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ABSTRACT

In this study, prime numbers and primality, which is one of the most important
topics in number theory is analyzed.

Subject of primality of a number has been the focus of many scientific studies and
several different theories has been developed for many years. Based on these theorems,
primality of large numbers has been investigated. There are also computer based algorithms
to test large numbers.

In this work, five different testing methods have been studied and computer programs

have been developed. Best method was determined by comparing the test results from
different methods.
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Bu calismada sayilar teorisinin ¢ok 6nemli konularindan biri olan asal sayilar ve
asallik testleri incelenmistir.

Cok eski zamanlardan beri bir tamsaymn asal olup olmadigi matematikgilerin
ilgisini ¢ekmis ve cesitli teoremler ortaya atilmigtir. Yillar gectikge bu teoremler baz
alinarak buyik sayilarin asal olup olmadig: incelenmistir. Guniimiizde bilgisayar yardimi ile
cok buyuk sayilan test eden algoritmalar mevcuttur.

Bu ¢aligmada, bu test sonuglarindan bes tanesi incelenmis ve programlan yazilmugtir.
Test sonuglar neticesinde daha iyi performansa sahip olan metod belirlenmistir.
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Chapter 1
| DEFINITIONS AND SOME PROPERTIES OF PRIME NUMBERS

1.1 Introduction

| The aim of this chapter is to explain some of the mathematical terms that will be
: mentioned in the next chapters and to provide the definitions and theorems that are

‘ important for primality testing.

’ 1.2 Prime and Composite Numbers

Suppose that a,b and c are integers and ab = ¢ then it is said that; a and & are called
factors or divisors of ¢ and c is called a multiple of a and b. For instance the
number 3 is a factor of 12 since 3. 4 = 12; the number 12 is a multiple of 3.

( If a number 4 is a factor of a number c, it shall be denoted by notation of d!c. Ifdis

J not a factor of c, then d/{/c )

Now, prime and composite numbers can be defined.

A positive integer p greater than 1 is called prime if it has no positive factors other
than 1 and p. A positive integer greater than 1 that is not a prime is called composite. A

composite number » has positive factors other than 1 and ».

A composite number is a product of several factors, such as 15=3 . 5; or 16=2 . 8. A
prime p 1is characterized by the fact that its only possible factorization apart from the

order of the factors is p=1. p. Every composite number can be written as a product of

primes, suchas 16=2 .2 .2 .2 '

Theorem

Every composite number has got a prime factor. *

Proof

This theorem can be proved by means of induction.
Let n be a composite number. Then

n =nn,
where », and n,are positive integers both of them are less than » . If either n, or n, is

a prime, the theorem is proved. If », is not prime, then

' Anthony J Pettofrezzo, Donald R Byrkit, Elements of Number Theory, p.23.
ibid, p.24.
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n =n;n,

where n; and n, are positive integers both of them are less than n,. If either »n, or n,

is a prime, the theorem is proved. If n, is not prime, then
n =nn,

where n; and ngare positive integers both of them are less than »n,. In general, after &
steps the following is obtained.

Ny =Ny Mopin

where n,,., and n,,, are positive integers both of them are less than 7., ,. Since
R0 >0 >0 5.5 Ry >0

for any value of £, the process have to terminate; that is, since there are only a finite
number of composite integers less than 7, there must exist an 7,, ,, for some value of

k, that is a prime. Thus, it is concluded that every composite number has got a prime
factor. *

1.3 The Number of the Prime Numbers

In this section, different proofs show that there exists infinitely many primes.

Theorem

There exist infinitely many prime numbers. *

Euclid’s Proof

Suppose that p;=2< p,=3 <...< p, are all the primes.
LetP= p p,... p,+1andlet p bea prime dividing P; then p cannot be any of p,,
Pss - - -, p,= 1, which is impossible. Thus this prime p is still another prime, and p,,
P, ..., p, would not be all the primes.

Euclid’s proof is very simple; however, it does not give any information about
the new prime, only that it is at most equal to the number P, but it may well be
smaller. °

w

Anthony J Pettofrezzo, Donald R.Byrkit, Elements of Number Theory, p.25.
Paulo Ribenboim , The Book of Prime Number Records, p.3.

ibid, p.4.
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Kummer’s Proof

Suppose that there exist only finitely many primes p, < p, <...< p_ . Let
N= p p, ... p,>2 Theinteger N — I, being a product of primes, has a prime
divisor p, in common with A; so, p, divides N — ( N-1) =1 , which is absurd! °

Euler’s Proof

Suppose that p is any prime, then 1/p <1; hence; the sum of geometric series is

kop 1 (1/[7)

Similarly, if g is another prime, then

Multiply these equalities;

]+i+_l-+i+.l_+i = 1 X !

> —+...=
P 9 p P9 q 1-(1/p) 1-(1/q)

Explicitly, the left-hand side is the sum of the inverses of all natural numbers of
the form p"q*(h >0,k > 0), each counted only once, because every natural number

has a unique factorization as a product of primes. This simple idea is the basis of the
proof. ’

Suppose that p,, p,, ..., p, are all the primes. For each7 =1, ..., n

=1 1
Zk:

wp,  1=-1/p)

Multiplying these » equalities, one obtains

LIES = a=] [

=l k=0 p

Paulo Ribenboim, 7he Book of Prime Number Records, p 4.
ibid, p.7.



by B g =3 5o gl 304315245354 5.0

According to this list integers can be divided into four groups;

* The NUMBER = 0
* TheUNIT = -1;1
* The PRIME NUMBERS =5 =Dsd5°232,338 5.

* TheCOMPOSITE NUMBERS = -8,-6,-4,4,6,8,...

1.5 Greatest Common Divisor ( ged )

If kja and k|, then k is called a common divisor, or common factor, of a
and b. The largest positive integer g that divides the values of each of two integers a

and b is called the greatest common divisor of a and 4 and it is denoted by (‘a,b ) or
ged(ab). °
1.6 Definition of the Order of mod n (ord)
The smallest number £ > 0 such that

a* =1(modn)

is called the order of a mod n. It is written £ = ord a. ™

1.7 The Fundamental Theorem of Arithmetic

Aninteger n>/ is either a prime or can be expressed as a product of primes. **
For example; 30=2.3.5

143 =11 .13

" Anthony J.Pettofrezzo, Donald R Byrkit, Elements of Number Theory, p.34.
" Peter Giblin, Primes and Programming, p.120.
"* Peter Giblin, Primes and Programming, p.1.



1.8 Perfect Numbers

A positive integer n is called perfect number if it is equal to the sum of all its
positive divisors other than itself: that is o(n) =2n. '°

For example;
6= 1+2+3+6=6%*2=12=>0(6)=6%2=12
28 > 1+2+4+7+14+28=28%2 = o (28)=28 *2 =156
496 and 8128 are the other perfect numbers.

Every number equalto 1 +2 + 3 + ... + 2" that equals 2" —1, is represented
in binary notation by # consecutive 1’s. Therefore,

B =2(2°-1),
P, =2°(2° -1,
P =2%(2° - 1),
and

P, =2°(2" -1).

Note that the factor of the form 2* —1 in B, P,, P,, P, are prime numbers, like

this;
27 -1=3
2’ -1=7
2° -1=31
2" -1=127

1.8.1 Theorem I

An even integer is a perfect number if it is of the form 277'(27 —1) where 27 —1is a
prime. '’

' Anthony J.Pettofrezzo, Donald R Byrkit, Elements of Number Theory, p.65.
"7 ibid, p.67.



Proof 1

Let n=27"(27 —1) where 27 —1 is a prime. Then;
oM =0+2+2%+. .+ 271+ (27 - 1)]

_zp_l* P
21
=27(27 -1
=2n

Hence, n 1s an even perfect number. That is an even integer is a perfect number
is it is of the form 277'(27 —1) where 2” —1is a prime. '

For example;
33.550.336 =2 (2" -1) =27 -1=8191
8191 is a prime number.

1.8.2 Theorem II

If a number of the form 27 —1is a prime, then p is a prime number.

Proof II

The equivalent statement that is p is not a prime is proved, then 2”7 —1 is not
a prime. Let p=rs, acomposite number ( 7>/ and s>/). Then

22 -1=2"% -1
:(2r)5 _1
=@ =D+ +..+]]

Since r>I/then 2" -1 > 1. Thus 27 —1 is a composite number. This is a
contradiction, so if a number of the form 27 —1is a prime, then p is a prime number. *

Anthony J.Pettofrezzo, Donald R.Byrkit, Elements of Number Theory, p.67.
Kenneth H.Rosen, Discrete Mathematics and Its Applications, p.125.
20 .-

ibid, p.125.
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1.9 Mersenne Numbers

A number of form 27 —1, where p is prime, is called a Mersenne Number and
will be denoted by M ,. The following five Mersenne numbers are some of known

21

primes are called Mersenne Primes; ~
M, M M,...M 5, M 4 ,...
Theorem

A prime number cannot be a perfect number.

Proof
Let p be any prime. Then
o(p)=p+1
If p is a perfect number, then
o(p)=2pand 2p=1+p=>p=1

Since p >2 then p is not a perfect number; So a prime number cannot be a

23

perfect number.

1.10 Relatively Prime

Two integers a and b, which are not both zero, are called relatively prime if
their greatest common divisor unity; that is, if (@, b) =1. For example, 22 and 15 are
relatively prime integers, although neither integer is a prime.

More generally, the »>2 integers a,,a,,...,a,, which are not all zero, are

s“nos

called relatively prime if their greatest common divisor unity; that i1s, if
(a,a,,...,a,)=1. Furthermore, if (a,,a;)=1 for each 7 # jand 7,j=12,..,n, then

the n > 2 integers a,,a,,...,and a, are called pairwise relatively prime.

For example, the three integers 5, 10, 13 are relatively prime since (5,10,13)=1;

however, the three integers are not pairwise relatively prime since (5, 10) =1. *

22

3

24

Anthony J Pettofrezzo, Donald R.Byrkit, Elements of Number Theory, p.70.
ibid, p.71.
ibid, p.71.
ibid, p.43.



1.11 The Euler & - Function

The number of positive integers less than or equal to a positive integer » and
relatively prime to » shall be denoted by ®(n) .

For example, ®(12) =4 since the four positive integers 1, 5, 7 and 11 are less
than 12 and relatively prime to 12.

In a similar manner, it can be shown that

(1) =1 ®2) =1 @3) =2
D(4) =2 O(5) = 4 ®(6) =2
D(10) = 4 C oa1=10 D(12) = 4

This interesting and extremely important number-theoretic function ®(#)is

called Euler @ -function. This function is sometimes also called as the indicator of n
and sometimes called as the zotient of n. *

Theorem
If p is prime number, then

P(p)=p-1 *

Proof

If p is prime number, each of the p-1 positive integers les than p is relatively
prime to p. Now p is not relatively prime itself. Hence ®(p)=p—1. 7

1.12 Congruences

The solutions of several problems ~ especially primality testing problems ™ in number
theory depend on congruences. Consider a positive integer m. If a and b are two
integers such that;

*  Anthony J Pettofrezzo, Donald R.Byrkit, Elements of Number Theory, p.71.
* ibid, p.73.
" ibid, p.73.

10



m l (a-b) then a is said to be congruent to b modulo m; this will be denoted
a = b(mod m)

If m / (a,b) then a is said to be incongruent to b modulo m and will be
denoted by

a 7./l)(mod m) *

For instance; 7 = 2(mod 5),31 = -2(mod3) and 16 =9(mod 4)

* Kenneth H.Rosen , Discrete Mathematics and Its Applications, p.119.

11



Chapter 2
SOME METHODS FOR PRIMALITY TESTING

2.1 Introduction

There are many primality testing methods in number theory. Mathematicians have
studied this topic for a long time. Currently many research activities are going on either to
develop or to find a new testing method.

The aim of this thesis is not to test all of the testing methods. Some of the methods that
are suitable for computers are selected. Some testing methods cannot be applied as computer
software, because the number of steps of such methods cannot be determined. Hence, the
following testing methods have been selected and C codes for comparing them have been
developed. Some algorithms are slow, some of them are not suitable for large numbers and
some of them are quite fast but probabilistic. Therefore the selected algorithms that are
detailed below are the most feasible ones in terms of computer programming and hardware
limitations. '

2.2 The Sieve of Eratosthenes

This method is the easiest and well-known method among the primality testing
methods. '

Consider the following number set;
2;,3,4,5,6, .R

Starting first 2; The number two is the first prime because it has got no factors other
than 1 and 2. Then all of the numbers those can be divided by 2 (such as 4,6,8,10,...,2x (all
even numbers) is ignored.

~

Lets continue with the number 3. It is the second prime number because of above
reason. Then all of numbers those can be divided by 3 ( such as 6,9,12,15, ... 3x) is ignored.

The other numbers can be tested with the same method. Finally some numbers will
stay in the list. According to sieve algorithm, these numbers are primes. '

2.3 Wilson’s Method

This method depends on a theorem that is called Wilson theorem. According to this
theorem; ’

1

Peter Giblin, Primes and Programming, p.55.

12



If a number is prime; it means that (#—1)!=—1modn. >
Forinstance;, n=3 —=>n-1=3-1=2

= 2!=2.1=2
= 2=-1mod 3 Hence #=3 is prime.
n=13 =>n-1=13-1=12
= 121=12.11.10.9.8....3.2.1 = 479001600
= 479001600 + 1 = 479001601 =479001601/13 = 36846277
= 479001600 =-1 mod 13 Hence n=13 is prime.
n=6 >n-1=6-1=5 =5!/=120 =120 £ -1 mod 6
Hence n = 6 1s not prime.
2.4 Lucas’ Method

There are three Lucas' testing methods. First and second were discovered by Lucas.
The last one was discovered by Lehmer.

Test 1

This testing method was discovered by Lucas in 1876. It says:
Let n>1. Assume that there exists an integer a>1 such that:
(i) a" = 1(modn) '
(i) a” # 1(modn), form=1, 2, ..., n-2.

Then # is a prime number. *

Test IT

This testing method was discovered by Lucas in 1891. It says:
Let n>1. Assume that there exists an integer a>1 such that:

(i) a™' =1(modn)
(ii) a” # 1(modn), for every m<n, such that m divides n-1.
Then 7 is a prime number. *

Evangelos Kranakis, Primality and Cryptography, p.41.
Paulo Ribenboim, 7he Book of Prime Number Records, p.37.
* ibid, p.37.

13



Test I11
In 1927, Lehmer made Lucas' testing method more practical. It says:

Let n>1. Assume that for every prime factor q of n-1 there exists an integer
a>1 such that:

) a™ =1(modn)
(i)  a" ™' £1(modn)
Then » is a prime number. °

In this theorem n: the number that will be tested
a: the integer that will be fitted a" = 1(mod n)
q: the integer that will be fitted ¢ kn-] )

Forinstance, n=3; a=5;q=2=>n-1=3-1=2
= 5? =25=1(mod3)
=@=2)(n+3-1)
= a1 =562 =522 = 51 = 5 £ ](mod3)
Hence 3 is prime.
Similarly, n=7;a=4 ;q=3=>n-1=7-1=6
= 4" =4° = 4096 =1(mod 7)
= (@=3) I (n=7-1)
= a9 = 40D/3 - 453 = 52 = 25 £ 1(mod 7)

Hence 7 is prime.

2.5 Proth’s Method

This method can be used to verify the primality of integers of specific forms. Proth’s
test is concerned with numbers of the form k2" +1. °

If n is prime, according to Proth’s test this lemma must become true.

> Paulo Ribenboim, The Book of Prime Number Records, p.38.
¢ Evangelos Kranakis , Primality and Cryptography ,p.49.

14



Lemma

Letn=ab +1>1, where 0 <ag < b+ 1. Assume that for any prime divisor p
of b there exist an integer x such that x™ =1mod#n and ged(x"™'? —1,n)=1.
Then » is prime. ’

Proof

Assume on the contrary that # is not prime and let ¢ be a prime factor of »
which is < +/n. Consider, for every prime factor p of b there exists as integer X', such

that;

n-—1
b

ora’q(Xp)l(n—l) and ordq(Xp)/’/ =
where ord,,(X) =least ¢ such that x' =1mod gq. Let p"* be the largest power of prime

p such that p*|b.

Then ord (X JD)=spk , for some integer s. Considering the prime factorization

of & and using the last idea one can find an integer x such that ord (x)=5.

It follows that g— / > b and thus;
g =2+’ 2a(b+)=ab+a=n
In particular, ¢> =n,a =1 and a= b + I; which is contradiction. ®

The Proth Theorem can be proved by means of the lemma that is mentioned in
section 2.5.1.

Proth Theorem

Assume 3k, k <2" +1 and 3 <2" +1. Then the followings are equivalent;
i) k2" +1 is prime.
i) 3" =—1mod(k2" +1) °

7 Evangelos Kranakis, Primality and Cryptography, p.50.
¥ ibid, p.50.

?Peter Giblin, Primes and Programming, p.129.

15



Proof

This can be proved by using the following values and the lemma that is
mentioned in section 2.5.1.

a=k b=2"+1,x=3 "
2.6 Pepin’s Method

One has to examine F érmat Numbers to get a better understanding of Pepin’s method.
2.6.1 Fermat Numbers

If a number can represent a special form, it can be easily tested whether it is
prime or composite number.

The numbers of the form 2™ +1 were considered long years ago. If 2™ +1 is a
prime, then m must be of the form m=2", so it is a Fermat Number

F =2¥ +1. 1

n

The Fermat numbers;

| F, =3
| E :5
F, =17
F, =257
F, = 65537

are prime numbers. Fermat believed and tried to prove all Fermat numbers are
primes. Since F has 10 digits, in order to test its primality, it would be necessary to

have a table of primes up to 100,000 (this was unavailable to Fermat) or to derive and
use some criterion for number to be a factor of Fermat number.

' peter Giblin, Primes and Programming, p.129.
! Paulo Ribenboim, The Book of Prime Number Records, p.71.

16



For a = n = Assume that it is true for a = n;

Let all primes p; n” = n(mod p)

By induction; it must be true for a = n+1/

Let all primes p; (n+1)? =n+1(mod p)

Hence; the theorem is true for every natural number a. °

2.6.2 Pepin’s Theorem

Let F, = 2% +1(with n>2) and k>2. Then the following conditions are
equivalent.

(i) F is prime and (k/F,)=-1
() &V =—1(mod F,)"
2.7 Miller-Rabin Probabilistic Testing Method
In 1975, Miller proposed a primality test. To formulate Miller-Rabin test, which
involves the congruences used in the definition of strong pseudoprimes. First the definition of
pseudoprime will be expressed.
Pseudoprime
According to Fermat's Little Theorem;
If p is a prime number and if a is an integer , then
a’ =a(mod p). In addition;

If p does not divide q, then

a’" =1(mod p).

' Kenneth H.Rosen, Discrete Mathematics and Its Applications, p.145.

'S Paulo Ribenboim, The Book of Prime Number Records, p.71.
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Chapter 3

DETAILS OF THE SELECTED TESTING METHODS
3.1 Introduction

Mathematicians have studied primality testing for years. When someone found a
number and said it was a prime, they proved that by means of known theorems. These
numbers were quite small and applicable for known theorems. In spite of theorems known to
them, they could not try large numbers of which they suspected that it could be prime easily.
That was because of the lack technology known as computers.

However, with the aid of the computers it is now possible to try out large numbers for
their primality. The goal is always to find a larger prime number than previous one.

Although the hardware constitutes the main factor in prime number search, the
software also takes its share in this effort.

The below steps are typical in prime number hunting:

o Determine how large the number would be in terms of digit size, file size etc.,
e Try to put this number in a specific form (i.e. Mersenne, Fermat etc.),

o Select the  appropriate  algorithm by  the above  criteria
(deterministic/probabilistic, Wilson, Sieve, Lucas etc.),

« Decide upon the programming language (parallel languages, C, Pascal, Fortran
etc.),

» Determine whether any specific library will be needed or not (Miracl, Rth etc.),

o Select a hardware (PC, Super computer, any other specific architecture like
number crunchers).

3.2 Special Library (MIRA CL)

This is a shareware C library that is distributed on Internet. MIRACL is a highly
efficient and portable Multiprecision Integer and Rational Arithmetic C/C++ Library. Its main
area of application is in the implementation of Public Key Cryptography systems and
protocols  (ftp://ftp.compapp.dcu.ie/pub/crypto/miracl.zip) and hence in the usage for
primality testing. MIRACL library has been extensively used in this research.
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33 Selected Testing Methods

The following primality test methods are selected and explained below:
e The Sieve of Eratosthenes,
e Animprovement of the Sieve of Eratosthenes,
e Wilson’s Test,
e Proth’s Test,
e Miller-Rabin Test.

3.3.1 The Sieve of Eratosthenes

This method is the easiest and well-known method between the
primality testing methods. Eratosthenes (276-190 B.C.E.) discovered the

following algorithm, called the Sieve of Eratosthenes. '

Start with the integers >2 in a list:

The first step is to “sieve by 27, remove all multiples of 2 besides 2
itself. The first row of crosses does this. The smallest unsieved number >2 is
now 3, and we sieve by 3, remove all multiples of 3 besides 3 itself. The
smallest unsieved number >3 is now 5 and repeat by sieving with 5. In this
way, all composite numbers are sieved out and what remain are primes. Notice

that in the example above, containing numbers up to 28, sieving by 2, 3, and 5
leaves only primes. In fact, the first composite that would be left is 49 = 77,
since any smaller number has a prime factor < l\/ 48] <7, and therefore <5.

Sieving by 2, 3, 5 and 7 will remove all composites <11 =121.

The sequence of smallest numbers which remain after the succession of
sievings are consecutive primes starting with 2. (This is evident from the
example above, but if you want to see it formally then any induction argument
is required. It is certainly true after one sieving, since 2 and 3 are the number in
question. Assume that the first k sievings are by the first k primes 2; 3, ...,
p, and that the smallest unsieved number > p, is p,.,, the ( k+1)st prime.

Now sieve by p,.,, remove all multiples of p,., besides p,., itself. The next
prime, p,.,, will certainly not be sieved out, but all remaining composites

between p,., and p,., will be, since they are divisible by some prime < p, ..
This completes the induction.)

When sieving by a prime p> 2, the number 2p ,3p, ..., (p-1)p will have
gone at an earlier stage

' Kenneth H.Rosen, Discrete Mathematics and Its Applications, p.342.
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3.3.2 Wilson's Method
An integer p>/ is prime if and only if (p-1)!= -1(mod p).
P PRIME < (P-1)! =-1(MOD P) *

Proof

Let p is a prime number. By Fermat's theorem, the congruence;
x””' = I(mod p),
x?™' =1 = 0(mod p),
has p-1 incongruent solutions 1, 2, 3, ..., p-1. Therefore,
X' =1=(x-1)(x-2)(x-3)..[x = (p - 1)](mod p).

Now, any value of x satisfies this congruence. If x 1s let as 0,

then

-1=(-1)""-1-3-...-(p —1)(mod p);
that is, (=1)*"'-(p —1)+1 = 0(mod p).
Since p is prime, p is either an odd number or equal to 2.
If p is odd, then
(-1)"" =1 and
(p—D+1 = 0(mod p);
If p =2, then
(=)' =-1,-1=1(mod?2), and
(p—D+1 = 0(mod p).

Thus, (p-1)! = —1(mod p) is valid for any prime p. *

* Peter Giblin, Primes and Programming, p.102.
® Anthony J Pettofrezzo, Donald R Byrkit, Elements of Number Theory, p.125.
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3.3.3 Proth's Method

Proth found a new primality test method in 1878. This method is concerned
with numbers of the form k2" +1. The Proth's theorem is;

Assume 3k, k <2" +1 and 3 <2" +1. Then the followings are equivalent;
i) k2" +1 is prime.
i) 3" =-1mod(k2" +1)

Proth's Theorem gives a method that is very fast at determining that a number
is prime. However, it is very slow in determining that a number is composite, because
it has to check every possible base b from 2 to ».

Proth's Theorem is probably a good place to begin when looking for primes
within a certain range, because we can check a small number of bases & quickly for
one n and then move on to another #..

If we only have one » to test, and » happens to be composite, the algorithm will
run for a long time, and we might be wise to try a different algorithm. ©

3.3.4 Miller - Rabin's Method

This probabilistic method depends on the Miller's testing method. Miller's
testing method is;

Let n—1=2"m where r>1 and m is odd. Let gcd(d,n) =1. If either

b" = £1(modn) or b = —1(modn) for some k < r, then n passes Miller's Test
to base b.

In addition, Miller-Rabin probabilistic testing method is;

Let » be an odd positive integer and let b, for i=/, ..., k be such that
- 1<b, <n-1 and ged(b,,n) =1. If n passes Miller's test for all bases b,, then
the probability that # is prime is at least 1-1/4% .’

Let the same example in the previous chapter.
N=19 with a base b=2. With these values Miller's test is started.

¢ Kenneth H.Rosen, Discrete Mathematics and Its Applications, p.215.
7 ibid, p.151.
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Let n-1=2"m where r>1 and m is odd. Therefore =1 and m=9. Since

2° = —1(mod n), n passes Miller's test for base =2, and we know that the probability
that 19 is prime is at least 1-1/4=0,75.

So with 20 succesful iterations of 7 from 1, ..., 20 we can be confident that a

number # is prime, and also know for sure that the probability that # is not prime is
less than 1/1000000000.
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Chapter 4
THE PERFORMANCE INTERPRETATION OF THE SELECTED METHODS

Introduction

The compared performances of the selected primality testing methods will be
resented in this chapter. ,

The selected methods are;

The Sieve of Eratosthenes,

An improvement of the Sieve of Eratosthenes,
Wilson’s Test,

Proth’s Test,

Miller - Rabin Test.

The performance of these methods according to the time that they find the result in
whether the number is prime or composite will be tested.

, A file that is called “N UM B E R . D A T has got a number text that will be tested
for primality.

When the selected methods are compared, the same number _in number.dat _ to all
primality testing methods is given. Then the time results get be stored. The time may be quite
different according to the primality testing method.

Another important criteria is the hardware. The specifation of the hardware which is
used is given below.

Processor : Intel Celeron 400 Mhz
Cache Memory : 128 KB

Main Memory : 64 MB SDRAM
HardDisk Capacity :43 GB

For the present, the biggest known prime is 272°*-1. This number has got 2098960
digits. Top ten list are shown in the following table. '

! http://www.utm.edu/research/primes/largest. html#biggest.

1IMIR YUKSEK ftxnmo_n_t@;@.
REXTORLUGD
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Table 4.1 Largest Known Primes by the number of digits.

Number # Of digits Discoverer Year |
26°725%_11 2098960 Hajratwala, Woltman, Kurowski 1999
23921377_11 909526 Clarkson, Woltman, Kurowski 1998
gedieadi 4| 805032 Spence, Woltman 1997
2572611 420921 Armengaud, Woltman 1996
215778711 378632 Slowinski, Gage 1996
28243311 258716 Slowinski, Gage 1994
275687 11 227832 Slowinski, Gage 1992

167176°2%*+1] 171153 Yves Gallot 2000

1697192773 +1| 167847 Scott, Gallot 2000
3026273252 +1| 159585 Nash, Dunaieff, Burrowes, Jobling, 1999

The following table shows some of prime numbers that are relatively small.

Table 4.2 Some relatively small primes, >

# Of digits Number

10 5915587277

20 4673257461630679457

30 590872612825179551336102196593

40 242596762305237077275763315697698246968 1

50 29927402397991286489627837734179186385188296382227

60 470287785858076441566723507866751092927015824834881906763507

70 58507257027668292914913707121362860099486421251314361133428157
86444567

20 34263233064835421125264776608163440537925705997962346596977803
462033841059628723

9 46319900541601382921032341151413284597252564160443569328758685
1332821637442813833942427923

100 20747222467734852078216952221076085874809964747211172927529925
89912196684750549658310084416732550077

? http://www.utm.edw/research/primes/small. html
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http://www.utm.edu/research/primes/smallohtml

The following numbers have been selected for testing purposes. These numbers were

chosen due to their number of digits. The composite numbers’ were selected randomly. The
prime numbers’ were obtained from The University of Tennessee at Martin Prime Numbers
Research Group. °

4.2 Selected Numbers

Type One

1. 7621 (4 digits)
II. 8833 (4 digits)
1. 8513 (4 digits)
IV. 10037 (5 digits)
V. 3367900313 (10 digits)
VL. 2860486317 (10 digits)
VII. 12764787846358441471 (20 digits)
VIII. 71755440315342536877 (20 digits)
IX. 590872612825179551336102196593 (30 digits)
X, 280829369862134719390036617061 (30 digits)
Type Two

L
IL.
I11.
Iv.
V.
VL
VIL

VIIL

IX.

XIL

54987541231012456465487987654132654568741532457817
48705091355238882778842909230056712140813460157899
378348910233465647859184421334615532543749747185321634086219
574876541556778984542315454987666541234557898465415657795415
4237080979868607742750808600846638318022863593147774739556427943294937
6545767954162063434645465467898941131546746756549951951654575793232101
1475998436180202124541047592810166939534879181170570911737412942705186
1355011151
9865165432130546546765765403464654649056210306547598798316201654654024
6566321547
3744134716258549582697068030722592021313993868294978362774711172160447
34280924224462969371
3703326004509526488023456099083350582733994873563592630385840178271946
36172568988257769603
5202642720986189087034837832337828472969800910926501361967872059486045
713145450116712488685004691423
2193992993218604310884461864618001945131790925282531768679169054389241
527895222169476723691605898519

The lengths of the type two numbers are as follows:

L 50 digits II. 50 digits
II. 60 digits IV. 60 digits
V. 70 digits VI. 70 digits
VII. 80 digits VIII. 80 digits
IX. 90 digits X. 90 digits
XI. 100 digits XII. 100 digits
} http:///www.utm.edu/research/primes/index.html
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Type Three

L

II.

I1I.

IV.

34313513654346313143111532341337644560245602432601424365424506324276
13245414305321566143465613146301314346564345651345613345656461316313
14633101632245176324604256575438132761483765894320817890960947594059
78045987846643814322071352140762154438032650342478930483274621843281
33207237632210632106312043211433211345326113324653274891537290708932
168932403213220606244652133

34510334464303246246364626445176768466789137806748646132103142153213
45431351431345313156511613451135031341534613346134365547337433133074
57345462454766244632116323163236032456424365463241345218352789107813
31530221078361307310893494647132143261362163261234506324066246634665
42664246516620424613266264264798267929284601249062496529864294062490
69254924860924466254623643613406537816589475989476984946654637649645
60696100319301436035674462604247156374964846394632189508965531805636
486247823075407689434030311300176362476254613242517302486435073313013
24651023451636234662436432460123460134166437146465480385943015380322
60225186544568655246683506815328315083163254833562841436748943694336
49335486531732417341423652332036536483589433789133906394363694033653
407334473247643247432454732420978236085972308596230987632285978976283
76324765327654326578932658932658932658923658932765832492604268092469

2434343213164364130303442346542636543453345433453315335645546635617335
1673350670536674353664833546862556840625486027462454766244732415764504
7436860554696578504093453602144325470322417532421730352467365471306785
7296776604624974982077924647624547465207624570462454765240474321703421
7302401746524724677246577465277624546365160781904466540606436604083533
2681327502450176526548953028435260183258016526504865265083258162658425
6654825364802353246246364626445176768466789137806748646132103142153213
4543135143134531315651161345113503134153461334613436554733743313307457
3454624547662446321163231632360324564243654632413452183527891078133153
0221078361307310893494647132143261362163261234506324066246634665426642
4651662042461326626426479826792928460124906249652986429406249069254924
8609244662546236436134065378165894759894769849466546376496456069610031
9301436035674462604247156374964846394632189508965531805636486247823075
4076894340303113001763624762546132425173024864350733130132465102345163
6234662436432460123460134166437146465480385943015380322602251865445686
5524668350681532831508316325483356284143674894369433649335486531732417
3414236523320365364835894337891339063943636940336534073344732476432474
3245473242097823608597230859623098763228597897628376324765327654326578
932658932658932658923658932765832492604268092467

2434343213164364130303442346542636543453345433453315335645546635853356
1733516733506705366743536648335468625568406254860274624547662447324157
6558383450274474368605546965785040934536021443254703224175324217303524
6736547138556830678574527472296776604624974982077924647624547465207624
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5704624547652402854743281703421730427227440174652472467724657746527762
4546365160781904466540583606436660408353326812473224775024501765265489
5302843526018325801652650486538526508360325816265842566548272536247480
2353246246364626445176768466789137805674864639366132103142153213454313
5143134574531315651161345113503134153461333584613436554579847337433133
0745734546247689547662447263211632316323603245642463583654633446241345
7894218352789107813315302210783617953073102424789349464713214358261364
7654342163261232724450632406624663466542664246516620447962461326626247
4264798386542632792928460124257490624965298642940624906925492486092446
6267945462362475264583132145743613406537816427558947598947698494665463
7649645606961003193014319664964796543685660356744626047542574247156374
9648463946321895089655318056361648624782307945407685689433640303114753

2475001763262476254613242517302486436507331301324651102345125866362346
6243643752744752460123460134166437146465364624543264546234196645167624
5694547465577446254746215457652454765247548038594763015380322602251519
8654456865524809668350681532831508316325483356284143674809436943364933
5486531173241734142365238332036536483589433789133906394363694003365340
7334473247643924743245473242097822537360859723085962309876322859789746
2837632476532765432619578932658932658932658923843436465434965893276583
2656606492604268092463216464654651634357476576576765767616511494165743
5765765746540066567657646987987654967986547

2434343213164364130303442346542636543453345433453315335645546635853356
1733516733506705366743536648335468625568406254860274624547662447324157
6558383450274474368605546965785040934536021443254703224175324217303524
6736547138556830678574527472296776604624974982077924647624547465207624
5704624547652402854743281703421730427227440174652472467724657746527762
4546365160781904466540583606436660408353326812473224775024501765265489
5302843526018325801652650486538526508360325816265842566548272536247480
2353246246364626445176768466789137805674864639366132103142153213454313
5143134574531315651161345113503134153461333584613436554579847337433133
0745734546247689547662447263211632316323603245642463583654633446245842
5665482725363664833546862556840625486027462454766244732415765583834502
7447436860554696578504093453602144325470322417532421730352467365471385
5683067857452747229677660462497498207792464762454746520762457046245476
5240285474328170342173042722744017465247246772465774652776245463651607
8190446654058360643666040835332681247322477502450176526548953028435260
1832580165265048653852650836032581626584256654827253624748024748023532
4624636462644517676846678913780567486463936613210314215321345431351431
3457453131565116134511350313415346133358461343655457984733743313307457
3454624768954766244726321163231632360324564246358365463344624134578942
1835278910781331530221078361795307310242478934946471321435826136476543
4216326123272445063240662466346654266424651662044796246132662624742647
9838654263279292846012425749062496529864294062490692549248609244662679
4546236247526458313214574385913457894218352789107813315302210783617953
0731024247893494647132143582613647654342163261232724450632406624663466
5426642465166204479624613266262474264798386542632792928460124257490624
9652986429406249069254924860924466267945462362475264583132145743613406
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5378164275589475989476984946654637649645606961003193014319664964796543
6856603567446260475425742471563749648463946321895089655318056361648624
782307945407685689433640303147532475001763262476254613242517302486436
5073313013246511023451258663623466243643752744752460123460134166437146
4653646245432645462341966451676245694547465577446254746215457652454765
2475480385947630153803226022515198654456865524809668350681532831508316
3254833562841436748094369433649335486531173241734142365238332036536483
5894337891339063943636940033653407334473247643924743245473242097822537
3608597230859623098763225546965785040934536021443254703224175324217303
5246736547138556830678574527472296776604624974982077924647624547465207
6245704624547652402854743281703421730427227440174652472467724657746527
7624546365160781904466540583606436660408353326812473224775024501765265
4895302843526018325801652650486538526508360325816265842566548272536247
4802353246246364626445176768466789137805674864639366132103142153213454
3135143134574531315651161345113503134153461333584613436554579847337433
1330745734546247689547662447263211632316323603245642463583654633446241
3457894218352789107813315302210783617953073102424789349464713214358261
3647654342163261232724450632406624663466542664246516620447962461326626
2474264798386542632792928460124257490624965298642940624906925492486092
4466267945462362475264583132145743859789746283763247653276543261957893
2658932658932658923843436465434965893276583265660649260426809246321646
4654651634357476576576765767616511494165743576576574654006656765764698
7987654967986547132478931

The lengths of the type two numbers are as follows:

L 368 digits
I1. 887 digits
1. 1310 digits
IV. 1725 digits
V. 3389 digits

4.3 Discussion of the Results

e For type one numbers generally the best method in terms of time spent is
Miller-Rabin. However, one should notice that when numbers get larger Wilson
test starts to fail due to the limitations of MIRACL library which does not
support the factorial higher than 80000.

e For types two and three numbers the above findings are the same. But in these
numbers one peculiar aspect is the time spent to get the results that tends to
grow rapidly when deterministic methods used namely the Sieve of
Eratosthenes and Proth. Therefore, for quick results it seems that the
probabilistic method is best.



e The comparative time vs. the number of digits for prime numbers graphs of
each utilized method are given in figures 4.1 — 4.5. Time spent for the
efficiency of primality testing of each method can be seen directly from below
graphs.
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Figure 4.1 The Sieve of Eratosthenes.
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Figure 4.2 An Improvement of the Sieve of Eratosthenes.
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Figure 4.3 Wilson’s Testing Method.
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Proth's Test
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Figure 4.4 Proth’s Testing Method.

Miller-Rabin's Test
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Figure 4.5 Miller-Rabin’s Testing Method.
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Chapter 5
CONCLUSIONS

In this study, some selected primality testing methods were examined and the best
method selected.

Some of these testing methods are applied to programming easily. But sometimes
one cannot convert these mathematical terms to a computer software when the big numbers
are concerned. In order to test a big number, it is necessary to use some special functions or
libraries. For the present work a special C library for big integer operations used.

By looking at the results, deterministic methods are slow. In contrast with that,
probabilistic methods are fast.

In future work, one will want to create a special library that supports parallel
operations for big numbers. By using this library, new methods can be utilized for primality
testing. :
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SUMMARY

In this study, prime numbers and primality testing methods have been expressed and
five of these methods were examined. In addition of the mathematical theorems and proofs of
the primality testing methods, computer programs were developed.

Thru the developed software, some selected numbers were tested and results were
compared. It is found that the probabilistic testing methods are superior to deterministic ones
in terms of time spent in primality testing.
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OZET

Bu ¢alismada asal sayilar ve asallik test metotlan izerinde durulmus, bu metotlardan
bes adedi incelenmistir. Bu test metotlannin matematiksel teoremlerinin ve ispatlannin
yaninda, bilgisayar programlan yazilmistir.

Gelistirilen programlar sayesinde bazi sec,;ilmis sayilar test edilmis ve sonuglan
karsilagtinlmigtir.  Asallik testi siwrasinda harcanan zaman agisindan, olasiliksal test
metotlannin deterministik metotlardan daha tstiin oldugu bulunmustur.
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APPENDIX A

LIST OF SPECIAL FUNCTIONS(MIRACL.H)

big : A new data type in miracl.h library.
cinstr : Input a number from a character string.
Function :

int cinstr(x, s)

big x;

char *s;
otnum : Output a big number to the screen or to a file
Function :

int otnum(x, f)

big x;

FILE *£f;
compare : Compare two big numbers.

Function :
int compare (x,VY)

big %x,y;
fmodulo : Find the remainder when one number is divided by another.
Function :
void fmodulo (x,y, z)
big x,y,z;
add : Adds two big numbers.
Function :
void add(x,y, z)
blg X, ¥YrZ;

mirsys : Initialize the MIRACL number of digits and base
Function :
miracl *mip=mirsys(500,10);

mirvar : Initialises a big/flash variable by reserving a suitable number
of memory locations for it.
Function :

flash mirvar (iv)

int iv; '
premult : Multiplies a big number by an integer
Function :

void premult(x,n,z)

int n

big x,z;

Al



nroot : Extracts lower approximation to a root of a big number.
Function :

BOOL nroot(x,n, z)

big %x,z;

int n;



APPENDIX B
C CODES
B.1 The Sieve of Eratosthenes

/*
*  THE SIEVE OF ERATOSTHENES
*
* MURAT TEPELI
*/
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>
#include <miracl.h> /* include MIRACL system */
FILE *dat;
int main()
{
time t ti1, t2;
big nf;
int n;
unsigned long i=0;
big nx;
big nO;
big nl;
big fraction;
char *s;
char c;
mirsys(290000,10); /* 100000 digits per "big" */
nf=mirvar (1) ; /* initialise "big" variable
nf=1 */
nx=mirvar (2);
nO=mirvar (0);
nl=mirvar(1l);
fraction=mirvar (0);
printf ("\tsieve prime number test program\n");
printf ("\tthe number to be tested (number.dat)=");

s=malloc (300000) ;
if (s==NULL) { printf("not enough memory\n");
exit(1l); }
if( (dat=fopen ("number.dat","r")) !=NULL) {
while( !feof(dat) ) {
s[i++]=fgetc(dat);
}
fclose(dat) ;
} else { printf("\tno input file\n"); exit(1l);}
cinstr(nf, s);
otnum (nf, stdout) ;
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printf ("\ttesting primality...");
while (compare (nf, nx)) {

\n") ;

}

}

fmodulo (nf, nx,

fraction);

if (compare (fraction, n0)==0) {
printf ("\r\tSIEVE: this is NOT prime!

4

return;

}

add (nx, nl, nx);

7

return 0;

B.2 The Sieve of Eratosthenes - IT

/*

*

*

*

L'
#inc
#inc
#inc
#inc
#inc
FILE

printf ("\r\tSIEVE: the given number is prime
\n") .

AN IMPROVEMENT OF THE SIEVE OF ERATOSTHENES

MURAT TEPELI

lude <stdio.h>

lude <math.h>
lude <time.h>

lude <string.h>
lude <miracl.h>

*dat;

int main()

{

nf=1

time t tl1, t2;
big nf;
int n;

/* include MIRACL system */

unsigned long i=0;

big nx;

big nO;

big nl;

big nr;

big npr;

big fraction;
char *s;

char c;

mirsys(290000,10); /* 100000 digits per "big" */

nf=mirvar (1);
*f

nx=mirvar (2

nO0=mirvar (0

(1

1

4

7

)
)
nl=mirvar (1l);
nr=mirvar (1)
npr=mirvar (3

) ;

/* initialise "big" variable

fraction=mirvar (0);
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printf ("\tsieve prime number test program\n");
printf ("\tthe number to be tested (number.dat)=");
s=malloc (300000) ;
if (s==NULL){ printf("not enough memory\n");
exit (1), }
if( (dat=fopen ("number.dat","r")) !=NULL) {
while( !feof(dat) ) {
s[i++]=fgetc(dat);
}
fclose (dat) ;
} else { printf("\tno input file\n"); exit(1l);}
cinstr(nf, s):;
otnum (nf, stdout) ;
printf ("\ttesting primality...");
nroot (nf, 2 ,nr):;
while (compare (nr,nx)) {
fmodulo (nf, nx, fraction):
if (compare (fraction, n0)==0) {
printf ("\r\tSIEVE: this is NOT prime!

\n") ;
return;
}
add (nx, nl, nx);
}
printf ("\r\tSIEVE: the given number is prime
\n") ;

return O;

}
B.3 Wilson 's Method

/*
* WILSON ‘'S TESTING METHOD
*
* MURAT TEPELI
L
#include <stdio.h>
#include <math.h>
#include <time.h>
#include <miracl.h> /* include MIRACL system */
FILE *dat;
int main{()
{
big nf;
int n, i;
big nx;
big nl;
char *s;
mirsys (290000,10);
nf=mirvar(l); /* initialize "big" variable
nf=1 */
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nf=mirvar(1l):; /* initialize "big" variable
nf=1 */
nx=mirvar (5)
sx=mirvar (1)
nl=mirvar(l):
(2)
(1)

4

4

n2=mirvar ;

nu=mirvar

nm=mirvar (1) ;

printf ("\tProth's prime number test program\n");

s=malloc (300000) ;

if(s==NULL){ printf("not enough memory\n") ;
exit(1l); }

if( (dat=fopen ("number.dat","r")) !=NULL) {

while( !feof(dat) ) {

4

s[i++]=fgetc(dat):;

}

fclose(dat);
} else { printf("no input file\n"); exit(1l);}
cinstr (nx,s);
subtract (nx,nl,nf);

printf ("\tthe number to be tested=");

otnum (nx, stdout):;
printf ("\ttesting primality...");
for (i=2; 1i<32767 ; i++){

convert (i, sx);

if (compare(sx, nf)>=0) { printf("\r\tthis is NOT

prime\n"); break;}

if (subdiv(nf, i, nu)==0) break;
}
gprime (LIMIT) ;
for (k=1; k<LIMIT; k++)
{

convert (k, sx);

if (compare (sx, nu)>=0) { printf ("\r\tno prime

divisor!\n"); break;}

if(subdiv(nu, mip->PRIMES[k], nm)==0) break;

}

powmod (n2,nf, nx, nu) ;
if (compare (nu,nl)==0) {

subdiv (nf, mip->PRIMES[k], nu);

expint (2, size(nu), nm);

subtract (nm, nl, nx) ; // nm--;

egcd(sx, nx, nu);

if (compare(nu,nl)==0) printf ("\r\tPROTH: this
is prime\n");

else printf ("\r\tPROTH: this is not prime\n");
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else printf ("\r\tPROTH: this is not prime\n");
return O;

}
B.5 Miller-Rabin's Method

/*
*  MILLER-RABIN ‘S TESTING METHOD
*
* MURAT TEPELI
*/
#include <stdio.h>
#include <math.h>
#include <time.h>
#include <miracl.h> /* include MIRACL system */
FILE *dat;
int main ()
{
time t t1, t2;
big nf;
int n, i=0;
big nx;
big nl;
char *s;
time (&tl) ;
mirsys (290000,10);
nf=mirvar(l); /* initialize "big" variable
nf=1 */
nx=mirvar (5);
nl=mirvar(1l);
printf ("\tPrime number test program\n");
s=malloc (300000) ;
if (s==NULL) { printf("not enough memory\n");
exit(l); }
if( (dat=fopen ("number.dat","r")) !=NULL) {
while( !feof(dat) ) {
s[i++]=fgetc(dat);
}
fclose (dat) ;
} else { printf("no input file\n"); exit(1l);}

cinstr (nx,s);

printf ("\tthe number to be tested (number.dat)=");
otnum(nx, stdout);
printf ("\ttesting primality...");

if(isprime (nx)) printf ("\r\tthis number is
prime\n"); else printf ("\r\tNOT prime!\n");

exit (1) ;
while (n>1) premult (nf,n--,nf); /* nf=(n-1) !=(n-
1)*(n-2)*....3%2*1 */

fmodulo (nf, nx, nf);
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subtract (nx, nl, nx);

if (compare (nx, nf)==0) printf ("WILLSON: this 1is &
prime number\n");

else printf ("WILLSON: this is not prime\n");

return O;
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APPENDIX C

TIME RESULTS OF THE SAMPLE NUMBERS
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