76£0.09  71.65+0.29  10.34+0.06  0.39+0.00 0.50+0.00 0.15+0.01
Hav 0.02+0.00 12.62+0.05 0.99+0.01 2.87+0.03 71.74+0.05 10.71£0.07  0.39+0.00 0.50+0.01 0.15+0.00
Bur 0.02+0.00 12.92+0.06 1.03+0.00 2.85+0.02 70.92+0.11 11.22+0.05 0.39+0.00 0.50+0.01 0.15+0.01
Gom 0.02+0.00 13.18+0.22 1.04+0.01 2.924+0.09 70.51+0.26 11.2620.07 0.39+0.00 0.51+0.02 0.160.02
Ayv 0.02+0.00 13.49+0.04 1.17£0.02 2.744+0.03 70.73+0.12 10.84+0.01 0.39+0.00 0.49+0.00 0.14+0.01
Altov 0.02+0.00 13.16£0.26 1.17£0.02 2.78+0.08 71.71+0.52 10.10+0.32 0.42+0.01 0.49+0.01 0.15+0.02
Zey 0.02+0.00 12.61+0.01 1.06+0.02 2.69+0.01 71.99+0.02  10.62+0.01 0.38+0.00 0.48+0.01 0.15+0.00

South
Tep 0.02+0.00 12.76+0.50 1.194+0.01 2.70+0.12 74.30+0.46 7.89+0.15 0.48+0.01 0.50+0.00 0.16+0.00
Bay 0.02+0.00 11.49+0.04 1.04+0.00 2.46+0.02  75.17+0.03 8.79+0.04 0.47+0.00 0.44+0.00 0.1240.00
Ode 0.02+0.00 11.50+0.08 1.13£0.01 2.75+0.04 74.13+£0.12 9.41+0.04 0.48+0.00 0.46+0.01 0.13+0.01
Tire 0.02+0.00 12.03+0.07 1.094+0.01 2.354+0.02 75.29+0.10 8.160.04 0.49+0.01 0.4440.01 0.13+0.01
Sel 0.02+0.00 12.36+0.23 1.14+0.03 2.76+0.12 74.21+0.60 8.46+0.69 0.454+0.02 0.47+0.01 0.15+0.03
Kus 0.02+0.00 11.59+0.03 0.90+0.00 2.81+0.01 74.61£0.05  9.07+0.04 0.43+0.00 0.46+0.00 0.12+0.01
Ger 0.02+0.00 12.77+0.13 1.26+0.01 2.72+0.05 72.86+0.20 9.254+0.06 0.51+0.00 0.48+0.01 0.13+0.01
Ayd 0.02+0.00 12.73+0.81 1.11+0.03 2.99+0.23 73.244+0.89 8.78+0.18 0.47+0.02 0.50+0.03 0.15+0.03
Ort 0.02+0.00 12.62+0.40 1.274£0.15 2.67+0.21 73.76+0.29 8.56+0.61 0.49+0.01 0.47+0.01 0.13+0.01
Kosk 0.02+0.00 11.51+£0.03 1.12+0.01 2.74+0.02 74.14+0.06 9.40+0.03 0.48+0.02 0.46+0.00 0.12+0.01
Dal 0.02+0.00 11.50+0.02 1.06+0.01 2.83+0.01 74.63£0.06  8.89+0.05 0.48+0.00 0.47+0.01 0.13+0.00
Koc 0.02+0.00 12.10+0.03 1.09+0.01 2.76+£0.00 74.184+0.05 8.80+0.05 0.46+0.01 0.47+0.02 0.12+0.01
Erb 0.02+0.00 11.52+0.07 1.07+0.03 2.75+0.02 74.36+0.1 9.224+0.06 0.48+0.00 0.45+0.02 0.13+0.01
Cine 0.02+0.00 12.08+0.57 1.09+0.03 2.73+0.13 74.28+0.50 8.75+0.02 0.46+0.01 0.47+0.02 0.12+0.00
Mil 0.02+0.00 12.81+0.82 1.15+0.01 2.69+0.17 72.19+0.81 10.06+0.19 0.48+0.02 0.47+0.03 0.12+0.02




The data including 9 GC variables were submitted to PCA to visualize the
presence of principal groupings. The PC modelling resulted in a model with 2 PCs
where first and second PCs explaining, 33.8% and 26.7% of total variation,
respectively. Figure 4.10 is the score plot of olive oil samples belonging to N and S
regions obtained at two consecutive harvest years. The discrimination of olive oil
samples with respect to geographical origin was very clear for 2" harvest year.
However, some samples of S1 can not be differentiated from sample group of N1 in
score plot. On the other hand, harvest year seemed to have quite good ability on
differentiation. Variation of chemical composition in two consecutive years can be due
to changes in climatic conditions (rainfall, temperature and humidity) (Aparicio and

Luna 2002).

PC 2
o

Figure 4.10. PCA score plot of the fatty acid profile of commercial olive oil samples
(N1: olive oils from north in 2005/06, S1: olive oils from south in 2005/06,
N2: olive oils from north in 2006/07, S2: olive oils from south in 2006/07)

Figure 4.11 showed the loading plot of first 2 PCs. In the first component,

dominating fatty acids were C18:1 and CI18:2 which were responsible from the
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separation of N from S. First PC with the contribution of second PCs brings the
information of variables C16:1 and C20:0 and these fatty acids were encoded for
harvest year discrimination. Thus, the model interpretation suggested that samples of S
had higher C18:1 content compared to samples of N. Also, C16:1 was lower for 2™

harvest year, whereas C20:0 was higher for the same year.
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Figure 4.11. PCA loading plot of the fatty acid profile of commercial olive oil samples

Coomans’ plot was constructed for the classification of samples using fatty acid
profiles (Figure 4.12). Four PCA classes (N1, SI, N2 and S2) were calculated
independently and N2 and S2 as the class were plotted against each other. The number
of PCs and R*X (cum) of the each PCA class model were given in Table 4.10.
Examination of Coomans’ plot revealed that only few samples belonging to N2 and S2
were drawn in the outside of their critical limits. Samples of N1 and S1 were identified
as two different classes correctly placed in the outer space of N2 and S2 models.
According to this plot, analysis of fatty acids with PCA has the ability to discriminate
oil samples with respect to geographical origin and harvest year. A study on Cornicabra

virgin olive oil also revealed significant statistical differences in quality indices, major
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fatty acids and sterol compositions with respect to the year of production, with the

exception of total phenols (Salvador, et al. 2003).

Table 4.10. PCA class models for fatty acid profile of commercial olive oils and general

statistics of each class model

PCA class models Number of PCs RZX(cum) (%)
N1 3 79.9
N2 3 83.9
S1 2 59
S2 3 81.9
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Figure 4.12. Coomans’ plot of the fatty acid profile of commercial olive oils for the

discrimination with respect to geographical origin and harvest year (A: N2,

m: S2, ®: N1, v:S2)
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4.2.2. Classification using FT-IR Data

The entire range of spectra looks almost similar for each olive oil sample unless
one observes very closely. Multivariate data analysis is therefore required to extract the
relevant information from these spectra. Spectral compression (Wavelet analysis) was
applied to reduce the size of spectral data which increase the efficiency of the model.
PCA was performed with data set containing 115 observations and score plot was

constructed (Figure 4.13).
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Figure 4.13. PCA score plot of spectral data of commercial olive oil samples (N1: olive
oils from north in 2005/06, S1: olive oils from south in 2005/06, N2: olive
oils from north in 2006/07, S2: olive oils from south in 2006/07)

First and second PCs described 37.8% and 13.3% of total variation, respectively.
A careful analysis of the graph allowed separation of N from S with some exceptions of
S placed in between the samples of N. On the other hand samples of 1* harvest year
were generally plotted in the left whereas 2™ harvest year placed in the right side of the

scores plot. Coomans’ plot was constructed to represent the discrimination of samples
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with respect to variety and harvest year (Figure 4.14). The plot consisted of N1, S1, N2
and S2 PCA class models where N2 and S2 as the class models placed against each
other. The number of PCs and R’X (cum) of the each PCA class model were given in
Table 4.11.
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Figure 4.14. Coomans’ plot of the FT-IR spectra for the discrimination with respect to

geographical origin and harvest year (A :N2, m:S2, :N1, ¥:S2)

Analysis of Figure 4.14 revealed that discrimination of N2 and S2 was achieved
except some samples. The samples of N1 and S1 were correctly plotted beyond the
critical limits of N2 and S2 models but they can not be differentiated from each other

very well.
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Table 4.11. PCA class models and general statistics of each class model

PCA class models Number of PCs R*X (cum) (%)
N1 6 82.9
N2 6 81.7
S1 6 85.7
S2 6 81.7

Although the ability of FT-IR for the differentiation of olive oil samples with
respect to geographical origin is low, different harvest years can be sufficiently
identified. When compared with spectral data fatty acid profile obtained from GC
supplied more discrete chemical information for the classification of commercial olive

oils with respect to geographical origin.

4.3. Relation between FT-IR Profile-Free Fatty Acid Value and FT-IR
Profile-Fatty Acid Profile Obtained with GC Measurement

Each olive oil type has its own fatty acid profile and spectral property. It is
stated that spectral features of oils vary with the degree of unsaturation (Harwood and
Aparicio 2000). In addition, FFA content is one of the most important factors for the
determination of quality and economic value of olive oils. The importance of providing
fast and accurate methods to identify quality parameters such as fatty acid profile and
FFA content has been recently stressed (Inén, et al. 2003). FT-IR is a rapid analysis
technique that implies the differences between chemical composition and structures of
oil samples. Therefore, manipulation of FT-IR data with chemometrics was studied for
the determination of FFA values and fatty acid profile of olive oil samples.

PLS analysis was applied to data to check whether there is a correlation between
FT-IR spectra vs. fatty acid profile and FFA value of olive oils obtained with traditional
analysis techniques. The spectral data vs. fatty acid profile and FFA value of both
extracted and commercial olive oil were included in the analysis. The data set was
divided into calibration and validation sets with 60 and 27 observations, respectively. In
order to enhance the predictive power of the PLS models, OSC was applied to remove

systematic variation in X (spectral data) that is not related with Y (fatty acid
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percentage). Wavelength compression was also selected to increase the efficiency and
speed. Using PLS algorithm, fatty acid profile and FFA of each olive oil sample was
predicted relating spectral data (X variable) with fatty acid data and FFA (Y variables)
obtained with analytical methods. The PLS regression analysis was resulted in 6 PCs
explaining 79.2% of total variation (Y) with a predictive ability of 70%. As the major
fatty acid of olive oil ranging between 66-75% in our samples predicted and actual
percentages of C18:1 for calibration and validation sets was illustrated in Figure 4.15.
The R? (cal) is 0.98 which indicated good prediction of C18:1 percentage from spectral
data. In order to test the predictive ability, the values of validation set were predicted
using the proposed model. Although R? value (0.93) of the validation set was lower,
quite good prediction of oleic acid amount (%) was achieved with the proposed PLS

model.
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Figure 4.15. PLS regression of actual vs. predicted oleic acid percentage of the
calibration set and validation sets (R* (cal): regression coefficient of the

calibration set)

C16:0 constitutes the highest proportion of saturated fatty acids ranging from
11.5 to 16.5% of total fatty acids of the analysed samples. The observed vs. predicted
C16:0 percentage of the calibration determined using PLS regression, was shown in

Figure 4.16. The predictive ability of PLS model for C16:0 was lower than C18:1. Also,
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obtained PLS regression for C16:0 was tested with validation set (Figure 4.16) and

resulted in R? value of 0.71.
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Figure 4.16. PLS regression of actual vs. predicted palmitic acid percentage of the

calibration and validation sets

The regression curve was plotted and validation step was applied for each fatty
acid. The R? values of calibration set and error criterions (SEC, SEP and REP) were
given in Table 4.12. REP value was selected as the error criterion to decide applicability
of spectral data in determination of fatty acid content. Best results were obtained for the
MUFAs and C18:1 with REP value lower than 2%. MUFAs are important because of
their nutritional implication (Aguilera, et al. 2005) and C18:1 is the characteristic
MUFA of olive oil. Also, REP was lower than 5% for C16:0 which is the highest
amount of saturated fatty acid of olive oil. Good predictions were achieved for C18:2
and PUFA with REP values around 5%. However REP values were quite high for other
fatty acids. Higher amount fatty acids seemed to have high R?, SEC and SEP values
whereas their REP values were quite low. So, they performed better in terms of PLS
model efficiency compared to lower amount fatty acids. In overall consideration,
MUFAs constituting highest proportion can be predicted best from the MIR data
followed by SFAs and PUFAs. Galtier and Dupuy (2007) reported similar results using

NIR data for fatty acid profile determination of virgin olive oils.
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Table 4.12. Summary of proposed PLS model of the regression between FT-IR spectra

and fatty acid profile for both calibration and validation sets

Fatty acid  Fatty acid range % R*(cal)® R*(val)® SEC® SEP!  REP®

C14:0 0.01-0.03 0.25 0.22 0.0033 0.0085 22.23
Cl16:0 11.49-16.51 0.85 0.71 0.43 0.66 4.87
Cleé:1 0.57-2.65 0.93 0.81 0.13 0.23 19.32
C18:0 2-4.57 0.83 0.55 0.23 0.41 16.63
C18:1 63.57-75.29 0.97 0.93 0.48 0.97 1.39
Cl18:2 7.41-16.89 0.97 0.93 0.38 0.66 6.04
C20:0 0.34-0.86 0.69 0.64 0.07 0.07 14.87
C18:3 0.32-0.52 0.83 0.56 0.06 0.07 14.89
C22:0 0.11-0.18 0.11 0.18 0.02 0.02 13.63
SFA' 14.4-20.55 0.97 0.79 0.37 0.6 3.53
MUFA® 64.72-76.2 0.97 0.94 0.49 0.86 1.21
PUFA" 7.68-17.74 0.98 0.94 0.37 0.63 5.53

*PLS regression correlation coefficient for calibration samples, "PLS regression correlation coefficient for
validation samples, C“standard error of calibration, ¢ standard error of prediction, °relative error of
prediction, ‘saturated fatty acids, monounsaturated fatty acids, "polyunsaturated fatty acids

The PLS regression model of FFA values ranging from 0.3 to 1.2 was given in
Figure 4.17. Using the calibration set, PLS model resulted in R* and SEC values given
as 0.89 and 0.08, respectively. These values indicated good prediction of FFA value
from spectral data. The validation of the proposed PLS regression for FFA was
accomplished by evaluation of the validation data set. The results of the PLS regression
of the validation set was also illustrated in Figure 4.17. R* and SEP values were
determined as 0.84 and 0.085, respectively. These values indicated successful

presentation of FFA values using FT-IR spectra.
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Figure 4.17. PLS regression of actual vs. predicted FFA of the calibration and validation

sets

In other studies specific regions of FT-IR spectra were used for the FFA
determination and similar results were obtained. In the previous studies, wider % free
fatty acid range was employed by adding oleic acid to olive oil samples (Ifion, et al.
2003; Bertran, et al. 1999, Bendini, et al. 2007, Ismail, et al. 1993). According to the
results reported in this study and obtained by other authors also, use of FT-IR
spectroscopy with chemometrics is determined as a good alternative to standard
methods for FFA percentage analysis of olive oils belonging to different categories and
origin.

Multivariate analysis of FT-IR data has the potential to predict some of the fatty
acids and FFA value of the virgin olive oil samples. Therefore, with the advantage of
simple and rapid sample analysis ability, FT-IR is applicable for quick determination of

characteristic fatty acids and FFA value.
4.4. Determination of Adulteration

Adulteration was performed either by mixing N monovariety with AE and E
monovarieties or by mixing hazelnut, sunflower-corn binary mixture, cottonseed and

rapeseed oil with olive oil. PCA was applied to differentiate non-adulterated olive oil

from adulterated oils. Scores and Coomans’ plot were constructed to visualize
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differentiation. Moreover, quantification of adulterant in the mixture was determined by
PLS. To test the performance of PLS, cross validation was conducted for monovarietal
olive oil adulteration due to low number of samples. On the other hand, calibration
model was developed and tested by validation set for hazelnut, sunflower-corn,

cottonseed and rapeseed adulteration.

4.4.1. Monovarietal Olive Oil Adulteration

For monovarietal adulteration, blends of varieties AE-N and E-N were prepared.
Each cultivar yields high amounts of oil (monovarietal) and AE variety has an important
economic potential with its high quality oil in Turkish market and is preferred by
consumers due to its sensory characteristics. E has also a promising economic value.
While AE and E are widely cultivated in West part of Turkey, N is a cultivar grown in
Southeast region of Turkey and has different sensory characteristics than AE and E.

PCA was performed initially to extract information and to examine the
qualitative differences of samples. There were two distinct data sets containing 19 and
20 observations belonging to spectral data of AE-N and E-N mixtures, respectively.
Wavelet analysis was performed for compression of the spectral data containing more
than 4000 variables to increase the efficiency and computational speed. Scores plots for
the first two PCs explaining 72.1% of total spectral variation for AE-N model and
77.9% of total spectral variation for E-N model were constructed (Figure 4.18).
According to Figure 4.18(a), samples of pure AE were distributed in the right while AE-
N mixtures were placed in the left side. Similar grouping was also observed for E-N
model except for samples containing 2% N which overlap with pure samples (Figure
4.18(b)). Thus in the further analysis 2% N was excluded from observations of E-N

mixture.
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Figure 4.18. PCA scores plot of (a) AE-N and (b) E-N mixtures (na indicates non-

adulterated samples, numbers near a notation indicates adulteration %)
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Figure 4.19(a) represents Coomans’ plot of AE-N model with 4 PCs for
adulterated and 2 PCs for non-adulterated classes describing 79% and 86.9% of total
variation, respectively. AE samples were successfully discriminated from samples of
AE-N mixtures. On the other hand, PCA of E and E-N class models yielded 3 PCs
explaining 92% and 4 PCs explaining 96.7% of total spectral variation, respectively.
Differentiation of E from E-N mixture was represented in Figure 4.19(b). Samples of
AE-N mixture were placed in its region far from the samples of AE which exhibits
better differentiation than E-N model. This could be due to a more pronounced

difference in chemical structure composition of AE and N.
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Figure 4.19. Coomans’ plot for the discrimination of (a) AE from AE-N mixture (b) E
from E-N mixture (# AE and E A AE-N and E-N mixture)

(cont. on next page)
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Figure 4.19. (cont.) Coomans’ plot for the discrimination of (a) AE from AE-N mixture
(b) E from E-N mixture (e AE and E A AE-N and E-N mixture)

Quantification of the percentage of N in AE-N and E-N oil mixtures was
performed using PLS algorithm. The data set to be analysed contains 19 and 17
observations belonging to AE-N and E-N models, respectively. The predictive ability
and R? values of the models were sufficient. However, to enhance the predictive power
of the PLS models, OSC was applied to remove systematic variation in X (spectral data)
that is not related with Y (percent adulteration), and also wavelength compression was
selected to increase the efficiency and speed. The PLS regression analysis resulted in 2
PCs explaining 99.5% and 99.4% of variation (Y) with a predictive ability of 98.6% and
96.9% for AE-N and E-N data sets, respectively. The Figure 4.20 shows the
concentration values obtained from PLS models versus actual concentration of N in E

and AE.
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The difference between the actual concentration and the predicted N
concentration is small and correlation coefficients, R2, for the observed vs. predicted
curves are 0.99 for N in AE and 0.99 for N in E. In order to validate the developed
models, cross validation was applied by removing one sample at a time. The removed
sample was predicted with model created using the remaining observations and the
procedure was repeated until each sample was excluded once. N content (%) in AE and
E predicted from PLS model using cross validation was given in Table 4.13. SEP and
R? parameters were employed to evaluate the goodness of fit of the cross validation data
set, and these values were calculated with respect to the results of cross validation.
Cross validation results of AE-N model yielded 0.9 as SEP value and 0.98 as R? value
whereas E-N model resulted in 1.22 as SEP and 0.97 as R” values. High coefficient of
determination and low SEP values indicate success of the PLS regression models. The
PLS regression model appears to have a reasonable ability to estimate the N percentage
in AE even at percentages about 5. Also N amount in E could be determined at a level >

5%.

Table 4.13. Predicted (obtained by cross validation) and actual N content in AE and E

samples using PLS model

Actual N Predicted N Actual N Predicted N
content [%] in AE  content [%] in AE  content [%] in E  content [%] in E
0 -0.55 0 -1.86
0 -0.46 0 -1.03
0 4.05 0 0.51
0 3.9 0 -0.13
2 2.63 0 4.12
2 2.83 0 -0.64
2 1.79 5 5.53
5 5.94 5 5.57
5 4.32 5 6.93
5 5.50 10 9.85
10 10.19 10 10.22
10 10.42 15 15.60

(cont. on next page)
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Table 4.13. (cont.) Predicted (obtained by cross validation) and actual N content in AE

and E samples using PLS model

Actual N Predicted N Actual N Predicted N
content [%] in AE  content [%] in AE  content [%] in E  content [%] in E

10 11.45 15 14.22
15 15.17 15 15.33
15 14.78 20 19.32
15 12.75 20 19.85
20 19.42 20 19.26
20 19.46

20 19.16

4.4.2. Hazelnut Oil Adulteration of Olive Oil

The olive oil and hazelnut oil spectra were given in Figure 4.21. As olive oil and
hazelnut oil sample looks similar along the entire wavelength range, distinct spectral
zones were shown in Figure 4.21 to better visualize the differences of two spectra.
However, any notable difference between olive and hazelnut oil spectra can not be
observed because they have quite similar chemical profile. As the spectra of hazelnut
and olive oil can not be differentiated to the naked eye, PCA was employed to be able

extract relevant information from spectral data.
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Figure 4.21. The spectra of olive oil and hazelnut oil around (a) 3080-2800 cm” (b)

2875.5-675 cm "' regions (— olive oil, — hazelnut oil)

PCA was applied to data set containing 148 observations including both non-adulterated

and hazelnut oil adulterated olive oil samples. Non-adulterated samples included
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commercial olive oil samples of both North and South Aegean region. Adulterated
samples were obtained by adulterating North and South olive oil between 2-50%.
Wavelet analysis was applied for the compression of spectral data. Scores plot with 2

PCs describing 75% of total variance was constructed (Figure 4.22).
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Figure 4.22. PCA scores plot of non-adulterated olive oil (na) and adulterated olive oil

(a) samples (numbers near a notation indicates adulteration %)

A careful examination of Figure 4.22 revealed distinct grouping of non-
adulterated and adulterated samples except for the samples containing hazelnut oil
lower than 10%. Therefore, 2 and 5% adulterated samples were excluded and Coomans’
plot was constructed to observe the differentiation of non-adulterated olive oil class
with 4 PCs accounting for 0.79 of total variance from adulterated olive oil samples with

4 PCs accounting for 0.83 of total variance (Figure 4.23).
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Figure 4.23. Coomans’ plot for the classification of olive oil and hazelnut adulterated

olive oil samples (® olive oil A hazelnut oil adulterated olive oil)

Most samples of pure and adulterated olive oil were correctly plotted in their
critical limits. However some samples were placed in the region where they could be
classed as neither pure nor adulterated oil. Ozen and Mauer (2002) also studied hazelnut
oil adulteration of olive oil with FT-IR spectra in combination with chemometrics but
could not detect olive oil adulteration with 5-20% hazelnut oil. In another study,
hazelnut adulteration at a level >8% could be detected analysing unsaponifiable matter
with FT-MIR in combination with stepwise linear discriminant analysis (Beaten, et al.
2005).

Quantification of hazelnut oil content in adulterated oil samples was performed
using PLS algorithm with the same data set. However, as pointed in PCA part, samples
containing 2 and 5% hazelnut oil were excluded from the observations. The samples of
all the adulterated and pure olive oils were randomly divided into a calibration and a
validation set. OSC was applied to remove systematic variation in X (spectral data) that
is not related with Y (percent adulteration) and also wavelength compression was
selected to increase the efficiency and speed. Calibration set consisted of 104 samples

while the validation set included 31 samples. The model was fitted successfully using 2
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PCs which explained 98.6% variation of Y (% hazelnut oil) with a predictive ability of
98.4%. The predicted and actual hazelnut oil amount was presented in Figure 4.24. The
calculated R* and SEC values were 0.99 and 2.1, respectively. These values indicated
good prediction of hazelnut oil percentage from spectral data. The validation of the
proposed PLS regression was accomplished by evaluation of the validation data set
(Figure 4.24). R* and SEP values, as an indication of goodness of the validation, were
determined as 0.97 and 3.1. Peiia, et al. (2005) was able to detect and quantify the
hazelnut oil adulteration at a level higher than 15% in commercial olive oil by direct
coupling of HS-MS with multivariate regression techniques and error criterion of the

prediction set was determined as 1.3.
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Figure 4.24. PLS regression of actual vs. predicted hazelnut oil concentration in olive

oil for calibration and validation sets

4.4.3. Adulteration of Olive Qil with Binary Oil Mixture

The spectra of olive oil, corn oil and sunflower oil are provided in Figure 4.25.
Whole spectra are shown in two distinct wavelength intervals to visualize the spectral
differences. It is possible to observe differences in the spectra of three oil samples.
Especially olive oil spectra can easily be differentiated by naked eye from corn and

sunflower oil samples.
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PCA was applied to spectral data to discriminate sunflower-corn oil adulterated
olive oil samples from non-adulterated olive oil samples. Non-adulterated samples
included commercial olive oil samples belonging to North and South Aegean regions
whereas for adulteration only some of North olive oil samples were used. Both
discrimination and quantification studies were performed using total percentage of
sunflower-corn oil mixture as a single adulterant. As the first step, wavelet analysis was
performed on spectral data to increase the efficiency of the PCA model. The data set
contains 167 observations. Score plot for the first 2 PCs explaining 84.7% of total

spectral variance was illustrated in Figure 4.26.
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Figure 4.26. PCA scores plot of non-adulterated olive oil (na) and sunflower-corn
adulterated olive oil (a) samples (numbers near a notation indicates

adulteration %)

The scores of non-adulterated and 2% adulterated samples were placed together
in the left whereas scores of >5% adulterated samples were located in the right side,
representing a visual discrimination except 2% adulterated oil samples. Thus, Coomans’

plot was constructed excluding 2% adulterated samples. Developed model had 4 PCs
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for both non-adulterated and adulterated models describing 88.3% and 94.3% of

variation, respectively (Figure 4.27).
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Figure 4.27. Coomans’ plot for the classification of olive oil and sunflower-corn

adulterated olive oil samples (®: olive oil, a:adulterated olive oil)

Coomans’ plot revealed that most samples of each class were placed in their
region. According to scores and Coomans’ plot, a general discrimination of adulterated
samples from non-adulterated oil samples were achieved except 2% adulterated olive
oil. There were other studies involving the use of sunflower-olive oil and corn-olive oil
binary blends for the adulteration detection with FT-IR. Tay, et al. (2002) was able
discriminate olive oil samples from sunflower adulterated samples at levels between 2-
10%. Also, results of FT-IR analysis indicated that the detection limit for olive oil
adulteration was 9% if the adulterant is corn oil while it was lower (6%) if the adulterant
is sunflower oil (Vlachos, et al. 20006).

PLS analysis was also applied to same data set used in PCA for quantification of
sunflower-corn oil mixture in olive oil. As previously mentioned, clear differentiation of
samples containing 2% sunflower-corn mixture could not be achieved. Therefore, these

samples were excluded from the PLS model. The data set was divided into calibration
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and validation sets containing 112 and 43 observations, respectively. The spectral data
was manipulated with OSC and wavelength compression before PLS analysis. The PLS
regression model of calibration set with 2 PCs can explain 99% of variation with a
predictive ability of 98.9%. The R* value of PLS regression curve (Figure 4.28) was
0.99, and SEC value was determined as 0.78. These results indicated good predictive
ability of the calibration model. Also, using the PLS regression equation the samples of
validation set were predicted (Figure 4.28). R? and SEP values were calculated as 0.98

and 1.04 exhibiting high predictive ability of the proposed model.
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Figure 4.28. PLS regression of actual vs. predicted sunflower-corn mixture

concentration in olive oil for calibration and validation sets

Quantification of sunflower and corn oil was also performed by other
researchers. Ozdemir and Oztiirk (2007) focused on quantification of binary and tertiary
adulteration of olive oil with sunflower and corn oil using NIR in conjunction with
genetic inverse least square. Overall, SEP ranged between 2.49 and 2.88% (v/v) for the
binary mixtures of olive and sunflower oil whereas it was between 1.42 and 6.38% (v/v)
for the ternary mixtures of olive, sunflower and corn oil. In another study, NIR spectra
of binary mixtures of corn-olive oil and sunflower-olive oil were manipulated with PLS
to quantify corn and sunflower oil in binary olive oil mixture. The error terms were
determined as 1.32 and 0.57 for sunflower and corn oils at level of 0-100% (v/v)

(Christy, et al. 2004). Also, Paulli, et al. (2007) used total synchronous fluorescence and
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calculated detection limit of adulterant in sunflower-olive and corn-olive oil binary

mixtures as 4.3% and 3.8%, respectively.

4.4.4. Cottonseed Oil Adulteration of Olive Oil

The spectra of olive oil and cottonseed oil are illustrated in Figure 4.29. To
observe the visual differences of two spectra, whole spectra were divided into two
regions as shown in Figure 4.29. The olive oil can be differentiated from cottonseed oil

by naked eye.
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Figure 4.29. The spectra of olive oil and cottonseed oil around (a) 3080-2800 cm™ (b)
2875.5-675 cm "' regions (— olive oil, — cottonseed oil)

(cont. on next page)
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Figure 4.29. (cont.) The spectra of olive oil and cottonseed oil around (a) 3080-2800

cm™ (b) 2875.5-675 cm ™' regions (— olive oil, — cottonseed oil)

Spectral data set containing cottonseed adulterated and non-adulterated olive oil
samples were subjected to PCA. Non-adulterated samples were consisted of commercial
olive oil samples belonging to North and South Aegean regions. Adulterated samples
included olive oil including cottonseed oil between 2-20%. After applying wavelet
compression to the original data, PCA model was fitted for 99 observations with 5 PCs
adequately describing 83.9% of the variance. Scores plot for the first 2 PCs, where first
component describes 59% of total variation and second 10.5%, is illustrated in Figure

4.30.
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Figure 4.30.
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Most of the non-adulterated samples were placed in the left hemisphere. These

total variation with 3 PCs.

samples were discriminated from the rest whose scores were plotted in the right
hemisphere. However, adulterated samples containing 2% cottonseed oil were drawn
close to non-adulterated samples. Therefore, 2% adulterated samples were excluded and
Coomans’ plot was constructed (Figure 4.31). Non-adulterated class was described with

5 PCs describing 79.3% variation whereas adulterated class model explained 79% of
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Figure 4.31. Coomans’ plot for the classification of olive oil and cottonseed adulterated

olive oil samples (®: olive oil A:adulterated olive oil)

According to Figure 4.31, only few samples were plotted beyond its critical
limits. It could be concluded that quite good discrimination of olive oil samples from
cottonseed adulterated olive oil samples was achieved.

PLS analysis was also applied to the same data set used in PCA for
quantification of cottonseed oil in olive oil. The spectral data was manipulated with
OSC wavelength compression before PLS analysis. The PLS analysis yielded a 3 PCs
model explaining 99.2% variation of Y with a predictive ability of 97.9%. The R* value
of PLS regression curve (Figure 4.32) was 0.99, and SEC value was determined as 0.49.
Hence, calibration model had good predictive ability. In addition, using the PLS
regression equation the samples of validation set were predicted (Figure 4.32). R? and
SEP values were determined as 0.95 and 1.4 exhibiting high predictive ability of the
proposed model. In a previous study, detection of cottonseed oil adulteration at a level

of 1% was achieved using AECN42 (Christopoulou, et al. 2004).
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Figure 4.32. PLS regression of actual vs. predicted cottonseed oil concentration in olive

oil of calibration and validation sets

4.4.5. Rapeseed QOil Adulteration of Olive Oil

Figure 4.33 displays the spectra of olive oil and rapeseed oil. The whole spectra
are differentiated into two regions to observe the differences between olive oil and

rapeseed oil.
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Figure 4.33. The spectra of olive oil and rapeseed oil around (a) 3080-2800 cm™ (b)
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Spectral data set containing rapeseed adulterated and non-adulterated olive oil
samples were subjected to PCA. After applying wavelet compression to the original
data, PCA model of the 98 observations resulted in 4 PCs adequately describing 84.2%
of spectral variation. Figure 4.34 represented scores plot for first 2 PCs where the first
component describes 61.5% of total variation and second 9.6%. Non-adulterated
samples, placed in the left side of the scores plot together, differentiated from other
adulterated samples plotted in the right side. However 2% adulterated samples were

placed close to non-adulterated samples so they were excluded in further analysis.
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Figure 4.34. PCA scores plot of non-adulterated olive oil (na) and rapeseed oil
adulterated olive oil (a) samples (numbers near a notation indicates

adulteration %)

To discriminate non-adulterated samples from adulterated samples Coomans’
plot was constructed (Figure 4.35). Non-adulterated class was explained with 5 PCs
describing 82.1% total variation and adulterated class was described with 4 PCs
describing 88.7% of total variation. Quite successful discrimination of olive oil samples

from adulterated samples was performed. Besides, each grouping of sample points in
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non-adulterated class model represents different adulteration percentages in ascending

order from left to right.
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Figure 4.35. Coomans’ plot for the classification of olive oil and rapeseed adulterated

olive oil samples (®: olive oil, A : adulterated olive oil)

Quantification of rapeseed oil in olive oil was performed with PLS analysis
using data set used in PCA excluding 2% adulterated samples. The data set was divided
into calibration and validation sets containing 68 and 26 observations, respectively. The
spectral data was manipulated with OSC and wavelength compression before PLS
analysis. The PLS regression analysis on calibration set was resulted in 2 PCs
explaining 99.4% of variation (Y) with a predictive ability of 99.1%. The R* value of
regression curve, represented in Figure 4.36 was 0.99, and SEC value was determined
as 0.48, respectively. Calibration model with good predictive ability was obtained. Also,
using the PLS regression equation the samples of validation set were predicted (Figure
4.36). R* and SEP values were calculated as 0.93 and 1.32 exhibiting high predictive
ability of the proposed model. As another approach, the parameter AECN42 was

employed as a parameter for the detection of fraud of olive oils containing 4% rapeseed
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oil (Christopoulou, et al. 2004). Also, total synchronous fluorescence spectra could

discriminate rapeseed oil down to a level of 3.6% (Poulli, et al. 2007).
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Figure 4.36. PLS regression of actual vs. predicted rapeseed oil concentration in olive

oil for calibration and validation sets

4.4.6. Determination of Adulteration Regardless of the Type of
Adulterant

In the last part of this study adulterated oils regardless of the type of adulterant
were grouped as one adulterant class and it was tried to be determined if PCA still could
discriminate pure samples from adulterated ones. Observations were classified as
adulterated including spectra of rapeseed, cottonseed oils and corn-sunflower binary oil
mixture and non-adulterated olive oil samples. To construct Coomans’ plot (Figure
4.37) PCA was performed on adulterated and pure classes separately. Non-adulterated
and adulterated classes were modelled with 4 PCs describing 87.9% variation. Modeling
adulterated oil samples together means more variable chemical information making
them difficult to be placed in the same group. Thus, in addition to 2% adulterated
samples 5% adulterated olive oil samples could not be separated from non-adulterated
olive oil samples according to scores plot which is not displayed here. So, 2-5%
adulterated samples were excluded in the further analysis. According to Coomans’ plot

most samples of adulterated and non-adulterated samples are correctly placed in its
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region. However, few samples are plotted in the region where they can not be classified

as non-adulterated or adulterated.
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Figure 4.37. Coomans’ plot for corn-sunflower binary mixture, cottonseed and rapeseed
adulterated versus non-adulterated olive oil (e: olive oil, A: adulterated

olive oil)

There are studies involving the application of other analytical and chemometric
methods to discriminate olive oil from set of different adulterant oils. Availability of
chromatographic profiles with SIMCA model to distinguish between non-adulterated
olive oil samples and those adulterated with one of the vegetable oils (sunflower, corn,
peanut and coconut oils) was illustrated (Capote, et al. 2007). Also, NIR spectra
manipulated with PCA was able to classify adulterated olive oil samples with respect to
type of adulterant oil (Christy, et al. 2004).

To sum up the adulteration determination results, Table 4.14 was constructed
including results of individual and overall adulteration models. Results of individual
modeling revealed that monovarietal, sunflower-corn, cottonseed and rapeseed oil
adulteration can be detected at a level of 5% whereas detection limit is 10% for hazelnut

oil adulteration. On the other hand, lower detection limit is achieved according to
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overall adulteration model due to more variable chemical information of overall

adulteration model

Table 4.14. General results of adulteration determination including individual and

overall adulteration modeling

Results of overall

Results of individual adulteration modelling adulteration model

Detection ( fvz . 51) SEC f: ) SEP  Detection limit
Nin AE 5% 0.98 - - - 0.9 -
NinE 5% 0.97 - - - 1.22 -
Hazelnut oil 10% - 0.99 2.1 0.97 3.1 -
Sunﬂqwer—corn 5% - 099 0.78 098 1.04 10%
mixture
Cottonseed 5% - 0.99 049 095 1.4 10%
Rapeseed 5% - 099 048 093 132 10%

*R? (cv): correlation coefficient of cross validation
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CHAPTER 5

CONCLUSION

In this study, the efficiency of analysis of fatty acid composition and mid-IR spectra
data with a chemometric tool, PCA, for the differentiation of olive oil samples was
demonstrated and compared. Results show that application of PCA to fatty acid
composition is quite successful for the classification of olive oil samples with respect to
variety, geographical origin and harvest year. On the other hand, mid-IR spectra can not
supply distinct varietal, geographical or seasonal grouping as much as fatty acid
composition does. As one of the factors affecting the olive oil composition harvest year
seems to be significant in discrimination. With the advantage of rapid and easy analysis
ability, FT-IR still could be used for the more general authentication issues with respect
to variety, geographical region and harvest year.

FT-IR was employed to detect adulteration of olive oil with other vegetable and
seed oils (hazelnut, corn-sunflower binary mixture, cottonseed and rapeseed) and also to
detect mixture of a monovariety with another variety (N in AE and E). The qualification
of adulteration was performed by PCA analysis. Scores and Coomans’ plots were
constructed to visualize differentiation of adulterated from non-adulterated olive oil
samples. The results of PLS analysis of MIR spectra indicated that detection limit of
adulteration was determined to be higher than 5% for Nizip (in Ayvalik-Edremit) and
cottonseed oils, 10% for Nizip (in Erkence), 15% for hazelnut oil and 2% for binary
mixture of sunflower-corn and rapeseed oils. In conclusion, MIR analysis with
chemometric techniques could be employed as an efficient tool to detect adulteration of
extra-virgin olive oil with different edible oils.

Moreover, a correlation was tried to be established between fatty acid
compositions and MIR spectra with PLS. The error values obtained for oleic acid
(constitutes around 99% of MUFA of olive oil) and MUFAs (constitutes around 70% of
fatty acids) are lower than 2% indicating success of the PLS model. Also, REP was
lower than 5% for C16:0 whereas good predictions were achieved for C18:2 and PUFA
with REP values around 5%. Another PLS model was tried to be constructed between

free fatty acidity and MIR spectra. SEP value was determined as 0.085. Both fatty acid
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composition and free fatty acidity value analysis require chemical treatments meaning
excess labor, cost and time. However, multivariate analysis of FT-IR data has the
potential to predict some of the fatty acids and free fatty acidity of the virgin olive oil

samples with the advantage of direct analysis opportunity.
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