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ABSTRACT 
 

THE MECHANISMS RESPONSIBLE FOR NILOTINIB RESISTANCE 
IN HUMAN CHRONIC MYELOID LEUKEMIA CELLS 

 
 Multidrug resistance remains a significant obstacle to successful chemotherapy. 

The ability to determine the possible resistance mechanisms and surmount the resistance 

is likely to improve chemotherapy. Nilotinib is a very effective drug in the treatment of 

sensitive or Imatinib resistant patients. Although very successful hematologic and 

cytogenetics responses have been obtained in Nilotinib-treated patients, in recent years 

resistance cases were observed.  

The main objective of the project is to understand the mechanisms underlying 

multidrug resistance to Nilotinib to provide new targets for the treatment of chronic 

myeloid leukemia (CML). In this study, continuous exposure of cells to step-wise 

increasing concentrations of Nilotinib resulted in the selection of cells resistant to 50 

nM Nilotinib and referred to as K562/NIL-50. Expression analyses of BCR-ABL gene 

demonstrated BCR-ABL was upregulated in resistant cells as compared to parental 

sensitive cells. However, nucleotide sequence analyses of ABL kinase gene revealed 

that there was no mutation in Nilotinib binding region of the gene in resistant cells. 

There was also an increase in expression levels of MRP1 gene in resistant cells, which 

transports the toxic substances outside of cells. Besides, Bax, which is one of the 

apoptosis inducing genes, was dowregulated in resistant cells. In addition to this,  in 

resistant cells, while GCS and SK-1 genes were overexpressed, decrease in expression 

levels of LASS1 gene was observed.  

In conclusion, we determined mechanisms involved in Nilotinib resistance in 

CML in vitro. Targeting this mechanisms, besides inhibition of BCR-ABL may be a 

good way of treatment of CML.  
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ÖZET 
 

İNSAN KRONİK MİYELOİD LÖSEMİ HÜCRELERİNDE NİLOTİNİB 
DİRENCİNDEN SORUMLU MEKANİZMALAR 

 
 Çoklu ilaç direnci,başarılı kemoterapinin önünde önemli bir engel olmaya 

devam etmektedir. Olası direnç mekanizmalarını belirleyebilme ve direncin üstesinden 

gelebilme yetisi kemoterapinin etkinleştirilmesi ile mümkün hale gelmektedir. Nilotinib 

duyarlı veya Imatinib dirençli hastaların tedavisinde çok etkili bir ilaçtır. Nilotinib ile 

tedavi edilmiş hastalarda çok başarılı hematolojik ve sitogenetik yanıtlar elde 

edilmesine rağmen, son dönemlerde direnç vakaları gözlemlenmiştir. 

 Projenin temel hedefi, kronik miyeloid lösemide (KML) yeni hedefler bulmak 

için Nilotinib çoklu direncinin altında yatan gerçek mekanizmaları anlamaktır. Bu 

çalışmada, K56 insan kronik myeloid lösemi hücrelerinde Nilotinibin yol açtığı 

apoptoza karşı geliştirilen direnç mekanizmaları incelenmiştir. Hücrelerin sürekli artan 

dozlarda Nilotinibe maruz bırakılmaları ile 50 nM Nilotinibe dirençli hücreler elde 

edilmiştir ve K562/NIL-50 olarak adlandırılmıştır. Atasal duyarlı hücrelerle 

kıyaslandığında dirençli hücrelerde, BCR-ABL gen ifade analizleri BCR-ABL nin 

upregüle olduğunu gösterdi. Ancak, ABL kinaz geni nükleotid dizisi analizleri dirençli 

hücrelerde ABL geninin Nilotinib bağlanma bölgesinde hiçbir mutasyon olmadığını 

göstermiştir. Ayrıca,  dirençli hücrelerde, toksik maddeleri hücrenin dışına taşıyan 

MRP1 gen ifade düzeyinde artış vardı. Yanı sıra, apoptotozla ilgili genlerden biri olan 

Bax’ ın, dirençli hücrelerde ifadesi baskılanmıştır. Buna ek olarak, dirençli hücrelerde 

GSS and SK-1 genleri aşırı ifade edilirken, LASS1 geninin ifadesinde azalma 

görülmüştür.  

Sonuç itibariyle, biz Nilotinib dirençliliğiyle ile ilgili mekanizmaları KML de in 

vitro olarak belirledik. BCR-ABL nin inhibisyonunun yanısıra  bu mekanizmaların 

hedeflenmesi KML tedavisinde iyi bir yol olabilir.    
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CHAPTER 1 

 

INTRODUCTION 

 
1.1. Chronic Myeloid Leukemia 

 
 Chronic Myeloid Leukemia (CML) is a hematopoietic stem cell disorder 

characterized by immature white blood cell count (Druker 2002). CML was the first 

haematological malignancy to be associated with a specific genetic lesion (Goldman 

and Melo 2003) and so it became a model disease for neoplastic diseases (Brien, et al. 

2004). CML accounts for 20% of adult leukemias and its incidence is approximately 1-2 

per 100,000 population per year. As with all leukemias, CML is more commonly seen 

in men than in women with a 2:1 ratio. CML is generally a disease of the older people 

with a median age at diagnosis of around 65 years (Faderl, et al. 1999).  

The progression of CML has three stages which are chronic phase, accelerated 

phase and blast crisis. Chronic phase is the very early stage and approximately 85% of 

patients are diagnosed in this phase. The second phase is accelerated phase in which the 

levels of immature white blood cells are higher than chronic phase at about 5-30 %. The 

final and the most serious phase of CML is blast crisis. There are mostly immature 

white blood cells in the blood and bone marrow (Aguilera, et al. 2009, Cortes 2004). As 

the disease progresses through the accelerated phase and into the blast crisis, there are 

many changes that are not known exactly. However, they can be classified as follows 

BCR-ABL expression, arrest of differentiation, genomic instability, DNA repair 

(Shtivelman, et al. 1985) and additional chromosomal abnormalities (Druker 2002).  

 CML is driven by a specific chromosomal abnormality called the Philadelphia 

(Ph) chromosome. The Ph chromosome is the result of a reciprocal translocation 

between the long arms of chromosomes 9 and 22. This exchange brings together two 

genes: the BCR (breakpoint cluster region) gene on chromosome 22 and the proto-

oncogene ABL (Ableson leukemia virus oncogene) on chromosome 9 (Wong, et al. 

2004). The resulting fusion gene BCR-ABL codes for a protein with constitutive 
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tyrosine kinase activity which activates signal transduction pathways, leading to 

uncontrolled cell growth and reduced apoptosis. 

 

 
Figure 1.1. Molecular signaling pathways that BCR-ABL affects 

(Source: Frazer, et al. 2007) 
 

1.2. Molecular Biology of CML 

 
CML is characterized by a reciprocal translocation between chromosomes 9 and 

22. However, 5% of CML patients don’t have the reciprocal translocation which results 

in juxtaposition of 3’ sequences from the Abl-proto-oncogene on chromosome 9, with 

the 5’ sequences of the truncated Bcr (breakpoint cluster region) on chromosome 22. 

Fusion mRNA molecules of different lengths are produced and subsequently transcribed 

into chimeric protein products. Although these oncogenic proteins can be 190, 210 or 

230 kDA depending on the breakpoint on the BCR gene (Lugo, et al. 1990), the most 

common form is 210 kDA (Eren, et al. 2000). The SH1 domain of ABL encodes a non-

receptor tyrosine kinase. Protein kinases are enzymes that transfer phosphate groups 

from ATP to substrate proteins, thereby governing cellular processes such as growth 

and differentiation. In normal conditions, the native ABL kinase is located mainly in the 
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nucleus, while the BCR-ABL fusion protein is located in the cytoplasm (Sawyers 1999). 

The regulation of tyrosine kinase activity is controlled tightly, and if not maintained, 

deregulated kinase activity can lead to transformation and malignancy (Goldman and 

Melo 2003). The portion of ABL responsible for governing regulation of the SH1 

domain is lost during the reciprocal translocation. The addition of the BCR sequence 

constitutively activates the tyrosine kinase activity of the SH1 domain that is the most 

crucial for oncogenic transformation. Its activity disturbs the normal physiological 

functions of the ABL enzyme, as it interacts with a number of effector proteins 

(Vigneri, et al. 2001). Thus, BCR-ABL is the most ideal and attractive target for 

molecular-targeted therapy. 

There are also possible secondary translocations that are occurred in CML. The 

first one is chromosome 8 trisomy which causes an overexpression of Myc gene located 

on 8q24.  Blick et al showed that however, a c-myc overexpression is observed in CML 

blast crisis there is no definite relationship between chromosome 8 trisomy and c-myc 

overexpression (Blick, et al. 1987). On the other hand, Sawyer and his colleagues 

showed that expression of dominant-negative c-Myc molecules suppressed BCR-ABL 

dependent transformation (Sawyer, et al. 1992). The other one is Isochromosome i(17q) 

associated with the loss of the short arm (17p) and duplication of the long arm (17q) 

that causes the abnormality (Schutte, et al. 1993). Since p53 gene is located on the short 

arm of chromosome 17. That’s why isochromosome 17q is known to be the most 

common precedent in cancer. This rearrangement results in tumor progression and 

initiation. However, p53 mutations were not found in CML cases with the i(17q), 

raising the possibility that the relevant pathogenetic mechanism in CML-BC patients 

with the i(17q) abnormality is loss of function of yet unidentified genes (Fioretos, et al. 

1999). 

 

1.3. Activated Signaling Pathways 

 
There are three major pathways that have been activated in the malignant 

transformation by BCR-ABL, namely constitutively active mitogenic signaling (Puil, et 

al. 1994), altered adhesion to extracellular matrix (Gordon,et al. 1987) and inhibited 

apoptosis (Bedi, et al. 1994). 
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Figure 1.2. Mechanisms implicated in the pathogenesis of CML 

(Adapted from Deininger, et al. 2000) 
 

1.3.1. Constitutively Active Mitogenic Signaling 

 

1.3.1.1. Ras and the MAP Kinase Pathways 

 
Several links between BCR-ABL and Ras have been determined. 

Autophosphorylation of tyrosine 177 provides a docking site for the adapter molecule 

Grb-2 (Pendergast, et al. 1993) which binds to the Sos protein stabilizing Ras in its 

active GTP-bound form. Two other adapter molecules, Shc and Crkl can also activate 

Ras. They are substrates of BCR-ABL and bind it by their SH2 (Shc) or SH3 (Crkl) 

domains. The Ras pathway is important because no further activating mutations are 

required, even in the blast crisis phase (Watzinger, et al. 1994).  

Stimulation of cytokine receptors such as IL- 3 leads to the activation of Ras and 

to the subsequent recruitment of the serine threonine kinase Raf to the cell membrane 

(Marais, et al. 1995). Raf initiates a signaling cascade through the serine threonine 

kinases Mek1/Mek2 and Erk, which ultimately leads to the activation of gene 

transcription (Cahill, et al. 1996). The activation of individual paths depends on the cell 

type, but the MAP kinase system appears to play a central role.  
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1.3.1.2. Jak-STAT Pathway 

 
Activation of the JAK kinases leads to the activation of STAT transcription 

factors. For the first time, the Jak-STAT pathway as a activated signaling pathway by 

BCR-ABL was shown in a study with v-ABL-transformed B cells (Danial, et al. 1995). 

Constitutive phosphorylation of STAT transcription factors (STAT1 and STAT5) has 

since been reported in several BCR-ABL-positive cell lines (Ilaria, et al. 1996) and in 

primary CML cells (Chai, et al. 1997). In addition to this, increased activation of 

STAT3 has been observed in numerous leukemias (Coffer, et al. 2000). STAT5 

activation appears to contribute to malignant transformation (De Groot, et al. 1999). 

Effect of STAT5 in BCR-ABL transformed cells appears to be primarily anti-apoptotic 

and involves transcriptional activation of Bcl-XL (Horita, et al. 2000). In contrast to the 

activation of the Jak-STAT pathway by physiologic stimuli, BCR-ABL may directly 

activate STAT1 and STAT5 without prior phosphorylation of Jak proteins.  

 

1.3.1.3. Myc Pathway 

 
Myc is a proto-oncogene that encodes for c-myc protein which is a transcription 

factor. The vital importance of this protein is to promote cell cycle progression. 

Overexpression of Myc has been demonstrated in many human malignancies and that’s 

why, c-myc can be a diagnostic marker for some cancer types. It is thought to act as a 

transcription factor. Activation of Myc by BCR-ABL is dependent on the SH2 domain, 

and the overexpression of Myc partially rescues transformation-defective SH2 deletion 

mutants whereas the overexpression of a dominant-negative mutant suppresses 

transformation (Sawyers, et al. 1992). The results obtained in v-ABL-transformed cells 

suggest that the signal is transduced through Ras/Raf, cyclin-dependent kinases (cdks), 

and E2F transcription factors that ultimately activate the Myc promoter. Another study 

from the same group that showed similar results for BCR/ABL transformed murine 

myeloid cells (Stewart, et al. 1995). It can be said that the effects of Myc in Ph-positive 

cells are probably not different from those in other tumors. Depending on the cellular 

context, Myc may constitute a proliferative or an apoptotic signal (Bissonnette, et al. 
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1992). It is therefore likely that the apoptotic arm of its dual function is counterbalanced 

in CML cells by different mechanisms, such as the PI3 kinase pathway. 

 

1.3.1.4. Phosphatidyl Inositol-3 Kinase Pathway 

 
Phosphatidyl Inositol-3 (PI3) kinases are a family of enzymes that have 

important roles in cell growth, proliferation, differentiation, motility, survival. It has 

also very important and vital role in cancer (Hickey and Cotter 2006), such as 

requirement for the proliferation of BCR-ABL positive cells (Skorski, et al. 1995). 

BCR-ABL forms multimeric complexes with PI3 kinase, Cbl, and the adapter molecules 

Crk and Crkl, where PI3 kinase is activated. The next relevant substrate in this cascade 

appears to be the serine threonine kinase Akt (Skorski, et al. 1997). In another report 

identified the pro-apoptotic protein Bad as a key substrate of Akt through the 

downstream cascade of the IL-3 receptor (Del Peso, et al. 1997). Phosphorylated Bad is 

inactive because it is no longer able to bind anti-apoptotic proteins such as Bcl-XL and 

it is kept back by cytoplasmic 14-3-3 proteins. Altogether this indicates that BCR-ABL 

might be able to mimic the physiological IL-3 survival signal in a PI3 kinase dependent 

manner.  

 

1.3.2. Altered Adhesion Properties 

 
 CML progenitor cells exhibit decreased adhesion to bone marrow stroma cells 

and extracellular matrix (Verfaillie, et al. 1997).  Adhesion to stroma negatively 

regulates cell proliferation, and CML cells escape this regulation by virtue of their 

perturbed adhesion properties. Interferon-a (IFN-a), an old therapeutic agent used in 

CML, seems to reverse the adhesion defect (Bhatia, et al. 1994).  Another data about 

adhesion molecules, CML cells express an adhesion-inhibitory variant of b1 integrin 

that is not found in normal progenitors (Zhao, et al. 1997). The valuable property of 

integrins is capable of initiating normal signal transduction from outside to inside on 

binding to their receptors (Lewis, et al. 1996).  Thus, it can be thought that the transfer 

of signals that normally inhibit proliferation is impaired in CML cells. Moreover, Crkl 

is involved in the regulation of cellular motility and in integrin mediated cell adhesion 
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by association with other focal adhesion proteins such as paxillin, the focal adhesion 

kinase Fak, p130Cas and Hef1 (Deininger, et al. 2000).  

 

1.3.3. Inhibition of Apoptosis 

 
 In response to cellular stress such as DNA damage induced by chemotherapeutic 

drugs, the cell’s mitochondria are triggered to release cytochrome c (a component of the 

electron transport chain) into the cytosol. Once released, cytochrome c plays a critical 

role in the formation of a proteolytic cell death machine known as the apoptosome. The 

formation of the apoptosome results in the activation of a group of zymogenic cysteine 

proteases (caspases), which carry out the cell death program (Olson et al, 2001). 

Cytosolic cytochrome c initiates apoptosome formation by binding to the adaptor 

protein Apaf-1 and promoting its oligomerization into a higher-ordered structure. 

Oligomerization of Apaf-1 then allows binding of the initiator caspase 9, which results 

in dimerization-induced self-activation (Srinivasula SM, 1998). Once activated, 

caspase-9 can cleave and activate effectors, caspases 3 and -7, which subsequently 

cleave a number of cellular substrates. This results in orderly dismantling of the cell and 

in the hallmark features of apoptosis (Wang et al, 2000). 

The release of cytochrome c from the mitochondria is tightly regulated by Bcl-2 

proteins, a family comprising both pro-apoptotic Bax and Bak and antiapoptotic Bcl-2 

and Bcl-XL family members (Danial, et al. 2004). These proteins act as mitochondrial 

gatekeepers and regulate apoptosis by governing the release of cytochrome c. While 

pro-apoptotic Bak and Bax promote mitochondrial cytochrome c release, the anti-

apoptotic Bcl-2 and Bcl-XL proteins maintain the integrity of the mitochondria to 

prevent the release of cytochrome c.  

Alterations of apoptotic signaling pathways at a number of loci allow malignant 

cells to evade cell death which is one of the hall marks of cancer (Hanahan, et al. 2000). 

Before releasing of cytochrome c, BCR-ABL can inhibit apoptosis through regulation 

of Bcl-2 family members. Specifically, BCR-ABL increases expression of antiapoptotic 

Bcl-2 family members such as Bcl-2 and Bcl-XL through activation of the transcription 

factor STAT5 (Sanz, et al. 2002).  Despite of all these, BCR-ABL has recently been 
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reported to be a more effective inhibitor of apoptosis than either Bcl-2 or Bcl-XL 

(Baran 2007).  

 

1.4. Treatment Strategies for Chronic Myeloid Leukemia 

 
Until interferon was introduced and was found to be better than known cytotoxic 

chemotherapy in CML, the treatment of choice for chronic phase CML was orally 

administered chemotherapy with either hydroxyurea or busulphan for a long time 

(Melo, et al. 2003). Also, allogenic stem cell transplant has been used since the 1970s in 

the treatment of CML and is the only curative therapy for CML, however, it bears a 

significant mortality risk (Frazer, et al. 2007). When CML progresses to the accelerated 

and blastic phase, the available treatments including bone marrow transplantation 

become less effective.  

A major advance in the treatment of CML has the advent of Imatinib, as the first 

targeted therapy for CML which has shown striking activity in the chronic phase, in the 

accelerated phase, but less so in the blast phase. This drug will be the first of a new 

series of small organic compounds designed to inhibit specific molecular sites in the 

cascades of cellular activation pathways (Buchdunger, et al. 1996). Despite of success 

of Imatinib, there have been developed resistant to Imatinib in use of long term. In 

effort to improve on the long term outcomes and overcome the developing resistance, 

several second generation tyrosine kinase inhibitors are designed and are used widely in 

CML treatment. 

 

1.5. Targeted Therapies 

 

1.5.1. Imatinib 

 
 The SH1 domain responsible for oncogenic transformation is an extremely 

attractive target in struggling CML. Imatinib (Glivec, Novartis, Basel, Switzerland) is 

the first tyrosine kinase inhibitor that targets SH1 domain, approved for the first line 

treatment of adult patients with Ph+ CML at all disease stages (Guilhot 2004). The 
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introduction of this drug has dramatically changed the management of CML due to very 

successful hematologic and cytogenetic response (Deininger, et al. 2004).  

Imatinib binds to the amino acids of the BCR-ABL tyrosine kinase through ATP 

binding domain and stabilizes the inactive, non-ATP-binding form of BCR-ABL, 

thereby preventing tyrosine autophosphorylation, and in turn, phosphorylation of its 

substrates (Schindler, et al. 2000). At the end of this process,  the downstream signaling 

pathways that promote leukemogenesis are closed. A further characteristic of Imatinib 

is its striking degree of specificity for the ATP binding pocket, so that its effect on other 

cellular tyrosine kinases is negligible (Savage and Antman 2002). According to the IRIS 

study (International Randomised Study of Interferon and STI571), a Phase III clinical 

trial showed that the haematologic and cytogenetic responses in terms of tolerability and 

likelihood of progression to accelerated or blast phase CML, provided superior results 

with Imatinib (O’Brien, et al. 2003, Merx, et al. 2002).  

 

 
Figure 1.3. Chemical structure of Imatinib 

(Source: Kantarjian, et al. 2007) 
 

 Despite high rates of hematologic and cytogenetic responses to Imatinib therapy, 

after exposure of drugs, resistance to Imatinib has been recognized as a major obstacle 

in the treatment of Ph-positive leukemia (Gambacorti-Passerini 2003, Hochhaus and La 

Rosee 2004). Several resistance mechanisms are responsible for the overall poor 

efficacy of cancer chemotherapy (Shah, et al. 2002, Hochhaus, et al. 2002 ). 

 

1.5.1.1. Multidrug Resistance 

 
Multidrug resistance describes a phenomenon whereby resistance to one 

anticancer drug is accompanied by resistance to drugs whose structures and mechanisms 
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of action may be totally different. Multidrug resistance can be classified into two main 

types. The first one is acquired resistance which can gain during treatment by patients 

and the second one is primary resistance which is pre-existing at the time of diagnosis. 

Somehow, there have been seen different responses to Imatinib therapy in patients. 

Despite high rates of hematologic and cytogenetic responses, resistance cases have been 

observed in a proportion of patients. This resistance is observed as a lack of 

hematologic, cytogenetic or molecular responses to therapy. Many resistance cases 

occur while using Imatinib generally in accelerated and blast crisis phases (Gambacorti-

Passerini, et al. 2002). Although the major and also the best characterized Imatinib 

resistance mechanism is the mutations that occur in the kinase domain (Wang, et al. 

2007), to summarize all the other resistance mechanisms against Imatinib, they can be 

categorized into two groups. While mutations in the kinase domain and increased 

expression of BCR/ABL kinase through gene amplification is known as the BCR/ABL 

dependent mechanisms, decreased intracellular Imatinib concentrations caused by 

transporters, Imatinib binding by plasma proteins and other kinases such as Src family 

kinases are categorized as BCR/ABL independent mechanisms (Ramirez and DiParsio 

2008). 
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Figure 1.4.The possible mechanisms of Imatinib resistance. 1. Denotes duplication or 

amplification of the BCR-ABL sequence; 2. Shows mutations in the BCR- 
ABL sequence; 3. denotes imatinib export by the P-glycoprotein export 
protein; 4. Depictes import of Imatinib by the hOCT1 protein; 5. Denotes 
binding of imatinib in the plasma by α1-acid glycoprotein (AGP); 6. 
Denotes variability in the plasma level of imatinib; 7. Shows activation of 
alternative signaling cascades leading to BCR-ABL independent growth; 
and 8. Depicts alterations in the epigenetic regulation of the expression of 
the BCR-ABL sequence (Source: Bixby and Talpaz 2009) 

 

1.5.1.1.1. BCR-ABL Dependent Mechanisms 

 

1.5.1.1.1.1. Mutations 

 
 BCR-ABL dependent mechanisms result from the mutations in the tyrosine 

kinase domain and overexpression of the oncoprotein that as a result of BCR-ABL gene 

amplification. As it is mentioned above there are four sections in BCR-ABL 

oncoprotein; kinase domain, catalytic domain, activation domain and ATP binding 

domain. The mutations can be classified into four groups. The first one is the mutations 

that directly disrupts the Imatinib binding, second one is those that target ATP binding 

site, thirdly the activation loop can be interrupted that leads the blocking the 

conformational change that is required for Imatinib binding and finally we can 
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categorize the mutations that are present within the catalytic domain (Deininger, et al. 

2005). 

 Among these mutations the point mutations that take place in ABL kinase 

domain are the most important and more commonly acquired in primary resistance. 

T315I mutation is the most important mutation that is too difficult to overcome. In this 

mutation the aminoacid threonine at position 315 is switched into isoleucine. It is the 

first mutation that is confirmed in resistant patients against Imatinib (Weisberg, et al. 

2007). It is believed that this mutation causes the resistance by two main ways. The first 

one is caused by the absence of oxygen atom that is provided by threonine. The switch 

into isoleucine prevents the formation of hydrogen bond between imatinib and the 

protein because of the lack of oxygen atom. Secondly, isoleucine has a hydrocarbon 

group and this group limits the binding of Imatinib (Deininger, et al. 2005).  

 Besides the mutations that take place in kinase domain, the ones that cluster in 

ATP binding domain are also very important for the formation of the resistance. This 

domain is rich in glycine and this glycine rich sequence spans 248-256 aminoacids. This 

consensus sequence interacts with Imatinib via hydrogen bonds and van der waals 

bonds. These mutations cause a conformational change that is not suitable for Imatinib 

to bind and by this way these changes causes insensitivity to Imatinib.  

 In addition, the activation loop of the Abl kinase domain can exposed to the 

mutations. This loop starts from the 318th aminoacid with a conserved aminoacid 

sequence of aspartete-phenylalanine-glycine. This region is the determinant of the 

active and inactive conformation of the oncoprotein. Imatinib has the ability to bind to 

inactive (closed) conformation of BCR-ABL. However, the mutation that changes the 

conformation into on open conformation cause the Imatinib no longer bind to the region 

(Tokarski, et al. 2005).  

 

1.5.1.1.1.2. Overexpression/Amplification of BCR-ABL 

 
 BCR-ABL oncoprotein over expression is the second resistance mechanism that 

is dependent to BCR-ABL. This overexpression is caused as a result of amplification of 

the oncogene. The increased levels of the target protein cause the requirement of the 

high amounts of therapeutic agent. In a study, it is observed that 3 patients form 11 in 
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blast crisis shown to have multiple copies of BCR-ABL which is proved by FISH. In 

another study 7 patients out of 55 showed an approximately 10 times more transcript 

levels and 2 out of 32 patients were shown to have a genomic amplification of BCR-

ABL. Another interesting finding about the resistance to Imatinib is the transient 

overexpression of BCR-ABL (Hochhaus, et al. 2002).  

 

1.5.1.1.2. BCR-ABL Independent Mechanisms 

 

1.5.1.1.2.1. ATP Cassette Transporters 

 
 BCR-ABL independent mechanisms also have a great importance in resistance. 

Multidrug resistance is a cross resistance to a variety of drugs such as anticancer drugs 

in mammalian cells. This resistance is mediated through transport proteins, either influx 

or efflux proteins, that are present on cell membrane (Schinkel, et al. 2003). One of 

these proteins is P-glycoprotein (P-gp) which is an ATP dependent efflux pump that 

leads to a reduction of the concentrations of the drug and reduces the insufficient reach 

of drug to its target (Mimeault, et al. 2008). Imatinib is a substrate of P-gp and this 

protein reduces the levels of Imatinib before it binds to BCR-ABL (Gorre, et al. 2001). 

In a study, the Imatinib resistant CML cell line that is exposed to increasing doses of 

imatinib showed an upregulation of P-gp expression and also MDR1, another multidrug 

resistance protein, is shown to be overexpressed in CML cell lines that are resistant to 

Imatinib. However, in resistant CML patients P-gp overexpression is not observed but 

when the Imatinib treated cells from resistant patients are exposed to an inhibitor of P-

gp pump, PSC833, a significant decrease in colony formation is observed (Mahon, et al. 

2003). In addition to P-gp there are two other drug transporters that are thought to play a 

role in Imatinib resistance. Breast cancer resistance protein (BCRP) and human organic 

cation transporter1 (hOCT1) have been involved in Imatinib resistance. Imatinib has 

been showed to be a substrate for BCRP drug efflux protein which is also overexpressed 

in CML stem cells. On the other hand hOCT1 protein mediates the active transport of 

Imatinib into the cell. In contrast to overexpression of drug efflux proteins, the 

inhibition of the hOCT1 protein causes the resistance to Imatinib because of the limited 

entrance into the cell (Chuah and Melo 2009).  



14 

 

1.5.1.1.2.2. Bioactive Sphingolipids in CML 

 
In cancer chemotherapy development of resistance to anticancer drugs and the 

relapse of disease is the major obstacle to achieve success. Ceramides act as strong 

antitumoral molecules supressing cell growth and proliferation and inducing apoptosis 

and differentiation (Pettus, et al. 2002). On the other hand, GlcCer and S1P molecules 

converted from ceramide by GCS and SK-1 enzymes act as strong antiapoptotic 

molecules inducing cell growth and proliferation and inhibiting apoptosis and 

differentiation. GCS enzyme regulates the balance between ceramide and 

glucosylceramide which also means that the levels of sensitivity to anticancer drugs 

(Gouazé, et al. 2002). There are very strong evidences that show the correlation 

between GCS and drug resistance (Senchenkov, et al. 2001). In another study GCS gene 

was introduced into sensitive MCF-7 breast cancer cell line and they observed an 

apparently increase in the GCS expression levels and as a result the cells became 

adriamycin and exogenious ceramide resistant. This study shows that GCS activity 

adjusts drug resistance (Liu, et al. 1999). Liu et al downregulated GCS gene with 

antisense RNA in adriamycin resistant MCF7 breats adenocarcinoma cells and they 

observed a decrease in resistance to anticancer agents which shows that GCS is very 

closely related to drug resistance in breast cancer (Liu, et al. 2001). There are many 

studies that show us that using inhibitors of GCS enzyme can open a door evading from 

resistance that is caused by GCS enzyme activity. These inhibitors synthesize cancer 

cells to chemotherapeutic agents. Morjani et al showed that in multidrug resistant MCF7 

cells there is an accumulation of GlcCer which is visualized with the help of fluorescent 

GlcCer bodipy. These droplets are seen in cytoplasm. Treatment of these cells with 

PPMP, an inhibitor of GCS, reduces the amount of droplets which leads to decrease in 

resistance of cells (Morjani, et al. 2001). P-gp is specific transporter of GlcCer and in 

cells that have an overexpression of P-gp have an accumulation of GlcCer. In consistent 

with this informaiton, Gouaze et al showed a relationship between P-gp and GCS. They 

observed an inhibition of MDR1 gene when they silenced the GCS gene with siRNA 

and reported the reversal of the resistance of adriamycin resistant MCF7 cells (Gouazé, 

et al. 2005). 

SK1 converts sphingosine to sphingosine-1-phosphate (S-1-P), which means that 

this enzyme reduces the levels of apoptotic ceramide. In a study that is carried out with 
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A375 melanoma cells, it is showed that these cells gain resistance to Fas and ceramide 

mediated apoptosis when they increased the expression levels of SK1 and they reduced 

the sensitivity. This result gives the idea that the resistance can be reversed with the 

inhibition of SK1 activity (Bektas, et al. 2005). In prostate cancer cell line, PC3, high 

levels of SK1 expression is observed in response to camptothecin. Besides, inhibition of 

the SK1 expression in this cell line also inhibited cell growth and camptothecin 

treatment induces the SK1 pathway (Akao, et al. 2006). These results show us that 

SK1/S1PR signaling prevents the cells from chemotherapy induced apoptosis. It was 

shown that SK-1 is a prosurvival, antiapoptotic and a migratory factor for breast cancer 

cells by Sarkar et al. in 2005 (Sarkar, et al. 2005). Besides, high levels of SK-1 are 

observed in tumors from lung cancer patients (Johnson, et al. 2005). French and his 

collegues observed that using inhibitors of SK-1 inhibits the cell proliferation without 

any toxic effects in animal models in vivo (French, et al. 2003).  
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Figure 1.5. Major synthetic and metabolic pathways for ceramide metabolism 
(Source: Ogretmen and Hannun 2004) 

 

 As it is mentioned above, many studies showed the importance of sphingolipid 

metabolism in cancer. Ceramide shows apoptotic, antiproliferative responses, while 

glucosylceramide and sphingosine 1 phosphate enhances growth and proliferation, 

strategies that provides increases in ceramide levels or decreases GlcCer and S1P levels 

or inhibiting the conversion of ceramide into these anti apoptotic molecules should be 

developed. These strategies will provide efficient cancer therapy, increase the action of 

drugs, provide the reversal of resistance and prevent the adverse effects of 

chemotherapy to normal cells. 

 With the help of all information, sensitization of cancer cells to anti cancer drugs 

is possible when we target the sphingolipid metabolism. Molecules that target the 

conversion of ceramide into GlcCer or to sphingomyelin by sphingomyelin synthase, to 

S1P by sphingosine kinase 1 could be helpful to sensitize cancer cells. Moreover, 

combinational therapies mimic or antagonize sphingolipid molecules or synthesis of 
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new inhibitors that prevent the conversion of ceramide to GlcCer or S1P, also providing 

enhancement of endogenous ceramide levels provides the cells undergo apoptosis and 

increases the cytotoxicity of cancer cells.  

 

 
Figure 1.6. Influence of sense and antisense GCS transfection on response to 

chemotherapy (Source: Senchenkov, et al. 2001) 
 

In a study it is observed that combination of C:8 ceramide and paclitaxel 

combination significantly inhibits cell proliferation in human head and neck squamous 

cells in the S and G2/M phase of cell cycle (Mehta, et al. 2000). 

 It should also be thought that relapse of the disease may be caused by the 

alterations in sphingolipid metabolism and dysfunctional ceramide metabolism. 

However, manipulations on this dysfunctional sphingolipid metabolism can reverse this 

effect and enhance the sensitivity of cells to anticancer drugs. 

 In vitro studies approved the effects of ceramide metabolism however; in vivo 

studies should be done to observe the effects in an organism. Modrak et al observed that 

intravenous administration of sphingomyelin as 10 mg/day for seven days potentiated 5-

FU chemotherapy in human colonic xenograft bearing nude mice (Modrak, el al. 2000). 

In another interesting study, in two human colon cancer cell lines the main digestion 

product of sphingolipids is detected as sphingosine and treatment of these cell lines with 

sphingosine caused apoptosis. These reports show us the digestion products and the 

activity of sphingolipids in cancer types (Schmelz, et al. 2001). Day by day, it is 

becoming more and more clear that ceramide metabolism, the balance of 

ceramide/GlcCer and ceramide/sphingosine-1-phosphate decides the fate of the cell, to 

undergo apoptosis or to survive. 
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1.5.1.1.2.3. Alpha-1 Acid Glycoprotein 

 
Alpha-1 acid glycoprotein (AGP) is another factor that reduces the levels of 

Imatinib inside the cell. There is a strong a relationship between AGP and Imatinib. 

When this protein binds to Imatinib, it prevents the activity of the drug (Hamada, et al. 

2003). In an interesting study, AGP is isolated from healthy donors and applied with 

Imatinib to K562 CML cells in vitro. They observed that growth inhibitory effects of 

Imatinib are affected when they applied via this combination against cells. They also 

isolated AGP from CML patients and they observed that they have significant higher 

levels of this protein when compared to healthy donors. Besides the same combination 

applied to CML cells in vitro and they showed that AGP from CML patients showed an 

inhibitory effects on Imatinib activity (Jorgensen, et al. 2002). While STI571 is known 

to be bound in human serum by both AGP and albumin, the role of increased AGP 

levels in STI571 resistance in CML patients remains unclear (Shah and Sawyers 2003). 

 

1.5.1.1.2.4. Activation of Secondary Tyrosine Kinases 

 
Secondary tyrosine kinases such as SRC family kinases are activated in CML. 

The Src family kinases, including Lyn and Hck, are activated in BCR-ABL expressing 

cell lines (Jabbour, et al. 2009). Lyn is overexpressed and activated in an Imatinib-

resistant CML cells both in vivo and in vitro. Lyn suppression by a Src kinase inhibitor 

resulted in reduced proliferation and survival of the Imatinib-resistant but not the 

sensitive cell line (Donato, et al. 2003). Cancer stem cells have been identified in 

leukemias and some solid tumors (Donnenberg 2005). Many researchers now suspect 

that all cancers are composed of a mixture of stem cells and proliferative cells. These 

cancer stem cells make up as few as 1% of the total tumor cells, making them difficult 

to detect and study. Therefore, the existence of cancer stem cells provides a tumor 

reservoir that is the source of disease recurrence and metastasis. ABCB1 and ABCG2 

genes are expressed in both normal stem cells and most tumor stem cells (Lou and Dean 

2007). Thus, the major barrier to therapy may be the quiescent tumor stem cell with 

constitutive MDR (Liu 2009). 
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1.5.2. Nilotinib 

 
To overcome Imatinib resistance, more selective second-generation ABL kinase 

inhibitors were developed and have been used in clinical practice (Kantarjian, et al. 

2006, Talpaz, et al. 2006).  

  

 
Figure 1.7. Chemical structure of Nilotinib 

(Source: Weisberg, et al. 2006) 
 

Nilotnib (Tasigna) is one of the most commonly used second generation kinase 

inhibitors. Nilotinib is an orally administered kinase inhibitor made by the Novartis 

Pharmaceuticals Corporation. Nilotinib was methodically and rationally designed to 

create a better topological fit in the ABL kinase domain of BCR-ABL resulting in 

enhanced BCR-ABL inhibition. It is an aminopyrimidine derivative of Imatinib, 

structurally changed to eliminate two energetically unfavorable hydrogen bonds with 

the replacement of the N-methylpiperazine ring of Imatnib by a trifluoromethyl-

substituted phenyl group (Weisberg, et al. 2005 , O’Hare, et al. 2005). Nilotinib does 

not inhibit only BCR-ABL kinase activity, but also  inhibits c-KIT and platelet derived 

growth factor (PDGFR). Like Ima, it only binds the inactive conformation of ABL and 

it does not inhibit Src kinases (Weisberg, et al. 2005).  

Nilotinib uptake does not involve OCT (White, et al. 2006) which is a properity 

of Nilotinib keeping in mind while designing.  Nilotinib’s various characteristics makes 

it 20-fold more potent against BCR-ABL expressing cells with well-documented 

activity against 32 of 33 Imatinib resistant BCR-ABL mutants. However, like Imatinib 

Nilotinib is unable to overcome the resistance of the T351 I mutation (Weisberg, et al. 

2006).  



20 

 

Nilotinib is orally bioavailable and has a half life of approximately 15 hours. It 

should be taken 2-hours before or 1 hour after meals as food consumption increases its 

drug bioavailability. It is metabolized by hepatic oxidation reactions, mainly involving 

the CYP3A4 pathway, therefore has potential to interact with CYP3A4 inhibitors and 

inducers (Weisberg, et al. 2006).  

Nilotinib has been shown to be effective in patients with Imatinib-resistant and 

Imatinib-intolerant CML-BC. In 136 patients with CML-BC treated in a phase II study, 

overall survival was 42% at 12 months and 27% at 24 months. At 24 months, nilotinib 

induced MCyR and CCyR in 38% and 30% respectively of patients with myeloid blast 

crises and 52% and 32% respectively of patients with lymphoid blast crises (Giles, et al. 

2010, Giles, et al. 2008). In addition, Nilotinib is effective in patients with CML 

following Imatinib and Dasatinib (a second generation kinase inhibitor) failure. A phase 

II study, evaluating the safety of Nilotinib 400 mg BID in CML-CP, -AP, and –BC who 

either failed or were intolerant of both Imatinib and Dasatinib, demonstrated clinical 

activity in these patients (Giles, et al. 2007). Nilotinib is generally well tolerated. The 

most common hematologic adverse events are neutropenia and thrombocytopenia.  

In patients with baseline kinase domain point mutations, the in vitro sensitivity 

of the mutant colone correlates with response. Baseline mutation database has been 

evaluated in 288 patients with CML-CP from the phase II nilotinib registration trial. 

After 12 months of therapy, those with highly in vitro nilotinib sensitive mutations 

(cellular IC50 ≤ 150 nM) showed the best responses with MCyR,CCyR and MMR of 

60%,40% and 29% respectively, which were equivalent to those without baseline 

mutations. These include M244V, L248V, G250E, Q252H, E275K, D276G, F317L, 

M351T, E355A, E355G, L387F and F486S. The patients who had less sensitive 

mutations (cellular IC50 ≤ 201-800 nM) had less favorable responses to nilotinib and 

none achieved CCyR. These mutations include Y253H, E255K/V, and F359C/V 

Patients with the T315I mutation, which has IC50 >10,000 nM (Weisberg et al. 2006) 

remain highly resistant to nilotinib (Hughes, et al. 2009, Saglio, et al. 2010). 
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Figure 1.8. The action of Nilotinib binding 

(Source: Novartis 2010) 
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1.6. Aims of the Study 

 
Multidrug resistance remains a significant impediment to successful 

chemotherapy. The ability to determine the possible resistance mechanisms and 

circumvent the resistance is likely to improve treatment with Nilotinib. Nilotinib is a 

very effective drug in the treatment of Imatinib-resistant patients and even first 

diagnosed chronic myeloid leukemia patients.  

Although very high hematologic and cytogenetics responses have been obtained 

in Nilotinib-treated patients, resistance cases were observed recently. The main 

objectives of the project are firstly to develop Nilotinib resistance and secondly to 

understand the mechanisms underlying multidrug resistance to Nilotinib in order to 

define new targets for the treatment of CML.  
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CHAPTER 2 

 

MATERIAL AND METHODS 

 
2.1. Reagents 

 
 Nilotinib was a gift from Novartis, (Switzerland). It was dissolved in DMSO and 

10mM stock solution was prepared and stored at -20ºC. The final concentration of 

DMSO did not exceed more than 0.1% in culture. Primers were obtained from Eurofins, 

Germany. RPMI1640, heat-inactivated fetal bovine serum (FBS), L-glutamine, 

penicillin-streptomycin and trypsin EDTA were obtained from Biological Industries, 

Israel. RNeasy RNA isolation kit, QIAquick gel extraction kit, Taq DNA Polymerase 

was obtained from Finnzymes, (FI). Long PCR Enzyme Mix was obtained from 

Fermentas, (USA). Bradford dye and coomassie blue were obtained from Sigma, 

(USA). dNTP set, DNA ladder was obtained from AMRESCO, (USA). Caspase-3 

colorimetric assay kit was obtained from BioVision, (USA). JC-1 mitochondrial 

membrane potential detection kit was obtained from APO LOGICTM JC-1 from 

BACHEM, (USA). Reverse-Transcription system and bovine serum albumine (BSA), 

trypan blue solution, β-mercaptoethanol, dimethyl sulfoxide (DMSO), agarose were 

also obtained from Sigma, (USA). 

 

2.2. Cell Lines and Culture Conditions  

 
 K562 human CML cells were obtained from the German Collection of 

Microorganisms and Cell Cultures (Germany). The cells were cultured in RPMI-1640 

growth medium containing 10-20% fetal bovine serum and 1% penicillin-streptomycin 

(Invitrogen) at 37˚C in 5% CO2. Medium was refreshed every 3 days. The cell 

suspension was taken from tissue culture flask into a sterile falcon tube and then the 

cells were centrifuged for 10 minutes (min) at 1000 rpm. After centrifugation the 

supernatant was removed and the pellet washed with 2 mL PBS. After washing the cells 

were centrifuged again at 1000 rpm for 10 min.  After centrifugation, supernatant was 
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removed and the pellet was resuspended in 20 mL of RPMI1640 and transferred into a 

sterile 75 cm2 tissue culture flask.  

 

2.3.Thawing the Frozen Cells 

 
Cells were removed from frozen storage and quickly thawed in a 37 C۫ water 

bath to obtain the highest percentage of viable cells. When the ice crystals melted, the 

content was quickly taken into a sterile falcon tube and washed with PBS or medium. 

Then the cells were cultured in 25 cm2 tissue culture flask in RPMI1640 medium. 

 

2.4. Cell Viability Assay with Trypan Blue 

 
Viable cells are normally impermeable to trypan blue dye. Breakdown in 

membrane integrity causes the uptake of the trypan blue into cell. Cells can be observed 

as unstained cells that are live or blue stained cells that are dead. For trypan blue dye 

exclusion analysis, cells were counted using a hematocytometer in the presence of 

trypan blue solution at a 1:1 ratio (volume/volume), before each experiment. 

 

2.5. Generation of Nilotinib Resistant K562 Cells 

 
Generation of resistant sub-lines was carried out as described previously (Baran, 

et al. 2007). K562  human CML parental cells maintained in liquid cultures were 

exposed to stepwise increasing concentrations of Nilotinib, starting with a concentration 

of 1 nM. After the cells acquired the ability to grow in the presence of a specific 

concentration of the drug, cells were grown at the next highest drug level, again. The 

level of resistance was defined by the Nilotinib concentration at which the growth rate 

of cells was comparable to that of untreated parental cells. As a final dose, 50 nM 

Nilotinib was applied to cells and subpopulations of the cells that were able to grow in 

the presence of 50 nM Nilotinib, were referred to as K562/NIL-50. 
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2.6. Cell Proliferation Assay 

 
 Anti-proliferative effects of Nilotinib were determined by XTT cell proliferation 

assay. The principle of this assay based on the formation of tetrazolium salts into 

formazan by the mitochondrial enzyme and these formazan molecules give an 

absorbance at 490 nm. Briefly, 96-well plates were seeded as 2x104 cells/well 

containing 200µl of the growth medium in the absence or presence of increasing 

concentrations of Nilotinib. The cells were incubated at 37˚C in 5% CO2 for 72 hours 

(h). Then, they were treated with 40 µl XTT for 4 h at CO2 incubator. After that, the 

plates were read under 490 nm wavelengths by Elisa reader (Thermo Electron 

Corporation Multiskan Spectrum, Finland). Finally, IC50 (the concentration of drug that 

inhibits 50% of cell proliferation as compared to untreated control) was calculated from 

cell proliferation plots. 

 

2.7. Measurement of Changes in Caspase-3 Enzyme Activity 

 
 Caspase-3 Fluorometric Assay Kit (R & D Systems, USA) was used for the 

detection of caspase-3 activity. The activity assay was performed as described by the 

manufacturer. Briefly, 1 X 106 cells were seeded in six-well plate in 2 ml growth 

medium in the absence or presence of increasing concentrations of Nilotinib for 72 h. 

Then, they were collected by centrifugation in a Falcon tube at 1000 rpm for 10 min. 

The supernatant was gently removed and discarded while the cell pellet was lysed by 

the addition of the Lysis Buffer. Cold Lysis Buffer (100 μL) was added for each sample. 

The cell lysate was incubated on ice for 10 min before centrifugation at 14000 rpm for 1 

min. Then, the supernatants were transferred to new microcentrifuge tubes. The 

enzymatic reaction for caspase activity was carried out in a 96-well flat bottom 

microplate that can be read with a microplate reader equipped with fluorescence 

detection capabilities. For each reaction, 20 µl of assay buffer (5X), 25 µl of sample, 50 

µl of sterilized water, and 5 µl of caspase-3 colorimetric substrate (DEVD-pNA) was 

prepared and incubated for 2 hours at 37˚C. The samples were read under 405 nm 

wavelengths by Elisa reader (Thermo Electron Corporation Multiskan Spectrum, 

Finland). 
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2.8. Determination of Protein Concentration by Bradford Assay 

 
 Caspase-3 activity levels were normalized to total protein amounts for each 

sample determined by Bradford Assay. For this purpose, a dye called Coomassie 

Brilliant Blue was used to detect the levels of protein levels. The form of the dye that is 

bound to proteins has an absorption spectrum maximum at 595 nm. The cationic form, 

that is unbound form of the dye, is brown while binding of the dye to protein stabilizes 

it turns into a blue colour that is anionic form. The measured absorbance rises with the 

increasing concentrations of protein. We prepared a series of standard protein solutions 

by using BSA (Bovine Serum Albumine) diluted with 1X PBS (Phosphate Buffered 

Saline). After measuring protein concentrations by Bradford assay, enzyme activity 

levels were normalized to protein concentrations. 

 

2.9. Detection of the Loss of Mitochondrial Membrane Potential  

 
 Mitochondrion has a crucial role in the induction of intrinsic apoptosis via the 

loss of mitochondrial membrane potential (MMP). During this process, the 

electrochemical gradient across the mitochondrial membrane collapses. The reasons of 

this collapse is thought that the formation of pores in the mitochondria by dimerized 

Bax or activated Bid, Bak, or Bad proteins. Activation of these pro-apoptotic proteins 

causes the release of cytochrome c into the cytoplasm. APO LOGIX JC-1 Assay Kit 

(Cell Technology, USA) was used to measure the loos of mitochondrial membrane 

potential in both K562 and K562/NIL-50 cells as described by the manufacturer. 

 In short, the cells that had been induced to apoptosis were collected by 

centrifugation at 1000 rpm for 10 minutes. Supernatants were removed, and 500 µl of 

JC-1 dye (1%) was added onto the pellets. After incubation of cells for 15 minutes at 

37˚C in 5% CO2, they were centrifuged at 1000 rpm for 5 minutes. Then, 2 ml of assay 

buffer was added onto the pellets, and they were centrifuged for 5 minutes at 1000 rpm. 

All the pellets were resuspended with 500 µl assay buffer, and 150 µl from each of them 

was added into black 96-well plate as triplicate. The aggregate red form has 

absorption/emission maxima of 585/590 nm, and the green monomeric form has 

absorption/emission maxima of 510/527 nm. The plate was read in these wavelengths 
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by fluorescence Elisa reader (Thermo Varioskan Spectrum, Finland). Finally, green/red 

(510/585) values were calculated to determine the changes in MMP. 

 

2.10. Nucleotide Sequence Analyses of ATP Binding Site of ABL 
         Kinase Domain in K562 and K562/NIL-50 Cells 
 
 To see whether a point mutation in the BCR-ABL ATP-binding domain was 

responsible for the resistance in K562/NIL-50 cells against to Nilotinib, sequencing of 

the cDNA portion corresponding the entire ABL kinase domain was performed. Total 

RNAs, isolated from K562 and K562/NIL-50 cell lines, were converted to cDNA by 

Reverse Transcriptase enzyme (Table 2.1). Then, to amplify the ABL kinase domain of 

the BCR-ABL allele with forward primer BCRF (5’-

TGACCAACTCGTGTGTGAAACTC-3’) and reverse primer ABLKinaseR (5’-

TCCACTTCGTCTGAGATACTGGATT-3’), a long PCR methods was used as 

described previously (Brandford, et al. 2000). ABLkinaseF (5’-

CGCAACAAGCCCACTGTCT-3’) as a forward primer and ABLkinaseR as a reverse 

primer were used for a second-stage PCR. After that, the final PCR products were run 

on a 1% agarose gel at 90 V for 1 h and the ABL band was isolated from gel by DNA 

Gel Extraction Kit as described by the manufacturer (Fermentas, USA). The entire 

kinase domain was sequenced in the forward and reverse directions (Applied 

Biosystems 3130xl). Finally, the 863 bases including area compared to the c-ABL 

known sequence (Gene Bank accession number: M14752). 
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Table 2.1. Ingredients of reverse transcription reaction 

 

 

 

 

 

 

 

 

 

 

2.11. Total RNA Isolation and Reverse Transcriptase-PCR 

 
 The expression levels of ceramide synthase genes (LASS1-6), and ceramide 

clearance genes (SK-1 and GCS) were investigated by RT-PCR in response to Nilotinib 

in K562 cells. Firstly, the cells were incubated in the absence and presence of increasing 

concentrations of Nilotinib, and total cellular RNAs were isolated by using RNA 

Isolation Kit (Macherey-Nagel, USA). Recovered RNA concentration was measured by 

Nanodrop ND-1000 (260/280 and 260/230 ratios). 1 μg of total RNA was reverse 

transcribed into cDNA by using reverse transcriptase enzyme (Moroney Murine 

Leukemia Virus Reverse Transcriptase, Fermentas, USA). After 60 min incubation at 

42 ˚C, the reactions were stopped at 70 C˚ for 10 min. The resulting total cDNA was 

used in PCR to measure the mRNA levels of LASS1-6, SK-1, GCS, apoptosis genes, 

transport genes and BCR-ABL with β actin as an internal positive control. Primer 

sequences were given in Table 2.2. 

 

  

 

 

 

Ingredients  Amount (µL) 

RNAse Free Water  6,5 

Total RNA (1,5 μg) 3 

5X Buffer 4 

Random Primers (0.5 μg/μL)  1 

RNAse Inhibitor (50U/μL)  0,5 

dNTP (10 mM) 4 

Moloney Murine Reverse Transcriptase enzyme (200 U/μL)  1 

Total 20 
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Table 2.2. Forward and reverse primers used in this study 

Houskeeping Gene  
β-actin-Forward (5’-CAGAGCAAGAGAGGCATCCT-3’) 
β-actin-Reverse (5’-TTGAAGGTCTCAAACATGAT-3’) 
Ceramide Metabolising 
Genes  
GCS-Forward   (5’-ATGACAGAAAAAGTA-3’) 
GCS-Reverse  (5’-GGACACCCCTGAGTG-3’) 
SK-1-Forward (5’-CCGACGAGGACTTTGTGCTAAT-3’), 
SK-1-Reverse (5’-GCCTGTCCCCCCAAAGCATAAC-3’) 
LASS1-Forward (5’-CTATACATGGACACCTGGCGCAA-3’) 
LASS1-Reverse (5’-TCAGAAGCGCTTGTCCTTCACCA-3’) 
LASS2-Forward   (5’-GCTGGAGATTCACAT-3’,) 
LASS2-Reverse (5'-GAAGACGATGAAGAT-3’) 
LASS4-Forward (5’-TGCTGTCCAGTTTCAACGAG-3’) 
LASS4-Reverse  (5’-GAGGAAGTGTTTCTCCAGCG-3’) 
LASS5-Forward  (5’-TCCTCAATGGCCTGCTGCTG-3’) 
LASS5-Reverse  (5’-CCCGGCAATGAAACTCACGC-3’) 
LASS6-Forward (5’-CTCCCGCACAATGTCACCTG-3’) 
LASS6-Reverse  (5’-TGGCTTCTCCTGATTGCGTC-3’) 
Apoptosis Genes  
Bax- Forward (5’-ACCAAGAAGCTGAGCGAGTGT-3’) 
Bax- Reverse   ( 5’-ACAAACATGGTCACGGTCTGC-3’) 
Bcl-xL   Forward   (5’-GGAGCTGGTGGTTGACTTTCT-3’) 
Bcl-xL  Reverse   ( 5’-CCGGAAGGTTCATTCACTACT-3’) 
CASPASE-3 Reverse      (5’-GGTTAACCCGGGTAAGAATGTGCA-3’) 
CASPASE-3 Forward     (5’-CTCGGTCTGGTACAGATGTCGATG-3’) 
BcL-2  Forward    (5’-AGATGTCCAGCCAGCTGCACCTGAC-3’) 
BcL-2 Reverse   (5’-AGATAGGCACCCAGGGTGATGCAAGCTT-3’) 
Transporter Genes  
LRP Forward      (5’-CGCTGCTTGATTTTGAGGAT-3’) 
LRP Reverse   (5’-CGAGAATCACGCAGTAGTTG- 3’) 
MRP1 Forward   (5’-TAGAGGACTTCGTGTCAGCC-3’) 
MRP1 Reverse    (5’-GTCCATGATGGTGTTGAGCC-3’) 
MDR1 Forward   (5’-TACAGTGGAATTGGTGCTGGG-3’)  
MDR1 Reverse   (5’-CCCAGTGAAAAAATGTTGCCA-3’) 
BCRP Forward   (5’-TACAGTTCTCAGCAGCTCTTCG-3’) 
BCRP Reverse  (5’-CAACTTGAAGATGGAATATCGAG-3’) 
BCR-ABL   
B2B     (5’-ACAGAATTCGCTGACCATCAATAAG-3’) 
CA3    (5’-TGTTGACTGGCGTGATGTAGTTGCTTGG-3’) 
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PCR mixture was prepared in the sterile 0.5 mL eppendorf tubes (Table 2.3). 

Amplification conditions were maintained in 35 cycles. The expression levels were 

quantified by Quantitive1 program (BioRad, USA) using the imaging system after 

running PCR products in agarose gels, followed by ethidium bromide staining.  

 
Table 2.3. Ingredients of PCR solutions for all genes 

Reaction Mixture Amount (µL) 
PCR grade water 32.5 
Reaction buffer (10x) 5 
MgCl2 (25 mM) 5 
dNTP (2 mM) 4 
Primer forward (20 pmol/μL) 0.5 
Primer reverse (20 pmol/μL) 0.5 
cDNA  2 
Taq DNA Polymerase 0.5 
Total Mixture 50 
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CHAPTER 3 

 

RESULTS AND DISCUSSION 
 

3.1. Cytotoxic Effects of Nilotinib on K562 and K562/NIL-50 Cells 

 
 To explore the mechanisms responsible for Nilotinib resistance, human K562 

CML cells were exposed to step-wise increasing concentrations of the drug (1-50 nM) 

for several months, and the sub-clones that expressed resistance were selected. Firstly, 

the degree of resistance was determined by measuring the IC50 values of Nilotinib at 72 

h using XTT cell proliferation assay. 

 

 

Figure 3.1. Antiproliferative effects of Nilotinib on K562 and K562/NIL-50 cells. The 
error bars represent the standard deviations, and when not seen, they are 
smaller than the thickness of the lines on the graphs. Statistical significance 
was determined using two-way analysis of variance, and P,0.05 was 
considered significant. 

 
As shown in Figure 3.1, K562 cells that survived upon chronic exposure to 50 

nM Nilotinib, which were referred to as K562/NIL-50 and, showed more than 10-fold 

resistance, as compared to its parental sensitive counterparts. The inhibitory 
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concentration (IC50) values of Nilotinib that inhibits growth by 50% in these cells were 

35 nM and 386,5 nM for K562 and K562/NIL-50 cells, respectively (Figure 3.1). 

 

3.2. Apoptotic Effects of Nilotinib on K562 and K562/NIL-50 Cells 

 
 To make sure whether the resistant cells (K562/NIL-50) are resistant to Nilotinib 

or not, we performed apoptotic assays including mitochondrial membrane potential and 

Caspase-3 enzyme activity, as two important apoptotic indicators. 

Firstly, changes in MMP was measured in K562 and K562/NIL-50 cells using 

the JC-1 mitochondrial membrane potential detection kit by varioscan. Treatment with 

10 nM Nilotinib for 72 h caused a significant loss of MMP (about 5-fold), as measured 

by increased accumulation of cytoplasmic monomeric form of JC-1, in parental K562, 

but not in resistant K562/NIL-50 cells (about 1,15 fold). Moreover, when 500 nM 

Nilotinib such a very high dose was even applied to resistant cells, decrease in MMP 

(1,65- fold) was still below the decrease in MMP in 10 nM Nilotinib treated cells 

(Figure 3.2 and Figure 3.3). Thus, these data confirmed that K562/NIL-50 cells exert 

significant resistance to Nilotinib-induced loss of MMP. 
 

 
 
Figure 3.2. Percent changes in mitochondrial membrane potential in K562 cells treated 

with Nilotinib. The error bars represent the standard deviations, and when 
not seen, they are smaller than the thickness of the lines on the graphs. 
Statistical significance was determined using two-way analysis of variance, 
and P,0.05 was considered significant. 
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Figure 3.3. Percent changes in mitochondrial membrane potential in K562/NIL-50 cells 

treated with Nilotinib. The error bars represent the standard deviations, and 
when not seen, they are smaller than the thickness of the lines on the graphs. 
Statistical significance was determined using two-way analysis of variance, 
and P,0.05 was considered significant. 

 

Secondly, the activation of pro-caspase-3 of parental and resistant K562 cells 

was measured using the caspase-3 activity assay by fluoresecent spectrophotometer. 

Treatment of parental K562 cells for 72 h with 10 nM Nilotinib resulted in 1,24-fold 

increase in caspase-3 activity (Figure 3.4) , whereas treatment of K562/NIL-50 cells at 

the same concentration only have partial  effects, as 0,6-fold increase, on the activation 

of caspase-3 (Figure 3.5). Thus, these data confirmed that K562/NIL-50 cells exert 

significant resistance to Nilotinib-induced caspase activation. 
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Figure 3.4. Fold changes in caspase-3 enzyme activity in response to Nilotinib in K562 
parental cells. The error bars represent the standard deviations, and when 
not seen, they are smaller than the thickness of the lines on the graphs. 
Statistical significance was determined using two-way analysis of variance, 
and P,0.05 was considered significant. 

 

 
 

Figure 3.5. Fold changes in caspase-3 enzyme activity in response to Nilotinib in 
K562/NIL-50 cells. The error bars represent the standard deviations, and 
when not seen, they are smaller than the thickness of the lines on the 
graphs. Statistical significance was determined using two-way analysis of 
variance, and P,0.05 was considered significant. 
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3.3. Mechanisms of Nilotinib Resistance in CML 

 

3.3.1. Expression Levels of BCR-ABL Gene in K562 and K562/NIL-50 
          Cells 
 

Expression levels of BCR-ABL were analyzed in K562 and K562/NIL-50 cells 

by RT-PCR. Indeed, the data showed that K562/NIL-50 cells overexpress BCR-ABL 

when compared to their parental sensitive counterparts (Figure 3.6). Quantification 

analyses of BCR-ABL gene expression was conducted by Quantitive1 programme and 

the results showed that there was 51% increase in expression of BCR-ABL gene in 

K562/NIL-50 cells, as compared to parental K562 cells. 
 

       
 

Figure 3.6. Expression analyses of BCR-ABL in parental and resistant CML cells. 
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Figure 3.7. Quantification of expression analysis of BCR-ABLgene in K562 and 
K562/NIL-50 cells. The error bars represent the standard deviations, and 
when not seen, they are smaller than the thickness of the lines on the 
graphs. Statistical significance was determined using two-way analysis of 
variance, and P,0.05 was considered significant. 

 

3.3.2. Sequence Analysis in Nilotinib Binding Site of ABL Kinase 
           Region in Sensitive and Resistant Cells 
 

To evaluate whether mutations on the ABL kinase domain  effect the binding 

efficiency of Nilotinib or not, sequence analyses of ABL kinase region were examined 

in parental and resistant K562 cells. The data revealed that there were no detectable 

mutations on this site of BCR-ABL in any of the K562/NIL-50 (Figure 3.8) comparing 

to parental K562 (Figure 3.9). 
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Figure 3.8. Nucleotide sequence analyses of ABL kinase region of resistant K562/NIL- 
                  50 cells. 
 

 
Figure 3.9. Nucleotide sequence analyses of ABL kinase region of parental K562 cells. 

 

3.3.3. Expression Levels of Apoptosis Related Genes in K562 and 
           K562/NIL-50 Cells 
 
 Expression levels of apoptosis related genes including Bcl-2, Bcl-xL, Cas3 and 

Bax were analyzed in K562 and K562/NIL-50 cells by RT-PCR (Figure 3.10). The data 

showed that K562/NIL-50 cells significantly inhibit expression of Bax gene when 

compared to its parental sensitive counterparts. However, there were not significant 

changes in expression levels of the other genes (Bcl-2, Bcl-xL, Cas3). Quantification 

analyses of the genes expression was conducted by Quantitive1 programme and the 
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results showed that there were around 2%, 3%, 0% and 25% decrease in K562/NIL-50 

cells in expression of Bcl-2, Bcl-xL, Cas3 and Bax genes , respectively, as compared to 

parental counterpart cells (Figure 3.11). 

  

           
Figure 3.10. Expression analysis of apoptosis related genes in K562 and K562/NIL-50 
                     cells. 

 

 
 

Figure 3.11. Quantification of expression analysis of apoptosis related genes in K562 
and K562/NIL-50 cells. The error bars represent the standard deviations, 
and when not seen, they are smaller than the thickness of the lines on the 
graphs. Statistical significance was determined using two-way analysis of 
variance, and P,0.05 was considered significant. 
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3.3.4. Expression Levels of Ceramide Metabolising Genes in K562 and 
           K562/NIL-50 Cells 
 
 To determine that whether bioactive sphingolipids are involved in Nilotinib 

resistance, expression levels of GCS, SK-1 and Lass family genes were analyzed. The 

data showed that K562/NIL-50 cells overexpress significantly GCS and SK-1 genes 

when compared to its parental sensitive counterparts. Besides, a decrease in expression 

levels of Lass1 gene was observed, while the other lass family genes including Lass2, 

Lass4, Lass5 and Lass6 were unexpectedly upregulated. Quantification analyses of the 

genes expression was conducted by Quantitive1 programme and the results showed that 

there were 55%  and 70% significant increase in K562/NIL-50 cells in the expression 

levels of GCS and SK-1 genes , respectively, as compared to parental counterpart cells 

(Figure 3.13). 
 

                  
Figure 3.12. Expression analysis of GCS and SK-1 genes in K562 and K562/NIL-50 

cells. 
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Figure 3.13. Quantification of expression analysis of GCS and SK-1 genes in K562 and 

K562/NIL-50 cells. The error bars represent the standard deviations, and 
when not seen, they are smaller than the thickness of the lines on the 
graphs. Statistical significance was determined using two-way analysis of 
variance, and P,0.05 was considered significant. 

 

 Moreover, there was around 9% decrease in the gene expression level of Lass1. 

But there were unexpectedly 10%, 13%, 2% and 12% increase in the expression levels 

of Lass2, Lass4, Lass5 and Lass6, respectively (Figure 3.15). 

 
Figure 3.14. Expression analysis of Lass family genes in K562 and K562/NIL-50 cells. 
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Figure 3.15. Quantification of expression analysis of Lass family genes in K562 and 
K562/NIL-50 cells. The error bars represent the standard deviations, and 
when not seen, they are smaller than the thickness of the lines on the 
graphs. Statistical significance was determined using two-way analysis of 
variance, and P,0.05 was considered significant. 

 

3.3.5. Expression Levels of Transport Family Genes in K562 and  
           K562/NIL-50 Cells 
 

To see the role of transport genes on Nilotinib resistance , expression levels of 

transport family genes including MDR1, MRP1, BCRP and LRP were analyzed in 

K562 and K562/NIL-50 cells by RT-PCR. The data showed that K562/NIL-50 cells 

inhibit expression of MDR1, BCRP and LRP genes when compared to its parental 

sensitive counterparts, while these cells overexpress MRP1 gene. Quantification 

analyses of the genes expression was conducted by Quantitive1 programme and the 

results showed that there were around 30%, 6%, 19% decrease and 14% increase in 

K562/NIL-50 cells in expression of MDR1, BCRP, LRP and MRP1 genes , 

respectively, as compared to parental counterpart cells (Figure 3.17).  
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Figure 3.16. Expression analysis of transport family genes in K562 and K562/NIL-50 
                  cells. 

 

 

Figure 3.17. Quantification of expression analysis of transport family genes in K562 
and K562/NIL-50 cells. The error bars represent the standard deviations, 
and when not seen, they are smaller than the thickness of the lines on the 
graphs. Statistical significance was determined using two-way analysis of 
variance, and P,0.05 was considered significant. 
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CHAPTER 4 

 

CONCLUSION 

 
 CML is a model disease since its discovery. Because CML was the first 

neoplasm associated with a chromosomal translocation, known as the Philadelphia 

chromosome. This feature has opened the door that provides an adequate and effective 

treatment for CML. After a while, the availability of a molecular targeted therapy has 

profoundly changed the management of CML and defied general ideas about cancer 

treatment (Hehlmann, et al. 2007). 

 Imatinib is the first tyrosine kinase inhibitor  showing strong activity in chronic 

and accelerated phase while it is less effective in the blast phase of CML (Savage and 

Antham 2002). Unfortunately, the emergence of resistance was observed which is the 

major problem in CML treatment (Walz and Sattler 2006, Deininger 2005). Then, the 

second generation tyrosine kinase inhibitors were designed to overhelm the resistance, 

such as Nilotinib. Nilotinib now is used as a first line treatment with approval by FDA 

since July 2010. However, there have been recently observed Nilotinib resistance cases 

in CML patients.  

In order to produce Nilotinib resistant sub-lines of human CML cell line, K562 

cells were cultured in the presence of gradually increasing concentrations (1 nM to 50 

nM) of Nilotinib over a period of 15 months. However, rare Ph positive K562 cells were 

observed which were unaffected by concentrations of Nilotinib that suppress the 

proliferation of most CML cells. These sub-lines with differential sensitivity to 

Nilotinib were generated from Nilotinib sensitive BCR-ABL positive human CML cells 

and the possible molecular mechanisms of resistance to Nilotinib induced apoptosis 

were investigated. 

The overall difficulty through this study was to generate resistant sublines from 

the parental sensitive cells. Obtaining rare survivors from all cells, even when subjected 

to a gradual exposure to Nilotinib in liquid culture, suggested that resistant cells arose in 

response to selective pressure of the inhibitor. This point is important because it is 

emphasized the specificity and high efficacy of this drug for the control of proliferation 

of BCR-ABL positive cells. Also, it was observed that although the tyrosine kinase 
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inhibitor did not kill these resistant sublines, in the beginning their proliferation was 

slowed in comparison with the parental cultures, suggesting that a delaying effect over 

the cell cycle was still elicited by the drug. 

Although similar approach was used in various studies to derive Imatinib 

resistance starting with Ph-positive cell lines previously, including AR230, LAMA84 

and K562 (Mahon, et al. 2000, Baran, et al. 2007), there are not much studies using 

similar methods about Nilotinib resistance. By the same group, it was also developed 

Nilotinib resistant AR230, LAMA84 and K562 cell lines (Mahon, et al. 2008). 

However, the degree of resistance was just 20 nM Nilotinib. We could develope 50 nM 

Nilotinib resistant K562 cell line, to our current knowledge, the highest concentration in 

the literature.   

It has been well documented that the degree of BCR-ABL expression appears to 

be directly proportional to the levels of drug resistance (Mahon, et al. 2000, Weisberg, 

et al. 2000). In this study, in mRNA levels it was observed that BCR-ABL was 

overexpressed in K562/NIL-50 cells as compared to parental sensitive counterparts. 

Besides, Mahon et al. showed that resistance to Nilotinib may be mediated by 

upregulated expression of BCR-ABL (Mahon, et al. 2008). 

Another mechanism for the development of resistance, which is today best-

characterized, was due to selection of cells with mutated BCR-ABL in the Imatinib 

binding domain in various CML cell lines (Wang, et al. 2007). An extensive search for 

the presence of all mutations in parental and resistant K562/NIL-50 cells using RT-PCR 

followed by direct sequencing failed to identify any of these mutations. These findings 

may show that resistance to Nilotinib in these resistant human CML cells did not result 

from any mutation in Nilotinib binding site of ABL kinase domain. 

On the other hand,  there has been BCR-ABL independent mechanisms reported 

for leading resistance in various CML cells. Nilotinib resistance can be due to a failure 

to induce apoptosis. The signals inducing apoptosis could be blocked and/or anti-

apoptotic genes’ overexpression can be observed in resistant cells. The Bcl-2 protein 

can block apoptosis induced by most chemotherapeutic agents (Reed, et al. 1996). 

Upregulation of anti-apoptotic Bcl-2 by Lyn-kinase-dependent mechanism (Dai, et al. 

2004) and by BCR-ABL gene in hematopoietic cells (Salomoni, et al. 2000) has been 

shown to be involved in resistance to Imatinib. In our results, it was observed that only 

Bax was dowregulated. While expecting upregulation in expression levels of Bcl-2 and 
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Bcl-xL, there were only moderate changes. Bax is a pro-apoptotic molacule which 

forms pore resulting in a loss of mitochondrial membrane potential which activates 

proteases (caspase-3, -7 and -9) and nucleases by cytochrome-c release from 

mitochondria (Zamzami, et al. 1998). These data are in agreement with this study which 

showed that in Nilotinib treated parental human CML cells, there were significant losses 

in mitochondrial membrane potential and an increase in caspase-3 enzyme activity 

resulting in higher number of cells in apoptosis. Thus, the pro-apoptotic effects of 

Nilotinib may be explained by a rapid and sustained inhibition of BCR-ABL, leading to 

induction of mitochondria dependent apoptosis in parental cells. In steady state levels, 

decreases were detected in loss of mitochondrial membrane potential and in caspase-3 

activity in resistant cells as compared to parental sensitive counterparts. Mitochondrial 

membrane potential and caspase-3 enzyme activity analyses revealed that although 

higher concentrations of Nilotinib were applied, there were almost no loss of 

mitochondrial membrane potential and no increase in caspase-3 enzyme activity in 

resistant cells.  

In addition, transporter mediated tyrosine kinase inhibitor efflux has been 

implicated as a possible mechanism for resistance to Imatinib (Thomas, et al. 2004, 

Jiang, et al. 2007). However, there has been significant controversy in the field 

regarding the potential of ABC transporters to confer drug resistance. There are several 

studuies showing that MDR1 and BCRP transporters are involved in Nilotinib 

resistance as a substrate or an inhibitor (Dohse, et al. 2010, Brendel, et al. 2007). The 

report that has been published as describing the interaction of Nilotinib with BCRP, 

suggesting Nilotinib is a BCRP substrate (Brendel, et al. 2007), while there is another 

study showed that in higher concentrations, Nilotinib reduced both MDR1 and BCRP 

activities (Hegedus, et al. 2009). Like these results, we showed that 50 nM Nilotinib 

concentration might inhibit expression levels of MDR1 and BCRP significantly in K562 

CML cells. Besides this, in this study, we showed that MRP1 overexpression may be 

responsible for Nilotinib resistance. Although there are only a few reports about the role 

of MRP1 in drug resistance in the literature, Shen et al. showed that Nilotinib reverses 

MRP7 mediated paclitaxel resistance at very high concentration (5 µM), another 

member of MRP family transporter. Concentration may be responsible for determining 

whether Nilotinib assumes the phenotype of substrate or inhibitor. Our results also 

showed that there was a inhibition in expression levels of LRP, but there is not sufficent 
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data in the literature about the role of LRP in Nilotinib resistance. After confirmation 

with different perspectives that show LRP is really dowregulated, it can be said 

Nilotinib may be inhibitor of LRP. 

Furthermore, we examined the roles of bioactive sphingolipids in the regulation 

of Nilotinib resistance in human K562 cells, as another BCR-ABL independent 

mechanism. Bioactive sphingolipid ceramide is involved in mediating anti-proliferative 

responses via various different mechanisms in human cancer cells (Ogretmen and 

Hannun, 2004). It has been well documented that treatment with some 

chemotherapeutic agents results in increased generation and/or accumulation of 

endogenous ceramide either via the activation of the de novo pathway (LASS1-6 genes), 

or by increased activity of SMases (Ogretmen and Hannun, 2004). However, any role 

for Nilotinib in inducing the generation of ceramide in human CML cells has not been 

examined previously. Here, the data showed that there were significant increase in 

expression levels of GCS and SK-1 genes which are responsible enzymes for increasing 

levels of antiapoptotic forms of ceramide. There are several reports showing SK-1 is 

overexpressed in distinct cancer types (Sobue, et al. 2006, French, et al. 2003, Li, et al. 

2007). Besides, GCS overexpression has been observed in Imatinib resistant human 

CML cells (Unpublished data from our lab). Another support for the involvement of 

GCS in drug resistance came from transfection experiments, which showed that 

overexpression of the enzyme resulted in increased resistance to adriamycin in drug 

sensitive MCF-7 tumor cells (Liu, et al. 1999). Decrease in expression levels of LASS1 

that selectively regulates the synthesis of C18-ceramide (Venkataraman, et al. 2002), 

was observed, while LASS2, LASS4, LASS5 and LASS6 were still upregulated. These 

data are in agreement with the study which showed that when LASS1 was 

overexpressed, Imatinib resistant cells increased the sensitivity to Imatinib, suggesting 

that upregulation of ceramide generation might help for improving response to Imatinib. 

However, the overexpression of LASS2, LASS5 and LASS6 did not cause any change 

in Imatinib resistant cells (Baran, et al. 2007). According to these results, decrease in 

expression of LASS1 may also be responsible for Nilotinib resistance.  

What is more, the data presented here have important implication for designing 

novel therapies for the treatment of CML. For example, in addition to the inhibition of 

BCR-ABL, targeting ceramide metabolism by increasing its synthesis and/or 

modulating its metabolism may provide improved strategies for the treatment of CML.  
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As a conclusion, in this study, Nilotinib resistant cell line is developed at very 

high concentration, such as 50 nM. More importantly, these results show that ceramide 

metabolising genes including GCS, SK-1 and LASS1 may be involved in the regulation 

of Nilotinib resistance in K562 cells. 
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