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ABSTRACT 

AN INTEGRATIVE DATA MINING APPROACH FOR 

MICRORNA DETECTION IN HUMAN 

MicroRNAs (miRNAs) are single-stranded, small, usually non-coding RNAs of 

about 22 nucleotides in length, that control gene expression at the posttranscriptional level 

through translational inhibition, degradation, adenylation, or destabilization of their target 

mRNAs. Although hundreds of miRNAs have been identified in various species, many 

more may still remain unknown. Therefore, the discovery of new miRNA genes is an 

important step for understanding miRNA mediated post transcriptional regulation 

mechanisms. First attempts for the identification of novel miRNA genes were almost 

exclusively based on directional cloning of endogenous small RNAs and high-throughput 

sequencing of large numbers of cDNA clones. However, conventional forward genetic 

screening is known to be biased towards abundantly and/or ubiquitously expressed 

miRNAs that can dominate the cloned products. Hence, such biological approaches might 

be limited in their ability to detect rare miRNAs, and restricted to the tissues and the 

developmental stage of the organism under examination. These limitations have led to 

the development of sophisticated computational approaches attempting to identify 

possible miRNAs in silico. Nevertheless, the programs designed to predict possible 

miRNAs in a genome are not sensitive or accurate enough to warrant sufficient 

confidence for validating all their predictions experimentally. With this study, we aim to 

solve these problems by developing a new and sensitive machine learning based approach 

to predict potential miRNAs in the human genome.   
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ÖZET 

İNSAN MİKRORNA TESPİTİ İÇİN BÜTÜNLEŞTİRİCİ VERİ 

MADENCİLİĞİ YAKLAŞIMI 

MikroRNAlar (miRNA) uzunluğu yaklaşık 22 nükleotid olan, tek diziden oluşan 

ve genellikle kodlama özelliği olmayan küçük RNA'lardır ve gen ekspresyonunu 

posttranskripsiyonel seviyede, hedefleri olan mRNAların translasyonel baskılanması ve 

istikrarsızlaştırılması yoluyla kontrol ederler. Çeşitli türlerde yüzlerce miRNA tespit 

edilmesine rağmen, miRNAların büyük bir çoğunluğu hala bilinmiyor olabilir. Bu 

nedenle, yeni miRNA genlerinin keşfi, miRNA aracılığıyla düzenlenen transkripsiyon 

sonrası regülasyon mekanizmalarının anlaşılması için önemli bir adımdır. MiRNA 

genlerin belirlenmesi için ilk girişimlerin neredeyse tamamı endojen küçük RNA’ların 

yönlü klonlanmasına ve çok sayıdaki cDNA klonlarının yüksek verimli sıralanmasına 

dayalıdır. Ancak konvansiyonel ileri genetik tarama, klonlanmış ürünleri domine eden, 

yüksek miktarda sentezlenen ve/veya her yerde görülen miRNAlara karşı yanlı bir 

yöntemdir. Fakat bu tarz biyolojik yöntemler nadir miRNAların saptanmasında etkisiz 

kalmaktadır. İncelenen doku ve organizmanın içinde bulunduğu gelişimsel dönemlerin 

farklılıkları da bu yöntemleri sınırlandıran faktörlerdendir. Bu sınırlamalar, olası 

miRNAları in silico olarak bulmak için sofistike bilgisayar programlarının 

geliştirilmesine yol açmıştır. Ancak bir genomdaki muhtemel miRNAları tahmin etme 

amacıyla oluşturulan bu programlar, tahminlerini deneysel olarak doğrulamak için yeterli 

güveni garanti edebilecek kadar hassas ya da kesin olmaktan çok uzaklardır. Bu çalışma 

ile yeni ve hassas, makine öğrenimine dayalı bir yaklaşım geliştirerek insan genomundaki 

olası miRNAların tahmini ve tüm bu sorunların çözülmesi amaçlanmıştır. 
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1.1. MicroRNA Definition 

MicroRNAs (miRNAs) are single-stranded and small RNAs of  about 22 nt in 

length, that control gene expression at the posttranscriptional level through translational 

inhibition and destabilization of their target mRNAs (Ambros, Lee, Lavanway, Williams, 

& Jewell, 2003; Filipowicz, Bhattacharyya, & Sonenberg, 2008). They were initially 

discovered from C. elegans, as regulatory molecules modulating the developmental 

timing (R. C. Lee, Feinbaum, & Ambros, 1993). Genetic, biochemical, and computational 

studies have shown fundamental and diverse roles of miRNAs in multi-cellular 

organisms. Thousands of miRNAs have been discovered in various species, and their 

various roles are rapidly being elucidated (Bushati & Cohen, 2007; Jones-Rhoades, 

Bartel, & Bartel, 2006). Links between miRNA and human diseases including cancer and 

neurodegenerative diseases have also been established (Bushati & Cohen, 2007; Hébert 

et al., 2009; G. Wang et al., 2008).  

In mammals, it has been estimated that the activity of approximately 30% of all 

protein-coding genes are controlled by miRNAs (Filipowicz et al., 2008). Not only higher 

eukaryotes, even simple multicellular organisms like poriferans (sponges) and cnidarians 

(starlet sea anemone) have miRNAs (V. N. Kim, Han, & Siomi, 2009). Moreover, many 

of the animal miRNAs seem to be phylogenetically conserved; ~55% of C. elegans 

miRNAs have homologues in humans, which implies that these miRNAs have had 

essential roles throughout evolution (Ibáñez-Ventoso, Vora, & Driscoll, 2008). However, 

animal and plant miRNAs appear to be evolved separately since their sequences, 

precursor structure and biogenesis mechanisms are very different from each other 

(Chapman & Carrington, 2007; Millar & Waterhouse, 2005). 

Almost half of mammalian miRNA loci are found in nearby to other miRNAs and 

these clustered miRNAs are transcribed from a single polycistronic transcription unit 

(TU) (Y. Lee et al., 2004), while there may be cases in which particular miRNAs are 
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originated from distinct gene promoters (V. N. Kim et al., 2009) (Figure 1). While some 

miRNAs are encoded in non‐coding TUs, others come from protein‐coding TUs (V. N. 

Kim et al., 2009). About 40% of miRNA loci are located in the intronic region of non‐

coding transcripts, ~10% are found in the exonic region of non‐coding TUs and the 

remaining ~40% of all miRNA loci are found in protein coding TUs; generally placed in 

intronic regions (V. N. Kim et al., 2009). Moreover, based on the alternative splicing 

events, it is possible to encounter some mixed miRNA genes which can be assigned to 

either intronic or exonic miRNA groups.  

 

 

Figure 1. Genomic location and gene structure of miRNAs. MiRNAs can be classified 
into four groups according to their genomic locations relative to exon and intron 
positions. A) Intronic miRNAs in non-coding transcripts, e.g. the miR-15a~16-1 
cluster found in the intron of a non-coding RNA gene, DLEU2. b) Exonic 
miRNAs in non-coding transcripts, e.g. miR-155 found in a previously defined 
non-coding RNA gene, BIC. c) Intronic miRNAs in protein-coding transcripts, 
e.g. the miR-25~93~106b cluster found in the intron of the DNA replication 
licensing factor MCM7. d) Exonic miRNAs in protein-coding transcripts, e.g. 
miR-985 hairpin found in the last exon of CACNG8 mRNA. The hairpins 
represent miRNA stem-loops while blue boxes indicate the protein-coding 
regions. (Source: V. N. Kim et al., 2009) 
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1.2.  MicroRNA Biogenesis 

It has been stated that the biogenesis of miRNAs consist of three step-wise 

activities, firstly transcription of primary miRNAs (pri-miRNAs) from the miRNA genes 

(Y. Lee, Jeon, Lee, Kim, & Kim, 2002), partial processing of precursor miRNAs (pre-

miRNAs) in nuclei (Hutvágner et al., 2001) and the formation of mature miRNAs in the 

cytoplasm (Figure 2). Pri-miRNAs are transcripts whose tertiary structure forms stem 

loop structures that are cleaved off by the microprocessor machinery in order to form 

~60-100 nucleotide long pre-miRNA. Then, the pre-miRNA is transferred from the 

nucleus by exportin-5 in a ran-GTP dependent manner (Yi, Qin, Macara, & Cullen, 2003). 

Binding of pre-miRNA by exportin-5 requires a length of 16-18 base pairs in the stem of 

the miRNA, and its efficiency is affected by the variations in the 3' overhang (Zeng & 

Cullen, 2004). At the next step, these pre-miRNAs are transferred from nucleus to 

cytoplasm where they are released from exportin-5 after the hydrolysis of GTP and further 

processed into ~22 nucleotide long mature miRNAs by Dicer (Y. Lee et al., 2003). The 

RNase III enzyme, Dicer, removes the loop structure and 3' overhang in an ATP 

independent manner (H. Zhang, Kolb, Brondani, Billy, & Filipowicz, 2002). Different 

domains of Dicer take part in the recognition and the correct cleavage of the pre-miRNA. 

Following cleavage, one strand of the miRNA duplex is preferentially directed to the 

RNA inducing silencing complex (RISC). The thermodynamic properties of the duplex 

is the deciding factor for the selection of one strand over the other, and the strand with 

the less thermodynamical stability at the 5' end is mostly selected (Khvorova, Reynolds, 

& Jayasena, 2003). The mature miRNA - RISC complex then partners with an Argonaute 

protein, (commonly Ago2), and leads binding of the RISC complex to partly 

complementary positions usually located in the 3'-UTRs of targeting mRNAs (G. Wang 

et al., 2008).  
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Figure 2. MiRNA biogenesis. RNA polymerase II performs the transcription of pri-
miRNA. The stem loop structure is cleaved off by the microprocessor resulting in 
pre-miRNA which is then exported to cytoplasm by exportin5 in a ran-GTP 
dependent manner. In cytoplasm, the pre-miRNA is further processed by Dicer 
making a single stranded mature miRNA which would be bound by the RISC 
complex, guiding it to the target mRNAs and leading to repression of protein 
expression. (Source: Beezhold, Castranova, & Chen, 2010) 

1.3.  MicroRNA Gene Prediction 

Previously, identification of novel miRNA genes were almost exclusively based 

on the usage of directional cloning of endogenous small RNAs and high-throughput 

sequencing of large numbers of cDNA clones (M Lagos-Quintana, Rauhut, Lendeckel, & 

Tuschl, 2001; Lau, Lim, Weinstein, & Bartel, 2001) (Table 1). Conventional forward 

genetic screening is biased toward abundantly and/or ubiquitously expressed miRNAs 

that dominate the cloned products (M Lagos-Quintana et al., 2001). Apparently, such 

biological approaches might be limited in their ability to detect rare miRNAs, and are of 

course limited to the tissues examined. This and the fact that miRNA precursors share a 

common secondary hairpin-shaped structure, has led to the development of sophisticated 

computational approaches attempting to identify possible miRNAs (Berezikov, Cuppen, 

& Plasterk, 2006).  
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Table 1. Experimental tools applied to discovery of miRNAs. 
(Source: Gomes et al., 2013) 

 
 

Technique 
 

Study Organism 

Cloning 

(R. C. Lee et al., 1993) Nematode 

(Mariana Lagos-Quintana et al., 2002) Mouse 

(Pfeffer et al., 2005) Virus 

(Bentwich et al., 2005) Human 

(He, Zhang, Liu, & Pan, 2007) Rat 

(G. Xu et al., 2009) Bovine 

(Long & Chen, 2009) Cattle 

Microarray (Liu & Theil, 2004) Human, Mouse 

In situ hybridization 

(Wienholds et al., 2005) Zebrafish 

(Kloosterman, Wienholds, de Bruijn, 
Kauppinen, & Plasterk, 2006) 

Zebrafish, Mouse 

(Nelson et al., 2006) Human 

(Deo, Yu, Chung, Tippens, & Turner, 2006) Mouse 

Next-Generation 

Sequencing 

(Bar et al., 2008) Human 

(Morin et al., 2008) Plant 

(Friedländer et al., 2008) Nematode 

(Meng, Hackenberg, Li, Yan, & Chen, 2012) Rat 

(Guzman, Almerão, Körbes, Loss-Morais, & 
Margis, 2012) 

Plant 

(B. Kim et al., 2012) Plant 

 

Numerous approaches for the in silico prediction of miRNAs have been proposed 

so far (Table 2). These programs commonly regard the hairpin secondary structure of the 

miRNA precursor as the most important characteristic of a miRNA gene (van der Burgt, 

Fiers, Nap, & van Ham, 2009). RNA secondary structure prediction (RSSP) algorithms 

such as RNAfold (Hofacker, 2003) also estimate the thermodynamic stability of the RNA 

hairpin structures. Existing bioinformatics methods for the prediction of miRNA usually 

consist of: (1) genome-wide estimation of hairpin structures; (2) filtering (or scoring) of 

those hairpins based on their similarity in structure and sequence to known miRNA 

hairpins and (3) experimental confirmation of putative candidates (van der Burgt et al., 

2009).  
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Table 2. Selected computational tools for miRNA prediction. 
(Source: Gomes et al., 2013) 

 

Tool Conservation Structure Sequence 
Machine 
learning 

NGS 
application 

miRscan (Lim et al., 2003) + +    

miRAlign (X. Wang et al., 
2005) 

 + +   

ProMiR (Nam et al., 2005) + + + +  

Triplet-SVM (Xue et al., 
2005) 

 + + +  

miR-abela (Sewer et al., 2005)  + + +  

RNAmicro (Hertel & Stadler, 
2006) 

 + + +  

miRFinder (Huang et al., 
2007) 

+ +  +  

miPred (Jiang et al., 2007)  +  +  

MiRRim (Terai, Komori, 
Asai, & Kin, 2007) 

+ +  +  

miRDeep (Friedländer et al., 
2008) 

 +   + 

miRanalyzer (Hackenberg, 
Sturm, Langenberger, Falcón-

Pérez, & Aransay, 2009) 
   + + 

SSCprofiler (Oulas et al., 
2009) 

+ + + + + 

HHMMiR (Kadri, Hinman, & 
Benos, 2009) 

 + + +  

 

Computational miRNA gene prediction approaches can be grouped into several 

categories. Generally, either homology modelling or ab initio methods are applied to 

extract possible miRNAs from a genome. However, there are at least two computational 

challenges: 1) the prediction of miRNAs in a genome and 2) the mapping of the miRNAs 

to likely targets. 

1.3.1. Homology Based MicroRNA Gene Prediction 

Homology-based mapping methods can build on available, experimentally 

validated, miRNAs and find similar structures and sequences in related species. The idea 

is that if a miRNA is identified in one genome then its homologs can be possibly found 

in other species (Lindow & Gorodkin, 2007). Since conservation indicates a function, it 

is assumed that conserved candidates are more likely to be miRNAs. Although, it has 



 

  7 

been shown that for non-coding RNAs absence of conservation does not inevitably mean 

lack of function (Pang, Frith, & Mattick, 2006), searching for homologs especially in 

newly annotated genomes is a beneficial approach.  Software facilitating mapping of 

known miRNAs to homologous genomes take both sequence similarity and miRNA 

secondary structure information into account. The theory is based on derivation of mature 

miRNAs from hairpin structure formed by folding its pre-miRNA. The approach taken 

by one of the most recent developments, MapMi (Guerra-Assunção & Enright, 2010), 

first scans the miRNA sequences against the target genome and then creates two potential 

pre-miRNAs from it. The ViennaRNA package (Hofacker, 2003) is used to compute the 

most likely folding of the extracted RNA sequences. In the end, the results are scored, 

ranked and displayed.  

Although homology modeling can gather information from already successfully 

established miRNAs of a related organism's genome, it is also limited since completely 

novel miRNAs cannot be determined in this way. First attempts in this approach are 

mainly relied on identifying close homologs of published pre-miRNAs i.e. let-7 

(Pasquinelli et al., 2000). This method might be seen as straightforward as aligning 

sequences through NCBI BlastN (McGinnis & Madden, 2004) but it can only reproduce 

results and cannot find new miRNA genes. Since many miRNAs are species specific (Mor 

& Shomron, 2013), they will always be missed by this method and therefore other 

strategies need to be used in tandem. Additionally, miRNA genes evolve very rapidly 

which further limits the applicability of homology-based methods (Liang & Li, 2009). A 

powerful approach developed for genome-wide screening of phylogenetically well 

conserved pre-miRNAs between closely related species is cross-species sequence 

conservation based on computationally intensive multiple genome alignments. However, 

this strategy also suffers lower sensitivity, especially in divergent evolutionary distance 

(Berezikov et al., 2006; Boffelli et al., 2003). Moreover, identifying pre-miRNAs that 

differ significantly or undergo rapid evolution at the sequence level while keeping their 

characteristic evolutionarily conserved hairpin structures, may also pose problems (Ng & 

Mishra, 2007). Another important issue is that non-conserved pre-miRNAs with genus-

specific patterns are also likely to escape detection (Ng & Mishra, 2007).  

There are various homology-based miRNA gene prediction softwares such as 

MirScan (Lim et al., 2003), MirFinder (Huang et al., 2007), miROrtho (Gerlach, 

Kriventseva, Rahman, Vejnar, & Zdobnov, 2009), miRNAminer (Artzi, Kiezun, & 
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Shomron, 2008), and ProMiR II (Nam, Kim, Kim, & Zhang, 2006). Also, some of these 

softwares use machine learning approaches such as ProMir (Nam et al., 2005). 

1.3.2. Ab Initio MicroRNA Gene Prediction 

While other methods mainly use comparative genomics information, ab initio 

miRNA gene prediction needs no other information than the primary sequence in order 

to determine whether it is a true miRNA (assuming there are already established negative 

and positive datasets). This is the only way for the identification of new miRNAs which 

have no close homologs (Brameier & Wiuf, 2007). Two different modes of operations 

are possible with one using multiple sequences and the other based on single sequences. 

The main difficulty in working on miRNAs by using ab initio methods is choosing proper 

rules that can reliably identify a given sequence as a true miRNA based on its properties. 

For instance, the hairpin structure (Figure 3) is one of the most commonly used features 

of miRNAs in prediction tools such as miPred (Ng & Mishra, 2007). The problem is that, 

although precursor miRNAs are believed to possess evolutionarily conserved RNA 

hairpin structures critical for the early stages of the mature miRNA biogenesis, the hairpin 

shape is not unique to miRNAs (Ding, Zhou, & Guan, 2010) and there are around 11 

million hairpins estimated to be present in the human genome (Bentwich, 2008). 

Moreover, if the chosen discriminating parameter does not have a good sensitivity or 

accuracy potential, it would not be very useful and might have a potential to produce false 

positives and miss true miRNAs. 
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Figure 3. MiRNA hairpin structure. Some of the components of hairpin structure: G-U 
base pairing, symmetric and asymmetric bulges, stem etc. Secondary RNA 
structure and minimum free energy value is calculated by using RNAShapes 
(Steffen et al. 2006).  (Source: Saçar & Allmer, 2014). 

 

In a more systems-driven approach, the predicted mature miRNAs can be 

validated further by looking for targets, for instance 3’UTRs of mRNAs are potential 

targets for many miRNAs, and by evaluating the multiplicity of targets per miRNA and 

target sites per regulated mRNA. In order to have a better understanding of miRNAs and 

to be able to use them in prospective treatments of human diseases, we first need to 

establish a method to identify the human miRNAs in the genome and then, we should 

determine their potential targets and modes of action. Although there are many miRNA 

prediction algorithms designed by different groups, accuracy of such programs are not in 

the desirable range. 

There are various advantages of using ab initio methods in miRNA prediction:  

a) It is shown that the number of miRNAs present in the human genome is 

higher than previous estimates (Bentwich et al., 2005). Furthermore, it is estimated that 

the number of non-conserved miRNAs may be relatively large.  

b) Ab initio prediction approaches are able to predict miRNAs in a particular 

genome without using comparative sequence analysis or demanding neither sequence nor 

structure conservation (Brameier & Wiuf, 2007). This allows the identification of entirely 

new miRNAs that have no known close homologs.  
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c) It has been shown that lowly expressed human miRNA genes evolve 

rapidly (Liang & Li, 2009). In this case, while the methods based on comparative genomic 

information may be limited in their use, using an ab initio approach would predict this 

kind of miRNAs seamlessly.  

1.4.  Machine Learning and MicroRNA Gene Prediction 

1.4.1. Algorithms for Machine Learning 

Machine learning has become a popular choice in many bioinformatics 

applications and studies (Figure 4). The range of speedily increasing data created by 

modern molecular biology techniques has intensified the need for accurate classification 

and prediction algorithms (Bhaskar, Hoyle, & Singh, 2006). There are numerous 

biological fields where machine learning methods are applied for knowledge extraction 

from data such as genomics, systems biology, evolution, microarray and proteomics 

(Larranaga, 2006). 

 

 

Figure 4. Fields in biology where machine learning methods are applied (The number of 
publications (y-axis) is calculated by searching PubMed with machine learning 
approach and the field name as key words). (Source: Saçar & Allmer, 2014). 
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Machine learning algorithms diverge from the rule-based miRNA prediction 

algorithms since the ‘‘rules’’ to determine whether a given sequence is a true miRNA are 

not manually created; instead these rules are learned from samples (Lindow & Gorodkin, 

2007). Generally, machine learning-based methods start with the learning process 

involving the sequence, structure or thermodynamic features of miRNAs. Afterwards, a 

classifier is formed to decide whether unknown sequences are true miRNAs based on the 

information gained through positive and negative data sets. Normally, the parameters are 

a set of numerical features defining a candidate miRNAs such as the minimum free energy 

of folding and the results would be predictions towards the candidate being a miRNA or 

not.  

Nevertheless, there are two major drawbacks with the current machine learning 

based miRNA gene identification processes. The main one is the imbalance on the 

number and quality of positive and negative examples used in classifier training. Due to 

the uncertainty about the exact number of real miRNAs in any genome, it is supposed 

that there are very few miRNA precursors in any randomly selected collections of hairpins 

extracted from the genome (Ding et al., 2010). Likewise, the number of positive examples 

is considerably smaller than that of negative examples. For instance, one of the commonly 

used negative dataset for miRNA prediction algorithms consists of approximately 9000 

pseudo hairpins while the number of human miRNAs that can be obtained from miRBase 

is less than 2000 (Ng & Mishra, 2007). In this work, we have shown that the imbalance 

problem between positive and negative datasets can significantly reduce the performance 

of current machine learning approaches (see the Results and Discussion Section). Another 

problem is that most of the current machine learning based algorithms makes assumptions 

such as the length of the stem, the loop size and the minimum free energy (MFE) of the 

data, As a result, sequences outside of these predetermined borders are not considered as 

potential miRNA and cannot be predicted by those methods, inevitably reducing the 

prediction performance and accuracy (Ding et al., 2010). 

To the best of our knowledge, there is no published study that uses unsupervised 

machine learning approaches for miRNA gene prediction while there are many studies 

using supervised machine learning algorithms such as support vector machine (SVM), 

neural networks (NN), hidden Markov models (HMM), and Naive Bayes classifiers (NB).  



 

  12 

1.4.2.  Supervised Approaches (Classification) 

While there are some examples for the usage of unsupervised approaches on 

miRNA target prediction (Heikkinen, Kolehmainen, & Wong, 2011), machine learning 

for miRNA gene prediction is entirely based on supervised learning in which an algorithm 

is trained to learn; approximating a function that maps input data to expected outputs (B.-

T. Zhang & Nam, 2008). Mostly, the inputs are a set of features characterizing sample 

(e.g., mfe, number of dinucleotides, length of stem etc.) and the output would be a 

decision for either miRNA or non-miRNA. While the anticipated output is unknown, the 

classifier is trained by a set of known inputs so it can generalize based on these examples 

(input data; positive and negative examples) and appropriately classify future samples 

(Lindow & Gorodkin, 2007). The most important element influencing the accuracy of the 

results is the selection of features, since parameterization of the samples into features is 

not performed automatically (Ding et al., 2010; Lindow & Gorodkin, 2007). In order to 

test the accuracy and precision of the machine learning process, a procedure called cross-

validation is used. One round of cross-validation includes dividing the available data into 

two mutually exclusive subsets, training the classifier on one subset (the training or 

learning set), and validating it on the other subset (testing set) (Figure 5). The dataset can 

be divided in defined percentages (e.g. 70% of samples included in learning set, 

remaining 30% included in testing set. See Figure 5) but the crucial point is that these 

datasets must not have shared instances. After cross-validation the best performing 

classifier construction strategy is selected to train a classifier using the whole dataset and 

applied to make predictions on the future data. 
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Figure 5. Machine learning based miRNA prediction. General work-flow of machine 
learning algorithms for miRNA gene prediction. (Source: Saçar & Allmer, 2014). 

 

One of the initial works in the field by (Sewer et al., 2005) assembled 40 different 

sequence and structural signs to label a candidate as pre-miRNA. The SVM classifier 

model was trained using 178 known human pre-miRNAs as positive examples and 5395 

random sequences obtained from tRNA, rRNA, and mRNA genes as negative examples 

although in reality, there is no guarantee that these RNAs would not include any 

functional miRNAs. As a result of huge difference between the number of positive and 

negative samples, their results have high specificity (91%) and low sensitivity (71%) for 

their dataset.  

ProMiR was introduced in 2005 as an algorithm that uses a Hidden Markov Model 

and simultaneously takes into account structure and sequences of pre-miRNAs (Nam et 

al., 2005). A machine learning approach was used with positive examples from known 

human miRNAs and negative examples acquired randomly from the human genome. The 

predicted pre-miRNAs are further evaluated according to their minimum free energy and 

based on whether they are conserved among vertebrates. ProMiR II takes into account 

additional features such as miRNA gene clustering, G/C ratio conservation, and the 

entropy of the candidate sequences (Nam et al., 2006). 
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MatureBayes is a probabilistic algorithm developed by Gkirtzou et. al. using a 

Naive Bayes classifier to characterize potential mature miRNAs (Gkirtzou, Tsamardinos, 

Tsakalides, & Poirazi, 2010). Similar to previous approaches, it also performs 

classification based on the sequence and the secondary structure of the miRNA 

precursors.  

1.4.3.  One-Class Classification 

The main challenge in classification is apportioning a new object to one of a set 

of classes which are defined in advance. This classification process is accomplished by 

using the learned rules based on a number of samples. Differing from other classification 

approaches, in one-class classification, it is assumed that information on only one of the 

classes, also known as the target class, is available. Consequently, due to the lack of 

samples representing the other class, the distinction between the two classes has to be 

assessed from data of only the real class (Tax, 2001). 

Defining the negative class is another difficult challenge to overcome in 

developing machine learning algorithms for miRNA identification. Hence, machine 

learning methods have been offered for identifying miRNAs without the requirement of 

a negative class. Yousef and colleagues performed a study using one-class machine 

learning approach for miRNA gene prediction by using only positive data to construct the 

classifier (Yousef, Jung, Showe, & Showe, 2008). Even though the one-class method is 

less complex to implement and simpler to handle, the two-class systems mostly appear to 

be superior. Furthermore, there are additional problems due to some characteristic 

properties of miRNAs; e.g., pre-miRNAs must fold in a hairpin structure, but not all 

hairpins in the genome are miRNA sequences (Bentwich et al., 2005). 

1.5.  Learning and Test Data 

In miRNA gene prediction studies, it is usually straightforward to select positive 

examples (e.g., using known miRNAs), while it is quite challenging to create negative 

samples (Lindow & Gorodkin, 2007). Usually, positive data for miRNA gene predictions 

are obtained from miRBase (Bentwich, 2008), although there are some entries in 

miRBase which are suggested as miRNAs but do not satisfy the required features to be 
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classified as miRNAs such as having more than one loop. It was shown that when a 

reference set of positive controls taken from miRBase, further improvements are needed 

to generate a proper high-confidence positive controls (Xue et al., 2005). We recently 

took this issue in consideration and found that filtering of questionable miRNAs from 

miRBase improves prediction accuracy (M. D. Saçar, Hamzeiy, & Allmer, 2013).  

A proper negative dataset is one of the fundamental requirements for a well-

trained classifier. In the presence of overly artificial negative data, there is a high chance 

that the machine learning method will not be trained sufficiently to discriminate among 

true miRNAs and non-miRNA sequences (Wu, Wei, Liu, Li, & Rayner, 2011). 

Conversely, if the negative dataset is very similar to the positive dataset, the machine 

learning approach will be unable discriminate between these two datasets (Wu et al., 

2011). 

A small RNA sequence should be recognized and processed by the enzyme Dicer 

to be categorized as a miRNA. This means that while constructing a negative control, 

samples should be selected among the transcripts that are expressed in the same cellular 

section as true miRNAs but are not recognized by Dicer. Since this is a very intricate 

system to produce negative samples, in most of the algorithms random genomic 

sequences or exonic sequences are used instead (Brameier & Wiuf, 2007; Xue et al., 

2005). These sequences, however, are very inadequate negative controls because there is 

no confirmation that these transcribed small RNAs would not be recognized by Dicer and 

the other components of miRNA biogenesis pathway (i.e. Drosha, RISC) and processed 

into functional mature miRNAs (Xue et al., 2005).  

A well-known negative dataset for miRNA gene prediction consists of 8494 

pseudo hairpins from human RefSeq genes (Jiang et al., 2007) which have been selected 

such that they do not undergo any alternative splicing events (Ng & Mishra, 2007).  

1.6.  Aim of the study 

In order to have a better understanding of miRNAs and to be able to use them in 

prospective treatments of human diseases, first, a method to detect the miRNAs in a 

genome needs to be established. In this study, our main objective is to design an approach 

which would allow us to identify miRNAs in human genome using machine learning 
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methods. To have a comprehensive view on the subject, we analyzed the current literature 

in the field, checked the sufficiency of the established databases for an accurate prediction 

and investigated the main problems in machine learning approaches such the impact of 

largely differing numbers of positive and negative data for ab initio miRNA prediction. 

Moreover, all the possible features (total of 740) that can potentially help discriminate for 

miRNA hairpins in human are considered and implemented.  

Here we propose not only to increase the accuracy of prediction, but also to 

develop a method that can be used in other organisms. Although there are many miRNA 

prediction algorithms designed by different groups, their accuracies are not satisfactory 

and have not been properly validated in a comparative manner on the same reference data 

set. We therefore reviewed all previously described features for miRNA prediction (200+) 

and combined them with the features that we defined, finally selecting only the ones that 

are most informative without being correlated. 
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2.1.  Data sets 

Positive examples for human miRNAs were obtained from miRBase 

(http://www.mirbase.org/). Also, other positive data sets have been prepared by using 

available examples for human from miRTarBase and from Ensemble (Flicek et al., 2013). 

For negative examples we prepared different sets; 

- Pseudo: the widely used pseudo hairpin sequences by Ng and Mishra (Ng & 

Mishra, 2007)  

- ShuffledHuman: random sequences with the same length range with human 

miRNAs  

- NegHSa: to be able to examine class imbalance effect, the largest available 

negative dataset for human was used 

(http://adaa.polsl.pl/agudys/huntmi/huntmi.htm) (Gudyś, Szcześniak, Sikora, & 

Makałowska, 2013). 

- NotBestFold: we defined a completely new negative data constructed by 

choosing not best structures for known human miRNAs. Since the sequence is 

not altered this negative data would show the effect of highly used structural 

features on the classification accuracy.    
  

2.2.  Features 

Selected features are of major importance for the accuracy and generalization of 

the model established through machine learning. In this case, we previously assessed 12 

ab initio miRNA detection algorithms (Bentwich, 2008; Cakir & Allmer, 2010; Ding et 

al., 2010; Grundhoff, Sullivan, & Ganem, 2006; Jiang et al., 2007; Lai, Tomancak, 

Williams, & Rubin, 2003; Ng & Mishra, 2007; Pfeffer et al., 2005; Ritchie, Gao, & Rasko, 

2012; van der Burgt et al., 2009; Y. Xu, Zhou, & Zhang, 2008; Xue et al., 2005) and 

determined the features that were used to describe a miRNA hairpin. More than 200 
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different features have been described and more than 100 have been used in machine 

learning for miRNA hairpin detection. In this study, in addition to implementing the 

features in the JavaTM programming language, we generalized and normalized them to 

miRNA stem length or miRNA hairpin length where appropriate. The total number of 

features that we analyzed amounts to 740. We divided the features into four groups as 

sequence, structure, thermodynamic and probability based features. Some examples are; 

Sequence based features; 16 dinucleotide frequencies %NN (%AA, %AC, %AG, 

%AU, %CA, %CC, %CG, %CU, %GA, %GC, %GG, %GU, %UA, %UC, %UG, %UU), 

regular internal repeat (dr), inverted internal repeat (ir), free energy (hpmfe_rf), GC 

content (%GC) etc. 

Structural features; 32 triplet elements i.e. A(((, A…, U(((, U(.(, U…, G(((, C(((, 

C(.(, hairpin length (hpl), loop length (hll), free energy per nucleotide (hpmfe_rf/hpl), 

matching base pairs (bpp), maximal bulge size (mbs) etc. 

Thermodynamics based features; ensemble free energy (efe), ensemble frequency 

(efq), melting temperature (Tm), enthalpie divided by hairpin length (dH/hpl), entropy 

divided by hairpin length (dS/hpl), etc. 

Probability based features derived from dinucleotide shuffling (dns); adjusted 

base pairing propensity (dP), adjusted Minimum Free Energy of folding (MFE) (dG), 

MFE index 1 (MFEI1), adjusted base pair distance (dD), adjusted shannon entropy (dQ), 

MFE index 2 (MFEI2), degree of compactness (dF). 

2.3.  Machine Learning 

There are many data mining tools and most of them were used during the process 

at some points but Orange Canvas (Curk et al., 2005) was mainly used to perform 

filtering, sampling, ranking and data preprocessing steps, as well as to carry out SVM, 

Naive Bayes (NB), Random Forest (RF) and Logistic Regression (LR) classifications 

with 10 fold cross-validation. All the classifiers are used with their default settings. 

After obtaining data from MiRBase, we needed to calculate the values of our 

features on this data as well as negative data sets. Subsequently running Java codes 

prepared specifically for this purpose, we had the desired outputs which would allow us 

to carry out a classification. Initial filtering on MiRBase data was achieved by removing 
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entries having multiple loops in structure or having more than two cleave site problems 

in either 3’ or 5’ ends. Later, both positive and negative data were loaded into Orange 

Canvas, stratified (if possible) random sampling applied according to the expected output 

(the same size, 10-fold validation etc.) combined and saved (Figure 6). The next step was 

the classification process for acquiring the best model capable of distinguishing the 

positive from negatives (Figure 7).  

 

 

  Figure 6. Sampling of data. Stratified (if possible) random sampling applied on data sets. 
According to the expected results Data Sampler node’s parameters are used, e.g. 
if 1:2 ratio is needed between data sets, the number of samples can be chosen in 
this part.  

 

 

Figure 7. Classification with four different classifiers. After uploading the file including 
the data to be classified, the attribute defining the classes is chosen in the Select 
Attributes node. Test Learners is applied with four classifiers NB, LR, SVM and 
RF and the classifier producing the best accuracy is saved for the model. The 
results of Test Learners can be evaluated as ROC Analysis and Confusion Matrix.   
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In statistical analysis of classification, the F-score (F1) is a measure used to 

evaluate the test's accuracy. It takes into account both the precision (p, the number of 

correct results divided by the number of all returned results) and the recall (r, the number 

of correct results divided by the number of results that should have been returned) of the 

test to compute the score (Table 3). In other terms, the F1 can be elucidated as the harmonic 

mean of the precision and recall (Powers, 2011). Although, there are various formulas for 

accuracy calculation, we measured it as the proportion of true results in the overall 

outcome.  

Table 3. Statistical measures 

 

 

2.4. Programs Included in the System 

Even though we have designed and implemented the proposed method, we have 

also used some external code, especially during the calculation of features. Pre-

implemented programs in our approach are RNAshapes (Giegerich, Voss, & 

Rehmsmeier, 2004) and RNAfold (Hofacker, 2003) for folding RNA sequences into 

stem-loop and hairpin structures and obtaining the minimum free energy scores. In 

addition, mfold (Zuker, 2003) was used for calculating features such as Gibbs free energy, 

entropy etc. DustMasker was used from the Blast+ package (Camacho C, Madden T, Ma 

N, et al. 2008), RNAEval was applied from Vienna RNA Secondary Structure package 

(Hofacker, 2003) and dc was accessed using an online server 

(http://www.biomath.nyu.edu/rag/rna_matrix_results.php). 
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3.1.  Comparison of Four Tools 

There are many the ab inito algorithms for miRNA gene prediction and most of 

them report an accuracy but these tools cannot be compared easily since they are trained 

on different data sets. Besides, most of the algorithms are not distributed publicly. Thus, 

we implemented the routines for calculating all features described in Ding et al., Jiang et 

al, Ng and Mishra, and Bentwich (Bentwich, 2008; Ding et al., 2010; Jiang et al., 2007; 

Ng & Mishra, 2007) and compared them on the same data set to investigate relative 

algorithm performance. 

MiRBase human entries were used as positive data. A filtration procedure was 

applied as; we removed the samples that contained more than one hairpin when folded by 

RNAFold (Hofacker, 2003) or RNAShapes (Steffen, Voss, Rehmsmeier, Reeder, & 

Giegerich, 2006), and if there was no accurate link to Ensemble, those entries were 

removed as well. From the remaining samples, about 1000 miRNA examples we 

distributed into five random subsets containing 500 positive examples each. As for the 

negative data sets, we used ShuffledHuman and Pseudo (see 2.1 Data Sets). 

We generated five combined data sets comprising 60% training and 40% test 

samples from the overall data set which was used to train and test a SVM classifier using 

Orange Canvas. In order to have a fair comparison between these four studies (Bentwich, 

2008; Ding et al., 2010; Jiang et al., 2007; Ng & Mishra, 2007), we needed to use this 

approach since fivefold cross validation could not be used with multiple studies at the 

same time; but had to be repeated individually, thus leading to different data sets. 

We think that, the two datasets that were used (positive data – ShuffledHuman 

and positive data - Pseudo), are of different difficulty with the ShuffledHuman dataset 

being easier to solve than the Pseudo miRNA data set. This was also supported from the 

best results reported in Table 4 and Table 5. The results for the ShuffledHuman - miRNAs 

in Table 4 lead to higher accuracy than the data in Table 5 which is achieved with Pseudo 
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- miRNAs. For both tables the best and the average accuracy are presented along with the 

standard deviation, calculated from fivefold cross validation. 

 

Table 4. Accuracy of known human miRNAs and ShuffledHuman dataset. 

Studies 
Accuracy Values 

Best Average Standard Deviation 

(Ng & Mishra, 2007) 0.919 0.894 0.183 

(Bentwich, 2008) 1.000 1.000 0 

(Ding et al., 2010) 1.000 0.676 0.217 

(Jiang et al., 2007) 0.954 0.952 0.003 

 

Such a perfect result as achieved by Bentwich 2008 features in Table 4 is not 

expected for the pseudo miRNAs and Table 5 displays no such success. For the Pseudo 

miRNA dataset, the features used in (Ding et al., 2010) achieve the highest accuracy 

although with a high standard deviation among training sets. 

 

Table 5. Accuracy of known human miRNAs and Pseudo dataset. 

Studies 
Accuracy Values 

Best Average Standard Deviation 

(Ng & Mishra, 2007) 0.930 0.895 0.060 

(Bentwich, 2008) 0.986 0.983 0.002 

(Ding et al., 2010) 0.996 0.599 0.198 

(Jiang et al., 2007) 0.910 0.877 0.018 
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The best accuracy of 0.996, achieved by the features described in the (Ding et al., 

2010) study, when used for 10 million putative hairpins in human would lead to 40000 

false positive detections. Unfortunately, the number of putative hairpins in human is 

estimated to be quite large and the accuracy calculated here does not completely reflect 

the true accuracy since it is not entirely known what differentiates a true from a false 

hairpin. For real data, a much higher false positive rate is expected for real data and thus 

the high number of false positives may increase the cost of experimental validation of all 

predicted miRNAs drastically, making it almost impossible. This is further supported by 

showing that the accuracy strongly depends on the data set used for training and testing 

Figure 8 and Figure 9.  

 

 

Figure 8. Accuracy of human miRNAs and ShuffledHuman miRNAs. All cross validation 
results are shown individually. 

 

We considered Pseudo data set to be a harder negative data to handle for the 

classifier. Although (Ding et al., 2010) achieves the highest accuracy in one case, it fails 

in all other cases which indicates a strong dependence on the training and test data set and 

a poor generalization for the features from that study (Figure 9). (Bentwich, 2008) does 

not show such generalization problems and outperforms all other studies on the remaining 

four data sets. 
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Figure 9. Accuracy of human miRNAs and Pseudo miRNAs. All cross validation results 
are shown individually. 

 

As we expected, our results show that Pseudo data set is more difficult than 

ShuffledHuman negative data set. This directed us to think about the quality of the 

positive data used for classifications so we tested the quality of the MirBase which is the 

de facto standard repository for miRNAs.  

3.2. Testing MiRBase  

With the aim of analyzing whether entries in miRBase that are falsely annotated 

as miRNAs have an influence on classification accuracy, we performed classifications 

with three classifiers. Given that miRTarBase (Hsu et al., 2011) has only little data for 

human we used 180 available examples for the positive dataset from miRTarBase which 

claims that this data has strong experimental evidence showing miRNA-target 

interactions. MiRBase contains about 2000 human miRNAs, but in an attempt to keep the 

comparison fair, we randomly extracted 180 sequences. This guides to two positive 

datasets which both consist of 180 examples one from miRBase and one from 

miRTarBase which will be compared in. Both positive datasets were used in conjunction 

with the same negative dataset (pseudo hairpins) in order to ensure fair comparison. 

In this study, we used the 10 most frequently used features in the 12 ab initio 

miRNA hairpin detection studies. The selected parameters are: hairpin loop length (hll), 

base pairing propensity (bpp), hairpin minimum free energy (hpmfe), dinucleotide 
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shuffling, p-value of hpmfe, and the frequencies of the following triplet structures U(((, 

U(.(, C(.(, A..., G(((. 

 

Table 6. Comparing miRBase and miRTarBase as a positive data source. 

miRBase entries Proven miRNAs 

Classifier Sensitivity Specificity CA F1 Sensitivity Specificity CA F1 

SVM 0.85 0.86 0.85 0.85 0.94 0.92 0.93 0.93 

NB 0.90 0.82 0.86 0.87 0.93 0.90 0.91 0.92 

LR 0.91 0.92 0.92 0.92 0.93 0.94 0.94 0.94 

 

Table 6 shows, the classifications of miRNA hairpins and pseudo hairpins using 

SVM, Naïve Bayes (NB), and Logistic Regression (LR) to compare performance of 

miRBase as positive data and miRTarBase as positive data. The results of classifications 

for all three employed classifiers show that using the miRNAs having strong experimental 

evidence to interact with an mRNA as positive dataset (miRTarBase) provides a higher 

sensitivity, specificity, classification accuracy (CA), and F1 (calculation method as in 

Table 3). Using positive examples derived from miRBase on the other hand leads to lower 

statistics (Table 6). 

3.3.  Class Imbalance 

Here we investigate the impact of largely differing numbers of positive and 

negative examples on machine learning for ab initio miRNA prediction.  

Positive examples for human miRNAs were obtained from miRBase. To examine 

class imbalance effect, the largest available negative dataset for human was used (Gudyś 

et al., 2013). Of this dataset about 50000 sequences were used for testing. For 

generalization the remaining about 18000 examples from the dataset were used. In 

addition to that, miRNA examples from ENSEMBLE (≈3200) (Flicek et al., 2013), the 

complete pseudo data set (≈9000) as described in (Ng & Mishra, 2007), and random 

sequences with the same length range with human miRNAs (1400) were used. The 

generalization dataset consists of approximately 32000 examples with most of them being 

negative. 
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Figure 10. Class imbalance influence results. Recall and precision after training on the 
test dataset using 10 fold cross validation for four different classifiers (top left and 
right). Recall and precision for the best classifier tested on new examples that 
were not part of training or test set (bottom left and right). Numbers 1 through 7 
correspond to different composition of positive and negative data during training. 
1:1600 positive and 800 negative examples; 2 1600, 1600; 3: 1600-3200; 4: 1600-
5000; 5: 1600-10000; 6: 1600-25000; 7: 1600-50000. 

 

According to the results in Figure 10, during generalization (bottom panes) recall 

drops significantly (up to ~50%) while precision increases at the same time (up to ~50%). 

This implies that accuracy may not be a good measure to rely on for the performance of 

miRNA gene prediction based on machine learning and that it is a better choice to report 

precision and recall or sensitivity and specificity, instead. 

3.4.  Feature Number 

Since we implemented a large number of features, we were interested to see 

whether increasing number of features on the best training dataset from Figure 10 would 

influence classification performance. Firstly, we ranked all features according to 
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information gain (Table 7) and then started with the 5 most extreme features and included 

more features until all features were included in the classification. This leads to two 

curves for precision and recall (Figure 11) one set which starts from low performance and 

one which starts with high performance. When features with the least information gain 

from the bottom are selected first, the trained classifiers never reach to recall or precision 

of classifiers trained starting with features with the largest information gain. Increasing 

number of features, makes the precision and recall values of the trained classifiers fall 

into the same range. They cannot be expected to reach to exactly the same values as an 

element of randomness is introduced through the use of 10 fold cross validation during 

classification. 

 

Table 7. Feature ranking. Information gain for the 100 features with highest gain among                        
all defined features. 

Attribute 
Inf. 
gain 

Attribute 
Inf. 
gain 

Attribute 
Inf. 
gain 

Attribute 
Inf. 
gain 

#C.../sl 1,00 #U(.(/sl 1,00 st(G-C)/hpl 0,72 nl/sl 0,57 

#U.../sl 1,00 #G..(/sl 1,00 l(lsr)/hpl 0,70 nl/hpl 0,56 

#A..(/sl 1,00 #A(.(/sl 1,00 st(G-C)/sl 0,69 lscm/hpl 0,54 

#A(../sl 1,00 #G.(./sl 1,00 bpp/hpl 0,69 st(A-U)/hpl 0,52 

#G(((/sl 1,00 Q 1,00 mwm/sl 0,69 mwmF/hpl 0,51 

#A(((/sl 1,00 #C.(./sl 0,99 bpp/nl 0,68 st(A-U)/sl 0,50 

#U(((/sl 1,00 Tm 0,99 hpmfe_rf 0,68 *G((( 0,48 

#U..(/sl 1,00 #U.(./sl 0,99 l(lsr)/sl 0,68 *A... 0,47 

#G.../sl 1,00 #A.(./sl 0,98 dscs/nl 0,67 #A++#U/hpl 0,47 

#C..(/sl 1,00 dH/sl 0,96 efq 0,67 #U++#A/hpl 0,47 

#C((./sl 1,00 dS/sl 0,96 ediv 0,66 %U++%A 0,47 

#A.../sl 1,00 dS/hpl 0,95 saln/hpl 0,66 %A++%U 0,47 

#A((./sl 1,00 dH/hpl 0,95 bpp/sl 0,66 #G++#C/hpl 0,47 

#U.((/sl 1,00 Tm/sl 0,94 mbs/sl 0,66 #C++#G/hpl 0,47 

#U(../sl 1,00 hpmfe_rf/sl 0,94 mbs/hpl 0,66 %C++%G 0,47 

#C(((/sl 1,00 hpmfe_rf_I1 0,94 lsr(%bp)/hpl 0,64 %G++%C 0,47 

#U((./sl 1,00 dG/sl 0,93 lsr(%bp)/sl 0,62 #U++#A/sl 0,46 

#G(../sl 1,00 hpmfe_rf/hpl 0,91 #nial_h/sl 0,61 *C((( 0,46 

#C(.(/sl 1,00 Q/sl 0,91 #nial_h/hpl 0,61 #C++#G/sl 0,45 

#C(../sl 1,00 dG/hpl 0,89 lscm/nl 0,60 adalr/hpl 0,45 

#C.((/sl 1,00 efe 0,88 adal/hpl 0,59 %G-U 0,45 

#G((./sl 1,00 Tm/hpl 0,88 bpp/saln 0,59 nl 0,44 

#A.((/sl 1,00 bpd/sl 0,86 #gih/saln 0,58 #nisl_h/hpl 0,44 

#G.((/sl 1,00 Q/hpl 0,81 #goh/saln 0,58 c#Ns/saln 0,43 

#G(.(/sl 1,00 bpd/hpl 0,74 asal/hpl 0,58 #nisl_h/sl 0,43 
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Figure 11. Feature number influence on classifier performance. 

 

In Figure 11 “Rec. from 1.” refers to recall for classifiers (in this case Naïve 

Bayes) trained with increasing number of features selected from the top of the list of 

ranked features according to information gain. “Prec. from 1.” refers to the precision of 

classifiers trained in that manner. Rec. and Prec. from last refer to the recall and precision 

of classifiers with feature number increasing from the bottom of the ranked feature list. 

The calculation of the recall for 334 features from last was unsuccessful and therefore the 

value is out of bounds and not displayed in the figure. 



 

  29 

 

Figure 12. Correlation among the features with the largest information gain (see Table 7). 
Blue indicates high and yellow low correlation among the features. Features are 
further clustered hierarchically across the top and on the left hand side. 
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When we were dealing with such high numbers of features, another matter that 

came to mind was correlation among features (Figure 12). By solving this problem it is 

also possible to reduce the complexity of feature selection problem since by removing the 

highly correlated features we would also be reducing the number of features that can be 

selected from. In this case, we used attribute correlation as implemented in Orange 

Canvas, but it turns out that some of the features which are biologically strongly 

correlated were not reported to be correlated by the given method. This is also true for 

many of the features and their normalized versions e.g. Tm, Tm/sl, Tm/sl (Figure 12). 

Thus, we plan to manually review all attributes in the future and first remove all obviously 

correlated features before we try any other feature selection algorithm.  

Based on these findings we suggest that in future studies the maximum number of 

features should not be more than 100 and it is also important to take into account that 

these features should not be highly correlated. 

3.5.  Classification 

Among the all parameters available, 24 of them with the high information gain 

are selected; 10 triplet structures count normalized to stem length [#C.../sl, #U.../sl, 

#A..(/sl, #A(../sl, #G(((/sl, #A(((/sl, #U(((/sl, #U..(/sl, #G.../sl, #C..(/sl], Shannon Entropy 

[Q], melting temperature [Tm], Entropy normalized to hairpin length [dS/hpl], Enthalpy 

[ dH/hpl], melting temperature normalized to stem length [Tm/sl], hairpin minimum free 

energy calculated by RNAfold normalized to stem length [hpmfe_rf/sl], minimum free 

energy index [hpmfe_rf_I1], Gibbs free energy normalized to stem length [dG/sl], hairpin 

minimum free energy calculated by RNAfold normalized to hairpin length 

[hpmfe_rf/hpl], Gibbs free energy normalized to hairpin length [dG/hpl], Ensemble Free 

Energy [efe], base pairing distance normalized o stem length [bpd/sl], GC in stem 

normalized to hairpin length [st(G-C)/hpl], length calculated over the longest symmetrical 

region (lsr) of the stem loop, i.e. the longest region without any asymmetrical loop 

normalized to hairpin length [l(lsr)/hpl].  

After filtering the latest version of MiRBase for human miRNA hairpins by 

removing the entries having more than 2 overlaps in either 5’ or 3’ ends, we obtained 

1196 samples out of 1872. All negative data sets mentioned before were used in this part 

and we decided to use the same size for both data sets after our observations in class 
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imbalance section. Sampling of negative data sets were achieved by using stratified 

random sampling in Orange Canvas.   

 

Table 8. Classification results. 

Classifier CA Sensitivity Specificity AUC F1 
Negative 
data sets 

NB 0.9983 0.9983 0.9983 1 0.9983 NegHsa 

LR 1 1 1 1 1 NegHsa 

SVM 1 1 1 1 1 NegHsa 

RF 1 1 1 1 1 NegHsa 

NB 0.9398 0.9231 0.9565 0.9796 0.9550 ShuffledHuman 

LR 0.9469 0.9691 0.9247 0.9893 0.9279 ShuffledHuman 

SVM 0.9519 0.9440 0.9599 0.9898 0.9592 ShuffledHuman 

RF 0.9603 0.9557 0.9649 0.9889 0.9646 ShuffledHuman 

NB 0.8520 0.8344 0.8696 0.9251 0.8648 Pseudo 

LR 0.8834 0.8487 0.9181 0.9545 0.9119 Pseudo 

SVM 0.8800 0.8620 0.8980 0.9485 0.8942 Pseudo 

RF 0.8821 0.8771 0.8871 0.9512 0.8860 Pseudo 

NB 0.5084 0.5460 0.4707 0.5137 0.5078 NotBestFold 

LR 0.5080 0.4724 0.5435 0.5255 0.5086 NotBestFold 

SVM 0.5381 0.5769 0.4992 0.5357 0.5353 NotBestFold 

RF 0.3344 0.3896 0.2793 0.2483 0.3509 NotBestFold 

 

From the results shown in Table 8 we can conclude that all of the classifiers were 

able to differentiate between miRNAs (positive) and NegHsa (negative) samples and have 

a perfect accuracy, while in NotBestFold negative dataset, NB, SVM and LR made almost 

random classifications and RF was even worse than arbitrary.  
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Figure 13. ROC analysis for four different classifiers on different data sets. Best accuracy
is observed in miRNA – NegHsa data set (A) while the worst one is found in miRNA
– NotBestFold (D). 

A                                                                    B 

C                                                                    D 



 

  33 

Regardless of the method chosen, the most vital challenge for miRNA gene 

prediction is the existence of high numbers of inverted repeats (IR) in most eukaryotic 

genomes making the transcripts of these IRs capable of forming strong hairpins (Lindow 

& Gorodkin, 2007). It has been indicated that there are about 11 million potential hairpins 

in the human genome (Bentwich et al., 2005) and these hairpins might originate from any 

part of the genome and take part in numerous processes, one of which may possibly be 

miRNA-mediated posttranscriptional regulation (Lindow & Gorodkin, 2007). Since not 

all hairpins are miRNAs, not only identifying the hairpins which would become 

functional miRNAs is a very difficult task but also the big number of possible hairpins 

makes increasing the accuracy of the prediction another challenge. 

In recent years, machine learning approaches have become a widely used method 

for miRNA gene prediction studies. The requirements of machine learning methods such 

as positive datasets and parameters are available for miRNAs, since there are known 

miRNAs either experimentally validated or discovered through bioinformatics tools and 

there are also some rules defining a sequence as a miRNA (e.g., recognition and being 

processed by miRNA biogenesis pathway enzymes such as Dicer and Drosha), so the 

sequences that do not pass this criteria can be used as negative datasets. The abundance 

of machine learning processes used for miRNA gene prediction indicates that these 

methods are considered to be appropriate to handle this problem. 

The main objective of this study was to form an integrative data mining approach 

which would include all the requirements to perform an efficient classification process to 

be able to detect possible miRNA hairpins in human data. At the end, we were able to 

achieve more than 95% accuracy, sensitivity, specificity, recall and precision values. 

With the help of this established approach, we will be capable of identifying potential 

miRNAs in any genome in future studies. 

 

 

CHAPTER 4 

CONCLUSION 
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