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and helpful suggestions.

I would like to thank to the other members of my defence committee, Prof. Dr.
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ABSTRACT

MAPPING OF THE ELECTRONIC STRUCTURE OF
METALLOPROTEINS ONTO MULTI-ORBITAL ANDERSON MODEL

USING THE DENSITY FUNCTIONAL THEORY

In this thesis, an effective Haldane-Anderson model is constructed in order to de-

scribe the electronic properties of a system where a the transition-metal impurity atom is

added into a semiconductor host material. Metalloenzymes and metalloproteins are pro-

teins which contain a transition metal. Vitamin B12 is a metalloenzyme which contains

a cobalt (Co) atom. The vitamin B12 exhibits semiconducting properties due to the pres-

ence of a semiconductor gap in the electronic density of states. Thus, we argue that the

electronic properties of vitamin B12 can be studied within the framework of the Haldane-

Anderson model. In this thesis, firstly, the electronic structure of vitamin B12, which is

known as cyanocobalamin, is obtained by using the Density Functional Theory (DFT)

via the Gaussian program. By using the DFT results, the energies of the host and the

3d orbitals, and the hybridization terms between them are calculated. The final Haldane-

Anderson Hamiltonian is obtained by adding the onsite Coulomb repulsion at the impurity

3d orbitals. The Haldane-Anderson Hamiltonian which has been constructed in this way

from the DFT results can be studied by using the exact techniques many-body physics

such as quantum Monte Carlo. Perturbative mean-field treats can also be used to study

this Hamiltonian. Hence, the DFT calculations presented in this thesis represent the first

step of thorough investigation of metalloproteins using these techniques of many-body

physics.
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ÖZET

YOĞUNLUK FONKSİYONELİ TEORİSİNİ KULLANARAK
METALOPROTEİNLERİN ELEKTRONİK YAPISININ ÇOK

YÖRÜNGELİ ANDERSON MODELİ ÇERÇEVESİNDE
BETİMLENMESİ

Bu tezde, yarı-iletken ev sahibi malzemenin içine geçiş metali safsızlık atomu

eklenmiş olan bir sistemin elektronik özelliklerini betimlemek için etkili bir Haldane-

Anderson modeli oluşturulmuştur. Metaloenzimler ve metaloproteinler, içinde geçiş ele-

menti bulunan proteinlerdir. Vitamin B12, içinde kobalt atomu içeren metaloenzimdir. Vi-

tamin B12, durum yoğunluğu elektroniğinde bir yarı-iletken aralığının varlığından dolayı

yarı-iletken özelliği gösterir. Böylece, vitamin B12’nin elektronik özelliklerinin Haldane-

Anderson modeli çerçevesinde çalışılabildiğini tartıştık. Bu tezde, ilk önce, Gaussian

programı aracılığıyla Yoğunluk Fonksiyoneli Teorisini (YFT) kullanarak vitamin B12’nin

diğer bir adıyla cyanocobalamin’in elektronik yapısı elde edilmiştir. YFT sonuçları kul-

lanılarak ev sahibi ve 3d yörüngelerinin enerjileri ve onlar arasındaki hibridizasyon ter-

imleri hesaplanmıştır. Safsızlık 3d yörüngelerinde yerel Coulomb itmesi ekleyerek son

Haldane-Anderson Hamiltonyen elde edilmiştir. YFT sonuçlarından oluşturulan Haldane-

Anderson Hamiltonyen, kuantum Monte Carlo gibi çok parçacıklı fiziğin kesin teknikleri

kullanarak çalışılabilinmektedir. Ayrıca, ortalama alan yaklaşımları bu Hamiltonyende

kullanılabilir. Böylece, bu tezde sunulan YFT hesaplamaları çok parçacıklı fizik teknikler-

i kullanarak metaloproteinlerin ayrıntılı araştırılması ilk adımda gösterilmiştir.
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CHAPTER 1

INTRODUCTION

Proteins are the most important building blocks of organisms and they are ab-

solutely essential in living organism for growth, development, repairing open wounds,

digestion and synthesis of a variety of substances. Approximately one-third of all known

proteins have a metal atom such as iron (Fe), cobalt (Co) and zinc (Zn), and also almost

half of all enzymes require the presence of a metal atom to function. This metal is usually

coordinated by nitrogen, oxygen or sulfur atoms. Such proteins and enzymes are named

as metalloproteins and metalloenzymes that are organometallic molecules.

Metalloproteins [1–6] represent one of the most various classes of proteins in

organometallic chemistry and metal in these molecules provides regulatory or structural

roles to protein function. Metalloproteins have fascinated chemists and biochemists, par-

ticularly since the 1950s, when the first x-ray crystal structure of a protein, myoglobin,

indicated the presence of an iron (Fe) atom. Examples of metalloproteins are hemoglobin

and enzymes [3, 7–12]. They play important roles such as transfer of electron in life pro-

cesses, cellular respiration, metabolism and immune system and also photosynthesis for

plants, hemoglobin provides for transporting oxygen (O2) and carbon dioxide (CO2) gas-

es to each living cells in a mammalian’s body [13]. Example of metalloenzyme is vitamin

B12 [4, 14–17]. It contains a cobalt (Co) atom as a transition metal impurity and involves

in many important biological processes, including the normal functioning of the brain and

nervous system and the formation of blood. It is involved in the metabolism of every cell

of the body, especially affecting DNA synthesis and regulation [18].

Nowadays, many research groups have studied theoretically and experimentally

metalloenzymes and metalloproteins in the areas of physics, biophysics, biochemistry

and physical chemistry. For the study of molecular properties of these structures, com-

puter software programs (Gaussian, Siesta, Quantum Espresso and Vasp) which are based

on ab-initio methods are used. Physical and electronic structure calculations of these

molecules are facilitated with developing these types of programs. The software of these

programs have continuously been improved and updated. Now, many programs are able

to do various calculations like energy by using density functional theory.

For the past four decades, density functional theory (DFT) has become very popu-

lar and successful method among quantum mechanical modelling theories which are used
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in physics in order to examine the electronic structure of atoms, molecules and solids. An

analytical solution of the many-body Schrödinger equation is not available for such com-

plex systems. Hence, the DFT is widely used for the simulation of the energy surfaces

in the complex molecules to overcome this problem and uses electron density formalism

instead of wavefunction in order to describe the electronic structure of the systems.

Application of modern DFT calculations have been extended from small molecules

to metal complexes in order to test the accuracy of the formalism. For complex molecules,

DFT appears to be the method of choice at the moment. In the last few years, research

groups have begun to apply DFT methods to a variety of systems such as metallopro-

teins, metalloenzymes, metalloporphyrins, biomolecules, polymers and macromolecules.

Furthermore, to describe electronic properties of these structure, some models are used.

One of these models is Anderson model. The Anderson model was introduced by

Anderson [21]. This model explains the magnetic properties of transition-metal impuri-

ties in semiconductors. The 3d orbitals of transition metals corresponds to the magnetic

impurity part in the Anderson model, while the rest orbitals of the molecule can be con-

sidered as the host part of the Anderson model.

In this thesis, as an example of metalloenzymes, vitamin B12 is studied. The

vitamin B12 is called cobalamin based on cobalt-containing compounds. The cobalamin

comprise a R-ligand and a nucleotide attached to a corrin ring. The corrin ring is made

up of four nitrogen atoms and an atom of cobalt in its center. The known vitamin B12

cofactors belong to (R-ligand) cobalamin (R-Cbl). Here the ligand is an ion, atom, or

molecule that binds to a central metal atom. Vitamin B12 (cyanocobalamin, CNCbl) [19]

is biologically inactive while the two cofactors are active as coenzymes B12 such as (R

= adenosyl) adenosylcobalamin (AdoCbl) and (R = methyl) methylcobalamin (MeCbl)

[3, 4, 14–16, 20].

Here, the electronic properties of vitamin B12 is studied by Anderson model. To

construct the Anderson model Hamiltonian, we have used the density functional theory

and calculated the impurity and the host energy levels as well as the hybridization matrix

elements among these. However, the DFT is insufficient due to fact that the DFT does not

take the contribution of onsite Coulomb interactions of 3d electrons into account. For this

reason, the DFT does not give the correct electronic properties of systems. Consequently,

we construct the multi-orbital Anderson model (for U = 0) to understand the magnetic

semiconducting properties of vitamin B12.

We investigate the energy and electronic structure of vitamin B12 that is known as

cyanocobalamin (CNCbl) by using the density functional theory (DFT) via the Gaussian

2



program. Firstly, in Chapter 2, we represent the mapping of the electronic structure of the

cyanocobalamin obtained from DFT onto the multi-orbital Anderson model. In Chapter 3,

we calculate the molecular wavefunction and energy in detail by using the Becke3 (three

parameters) Lee-Yang-Parr hybrid functional (B3LYP) and also we obtain the host band

structure and the impurity-host hybridization matrix elements which are input parameters

for the Haldane-Anderson model. In addition, we compute the molecular orbital and

energy of vitamin B12 by using the local spin density approximation (LSDA) for spin

polarized as alpha-spin and beta-spin orbitals. Finally, in Appendix A, the theoretical

background of DFT is reviewed and in Appendix B, we explain Hartree-Fock mean field

approximation for the multi-orbital Anderson model.
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CHAPTER 2

MAPPING OF ELECTRONIC STRUCTURE OF VITAMIN

B12 ONTO THE ANDERSON MODEL

2.1. Background

A density functional theory study of vitamin B12 which is also known as cyanoco-

balamin (C63H88CoN14O14P), is carried out in order to determine the energy and the

molecular wavefunctions. The wavefunctions, which are obtained from DFT calculations

(See Appendix A) will be used to construct the Anderson Impurity Hamiltonian [21]. In

cyanocobalamin, the cobalt atom which is surrounded by four nitrogen atoms in the corrin

ring, and is bound to a nucleotide group and a CN group out of the corrin plane. The

cobalt (Co) atom is described as the impurity atom in the Anderson model. By using the

Gaussian 09 [22] within the DFT calculations, the molecular wavefunctions are obtained

as a linear combination of Gaussian-type atomic orbitals.

Anderson model Hamiltonian was introduced by Anderson [21]. This Hamilto-

nian elucidates the magnetic properties of transition-metal impurities in semiconductors.

Vitamin B12 exhibits magnetic semiconductor properties due to cobalt atom. The 3d or-

bitals of cobalt atom here corresponds to the magnetic impurity part in the Anderson

model, while the rest orbitals of the molecule can be considered as the host part of the

Anderson model. To construct the Anderson model Hamiltonian, we have used the densi-

ty functional theory and calculated the impurity and the host energy levels as well as the

hybridization matrix elements among these. However, the DFT is insufficient due to fact

that the DFT does not take the contribution of onsite Coulomb interactions of 3d electrons

into account. For this reason, the DFT does not give the correct electronic properties of

systems. Consequently, we construct the multi-orbital Anderson model (for U = 0) to

understand the magnetic semiconducting properties of vitamin B12.

In mapping to the Anderson model, we will dissociate the Hamiltonian into a part

containing only the 3d-orbitals of the cobalt atom, a part containing all the other orbitals

except the 3d orbitals of Co, and finally a part which will describe the coupling of 3d-

orbitals of Co with the rest of atomic orbitals. Therefore, each molecular orbital will be
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expressed as

|ψn〉 =
5∑

ν=1

βnν |dν〉+
N−5∑
i=1

βni|φi〉 (2.1)

where βnm are the molecular orbital coefficients, |dν〉 is the orthogonal atomic orbital of

impurity, and |φi〉 is the orthogonal atomic orbital of host. In Eq.(2.1), n is an index for

the molecular wavefunctions, N represents the number of the basis functions, the index ν

refers to only 3d orbitals of cobalt atom and index i refers to the rest of the atomic orbitals

(host index).

The single-particle Hamiltonian can be written as

H =
N∑
n=1

En|ψn〉〈ψn| . (2.2)

This Hamiltonian is expressed by using Eq.(2.1)

H =
N∑
n=1

En

(
N−5∑
i=1

N−5∑
j=1

βniβ
∗
nj

)
|φi〉〈φj|+

+
N∑
n=1

En

(
5∑

ν=1

N−5∑
i=1

βnνβ
∗
ni|dν〉〈φi|+ h.c.

)
+

+
5∑

ν,ν′=1

(
N∑
n=1

Enβnνβ
∗
nν′

)
|dν〉〈dν′| . (2.3)

Thus, this Hamiltonian is classified into the following way

H = H0 +Hhyb +Hd0 (2.4)
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where

H0 =
N−5∑
i,j=1

Mij|φi〉〈φj| (2.5)

Hhyb =
5∑

ν=1

N−5∑
i=1

Mνi|dν〉〈φi|+ h.c. (2.6)

Hd0 =
5∑

ν,ν′=1

Mνν′ |dν〉〈dν′| (2.7)

with

M``′ =
N∑
n=1

Enβn`β
∗
n`′ for 1 ≤ `, `′ ≤ N. (2.8)

Here H0 represents the host Hamiltonian, Hhyb describes the hybridization between 3d

orbitals and the host orbitals, and also Hd0 represents the impurity Hamiltonian for the

3d orbitals. We also note that the natural bond orbitals (NBO) calculations are performed

using NBO version 3.1 [23] which is attached to the Gaussian 09 program [22]. We can

calculate molecular orbital coefficients both in the atomic orbital (AOMO) basis and in the

orthogonal atomic orbital (NAOMO) basis thanks to the NBO program [23]. In Section

3.1, we will explain these relations in all details. The orthogonalities of the molecular

orbitals denote in the NAO basis

〈ψn|ψm〉 = δnm for NAOMO basis. (2.9)

Consequently, |φi〉’s are given as an orthonormal basis set for NAOMO keyword.

2.2. Calculation of H0 for the Host

From Eq.(2.3) and Eq.(2.5) with Eq.(2.8), H0 becomes

H0 =
N−5∑
i,j=1

Mij|φi〉〈φj| (2.10)
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which can be written as

H0 =
N−5∑
i,j=1

hij|φi〉〈φj| . (2.11)

In the following step, we diagonalize h˜ matrix and obtain

H0 =
N−5∑
m=1

εm|um〉〈um| (2.12)

where εm and |um〉 represent eigenvalues and eigenfunctions of the matrix h˜ , and m

describes the index of host orbitals.

2.3. Calculation of the Hybridization Term Hhyb

Any i’th column of the u˜ matrix is corresponding to i’th eigenvectors of the host

Hamiltonian, where i = 1, 2, · · · , N − 5. The u˜ matrix elements are the coefficients of

diagonalized eigenvectors on host atomic orbitals.

u˜ =


u11 . . . uN−5,1

u12 . . . uN−5,1
...

...
...

u1,N−5 . . . uN−5,N−5


In Section 2.2 for H0, we have obtained u˜ . Hence,

[
f˜
]
(N−5)×(N−5)

matrix is correspond-

ing to f˜ = u˜ . Thus, Hhyb becomes

Hhyb =
5∑

ν=1

N−5∑
m=1

[(
N−5∑
i=1

Mνifim

)
|dν〉〈um|+ h.c.

]
. (2.13)

We next introduce V˜
Vνm ≡

N−5∑
i=1

Mνifim (2.14)
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where Mνi represents the hybridization part of the Fock matrix,

[
V˜
]
5×(N−5)

=
[
M˜
]
5×(N−5)

·
[
f˜
]
(N−5)×(N−5)

which defines the hybridization matrix elements between the impurity NAO’s and the

eigenstates of the host Hamiltonian. Thus, we obtain the hybridization term

Hhyb =
5∑

ν=1

N−5∑
m=1

(Vνm|dν〉〈um|+ h.c.) . (2.15)

2.4. Second Quantized Form of the Hamiltonian

The initial form of H is given by (from Eq.(2.4))

H = H0 +Hhyb +Hd0

where

H0 =
N−5∑
i,j=1

Mij|φi〉〈φj|

Hhyb =
5∑

ν=1

N−5∑
i=1

Mνi|dν〉〈φi|+ h.c.

Hd0 =
5∑

ν,ν′=1

Mνν′|dν〉〈dν′| .

In Section 2.2 , we have seen that H0 can be written as

H0 =
N−5∑
m=1

εm|um〉〈um| . (2.16)
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Also from Section 2.3 we have

Hhyb =
5∑

ν=1

N−5∑
m=1

(Vνm|dν〉〈um|+ h.c.) . (2.17)

In addition, Hd0 given by

Hd0 =
5∑

ν,ν′=1

Mνν′ |dν〉〈dν′ |

can be written as

Hd0 =
5∑

ν=1

εdν |dν〉〈dν |+
5∑

ν 6=ν′
(tνν′|dν〉〈dν′ |+ h.c.) , (2.18)

and

εdν = Mνν , and tνν′ = Mνν′ (2.19)

where εdν defines the effective energies of the 3d orbitals and tνν′ defines the hopping

energies of the 3d orbitals.

From these results, we can obtain the second quantized form of the Hamiltonian

as follows

H = H0 +Hhyb +Hd0
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where

H0 =
∑
σ

N−5∑
m=1

εmc
†
mσcmσ (2.20)

Hhyb =
∑
σ

5∑
ν=1

N−5∑
m=1

(
Vνmd

†
νσcmσ + h.c.

)
(2.21)

Hd0 =
∑
σ

5∑
ν=1

εdνd
†
νσdνσ +

∑
σ

5∑
ν 6=ν′

(
tνν′d

†
νσdν′σ + h.c.

)
. (2.22)

After including the on-site Hubbard term for the d-orbitals, the final Anderson

model HamiltonianH is obtained

H = H +HU (2.23)

where

HU =
∑
ν

Uνnν↑nν↓ . (2.24)

We note that in this form of the Hamiltonian, H0 describes the electronic states

without including the cobalt 3d orbitals.

We also note that Hd0 has an effective hopping term between the 3d orbitals.

Hence, the part of the Hamiltonian which only contains the 3d orbitals, Hd0 + HU , can

be considered as an effective 5-site Hubbard model. In this perspective, the total Hamil-

tonian H can be considered as a 5-site Hubbard model embedded into an effective host

described by H0.
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CHAPTER 3

DFT RESULTS AND DISCUSSIONS

3.1. NAO natural atomic orbitals

The analysis of natural atomic orbital (NAO) and natural bond orbital (NBO) have

been developed by Weinhold and coworkers to define the shape of atomic orbitals in the

molecule, and to derive molecular bonds from electron density between atoms [24]. In

this article, according to NAO procedure, nonorthogonal AOs {φi} are transformed to

corresponding orthogonal AOs {φ̃i} by the occupancy-weighted symmetric orthogonal-

ization (OWSO) procedure

TOWSO{φi} = {φ̃i} , 〈φ̃i|φ̃j〉 = δij (3.1)

Here, the transformation matrix TOWSO has the mathematical property of minimizing the

occupancy-weighted, and has the mean-squared deviations of the nonorthogonal φi and

the orthogonal φ̃i

min

{∑
i

wi

∫
|φ̃i − φi|2dτ

}
. (3.2)

where weighting factor wi is defined as

wi = 〈φi|Γ̂|φi〉. (3.3)

Eq.(3.3) is taken as the occupancy of nonorthogonal φi and Γ̂ is defined as diagonal ex-

pectation value of the density operator.

3.1.1. Why do we use the NAOs?

In our first calculation, we use the molecular orbital coefficients that are given

by Gaussian program. These molecular orbital coefficients are given in terms of atomic
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orbitals

〈ψn|ψm〉 6= δnm for AOMO basis. (3.4)

The accuracy of orthogonality has been proved by using overlap matrix. Then, we try to

obtain the energy values of 3d orbitals with the following equation

εdν(N) =
N∑
n=1

En|βnν |2. (3.5)

Here, the value of N is the number of basis functions. Due to high coefficients we

has found high energy values with Eq.(3.5) have been seen above zero. In addition, in

Fig.(3.1), we plot the absolute squared of 3d orbital coefficients |βnν |2 with the energy

eigenvalues of molecular orbitals En. In Fig.(3.1), each figures show the contributions of

3d orbitals. We are worried about the contributions which have been seen above zero for

each figures. These results does not make sense to us. Then, we start to use the following

equation.

εdν(M) =

M∑
n=1

En|βnν |2

M∑
n=1

|βnν |2
(3.6)

In Eq.(3.6), the value ofM is changing from 1 to the number of basis functionN . We find

large and unreasonable results again. Therefore, after we plot relation between εdν(M)

and εM in Fig.(3.2), we estimate the value of M . The specific results are achieved with

the value of M , but to verify these results, we make the literature review. After that, we

found orthogonal atomic orbitals with NAOMO and orbitals of energies with FNAO by

using NBO program which is attached to the Gaussian program. For NAOMO basis, we

prove the accuracy of orthogonality as follows

〈ψn|ψm〉 = δnm for NAOMO basis. (3.7)

NBO program defines the various keywords to obtain coefficients and energy values. We

obtain the energy values of 3d orbitals from the following equation by using orthogonal
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atomic orbital coefficients βnν and energy eigenvalues En.

εdν =
N∑
n=1

En|βnν |2. (3.8)

In addition, in Fig.(3.3), we plot the relation between |βnν |2 and En by using orthogonal

atomic orbital coefficients. There is no contributions to the last part in each figure. In

Fig.(3.4), we plot the relation between εdν(M) and εM by using orthogonal atomic orbital

coefficients. The contributions of the last part are remained constant. Moreover, we

obtain directly energy values εdν and hopping energy values tνν′ of 3d orbitals from Fock

matrix. The energy values of 3d orbitals which are calculated Eq.(3.8) and elements of

Fock matrix are same. Therefore, we continue our calculation by using Fock matrix.
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Figure 3.1. Representation of the contributions of 3d orbitals by using nonorthogonal
atomic orbitals (AOMO).
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Figure 3.2. Representation of the energy values of 3d orbitals by using nonorthogonal
atomic orbitals (AOMO).
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Figure 3.3. Representation of the contributions of 3d orbitals by using orthogonal
atomic orbitals (NAOMO).
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Figure 3.4. Representation of the energy values of 3d orbitals by using orthogonal
atomic orbitals (NAOMO).
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3.2. B3LYP for vitamin B12 from DFT with 6-31G(3d) basis set

We have obtained the electronic structure of the vitamin B12 (cyanocobalamin)

by using the Density Functional Theory (DFT) via the Gaussian program [22]. Molecu-

lar geometry is obtained by using GaussView [25] molecular visualization program and

Gaussian 09 program [22] package on our server. In this calculation, the cyanocobalamin

has been optimized by using the DFT at the hybrid functional B3LYP level with LAN-

L2DZ basis set for Co atom and 6-31G(3d) basis set for the rest of the atoms (C, H, O,

N, P). For the transition metal Co atom, the effective core potential basis set LANL2DZ

( Los Alamos ECP plus double zeta) is used for its valence electrons and core electron-

s are treated with LANL2 effective core potential [26, 27]. The cyanocobalamin is the

most complex tetrapyrrolic cofactor in which the central cobalt atom is coordinated by

four equatorial nitrogen ligands donated by pyrroles A-D of the corrin ring [4, 28]. The

molecular structure of cyanocobalamin is shown in Fig.(3.5) [4, 15, 16, 19, 29–35], for

the atomic positions via GaussView [25] in Figs.(3.6 and 3.7).

When the keyword ”pop=NBORead” is written the Gaussian input file, we can

calculate the coefficients for molecular orbitals (MO) in terms of atomic orbitals (AOMO),

natural atomic orbitals (NAOMO) and also the elements of Fock matrix in terms of the

atomic orbitals (FAO) basis and the natural atomic orbitals (FNAO) basis. We note that the

natural atomic orbitals refer to orthogonal atomic orbitals. The natural bonding orbitals

(NBO) calculations are performed by using NBO version 3.1 [23] which is attached to the

Gaussian 09 [22]. An useful aspect of the NBO method is that it gives information about

interaction in both occupied and virtual spaces. The NBO analysis provides an efficient

method for studying intra and inter-molecular bonding and interaction among bonds [36].

We obtain the Fock matrix in terms of orthogonal atomic orbitals (FNAO) by using NBO

program. The FNAO is significant parameter for our investigation. In addition, we acquire

the occupancies of the 3d orbitals. These quantities are derived from the NBO population

analysis.

3.2.1. Results

When we obtain the Fock matrix in the NAO basis, in Fig.(3.8), we can divide our

Hamiltonian into sub-matrices which is denoted host Hamiltonian and coupling part of

3d orbitals . The host Hamiltonian H0 is the interacting part between the host and the 3d
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orbitals. The coupling part of 3d orbitals directly gives the effective energies εdν (diagonal

terms) of the 3d orbitals of cobalt atom and the hopping energies tνν′ (off-diagonal terms)

of the 3d orbitals of cobalt atom.

In Fig.(3.9), the energy eigenvalues En versus the eigenstate index n are shown

by using Gaussian output file. Here we see that the forbidden energy gap (∆) is 2.71 eV

which is the difference of the highest occupied molecular orbital (HOMO) and the lowest

unoccupied molecular orbital (LUMO) energies. We also note that the number of basis

functions is N = 2436 for 6-31G(3d) basis set.

Fig.(3.10) shows the density of states (DOS) defined by

D(ε) =
N∑
n=1

δ(ε− En)

=
N∑
n=1

γ/π

γ2 + (ε− En)2
(3.9)

versus ε . The Fermi level (εF) is indicated by the red solid line at −5.57 eV.

In Table 3.1, we show the values of tνν′ (off-diagonal terms) and εdν (diagonal

terms) in eV. We obtain this table thanks to the Fock matrix in the orthogonal atomic

orbitals (FNAO).

Table 3.1. The values of tνν′ (off-diagonal terms) and εdν (diagonal terms) of 3d or-
bitals in terms of eV.

In Table 3.2, we show the values of occupancies of the 3d orbitals. We obtain

these values from the natural population analysis.

After the host Hamiltonian is diagonalized, we obtain the energy eigenvalues εm
of the host part without the 3d orbitals. The energies are represented in Fig.(3.11) as a

function of corresponding eigenstate indices.
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Table 3.2. The values of occupancies and eigenvalues of the 3d orbitals.

In Fig.(3.12), we demonstrate that the positions of 3d orbitals are added in the

density of state (DOS). The DOS is defined by

D0(ε) =
N−5∑
m=1

δ(ε− εm)

=
N−5∑
m=1

γ/π

γ2 + (ε− εm)2
. (3.10)

It is clear from this figure that the 3d orbitals are located near the HOMO-LUMO energy

gap.

When we divide the Fock matrix, we obtain the eigenvalues εm and eigenvectors

um of the host Hamiltonian after diagonalization. In Section 2.3, we obtain the hybridiza-

tion matrix elements by using

Vνm =
N−5∑
i

Mνifim . (3.11)

In Figs.( 3.13, 3.14, 3.15, 3.16, 3.17), we represent the hybridization matrix elements

between the host and the 3d orbitals of the cobalt atom. From here, we construct the

new Hamiltonian H′ in Fig.(3.18) in order to check our calculations. Then, after we

diagonalize the new Hamiltonian, we obtain its new eigenvalues and eigenvectors. In

Fig.(3.19), it is seen that the new eigenvalues of H′ are equal to the eigenvalues which are

obtained by Gaussian program.

Finally, we obtain the Fermi level of this system as −5.57 eV, the eigenvalues

of the host part εm, and the effective energy of the 3d orbitals εdν by using the Fock
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matrix, and also obtain the impurity-host hybridization matrix elements which are the

input parameters for the Haldane-Anderson model.
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Figure 3.5. Molecular structure of vitamin B12 (CNCbl = cyanocobalamin) with rings
A-D, and the environment of corrin ring includes carbon atoms. Axially,
the cobalt atom is coordinated on the lower face by a nitrogen from the
intramolecular base 5,6-dimethylbenzimidazole (DMB) and on the upper
face by cyano (CN).
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Figure 3.6. Atomic position of cyanocobalamin, with the formidable empirical formu-
la C63H88CoN14O14P, (vitamin B12). Nitrogen atoms are shown in dark
blue, carbon in grey, cobalt in green, hydrogen in yellow, oxygen in red
and phosphorus in orange.

Figure 3.7. In this figure, shown close to the atoms the environment of the cobalt atom.
Here, in cyanocobalamin, the cobalt atom is surrounded by four nitrogen
atoms in the corrin ring, it is bound to a nucleotide group and a CN group
out of the corrin plane.
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Figure 3.8. The Hamiltonian of the Fock matrix in the NAO basis (FNAO). We separat-
ed the Fock matrix into the three parts. The Hd part contains the diagonal
terms εdν (defining the effective energies of the 3d orbitals) and the off-
diagonal terms tνν′ (defining the hopping energies of the 3d orbitals). The
H0 matrix is represented the host Hamiltonian. The Mνi and Miν parts in-
clude the interacting terms between the impurity (defining the 3d orbitals
of cobalt atom) and the host part.

24



Figure 3.9. Energy eigenvalues En versus n for vitamin B12. The forbidden energy
gap (∆) is approximately 2.71 eV between the HOMO and LUMO bands.
Here, n is the number of basis functions; n = 1, 2, · · · , N .
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Figure 3.10. For all orbitals density of states D(ε) versus ε are calculated by using
Eq.(3.9). (a) The calculated density of state (DOS) of the vitamin B12

is plotted for γ = 0.2. (b) The x-axis is reduced in the range from−10 to 0
in order to demonstrate HOMO-LUMO region in much detail. This figure
is broaden with (γ = 0.1). These plots are for 6-31G(3d) basis set. Here,
the red solid line is the Fermi energy, at the same time, this line is the value
of HOMO and also the red dashed line is the value of LUMO. In addition,
these red lines are correspond to the values of HOMO and LUMO in the
other figures.
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Figure 3.11. The eigenvalues of host Hamiltonian εm versus m without 3d orbitals after
diagonalization. The forbidden energy gap (∆) is 2.59 eV between the
HOMO and LUMO bands. Here, the value of m, which is the number
of basis functions without the 3d orbitals, depends on the host part; m =
1, 2, · · · , N − 5 .
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Figure 3.12. Without 3d orbitals density of statesD0(ε) versus ε are calculated by using
Eq.(3.10). (a) The calculated density of state (DOS) without the 3d orbitals
is plotted for γ = 0.2. The coloured vertical lines indicate the positions of
the 3d orbitals. Here, the 3d orbitals are ordering 3z2− r2, xy, yz, x2−y2,
and xz, respectively. These orderings starts the highest occupancies of
them. (b) The x-axis is reduced in the range from −10 to 0 in order to
demonstrate HOMO-LUMO region in much detail. This figure is broaden
with (γ = 0.1). These plots are for 6-31G(3d) basis set.
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Figure 3.13. The host-impurity hybridization matrix elements Vνm versus εm are calcu-
lated by using Eq.(3.11). (a) The hybridization matrix elements are shown
between the host and 3z2 − r2 orbital of cobalt atom. (b) The x-axis is re-
duced in the range from −10 to 0 in order to demonstrate HOMO-LUMO
region in much detail.
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Figure 3.14. The host-impurity hybridization matrix elements Vνm versus εm are calcu-
lated by using Eq.(3.11). (a) The hybridization matrix elements between
the host and xy orbital of cobalt atom. (b) The x-axis is reduced in the
range from −10 to 0 in order to demonstrate HOMO-LUMO region in
much detail.
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Figure 3.15. The host-impurity hybridization matrix elements Vνm versus εm are calcu-
lated by using Eq.(3.11). (a) The hybridization matrix elements between
the host and yz orbital of cobalt atom. (b) The x-axis is reduced in the
range from −10 to 0 in order to demonstrate HOMO-LUMO region in
much detail.
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Figure 3.16. The host-impurity hybridization matrix elements Vνm versus εm are calcu-
lated by using Eq.(3.11). (a) The hybridization matrix elements between
the host and x2 − y2 orbital of cobalt atom. (b) The x-axis is reduced in
the range from −10 to 0 in order to demonstrate HOMO-LUMO region in
much detail.
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Figure 3.17. The host-impurity hybridization matrix elements Vνm versus εm are calcu-
lated by using Eq.(3.11). (a) The hybridization matrix elements between
the host and xz orbital of cobalt atom. (b) The x-axis is reduced in the
range from −10 to 0 in order to demonstrate HOMO-LUMO region in
much detail.
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Figure 3.18. Constructed the new Hamiltonian H′. The first part contains the diago-
nal terms εdν (defining the effective energies of the 3d orbitals) and the
off-diagonal terms tνν′ (defining the hopping energies of the 3d orbitals).
The host part contains εm the eigenvalues of the host Hamiltonian after
diagonalization. From Eq.(3.11), the Vνm and Vmν parts include the hy-
bridization matrix elements between the impurity (defining the 3d orbitals
of cobalt atom) and the host part.
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Figure 3.19. Energy eigenvalues En versus n for vitamin B12. The forbidden energy
gap (∆) is approximately 2.713 eV between the HOMO and LUMO band-
s. (a) The new eigenvalues of the H′ denoted by the coloured blue is com-
pared with the eigenvalues obtaining from Gaussian program indicated by
the coloured black. (b) It is seen that these graphs are clearly the same
each other. Here, the blue circle defines the eigenvalues of obtaining from
Gaussian program and also the black triangle defines the eigenvalues of
new Hamiltonian.
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3.3. LSDA for vitamin B12 from DFT with 6-31G(3d) basis set

For open-shell molecules and molecular geometries near dissociation, the local

spin density approximation (LSDA) gives better outcomes than the local density approxi-

mation (LDA) (See Appendix A). Whereas in the LDA, electrons with the opposite spins

paired with each other have the same atomic orbital [37]. The LSDA allows such electrons

to have different spatial atomic orbitals ψαi and ψβi . Thus, in LSDA, one deals separate-

ly with the electron density ρα(r) due to spin-up electrons and density ρβ(r) owing to

spin-down electrons.

In LSDA, the exchange-correlation functional energy (for spin-polarized systems)

is defined by

ELSDA
xc [ρα, ρβ] = ELSDA

x [ρα, ρβ] + ELSDA
c [ρα, ρβ]. (3.12)

The LSDA exchange energy is

ELSDA
x [ρα, ρβ] =

∫
ρ(r)εx(ρ, ξ)dr (3.13)

where

εx(ρ, ξ) = εPx (ρ) +
[
εFx (ρ)− εPc (ρ)

] 1

2

(
(1 + ξ)4/3 + (1− ξ)4/3 − 2

21/3 − 1

)
(3.14)

with εPx = εx(ρα = ρβ = ρ
2
) for the paramagnetic (non-polarized) and εFx = εx(ρα =

ρ , ρβ = 0) for the ferromagnetic (completely spin-polarized) limits of the functional and

ξ is the relative spin polarization

ξ =
ρα − ρβ
ρα + ρβ

. (3.15)

The LSDA correlation energy is

ELSDA
c [ρα, ρβ] =

∫
ρ(r)εc(rs, ξ)dr. (3.16)

The εc(rs, ξ) is fitted to the ground state energy of a homogeneous electron gas calculat-

ed using quantum Monte Carlo simulations and similar spin-interpolations. There is no

analytical function for uniform electron gas.

In this calculation, the cyanocobalamin has been calculated by using the DFT at
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the LSDA with LANL2DZ basis set for Co atom and 6-31G(3d) basis set for the other

atoms. When the keywords ”pop=NBORead” and ”FNAO” are supplemented our Gaus-

sian input file, we obtain the Fock matrix in terms of orthogonal atomic orbitals (FNAO)

by using NBO program.

3.3.1. Results

In this section, the Fock matrix and the electron numbers of 3d orbitals are ob-

tained from LSDA method. Especially, in LSDA, the alpha-spin orbital and the beta-spin

orbital are divided into two parts. Thus, we obtain separately the Fock matrix for alpha

and beta spin orbitals.

After obtaining the Fock matrix for alpha and beta spin orbitals, in Fig.(3.8), we

can divide our Hamiltonian into sub-matrices which is denoted host Hamiltonian and

coupling part of 3d orbitals . The host Hamiltonian H0 is the interacting part between

the host and the 3d orbitals. The coupling part of 3d orbitals directly gives the effective

energies εdν (diagonal terms) of the 3d orbitals of cobalt atom and the hopping energies

tνν′ (off-diagonal terms) of the 3d orbitals of cobalt atom.

In Figs.(3.20 and 3.22), the energy eigenvalues En versus the eigenstate index

n are shown by using Gaussian output file for each spin orbitals. Here we see that the

forbidden energy gap is the difference of the highest occupied molecular orbital (HOMO)

and the lowest unoccupied molecular orbital (LUMO) energies.

Figs.(3.21 and 3.23) shows the density of states (DOS) defined by

D(ε) =
N∑
n=1

δ(ε− En)

=
N∑
n=1

γ/π

γ2 + (ε− En)2
(3.17)

versus ε for each spin orbitals. The Fermi level (εF ) is shown by the red solid line at

−5.72 eV for the alpha spin orbital and −5.61 eV for the beta spin orbital.

In Table 3.3, we show the values of tνν′ (off-diagonal terms) and εdν (diagonal

terms) in eV for alpha spin orbital. We obtain this table thanks to Fock matrix in the

orthogonal atomic orbitals (FNAO).

In Table 3.4, we show the values of tνν′ (off-diagonal terms) and εdν (diagonal
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Table 3.3. The values of tνν′ (off-diagonal terms) and εdν (diagonal terms) of 3d or-
bitals in terms of eV for the alpha spin orbital.

terms) in eV for beta spin orbital. We obtain this table thanks to Fock matrix in the

orthogonal atomic orbitals (FNAO).

Table 3.4. The values of tνν′ (off-diagonal terms) and εdν (diagonal terms) of 3d or-
bitals in terms of eV for the beta spin orbital.

In Table 3.5, we show the values of occupancies and eigenvalues of the 3d orbitals

for the alpha spin orbital. We obtain these values from the natural population analysis.

In Table 3.6, we show the values of occupancies and eigenvalues of the 3d orbitals

for the beta spin orbital. We obtain these values from the natural population analysis.

In table 3.7, we show the values of magnetization which is the difference between

the occupancies of alpha spin and beta spin.
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Table 3.5. The values of occupancies and eigenvalues of the 3d orbitals for the alpha
spin orbital.

Table 3.6. The values of occupancies and eigenvalues of the 3d orbitals for the beta
spin orbital.

Table 3.7. The values of magnetization is the difference between the occupancies of
3d orbitals for alpha spin and beta spin.
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Figure 3.20. Energy eigenvalues En versus n for vitamin B12. The forbidden ener-
gy gap (∆) is approximately 1.93 eV between the HOMO and LUMO
bands for alpha spin orbital. Here, n is the number of basis functions;
n = 1, 2, · · · , N .
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Figure 3.21. For all orbitals density of states D(ε) versus ε are calculated by using
Eq.(3.17) for alpha spin orbital. (a) The calculated density of state (DOS)
of the vitamin B12 is plotted for γ = 0.2. (b) The x-axis is reduced in
the range from −10 to 0 in order to demonstrate HOMO-LUMO region in
much detail. This figure is broaden with (γ = 0.1). These plots are for 6-
31G(3d) basis set. Here, the red solid line is the Fermi energy, at the same
time, this line is the value of HOMO and also the red dashed line is the
value of LUMO. In addition, these red lines are correspond to the values
of HOMO and LUMO in the other figures.
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Figure 3.22. Energy eigenvalues En versus n for vitamin B12. The forbidden ener-
gy gap (∆) is approximately 2.09 eV between the HOMO and LUMO
bands for beta spin orbital. Here, n is the number of basis functions;
n = 1, 2, · · · , N .
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Figure 3.23. For all orbitals density of states D(ε) versus ε are calculated by using
Eq.(3.17) for beta spin orbital. (a) The calculated density of state (DOS)
of the vitamin B12 is plotted for γ = 0.2. (b) The x-axis is reduced in
the range from −10 to 0 in order to demonstrate HOMO-LUMO region in
much detail. This figure is broaden with (γ = 0.1). These plots are for 6-
31G(3d) basis set. Here, the red solid line is the Fermi energy, at the same
time, this line is the value of HOMO and also the red dashed line is the
value of LUMO. In addition, these red lines are correspond to the values
of HOMO and LUMO in the other figures.
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CHAPTER 4

CONCLUSIONS

In this thesis, we have obtained the electronic structure, molecular orbital wave-

function and energy eigenvalues of the vitamin B12 by using the density functional theory

(DFT) via the Gaussian program. For vitamin B12, some of the articles have done various

calculations like optimization, energy and frequency by using various methods and basis

sets [19, 30, 35] and we do optimization and energy calculation. The aim of my thesis is to

constitute an effective Anderson model. Here, the 3d orbitals of cobalt atom corresponds

to the magnetic impurity part in Anderson model, while the rest orbitals of the molecule

can be considered as the host part of the Anderson model. To construct the multi-orbital

Anderson model Hamiltonian, we have used the density functional theory and calculat-

ed the impurity (εdν) and the host energy (εm) levels as well as the hybridization matrix

elements (Vνm) among these.

Firstly, in this study, the vitamin B12 has been optimized by using the DFT at the

hybrid functional B3LYP level with LANL2DZ basis set for cobalt atom and 6-31G(3d)

basis set for the rest orbitals of the atoms. After optimization, the Gaussian program gives

us the correct electronic structure of vitamin B12.

Output file which is obtained by the Gaussian program can be used as input file for

new calculations in GaussView molecular visualization program. This is one of the most

important properties of GaussView program. Thus, the output file which is obtained from

the optimization is constituted our input file and this input file is opened by GaussView.

Then, we make the energy calculation by adding FNAO and NAOMO keywords, basis

sets, and DFT/B3LYP hybrid functional. Here, we use the natural atomic orbital (See

Section 3.1) in order to dissociate the host part and the impurity part (only 3d orbitals)

easily. The Gaussian program gives us molecular orbitals (in terms of atomic orbitals)

and eigenvalues of any molecule without using any keywords.

We can obtain the Fock matrix, molecular orbital coefficients and bond analysis

of any molecule thanks to NBO program which is attached to Gaussian program. Thus,

we obtain the Fock matrix of vitamin B12 in terms of orthogonal atomic orbitals (FNAO).

NAOMO and AOMO keywords give the molecular orbitals in the orthogonal atomic or-

bital and atomic orbital basis (See Section 3.1), respectively.

After we obtain the Fock matrix, we divide the Fock matrix into impurity part (on-
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ly 3d orbitals of cobalt atom) and host part (the rest of orbitals) to find the hybridization

terms of the 3d orbitals of cobalt atom. The impurity part directly gives us the diagonal

term (εdν , the effective energies of 3d orbitals) and the off-diagonal term (tνν′ , the hopping

energies between 3d orbitals). In addition, the values of occupancies and eigenvalues of

3d orbitals are shown by using the natural population analysis (See Table 3.2). Further-

more, in Section 3.2, we obtain that the energy gap is approximately 2.71 eV. Therefore,

we find that the vitamin B12 exhibits semiconductor properties. We draw the density of

states for all orbitals. After the host part is diagonalized, we obtain the energy eigenval-

ues of the host part εm and the eigenstates of the host part um without the 3d orbitals.

Moreover, by using these values we draw the density of states without 3d orbitals, and we

put the energy values of the 3d orbitals, the HOMO value and the LUMO value in figure.

Thus, we see that the energy values of the 3d orbitals are below the Fermi level which is

known as the HOMO value. As soon as we calculate the hybridization matrix elements

between the host and the impurity part, we display separately the hybridization terms for

each 3d orbitals in detail. Then, we construct the new Hamiltonian to check our calcu-

lations. After we diagonalize the new Hamiltonian, we obtain its new eigenvalues. We

see that the new eigenvalues are equal to the eigenvalues which is obtained by Gaussian

program.

We obtain the effective energies of 3d orbitals εdν , the Fermi levels µ, the energy

eigenvalues of the host part εm and the impurity-host hybridization matrix elements Vνm
for the effective multi-orbital Anderson model.

We find out that the electron numbers of 3d orbitals are greater than or approxi-

mately equal to 1. The 3d orbitals of cobalt atom which is almost full occupation has not

physical meaning to us. Therefore, we calculate the electron numbers of 3d orbitals by

using LSDA method.

For LSDA spin polarized method, we achieve the density of state and energy. Here

we calculate separately alpha spin and beta spin orbitals. We obtain that the energy gap

is 1.93 eV for alpha spin orbital and 2.09 eV for beta spin orbitals. The energy gap of

the cyanocobalamin is 1.96 eV as the computational value [17, 20, 38, 39]. We obtain

the electron numbers and the magnetic moment of 3d orbitals. Here, we realize that the

electron numbers of 3d orbitals are less than 1 for each spin orbitals and the total of the

electron numbers of 3d orbitals is greater than or nearly equal to 1 for alpha plus beta spin

orbitals.

Although the energy gap which has been obtained by LSDA is closed to the com-

putational value, we achieve more correct results with B3LYP for the energy eigenvalues
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of 3d orbitals, the density of states and the impurity-host hybridization matrix elements.

The B3LYP has already been one of the most common used hybrid functional method in

the literature due to the fact that it includes the contributions of different exchange and

correlation energies. This information increases the accuracy of our results.
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APPENDIX A

CALCULATION METHODS AND APPROXIMATIONS

A.1. Many-Body Problem

Our starting point is the time independent non-relativistic Schrödinger equation

that defines a system of matter. In many-body systems one can solve an eigenvalue prob-

lem for the energy E in the form [40, 41]

HΨ = EΨ . (A.1)

The Hamiltonian of a typical many-body system can be written as [42–45]

H = Te + Ti + Vee + Vii + Vei . (A.2)

In Eq.(A.2), these terms separately define

Te = −1

2

N∑
i=1

∇2
i (A.3)

where Te is the electron kinetic energy;

Ti = −1

2

ions∑
I=1

∇2
I (A.4)
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where Ti is the ion kinetic energy;

Vee =
1

2

N∑
i 6=j

1

|ri − rj |
(A.5)

where Vee is the electron-electron repulsion term;

Vii =
1

2

ions∑
I 6=J

ZIZJ
|RI −RJ |

(A.6)

where Vii is the ion-ion repulsion term;

Vei = −
N∑
i=1

ions∑
I=1

ZI
|ri −RI |

=⇒ Vei =
N∑
i=1

Vext(ri) (A.7)

where Vei is the attractive interaction between the electrons and ions described as an ex-

ternal potential for the electrons.

In general, me and ri are the electron mass and positions, respectively. MI is

the mass of the ion, RI is the corresponding positions, and ZI is the ion charge. The

Hamiltonian form contains [42, 46]

H =− 1

2

N∑
i=1

∇2
i −

1

2

ions∑
I=1

∇2
I +

1

2

N∑
i 6=j

1

|ri − rj|

(A.8)

+
1

2

ions∑
I 6=J

ZIZJ
|RI −RJ |

+
N∑
i=1

Vext(ri) .

Born-Oppenheimer or adiabatic approximation (1927) [47] is setting the mass of

ion to infinity, then the kinetic energy of the ion and the ion-ion repulsion term can be

neglected. Due to their masses the ions move much slower than the electrons so we can

consider the electrons as moving in the field of fixed ions, therefore the nuclear kinetic

energy is zero and their potential energy is merely a constant. As a result, the electronic

Hamiltonian H reduces a sum of three contributions: the kinetic energy of the electrons
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Te, the external potential energy (the attraction between the electrons and ions) Vext, and

the internal potential energy (the repulsion between individual electrons) Vee.

H = Te + Vext + Vee (A.9)

where H is the quantum mechanical Hamiltonian of the form:

H = −1

2

N∑
i=1

∇2
i +

N∑
i=1

Vext(ri) +
1

2

N∑
i 6=j

1

|ri − rj|
, (A.10)

HΨn =
N∑
i=1

(
−1

2
∇2
i + Vext(ri)

)
Ψn +

1

2

N∑
i 6=j

1

|ri − rj|
Ψn (A.11)

where Ψn is the many-body wavefunction, replaced by a set of N one-electron equations

of the form. We express the wavefunction Ψn as a Slater determinant [48] of orbital

wavefunctions {ψi(r), i = 1, 2 . . . , N} where N is the number of electrons, the energy

functional is given by

E = 〈Ψn|H|Ψn〉

=
N∑
i

∫
drψ∗i (r)

(
−1

2
∇2
i + Vext(ri)

)
ψi(r)

+
1

2

∑
i 6=j

∫
drdr′ψ∗i (r)ψi(r)

1

|r − r′|
ψ∗j (r

′)ψj(r
′)

− 1

2

∑
i 6=j

∫
drdr′ψ∗i (r)ψ∗j (r

′)
1

|r − r′|
ψi(r

′)ψj(r) . (A.12)

A.2. Density Functional Theory

The basis of density functional theory (DFT), in 1927, it proposed the first time by

Thomas [49] and Fermi [50] , then Hohenberg and Kohn [51] based on their works and

finally Kohn and Sham [52] improved and concluded their the whole works. The DFT,

which is quite common, current and compatible with the experimental results is a method.
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It is commonly a successful approach in order to determine the ground state properties of

metals, semiconductors and insulators. Nowadays, it is known that the DFT has been used

to calculate the binding energy of molecules and the band structure of solids in physics

and chemistry. The aim of density functional theory, it represents the characteristics of the

many-body system by using the ground state electron density without the wave functions.

A.2.1. Thomas-Fermi-Dirac Approximations

The original of DFT is proposed the first time in 1927 by Thomas [49] and Fermi

[50]. They expressed the kinetic energy with respect to the electron density. Both Thomas

and Fermi neglected exchange and correlation among the electrons. This was extended

by Dirac [53] in 1930, who formulated the local approximation for exchange. This for-

mulation for exchange is still in use today. In Thomas-Fermi-Dirac approximation, the

energy functional is denoted as [41, 54–56]

ETFD[ρ] =
3

10
(3π2)2/3

∫
d3rρ(r)5/3 +

∫
d3rVext(r)ρ(r)

− 3

4

(
3

π

)1/3 ∫
d3rρ(r)4/3 +

1

2

∫
d3rd3r′

ρ(r)ρ(r′)

|r − r′|
. (A.13)

In Eq.(A.13), the first term is the kinetic energy of a non-interacting homogeneous elec-

tron gas with the density ρ, the second term is the external potential, the third term is

the local approximation of exchange energy, and the last term is the classical electrostat-

ic Hartree energy (electron-electron Coulomb repulsion). However, the Thomas-Fermi-

Dirac approach starts with approximations that are too crude, missing the essential physic-

s. Therefore, it falls short of the goal of a useful description of electrons in matter.

A.2.2. Hohenberg-Kohn Theorems

The DFT is based on the existence of two remarkable theorems proven by Hohen-

berg and Kohn in 1964 [51]. Stated simply they are follows [56]:

Theorem I: For any system of N-interacting electrons in the external potential Vext(r) is

determined by a unique functional of the ground state electron density ρ(r) [43, 44, 57,
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58].

Vext(r)←→ ρ(r) (A.14)

Theorem II: The global minimum value of energy functional is the ground state en-

ergy for any system and the electron density ρ(r) that minimizes the functional ener-

gy is the ground state energy. The ground state energy can be obtained variationally

[43, 44, 57, 58].

The electronic Hamiltonian of many-body system consists of a sum of three terms

[43, 44, 55, 57, 58],

H = Te + Vee + Vext (A.15)

the electron kinetic energy, the electron-electron interaction and the interaction with the

external potential (using Hartree atomic units ~ = me = e = 1/(4πε0) = 1)

H = −1

2

N∑
i=1

∇2
i +

N∑
i=1

N∑
i<j

1

|ri − rj|
+

N∑
i=1

Vext(ri) . (A.16)

Since ρ(r) determines Vext, it should also determine all properties of the ground

state, including the kinetic energy of electrons and the energy of interaction among elec-

trons, that is, the total ground state energy is a functional of density with the following:

E[ρ(r)] = T [ρ(r)] + Vee[ρ(r)] + Vext[ρ(r)] . (A.17)

The energy functional E[ρ(r)] referred to in the first Hohenberg-Kohn theorem

[51] can be written with regard to the external potential Vext(r) in the following way,

E[ρ(r)] = F [ρ(r)] +

∫
ρ(r)Vext(r)d3r (A.18)

where the external potential

Vext(r) = −
∑
I

ZI
|r −RI |

(A.19)
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is generated by the ions and F [ρ(r)] is the unique functional of kinetic energy plus

Coulomb interaction energy between electrons. Combining the external potential Vext(r),

the corresponding ground state density ρ(r) minimizes the functional under the constraint

that the total number of electrons is kept fixed. Thus, the second Hohenberg-Kohn the-

orem provides a recipe for the calculation of the ground state density. It is suitable to

separate out the classical Coulomb energy from F [ρ(r)] and to write

F [ρ(r)] = T [ρ(r)] +
1

2

∫ ∫
ρ(r)ρ(r′)

|r − r′|
d3rd3r′ . (A.20)

Then, the expression for the energy functional Eq.(A.18) becomes

E[ρ(r)] = T [ρ(r)] +

∫
ρ(r)Vext(r)d3r +

1

2

∫ ∫
ρ(r)ρ(r′)

|r − r′|
d3rd3r′ . (A.21)

A.2.3. The Kohn-Sham Equations

In the previous section, provide a method of minimizing energy by changing cor-

responding density. In order to construct such an approximation, it has been proposed by

Kohn and Sham (1965) [52] to introduce a reference system of N non-interacting elec-

trons moving in an effective potential Veff , where the electron density ρ(r) agrees with

the one of the interacting system. The ground state wavefunction of this reference system

is simply given by the Slater [48] determinant of a set of N single-particle wavefunctions

Ψs =
1√
N !
det[ψ1ψ2 · · ·ψN ] (A.22)

which satisfy the set of single-particle Schrödinger equations.

(
−1

2
∇2 + Veff (r)

)
ψi(r) = εiψi(r) (A.23)

which are called Kohn-Sham equation. The wavefunctions ψi are called Kohn-Sham

wavefunctions. According to Pauli exclusion principle (0 ≤ ni ≤ 1), the ground state
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density of this system is calculated in the following way:

ρ(r) =
N∑
i

|ψi(r)|2 (A.24)

The expression for the energy functional of the non-interacting reference system is [59,

60]

E[ρ(r)] = Ts[ρ(r)] +

∫
Veffρ(r)d3r (A.25)

where the subscript ”s” stands for ”single-particle”. According to the second Hohenberg-

Kohn theorem [51], the ground state of the reference system minimizes the energy func-

tional E[ρ(r)] under the constraint of fixed electron number. Using Lagrange multipliers

εi to take these constraints into account the minimization of the energy functionalE[ρ(r)]

reproduces the set of differential equations. They represented the total energy functional

into the following that [56, 61],

E[ρ(r)] = Ts[ρ(r)] + Vext[ρ(r)] + Vee[ρ(r)] + Exc[ρ(r)] . (A.26)

For the energy functional of the interacting system we may write

E[ρ(r)] = Ts[ρ(r)] +

∫
ρ(r)Vextd

3r +
1

2

∫ ∫
ρ(r)ρ(r′)

|r − r′|
d3rd3r′ + Exc[ρ(r)] (A.27)

where Ts[ρ(r)] is the kinetic energy of electrons which has the same density ρ in a system.

This is considered as a system with non-interacting electrons. Vext is the external potential

and Vee is the Coulomb interaction between electrons. The last functional, Exc[ρ(r)] is

called the exchange-correlation energy.

A.2.4. The Roothaan-Hartree-Fock (RHF) Equations

According to variational principle [56, 61]

δ

(
E[ρ]− µ

∫
ρ(r)dr

)
= 0 (A.28)
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where µ is the Lagrange multiplier. In terms of variational derivatives

δE[ρ]

δρ(r)
= µ . (A.29)

Minimization of the energy functional Eq.(A.27) under the constraint of fixed

number yields a second set of Schrödinger equation by using the variational principle

[56, 61]

µ =
δE[ρ(r)]

δρ(r)
=
δTs[ρ(r)]

δρ(r)
+ Vext(r) +

∫
ρ(r′)

|r − r′|
d3r′ +

δExc[ρ(r)]

δρ(r)
. (A.30)

Here we combined together all terms, excepting noninteracting electron kinetic energy

into an effective potential Veff (r) depending on r

Veff (r) = Vext(r) +

∫
ρ(r′)

|r − r′|
d3r′ + Vxc(r) (A.31)

where the exchange correlation potential is defined as a functional derivative of the ex-

change correlation energy [62]

Vxc(r) =
δExc[ρ(r)]

δρ(r)
. (A.32)

The DFT energy functional is minimized yielding the Kohn-Sham equations

[
−1

2
∇2
i + Vext(r) +

∫
dr′

ρ(r)

|r − r′|
+ Vxc(r)

]
ψi(r) = εiψi(r) . (A.33)

The Fock operator for each electron can be defined as [45, 63]

F = −1

2
∇2
i + Vext(r) +

∫
dr′

ρ(r)

|r − r′|
+ Vxc(r) (A.34)

and

Fψi(r) = εiψi(r) (A.35)
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where ψi(r) is an eigenfunction of the single-particle Hamiltonian F , the Fock operator

and corresponding energy is εi . The local exchange potential is given as [56, 61]

Vxc(r) =
δELDA

xc

δρ(r)
= εxc(ρ) + ρ(r)

δεxc
δρ(r)

. (A.36)

In order to solve the Kohn-Sham equations the molecular orbitals ψi(r) are expanded in

terms of atomic orbitals φξ(r),

ψi(r) =
N∑
ξ=1

βiξ φξ(r) (A.37)

and we substitute this expansion into Eq.(A.33) and take the inner product with φξ [45, 63]

N∑
ξ′,ξ=1

βiξ〈φξ|F |φξ′〉 = εi

N∑
ξ′,ξ=1

βiξSξ,ξ′ (A.38)

where the overlap matrix is

Sξ,ξ′ = 〈φξ|φξ′〉, for i = 1, 2, . . . , N ; ξ, ξ′ = 1, 2, . . . , N . (A.39)

The electron density is calculated accordingly from [56, 61]

ρ(r) =
nocc∑
i=1

ni|ψi(r)|2 . (A.40)

Here ni = 0, 1 is the occupation number and i = 1, 2, . . . , nocc < N .

The Eq.(A.38) can also be obtained for the Hartree-Fock equations [64], and they

are called the Roothaan-Hartree-Fock (RHF) equations. Furthermore, these N equations

can be collectively represented by matrix equations [45],

F˜ · β˜ = ε˜ · S˜ · β˜ (A.41)
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where ε˜ is a diagonal matrix of the orbital energies εi, and S˜ is the overlap matrix, Sξ,ξ′ =

〈φξ|φξ′〉. The F˜ matrix contains the Fock matrix elements, Fξ,ξ′ = 〈φξ|F |φξ′〉, and β is a

N ×N matrix of molecular orbital coefficients βiξ.

A.2.5. The Kohn-Sham Scheme

The idea of the Kohn-Sham method is best understood as follows [59, 60]. Con-

sider a generalized Hamiltonian after the Born-Oppenheimer approximation

H = T + Vext + Vee , (A.42)

H =
N∑
i

(
−1

2
∇2
i + Vext(ri)

)
+

N∑
i<j

1

|ri − rj|
(A.43)

in which the term Vee is scaled by an electron-electron coupling constant λ. We are

interested in values of λ between 0 and 1.

In Levy’s constraint search formulation of the Hohenberg-Kohn principle, this is

stated as [59, 60]

Fλ[ρ] = 〈Ψmin,λ
ρ | (T + λVee) |Ψmin,λ

ρ 〉 (A.44)

where Ψmin,λ
ρ is the N-electron wave function.

For real system, λ = 1, so that F1[ρ] = F [ρ] is the universal function. This is the

complicated problem to solve. The value λ = 0 corresponds to a system of noninteracting

electrons moving in the external potential Vext(r). The noninteracting Schrödinger equa-

tion is solvable. The solution is ψ0 = Ψmin,0
ρ a single Slater determinant of one-electron

wave functions obtained from the single-particle equations [56, 61]

[
−1

2
∇2
i + Vext(ri)

]
ψi(r) = εiψi(r) . (A.45)

The universal density functional for this noninteracting system is thus [59, 60]

F0[ρ] = Ts[ρ] = −1

2

N∑
i

〈ψi|∇2|ψi〉 (A.46)
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where the density is given by

ρ(r) =
N∑
i

|ψi(r)|2 . (A.47)

For a noninteracting system,

F1[ρ] = F [ρ] = Ts[ρ] + J [ρ] + Exc[ρ] (A.48)

where J [ρ] is the Coulomb repulsion energy

J [ρ] =
1

2

∫
ρ(ri)ρ(rj)

|ri − rj|
dridrj . (A.49)

A.2.6. Exchange-Correlation Functionals

In practical Kohn-Sham DFT, the exchange-correlation functional Exc is usually

divided into two parts as exchange and correlation functionals [56, 61]

Exc[ρ(r)] = Ex[ρ(r)] + Ec[ρ(r)] . (A.50)

Using the Hellman-Feynman theorem as follows [59, 60]

∂Fλ[ρ]

∂λ
= 〈Ψmin,λ

ρ |Vee|Ψmin,λ
ρ 〉 , (A.51)

∫ 1

0

∂Fλ[ρ]

∂λ
dλ =

∫ 1

0

〈Ψmin,λ
ρ |Vee|Ψmin,λ

ρ 〉dλ , (A.52)
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F1[ρ]− F0[ρ] = Ts[ρ] + J [ρ] + Exc[ρ]− Ts[ρ]

= Exc[ρ] + J [ρ] . (A.53)

Thus, we obtain the adiabatic connection formula

Exc[ρ] =

∫ 1

0

〈Ψmin,λ
ρ |Vee|Ψmin,λ

ρ 〉dλ− J [ρ] . (A.54)

The exchange energy is defined by

Ex[ρ] = 〈Φmin
ρ |Vee|Φmin

ρ 〉 − J [ρ] (A.55)

where Φmin
ρ is the Kohn-Sham determinant, while the correlation energy is taken formally

as the difference [59, 60]

Ec[ρ] = Exc[ρ]− Ex[ρ] = 〈Ψmin
ρ |Vee|Ψmin

ρ 〉 − 〈Φmin
ρ |Vee|Φmin

ρ 〉 (A.56)

where Ψmin
ρ is the exact interacting wave function.

A.2.6.1. Local Density Approximation (LDA)

The local density approximation consists in applying the exact results of the the-

ory of a uniform electron gas to real nonuniform densities. Generally, the LDA is any

approximation of the form

ELDA
xc [ρ] =

∫
ρ(r)εxc(ρ)dr (A.57)

where εxc(ρ) = εx(ρ)+εc(ρ) is the exchange-correlation energy per particle of the electron

gas, which is a function of the density only [46, 59, 60].
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The LDA exchange energy is

ELDA
x = −Cx

∫
ρ4/3(r)dr (A.58)

where Cx = 3
4

(
3
π

)1/3. The LDA exchange energy per particle is

εLDAx (ρ) = −Cxρ1/3

= −3

4

(
3

2π

)2/3
1

rs
(A.59)

where rs =
(

3
4πρ

)1/3
is the radius of a sphere that contains the charge of one electron

[59, 60].

The correlation is a much more difficult problem than exchange, so exact analytic

forms of εLDAc (ρ) are known only for two limiting cases.

The first is the high-density (weak correlation) limit of a spin-compensated uni-

form electron gas [59, 60].

εPc (rs) = AGB`n(rs) +B + rs(C`n(rs) +D) , rs � 1 . (A.60)

The constant AGB and B were evaluated by Gell-Mann and Brueckner [65], C and D by

Carr and Maradudin [66]. Specifically,

AGB =
1− `n2

π2
≈ 0.031091 a.u. (A.61)

The second case is the low-density (strong correlation) limit obtained by Nozieres

and Pines [67] and Carr [68]

εPc (rs) =
1

2

(
U0

rs
+

U1

r
3/2
s

+
U2

r2s
+ . . .

)
, rs � 1 (A.62)

where Uk are again known constants. Similar formulas exist for εFc (rs) [59, 60].

The exact numerical values of εPc (rs) and εFc (rs) are known, with small statisti-
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cal uncertainties for several intermediate values of rs from Monte Carlo simulations of

the uniform electron gas carried out by Ceperley and Alder [69]. Based on these result-

s, several interpolation formulas for εPc (rs) and εFc (rs) have been devised to connect the

high-density and low-density limits [Eqs.(A.60) and (A.62)] and simultaneously repro-

duce the Ceperley-Alder data for intermediate rs.

A.2.6.2. Local Spin Density Approximation (LSDA)

In principle, the original Kohn-Sham formalism applies to both spin-compensated

(ρα = ρβ) and spin-polarized (ρα 6= ρβ) systems. In spin-DFT, the basic variables are

the spin-up and spin-down electron densities ρα(r) and ρβ(r) and also the exchange-

correlation energy Exc[ρα, ρβ] is a functional of both [59, 60].

For uniform electron densities, Exc[ρα, ρβ] should reduce to the formulas for the

exchange-correlation energy of a uniform free electron gas (the LSDA)

Exc[ρα, ρβ] = ELSDA
xc [ρα, ρβ] if ρσ(r): constant. (A.63)

The extension of Eq.(A.58) to spin-polarized systems is called the local spin density ap-

proximation (LSDA). The LSDA exchange energy is

ELSDA
x [ρα, ρβ] = −21/3Cx

∫ (
ρ4/3α + ρ

4/3
β

)
dr . (A.64)

Introducing the relative spin polarization

ξ =
ρα − ρβ
ρα + ρβ

(A.65)

and using ρα = 1
2
(1 + ξ)ρ and ρβ = 1

2
(1− ξ)ρ where ρ = ρα + ρβ , we rewrite Eq.(A.64)

as

ELSDA
x [ρα, ρβ] =

∫
ρ(r)εx(ρ, ξ)dr (A.66)

where

εx(ρ, ξ) = −1

2
Cxρ

1/3
[
(1 + ξ)4/3 + (1− ξ)4/3

]
. (A.67)
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For a spin-compensated (paramagnetic : ξ = 0) electron gas,

εx = εPx = −Cxρ1/3 (A.68)

and for fully-polarized (ferromagnetic : ξ = ±1)

εx = εFx = −21/3Cxρ
1/3 . (A.69)

For intermediate spin polarizations 0 < ξ < 1, one can write εx(ρ, ξ) as an exact interpo-

lation between the paramagnetic and ferromagnetic cases,

εx(ρ, ξ) = εPx (ρ) +
[
εFx (ρ)− εPx (ρ)

]
f(ξ) (A.70)

where the interpolating function is readily shown to be

f(ξ) =
1

2

[
(1 + ξ)4/3 + (1− ξ)4/3 − 2

21/3 − 1

]
. (A.71)

Even with accurate representations of εPc (rs) and εFc (rs) at our disposal, we need

a general formula applicable to spin-polarized systems. Without loss of generality we can

assume that, in analogy with Eq.(A.66),

ELSDA
c [ρα, ρβ] =

∫
ρ(r)εc(rs, ξ)dr (A.72)

where the function εc(rs, ξ) is to be determined. Unfortunately, unlike for exchange, there

is no simple exact formula relating εc(rs, ξ) to εPc (rs), εFc (rs) and ξ. Von Barth and Hedin

proposed using the same interpolating formula for εc(rs, ξ) as for εx(ρ, ξ), that is,

εBHc (rs, ξ) = εPc (rs) +
[
εFc (rs)− εPc (rs)

]
f(ξ) (A.73)

where f(ξ) is given by Eq.(A.71). In practice, Eq.(A.73) is not very accurate. Vosko, Wilk
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and Nusair [70] examined several alternatives to the Barth-Hedin interpolation formula

and recommended the following expression

εVWN
c (rs, ξ) = εPc (rs) + αc(rs)

[
f(ξ)

f ′′(0)

]
(1− ξ4) +

[
εFc (rs)− εPc (rs)

]
f(ξ)ξ4 , (A.74)

where αc(rs) is a new function called spin stiffness. The spin stiffness is formally defined

as

αc(rs) =

[
∂2εc(rs, ξ)

∂ξ2

]
ξ=0

(A.75)

and fitted to the same analytic form as εPc (rs) and εFc (rs).

A.2.6.3. Generalized Gradient Approximation (GGA)

As soon as the extent of the approximations contained in the LDA has been un-

derstood, one can start constructing better approximation. This approximation is called

the generalized gradient approximation (GGA) [71]. The GGA for exchange correlation

energy improves on the LSDA description of atoms and molecules. The most popular

approach is to specify semi-locally the inhomogeneities of the density, by expanding the

exchange correlation energy EGGA
xc [ρ] as a series in terms of the electron density and its

gradient as [41, 71, 72]

EGGA
xc [ρα, ρβ] =

∫
d3rρ(r)εxc (ρα(r), ρβ(r),∇ρα(r),∇ρβ(r)) . (A.76)

A.2.6.4. Hybrid Functional (B3LYP)

A hybrid functional mixes together the formula forExc with the gradient-corrected

Ex and Ec formulas [37]. For example, the popular B3LYP (Becke-three-LeeYangParr)

hybrid functional (where 3 indicates a three parameter functional) is defined by

EB3LY P
xc = (1− a− b) ELSDA

x + a Eexact
x + b EB88

x + (1− c) EVWN
c + c ELY P

c (A.77)
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where

ELSDA
x = −3

4

(
6

π

)1/3 ∫ [
(ρα)4/3 +

(
ρβ
)4/3]

d3r . (A.78)

Eexact
x (which is sometimes denotedEHF

x , since it uses a Hartree-Fock definition ofEx) is

given by, EB88
x is the Becke’s 1988 gradient-corrected exchange functional [73]. EVWN

c

is the Vosko-Wilk-Nusair [70] expression for the LSDA correlation functional. Lastly,

ELY P
c is the Lee-Yang-Parr gradient-corrected correlation functional [74] and the param-

eter values a = 0.20, b = 0.72 and c = 0.81 were chosen to give good fits to experimental

molecular atomization energies.
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APPENDIX B

HARTREE-FOCK MEAN FIELD APPROXIMATION FOR

THE MULTI-ORBITAL ANDERSON MODEL

B.1. Anderson Model

In Eq.(2.23), we have defined the Anderson model HamiltonianH as

H =
∑
mσ

(εm − µ)c†mσcmσ +
∑
νσ

(εdν − µ)d†νσdνσ +
∑
mνσ

(
Vνmd

†
νσcmσ + h.c.

)
+

+
∑
ν

Uνnν↑nν↓

= H0 +
∑
ν

Uνnν↑nν↓. (B.1)

In Eq.(B.1), Uν is the value of the on-site Coulomb repulsion, nνσ = d†νσdνσ is the occu-

pancy of the 3d orbitals for spin σ = (↑ or ↓), and d†νσ and dνσ are the fermion creation

and annihilation operators at the 3d orbitals.

The local electron densities at the 3d orbitals for spin-up and spin-down can be

written as

nν↑ =
1

2
(nν +mν)

nν↓ =
1

2
(nν −mν) (B.2)

so that the magnetization at each 3d orbital becomes

mν = nν↑ − nν↓ (B.3)
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and the electron density is given by

nν = nν↑ + nν↓. (B.4)

In the mean field approximation, the occupancy of the 3d orbitals is rewritten as

nν↑ = 〈nν↑〉+ (nν↑ − 〈nν↑〉), (B.5)

nν↓ = 〈nν↓〉+ (nν↓ − 〈nν↓〉). (B.6)

Here, we use approximation that nνσ − 〈nνσ〉 is much less than nνσ. Hence, we use

nν↑nν↓ = 〈nν↑〉〈nν↓〉+〈nν↑〉 (nν↓ − 〈nν↓〉) + 〈nν↓〉(nν↑ − 〈nν↑〉)+

+ (nν↑ − 〈nν↑〉)(nν↓ − 〈nν↓〉) (B.7)

where the last term is neglected due to it being very small. This way, we obtain

nν↑nν↓ ∼= nν↑〈nν↓〉+ nν↓〈nν↑〉 − 〈nν↑〉〈nν↓〉 (B.8)

by using the mean-field approximation for the Anderson model. Thus, the mean-field

Hamiltonian becomes

HMF = H0 +
5∑

ν=1

[Uν〈nν↓〉nν↓ + Uν〈nν↑〉nν↑ − Uν〈nν↑〉〈nν↓〉] (B.9)

where nν↑ (nν↓) is defined by d†ν↑dν↑ (d†ν↓dν↓). Consequently, the final form of the mean-
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field Hamiltonian HMF is given by

HMF =
∑
mσ

(εm − µ)c†mσcmσ+

+
∑
ν

[
(εdν − µ+ Uν〈nν↓〉) d†ν↑dν↑ + (εdν − µ+ Uν〈nν↑〉) d†ν↓dν↓

]
+

+
∑
mνσ

(
Vνmd

†
νσcmσ + h.c.

)
−
∑
ν

Uν〈nν↑〉〈nν↓〉. (B.10)

For H0, we define the Green’s functions as follows:

Gσ
νν(τ) = −〈Tdνσ(τ)d†νσ(0)〉, (B.11)

G00
νσ(iωn) =

1

iωn − (εdν − µ)
for Uν = 0 and Vνm = 0, (B.12)

G0
νσ(iωn) =

1

iωn − (εdν − µ)− Fν0(iωn)
for Uν = 0 and Vνm 6= 0 (B.13)

where the self-energy Fν0(iωn) is defined by

Fν0(iωn) =
∑
m

|Vνm|2

iωn − (εm − µ)
. (B.14)

In Eq.(B.14), ωn is the Matsubara frequency as ωn = (2n+ 1)πT .

In addition, for HMF , we define the Green’s functions as follows:

G0
ν↑(iωn) =

1

iωn − (εdν − µ+ Uν〈nν↓〉)
for spin up, (B.15)

G0
ν↓(iωn) =

1

iωn − (εdν − µ+ Uν〈nν↑〉)
for spin down. (B.16)
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B.2. Self-Consistent Solution

We have already defined the Green’s function at the d-site as

Gσ
νν(τ) = −〈Tdνσ(τ)d†νσ(0)〉, (B.17)

Gσ
νν(τ) = T

∑
iωn

e−iωnτGσ
νν(iωn). (B.18)

Now, we introduce the self-consistency condition for the Green’s functions at each d-site:

Gσ
νν(τ = 0−) = 〈d†νσdνσ〉 = 〈nνσ〉, (B.19)

Gσ
νν(τ = 0−) = T

∑
iωn

e−iωn0
−
Gσ
νν(iωn) = 〈nνσ〉. (B.20)

We need to solve Eq.(B.20) for 〈nνσ〉. Hence, we have ten equations with ten unknowns

(ν = 1, . . . , 5 for d orbitals and σ =↑, ↓ for spin up and down), which are given by the

following

f ↑1 ({xi}) = T
∑
iωn

e−iωn0
−
G↑11(iωn)− 〈n1↑〉 = 0,

...

f ↑5 ({xi}) = T
∑
iωn

e−iωn0
−
G↑55(iωn)− 〈n5↑〉 = 0, (B.21)

f ↓1 ({xi}) = T
∑
iωn

e−iωn0
−
G↓11(iωn)− 〈n1↓〉 = 0,

...

f ↓5 ({xi}) = T
∑
iωn

e−iωn0
−
G↓55(iωn)− 〈n5↓〉 = 0. (B.22)

Here, {xi} represents {{〈nνσ〉}, µ}.
For the host orbitals, we define the Green’s function

Gσ
mm′(τ) = 〈Tcmσ(τ)c†m′σ(0)〉, (B.23)
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which can be obtained from the following Feynman-diagram. In Fig.(B.1), we express

Figure B.1. Feynman diagram representing the host Green’s function Gσ
mm′ for σ =↑

, ↓. The double lines indicate Gσ
mm′ (defines the host Green’s function) and

Gσ
νν′ (defines the impurity Green’s function) while the single lines denote

G0
m and G0

m′ (define the host Green’s functions for U = 0). Here, the
cross terms indicate the hybridization matrix elements between host and
impurity.

these Feynman diagrams in terms of the Green’s functions at T = 0 as follows

iGσ
mm′ = iG0

mδmm′ + iG0
m(−iVνm)iGσ

νν′(−iVν′m′)iG0
m′ . (B.24)

At finite temperatures, we then have

Gσ
mm(iωn) = G0

m(iωn) +G0
m(iωn)VνmVν′mG

σ
νν′G

0
m(iωn)

= G0
m(iωn)

[
1 +

(∑
νν′

VνmVν′mG
σ
νν′

)
G0
m(iωn)

]
. (B.25)

Here, G0
m(iωn) is defined by

G0
m(iωn) =

1

iωn − (εm − µ)
. (B.26)

For the impurity orbitals, we define the Green’s function

Gσ
νν′(τ) = −〈Tdνσ(τ)d†ν′σ(0)〉 (B.27)

which can be obtained from the following Feynman-diagram. In Fig.(B.2), we express
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Figure B.2. Feynman diagram representing the impurity Green’s function Gσ
νν′ for

σ =↑, ↓. The double lines indicate Gσ
νν′ and Gσ

ν′′ν′ (define the impurity
Green’s functions) while the single lines denote G0

ν and G0
m (define re-

spectively the impurity and host Green’s function for U = 0). Here, the
cross terms indicate the hybridization matrix elements between host and
impurity.

these Feynman diagrams in terms of the Green’s functions at T = 0 as follows

iGσ
νν′ = δνν′iG

0
ν + iG0

ν(−iVνm)(iG0
m)(−iVν′′m)iGσ

ν′′ν′ , (B.28)

Gσ
νν′ = δνν′G

0
ν +G0

ν

∑
m

VνmG
0
m

∑
ν′′

Vν′′mG
σ
ν′′ν′

= δνν′G
0
ν +

∑
ν′′

(
G0
ν

∑
m

VνmG
0
mVν′′m

)
Gσ
ν′′ν′ . (B.29)

From Eq.(B.29), we can write

Gσ
νν′ = δνν′G

0
ν +

∑
ν′′

Wνν′′G
σ
ν′′ν′ (B.30)

where Wνν′′ is defined by

Wνν′′ = G0
ν

∑
m

VνmG
0
mVν′′m. (B.31)

From Eq.(B.30),

Gσ
νν′ −

∑
ν′′

Wνν′′G
σ
ν′′ν′ = δνν′G

0
ν , (B.32)
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∑
ν′′

[
δνν′′ −Wνν′′

]
Gσ
ν′′ν′ = δνν′G

0
ν∑

ν′′

Zνν′′G
σ
ν′′ν′ = δνν′G

0
ν (B.33)

and Zνν′′ is defined by

Zνν′′ = δνν′′ −Wνν′′ . (B.34)

This equation is also valid for T 6= 0. Hence, we have

Gσ
νν′(iωn) =

(∑
ν′′

[(
Z(iωn)

)−1]
νν′′

)(
δν′′ν′G

0
ν′′(iωn)

)
Gσ
νν′(iωn) =

[(
Z(iωn)

)−1]
νν′
G0
ν′(iωn). (B.35)

The last equation is obtained by setting the total number of electrons,

Nel = 718 =
∑
mσ

〈c†mσcmσ〉+
∑
νσ

〈d†νσdνσ〉 (B.36)

where Nel = 718 is the total number of electrons for the cyanocobalamin. This equation

can be rewritten as

f11({xi}) =
∑
mσ

〈c†mσcmσ〉+
∑
νσ

〈d†νσdνσ〉 − 718 = 0. (B.37)

Hence, there are 11 equations with 11 unknowns: 〈nνσ〉’s and µ. We solve these equations

by using the fortran program with LAPACK subroutines.

In Eq.(B.37), 〈nνσ〉 = 〈d†νσdνσ〉 is obtained from Eq.(B.20)

〈d†νσdνσ〉 = T
∑
iωn

e−iωn0
−
Gσ
νν(iωn) (B.38)
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and 〈nmσ〉 = 〈c†mσcmσ〉 is obtained from

〈c†mσcmσ〉 = T
∑
iωn

e−iωn0
−
Gσ
mm(iωn) (B.39)

which is given in Eq.(B.25) with Gσ
νν′(iωn) substituted from Eq.(B.35). Thus, here,

Gσ
mm(iωn) = G0

m(iωn)

[
1 +

(∑
νν′

VνmVν′m

[(
Z(iωn)

)−1]
νν′
G0
ν′(iωn)

)
G0
m(iωn)

]
.

(B.40)
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