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ABSTRACT 

 

KEY ESTABLISHMENT PROTOCOLS: PAIRING CRYPTOGRAPHY 

AND VERIFIABLE SECRET SHARING 

 

 The aim of this study is to establish a common secret key over an open network 

for a group of user to be used then symmetrical secure communication between them. 

There are two methods of GKE protocol which are key agreement and key distribution. 

Key agreement is a mechanism whereby the parties jointly establish a common secret. 

As to key distribution, it is a mechanism whereby one of the parties creates or obtains a 

secret value and then securely distributes it to other parties. In this study, both methods 

is applied and analyzed in two different GKE protocols. 

Desirable properties of a GKE are security and efficiency. Security is attributed 

in terms of preventing attacks against passive and active adversary. Efficiency is 

quantified in terms of computation, communication and round complexity. When 

constructing a GKE, the challenge is to provide security and efficiency according to 

attributed and quantified terms. Two main cryptographic tools are selected in order to 

handle the defined challenge. One of them is bilinear pairing which is based on elliptic 

curve cryptography and another is verifiable secret sharing which is based on multiparty 

computation. 

 In this thesis, constructions of these two GKE protocols are studied along with 

their communication models, security and efficiency analysis. Also, an implementation 

of four-user group size is developed utilizing PBC, GMP and OpenSSL Libraries for 

both two protocols. 
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ÖZET 

 

GRUP ANAHTAR DEĞİŞİM PROTOKOLLERİ: PAIRING 

KRIPTOGRAFİ VE DOĞRULANABİLİR SIR PAYLAŞIM ŞEMASI 

 

 Çalışmamızın amacı; açık bir kanal üzerinde bir grup kullanıcının, çeşitli 

kriptografik hesaplamalarla ortak gizli anahtarı oluşturmasını sağlamaktır. Daha sonra 

bu gruptaki kullanıcılar, oluşturdukları ortak gizli anahtarı simetrik kriptografi 

araçlarında kullanarak güvenli bir haberleşme ortamı sağlayabilirler. İki tür grup 

anahtar sağlama protokol’ü mevcuttur. Bunlar; (1) Anahtar anlaşması (key agreement), 

(2)Anahtar dağıtım (key distribution) protokolleridir.  

Anahtar anlaşması yönteminde; protokoldeki bütün kullanıcılar ortak şekilde, 

çeşitli kriptografik araçlarla gizli anahtarı oluştururlar.  

Anahtar dağıtım yönteminde ise; protokoldeki katılımcılardan birisi ortak gizli 

anahtarı belirler ve çeşitli kriptografik araçlarla, diğer kullanıcıların da bu anahtarı elde 

etmesini sağlar. 

 Grup anahtar değişim protokolleri’nin en önemli sorunu pasif ve aktif 

saldırılara karşı güvenliği; ve hesaplama, iletişim ve tur karmaşaları bakımından 

etkinliği sağlamadır. Buna çözüm olarak iki farklı kriptografik araç seçilmiştir. 

 Bu çalışmada, bu iki farklı kriptografik aracın kullanıldığı, iki grup anahtar 

sağlama protokolü örneklenmekte, genel karakteristikleri, avantaj ve dezavantajları 

değerlendirilmektedir. Kullanılan kriptografik araçlardan biri “bilinear pairing”, diğeri 

ise “doğrulanabilir sır paylaşım şeması”dır. Çalışmada, her iki protokolün, tasarımları 

incelenmiş, hesaplama, iletişim ve tur karmaşaları bakımından etkinlik analizleri ve 

güvenlik analizleri yapılmıştır. Ayrıca her iki protokolün dört kullanıcılı bir grup için 

PBC, GMP ve OpenSSL kütüphaneleriyle geliştirilen uygulama sonuçları da 

bulunmaktadır. 

Bu araştırma; güvenli olmayan haberleşme ortamlarında, güvenli iletişimin 

sağlanması gereken farklı özellik ve kısıtlardaki uygulamalarda, kapalı ve güvenli 

grupları oluşturabilmek için, hangi metod ve protokolün seçilmesinin daha uygun 

olabileceği konusunda somut kriterler ortaya koyar. 
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CHAPTER 1 

 

INTRODUCTION 

 

 Collaborative applications such as teleconferencing, distributed simulations, 

replicated servers, multi-user games and near field applications (NFA) have become 

very popular. All these group oriented applications are applied over open network. 

Security aspect is vital when it comes to apply on areas like homes, schools and 

universities to inaccessible terrains and critical infrastructures (healthcare, 

transportations, telecommunications, etc.). All users or servers that participate in a 

particular application should be able to communicate securely and exchange 

information that is inaccessible to any external party. Hence, there is a need to find new 

protocols that provide such confidential communication, named Secure Group Key 

Establishment Protocol. The aim of these protocols is to establish a common secret key 

among the users (or servers), called group key, which can be used for data encryption 

between them over an open network (Makri and Konstantinou (2011)). 

 There are two methods to establish a common secret key by communicating 

parties over an open network (Stinson (1995)): 

 Key agreement, 

 Key distribution. 

Key agreement is a mechanism whereby the parties jointly establish a common 

secret. As to key distribution, it is a mechanism whereby one of the parties creates or 

obtains a secret value and then securely distributes it to other parties. In this study, both 

methods is applied and analyzed in two different Group Key Establishment (GKE) 

protocols. 

 

1.1. Challenge 

 

 Desirable properties of a GKE are security and efficiency. 

Security is attributed in terms of preventing attacks against passive and active 

adversary. 

 A passive adversary is a hidden listener who tries to gain information and 
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compute parties’ common secret key by listening to the broadcast messages 

between the legitimate parties. 

 An active adversary is a dishonest participant who tries to disrupt the 

establishment of common key among all of the participants. 

Efficiency is quantified in terms of computation, communication and round 

complexity. 

 Computation complexity denotes the amount of computations of each participant 

to obtain common secret key. 

 Communication complexity is the amount of broadcast messages of each 

participant to other ones. 

 Round complexity is simply the number of rounds needed to complete the 

protocol. A round means one broadcasting session in which every party can cast 

messages to others but all at once. Minimizing round complexity is very 

important challenge in designing key agreement protocols as well as reducing 

other complexities (Jho et al. (2007)). 

When constructing a GKE, the main challenge is to provide security and 

efficiency according to attributed and quantified terms. Two main cryptographic tools 

are selected in order to handle the defined challenge. 

 The typical approach of the main challenge requires some data to go through the 

complete set of parties, which by sequentially adding some private contribution, build 

the common secret key in a linear number of rounds of communication (Bellare and 

Rogaway (1993), Ateniese et al. (2000), Bresson et. al (2001)). The problem with this 

approach is that it leads very slow protocols including many rounds depending of 

participant numbers. The solution is to try to devise a protocol that allows for 

simultaneous sending of contributors to improve on communication and round 

complexity (Bresson and Catalano (2004)). 

 Two main cryptographic tools are selected in order to handle the defined 

challenge. One of them is bilinear pairing and another is verifiable secret sharing. 

 The first tool and also the trending one is bilinear pairings which is based on 

elliptic curve cryptography. Pairing is a map from two cyclic groups into 

another cyclic group. Since 2000 (Joux (2000)), it has provided important 

developments in key agreement protocols by reducing communication round, 

independent from participant number. 
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 The second tool is verifiable secret sharing scheme (Chor et al. (1985), Feldman 

(1987)) which is based on multiparty computation (Yao 1982), where a group of 

players wants to compute the output of a public function when the input is 

shared among the participants. Secret sharing (Shamir (1979), Blakely (1979)) is 

a way of distributing a secret among a group of participants by a dealer, each of 

whom is shared a piece of the secret. Then, the secret can be reconstructed only 

when a sufficient number of participants’ secret pieces are combined together. 

Verifiable secret sharing ensures to detect malicious parties or dealer via 

commitments in addition to secret sharing’s methodology. 

 

1.2. Motivation and Goals 

 

 The motivation of the study is to establish a common secret key over an open 

network for a group of user to be used then symmetrical secure communication between 

them. Two different protocol models were studied in order to achieve the motivation 

using both two key establishment methods, namely key agreement and key distribution. 

 In key agreement, bilinear pairing is applied. It is based on Lin et al.’s work (Lin 

et al. (2006)) and requires only constant two rounds of message transmission 

with equal contribution between communicating parties, which is independent of 

numbers of participants. In the beginning of the protocol, there is no one who 

has possession of the common secret. It will be generated by each participant in 

the protocol jointly. Authentication is provided via certificates and 

communication between each parties proceeds broadcasting. 

 In group key distribution protocol, verifiable secret sharing is applied. It is based 

on Feldman’s work (Feldman (1987)), and requires two rounds for message 

transmission, but there is a leader who has the first possession of the common 

secret in the beginning of the protocol, and then he distributes this secret to other 

parties in the protocol using verifiable secret sharing technique. Authentication 

is provided via certificates and communication between leader and each party 

and also between the parties proceeds point to point sending.  

The goal of this thesis is twofold; (1) Study the construction of these protocol 

models and analysis in terms of security and efficiency aspects; and (2) Implement both 
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works to present time measure for computation cost and bit lengths for communication 

cost. 

 

1.3. Organization of Thesis and Contributions 

 

 The thesis is organized in the following way; 

 In Chapter 2, the cryptographic preliminaries on which the rest of the thesis is 

based are reviewed. Firstly, some preliminaries which are number theory and abstract 

algebra, bilinear pairings, security assumptions and homomorphic commitments are 

introduced. Then, key establishment concept including key agreement, key distribution, 

secret sharing and verifiable secret sharing is reviewed. Finally, authentication notion is 

explained briefly. 

 In Chapter 3, a literature review of secure communication, ElGamal Encryption, 

key agreement, secret sharing and verifiable secret sharing are examined. 

 In Chapter 4, construction of group key establishment protocols for each of two 

methods are studied which of them is based on key agreement using bilinear pairings 

and another is based on key distribution using verifiable secret sharing; along with their 

communication models, security analysis and implementation results. 

 In Chapter 5, efficiency analysis of the two protocols is presented. 

 In Chapter 6, the results of this study is evaluated and open problems are 

discussed. 

 

Contributions: 

Group Key agreement Protocol: Its construction and security analysis depends 

on Lin et al.’s work (Lin et al. (2006)) and this thesis’s contributions are: 

 A signature algorithm is added in order to provide message integrity on each 

public message which is broadcasted during the two rounds. In the original work 

doesn’t include message authentication mechanism, instead of this mechanism 

prefers to use dedicated secure channel. 

 An open security problem is explored for this protocol and will be presented in 

section 4.2.2 and analyze it in section 4.2.3. 

 An implementation of this protocol is realized for four users in order to present 

how many milliseconds calculations of each user on per round take. 
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 Detailed efficiency analysis is performed in terms of computation, 

communication and round complexity. 

Group Key Distribution Protocol: Its construction depends on Feldman’s work 

(Feldman (1987)) and this thesis’s contributions are: 

 Original protocol is adapted by adding certificates for the participants to meet 

the requirements of a secure, closed group communication. 

 The protocol is rendered to be applied over open unsecure channel by adding 

encryption algorithm for sending messages of each user. 

 A signature algorithm on publicly known commitments is added in order to 

prevent modifications by malicious parties. Signature algorithm satisfies the 

message integrity. 

 Un-formal security analysis in terms of security attributes defined in section 

2.2.3 is presented. 

 An implementation is proposed for four user with a leader in order to present 

how many milliseconds calculations of each user on per round take. 

 Detailed efficiency analysis is performed in terms of computation, 

communication and round complexity and its comparison with the previous 

protocol is studied. 
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CHAPTER 2 

 

CRYPTOGRAPHIC BACKGROUND 

 

 The goal of this chapter is to provide the necessary background and foundations 

of cryptography that will be used in the subsequent chapters. Firstly, some preliminaries 

including abstract algebra, number theory bilinear pairings, and homomorphic 

commitments are introduced. Furthermore, security assumptions based on these 

preliminaries are studied. Then, key agreement, verifiable secret sharing and 

authentication concepts are reviewed. 

 It is a self-contained background for the readers with little knowledge in this 

field to understand the ideas and arguments presented in the thesis. 

 

2.1. Cryptographic Preliminaries 

 

 Cryptographic preliminaries are studied in this part as abstract algebra, number 

theory, bilinear pairings, secret sharing and homomorphic commitments and security 

assumptions. 

 

2.1.1. Number Theory and Abstract Algebra 

 

 Number Theory and Abstract Algebra are the mathematical foundation of 

modern cryptography and the cornerstone of provable security of cryptographic 

schemes. Numerous cryptographic algorithms are designed around results from them. 

 

 Number Theory: 

Some basic definitions (Menezes et al. (1996)) of Number Theory as the 

following; 

 The set of integers                            is denoted by symbol  . 

 Definition 1 (Greatest Common Divisor): There is an integer   which is a 

common divisor of integers   and   such as     and    . A non-negative integer   is 

the greatest common divisor of the integers   and  , denoted            , if 
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(1)   is a common divisor of   and  ; and 

(2) Whenever     and     and then    . 

 Definition 2 (Relatively Prime): Two integers   and   are said to be relatively 

prime or coprime if           . 

 Definition 3 (Euler Phi Function): For      , let      denote the number of 

integers in the interval       which are relatively prime to  . The function   is called 

the Euler phi function (or the Euler totient function). 

 Definition 4 (Congruent and Modulus): If   and   are integers, then   is said to 

be congruent to          , written              , if   divides   –   . The integer   

is called the modulus of the congruence. 

 Definition 5 (Equivalence Class): The integers         , denoted   , is the 

set of (equivalence classes of) integers                . Addition, subtraction, and 

multiplication in    are performed         . 

 Definition 6 (Multiplicative Inverse): Let       . The multiplicative inverse of 

           is an integer          such that            . If such an   exists, then it 

is unique, and   is said to be invertible, or unit; the inverse of   is denoted by    . 

 Definition 7 (Division on   ) : Let         . Division of   by            is 

the product of   and             , and is only defined if   is invertible         . 

 Definition 8 (Multiplicative Group): The multiplicative group of    is         

  
                           . In particular, if   is prime, then                           

  
                     . 

 Definition 9 (Order of   ): The order of   
  is defined to be the number of 

elements in   
 , namely    

  . 

 Definition 10 (Order of Element in   
 ): Let       

 . The order of  , denoted 

      , is the least positive integer   such that              . 

 Definition 11 (Generator): Let       
 . If the order of   is     , then   is said 

to be a generator or a primitive element of   
 . If   

  has a generator, then   
  is said to 

be cyclic. 

 

 Abstract Algebra: 

Basic algebraic objects and their properties (Menezes et al. (1996)) as the 

following; 

 Definition 12 (Binary Operation): A binary operation   on a set   is a mapping 
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from       to   notated as          . That is,   is a rule which assigns to each 

ordered pair of elements from   an element of  . 

 Definition 13 (Group): A group       consists of a set   with a binary 

operation   on   satisfying the following three axioms. 

(1) The group operation is associative. That is,                 for all 

         . 

(2) There is an element     , called the identity element, such that                      

          for all      . 

(3) For each       there exists an element        , called the inverse of  , such 

that              . 

 A group   is abelian (or commutative) if, furthermore, 

(4)         for all        . 

 Note that multiplicative group notation has been used for the group operation. If 

the group operation is addition, then the group is said to be an additive group, the 

identity element is denoted by  , and the inverse of   is denoted   . 

 Definition 14 (Finite Group and Group Order): A group   is finite if     is 

finite. The number of elements in a finite group is called its order. 

 Definition 15 (Subgroup): A non-empty subset   of a group   is a subgroup of 

  if   is itself a group with respect to the operation of  . If   is a subgroup of   and 

   , then   is called a proper subgroup of  . 

 Definition 16 (Cyclic Group): A group   is cyclic if there is an element     

such that for each     there is an integer   with      . Such an element   is called a 

generator of  . 

 Definition 17 (Element Order in Group  ): Let   be a group and    . The 

order of   is defined to be the least positive integer   such that     , provided that 

such an integer exists. If such a   does not exist, then the order of   is defined to be   

(infinitive). 

 Definition 18 (Group Homomorphism): Let   and    be groups and let 

          is a mapping preserves the group operation;                for all 

       , then   is called a group homomorphism. 

 Definition 19 (Group Isomorphism): Let   and    be groups and let         

is a one to one mapping from   onto    preserves the group operation;                

               for all        , then   is called a group isomorphism. 
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 Definition 20 (Ring): A ring         consists of a set   with two binary 

operations arbitrary denoted   (addition) and   (multiplication) on  , satisfying the 

following axioms. 

(1)       is an abelian group with identity denoted  . 

(2) The operation   is associative. That is,                 for all 

         . 

(3) There is a multiplicative identity denoted  , with    , such that;                     

          for all      . 

(4) The operation   is distributive over  . That is,                                                  

                    and                     for all 

         . 

 The ring is a commutative ring if         for all        . 

 Definition 21 (Invertible Element in Ring  ): An element   of a ring   is 

called a unit or an invertible element if there is an element       such that      . 

 Definition 22 (Ring Homomorphism): Let   and    be rings and let        

is a mapping preserves the ring operation;                and                         

                 for all        , then   is called a ring homomorphism. 

 Definition 23 (Ring Isomorphism): Let   and    be rings and let        is a 

one to one mapping from   onto    preserves the ring operation                

and                  for all        , then   is called a ring isomorphism. 

 Definition 24 (Field): A field is a commutative ring in which all non-zero 

elements have multiplicative inverses. 

 Definition 25 (Characteristic of a Field): The characteristic of a field is   if 

                    is never equal to   for any      . Otherwise, the 

characteristic of the field is the least positive integer   such that ∑   
    equals 0. 

 Definition 26 (Subset of Field): A subset   of a field   is a subfield of   if   is 

itself a field with respect to the operations of  . If this is the case,   is said to be 

extension field of  . 

 Definition 27 (Polynomial Coefficients and Degree, Constant Polynomial, 

Zero Polynomial): If   is a commutative ring, then a polynomial in the indeterminate   

over ring   is an expression of the form                      
            

where each        and      . The element    is called the coefficient of    in     . 

The largest integer   for which        is called the degree of     , denoted 



10 

 

        ;    is called the leading coefficient of     . If           (a constant 

polynomial) and       , then      has degree  . If all the coefficients of      are  , 

then      is called the zero polynomial and its degree, for mathematical convenience, is 

defined to be   . The polynomial      is said to be monic if its leading coefficient is 

equal to  . 

 Definition 28 (Polynomial Ring): If   is a commutative ring, the polynomial 

ring      is the ring formed by the set of all polynomials in the indeterminate   having 

coefficients from  . The two operations are the standard polynomial addition and 

multiplication, with coefficient arithmetic performed in the ring  . 

 Definition 29 (Irreducible Polynomial): Let             be a polynomial of 

degree at least  . Then      is said to be irreducible over   if it cannot be written as the 

product of two polynomials in     , each of positive degree. 

 Definition 30 (Finite Field): A finite field is a field   which contains a finite 

number of elements. The order of   is the number of elements in  . 

 Definition 31 (Multiplicative Group of Field   
 ): The non-zero elements of    

form a group under multiplication called the multiplicative group of   , denoted by   
 . 

 Definition 32 (Generator of Field): A generator of the cyclic group   
  is called 

a primitive element or generator of   . 

 Definition 33 (Lagrange Interpolation): (Gasca and Sauer (2000)) Let there be 

a polynomial                      
            

    over a field    of degree 

   , for set of pairs         where                       , which is           . 

All coefficients of      can be efficiently computed from these   pairs using lagrange 

interpolation formula; such that      ∑        
 
   . 

 Lagrange coefficient polynomial is       ∏
    

     

 
       . 

 Lagrange coefficient is          ∏
  

     

 
       . 

 

2.1.2. Bilinear Pairings 

 

 Elliptic curve   is a curve given by the equation of the form defined over finite 

field    with      , such that                            , where   and   

constants satisfying                       . Then there are points        on the 

curve, together with           the point at infinity (Yuen (2010)). 



11 

 

 Let   be an abelian group under the operation addition   defined as follows; 

 

 

 

Figure 2.1. Elliptic Curve Operations. 

 

 

 Elliptic Curve Group Operation: Let        ,   be the line containing   and   

(tangent line to   if    ), and  , the third point of intersection of   with  . Let    be 

the line connecting   and   (see Figure 2.1). Then     is the point such that    

intersects   at  ,   and    . Let       . Then the point multiplication for 

      defined as (Yuen (2010)); 

     {

                          
                                                       
                                                

 

 

 Modified Weil Pairing (Boneh and Franklin (2001)): Let   be a prime such that 

            and     –   for some prime    . Let   be a super-singular elliptic 

curve defined by             over   . The set of rational points                  

                    } forms a cyclic group of order    . Furthermore, because 

         for some prime  , the set of points of order   in       form a cyclic 

subgroup, denoted as   . Let          be a generator of the group of points with order 

           . Let    be the subgroup of    
  that contains all elements of order  . 

The Weil pairing on the curve       is a mapping :             . The modified weil 
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pairing is defined as             ,                  , where              , 

         
  is a solution of   –             and    is the group of points with 

order  . The modified Weil pairing then satisfies the following properties: 

1. Bilinear: 

                              , 

                              , 

                   , 

where for all                      and         
 . 

2. Alternative:                  . 

3. Nondegenerate: If   is generator of   , then           . 

4. Computable: There is an efficient algorithm to compute        for all         

       . 

 

2.1.3. Security Assumptions 

 

 There are some security assumptions. Public key cryptography is based on the 

intractability of solving these assumptions. 

 Discrete Logarithm (DLog) Assumption (Menezes et al. (1996)): The DLog 

assumption is that, given elements        , to output element                       

           , where   is a cyclic group. 

 Computational Diffie-Hellman (CDH) Assumption (Menezes et al. (1996)): The 

CDH is that, given elements             for unknown elements         
 , to 

output     where   is a cyclic group. 

 Decisional Diffie-Hellman (DDH) Assumption (Boneh (1998)): The DDH 

assumption is that, given elements                for unknown           
 , 

to decide if        where   is a cyclic group. 

 Other security assumptions are in the cyclic groups:       of prime order  , 

equipped with a pairing                . 

 Bilinear Diffie-Hellman (BDH) Assumption (Boneh and Franklin (2001)): Given 

               for unknown           
 , to output          . 
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 Decisional Bilinear Diffie-Hellman (DBDH) Assumption (Boneh and Franklin 

(2001)): Given                 and        for unknown           
 , to 

output   if            , and to output  , otherwise. 

DLog assumption implies CDH assumption, CDH assumption implies DDH 

assumption and BDH assumption. DDH and BDH assumptions imply DBDH 

assumption. 

 

2.1.4. Homomorphic Commitments 

 

 Commitment schemes are fundamental components of many cryptographic 

protocols. A commitment scheme allows a committer to publish a value, called the 

commitment (say  ), which binds her to a message   (binding) without revealing it 

(hiding). Later, she may open the commitment   and reveal the committed message   to 

a verifier, who can check that the message is consistent with the commitment. Damgard 

surveys the basics of commitment schemes in (Damgard (1999)). 

 Let          be a commitment to  , where   is an optional randomness 

parameter. For the homomorphic commitments to be used, given                 and 

               , it is                         . 

 Let        . The discrete logarithm (DLog) commitment scheme is the most 

commonly used homomorphic commitment. It is of the form              with 

computational hiding (secrecy) under the DLog assumption and unconditional binding 

(correctness). Pedersen (Pedersen (1991)) presented another homomorphic commitment 

of the form                    with unconditional hiding but computational binding 

under the DLog assumption in section 2.1.3. 

 In this thesis, DLog commitment scheme is studied in the protocol of Section 

4.3. 

 

2.2. Key Establishment 

 

 According to Menezes et al. (Menezes et al. (1996)); a protocol is a multiparty 

algorithm, defined by a sequence of steps precisely specifying the actions required of 

two or more parties in order to achieve a specified objective. Key establishment is a 

process or protocol whereby a shared secret becomes available to two or more parties, 
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for subsequent cryptographic use. Key establishment may be broadly subdivided into 

key agreement and key distribution. 

 

2.2.1. Key Agreement 

 

 Key agreement protocol or mechanism is a key establishment technique in 

which a shared secret is derived by two (or more) parties as a function of information 

contributed by, or associated with, each of these, (ideally) such that no party can 

predetermine the resulting value. 

 The first key agreement protocol is proposed in 1976 by Diffie and Hellman 

(Diffie and Hellman (1976)) which two participants respectively hold a secret exponent 

and send its corresponding public value to the other participant, then a common session 

key can be established using the secret exponent and the opposite participant’s public 

value. However, two party Diffie-Hellman protocol suffers man in the middle attack 

since it does not provide entity authentication (see Section 3.1 for authentication notion 

and Section 3.2.1 for details of Diffie-Helman protocol). There are unauthorized third 

parties named intruder, adversary, attacker, eavesdropper or impersonator in addition to 

legitimate parties. In a key agreement protocol, there are two kinds of adversaries: 

passive adversary and active adversary. 

 A passive adversary is a hidden listener who tries to compute participants’ 

common secret key by listening to the broadcast mesages between the legitimate 

participants. 

 An active adversary is a dishonest participant who tries to disrupt the 

establishment of a common key among all of the participants. An active 

adversary can try to be looks like an honest participant into believe that he has 

computed the same common key as the other honest participants do. 

 In unauthenticated key agreement, impersonation is possible by active 

adversary. So, firstly entity authentication must be provided to handle this issue (See 

Section 2.3 and 3.1). When examining security of key agreement protocol, there are 

some attributes. They are regarding of security against active adversary for 

authenticated key agreement protocols (Blake-Wilson et al. (1997)). Their inspections 

are as the following; which are generally believed to be necessary for an authenticated 

key agreement protocol (Blake-Wilson et al. (1997)); 
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 Known session key security. Each execution of the protocol should result in a 

unique secret session key. The compromise of one session key should not 

compromise the keys of other sessions (e.g., the parallel sessions, previous 

sessions and future sessions). 

 Forward secrecy If the long-term private keys of one or more entities are 

compromised, the secrecy of previously established session keys should not be 

affected. We say that a protocol has partial forward secrecy if one or more but 

not all the entities' long-term keys can be corrupted without compromising 

previously established session keys, and we say that a protocol has perfect 

forward secrecy (PFS) if the long-term keys of all the entities involved may be 

corrupted without compromising any session key previously established by these 

entities. 

 Key-compromise impersonation resilience The compromise of entity A's long-

term private key will allow an adversary to impersonate A, but it should not 

enable the adversary to impersonate other entities to A. 

 Unknown key-share resilience. Entity A should not be able to be coerced into 

sharing a key with entity C when in fact A thinks that he is sharing the key with 

some entity B. 

 Key Control Neither entity should be able to force the session key to be a 

preselected value. 

These security attributes’ inspections are available in Section 4.2.3 for the Key 

Agreement Protocol using Bilinear Pairing. 

 

2.2.2. Key Distribution by Secret Sharing 

 

 A key distribution protocol or mechanism is a key establishment technique 

where one party creates or otherwise obtains a secret value, and securely transfers it to 

the other(s). 

 One of the methods of key distribution is secret sharing. The notion of secret 

sharing was introduced independently by Shamir (Shamir (1979)) and Blakey (Blakely 

(1979)) in 1979. Since then, it has remained an important topic in cryptographic 

research. The idea is to start with a secret chosen by one party, and divide it into pieces 

called shares (subsecrets or shadows in some technical documents) by that party, which 
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are distributed among other users such that the pooled shares of specific subsets of users 

allow reconstruction of the original secret. 

 For integers     and   such that                  , an             secret 

sharing scheme is a protocol used by a dealer (who has a sole possession of secret 

before the protocol) to share a secret   among a set of   parties in such a way that any 

subset of       or more parties can compute the secret  , but subsets of size 

 (threshold) or fewer cannot (Kate and Goldberg (2009)). 

 In the thesis, Shamir’s Secret Sharing Scheme (Shamir (1979)) is used. It is a 

form of secret sharing, where a secret   is divided into parts using a   degree polynomial 

    , giving to each participant its own unique part (subsecret) as evaluation of 

polynomial, where some of the parts       or all of them   are needed in order to 

reconstruct the secret   using lagrange interpolation in section 2.1.1. All elements    , 

coefficients of   are in a Finite Field  . 

 Details of Shamir’s Secret Sharing Scheme are available in Section 3.3.1. 

 

2.2.3. Verifiable Secret Sharing 

 

 Multiparty computation is typically accomplished by making secret shares of the 

inputs, and manipulating the shares to compute some function. To handle active 

adversaries (that is, adversaries that corrupt parties and then make them deviate from the 

protocol), the secret sharing scheme needs to be verifiable to prevent the deviating 

parties from throwing off the protocol. To solve this problem, Chor et al. (Chor et al. 

(1985)) introduced verifiability in secret sharing, which led to the concept of verifiable 

secret sharing (VSS). 

 An      -Verifiable Secret Sharing (VSS) scheme consists of two phases: the 

sharing phase and the reconstruction phase. 

 Sharing phase: A dealer    distributes a secret       among   parties, where 

  is a sufficiently large key space. At the end of the sharing phase, each honest party    

holds a share    of the distributed secret  . 

 Reconstruction phase: In this phase, each party    broadcasts its secret share     

and a reconstruction function is applied in order to compute the secret                        

                         or output   indicating that    is malicious. For honest parties 

      , while for malicious parties     may be different from    or even absent. 
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 It has two security requirements: Secrecy and Correctness. 

 Secrecy (VSS-S) A t-limited adversary who can compromise   parties cannot 

compute   during the Sharing phase. 

 Correctness (VSS-C) The reconstructed value   should be equal to the shared 

secret   or every honest party concludes that the dealer is malicious by 

outputting  . 

 In the thesis, Feldman’s VSS scheme (Feldman (1987)) is applied which is 

based on DLog homomorphic commitments in Section 2.1.4. and details of Feldman’s 

VSS are available in Section 3.3.1. 

 

2.3. Authentication 

 

 Authentication is the cornerstone of secure communication (details are in 

Section 3.1). Without some form of authentication (Public Key Infrastructure in Section 

3.1.1 or Identity (ID) based Infrastructure in Section 3.1.4), all the other common 

security properties such as integrity or confidentiality do not make much sense.  

 Authentication or identification is a process to provide the assurance to one party 

participates a protocol that identity of the second party involved in the same protocol is 

who he/she/it claims to be (Menezes et al. (1996)). 

 It is generally based on long-term keys which can be associated with identities. 

There are two main approaches to provide authentication of public keys: Public Key 

Infrastructure (PKI, see Section 3.1.1) and Identity Based Infrastructure (ID-Based 

Infrastructure, see Section 3.1.4). 

 Large-scale deployments of public-key cryptography generally employ the 

services of Certificate Authority (CA) as a part of PKI, which generates a digital 

certificate to bind an entity with its public key.  

 Although the notion of a certificate is very simple, there are many practical 

difficulties with managing certificates, such as key revocation. 

 In 1984, Shamir (Shamir (1984)) introduced the notion of ID-Based 

cryptography to alleviate many of the problems inherent with managing certificates. In 

identity-based cryptography, a public key can be derived from a widely known identity, 

such as an email address or phone number. Entity’s private key can be generated by a 

trusted authority called private key generator (PKG) with the help of master secret key 
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of PKG and then transfer the entity’s private key via a secure channel. Construction of 

ID-Based encryption remains as an open problem until the seminal work proposed by 

Boneh-Franklin in 2001 using bilinear pairings (Boneh and Franklin (2001), see 

Section3.1.4 for details of the work). However ID-Based Infrastructure suffers the key 

escrow problem since the PKG generates private keys of entities using his master secret. 
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CHAPTER 3 

 

LITERATURE SURVEY 

 

 In this chapter, some existing works are reviewed which are related to the group 

key establishment protocols as analyzed in the thesis.  

 

3.1. Secure Communication 

 

 Secure communication can be defined as the transmission of data from a sender 

to a receiver with one or more of the properties of authentication, confidentiality and 

integrity (Karagodin (2005)). 

 Authentication is the assurance to one entity that another entity is who he/she/it 

claims to be. 

 Integrity is the assurance to an entity that data has not been intentionally or 

unintentionally altered while in transmitting. 

 Confidentiality is the assurance to an entity that communicated information is 

not disclosed to unauthorized eavesdroppers. 

 Furthermore, transmitted data has been sent and received by the parties needs to 

be binding to the related parties (they cannot deny). Non-repudiation is a way to 

guarantee that the sender of a message cannot later deny having sent the message and 

that the recipient cannot deny having received the message. 

 PKI and ID-based Cryptography ensure these properties. Cryptographic tools 

such as public key encryption and digital signatures are primary ingredients of PKI and 

ID-Based Cryptography in achieving these properties. 

 

3.1.1. PKI-Based Cryptography 

 

 A PKI is a set of hardware, software, people, policies and procedures needed to 

create, manage, distribute, use, store and revoke public IDs and related certificates of 

entities (Stallings (2006)). It is closely linked to the asymmetric key encryption, digital 

signatures and encryption services, but to enable these services are used digital 
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certificates. So, it facilitates storage and exchanges electronic data in a secure way; 

safety is ensured by using public key cryptography and the types of security services 

offered are authenticity, confidentiality, integrity and non-repudiation (Vatră (2009)). 

 In asymmetrical communication, each entity (such as device, person, or 

connection end-point) has a cryptographic private-public key pairs. Private key is kept 

secret by the related entity and public key is distributed to other entities who the related 

party wants to communicate securely. Other entities can encrypt message using the 

related party’s public key and then send to him/her. The related party can decrypt the 

received encrypted message using his/her private key. Furthermore, the private key can 

be used to generate a digital signature on a message, and anyone knowing the public 

key can confirm that the signature is authentic. 

The most basic function of PKI is to support the distribution of public keys of 

entities. Public keys are generally distributed in the form of certificates in PKI. In this 

way, anyone using a public key can be certain that it is the correct public key of the 

entity who he intended to communicate. Otherwise, an intruder could substitute his own 

public key to the related entity and the related entity encrypts his message using 

intruder’s public key thinking the public key belongs to other legitimate entity who he 

intended to communicate. However, the intruder can decrypt the encrypted message 

instead the legitimate entity. 

 A certificate is a data item comprising a public key value, together with 

information identifying the holder of the corresponding private key, all digitally signed 

by a trusted party called a certification authority (CA). Other parties who have 

certificate of the related entity, can verify correctness of the certificate in two ways: 

 

1. In Figure 3.1, User A generates her public-private key pair and applies a 

legitimate CA. CA signs her ID and public key using his secret key and sends to 

her. When User B wants to verify the validity of A’s certificate, he can directly 

applies the CA if her certificate is in subscription list. This way needs interaction 

with CA, however it assures User A if B’s certificate private key is revoked or 

not (or User B’s private key may be compromised). 
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Figure 3.1. Certificate Creation and Verification. 

 

 

2. In Figure 3.2, User B verifies the validity of A’s certificate in another way 

without any interaction with CA. He can use CA’s public key and applies a 

verification algorithm depending on the cryptosystem CA uses. However User A 

cannot be sure if B’s certificate is revoked or not. There is an example proposed 

using Pairing Cryptography in Section 3.1.2. 

 

 

 

Figure 3.2. Certificate Verification using CA’s Public Key. 
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 The main components of PKI are (Menezes et al. (1996)): 

 Certifying Authorities are basic components of a PKI to issue and revoke digital 

certificates. 

 Registration Authorities validates requests for issuing certificates and identity of 

end users. 

 Repository stores and distributes certificates and certificate revocation lists 

(CRL), they are issued periodically by the CA and are lists of certificates that are 

no longer valid. 

 Archives; an archive is responsible for long-term storage of information in the 

name of the CA, certifying that the information archived it was good when that 

was received and was not changed while it was archived. 

 End Entity represents the end users for digital certificates that were issued. 

In this study, all entities in the both two proposed protocols (Section 4.2 and 

Section 4.3) apply a legitimate CA in order to provide secure communication during 

the protocols. 

 

3.1.2. Boneh-Lynn-Shacham (BLS) and ElGamal Signature Schemes 

 

 Digital Signatures are equivalent to traditional handwritten signatures in many 

respects. According to Menezes et al. (Menezes et al. (1996)); 

 A digital signature is a data string which associates a message (in digital form) 

with some originating entity. 

 A digital signature generation algorithm is a method for producing a digital 

signature. 

 A digital signature verification algorithm is a method for verifying that a digital 

signature is authentic. 

 A digital signature scheme consists of a signature generation algorithm and an 

associated verification algorithm. 

 A digital signature signing process consists of a (mathematical) digital 

signature generation algorithm, along with a method for formatting data into 

messages which can be signed. 

 A digital signature verification process consists of a verification algorithm, 

along with a method for recovering data from the message. 
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 Digital signatures are one of the tools for secure communication, providing 

authentication, data integrity, and non-repudiation. A valid digital signature gives a 

recipient reason to believe that the message was created by a known sender, such that 

the sender cannot deny having sent the message (authentication and non-repudiation) 

and that the message was not altered in transit (integrity). Significant usages of digital 

signature are in certification of public key to bind the identity of a user to a public key, 

so that at some later time, other entities can authenticate a public key without assistance 

from a CA. Another usage is in private key generation by trusted third party (TTP) in 

ID-based cryptography to bind identity of user to a private key using TTP’s signature; 

so that other entities can encrypt messages using the identity as public key. 

 Diffie-Hellman first described the notion of a digital signature scheme in 1976 

(Diffie and Hellman (1976)), although they only conjectured that such schemes existed. 

Soon afterwards, Ronald Rivest, Adi Shamir, and Len Adleman invented the RSA 

algorithm, which could be used to produce primitive digital signatures (Rivest et al. 

(1978)). In 1984 Tahel ElGamal described a digital signature scheme which is based on 

the difficulty of computing discrete logarithms (ElGamal (1985)). Then variants of 

ElGamal was proposed such as Schnorr (Schnorr (1989)) and DSA (FIPS 186 (1994)). 

In such schemes, signatures are generally comprised of a pair of integers modulo  , 

where   is the order of the underlying group with generator  ;       . Boneh, Lynn 

and Shacham (BLS) (Boneh et al. (2001)) proposed the first signature scheme in which 

signatures are comprised of a single group element. 

 

I. BLS Signature Scheme (Boneh et al. (2001)): 

 

 Setup 

 The BLS signature scheme utilizes a bilinear pairing   on          of   
 , which 

is                for which the CDH assumption (see Section 2.1.3) in    is 

intractable and   is generator of   . It also uses a cryptographic hash function 

                . 

 

 Signature Generation 

A user named Alice; 

 Selects randomly a private key   in the interval        . 
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 Calculates the public key      , which is the group element of    and 

publishes it. 

 

Signing 

 Given the private key   and some message  , Alice computes the signature by 

hashing           , as           and then, by multiplying it with the private key 

      . 

 

 Verification 

 Any party possessing Alice’s public key    can verify the signature by 

computing           and checking that             is a valid Diffie-Hellman 

quadruple. This is precisely an instance of the DHP assumption (see Section 2.1.3) in    

which the verifier can solve by checking that; 

                

                    

                  

 

 BLS short signature scheme can be aggregated and also has been used to design 

protocols for threshold, multi-signature and blind signatures (Boldyreva (2003)). 

 In this study, first protocol which is Key Agreement using Bilinear Pairing 

applies this signature scheme in the implementation (see Section 4.2.4) since the 

protocol is based on pairing cryptography and signature scheme is consistent with all 

parameters generated for the protocol (see Appendix A).  

There is a sample for certificate creation and verification using BLS signature 

who uses the cryptosystem based on pairing cryptography. 

 

 A Sample; Certificate Creation and Verification with BLS Short Signature: 

 A party    who is willing to have a certificate generates her static public key 

       where    is random number used as the long term private key selected by    

and applies the CA to obtain her certificate       which contains static public key    

and an unique identifier string    (such as   ’s name). CA signs this information using 

his private key   such as;                   where   is map-to-point hash function, 

                 and then delivers to    (see Figure 3.3). 
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 When the user    send to her certificate to other parties such as    into the 

protocol,    can verify the validity of the certificate by either applying to CA to 

question if it is in subscription list or revocation list (or never issued) (see Figure 3.3); 

or verifying by themselves using the public key of CA and pairings:  

                                

                                                

                                              

 

 

 

Figure 3.3. Certificate Verification using Bilinear Pairings. 

 

 

II. ElGamal Signature Scheme (ElGamal (1985)) 

 

 Setup 

 The following system parameters are shared between the users; 

   is a collision-resistant hash function. 

   is a large prime such that computing discrete logarithms modulo   is difficult. 

       be a randomly chosen generator of the multiplicative group of integers 

modulo  . 

 

 Signature Generation 

A user named Alice; 

 Selects randomly a private key   in the interval        . 

 Calculates the public key            . 
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Signing 

 Given the private key   and some message  , Alice performs following steps; 

 Chooses a random   such that           and                  . 

 Computes              . 

 Computes                         . 

 If s=0, then starts over again. 

The pair       is the digital signature of  . Alice repeats these steps for every 

signature. 

 

 Verification 

Any party possessing Alice’s public key    can verify the signature       of 

message   by computing          
            . 

The verifier accepts a signature if all conditions are satisfied and rejects it 

otherwise. 

In this study, second protocol which is Key Distribution using Verifiable Secret 

Sharing applies this signature scheme in the implementation (see Section 4.3.4) since 

signature scheme is consistent with all parameters generated for the protocol (see 

Appendix B).  

A brief evaluation of implementation of BLS and ElGamal signature scheme is 

available in Chapter 6. 

 

3.1.3. ElGamal Encryption Scheme 

 

Encryption algorithm is another cryptographic tool for secure communication, 

providing authentication, confidentiality, data integrity, and non-repudiation. An 

encrypted message gives a recipient reason to believe that the message was created by a 

known sender, such that the sender cannot deny having sent the message (authentication 

and non-repudiation), ensures the privacy of the message (confidentiality) and that the 

message was not altered in transit (integrity). 

ElGamal encryption scheme is an asymmetric key encryption algorithm for 

public-key cryptography which is based on the Diffie-Hellman key exchange (Diffie 

and Hellman (1976)) It can be defined over any cyclic group   and its security depends 

on the difficulty of computing discrete logarithm in  . 

It consists of two components: encryption algorithm and decryption algorithm. 
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Setup  

 The following system parameters are shared between the users named Alice 

(performs decryption algorithm) and Bob (performs encryption algorithm); 

   is a large prime such that computing discrete logarithms modulo   is difficult. 

       be a randomly chosen generator of the multiplicative group   of integers 

modulo  . 

Alice ; 

 Selects randomly a private key   in the interval        . 

 Calculates the public key            . 

 Publishes   . 

 

Encryption Algorithm 

Bob will encrypt a message   using Alice’s public key    and then send to 

Alice. He performs the encryption algorithm as follows: 

 Chooses a random   from the interval         (  is an ephemeral secret 

key and is generated for every message). 

 Computes              . 

 Computes     
         . 

 Converts the secret message   into an element    of  . 

 Computes                   

 Sends the ciphertext         to Alice. 

If    is compromised, then     
  can easily be found. This is the reason of 

generating a new   for every message. 

 

Decryption Algorithm 

Alice will decrypt the cipher text         using her private key  . She performs 

the decryption algorithm as follows: 

 Computes the shared secret     
          (Typical Diffie-Hellman key 

exchange (Diffie and Hellman (1976)). 

 Computes           which she then converts back to the plain text  . 

 

In this study, ElGamal Encryption Scheme is performed on implementation of 

the second protocol; Key Distribution Protocol using Verifiable Secret Sharing in order 

to make the protocol applied over open channel by encrypting the communication 
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messages between protocol entities (see Section 4.3.4 for implementation). (Actually, 

the communication messages are common secret pieces and they are sent to recipient 

entities via secure channel in the original protocol, see Section 4.3.2). 

 

3.1.4. Boneh-Franklin ID-Based Scheme 

 

 This part is a literature review of ID-based cryptography. In this study, PKI is 

applied for the secure communication during the protocol. 

In Section 3.1.1, to achieve assurance of public-key authenticity on a large scale, 

public keys are generally distributed in the form of certificates. Although the notion of a 

certificate is very simple, there are many practical difficulties with managing 

certificates. For example, a party named Alice may not know how to obtain another 

party named Bob’s certificate. Also, Alice should have the assurance that Bob’s public 

key is still valid (could be expired or compromised). 

 In 1984, Shamir (Shamir (1984)) introduced the notion of ID-based 

cryptography to handle problems related to certificate management. According to 

Shamir’s scheme; Alice’s public key consists of her identifying information      (such 

as Alice’s e-mail address). A trusted third party (TTP) would use its private key to 

generate Alice’s private key from     and transmit it via a secure channel to Alice. Bob 

could encrypt messages for Alice using only     and the TTP’s public key. Unlike the 

case with traditional certificate-based encryption schemes, Bob can encrypt a message 

for Alice even before Alice has generated a key pair. Bob could include in     any set 

of conditions that should be met before the TTP issues the private key. 

 Shamir’s notion was an open problem till 2001. In 2001, Boneh and Franklin 

(Boneh and Franklin (2001)) proposed the first practical ID-Based encryption scheme 

using a bilinear pairing   on          for which the BDH assumption in Section 2.1.3 is 

intractable. 

 

 Setup 

 Entities named Alice and Bob. 

 A prime  . 
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 A bilinear map (assume Weil pairing)            between two groups    

(additive group) and    (multiplicative group) as long as a variant of the 

computational Diffie-Hellman assumption is hard on   , 

 A generator   of this additive group   . 

 Two hash functions                   } and                , where   is 

the bitlength of the plaintext. 

 

 Private Key Creation 

  The TTP selects its master private key              , and generates  its 

public key is          .  

All parties are able to obtain an authentic copy of     . 

 When Alice requests her private key   , the TTP creates Alice’s identity string 

   , computes              , and securely delivers     to Alice.     is TTP’s BLS 

signature on the message    . 

 

 Encryption 

 Bob computes             , selects private key              , and 

computes public key         . Then                         . Finally he 

transmits          to , Alice. 

 

 Decryption 

 Alice uses her private key    to compute                       . 

Decryption works because                                     

             . 

 An eavesdropper who wishes to recover   from          must compute 

             given                 ; this is precisely an instance of the BDH 

assumption in Section 2.1.3. But, the scheme is not resistant to chosen-ciphertext 

attacks (Bleichenbacher (1998)). Given a target ciphertext         , the attacker can 

simply flip the first bit of   to get   , and thereafter obtain the decryption    of the 

modified ciphertext          . She then flips the first bit of    to recover  . In addition 

to    and   , two hash function                      and                     

are employed in order to troubleshoot this attack. Then, to encrypt  , Bob randomly 

selects a bitstring             and computes g =                              
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  , and              . The ciphertext is             . To 

decrypt, Alice computes                           
               , and 

           . Alice accepts the plaintext   provided that          . 

 As public keys are derived from identifiers, ID-Based encryption (IBE) 

eliminates the need for a public key distribution infrastructure. The authenticity of the 

public keys is guaranteed implicitly as long as the transport of the private keys to the 

corresponding entity is kept secure (Authenticity, Confidentiality, Integrity). 

 On the other hand, TTP generates private keys for entities, it may decrypt and/or 

sign any message without authorization. This implies that IBE systems cannot be used 

for non-repudiation. The issue of key escrow does not exist with the current PKI system 

wherein private keys are usually generated on the entity's computer; but in IBE, TTP 

can decrypt all of the entity’s messages passively since it computes private keys of 

entities from its master secret. 

ID-based infrastructure fits two party key establishment protocols as secure 

communication methodology. Especially, key establishment on Email protocols, Voice 

over Internet Protocol (VoIP) and Session Initiation Protocol (SIP) use ID-based 

cryptography. However, in a group oriented case like this study, it is the best choice to 

apply a PKI. 

 

3.2. Key Agreement using Bilinear Pairings 

 

 In this part a literature review of Diffie-Hellman Key Exchange (Diffie and 

Hellman (1976)) and Joux’s one round, tripartite protocol (Joux (2000)) are examined in 

order to gain insight on Key Agreement Protocol using Bilinear Pairing. 

 

3.2.1. Diffie-Hellman Key Exchange 

 

 This seminal works developed in 1976 by Whitfield Diffie and Martin Hellman 

and published in “New Directions in Cryptography” (Diffie and Hellman (1976)). The 

protocol allows two parties to jointly establish a secret key over an insecure channel 

without any prior knowledge of each other. 

 The Diffie-Hellman protocol relies on the difficulty of solving discrete 

logarithms (DLog) in finite fields and the related intractability of the Computational 
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Diffie-Hellman Assumption (see Section 2.1.3). Due to the difficulty of solving these 

mathematical problems, an eavesdropper (passive adversary defined in Section 2.2) is 

unable to compute efficiently the secret key with any or all of the information 

intercepted in the open communication channel. Once the secret key has been 

exchanged successfully between the two parties, the key can be used to encrypt 

confidential communications between them using a symmetric key cipher. 

 Main drawback of this seminal work is lack of authentication. This results that 

an active adversary defined in Section 2.2.1 can compromise the communication of 

legitimate parties using method of man in the middle attack (Menezes et al. (1996)). 

 

 Diffie-Hellman Key Agreement Protocol: 

 Setup 

 Two parties wish to communicate securely named Alice and Bob. They agree 

upon public parameters a prime   and a generator   of   
               . 

 

 Exchange (Round-1) 

 Alice chooses a random   from              , then computes 

                and sends   to Bob. 

 Bob chooses a random   from              , then computes 

               and sends   to Alice. 

 

 Key Agreement 

 Bob computes a key                       . 

 Alice computes a key                       . 

 Now, both Alice and Bob have the same secret key               . 

 

 

 

Figure 3.4. Diffie-Hellman Key Agreement. 
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 Figure 3.4 presents the exchange and key agreement phases. 

 

 

Table 3.1. Diffie-Hellman Key Agreement Example. 

S
et

u
p

 

Public Parameter Creation 

 
A large prime      and an integer     having large prime order in   

  

E
x
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a
n
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e 
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Private Computations 

 
Alice 

 

Bob 

Choose a secret      

Compute                 . 

Choose a secret      

Compute                . 

Public Exchange of Values 

 

Alice sends    to Bob      

       sends   to Alice 

K
ey

 A
g

re
em

e
n

t Further Private Computations 

 

Alice 

 

Bob 

Compute the number             . Compute the number              . 

Established common secret value                                                . 

 

 

 A computational example is available in Table 3.1. 

 

3.2.2. Joux’s One Round Protocol for Tripartite Diffie-Hellman 

 
 After Diffie-Hellman seminal work, research interests evolved to multiparty 

(group) concepts. The Diffie-Hellman protocol can be viewed as a one-round protocol 

because the two exchanged messages are independent of each other. The protocol can 

easily be extended to three parties, but an extra round is needed depending on 

participant number as seen in Figure 3.5. Therefore, round minimization concerns 

occurred with these interests. A natural question to ask is whether there exists a three-

party one-round key agreement protocol that is secure against eavesdroppers. This 

question remained open until 2000 when Joux (Joux (2000)) devised a surprisingly 

simple protocol that used bilinear pairings. Joux’s paper named “A One Round Protocol 
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for Tripartite Diffie-Hellman” was of great interest to cryptographers, who started 

investigating further applications of pairings and become a basis for construction of 

multiparty key agreement protocols which are based on bilinear pairing approach. 

 

 

 

Figure 3.5. Three-Party Two-Round Key Agreement Protocol based on Diffie-Hellman. 

 

 

 Joux’s three participants’ variation of Diffie-Hellman protocol is based on the 

Weil and Tate pairings on elliptic curves, which were first used in cryptography as 

cryptanalytic tools for reducing the discrete logarithm problem on some elliptic curves 

to the discrete logarithm problem in a finite field. Its security depends on bilinear 

Diffie-Hellman assumption (see Section 2.1.3). However, same as Diffie-Hellman Key 

Exchange; although it is secure against passive adversary defined in Section 2.2.1, it 

suffers man in the middle attack since lack of authentication of parties. 

 

 One Round Protocol for Tripartite Diffie-Hellman: 

 Setup 

 Three parties wish to communicate securely named Alice, Bob and Chris. They 

agree upon public parameters which are; 

 Prime  , 

 Bilinear map (assume Weil pairing)                 between two groups    

(additive group) and   . (multiplicative group) as long as a variant of the 

computational Diffie-Hellman assumption is hard on   , 
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 Generator   of this additive group   . 

 

 Exchange (Round-1) 

 Alice chooses a random   from              , then computes 

                and sends   to Bob and Chris. 

 Bob chooses a random   from              , then computes 

                and sends   to Alice and Chris. 

 Chris chooses a random   from              , then computes 

               and sends   to Alice and Bob. 

 

 Key Agreement 

 Alice computes a key                      . 

 Bob computes a key                      . 

 Chris computes a key                      . 

 Now, all of them have the same secret key                        (see Figure 

3.6). 

 

 

 

Figure 3.6. Joux’s One Round, Tripartite Protocol. 
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3.3. Key Distribution using Verifiable Secret Sharing 

 

 In this part a literature review of Shamir’s secret sharing (Shamir (1979)) and 

Feldman’s verifiable secret sharing (Feldman (1987)) are examined in order to gain 

insight on Key Distribution Protocol using Verifiable Secret Sharing. 

 

3.3.1. Shamir’s Secret Sharing 

 

 Shamir’s       secret sharing scheme (Shamir (1979)) divides a secret   into n 

shares by a dealer    and distributes them among   shareholders                    

in such a way that at least   shares are required to reconstruct the secret   and less than 

  shares gain no information about the secret.  

 It tackles the single point of failure. For example, the most secure key 

management schemes keep the key in a single, well-guarded location. But storing 

multiple copies of the key at different locations prevents the danger of compromising of 

that single location. By using a       threshold scheme (Shamir (1979)) with   

      , very robust key management schemes can be constructed: the original key can 

be recovered even when               of the   pieces are destroyed, but opponents 

cannot reconstruct the key even when security breaches expose              of the 

remaining   pieces. 

 

 Shamir’s (k, n) Secret Sharing Scheme 

 It consists of sharing phase which is based on         degree polynomial and 

reconstruction phase which is based on Lagrange interpolating polynomial of at least   

private shares (see Section 2.1.1). 

 Let secret       for some finite field   that is    for some suitable prime   

(which is known to all the shareholders (parties) and the dealer as well). 

 Shamir’s       scheme is for   parties                with dealer   , where   is 

threshold and        . 
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 Sharing Phase 

 Dealer randomly chooses a      polynomial of degree     such that;       

               
            

   , in which the secret      and all 

coefficients are                . 

 Then, sends the shares                   to each    where           (  value 

is a known value and the secret         ) by using of security channel. 

 

 Reconstruction Phase 

 Any subset of   or more shares can be used to reconstruct the secret  . Without 

loss of generosity, the subset is :                   . 

 Lagrange interpolating formula is used to find the polynomial     , such that 

degree of      is     and any   or more          points for               

will be sufficient to reconstruction (The reconstructed secret must be     ). 

 Given any   pairs of          , with distinct   values, there is a unique 

polynomial      of degree    , passing through all these points. This polynomial can 

be effectively computed from the pairs           (see Table 3.2). 

 

 

Table 3.2. Lagrange’s Interpolation Formula. 

 
              

The polynomial      can be 

recovered as;       ∏
    

     

 

   
   

 
     ∑            

    

where        is Lagrange 

interpolation polynomial. 

The secret   can be recovered 

as;       ∏
  

     

 

   
   

 
     ∑            

    

where        is Lagrange 

coefficient. 

 

 

 Example: Let                    ; for                  . 

 

 Sharing Phase 

Dealer; 

 Chooses                       where secret is       . 
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 Calculates shares of each shareholder  

                    sends to    as point       

                    sends to    as point       

                    sends to    as point       

                    sends to    as point       

                    sends to    as point       

 Sends each share          to corresponding node   . 

 

 Reconstruction Phase 

 In order to reconstruct the secret, interpolation of any   points will be enough. 

Assume that                              get together and reveal their shares to 

each other in order to reconstruct the secret     (see Table 3.3). 

 

 

Table 3.3. Example of Lagrange’s Interpolation Formula. 

                               

The polynomial 

     can be 

recovered as; 

      
   

   
 
   

   
  

      
   

   
 
   

   
  

      
   

   
 
   

   
 

 

      

                         

      

          

The secret   can 

be recovered as; 
      

 

   
 

 

   
 

 

 
 

      
 

   
 

 

   
    

      
 

   
 

 

   
 

 

 
 

      

  
 

 
          

 

 
  

   

 

 

 Drawback of Shamir’s protocol is if some party    is malicious, then it can input 

a fake share to the reconstruction and thus the other honest parties get nothing but a 

faked secret. More importantly, the dealer may misbehave and sends deviated shares to 

the participants. For the fair reconstruction of the secret, cheater detection (dealer or 

participants) and identification (for secure communication) are very essential. However, 
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Shamir’s secret sharing scheme doesn’t prevent malicious behavior of dishonest 

shareholders (Chor et al. (1985)). Verifiable Secret Sharing Scheme provides detection 

of malicious entities in the protocol of Secret Sharing. 

 

3.3.2. Feldman’s Verifiable Secret Sharing 

 

 Shamir’s       Secret Sharing Scheme (Shamir (1984)) assumed that the dealer 

is reliable. But in reality the dealer may misbehave and can deal inconsistent shares to 

the entities. Also, the malicious entities can input fake shares during the reconstruction 

phase. Thus, any   (threshold) participants or more which are pooled to reconstruct the 

secret will be unable to establish the secret value. Verifiable secret sharing scheme 

(VSS) addresses this issue. 

 The notion of VSS was first introduced by Chor et al. (Chor et al. (1985)) to the 

original secret sharing scheme. Using the verifiable property, shares are verifiable via 

commitments without having the idea of what the secret is; and cheating parties 

(participants or dealer) can be detected. 

 Feldman (Feldman (1987)) has proposed a non-interactive scheme for achieving 

verifiability in Shamir’s scheme (see section 3.3.1) utilizing homomorphic commitments 

(see Section 2.1.4). Feldman’s scheme is exactly the Shamir’s protocol. The novelty is 

that dealer commits the coefficients of polynomial                      
      

      
    which is                                  , where   is generator. 

Feldman’s commitments are unconditionally binding and computationally hiding under 

the assumption DLog assumption (see Section 2.1.3). In order to open the commitment, 

dealer reveals evaluations of the polynomial      for each corresponding party   . Each 

party can easily confirm that an opening      for index   is consistent with  . 

 

 Feldman’s VSS Scheme 

 It consists of sharing phase which is based on         degree polynomial and 

reconstruction phase which is based on Lagrange interpolating polynomial of at least   

private shares. 

 There are public parameters which are odd primes such that      , and 

     
  is an element of order  . 
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 Feldman’s     ) VSS scheme is for   parties                with dealer   , 

where   is threshold and secret  ;  ,  , and       . 

 

 Sharing Phase 

Dealer; 

 Chooses randomly a      polynomial of degree     such that;            

          
            

   , in which the secret      and all coefficients 

   are                 .  

 Constructs the commitment vector based on (DLog commitments) such that; 

                                         . 

 Sends in a secure channel the shares                   to each    where 

          (the secret         ) and the commitment vector            

                          . 

 

 Reconstruction Phase 

 Each user verify validity of received share      by testing; 

             ∏  
  

   

   

                     

and;              is indices of participants and                   is indices 

of polynomial coefficients. 

 If verification is consistent, any subset of   or more shares can be used to 

reconstruct the secret  . 

 Lagrange interpolating formula is used to find the polynomial     , such that 

degree of      is     and any   or more          points for             

will be sufficient to reconstruction (The reconstructed secret must be     ). 

 

 Example:  

Let              ; for                   and let              and 

     where     is a generator of   . 

 

 Sharing Phase 

 Dealer; 
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 Chooses                        where secret is       . 

 Construct commitment vector such that; 

                             

                                       ). 

 Calculates shares of each shareholder (or party) such that; 

                 sends to    as point        

                 sends to    as point        

                sends to    as point       

                sends to    as point       

                sends to    as point       

 Sends in a secure channel the shares                                 

                        to every corresponding party    accompanied with 

the commitment vector                                ). 

 

 Reconstruction Phase 

 Each party verifies the correctness of receives share such as; 

For           

 Since his share is   , he needs to have equality with                 . 

 From the commitment vector                        , his calculation 

for verification;      
 
      

 
      

 
            . 

For           

 Since his share is   , he needs to have equality with                 . 

 From the commitment vector                        , his calculation 

for verification;       
       

       
            . 

For          

 Since his share is  , he needs to have equality with                 . 

 From the commitment vector                        , his calculation 

for verification;       
       

       
             . 

For          

 Since his share is  , he needs to have equality with                 . 

 From the commitment vector                        , his calculation 

for verification;       
       

       
             . 
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For          

 Since his share is  , he needs to have equality with                . 

 From the commitment vector                        , his calculation 

for verification;       
       

       
            . 

 If verification is consistent, any   points is enough to reconstruct the secret  . 

 Let consider          ,          and          get together and reveals 

their shares to each other in order to reconstruct the secret     using Lagrange 

interpolation for        (see Table 3.4). 

 

 

Table 3.4. Example of Lagrange’s Interpolation Formula. 

                                

The polynomial 

     can be 

recovered as; 

      
   

   
 
   

   
  

      
   

   
 
   

   
  

      
   

   
 
   

   
 

      

                          

      

          

The secret   can 

be recovered as; 
      

 

   
 

 

   
 

  

 
 

      
 

   
 

 

   
  

 

 
 

      
 

   
 

 

   
 

 

 
 

      

   
  

 
   ( 

 

 
)    

 

 
  

   

 

 

 Feldman’s work provides to detect the malicious party. But the protocol needs 

identification for secure communication between communicating parties. 

 Feldman’s VSS is basis for the second protocol of the thesis. 
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CHAPTER 4 

 

GROUP KEY ESTABLISHMENT PROTOCOLS 

 

 There are two methods to establish a common secret key by communicating 

parties over an open network: key agreement and key distribution (Stinson (1995)).  

 A key agreement protocol; is a mechanism whereby the parties jointly establish 

a common secret key. 

 A key distribution protocol; is a mechanism whereby one party creates or 

obtains a secret value and then securely transfers it to other parties. 

 This chapter describes the construction of group key establishment protocols for 

each of two methods which of them is based on key agreement using bilinear pairings 

and another is based on key distribution using verifiable secret sharing; along with their 

communication models, security analysis and implementation results for four users. 

 

Contribution: 

Group Key Agreement Protocol: Its construction and security analysis depends 

on Lin et al.’s work (Lin et al. (2006)) and this thesis’s contributions are: 

 A signature algorithm is added in order to provide message integrity on each 

public message which is broadcasted during the two rounds. The original work 

doesn’t include message authentication mechanism, instead of this mechanism 

prefers to use dedicated secure channel. 

 An open security problem is explored for this protocol and will be presented in 

the Section 4.2.2 and analyze it in the Section 4.2.3. 

 An implementation of this protocol is realized for four users in order to present 

how many milliseconds computation and how many bit-lengths communication 

of each user on per round are performed. 

 Detailed efficiency analysis is studied in terms of computation, communication 

and round complexity with and without thesis’s contribution. 

 

Group Key Distribution Protocol: Its construction depends on Feldman’s work 

(Feldman (1987)) and this thesis’s contributions are: 
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 Original protocol is adapted a secure and closed group communication by 

adding certificates for the participants. 

 The protocol is rendered to be applied over open-unsecure channel by adding 

ElGamal encryption algorithm for sending messages of each user. 

 ElGamal signature algorithm on publicly known commitments is added in order 

to prevent modifications by malicious parties. Signature algorithm satisfies the 

message integrity and identification of sender. 

 Un-formal security analysis in terms of security attributes defined in section 

2.2.3 is presented. 

 An implementation is proposed for four users one of them is a leader in order to 

present how many milliseconds computation and how many bit-lengths 

communication of each user on per round are performed. 

 Detailed efficiency analysis is studied with and without thesis’s contribution in 

terms of computation, communication and round complexity and its comparison 

with the previous protocol is evaluated. 

 

4.1. Specifications and Assumptions 

 

 There are some assumptions and specifications defined by this study to explain 

and evaluate both key establishment methods and selected instance protocols. These are: 

 

 Both protocols are working over open channel forming a secure, closed 

communication group for small number of participants (such as in range 

        where   is participant number) so that the members of these group 

can be controlled on peer by peer. 

 

 A participant is called reliable, if they satisfy the following properties: 

o They do not leak secret information to outside the group. 

o They send the correct messages defined by the protocol. 

o At the start of the protocol, assume that all participants are registered by 

a legitimate Certification Authority (CA) via Public Key Infrastructure 

(PKI) as explained in Section 3.1.1, and any time one of the certificates 

of participants can be easily checked from the list of CA. Before the 
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protocol start, certificate of users have already exchanged. Therefore; the 

basic assumptions of this study about the communication between 

reliable participants    and    are that:  

 When    sends a message to   , nobody else can learn anything 

about its content, only receiver    can open it; this should be 

satisfied by cryptographic structures such as discrete logarithm 

problem. 

 When    receives a message from   ,    can be certain that 

nobody but    could have sent the message; this should be 

satisfied by signature schemes. 

 

 Communication messages sent will be received in a timely manner. 

 

 All participants agree on the protocols to be followed. 

 

4.2. Group Key Agreement Protocol using Bilinear Pairing 

 

 Bilinear pairing is a hot topic in the last decade since it provides construction of 

ingenious protocols such tasks as key agreement (Joux (2000)), ID-based encryption 

(Boneh and Franklin (2001)), signature scheme (Boneh et al. (2004)), etc. 

 In multiparty key agreement protocols, bilinear pairing serves round minimizing 

solution. The first protocol model of the thesis which is based on bilinear pairing 

approach is constructed on the basis of Lin et al.’s work (Lin et al. (2006)). 

 

4.2.1. Preliminaries and Communication Model of Key Agreement 

Protocol 

 

 This protocol is defined under the specifications and assumptions which are 

mentioned in Section 4.1. The communicating participants need only two constant 

rounds of public message transmissions with equal contributory of each participant. 

Also, number of communicating parties is independent of number of communication 

rounds. Besides, the message size, the total number of scalar multiplications, and 

number of Weil pairing is reduced as explained by the study of Lin et al. (2006). 
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 For each run of the protocol one among   parties works as a leader  . The leader 

  starts the protocol specifying the group number. Group number is static and allocation 

of each party is fixed forming a ring structure during all rounds. Addition or removal of 

a party or parties is possible only when the new protocol run. In each run of the protocol 

new common key is established. Therefore, new joining participants are not able to 

become involved the old established key. 

 In order to provide secure communication (Section 3.1) between the 

participants, a PKI (Section 3.1.1) is applied. Before the protocol run, each legitimate 

party obtains his/her certificate from CA. Security of the protocol depends on the 

assumption of Bilinear Diffie-Hellman problem (Section 2.1.3) is hard and meets the 

security attributes of key agreement protocol defined in Section 2.2.1. 

 

4.2.2. Construction of Key Agreement Protocol 

 

 Notations used in the Group Key Agreement Protocol as the following; 

   parties wish to agree on a common secret key. 

    is a participant in a communication round where the participant set   

            . 

   is an integer prime number. 

 A bilinear map (Weil pairing)            between two groups    (additive 

group) and    (multiplicative group) as long as a variant of the Computational 

Diffie-Hellman Assumption is hard on   . (Section 2.1.3). 

   is the generator of additive group   . 

    is the long term private key randomly chosen by   . 

    is the long term public key computed        by the related party   . 

       is   ’s long term public key certificate which is signed by CA. 

    is the short term (ephemeral) secret key randomly chosen by   . 

    and    are   ’s public messages in each communication round. 

 The public parameters are                       . 

 

 Setup 

 Before the protocol is began ; each party    generates his/her static public key 

       where    is random number used as the long term private key selected by    
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and applies a certificate authority (CA) in order to obtain his/her certificate       which 

contains static public key    and an unique identifier string    (Section 3.1.1). 

 Every party    exchange       between themselves and verifies received       

with CA. Hence all group users have been identified. 

 

 Exchange (Round 1) 

 The leader   from set   announces the public parameters                       

                        and the group number  . Then the first round starts. 

 Each user               , chooses a random secret number   ,  

 Computes                . 

 Signs    in order to protect message integrity and assure authenticity. Such that; 

     (   , where      is a cryptographic signature algorithm (BLS Short 

Signature is used in the implementation, see Section 4.2.4 and Appendix A). 

 Broadcasts    with      (   . 

 

 Exchange (Round 2) 

 Each               , verifies      (    using sender’s public key. 

 Computes 

o                                          
         . 

o Signs   , such that      (   . 

 Broadcasts    with      (   . 

 

 Key Agreement (Round 2) 

 Each               , verifies      (    using sender’s public key. 

 Computes 

o     (                        )
       

   
        

         

      
[
                                                         

                                        
]
 

 

 Furthermore, the common shared secret key is then obtained as;             

                                                                     

                where     is a key derivation function algorithm (i.e. KDF1, KDF2 
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(ISO/IEC 18033-2 (2006)), PBKDF1 (RSA Laboratories (2006)), etc.) and    is an 

unique identifier of participant   . 

 Simple summary of each phase for 10 group number is available in the Table 

4.1. Implementation of the protocol for four users with 512-bit and 160-bit primes is 

performed in the Section 4.2.4 in order to present time measures of computation and bit-

lengths of communication of each user on per round. Also, numeric values of the 

variable in the implementation can be followed under Appendix A. 

 

 

Table 4.1. Group Key Agreement Protocol. 

S
et

u
p

 

Creation of Public Parameter 

A large prime  , having large prime order in   
 , bilinear map           , a 

generator   of   . 

- There are      parties and representation of each   . 

-    applies a CA and exchanges      . 

-      contains static public key        where    is the long term private key, an 

unique identifier string    and a signature of CA on this information. 
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) 

Private Computations 

Each                     

Step#1  

Choose a short term secret    computes              . 

 

For             ,            , . . ,                 

 

Step#2 Contribution to satisfy the identification of the users and integrity of the public 

messages;          (   . 

 

Broadcasts    and      (   . 

(cont. on next page) 
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Table 4.1. (cont.) 
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) 

 

Private Computations 

Each                     

 

Step#3 Contribution to satisfy the identification of the users and integrity of the public 

messages; Verifies      (   . 

 

Step#4 Computes                                          
          

    (                         )
         

 

 

For   :     (                         )
         

. 

For   :     (                       )
         

. 

. 

. 

For    :      (                       )
            

. 

 

Step#5 Contribution to satisfy the identification of the users and integrity of the public 

messages; signs   , such that      (   . 

 

Broadcasts    and      (   . 
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) 

 

Further Private Computations 

Each                     

 

Step#6 Contribution to satisfy the  identification of the users and integrity of the 

public messages; verifies      (   . 

 

Step #7 Computation of common key. 

 

    (                        )
       

   
        

         

      
[
                                                         

                                        
]
. 

 

For   :    (                   )
       

   
    

     

      
[
                                                            

                               
]
. 

For   :    (                 )
       

   
    

      

      
[
                                                            

                               
]
. 

. 

. 

For    :     (                 )
          

    
    

     

      
[
                                                            

                               
]
. 

 

Established common secret value ;                                   
                                                                . 
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Open Problem: 

If any party establishes the wrong secret, he/she will realize the failure only 

when the communication with the common secret starts via symmetrical cryptography. 

He/She will encrypt messages with wrong common secret and the recipient cannot 

decrypt it. If any failure occurs with decryption, the recipient sends error message and 

the protocol restarts by picking new ephemeral secret key. 

 It is an open problem and the protocol needs a cryptographic tool which 

provides the verifiability. Therefore, users can be sure that the established secret is 

consistent before the communication with common secret starts. 

 

4.2.3. Security Analysis of Key Agreement Protocol 

 

 Security is attributed in terms of preventing attacks of passive adversary and 

active adversary in Section 1.1. All parties of the protocol is performing same 

calculations during all rounds due to no party can predetermine the resulting value. 

 There are some inspections in order to prove security of the protocol in the 

presence of passive and active adversary (Lin et al. (2006)). 

 

 Inspections against passive adversary: 

 A passive adversary is a hidden listener who tries to compute the common secret 

key by listening to the channel in order to obtain communication messages between 

legitimate parties of the protocol. If the key agreement protocol gives no chance to 

deduce the secret values which generate public communication messages of each round, 

then the passive adversary cannot have any deduction from eavesdropped public 

messages about the established common secret key. 

 In order to prove this, the well known security assumption which is Bilinear 

Diffie-Hellman (BDH) Assumption (see Section 2.1.3) will be utilized.  

A passive adversary cannot work under the assumption that solving BDH 

problem will be infeasible (Lin et al. (2006)). That is, given public values P,       , 

      ,                             are ephemeral secrets), the two tuples of 

random variables,                         and             , where   is a random 

value in   , are computationally indistinguishable.  
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In other words there is no efficient algorithm   satisfying 

                                                                   
 

      
  

for any polynomial  , where the probability is over the random choice of          and 

 . 

 In the light of this formal definition, assume that there is a passive adversary   

who wants to calculate the established key    which is; 

    (                        )
       

   
        

        .  

Adversary   needs to compute the random value                                                               

   (                        )
       

 which is equal to 

                                                and     
        

        , where 

        and then obtains       . It can be assumed that adversary   can compute 

the value of   from the public messages  ’s. But,   cannot correctly deduce    and      

from the public values. Therefore, adversary   cannot compute                                   

   (                        )
       

 since she doesn’t know    and     . She 

faces the hardness of BDH assumption for the pair groups      ; means that; 

 There are randomly chosen secret values                      and     . 

Computing    (                        )
       

 by given public values 

                              and                  is computationally 

indistinguishable. Because of the two tuples of random variables,  

                                                                                 

and (                                   where   is a random value in    are 

computationally indistinguishable.  

In other words, there is no efficient algorithm   satisfying, 

|  [ (                     

                                                                      )      ]|  

|  [ (                                              )      ]|  
 

      
 for 

polynomial  , where the probability is over the random chose of              and  . 

So,   cannot easily calculate the correct   . 
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 Inspections against active adversary: 

 Active adversary tries to disrupt establishment of the common secret key among 

the legitimate parties. He mainly sends malicious messages into the broadcast channel 

to fool an honest participant into believing that this honest participant has computed the 

same common secret as that of other honest participants. Some security attributes are 

defined in Section 2.2.1. They are regarding of security against active adversary for 

authenticated key agreement protocols (Blake-Wilson et al. (1997)). Their inspections 

are as the following; 

 

 Known session key security. A participant obtains a new ephemeral private key 

   to generate a unique session key (common secret) in each run of the key 

agreement protocol. Therefore, the knowledge of a previously established 

session key does not help anyone to deduce a new secret key. 

 

 Forward Secrecy. Assume that an attacker has compromised one or more long 

term private keys   . However, the attacker cannot calculate the previously 

established session key     (                        )
       

 

  
        

         without knowledge of the ephemeral private key   . 

 

 Key-compromise impersonation resilience. Assume that, an attacker   has 

compromised   ’s static private key   , and wants to impersonate    in order to 

deceive    and establish the same secret with   .  

i. Firstly, attacker   pick a random   value and calculates a fake public 

message of round-1, which is        (for honest   ,         ) and 

broadcast    
         by claiming that it is sent by   . 

ii. When    computes the established secret, he will calculates  

    (                )
       

   
      

        

       
[
                                                      

                                        
]
 

iii.    fails for the common secret which is established by other honest 

parties during the protocol and realizes the failure when he starts 

communication with wrong established secret and doesn’t decrypt the 

received messages from the others (open problem of the protocol) , but 
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attacker   cannot compute the same key which is calculated by    using 

the fake public message        sent by attacker  . Such that, attacker 

  follows two ways: 

(1)      (                )
    

   
      

      , but attacker 

  will fail for this way since he don’t know correct value of   ’s 

static private key   . 

(2)       (                )
    

   
      

       is equal to 

                                      
      

       

from the bilinear property of pairings in 2.1.2. And then, 

  
   (                            )    

      
       

  
   (                                    )  

  
      

        

  
   (                                 )  

  
      

      . 

  
   (                           )    

      
      . 

     (                )
       

   
      

      . 

However, attacker   will fail for this second way, too since he don’t 

know correct      value, although he knows   ’s static private key 

  . Therefore, the protocol provides the property of key compromise 

impersonation resilience. 

 

 Unknown key-share resilience. At the end of the common key establishment, the 

identity of each participant is included in the key derivation function. It provides 

unknown key-shared resilience in addtion to public key substitution unknown 

key shared attack. 

 

 Key Control. Any party in the protocol doesn’t control and predict the value of 

the common session key due to each one picks a new ephemeral private keys    

in each run of the protocol to generate a unique session key. 
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4.2.4. Implementation Results of Key Agreement Protocol 

 

 A Group Key Agreement Protocol using bilinear pairing is implemented for 

four users. The implementation is developed under C programming and the 

implementation environment contains: 

 Pairing Based Cryptography (PBC) Library (WEB_1 (2013)) for pairing map 

and elliptic curve calculations (point addition and scalar multiplication). 

 GNU Multiple Precision Arithmetic (GMP) Library (WEB_2 (2013)) for 

multiple precision calculations, 

 OpenSSL Library (WEB_3 (2013)) for secure hash algorithm, SHA-512 (FIPS 

PUB 180-2, (2002)). 

The configuration of the machine on which the implementation run is as the 

following: 

 CPU is Intel
®

 Core™ 2 Duo 2.0 GHz, 

 RAM is 4 GB, 

 Operating System is Ubuntu 12.10. 

All implementation details and the every values of each variable in the related 

steps can be found and followed under Appendix A.  

Table 4.2 includes the input and setup parameters. There are super singular 

curve  , 512-bit prime  , 160-bit prime  , and a generator       . 

Each user generates his/her static public-private key pair for setup parameters. 

Static private keys    are picked from 160-bit group order   and static public keys    are 

512-bit length for each coordinate of point calculated from    . Then, he/she applies a 

legitimate Certification Authority (CA) such as VeriSign (WEB_4, (2013)) and 

exchanges his/her certificate with other participants before, the first round of the 

protocol starts.  

It is offline task of the protocol and numeric values of input and setup 

parameters in Table 4.2 are calculated using PBC Library (see Appendix A; Table A1 

and Table A2 for numeric values). 
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Table 4.2. Input and Setup Parameters. 

Input and Setup Parameters 

 

User number is 4 namely;       ,            

A super singular curve   defined by         over   . 

The Weil pairing on the curve       is a mapping:             . 

 =512-bit prime and         where   is multiple of 12. 

 = 160-bit prime 

 = 512-bit (each coordinate of point) generator where       . 

  =160-bit static private key. 

   = 512-bit (each coordinate of point) static public key where       . 

 

 

 

 In Table 4.3, each user picks ephemeral secret key    from 160-bit prime   and 

multiplies it with his/her public key   . Approximate time for each user’s         

computation is   milliseconds.    is a point on elliptic curve and its length is 1024 bits 

(which is defined by x-coordinate and y-coordinate, each of them is 512 bits). Specific 

time measures are available in the following table and numeric values are in the Table 

A.3 of Appendix A. 

 

 

Table 4.3. Public Message Computation on Round-1. 

Round-1 

 

Step#1 Computation of public message with short term secret key of Round-1. 

 

        

 

Computation time of public message for    is approximately 3,6 milliseconds 

 

 

 

 In Table 4.4, each users applies SHA-512 hashing algorithm from OpenSSL 

Library for   . It outputs 512-bit result. Approximate time for each user’s SHA-512 

hashing computation is      seconds.  

Then, each user applies BLS Short Signature algorithm for hashed value. Firstly 

they map this hashed value to a point on the curve   in order to be applied in pairing 

function for BLS Short Signature. After that, they sign this value with their static 

private keys    and broadcast to others.          is also a point on the curve and its 
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length is 1024bits. Approximate time for signing computation of each user is    

milliseconds. Specific time measures of each user are available in the following table 

and numeric values are in the Table A.4 and Table A.5 of Appendix A. 

 

 

Table 4.4. SHA-512 Algorithm and BLS Signature on Round-1. 

Round-1 

 

Contribution to satisfy the identification of the users and integrity of the public 

messages. 

Step #2 Signing of the first public message    by   . 

 

               

 

          

 

   and      are sent to all users and they are 512-bit length (for each coordinate of point). 

Approximate computation time for signing for each user is    milliseconds. 

 

 

In Table 4.5, each user applies two pairing function; one for  hashed value    

and static public key   ; another one for signature result      and generator  . If the 

result of these functions are equal, then      is verified. Approximate time for BLS 

signature verification including hashing algorithm for each user is    milliseconds. 

Specific time measures are available in the following table and the numeric values are in 

Table A.6 of Appendix A. 

 

 

Table 4.5. Verification of BLS Signature on Round-2. 

Round-2 

 

Contribution to satisfy the identification of the users and integrity of the public 

messages. 

Step #3 Verification of   ’s signature and integrity checking of   . 

 

               

 

                     

 

If this equality is satisfied; the receiver    can be sure the integrity of the    and 

legitimacy of sender. 

Approximate time for BLS signature verification including hashing algorithm for each 

user is    milliseconds. 
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In Table 4.6, each user performs                              

            
          calculation.    is a point on elliptic curve and length of    is 1024 

bits. Approximate time for this calculation of each user is   milliseconds. Specific time 

measures are available in the following table and numeric values are in Table A.7 of 

Appendix A. 

 

 

Table 4.6. Public Message Computation on Round-2. 

Round-2 

 

Step#4 Computation of public message of Round-2. 

 

                                         
          

 

Approximate time for this calculation of each user is   milliseconds. 

 

 

In Table 4.7, each users applies SHA-512 hash algorithm from OpenSSL 

Library for   . Its hash result is 512-bits. Computation time of SHA-512 hashing 

algorithm for each user is approximately      seconds. 

Then, each user applies BLS Short Signature algorithm for hashed value. Firstly they 

map this hashed value to a point on the curve   in order to be applied in pairing 

function for BLS Short Signature. Mapping results are available in the Table A.9 of 

Appendix A. Then, they sign this value with their static private keys    and broadcast to 

other users of the group. Each broadcasted message of           is 1024-bit length 

due to be a point on the curve.. Approximate time for signing algorithm for each user is 

   milliseconds. Specific time measures are available in the following table and 

numeric values are in Table A.8 and A.9 of Appendix A. 
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Table 4.7. SHA-512 Algorithm and BLS Short Signature on Round-2. 

Round-1 

 

Contribution satisfies the identification of the users and integrity of the public messages. 

 Step #5 Signing of the second public message    by   . 

 

               

 

          

 

   and      are sent to all users and they are 512-bit length (for each coordinate of point). 

Approximate time for signing algorithm for each user is    milliseconds. 

 

 

 

In Table 4.8, each user applies two pairing function; one inputs hashed value    

and static public key   ; another inputs signature result      and generator  . If result of 

each function is equal, then      is verified. Approximate time for BLS signature 

verification including hashing algorithm for each user is    milliseconds. Specific time 

measures are available in the following table and numeric values are in A.10 of 

Appendix A. 

 

 

Table 4.8. Verification of BLS Short Signature on Key Agreement. 

Key Agreement 

 

Contribution to satisfy the identification of the users and integrity of the public 

messages. 

 

Step #6 Verification of   ’s sign and integrity checking of   . 

 

               

 

                     

 

If this equality is satisfied; the receiver    can be sure the integrity of the    and 

legitimacy of sender. 

Approximate time for BLS signature verification including hashing algorithm for each 

user is    milliseconds. 

 

 

 

In Table 4.9, each user performs     (                        )
       

 

  
        

         calculation for key agreement. Approximate time for this 
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calculation for each user is   milliseconds. Specific time measures are available in the 

following table and numeric values are in the Table A.11 of Appendix A. 

 

 

Table 4.9. Common Key Agreement. 

Key Agreement 

 

Step #7 Computation of common key. 

 

    (                        )
       

   
        

        

       
[
                                                         

                                        
]
 

Approximate time for this calculation for each user is   milliseconds. 

 

 

 Discussion: 

 The following Table 4.10 presents the summary of the implementation results 

and complexity analysis of the protocol.  

Original protocol (Lin et at., (2006)) without thesis contribution needs 8,8 

milliseconds computation time with   2048-bit length communication cost for   users 

in totality. Communication messages are defined by a point on the elliptic curve with 

512-bit length for each coordinate; hence a point is defined by 1024-bit length.  

In this work as a contribution, BLS Short Signature algorithm is added on public 

messages    and    of the original protocol in order to provide their message 

authentication and integrity. BLS Short Signature output is a point with 1024-bit length.  

BLS Signature can be easily adapted to the original protocol by using same 

public parameters. But one of the drawback is that it needs two pairing algorithm for 

one verification algorithm. Hence, there will be added    (  is user number) pairing 

algorithm and also,    scalar multiplication to the original work as computation cost. 

Total computation time for four users including these contributions is 

approximately 56 milliseconds with   4096- bit length - communication cost during the 

whole protocol. 

Therefore, the implemented protocol fits small size group number such as less 

than 20 since its costly computation and communication complexity as seen in the Table 

4.10. Original protocol can be applied for group number till 100; but it cannot provide 
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authentication and integrity of the public messages although it doesn’t have any 

verifiability mechanism for the received public messages (its open problem). 

 

 

Table 4.10. Summary of Results of the Implemented Protocol. 

  

Step # and Title 
Computational Cost 

(millisecond) 

Communication 

Cost 

(bit length) 

E
x
ch

a
n

g
e 

(R
o
u

n
d

-1
) 

 

#1 Computation of public message    

 

3,6   1024 

Contribution 

#2 Signing of    

 

 

10,2 

 

  1024 

Sub-total cost without contribution steps. 

 

3,6   1024 

Sub-total cost with contribution steps. 

 

13,8   2048 

E
x
ch

a
n

g
e 

(R
o
u

n
d

-2
) 

 

Contribution  

#3 Verification of   ’s signature and 

integrity checking of   . 

 

 

13,7 

 

- 

#4 Computation of public message    

 

2,6   1024 

Contribution 

#5 Signing of    

 

 

10 

 

  1024 

Sub-total cost without contribution steps. 

 

2,6   1024 

Sub-total cost with contribution steps. 

 

26,3   2048 

K
ey

 A
g

re
em

e
n

t 
(R

o
u

n
d

-2
) 

Contribution  

#6 Verification of   ’s signature and 

integrity checking of   . 

 

 

13,3 

 

- 

#7 Computation of common key. 

 

2,6 - 

Sub-total cost without contribution steps. 

 

2,6 - 

Sub-total cost with contribution steps. 

 

15,9 - 

TOTAL COST WITHOUT 

CONTRIBUTIONS 

 

8,8   2048 

TOTAL COST WITH 

CONTRIBUTIONS 

 

56   4096 
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4.3. Group Key Distribution Protocol using Verifiable Secret Sharing 

 

 Verifiable Secret Sharing (VSS) allows parties of a protocol to be certain honesty 

of other parties in the same protocol in addition to share a common secret using secret 

sharing. It takes place in construction of many cryptographic protocols such as; multi 

party computation, secure storage, e-voting system in addition to key distribution. In 

group key distribution protocols, it provides constant round to share a secret 

independent from the party number. Our second protocol is based on Feldman’ VSS 

(Feldman (1987)). 

 

4.3.1. Preliminaries and Communication Model of Key Distribution 

Protocol 

 

This protocol is defined under the specifications and assumptions which are 

mentioned in Section 4.1. 

 The second protocol consists of     entities that form secure, closed group. 

There are n parties who participates the establishment of common secret and a leader   

who picks and shares the common secret   among the   participants of the protocol. 

 The protocol model uses point to point communication between each     

entities and it needs only two rounds namely; sharing and reconstruction. Also, number 

of communicating parties is independent of number of communication rounds. There is 

a threshold value   means that more than   shared subsecret value can used to 

reconstruct the common secret generated by the leader. The relation between threshold   

and   is        (Shamir (1979), Shannon (1949)). There can be occurred new party 

by addition or removal users to/from the group during any round of the protocol under 

the condition that preserving parameterized       values at same. 

 This       values (Shamir (1979)) is information theoretically secure even when 

the adversary has unlimited computing power. So, the adversary simply does not have 

enough information to break the encryption unless he has     values (Shannon 

(1949)). 

 In order to provide secure and authentic communication between the     

entities, a PKI (Section 3.1) is applied. Before the protocol run, each legitimate party 
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obtains his certificate including his public key and numeric     from CA (Section 3.1.1). 

Especially, in each round, all sent messages are encrypted and/or digitally signed.  

 Received messages in each round can be verified using DLog commitments to 

be sure the validity of received content from leader or other parties (Section 2.1.4). 

These commitments are created by the leader. Since the users fully trust the leader by 

using the commitments that he generates, authentication is vitally important between the 

leader and the other parties. 

 

4.3.2. Construction of Key Distribution Protocol 

 

 It consists of sharing phase which is based on distribution of common secret via 

    degree polynomial and reconstruction phase which is based on establishment of the 

common secret via Lagrange interpolating polynomial in Section 2.1.1 of at least     

private subsecrets (this is called as shadow or share in some technical documents). 

 

 Setup 

Notations used in the Group Key Distribution Protocol as the following; 

 Primes   and   such that      , and a generator      
  is an element of order 

 . 

   is common secret will be shared. 

                   represents subsecret pooled of which participants will be 

establish the common secret   with. 

   is a leader who shares the common secret   among the   participants. 

    is a participant for the establishment of common secret  . 

                    and    represents notationally current party whereas    

represents sender party and    represents receiver party               . 

       is certificate which includes   ’s long term public key    and numeric 

identifier    . 

    is   ’s long term secret key of corresponding public key   . 

   is threshold value (Shamir (1979), Shannon (1949)). 

                      
          

 , is a   degree polynomial in which 

the secret      and all coefficients    are           . This is randomly 

built up by Leader. 
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   is a commitment vector including different     DLog commitments; 

                       . 

 The public parameters are                 . 

 Before beginning of the protocol, each     entity obtains his/her certificate 

      and exchanges with other participants of the protocol (Section 3.1.1)  and verifies 

received       with CA. Hence all group users have been identified.  

 

 Sharing (Round-1) 

 The protocol starts with the Leader  ’s initiator calling to the participant set 

                   and specifying the   group number. Threshold value   will take 

the maximum number with respect to the        relation such that 
   

 
 ⌈ ⌉ 

(Shamir (1979), Shannon (1949)). Leader   performs computations of round-1 as the 

following; 

 Determines randomly the common secret           will be shared to the 

participant set  . 

 Then, randomly chooses a      polynomial of degree   such that;             

                     
          

 , in which the secret      and all 

coefficients    are randomly selected as           . 

 Constructs the commitment vector   based on DLog commitments as explained 

in Section 2.1.4.                                        and 

         .  

 Computes subsecrets                     where     is numeric identifier 

        in      . 

 Encrypts the subsecrets    using static public keys    of corresponding recipient 

for secrecy such that      
      . 

 Signs the commitment vector   for integrity and authentication, such that 

                                          . 

o     and     algorithms can be implemented by the usage of different  

cryptographic systems. On the implementation in Section 4.3.4 and 

Appendix A, ElGamal Encryption and Signature Scheme are preferred. 

 Sends encrypted subsecrets      
       and signed commitment vector 

             to receivers by peer to peer on open unsecure channel. 
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 Reconstruction (Round-2) 

 Each    verifies signed commitment vector using Leader’s public key. 

 Each    decrypts the received message      
      from Leader using 

corresponding private key   ,      
[     

      ]    .  

 Then, verify correctness of received subsecret    by using commitment vector 

           ∏  
  

 

   

                            

and;              is indice of participants and                 is indice of 

polynomial coefficients. 

 If verification is consistent, each    encrypts his subsecret   , using each 

recipient   ’s public key   , such that      
    .  

 Sends      
    . to related party   . 

 

 Key Establishment (Round-2) 

 Each    decrypts the received encrypted messages      
      using his private 

key   , such that      
[     

    ]    . Hence the each participant   will have 

all other users subsecrets. 

 Then, verify correctness of received subsecret    by calculation of the 

commitment vector; 

           ∏  
  

 

   

                            

and;               is indices of participants who    received subsecret    from, 

and                 is indices of polynomial coefficients. 

 If verification of each    is consistent, to establish the common secret   (which is 

          ) each party    have to construct polynomial      from any 

    verified subsecrets    which are collected in set    then by using Lagrange 

Interpolation formula in the following steps; 

Firstly, Lagrange Coefficient is calculated by         
  ∏

   

       

   
            

and then;      ∑        
   
    . 
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 Simple summary of each phase for 5 group number is available in the Table 

4.11. n is selected is 5 due to        rule, here    . Implementation of the 

protocol for four users and the leader L with 512-bit and 1024-bit primes is performed 

in the Section 4.3.4 in order to present time measures of computation and bit-lengths of 

communication complexities of each user on per round. Also, numeric results of the 

variable in the implementation can be followed under Appendix B. 

 

 

Table 4.11. Group Key Distribution Protocol. 

S
et

u
p

 

Creation of Public Parameter 

 
Primes   and   such that      , and a generator      

  is an element of order  . 

 

 

      group number for 
   

 
 ⌈ ⌉ = (5,2)  

Each participant including the leader exchange their certificates. 

 

S
h

a
ri

n
g

 (
R

o
u

n
d

 1
) 

Private Computations 

Leader   

 

Step #1 Polynomial Generation 

 

n=5 and t=2 and satisfies        rule. Choose common secret secret      and 

generates 2 degree                      
     . 

 

 

 

Step #2 Commitment Vector Generation 

Computes commitments in                                   . 

 

 

Step #3 Generation of subsecrets for users   ,             . 
Computes the subsecrets                    ,                    , . . . ,     
                where     is numeric identifier         in      . 
 

 

Contribution to satisfy the requirements of identification of the leader and integrity of 

commitment vector. 

 

 Step #4 Signing of Commitment Vector by the Leader. 

Signs commitments                                     . 
 

 

(cont. on next page) 
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Table 4.11. (cont.) 

S
h

a
ri

n
g

 (
R

o
u

n
d
 1

-c
o
n

t.
) 

 

Contribution satisfies the  secrecy requirement of shared subsecrets for robustnest to 

attacks. 

 

Step #5 Encryption of generated subsecrets for each of the receiver users of the group 

separately by using ElGamal Encryption scheme. 

Encrypts;      
      ,      

       , . . . ,      
       . 

 

Public Exchange of Values 

Leader   sends each message      
 to each related    (point to point) and commitment 

vector   with             . 
 

R
ec

o
n

st
ru

ct
io

n
 (

R
o

u
n

d
 2

) 

Private Computations 

Each                    

 

Contribution  

 

Step #6 Verification of Leader’s signature and integrity checking of the Commitment 

Vector. 

 

            pair with commitment vector are received by   . 

 

Each   verifies Leaders Signature using Leader’s public key. 

 

 

Contribution  

Step #7 Decryption of received subsecret. 

 
   decrypts the received message      

      , using corresponding private key   , 

     
[     

      ]    .  

 

 

Step #8 Verification correctness of received subsecrets by using commitment vector; 

           ∏  
  

 

   

                            

 

 

Contribution: Each    encrypts its subsecret and send to other users of the group to 

satisfy secrecy requirement and robustnest to attacks. 

Step #9 Encryption processes of subsecret of   : 

 

   encrypts subsecret   .             and sends to every    point to point. 

For   :       
[     

      ]     

           ∏  
  

 

   

       
 
       

 
       

 
        

 

(cont. on next page) 
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Table 4.11. (cont.) 

R
ec

o
n

st
ru

ct
io

n
 (

R
o

u
n

d
 2

-c
o
n

t.
) 

Step #9 (cont.) 

. 

. 

For   :       
[     

      ]     

           ∏  
  

 

   

        
        

        
        

Public Exchange of Values 

For      
Encrypts subsecret   .sends      

       to     

Encrypts subsecret   . sends      
       to     

Encrypts subsecret   . sends      
       to     

Encrypts subsecret   . sends      
       to     

. 

. 

For      
Encrypts subsecret   . sends      

       to     

Encrypts subsecret   . sends      
       to     

Encrypts subsecret   . sends      
       to     

Encrypts subsecret   . sends      
       to     

There are 20 communication messages      
      . 

 

K
ey

 E
st

a
b

li
sh

m
en

t 
(R

o
u

n
d

-2
) 

Further Private Computations 

Each                    

Contribution  

Step #10 Decryption process of received encrypted subsecrets by   : 

 
   decrypts the received messages      

      ,using corresponding private key   , 

     
[     

      ]    . 

 

 

Step #11 Verification  of correctness of subsecret    by using commitment vector; 

           ∏  
  

 

   

                            

 
If verification is consistent, each    use lagrange interpolating formula      

∑        
   
    .where         

  ∏
   

       

   
            from any         . 

 

. For   :       
[     

      ]     

           ∏  
  

 

   

        
        

        
        

       
[     

      ]     

           ∏   
   

           
        

        
       . 

 

(cont. on next page) 
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Table 4.11. (cont.) 

K
ey

 E
st

a
b
li

sh
m

en
t 

(c
o
n

t.
) 

 

.     
[     

      ]     

           ∏   
   

           
        

        
       . 

.     
[     

      ]     

           ∏   
   

           
        

        
       . 

 
After verification, any   subsecrets is sufficient to construct the  , set              

for   . 
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Group Modifications: 

 Secret construction of the protocol depends on polynomial interpolation. 

Actually, pairs which comprises of numeric identifiers     and subsecrets    such that 

         forms points in the   degree polynomial      generated by the leader. If entity 

addition and removal occurs simultaneously in the same amount, there won’t be any 

change in the subsecrets of old parties and the common secret   since the       

parameter remains the same. This modification is included the protocol at any time 
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since the Leader acts the distribution of subsecrets with the same parameters and 

therefore, establishment of secret   happens for only the new parties with new 

identifiers      . 

 However, if entity addition and removal isn’t balanced (in the same amount), the 

subsecrets of old parties and the common secret   will change since the protocol starts 

with new       parameters. 

 

4.3.3. Security Analysis of Key Distribution Protocol 

 

 Requirements of secure communication in Section 3.1 between the parties and 

leader are provided by certificates (     ) and certification authority (CA). Consistency 

of all subsecrets    in communication messages coming from the leader and the other 

participants can be verified by using commitment   vector. 

 VSS has two security requirements defined in Section 2.2.3: Secrecy and 

Correctness. 

 Secrecy: During both two rounds, each point to point sending messages 

(subsecrets   ) are encrypted via static public keys     which of corresponding 

private key    are certified by CA. Secrecy of communication messages are 

provided by this way. An adversary   needs to compromise at least       static 

private keys    in order to encrypt the corresponding public messages and then 

he acquires the subsecrets    and uses them in Lagrange interpolation to 

establish the common secret  .  

 Correctness: Suppose an honest leader   has shared a   degree polynomial      

with constant term to the common secret  . As the leader is honest, the message 

coming from the leader contains commitment   and        for a honest party    

in the first round. Party    accepts his subsecret        if it consistent with the 

commitment  . In the second round, party    receives the subsecrets        

   of each   . Party    accepts the subsecrets           if it is consistent 

with the commitment  . When    has     (set  ) consistent subsecrets,    

constructs common secret   such that;  

o Let   
  be Lagrange interpolation coefficients for the set   such that 

  
  ∏

   

       

   
           .    has    ∑    

   
   
    =∑    
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if the leader and the other parties has sent consistent subsecrets    and 

then,     . 

o Let assume two distinct honest parties    and    reconstruct values     

and     by interpolating two distinct sets    and    of     subsecrets 

each, which are valid with respect to the unique commitment  . As the 

subsecrets in    and    are verified against commitment   and they are 

valid, it is easy to see that             . As   is a generator for a 

prime order group,         (Table 4.11 illustrates example of such 

parties    and    namely;    and    in the key establishment column). 

On the other hand, this work needs formal security inspections in order to prove 

security of the protocol in the presence of passive and active adversary. It forms the 

future tasks of the research. 

 

4.3.4. Implementation Results of Key Distribution Protocol 

 

 A Group Key Distribution Protocol using verifiable secret sharing scheme 

(VSS) is implemented for four users and a Leader. The implementation is developed 

under C programming and the implementation environment contains: 

 GNU Multiple Precision Arithmetic (GMP) Library (WEB_2, (2013)) for 

multiple precision calculations, 

 OpenSSL Library (WEB_3, (2013)) for secure hash algorithm, SHA-512 (FIPS 

PUB 180-2, (2002)). 

The configuration of the machine on which the implementation run is as the 

following: 

 CPU is Intel
®

 Core™ 2 Duo 2.0 GHz, 

 RAM is 4 GB, 

 Operating System is Ubuntu 12.10. 

 All implementation details and the every values of each variable in the related 

steps can be found and followed under Appendix B. 

Table 4.12 includes the input parameters which are 1024-bit prime   with 

primitive root   of   
  and 512-bit prime   where          . This test data is acquired 

from (Allen (2008)). 
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Each user generates his/her static public private key pair for setup parameters. Static 

private keys    are picked from 1024-bit group order   and static public keys    are 

1024-bit length calculated from               . Then he/she applies a legitimate 

Certification Authority (CA) such as VeriSign (WEB_4, (2013)) and exchanges his/her 

certificate with other participants before the first round of the protocol starts. The 

certificates include static public key    and an unique numeric identifier    . 

It is offline task of the protocol and numeric values of input and setup 

parameters in Table 4.12 are calculated using GMP Library (see Appendix B; Table B.1 

and Table B.2 for numeric values). 

 

 

Table 4.12. Input and Setup Parameters. 

Input and SetupParameters 

 

 

There are Leader   and 4 users, namely;   ,               

 =1024-bit prime 

 = 1024-bit primitive root of   
  

 = 512-bit prime where          . 

  = 1024-bit static private key    
 . 

   = 1024-bit static public key where               . 

      =(  ,    ). 

 

 

 

In Table 4.13, the Leader generates 2-degree polynomial      (degree size is 

depending on user number as explained in section 4.3.2) and picks the common secret 

which is     . Polynomial generation takes approximately 21 microseconds. Then 

Leader calculates commitment vector which takes is approximately 6 milliseconds. 

Finally Leader compute subsecrets which will be distribute to the each users. Subsecret 

computation takes 16   seconds for four users (details are presented by Table B.3 of 

Appendix B). 
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Table 4.13. Polynomial Generation, Commitment and Subsecret Calculation. 

L
ea

d
er

  
 

  

Round-1 

 

Step #1 Polynomial Generation 

 

                    
        

   would like to be shared among to the four participants   ,              as common 

SECRET KEY, and randomly selected by the Leader who is started the group 

communication. 

 

  ,    ,        are selected randomly.  

 

Total computation time for polynomial generation is 21   seconds. 
 

Step #2 Commitment Vector Generation 

 

                                    

 

Total computation time for generation of commitment vector is 5,483 milliseconds. 

 

Step #3 Generation of subsecrets for users   ,             . 

 

                    

 

Subsecret generation time is approximately 4   seconds per user. 

Total subsecrets generation time for four users is 16   seconds. 

 

 

 

In Table 4.14, Leader uses ElGamal signature algorithm in order to sign the 

commitment vector. Elements in commitment vector are concatenated and input SHA-

512 hash algorithm from OpenSSL Library. Signature pair is sent to all users (details 

are presented by Table B.4 of Appendix B). 
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Table 4.14. SHA-512 Algorithm and ElGamal Signature. 

L
ea

d
er

  
 

Round-1 

 

Contribution satisfies the  identification of the leader and integrity of commitment 

vector requirements. 

 

Step #4 Signing of Commitment Vector by the Leader. 

 

                  ‖  ‖    

 

Computation time to generate hash value of commitment vector by using SHA-512 is 58 

  seconds. 

 

                                                

 

                    
               

(   is static private key of Leader). 

 

            pair has 2048 bits (each of them 1024-bit length) and they sent to all users. 

 

Signing of hash value of commitment vector is 1,548 milliseconds. 

 

Total time to sign commitment vector is 1,606 millisecond. 

 

 

 

In Table 4.15, Leader encrypts calculated subsecrets using ElGamal encryption. 

Total calculation time for all users is 10,391 milliseconds. 1024-bit length encrypted 

messages are sent to related users. Specific time measures are available in the following 

table (see Table B.5 of Appendix B). 

 

 

Table 4.15. ElGamal Encryption of Subsecrets. 

L
ea

d
er

  
 

 

Round-1 

Contribution satisfies the  secrecy requirement of shared subsecrets for robustnest to 

attacks. 

 

Step #5 Encryption of generated subsecrets for each of the receiver users of the group 

separately by using ElGamal Encryption scheme. 

 

                                               
 

          
         

 
          pairs has 2048bit length (each of them 1024-bit length) and it is sent to each 

related   , where      .  

The encryption time is approximately is 2,558 milliseconds for per user. 

Total encryption time for four users is 10,391milliseconds. 
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In Table 4.16, each user verifies signature on commitment vector. Total time for 

verification calculation of per user is 3,402 with hashing algorithm (see Table B.6 of 

Appendix B). 

 

 

Table 4.16. ElGamal Signature Verification. 

 Round-2 

 

E
a
ch

 U
se

r 
 

  

Contribution  

 

 Step #6 Verification of Leader’s signature and integrity checking of the Commitment 

Vector. 

 

            pair with commitment vector are received by   . 

 

Each   verifies Leaders Signature using Leader’s public key. 

 

             
        

            

 

(  is the public key of Leader). 

 

To verification first; 

                  ‖  ‖    is calculated. 

 

Computation time to generate hash value of commitment vector by using SHA-512 is 

58   seconds. 

             
        

            

 

If this equality is satisfied; the receiver    can be sure the integrity of the commitment 

vector and legitimacy of sender L. 

 

Total calculation time of signature verification is 3,402 milliseccond per user. 

 

 

 

In Table 4.17 each user decrypts received encrypted message to output his/her 

subsecret. Approximate decryption time for each user is 1,337 milliseconds. Specific 

computation time is available in the following table (see Table B.7 of Appendix B). 
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Table 4.17. ElGamal Decryption. 

 Round-2 

 
U

se
r 
 

  

Contribution  

 

 Step #7 Decryption of received subsecret. 

 

Each    decrypts incoming encrypted subsecret from   . 

             
            

 

The decryption time of each subsecret is approximately 1,3 milliseconds. 

 

 

 

In Table 4.18, each user verifies correctness of his/her subsecret using 

commitment vector. Approximate verification time for each user is 748   seconds. 

Specific computation time is available in the following table (see Table B.8 of 

Appendix B). 

 

 

Table 4.18. Verifying Correctness of Subsecrets by Using Commitment Vector. 

 Round-2 

 

U
se

r 
 

  

Step #8 Verification correctness of subsecrets by using commitment vector. 

 

Each    verifies received subsecret. 

           ∏  
  

 

   

                            

and;              is indice of participants and                 is indice of 

polynomial coefficients. 

 

The calculation time for verification of subsecret is approximately 774   seconds per user 

  . 

 

 

 

In Table 4.19, each    encrypts his subsecret using ElGamal encryption and the 

receiver’s public key. The computational time of each encryption of subsecret is 

approximately 2,580 milliseconds per   , then user sends this          pair (each of 

them 1024-bit) to all other users of the group. The user    have to do this same job for 

the each of the members of the group hence the total execution time of this process for 
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   is approximately 7,596 milliseconds (see Table B.9, B.10, B.11 and B.12 of 

Appendix B). 

 

 

Table 4.19. Encryption of own subsecret by   . 

U
se

r 
 

  

  

Step #9 Each    sends its subsecret to other user of the group. 

 

Contribution: Each    encrypts its subsecret and send to other users of the group to 

satisfy secrecy requirement and robustnest to attacks. 

Step #9 Encryption processes of subsecret of   : 

 

                                 
  

 

         
                                    

 

    is receiver’s public key). 

The computational time of each encryption of subsecret is approximately 2,580 

milliseconds per   . 

Total execution time  of this process for    is approximately 7,596 milliseconds. 

 

 

 

In Table 4.20 each user decrypts received encrypted subsecret messages which 

are sent by the other users of the group. The computation time for the decryption of 

each user’s subsecret is approximately 1,3 milliseconds. Each user have to do 

decryption for messages of other three users. Therefore for four user, the decryption of 

subsecrets will take approximately 4 milliseconds (see Table B.13 of Appendix B). 

 

 

Table 4.20. Decryption of Received Subsecrets of Senders. 

 Round-2 – Key Establishment 

 

U
se

r 
 

  

Contribution: decryption of received encrypted subsecrets. 

 

Step #10 Decryption process of received encrypted subsecrets by   : 

         is received from each user of the group. 

 

           
            where              ,   defines sender,   defines receiver user, 

here    is private key of receiver. 

 

The computation time for the decryption of each user’s subsecret is approximately 1,3 

milliseconds.  

The computation time of decryption of subsecrets for four users take approximately 4 

milliseconds. 
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In Table 4.21 each user verifies received subsecrets by using commitment 

vector. Approximate calculation time of each user for subsecret verification is 2,3 

milliseconds. Specific calculations of users are available in the following table (see 

Table B.14 of Appendix B). 

 

 

Table 4.21. Subsecrets Verification using Commitment Vector. 

U
se

r 
 

  

Key Establishment 

 

Step #11 Verification of subsecret by using commitment vector. 

 

Every user have to have verified (t+1) subsecret to generate common share secret by the 

constant     of the polinomial.  

Each    verifies received subsecrets from other users. 

           ∏  
  

 

   

                            

and;              is indice of participants and                 is indice of 

polynomial coefficients. 

 

The calculation time for verification of subsecret is approximately 774 microseconds per 

user   . 

 

Total calculation time for all three received subsecrets is approximately 2,3 milliseconds. 

All users do this job simultaneously. 

 

 

In Table 4.22 each user applies Lagrange Interpolation. When a user verifies all 

subsecrets as shown in the Table 4.21, then he/she can establish the common secret key 

using Lagrange Interpolation from any     subsecrets. Approximate calculation time 

of each user for Lagrange Interpolation is 35   seconds. Specific calculations of users 

are available in the following table (see Table B.15 of Appendix B). 
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Table 4.22. Key Establishment by Lagrange Interpolation. 

U
se

r 
 

  
Key Establishment 

 

Step #12 Lagrange Interpolation and common secret key establishment. 

 

Each party    have to construct polynomial      from any     verified subsecrets    

which are collected in set    then by using Lagrange interpolation formula in the 

following steps; 

First Lagrange coefficient is calculated by          
  ∏

   

       

   
              

and then; 

     ∑        
   
     (Note that           )  

For example the formula for the     is: 

          

   

       
 

   

       
   

   

       
 

   

       
   

   

       

 
   

       
 

 

Total computation time for Lagrange Interpolation of    is 35   seconds. 

 

 

 Discussion: 

Table 4.23 presents the summary of the implementation results for one user. 

Original protocol (Feldman, (1987)) without thesis contributions needs 9 milliseconds 

computation time with 7168-bit communication cost for four users in total. There are 

three commitment elements, each of which is 1024-bit; four subsecrets (will be sent in 

secure channel) each of which is 512-bit in the first round and four subsecrets each of 

which is 512-bit in the second round. So, total communication cost is 3 1024 + 4 512 + 

4 512 = 7168-bit length. Results are close to Lin et al.’s protocol for four users. 

In this work, ElGamal Signature algorithm is added on publicly known 

comminment to provide its message authentication and integrity. ElGamal Signature 

can be easily adapted to the original protocol by using same public parameters. Due to 

ElGamal Signature gives the efficient results comparing the BLS Signature, it should be 

applied in the first protocol in order to optimize computation time. 

It outputs 1024-bit signed message in addition to 3 1024-bit communication cost 

of the original work. Also, ElGamal Encryption algorithm is applied to subsecrets of the 

protocol in order to be adapted on open channel. There are four encrypted messages 
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with 1024-bit in the first round and 4 (4-1) encrypted messages with 1024-bit length in 

the second round. So, total communication cost is 3 1024 + 1024 + 4 1024 + 12 1024 = 

20480 bit length. Total computation time for four users including these contributions is 

approximately 37,5 milliseconds with 22528-bit length communication cost during the 

whole protocol. 

ElGamal Signature is more efficient than BLS Short Signature. Results of 

signing computation of BLS Signature is approximately 10 milliseconds and 

verification computation is approximately 13 milliseconds. On the other hand, signing 

computation of ElGamal is approximately 1,6 milliseconds and verification is 3,4 

milliseconds. 

Total computation time for four users including these contributions is 

approximately 37,5 milliseconds with 20480-bit length communication cost during the 

whole protocol. 

The proposed protocol isn’t proper for group key establishment protocol. 

Although its results of computation time look more efficient than the first protocol for 

small group size, it has very costly communication overhead. When group size 

increases, computation time will be getting inefficient, too due to dependency of       

parameters. 

 

 

Table 4.23. Summary of Results of the Implemented Protocol. 

 Step # and Title Computational 

Cost 

(millisecond) 

Communication 

Cost 

(bit length) 

R
o

u
n

d
-1

  
  

L
E

A
D

E
R

 

 

#1 Polynomial Generation 

 

0,021  

#2 Commitment Vector Generation 

 

5,5        1024 

#3 Generation of subsecrets for users   , 

            . 

0,016        512 

 

Contribution  

#4 Signing of Commitment Vector  

 

1,6 

 

 

1024 

Contribution  

#5 Encryption of generated subsecrets for each 

of the receiver users separately 

 

10,5 

 

       1024 

Sub-total cost without contribution steps. 5,87      1024 

Sub-total cost with contribution steps. 17,97      1024 

(cont. on next page) 
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Table 4.23. (cont.) 

R
o
u

n
d

-2
  

  
U

S
E

R
S

 

 

Contribution  

#6 Verification of Leader’s signature and 

integrity checking of the Commitment Vector. 

 

3,4 

- 

Contribution  

#7 Decryption of received subsecret 

 

1,3 

- 

#8 Verification correctness of subsecrets by 

using commitment vector. 

 

0,774 

- 

#9 Each    sends its subsecret to other user of 

the group. 

         512 

Contribution  

#9 Encryption processes of subsecret of   . ((n-

1) users send own subsecret to other   (n-2) 

users). 

 

7,6 

 

        1024 

K
ey

 E
st

a
b
li

sh
m

en
t 

Contribution 

#10 Decryption process of received encrypted 

subsecrets by    

4 - 

#11 Verification of subsecret by using 

commitment vector 

2 - 

#12 Lagrange Interpolation and common secret 

key establishment 

0,035 - 

Sub-total cost without contribution steps. 3,2         512 

Sub-total cost with contribution steps. 19,5         1024 

 TOTAL COST WITHOUT 

CONTRIBUTION 

9         512 

TOTAL COST WITH CONTRIBUTION 37,5         1024 
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CHAPTER 5 

 

EFFICIENCY ANALYSIS 

 

 In this chapter, the protocols studied in the Chapter 4 will be examined in terms 

of efficiency properties quantified as computation complexity, communication 

complexity and round complexity as defined in Section 1.1. 

 The computation complexity and the communication complexity denote the 

amount of computations of each participant to obtain common secret key and the 

amount of messages of each participant to other ones, respectively. Round complexity is 

number of round of the protocol. A round means one messaging session in which every 

party can cast messages to others but all at once. Minimizing round complexity is very 

important challenge in designing key establishment protocols as well as reducing other 

complexities. 

 

5.1. Efficiency Analysis of Key Agreement  

 

 The protocol uses topology of an open network and needs only two rounds 

independent from the participant number. All parties carry on the protocol by achieving 

same computations during the both two rounds whereas the parties in the second 

protocol which uses verifiable secret sharing (VSS) carry on the computations 

depending on computations of their leader within the group. 

 In Table 5.1, the first column represents key agreement phases with their related 

computations. As to the first row, it represents one user’s calculations and the whole 

users’ calculations in the protocol respectively.  
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Table 5.1. Efficiency Analysis of Key Agreement Protocol. 

 Costs for each    Costs for all            

Setup 

       

                     

 

Assume that all entities of the group have private and public 

key and certification which is signed by CA. 

Round-1 

        

 

     (    

 

Broadcast    and      (    

 

 

 

  scalar multiplication 

 

  signing algorithm 

 

  broadcast messages 

 

 

  scalar multiplications 

 

  signing algorithms 

 

   broadcast messages 

Round-2 

        (    

 

  

                          

             
          

 

 

 

     (    

 

Broadcast    and      (    

 

 

    verifying operations 

 

  point additions 

  integer multiplication 

  integer addition 

  point exponentiation 

1 Weil pairing operation 

 

  signing algorithm 

 

  broadcast messages 

 

 

       verifying operations 

 

   point additions 

  integer multiplications 

  integer additions 

  point exponentiations 

  Weil pairing operations 

 

  signing algorithms 

 

   broadcast messages 

 

Key Agreement 

 

        (    

 

  

  (                  

      )
       

   
        

         

 

 

 

 

 

                       
    . 

 

 

    verifying algorithms 

 

  point additions 

  scalar multiplication 

  integer multiplication 

  integer addition 

  point exponentiation 

  Weil pairing operation 

    point multiplications 

 

 

  key derivation function 

algorithm 

 

 

 

 

       verifying algorithms 

 

   point additions 

  scalar multiplications 

  integer multiplications 

  integer additions 

  point exponentiations 

  Weil pairing operations 

       point multiplications 

 

 

  key derivation function 

algorithms 

 

 

In the light of Table 5.1, the total efficiency cost in terms of computation, 

communication and round complexity including the whole parties during Round-1, 

Round-2 and Key Agreement phases are available in Table 5.2. 
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Table 5.2. Total Efficiency Cost of Group Key Agreement. 

Computation Complexity 

 

Communication Complexity Round Complexity 

    scalar multiplications 

    Weil pairings 

    signing algorithms 

        signature 

verifying algorithms 

    point additions 

       point 

multiplications 

    point exponentiations 

    integer (multipresicion) 

additions 

    integer  

(multipresicion) 

multiplications 

   key derivation function 

algorithms 

 

    broadcast 

messages 

 

   rounds 

 

 

 

 As seen in Table 5.2, all computation costs except verifying algorithm and point 

multiplication are linear depending on user number of the protocol. Verifying algorithm 

of signature during both two rounds increases costly total computation overhead of the 

protocol with          computation complexity of signature verification. 

Implementation results in Section 4.2.4 prove this fact with time measures. BLS 

Signature Algorithm is chosen to sign and verify the public messages for the 

implementation of the Key Agreement Protocol. ElGamal Signature Algorithm is 

chosen for the Key Distribution Protocol in Section 4.3, however time measures of 

ElGamal Signature is more efficient than BLS Signature. Hence, an efficient signature 

algorithm should be preferred in this protocol due to          computatin 

complexity of signature verification. 

Another computation cost which causes high overhead is point multiplication in 

Round-2 with       complexity. Therefore, the original protocol (Lin et al. (2006)) 

isn’t applicable for user number more than 100. Since the proposed protocol in Section 

4.2 adds signing and verifying costs, it works efficiently till user number is 20. 

Communication and round complexity are stable with    and   costs 

respectively. 
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5.2. Efficiency Analysis of Key Distribution Protocol 

 

 All participants in the protocol make point to point sending between themselves 

with only two rounds. As so the first protocol in Section 4.2, this one needs only two 

rounds independent from the participant number, too. But the distinction is that 

computation of each party is depending on computations of his/her leader within the 

group. In the first round, only the leader performs the computations as he knows the 

secret will be established. On the other hand, parties of the protocol achieve 

computations in the rest of the protocol phases as seen in the Table 5.3.  

 Another distinction from the first protocol, computation cost depends on not 

only the participant number  , but also the polynomial degree  . The reason of that 

situation is relation between the       parameters (Shamir, (1979), Shannon (1949)). 

 The first column represents key distribution phases with their related 

calculations. As to the first row, it represents leader’s calculations, one user’s 

calculations and the whole users’ calculations in the protocol respectively. 

 

 

Table 5.3. Efficiency Analysis of Key Distribution Protocol. 

         Costs for 

each    

Costs for all 

           

S
et

u
p

 

 

 

     
                

 

 

Assume that all entities of the group have private and public 

key and certification which is signed by CA. 

 

Obtains and exchange       

R
o

u
n

d
-1

 

 

 

       
             
         

     
         

     

 

 

 

 

 

 

              

                
 

 

 

  calculations for 

subsecrets           : 

   addtions 

       

exponentitions 

   multiplications 

 

 

 

    exponentiations 

for DLog commitments 

 

  

(cont. on next page) 
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Table 5.3. (cont.) 

R
o
u

n
d

-1
 (

co
n

t.
) 

 

 

 

              

 

 

     
       

 

1 signing algorithm 

for commitment 

vector 

 

  encryption 

algorithms for each 

   

 

  point to point 

sendings messages 

 

  broadcast 

messages for 

   and              

 

 

 

 

 

 
R

o
u

n
d

-2
 

 

 

                 

 

 

 

 

     
[     

      ]     

 

 

           ∏  
  

 

   

 

 

 

 

 

     
     

   verifying 

operation for 

commitment 

vector 

 

 

  decryption 

algoritms for    

 

     

exponentiations 

and   

multiplications 

for subsecret 

verification 

 

 

    encryption 

algorithms for    

 

 

    point to 

point sending 

messages to each 

    

 

  verifying 

operations for 

commitment 

vector 

 

 

  decryption 

algoritms for    

 

        

exponentiations 

and    

multiplications 

for subsecret 

verification 

 

     

encryption 

algorithms for 

each    

 

     point to 

point sending 

messages 

 

(cont on next page) 
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Table 5.3. (cont.) 

K
ey

 E
st

a
b
li

sh
m

en
t 

(R
o
u

n
d

-2
) 

 

 

 

     
[     

    ]     

 

 

           ∏  
  

 

   

 

 

 

 

 

 

     ∑        

   

    

 

  

 

    decryption 

algoritms for 

received    

 

            

exponentiations and 
       

multiplications for 

each subsecret 

verification 

 

  lagrange 

interpolation 

includes; 

      additions 

and         

multiplications 

 

 

 

     decryption 

algoritms for 

received    

 

             

exponentiations and 

        

multiplications for 

each subsecret 

verification 

 

  lagrange 

interpolation 

includes;  
         additions 

and          

multiplications 

 

 

 

In the light of Table 5.3, total efficiency cost in terms of computation, 

communication and round complexity including the whole parties during round-1, 

round-2 and key establishment phases are available in Table 5.4. 

 

 

Table 5.4. Total Efficiency Cost of Group Key Distribution Protocol. 

 Computation Complexity 

 

Communication 

Complexity 

Round Complexity 

Leader    encryption algorithms 

   signing algorithm 

    integer (multiprecision) 

additions 

    integer (multiprecision) 

multiplications 

            integer 

(multiprecision) 

exponentiations 

 

   point to 

point 

sending 

messages 

 

   round 

(n,t) parties    verification algorithms 

      encryption 

algorithms 

    decryption algorithms 

      

point to 

point 

sending 

messages 

   round 

(cont. on next page) 
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Table 5.4. (cont.) 

      parties           integer 

(multiprecision) additions 

          integer 

(multiprecision) 

exponentiations 

             integer 

(multiprecision) 

multiplications 

 

  

Total     encryption algorithms  

   signing algorithm 

   verification algorithms 

    decryption algorithms 

          integer 

(multiprecision) additions 

               

integer (multiprecision) 

multiplications 

                 
    integer 

(multiprecision) 

exponentiations 

 

    point to 

point 

sending 

messages 

and   

broadcast 

messages 

 

   rounds 

 

 

As seen in Table 5.4, most of the computation costs depend on not only user 

number but also threshold value t and therefore when user number increases t size will 

increase and computation overhead will become very costly. 

 Also complexity of encryption and decryption are    since there are point to 

point different encrypted messages sent unlike the first protocol (there is one public 

message generated by one user.) ElGamal Encryption Algorithm is chosen to encrypt 

and decrypt the messages in the implementation of Section 4.3.4. There are efficient 

time measures for ElGamal Algorithm. 

 As to communication cost, it is costly with    complexity. 

Finally, round complexity is stable with only    rounds independent from user 

number same as the first protocol. 

The proposed protocol in Section 4.3 works efficiently till user number is 20. 
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5.3. Group Key Agreement Protocol vs. Group Key Distribution 

Protocol 

 

The following Table 5.5 presents a comparison of efficiency of two protocols. 

They are evaluated according to results of computation, communication and round 

complexities presented in Table 5.2 and 5.4. 

 

 

Table 5.5. Efficiency Comparision. 

 Key Agreement Key Distribution 
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Weil Pairing    - 

Encryption Algorithm -    

Decryption Algorithm -    

Signing Algorithm    

 

  

Verification Algorithm           

Key Derivation Function Algorithm   - 

Scalar Multiplication    

 

- 

Point Addition    

 

- 

Point Multiplication      

 

- 

Point Exponentitation    

 

- 

Integer (multiprecision) Addition             

Integer (multiprecision) 

Multiplication 
                 

Integer (multiprecision) 

Exponentiation 

-           
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m
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Message number sent 
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Round number 
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Discussion: 

 Computation cost: Key agreement protocol is based on elliptic curves. On the 

other hand key distribution protocol is based on multiprecision arithmetic. 

Computations of key agreement is looks efficient than key distribution. Main 

reason is that costs of key agreement is dependent on only user number whereas 

key distribution is dependent on not only user number, but also polynomial 

degree   which increases when user number increase. However, in the 

implementation results for four users in Section 4.2.4 and 4.3.4, although the 

second protocol is more efficient than the first one, when user number increases 

efficiency of the second protocol will decrease comparing to first one. Proving 

this deduction is a future task.  

Computation which causes the most overhead for the first protocol is 

verification algorithm with    complexity. In the second protocol, encryption 

and decryption algorithms with    complexity causes the most overhead for the 

total computation cost. 

 Communication cost: Due to only one public message is broadcasted by one 

user, key agreement has advantage on this requirement as well. In in key 

distribution, there are   public messages created by per user. So the 

communication complexity is   . 

 Round complexity: Both protocols are effective on this requirement providing 

only 2 rounds independent of user number. 
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CHAPTER 6 

 

CONCLUSION 

 

 Motivation of the study is to establish a common secret key over an open 

network for a group of user to be used then symmetrical secure communication between 

them. A group key establishment protocol (GKE) is responsible for the establishment of 

a group key. It has numerous applications on group oriented scenarios such as secure 

teleconferencing, replicated servers, multi-user games, Near Field Communication 

(NFC), etc. 

 There are two methods of GKE protocol which are key agreement and key 

distribution. Key agreement is a mechanism whereby the parties jointly establish a 

common secret. As to key distribution, it is a mechanism whereby one of the parties 

creates or obtains a secret value and then securely distributes it to other parties. In this 

study, both methods is applied and analyzed in two different GKE protocols. Desirable 

properties of a GKE are security and efficiency. Security is attributed in terms of 

preventing attacks against passive and active adversary. Efficiency is quantified in terms 

of computation, communication and round complexity. When constructing a GKE, the 

challenge is to provide security and efficiency according to attributed and quantified 

terms. Two main cryptographic tools are selected in order to handle the defined 

challenge. One of them is bilinear pairing which is based on elliptic curve cryptography 

and another is verifiable secret sharing which is based on multiparty computation. 

 Before the GKE proceeds, secure communication between entities of the 

protocol should be ensured. Entities can apply PKI-based infrastructure or ID-based 

infrastructure mentioned in Section 3.1 depending on protocol requirements. ID-based 

infrastructure fits two party key establishment protocols as secure communication 

methodology. Especially, key establishment on Email protocols, Voice over Internet 

Protocol (VoIP) and Session Initiation Protocol (SIP) use ID-based cryptography. 

However, in a group oriented case like this study, it is the best choice to apply a PKI-

based infrastructure. 

 The first protocol model (key agreement) of the study is based on Lin et al.’s 

work (Lin et al (2006)). Bilinear pairing is utilized as cryptographic tool in order to be 
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solution of the challenge. Bilinear pairing is a function which provides a map from two 

cyclic groups to another cyclic group on an elliptic curve. In the beginning in order to 

ensure secure communication during the protocol, each party applies a certificate 

authority (CA) and exchange his/her certificate with other legitimate parties. No party 

has the possession of the common secret when starting to the protocol unlike the second 

protocol. The common secret is established by similar calculations of each party jointly 

after two rounds. In each round, each party generates his/her public message, signs that 

message and broadcast to others. In the end, each party verifies and combines the public 

messages received from others with his/her static and ephemeral private keys to 

establish the common secret. Security of the public messages depends on the Diffie-

Hellman assumption and Bilinear Diffie-Hellman assumption defined in the section 

2.1.3. Integrity and authenticity of those messages is ensured via signature algorithms 

on them. Some security inspection is evaluated in section 4.2.3 for attributed security 

aspects. 

Efficiency analysis is performed for   participants as follows; 

 Computational complexity:    Weil pairing,    singning algorithm,         

verification algorithm,   key derivation function algorithm,    scalar 

multiplication,    point addition,         point multiplication,    point 

exponentiation,    integer (multiprecision) addition and    integer 

(multiprecision) multiplication forms computational complexity of the protocol. 

 Communication complexity:    message number for public messages sent and 

   for signed public messages forms    communication complexity of the 

protocol. 

 Round complexity:   round number forms round complexity of the protocol. 

 

An implementation for     user with 512-bit prime  , 160-bit prime   and 

curve         over    parameters is developed under C programming. 

Implementation platform has PBC, GMP and OpenSSL libraries with Intel
®

 Core™ 2 

Duo 2.0 GHz for CPU, 4 GB for RAM and Ubuntu 12.10 machine configuration. 

According to implementation results, original protocol (Lin et at., (2006)) needs 8,8 

milliseconds computation time with 8192-bit length communication cost performed by 

one user for four-user group in totality. In this work, BLS Short Signature algorithm is 

added on public messages    and    of the original protocol in order to provide their 

message authentication and integrity. BLS Signature algorithm can be replaced with 
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another signature algorithms such as RSA, ElGamal, Schnorr, etc. depending on 

application the protocol will be applied on. Result of one signing computation of BLS 

signature is approximately 10 milliseconds (one SHA-512 hashing algorithm, one point 

mapping algorithm, one scalar multiplication) and one verification computation (one 

SHA-512 hashing algorithm and 2 bilinear pairing) is approximately 4,6 milliseconds 

performed by one user. 

Total computation time of the proposed protocol performed by one user in four-

user group size is approximately 56 milliseconds with 16384-bit length communication 

cost during the whole protocol. 

 The second protocol model (key distribution) is based on Feldman’s work 

(Feldman (1987)). The verifiable secret sharing is utilized as cryptographic tool in order 

to be solution of the challenge. In the beginning; for secure communication during the 

protocol, each party applies a certificate authority (CA) and exchange his/her certificate 

with other legitimate parties. In this way, it is adapted a secure, closed group 

communication. The leader has the possession of the common secret when starting to 

the protocol and then, he distributes this secret to other parties using verifiable secret 

sharing technique. The protocol is rendered to be applied over open channel by adding 

encryption algorithm to sending messages of each user instead of using secure channel 

as the original protocol. All point to point sending messages are encrypted (secrecy). 

Also, signature algorithm on publicly known commitments is added in order to prevent 

modifications by malicious parties (message integrity and authentication). It takes only 

two rounds. In the first round, only the leader performs the calculations in order to 

distribute pieces of the common secret (They are called as subsecrets in the thesis.). In 

the second round, participants carry out the computations to establish the common 

secret. Security of each sending messages depends on the encryption algorithm 

(secrecy). Consistency of the messages from the sender can be verified via 

commitments defined in the section 2.1.4 (correctness). The protocol is information 

theoretically secure even when the adversary has unlimited computing power. So, the 

adversary simply does not have enough information to break the encryption unless he 

has     values (Shannon (1949)). 

Detailed efficiency research is performed. According to those results for   

participants; there are; 
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    encryption algorithm,    decryption algorithm, 1 signing algorithm,   

verification algorithm,          integer (multiprecision) addition,       

        integer (multiprecision) multiplication and          

           integer (multiprecision) exponentiation forms computational 

complexity. 

      message number sent forms communication complexity. 

   round number forms round complexity. 

 

An implementation for     user and a leader with 1024-bit prime   and 512-

bit prime   parameters is developed under C programming. Implementation platform 

has GMP and OpenSSL libraries with Intel
®

 Core™ 2 Duo 2.0 GHz for CPU, 4 GB for 

RAM and Ubuntu 12.10 machine configuration. According to implementation results, 

original protocol (Feldman (1987)) needs 9 milliseconds computation time with 7168-

bit length communication cost in totality. 5,85 milliseconds of 9 is performed by the 

leader and the rest 3,5 milliseconds is performed by each user in 4-user group size. 

In this work, ElGamal Signature algorithm is added on publicly known 

commitments of the original protocol in order to provide its message authentication and 

integrity. ElGamal signature algorithm can be replaced with another signature 

algorithms such as RSA, Schnorr, BLS Short Signature etc. depending on application 

the protocol will be applied on. Result of one signing computation of ElGamal 

Signature is approximately 1,6 milliseconds (one SHA-512 hashing algorithm, one 

exponentiation, one multiplication, one addition) performed by the leader  and one 

verification computation (one SHA-512 hashing algorithm, two exponentiation, one 

multiplication) is approximately 3,4 milliseconds performed by one user. It is quite 

efficient than BLS signature. 

Also, ElGamal encryption algorithm is applied to each point to point sending 

messages of the protocol in order to be adapted on open channel. Each encryption time 

is approximately 2,5 milliseconds (two exponentiation and one multiplication) and each 

decryption  time for per user is approximately 1,3 milliseconds (one exponentiation and 

one multiplication). Total computation time of the proposed protocol performed by one 

user in four-user group size is approximately 37,5 milliseconds with 22528-bit length 

communication cost during the whole protocol. 17,5 milliseconds of 37,5 is performed 

by the leader and the rest 19,5 milliseconds is performed by one user in 4-user group 

size. ElGamal encryption algorithm can be replaced with another encryption algorithms 
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such as RSA, Elliptic Curve Cryptography, etc. depending on application the protocol 

will be applied on. 

 

Some deduction of implementation results as the following; 

 Computation cost: Key agreement protocol is based on elliptic curves. On the 

other hand key distribution protocol is based on multiprecision arithmetic. 

Original form of the both protocols have approximately same computation time 

(9 milliseconds). But in the second protocol, this cost is shared between leader 

(5,85 milliseconds) and other users (3,5 milliseconds for each). 

 

o  Time measures of computations in contributed version (17,5 

milliseconds by leader and 19,5 milliseconds by per user) of key 

distribution are more efficient than key agreement (56 milliseconds by 

per user) in four-user group size. 

 

o Main reason which causes inefficiency for key agreement’s contributed 

version is signature algorithm. There are   signing and        

verification algorithm performed by each user in the protocol. Due to one 

signing is 10 milliseconds and one verification is 4,6 milliseconds 

performed by one user, 47 milliseconds time cost for BLS Short 

Signature is performed by one user in totality. If ElGamal Signature 

algorithm was preferred instead of BLS Signature, there would be 23,6 

milliseconds time cost for signature algorithm and 32,6 milliseconds for 

entire protocol computation time performed by one user. 

 

o Although, key distribution protocol’s implementation result of 

computation time is more efficient than the first protocol, its computation 

cost depends on not only user number   but also threshold number  . 

Hence, increase of user number causes increase of threshold value and 

therefore there would be longer execution time. 

 

 Communication cost: Communication overhead of key distribution is very costly 

than key agreement. 16384-bit length communication messages forms total the 

communication cost during the whole key agreement protocol due to    



94 

 

communication complexity. There are   public messages as a point with 512-bit 

length for each coordinate, generated by one user in each two rounds. As to key 

distribution protocol, 22528-bit length communication messages forms the total 

communication cost during the entire protocol due to      communication 

complexity. There are   public messages created by per user. They are 1024-bit 

length encrypted messages between the protocol entities and one 3*1024-bit 

length commitment elements and one 1024-bit length signed commitment 

generated by leader. It is main drawback of the key distribution protocol since 

communication complexity is   . 

 

 Round complexity: Both protocols are effective on this requirement providing 

only   rounds independent of user number. 

 

Bilinear pairing is the most trending tool in key establishment protocol after 

2000 (Joux (2000)). Ease computation, communication and round complexity in key 

establishment protocols. At the present time, research interest for group key 

establishment protocol are focused on this tool for its efficiency. 

Key agreement protocol can be applied small size group oriented application on 

condition that usage of efficient signature scheme since there is    verification 

algorithm complexity. 

Verifiable secret sharing is applied in 1987 by Feldman. It was elegant tool 

comparing that old times. But, it is not practical in real life group key establishment 

applications. Although its results of computation time look more efficient than the first 

protocol for small group size, it has very costly communication overhead. When group 

size increases, computation time will be getting inefficient, too due to dependency of 

      parameters. It fits in application that key escrow, secure storage, collective 

control, secure multiparty computation and e-voting. 

 Table 6.1 represents general comparison of these two protocols. 
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Table 6.1. Key Distribution vs. Key Agreement. 

 Key Distribution 

 

Key Agreement 

Key Generation Center (By Leader) Each Member’s Contribution 

jointly 

Crypto Primitive t-Degree Polynomial, Discrete 

Logarithm, Secret Key 

Encryption, 

Extended Diffie-Hellman, 

Bilinear Pairing Function 

Communication  

 

Point to point Broadcast 

Computation Overhead 

 

Large (not similar) Large(similar complexity) 

Group Size  

 

<20 <20 

Equal Contributory 

 

No (Dependent on leader) Yes (jointly established) 

Number of Round 

 

2 2 

Open network 

 

Yes Yes 

Group modification Only        relation 

preserved 

No 

Allocation of each party Not static Static and Ring structure (should 

preserve their location) 

Verifiability of received 

public messages 

 

DLog Commitments No 

Security against active 

adversary and passive 

adversary 

Provided (Secrecy by 

encryption, correctness by 

commitments) 

Provided (Diffie-Hellman 

assumption and Bilinear Diffie-

Hellman assumption) 

 

 

 Open Problems and Future Tasks: 

The first protocol model (key agreement), 

Static participant number and allocation is an important drawback of the 

protocol. Also, there is an open problem defined by this study, which is; 

 If any party establishes the wrong secret, he/she will realize the failure only 

when the communication with the common secret starts via symmetrical 

cryptography. He/She will encrypt messages with wrong common secret and the 

recipient cannot decrypt it. If any failure occurs with decryption, the recipient 

sends error message and the protocol restarts by picking new ephemeral secret 

key. 

 It is an open problem and the protocol needs a cryptographic tool which 

provides the verifiability. So, users can be sure that the established secret is 

consistent before the communication with common secret starts. 
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The second protocol model (key distribution), 

Security analysis of the protocol is just defined. It needs formal security 

inspections in order to prove its security over open channel in the presence of passive 

and active adversary. Since this protocol’s computation cost depends on both user 

number   and threshold number  , increase of user number triggers very long execution 

time comparing to the first protocol. It can be seen in the results of efficiency analysis in 

Chapter 5. In order to prove it, an implementation is needed to be developed for greater 

group size of both protocols as future tasks. 
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APPENDIX A 

 

IMPLEMENTATION OF GROUP KEY AGREEMENT 

PROTOCOL 

 

All implementation details and the every values of each variable in the related 

steps of Section 4.2.4 can be found and followed under Appendix A.  

Table A.1 includes the input parameters. There are super singular curve  , 512-

bit prime  , 160-bit prime  , and 512-bit (for each coordinate of point) generator 

      . 

 

 

Table A.1. Input Parameters. 

Input Parameters 

 

User number is 4 namely;   ,               
A super singular curve   defined by         over   . 

       is a generator. 

The Weil pairing on the curve       is a mapping:             . 

        where   is multiple of 12. 

 

 

 =878071079966331252243778198475404981580688319941420821102865339926647563088

02229570786251794226622214231558587695823174592777133673174813249251299982247

91 

 

 =120160122648911460793888213667405342048029544012513118229196151310472072893

59704531102844802183906537786776 

 

 = 730750818665451621361119245571504901405976559617 

 

 =[81735113220479163444088081065295742773347788426935566005805196180172137489

09540300548540282437675522760000845925931053576935927991050163426073743235291

144, 

21925858791068707980289233738788192772603790605742558699790673332097605180754

56677957526112510506336142608030776703541731268826650064380998965189319664348

] 

 

 

Each user generates his/her static public-private key pair as seen in the Table 

A.2 for setup parameters. Static private keys are picked from 160-bit group order   and 
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public keys are 512-bit length (for each coordinate of the point). Then, he/she applies a 

legitimate Certification Authority (CA) such as VeriSign (WEB_4, (2013)) and 

exchanges his/her certificate with other participants. It is offline task of the protocol and 

public-private key pairs in the Table A.2 are calculated using PBC Library. 

 

 

Table A.2. Setup Parameters. 

Setup 

 

U
se

r 
 

 
 

 

       

 

  =360822344586300127099187863178723711012295013567 

 

  =[598531999776804928521854168667781213662852338506592354870337696709832

944352798350278540962292056149941453984097092947674360329231799492595057

1195534367809, 

602019989710017740756841482994787679170580487078304141560324709562969307

699407008170803545760719232637075183498190379327277965081811668211272824

5904032292] 

 

U
se

r 
 

 
 

       

 

  =288567973311584200176994578390869940543208619073 

 

  =[235105074095567380892066340821748573148259073838626440751263625026326

066343546821672529993920177463062075506640387986470906638085963179960452

5267064956755, 

749440225859857864485602065077100355457491778948837875823552373977276803

999023883867790736784109476759957736958074177674582699310130036340556202

760917386] 

 

U
se

r 
 

 
 

       

 

  =57558848928274421825129641653333750709066216329 

 

  =[498193230013043921416203282352764615304913620378414252075681674436604

958939982960243235234017967693763537259636647386933032184402123236881696

6158300588012, 

355677042296566288154239980602490681207690153958729634053516270425925233

160954536698585868958100774981808673327500531251290358733199759784819629

3892418827] 

 

(cont. on next page) 
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Table A.2. (cont.) 

U
se

r 
 

 
 

       

 

  =599838879599011924079709024407036352993025876990 

 

  =[266452297869576707902913185868832442031417871854164366567864290292659

780322700506918862010615306108076154891912952967222460060904002198735534

8101400425168, 

179961868061014168919115008915797476017529115393068163073163338179571985

540244521950821106032805501769444881282753384860152483458872059890839173

0383699068] 

 

 

 

 In Table A.3, each user picks ephemeral secret key    from 160-bit prime   and 

multiplies it with his/her public key   . Approximate time for each user’s         

computation is       milliseconds.    is 512-bit length. Specific time measures are 

available in the following table. 

 

 

Table A.3. Public Message Computation on Round-1. 

 Round-1 

        

 

U
se

r 
 

 
 

        

 

  =481979732857326628012634319296289415681640637577 

 

  =[65499478920638411785339971572593693170789546963992302651251492167127

576831991620911245753786747857393768215924978487053198618908193737736434

4178538038254, 

794642882047673763844349260850017837373133859795223166973273758413262377

085795346840452862647053527916971580865656077196556916993255579369716118

160434453] 

 

Total computation time of    is 3,592 milliseconds. 

 

(cont. on next page) 
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Table A.3. (cont.) 

U
se

r 
 

 
 

        

 

  =311294406533681462247751145863399150516619783049 

 

  =[87562620823072787326568678080829222899018781095357952398215859193838

479027855294946035442938831197308470951982489946716672381859527947207312

38397977549238, 

729966919155190704243056343106212794608157558550779018214370737380946511

449881888567418758882554681348170289671411583407380210946711233302751967

2351101143] 

 

Total computation time of    is 3,559 milliseconds. 

 

U
se

r 
 

 
 

        

 

  =226436604950412210155764242595885601038086233459 

 

  =[20743533759260505943118687521101344635139063582606131805029128232510

712468129233210575197219027479401186555650355625038293716599096379690034

61977708173941, 

225905865678677201745158187434898786415499897380247583820189195442971480

128807770287341536062833350496044479202252097336543551750685409398723715

4093019296] 

 

Total computation time of    is 3,753 milliseconds. 

. 

 

U
se

r 
 

 
 

        

 

  =166673198623961988060656494023777974634863506700 

 

  =[85002546295028533572404096486489752594900819886104627693200232311597

447972473928330650957013445217820680264512214731627547672103774748314683

00562111578472, 

465283493695616357173048486996587380839544858420652485723524977620012796

534202017588714063291356415748116551113394951509528111287953226802943807

2497114211] 

 

Total computation time of    is 3,493 milliseconds 

 

 

 

 In Table A.4, each users applies SHA-512 hashing algorithm from OpenSSL 

Library for   . It outputs 512-bit result. Approximate time for each user’s SHA-512 

hashing computation is      seconds. Specific time measures are available in the 

following table. 
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Table A.4. SHA-512 Algorithm on Round-1. 

 Round-1 

               

 

U
se

r 
 

 
 

               

 

  =01da74438ce8facd60f9e020a9fecd1389ff538f69cb75cbc9eae047fd5b4810f5a8b37c9

2d6f94550c58f5329b79d06a55c0c582028a361450ca0483a5f07b0 

 

Total computation time of    is 37   seconds. 

 

U
se

r 
 

 
 

               

 

  =075b5611a23ab98a22eb7d867b0833bcfec8fab239d30ee16c71cfebb7b71fd222c1442a

9a5d9c83aaa05643ba2c5da10cbff4177edad83e6f534afe4a5bf690 

 

Total computation time of    is 37   seconds. 

 

U
se

r 
 

 
 

               

 

  =6771ce0ea70ba07e7c9b6c08690915c831faaee82dbe44672d198b388fae46af2bb3ba77

985dcf5f0f7fc84f4227bd72ad5b5f1ee23ea560585eb7cee25c48fe 

 

Total computation time of    is 38   seconds. 

. 

 

U
se

r 
 

 
 

               

 

  =a8b92164d9c3d5551ac2ee1cfee42792ef49de88ead77f99712ac9c93146993bca9b1d46

b754afcca01191aa3aceb44573afc2889558bfa9ede7c3a93cc3f34f 

 

Total computation time of    is 36   seconds. 

 

 

 

In Table A.5, each user applies BLS Short Signature algorithm for hashed value 

  . Firstly they map this hashed value    to a point on the curve   in order to be applied 

in pairing function for BLS Short Signature (Mapping algorithm is available on PBC 

Library (WEB_1, (2013))). Mapping results are available in the Table A.5. Then, they 

sign this value with their static private keys    and broadcast to each others. These 

broadcast messages are 512-bit length (for each coordinate of the point). Approximate 

time for signing calculation of each user is        milliseconds. Specific time measures 

are available in the following table. 
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Table A.5. BLS Short Signature on Round-1. 

 Round-1 

 

          

 

U
se

r 
 

 
 

          

 

Hash    is mapped to a point on  : 

[11394282890418317597395154471735606739073444791348146551113179262033766

118797146258518855542877626243175834496040306935555786121835086049759833

71161273967, 

321091434390007406762901172021149874279773411088789322798956399896447805

783900799000595230346760635538706465529751530685267803762071696692400545

9101477774] 

 

    =[356522783924137889302968402380571315194696394202047185690054362621

977712795134885810819608138952301731062670577072102021784314974966511459

8835155490559876, 

475153495067989011297468575425586705540562785583951045337105703845562075

256926661231981240725966548902348890367038353597172349503716407874639669

6427474595] 

 

Total computation time of    is 10,140 milliseconds. 

 

U
se

r 
 

 
 

          

 

Hash    is mapped to a point on  : 

 

[54596260592833367283580433972637153288341112315046361380231772369888446

912177041872619156094868413226513691135482346491651727747586480228139447

20125698744, 

312417757341775160670197279282689275676474427290360308217978576606972446

159914142625228745184586046014756330085564535760841727158481550404648315

0992671408] 

 

    =[509141248607062459628115790224145541450455779296745861730744725248

785503446507717376095585298236820596900990830121586730880337079943298029

4309886564706880, 

383648283905794188664158363848549922594750183056967019749355777083320068

398395031408332139322820397167269482274142740707312464496263558597470029

6979537047] 

 

Total computation time of    is 9,901 milliseconds. 

 

(cont. on next page) 
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Table A.5. (cont.) 

U
se

r 
 

 
 

          

 

Hash    is mapped to a point on  : 

 

[32578961907119358228086922217179903505742655397676661491039745461454441

873311788936827647582828136790466204443612177965443643206780536179490495

1869354820, 

703153319200386963335458152598417101550174955850082415872263006750247000

764106195396849092547276962963751321721980464974463449133644840145676226

184396829]  

 

    =[333239447860230597512599891954809455182510957165592944401272518184

328617328746840688602688881539380864033654570611973526535644937426809863

2448746569009715, 

162698437527347258709616852657047085111910417774649223318410159845554749

275241324171912353158949705235948013068206786286909105563154469850491133

8645661849] 

 

Total computation time of    is 10,284 milliseconds. 

. 

 

U
se

r 
 

 
 

          

 

Hash    is mapped to a point on  : 

[31669977092146056868719657723083486523789079335603942087272133048179396

146125369654342209339061636597464931261474512060558496456796316269099091

97770369315, 

532487642930245832304902106683172888653387633187447499826090585263841569

445118844909254331184585158591403920631767498214386559087016258503358700

9405108169]  

 

    =[647484887427640987468021174653060723557339109748836007108914306272

830339622610595979053081767880801231608295254484934905191977695264027723

0104069456210712, 

748778231037475068587892900718150608441729450834002926850423830046885642

426795120120514728844893223523643798271742054460324035413860861906355939

2999984693] 

 

Total computation time of    is 10,181 milliseconds. 

 

 

 

In Table A.6, each user applies two pairing functions; one inputs hashed value 

   and static public key   ; another inputs signature result      and generator  . If result 

of each function is equal, then      is verified. Approximate time for BLS signature 

algorithm including hashing algorithm for each user is        milliseconds. Specific 

time measures are available in the following table. 
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Table A.6. Verification of BLS Short Signature on Round-2. 

 Round-2 

 

                     

 

U
se

r 
 

 
 

                     for   . 

 

Verified and result of both equations: 

[84989557624178270743422998102102081870366665395557022983327542365255294

431321400165074069716106278740158427745328099857732514243605904568546493

7023030969, 

300264362503112446721536914495107892636277425723848147334339090142665193

856039420832551893320690086888760038288789802750424785035648632557471275

7895007707] 

 

Total time 4,334 milliseconds. 

 

                     for   . 

 

Verified and result of both equations: 

[31055763863790624281041368059421966604990559436620673967759202824211637

469642584163893744217451617084258513861380150482243328334854037195892305

52880400680, 

558905312360178457104472267934618664499347422231854590968280781006433751

035591859164176216459641595426732766284794942489798048599338869284284019

6711076000] 

 

Totall time 4,601 milliseconds. 

 

 

                     for   . 

 

Verified and result of both equations: 

[42316553346631305965880408902543119862014675035526866872371681438863567

734301261607102877812796148486196517006003768892151396017884003429361419

82420130871, 

138679202258652510740956873226398989682753509260564964124268571961510182

516766422288383230294825532683444063692716199281190336091852928938672086

4241451235] 

 

Totall time 4,622 milliseconds. 

 

Total computation time for verification of    is 13,557 milliseconds without hashing 

algorithms. 

Total calculation time for verification of 13,668 milliseconds with hashing algorithms in 

the Table A.4. 

(cont. on next page) 

 

 

 

 



112 

 

Table A.6. (cont.) 

U
se

r 
 

 
 

                     for   . 

 

Verified and result of both equations: 

[13509156551619914371594444156476435226286956085685290592019572053098997

250392207528253678521120239312128333179036738796555435471987102840713514

56791410485, 

730209471897317597724921534654894734917827297175983651702850233562375913

627016875096536288782166323746376336371987770744943426751426320196776559

38851515] 

 

Totall time 4,630 milliseconds. 

 

                     for   . 

 

Verified and result of both equations: 

[31055763863790624281041368059421966604990559436620673967759202824211637

469642584163893744217451617084258513861380150482243328334854037195892305

52880400680, 

558905312360178457104472267934618664499347422231854590968280781006433751

035591859164176216459641595426732766284794942489798048599338869284284019

6711076000] 

 

Totall time 4,601 milliseconds. 

 

                     for   . 

 

Verified and result of both equations: 

[42316553346631305965880408902543119862014675035526866872371681438863567

734301261607102877812796148486196517006003768892151396017884003429361419

82420130871, 

138679202258652510740956873226398989682753509260564964124268571961510182

516766422288383230294825532683444063692716199281190336091852928938672086

4241451235] 

 

Totall time 4,622 milliseconds. 

 

Total computation time for verification of    is 13,565 milliseconds without hashing 

algorithms. 

Total computation time for verification of 13,676 milliseconds with hashing algorithms in 

the Table A.4. 

(cont. on next page) 
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Table A.6. (cont.) 

U
se

r 
 

 
 

                     for   . 

 

Verified and result of both equations: 

[13509156551619914371594444156476435226286956085685290592019572053098997

250392207528253678521120239312128333179036738796555435471987102840713514

56791410485, 

730209471897317597724921534654894734917827297175983651702850233562375913

627016875096536288782166323746376336371987770744943426751426320196776559

38851515]  

 

Totall time 4,630 milliseconds. 

 

                     for   . 

 

Verified and result of both equations: 

[84989557624178270743422998102102081870366665395557022983327542365255294

431321400165074069716106278740158427745328099857732514243605904568546493

7023030969, 

300264362503112446721536914495107892636277425723848147334339090142665193

856039420832551893320690086888760038288789802750424785035648632557471275

7895007707] 

 

Totall time 4,334 milliseconds. 

 

                     for   . 

 

Verified and result of both equations: 

[42316553346631305965880408902543119862014675035526866872371681438863567

734301261607102877812796148486196517006003768892151396017884003429361419

82420130871, 

138679202258652510740956873226398989682753509260564964124268571961510182

516766422288383230294825532683444063692716199281190336091852928938672086

4241451235] 

 

Totall time 4,622 milliseconds. 

 

Total computation time for verification of    is 13,586 milliseconds without hashing 

algorithms. 

Total computation time for verification of 13,696 milliseconds with hashing algorithms 

in the Table A.4. 

 

(cont. on next page) 
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Table A.6. (cont.) 

U
se

r 
 

 
 

                     for   . 

 

Verified and result of both equations: 

[13509156551619914371594444156476435226286956085685290592019572053098997

250392207528253678521120239312128333179036738796555435471987102840713514

56791410485, 

730209471897317597724921534654894734917827297175983651702850233562375913

627016875096536288782166323746376336371987770744943426751426320196776559

38851515]  

 

Totall time 4,630 milliseconds. 

 

                     for   . 

 

Verified and result of both equations: 

[84989557624178270743422998102102081870366665395557022983327542365255294

431321400165074069716106278740158427745328099857732514243605904568546493

7023030969, 

300264362503112446721536914495107892636277425723848147334339090142665193

856039420832551893320690086888760038288789802750424785035648632557471275

7895007707] 

 

Totall time 4,334 milliseconds. 

 

                     for   . 

 

Verified and result of both equations: 

[31055763863790624281041368059421966604990559436620673967759202824211637

469642584163893744217451617084258513861380150482243328334854037195892305

52880400680, 

558905312360178457104472267934618664499347422231854590968280781006433751

035591859164176216459641595426732766284794942489798048599338869284284019

6711076000] 

 

Totall time 4,601 milliseconds. 

 

Total computation time for verification of    is 13,853 milliseconds without hashing 

algorithms. 

Total computation time for verification of 13,965 milliseconds with hashing algorithms 

in the Table A.4. 

 

 

 

In Table A.7, each user performs                              

            
          calculation.    is 512-bit length. Approximate time for this 

calculation of each user is       milliseconds. Specific time measures are available in 

the following Table. 
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Table A.7. Public Message Computation on Round-2. 

 Round-2 

 

                                         
          

U
se

r 
 

 
 

 

                             
          

 

  =[68104629061775108721636414749055227777741222922428589733386775320529

987534106058435753947086779384525018302236699312601057863725751024574074

28233959859365, 

543747520770272738396591946982866301331881785182727627619738837147978586

943278498106413372356046997478796967050524230947107949376711243419461379

7730402532] 

 

Total computation time of    is 2,710 milliseconds. 

 

U
se

r 
 

 
 

 

 

                             
          

 

  =[26794103025302656230716823697380420920624810659494393009886550644254

493807615746999876018391834242408710769631379103652211092696408273907173

70566051260778, 

471620708619856201212044503852137739826124740076599957300699468850435679

496209700445808009714290027073685794160926790217435108792351752273567114

3673758691] 

 

Total computation time of    is 2,537 milliseconds. 

 

U
se

r 
 

 
 

 

                             
          

 

  =[56960308828868137216496238464491208808293399347122185630169171061034

106862867541703447010107259483832606344580963640179104480080149345671063

15205320905869, 

511886999334117438925519602325133402948179944411969426879175053370634870

339198184544561920743021239991131675661652352203218003892592807825377322

7325619370] 

 

Total computation time of    is 2,572 milliseconds. 

 

U
se

r 
 

 
 

 

                             
          

 

  =[17300462669627391672012741049058331881919757065988073588672240900886

790199582042324696124973132038741640766158726786360129121980880487748402

12259456731202, 

869691866585351282583291812817554814409137898816586419346756264378697763

609375083319192872047877156840550189549534301406837563078302602589865770

8701161550] 

 

Total computation time of    is 2,658 milliseconds. 
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In Table A.8, each users applies SHA-512 hash algorithm from OpenSSL 

Library for   . It outputs 512-bit result. Approximate time for SHA-512 hash algorithm 

of each user is      seconds. Specific time measures are available in the following 

Table. 

 

 

Table A.8. SHA-512 Algorithm on Round-2. 

 Round-2 

 

               

 

U
se

r 
 

 
 

               

 

  =0100000000000000d350a39c707f000050a542d6ff7f000045c5df9c707f00000000d64

2be39e1fe010000000000000080a842d6ff7f00000600000000000000 

 

Total computation time of    is 21   seconds. 

 

U
se

r 
 

 
 

               

 

  =65d5ba07e70a6fa3ab4c9a6ee7c859b570ee80e2b89692bb6e866dc7173b6c7fa9d241e

c8bd130bdadced67d152ea8860992486665065532f3f34d34daf995ff 

 

Total computation time of    is 19   seconds. 

 

U
se

r 
 

 
 

               

 

  =8d15fc75c00f1dc0b7936adeafe21dd291836768c6cabaf3a4eec049b01c255ee910092d

0bf5f324681c16ecef207e81e530302981190f27507b14f57707c840 

 

Total computation time of    is 21   seconds. 

. 

 

U
se

r 
 

 
 

               

 

  =e97c43c5ae5bc549a25e827a1a78d7cc114cdddacc56d83e9ad6feeea48370bb62aa50ec

b326ccef45827ef0ce6d40605f9b23010d4f4d2eb0cc573accc0f6fd 

 

Total computation time of    is 20   seconds. 

 

 

 

In Table A.9, each user applies BLS Short Signature algorithm for hashed value. 

Firstly they map this hashed value to a point on the curve   in order to be applied in 

pairing function for BLS Short Signature. Mapping results are available in the Table 

A.9. Then, they sign this value with their static private keys    and broadcast to each 
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others. Each broadcasted message is 512-bit length. Approximate time for signing 

computation of each user is       milliseconds. Specific time measures are available in 

the following table. 

 

 

Table A.9. BLS Short Signatures on Round-2. 

 Round-2 

 

          

 

U
se

r 
 

 
 

          

 

Hash    is mapped to a point on  : 

[58401622662366460771448843466596112896749911614409096825609171391962019

231875220797049370852763019910310560921329022127582363386394987963456639

55362884877, 

325622431542330543892981380973681277021498459179566052097515149546345896

564827236162593644778803433570577625237532367563614951794511085197283339

223161505] 

 

    =[746646782775406656461066359344885315398194607077743682737353559535

592009127939415155486120795640055307613955139237255045105857399279090826

8749872517021286, 

680348508250427691572957164453410315137849642634035934354444924753994124

678451756539946545449928458644372680473271943688960962788164933310839524

6635287224] 

Total computation time of    is 9,887 milliseconds. 

 

U
se

r 
 

 
 

          

 

Hash    is mapped to a point on  : 

[75788652448078062883006302122977383840192536516287268719993645928992980

989125169283062558086088937298659114370629849808955171676204145531433890

58553237348, 

497863954323731309529072296663764087114516099791023711008572659069680690

098026249676850946802885086074965802104547508788201822602208251998445903

7162268896] 

 

    =[481720175485644945866788387694910213707583436817877950988334893676

902699146109745015732886057251387017738952575239311196637073768170955973

9479344118468093, 

443171478554231022386062257980259481280363020582342470339085792010001399

428013555367600373195348631450055008346654726864144446552555922827421539

2438090699] 

 

Total computation time of    is 10,063 milliseconds. 

 

(cont. on next page) 
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Table A.9. (cont.) 

U
se

r 
 

 
 

          

 

Hash    is mapped to a point on  : 

[63677493215248822342177894275845441058041122812043115120394787292914133

285240433424027744056676216957659584680640963853289641566210380172411439

75891177695, 

788603892035720740930313973988732961748138540923989277747967354484830120

273423142595835794201642035480544902424208043450601347572921890791253952

8131845686] 

 

    =[337604177557551664912839404419392480073275344064320506495116611845

299649536644339997880174585635247268062273293846152672664248300098401874

0940982220012450, 

649991935124605081925469210193768106150793437122130801158554335559120205

944288254422361302599891686773927723519069070889184207550636308781573332

6180284636] 

 

Total computation time of    is 9,738 milliseconds. 

. 

 

U
se

r 
 

 
 

          

 

Hash    is mapped to a point on  : 

[50782050044497616549566398156761219665315881485456406444545733621467978

480836837103965214684813911025203933881414696190562210886952091459599910

54477441934, 

252174419180126389141510494744821561302924961396479649544379422441239795

724284595959866088257127225887531401912812558741318306573516348780173617

2786741048] 

 

    =[637283532547934133991431947866778380127994445621577705096269275336

551619514950351803529111471276841998856779327447064573331562325181553875

0779757353099789, 

728586033594268950293096201116591252773929169462001180283926255377525453

452173590121432721048711872367011237329708032191193582779297531720031328

4517735730] 

 

Total computation time of    is 10,222 milliseconds. 

 

 

In Table A.10, each user applies two pairing functions; one inputs hashed value 

   and static public key   ; another inputs signature result      and generator  . If result 

of each function is equal, then      is verified. Approximate time for BLS signature 

verification including hash algorithm of each user is        milliseconds. Specific time 

measures are available in the following table. 
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Table A.10. Verification of BLS Short Signature on Key Agreement. 

 Key Agreement 

 

                     

 

U
se

r 
 

 
 

                     for   . 

 

Verified and result of both equations: 

[30843027506187908367995149253460135613874967257263298219114094870055122

695705102438618869079148882291594233810644970720703715429684420881435976

78266928146, 

535690461683446292343990689624473191430546046804721314286695932497295027

732683695115653369221838813058282810468005097855369063155618714762871869

2433485391] 

Totall time 4,532 milliseconds. 

 

                     for   . 

 

Verified and result of both equations: 

[42110381426722957770320097549606932129458929202154262189061803709055229

232093693754069301923356161245709134018515146388026101538186358426045833

76365992986, 

335854001297228876012391959958609373586118786906276639005490510825202604

907463426742376777510834862142578128360270193138368814872794322891777008

8077286081] 

Totall time 4,377 milliseconds. 

 

                     for   . 

 

Verified and result of both equations: 

[56083440858296237277491805388965515938325372643442813898235246192121134

127496593614332712520984588288632887685050878475352291325150070310093372

39109031582, 

382670355318454814883139469919849098096917706913139170029291120227019829

733817215564216380573066881535899738918702577397418266294764145184150748

4459521513] 

Totall time 4,402 milliseconds. 

 

Total computation time for verification of    is 13,311 milliseconds without hash 

algorithms. 

Total computation time for verification of 13,371 milliseconds with hash algorithms in the 

Table A.8. 

(cont. on next page) 
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Table A.10. (cont.) 

U
se

r 
 

 
 

                     for   . 

 

Verified and result of both equations: 

[77021032351661284446693338976333910079817870960833939168976636647900017

130517322107835373433307479346147116219501183711406233043855495739413061

62647278710, 

453510745067020540842607150738945320690618751273976147626672200940147285

830595445685448154801791624856620253313567973077078664906517383430321857

6948832691] 

Totall time 4,340 milliseconds. 

 

                     for   . 

 

Verified and result of both equations: 

[42110381426722957770320097549606932129458929202154262189061803709055229

232093693754069301923356161245709134018515146388026101538186358426045833

76365992986, 

335854001297228876012391959958609373586118786906276639005490510825202604

907463426742376777510834862142578128360270193138368814872794322891777008

8077286081] 

Totall time 4,377 milliseconds. 

 

                     for   . 

 

Verified and result of both equations: 

[56083440858296237277491805388965515938325372643442813898235246192121134

127496593614332712520984588288632887685050878475352291325150070310093372

39109031582, 

382670355318454814883139469919849098096917706913139170029291120227019829

733817215564216380573066881535899738918702577397418266294764145184150748

4459521513] 

Totall time 4,402 milliseconds. 

 

Total calculation time for verification of    is 13,119 milliseconds without hash 

algorithms. 

Total calculation time for verification of 13,181 milliseconds with hash algorithms in the 

Table A.8. 

(cont. on next page) 
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Table A.10. (cont.) 

U
se

r 
 

 
 

                     for   . 

 

Verified and result of both equations: 

[77021032351661284446693338976333910079817870960833939168976636647900017

130517322107835373433307479346147116219501183711406233043855495739413061

62647278710, 

453510745067020540842607150738945320690618751273976147626672200940147285

830595445685448154801791624856620253313567973077078664906517383430321857

6948832691] 

Totall time 4,340 milliseconds. 

 

                     for   . 

 

Verified and result of both equations: 

[30843027506187908367995149253460135613874967257263298219114094870055122

695705102438618869079148882291594233810644970720703715429684420881435976

78266928146, 

535690461683446292343990689624473191430546046804721314286695932497295027

732683695115653369221838813058282810468005097855369063155618714762871869

2433485391] 

Totall time 4,532 milliseconds. 

 

                     for   . 

 

Verified and result of both equations: 

[56083440858296237277491805388965515938325372643442813898235246192121134

127496593614332712520984588288632887685050878475352291325150070310093372

39109031582, 

382670355318454814883139469919849098096917706913139170029291120227019829

733817215564216380573066881535899738918702577397418266294764145184150748

4459521513] 

Totall time 4,402 milliseconds. 

 

Total computation time for verification of    is 13,274 milliseconds without hash 

algorithms. 

Total computation time for verification of 13,334 milliseconds with hash algorithms in 

the Table A.8. 

 

(cont. on next page) 
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Table A.10. (cont.) 

U
se

r 
 

 
 

                     for   . 

 

Verified and result of both equations: 

[77021032351661284446693338976333910079817870960833939168976636647900017

130517322107835373433307479346147116219501183711406233043855495739413061

62647278710, 

453510745067020540842607150738945320690618751273976147626672200940147285

830595445685448154801791624856620253313567973077078664906517383430321857

6948832691] 

Totall time 4,340 milliseconds. 

 

                     for   . 

 

Verified and result of both equations: 

[30843027506187908367995149253460135613874967257263298219114094870055122

695705102438618869079148882291594233810644970720703715429684420881435976

78266928146, 

535690461683446292343990689624473191430546046804721314286695932497295027

732683695115653369221838813058282810468005097855369063155618714762871869

2433485391] 

Totall time 4,532 milliseconds. 

 

                     for   . 

 

Verified and result of both equations: 

[42110381426722957770320097549606932129458929202154262189061803709055229

232093693754069301923356161245709134018515146388026101538186358426045833

76365992986, 

335854001297228876012391959958609373586118786906276639005490510825202604

907463426742376777510834862142578128360270193138368814872794322891777008

8077286081] 

Totall time 4,377 milliseconds. 

 

Total computation time for verification of    is 13,249 milliseconds without hash 

algorithms. 

Total computation time for verification of 13,310 milliseconds with hash algorithms in 

the Table A.8. 

 

 

 

In the Table A.11, each user performs     (                   

     )
       

   
        

         calculation for common key agreement. 

Approximate time for this calculation of each user is       milliseconds. Specific time 

measures are available in the following table. 
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Table A.11. Common Key Agreement. 

 Key Agreement 

 

    (                        )
       

   
        

         

      
[
                                                         

                                        
]
. 

 

U
se

r 
 

 
 

    (                )
       

   
    

     

 

  =[5125574494847115316399676514623981300216628367118981355057769382952

74542575079682125586863866096937875408269342561658297749091905682024604

3662093936375526, 

25113889020025718327793732218363578249173515353954953120463111458554364

75526025751560834740713029226997340019228876400746565907197666070785972

511781262733] 

 

Total computation time of    for key agreement is 2,657 milliseconds. 

 

U
se

r 
 

 
 

    (                )
       

   
    

     

 

  =[5125574494847115316399676514623981300216628367118981355057769382952

74542575079682125586863866096937875408269342561658297749091905682024604

3662093936375526, 

25113889020025718327793732218363578249173515353954953120463111458554364

75526025751560834740713029226997340019228876400746565907197666070785972

511781262733] 

 

Total computation time    for key agreement is 2,672 milliseconds. 

 

U
se

r 
 

 
 

    (                )
       

   
    

     

 

  =[5125574494847115316399676514623981300216628367118981355057769382952

74542575079682125586863866096937875408269342561658297749091905682024604

3662093936375526, 

25113889020025718327793732218363578249173515353954953120463111458554364

75526025751560834740713029226997340019228876400746565907197666070785972

511781262733] 

 

Total computation time    for key agreement is 2,528 milliseconds. 

 

U
se

r 
 

 
 

    (                )
       

   
    

     

 

  =[5125574494847115316399676514623981300216628367118981355057769382952

74542575079682125586863866096937875408269342561658297749091905682024604

3662093936375526, 

25113889020025718327793732218363578249173515353954953120463111458554364

75526025751560834740713029226997340019228876400746565907197666070785972

511781262733] 

 

Total computation time of    for key agreement is 2,516 milliseconds. 
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 Table A.12 presents the summary of the original protocol (Lin et al., (2006)) for 

four users. It approximately needs 17,1 milliseconds computation time for per user. 

 

 

Table A.12. Summary of Results of the Original Protocol. 

 User    

(millisecond) 

 

User    

(millisecond) 

User    

(millisecond) 

User    

(millisecond) 

Round-1 

(   Computation) 

3,592 

 

3,559 

 

3,753 3,493 

Round-2 

(   Computation) 

2,644 2,471 2,505 2, 592 

Key Agreement 

(Key Generation) 

2,657 2,672 2,528 2,516 

 

 

 Table A.13 presents the summary of the proposed protocol for four users. Total 

computation time is approximately 56 milliseconds for per user. 

 

 

Table A.13. Summary of Results of the Proposed Protocol. 

 User    

(millisecond) 

 

User    

(millisecond) 

 

User    

(millisecond) 

 

User    

(millisecond) 

 

R
o
u

n
d

-1
 

Ti Calculation 3,592 3,559 3,753 3,493 

SHA-512 Algorithm 0,037 0,037 0,038 0,036 

BLS Short Signature 10,140 9,901 10,284 10,181 

Total for Round-1 13, 769 13, 497 14, 075 13, 710 

R
o

u
n

d
-2

 

Signature verification 

with hash algorithm 

13,668 

 

13,676 13,696 13,965 

   Calculation 2,644 2,471 2,505 2, 592 

SHA-512 Algorithm 0,021 0,019 0,021 0,020 

BLS Short Signature 9,887 10,063 9,738 10,222 

Total for Round-2 26,199 26,229 26,960 26,799 

K
ey

 

A
g
re

e
m

en
t Signature verification 

with hash algorithm 

13,311 13,119 13,274 13,249 

Key Generation 2,657 2,672 2,528 2,516 

Total for KeyGen 15,968 15,791 15,802 15,765 
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APPENDIX B 

 

IMPLEMENTATION OF GROUP KEY DISTRIBUTION 

PROTOCOL 

 

All implementation details and the every values of each variable in the related 

steps of Section 4.3.4 can be found and followed under Appendix B. 

Table B.1 includes the input parameters which are 1024-bit prime   with 

primitive root   of   
  and 512-bit prime   where          . This test data is acquired 

from (Allen (2008)). 

 

 

Table B.1. Input Parameters. 

Input Parameters 

 

There are Leader   and 4 users, namely;   ,               
 

 =118381843724717101749461596756646482230905897660463123624560394563807609933

95604226539234152095602888644631771664207057053879231168634640942410140411181

28331608565993532002783207090698630214806953496920873586016402508364571188009

32512352680882211491654732513532851546702786190877679512653375709345552713302

401 

 

 =59660846376012012299732062167070449913568079369759726390943366472735655747

12503517903108945112554085753803107387173057439353758032443598937081832277671

13851702879616416528431089561994162759693918367761169508349642281876675530310

50881716218984733944262206823833143460937854518070649325296332195764146328701

846 

 

 =106432791900654366581899866180644064216449650489311237590593999612671885602

80838103148616561846017372648276481588281249312389181981519220200679285520165

533 

 

 

 

Each user generates his/her static public private key pair as seen in the Table B.2 

for setup parameters. Their bit lengths are 1024-bit. Then he/she applies a legitimate 

Certification Authority (CA) such as VeriSign (WEB_4, (2013)) and exchanges his/her 

certificate with other participants. It is offline task of the protocol and public-private key 

pairs in the Table B.2 are calculated by using GMP Library. 
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Table B.2. Setup Parameters. 

Setup Parameters 

 
L

ea
d

er
 L

 

 
               

 

  =624721139944302845120158894651212669095900885513726009996762322717651

078479068508194474483103779297569505765109175065706985743526704094031728

640592829796875876141636920161074022615639704350378568028603802872871474

649244938316848302108067439455680528809370088197272651933576166120125518

6187085681341400261459 

 

  =464332380989113754890128925023491582195978133970797553669546316092509

883301014707965752096541010640620604267360451295859376474188192653097119

611459216424008800604363380379691872021706480483394524481755422748544534

634894408199252392242101194723541893752051293940365348643519043234829548

57478521748473676501366 

 

U
se

r 
 

 
 

 

              

   =1000 

 

  =939274252929733329245706686610136571633853179494326867573700787748431

285678647901603705763527822307692929503263880532988528159166649674990851

639312951401311462924709956732184873710080287985136525536785462470302311

746871890895223456503805215456479662461445571437278397466833314835644593

1201573100146673101435 

 

  =112164028721832983324553677381342841886294536651878840592942883942405

027110089791630377228963799418727728227818748733909739160812906443902605

520617373524522684653317339802698700280150116828740628329540327062963574

962424598753509925163574566653239016123019756169509839736998025892778255

97047716344030537367564 

 

U
se

r 
 

 
 

              

 

   =2000 

 

  =456282530886490211251777670500544716546607383842395646271801632397848

587008323012492153146735848251666889420333457194479543000250307699738611

994891595198431257674908982283571132183203847644078809570004049044623114

285272514313978118079621979860224598583162257365627770394658619706596092

26561129451560957422212 

 

  =741962194969843363798367215186349285636218111566693303258407655922147

391575981821136762082207427958073528084931675182819066612883203281237279

709068679503104782776627279314546847867519110354596511116265082076162183

286356694683953935898043768950694346836443337056956703115384437276600343

17385704691031040229959 

 

(cont on next page) 
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Table B.2. (cont.) 

U
se

r 
 

 
 

              

 

   =3000 

 

  =984344637997870673453556983943952172191995135888090403597822694823374

831009378920237258842694660925276201011942619498297297218133883065945280

960142604778679413564118419103462626577080033476666318403732704594939886

718389081509833488007126961567416883741554430777473500255431023533430763

05769235288505497163892 

 

  =423151559050087451813679571680843167450078817753445137248288286289386

329200910493511333914729103726949033603776275904033684796458339735804944

468192080335726672767568792263090968349495238217460971148177964927079193

459388345209249613754157906377367685598514461301240873128382216180092938

06779304743242940741287 

 

U
se

r 
 

 
 

              

   =4000 

 

  =545169401916443501091901366156818091571432205624218813570424244550972

668184107580975897460685736985998736486840045810841175208619580790819082

518566821440677725094602575229219732682356627903505665281097151784293320

152912717397012691890097506723712797485397614104229912857572831819815369

00173849207863102295398 

 

  =721499555972301693908509470271650162780085808673848100432041137177143

690821020340645537193301846668642926479038592969064788353288978529429032

217173560850440625663724610290511118081778048840295598879729508427683109

218300649518214540827292206737455703854475781638760358520216329186756946

99344085415138211139835 

 

 

 

In Table B.3, Leader generates 2-degree polynomial      with 512-bit constants 

(degree size is depending on user number, see Section 4.3.2) and picks the common 

secret which is     . Polynomial generation takes 21   seconds. Then, Leader 

calculates commitment vector which takes is 5,483 milliseconds and each element in the 

vector is 1024-bit length. Finally, Leader computes subsecrets which will be distributed 

to the four users. Subsecret computation takes 16   seconds for four users. 
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Table B.3. Polynomial Generation, Commitment and Subsecret Computation. 

L
ea

d
er

  
 

  

Round-1 

                    
        

   = (SECRET KEY) 

8383555565944093718593764739391348007500133036883716486541747654183165780

2986392801094671656377227295058219915191408065884909728683424909837235724

62953520 

 

  =2428293149901509306139132918171431769109835394353665109028442819095155

4507460874647525420291737756486690170369731534789723764236064494589388292

18494575260 

 

  =1306496017242772172743264447276527112501750362327928440722559572994619

7667696396234574501921561249160407691114702587066397435614306693850235806

20797552756 

Total computation time for polynomial generation is 21   seconds. 

                                    

 

  =3143683525979079438765391635881157522909064933040545518349199971361588

2618958273824393884058530691560303736907083295492871788875021027361427738

7494294184971781694559556503087576923289679590742146239008069217075394398

9097652273935499342168915103391261202132300508823916443821001876727030357

1448735062779922225 

 

  =1107047503677799751679087477009387825694569797888756011850250854928233

1918241284844412357937206339783669331630281630515262470852878254742849409

3274889548382017759672299957547948541780164542984543692389836419377551770

4975993964899408315999138887765467994741058626762071503649519360903720666

06926981227303305090 

 

  =1048824605645551624071155651959993263958273610139954748153470921715143

5882797205024181705386965985357354643352657638179706936450203659035683743

0535595320850353230267299473751196137994391816178508321007660262919962253

2654542070965443086453535551042806288384375020322751294011550809347075977

23415725933936435922 

Total computation time for commitments is 5,483 milliseconds 

                     

  =93259561209504560123969664110507212660620767152741143143152480772186570

7977960059681643517420889137296070533374656586279966797506086290493847778

796634114 

 

  =72585641875647150801155136949452537992926003275140836174798002996666131

6774568223852911611254106506819164726165533941498818158803772188347757546

2403135543 

 

  =60749029122222288388412426647830801822693809069814855265677742074830310

3904012961035465182730621577689599921318462679408835698050021082953354805

2242126741 

 

  =80248909761330235356068701686829576971815144588607409177548464924383078

8214214027830686722356235863605740286955079997289288215687507234886244483

3833773241 

Total computation time for subsecrets is 16   seconds. 
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In Table B.4, Leader uses ElGamal signature algorithm in order to sign the 

commitment vector. Elements in commitment vector are concatenated and input SHA-

512 hash algorithm from OpenSSL Library. Hash calculation takes 58   seconds and 

computation time for ElGamal signature algorithm on the hashed value is 1,548 

milliseconds. It outputs 1024-bit for each message pair such that (    ,     ). 

 

 

Table B.4. SHA-512 Algorithm and ElGamal Signature. 

 Round-1 

L
ea

d
er

 L
 

                  ‖  ‖    

 

                                                

 

                    
               

 

       =b5b9320edd95efaca0a762eb640d6c21b2b614b923caeafb7a7ffd099f58c40812f69

bd734522672a8e3905e50e23786e298850ced6d243a153a5d336e7e74fc 

 

Total computation time for SHA-512 is 58   seconds. 

 

    =695575389497024954730892630599334798508371449657009007930096807584779

8492881398189421110684965646954164301147266217786310314657433128306572383

1310655817698460145018844658114177716288523215160736065814295728004113263

8990093833501496303235632096742540066489289773574910618072244138433077326

39800548754281182658 

    =798741665700454100843447456677897345585773497993580709634619333945268

4373773222013777076657542782090973944890300470552745865967321837240520738

2071563583070137322117043461910150047586127510786596502505311576542212861

2898691368461335408583294353925036265232204518086859225728163168117502525

85545186794443183510 

Total computation time for signing hashed value is 1,548 milliseconds. 

 

 

In Table B.5, Leader encrypts calculated subsecrets using ElGamal encryption. 

It outputs 1024-bit encrypted messages. Total calculation time for all users is 10,391 

milliseconds. Specific time measures are available in the following table. 
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Table B.5. ElGamal Encryption of Subsecrets. 

L
ea

d
er

  
 

  

Round-1 

Encryption for   : 

 

                                               
 

          
         

 

  =45803604306640267223973809084483059928453171078492664129993847670587578

6720609664810367247761797902559740727665604505052603182525694437489768962

2369403678803900109836841536891520954403157091891920410473927021566399401

3082281508991139262101535598622494105587010125447685994909500652766191488

856282150121118606 

 

   =557633755030562490500103654543188854400824841173042905737338571441392

3254150400792833861253352065609281163958981383202057748980041661236408661

4649244695476192304856025025322850680917542369491987312693707621951724903

3050062567348809982188501230094522805378766601940888395112901150958569995

07590066198814733060 

 

   =611751051594167668610237021674746033062017510849856011304068114205595

8412076075790421671820081183342373880433970054743157867421172252002723344

6216533384840291375438836608535602228764588596491814753131301043390952462

0321898551928787202967133874822156474729820155130077633964122431923902289

34303875585385417857 

 

Total encryption time for    is 2,558 milliseconds. 

Encryption for   : 

 

                                               
 

          
         

 

  =43522927901130318850273789017453481302799377475176183775573694827126061

5889540028358130998461009840221007364848964278967763901408764042509885972

0451813850209649810161429332679053711422257534710595765455840401757105923

2755633027611939245669553077550015370260335917867139967687360045489976541

261992223598803355 

 

   =618699587376416226796132960700883376872407584115930037770851113950146

0979786267536102757773311997578957372085844556508670714514250342861143798

0975441884651139525523240962998107274394167840949345735899058604370596141

9596057126295990015196379641713618911240410466315969581126325975535452598

20740211481849281958 

 

   =814882576568089089197088545554518400510925187005436018304901223675665

5396639127722573204859126862148918919057720141263374146240044779211689035

1819163420273670049077093170560043938463637813147829565349844535249516502

6500984091531376175766460563974330950977607011838654067168255002670046014

1884694165692811050 

 

Total encryption time for    is 2,533 milliseconds. 
 

(cont. on next page) 
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Table B.5. (cont.) 

L
ea

d
er

  
 

 

Encryption for   : 

                                               
 

          
         

 

  =101550665500530873824385877658578186656371763129090773154090333353480

224045954148525799371750531775279647792703126348563296923385592731868697

991564079931377578228123572092410168620673336950410544233915009791130637

341592830526855961205617212636167713170610606897284917624711230168501719

716089922580747447565542 

 

   =48371371113772096519312350051469503290477887696323346132004870289394

776987861502149848626853254151295047804856186940539215996698021408115743

219800537901979761774853371481741861321356085367284619197357340713540392

794262856418702320159669972438117858560113652316998973426746528830280019

205580204739892072400955 

 

   =10991384788337848451451517629709944799259802538120593692383670703110

226715531019053080866045338512932888369076882932740542408184846910496023

138929817771729543781791383508576756369997886518579756113924461957242557

829144758100726525360664722388979462199326422935937325825495314599912926

4291805253654333903846783 

 

Total encryption time for    is 2,678 milliseconds. 

 

Encryption for   : 

 

                                               
 

          
         

 

  =112164028721832983324553677381342841886294536651878840592942883942405

027110089791630377228963799418727728227818748733909739160812906443902605

520617373524522684653317339802698700280150116828740628329540327062963574

962424598753509925163574566653239016123019756169509839736998025892778255

97047716344030537367564 

 

   =69443031593589862076514140665409240155642557627930088663540809215240

693363381150390339739168827108446933125630896368538880374139597280531635

762085713491209380303604202714386872135007319139406746842022679420959187

999987558358554408693047746285236498154722646992943435539507406010774996

770626376901161715946483 

 

   =40564553005618513584764500295803124437089863691988608419374465711225

223918272535491547692391242045133930127760746774184534582837991211384888

094958405915155887553375602359598603518723646626695093865926572274190438

958568109649799107897308539210347546350686709766732060469595398193712320

564098056193208472673709 

 

Total encryption time for    is 2,622 milliseconds. 

 

Total encryption time for all users performed by Leader is 10,391 milliseconds. 
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 In Table B.6, each user verifies signature on commitment vector. Total 

verification time using ElGamal verification algorithm of per user is 3,402 with hashing 

algorithm. 

 

 

Table B.6. ElGamal Signature Verification. 

 Round-2 

 Each   verifies Leaders Signature using Leader’s public key. 

 

             
        

            

 

        =1122858994060983971179343771761372936953704666334649657858332

188408638170486199239838958373604425460368241518973167103920901831881

434733216736891937092209532085861529142219108444963658494172653400277

119514808883760275752063625518400341406841484713305453049044426793883

29768056845526312015707947385595551746649 

 

    
        

    =1122858994060983971179343771761372936953704666334649657

858332188408638170486199239838958373604425460368241518973167103920901

831881434733216736891937092209532085861529142219108444963658494172653

400277119514808883760275752063625518400341406841484713305453049044426

79388329768056845526312015707947385595551746649 

 

Total verification time of per user is 3,344 without hashing algorithm. 

 

Total verification time of per user is 3,402 with hashing algorithm. 

 

 

 

In Table B.7 each user decrypts received encrypted message to output his/her 

subsecret. Approximate decryption time for each user is 1,337 milliseconds. Specific 

computation time is available in the following table. 
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Table B.7. ElGamal Decryption. 

 Round-2 

 
U

se
r 
 

 
 

 

             
            

 

  =9325956120950456012396966411050721266062076715274114314315248077218

657079779600596816435174208891372960705333746565862799667975060862904

93847778796634114 
 

Total decryption time is 1,283 milliseconds. 

 

U
se

r 
 

 
 

             
            

 

  =725856418756471508011551369494525379929260032751408361747980029966

661316774568223852911611254106506819164726165533941498818158803772188

3477575462403135543 
 

Total decryption time is 1,365 milliseconds. 

 

 

U
se

r 
 

 
 

             
            

 

  =607490291222222883884124266478308018226938090698148552656777420748

303103904012961035465182730621577689599921318462679408835698050021082

9533548052242126741 
 

Total decryption time is 1,360 milliseconds. 

 

U
se

r 
 

 
 

             
            

 

  =802489097613302353560687016868295769718151445886074091775484649243

830788214214027830686722356235863605740286955079997289288215687507234

8862444833833773241 
 

Total decryption time is 1,360 milliseconds. 

 

 

 

In Table B.8, each user verifies correctness of his/her subsecret using 

commitment vector. Approximate verification time for each user is 748   seconds. 

Specific computation time is available in the following table. 
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Table B.8. Verifying Correctness of Subsecrets by Using Commitment Vector. 

 Round-2 
U

se
r 
 

 
 

   verifies his subsecret received from Leader and sends to other users. 

 

            

814982349632022237078488014254493365207617001769928008613745139106963

170712303831723722630394076758145179589226775506361229182413035264313

912420677429028816772170469040150494808406630446072310567843091628364

367381326434708520739200477409709449713648480151009619208767535524171

39503228595018672595604890699877 

 

∏   
      

              
           

           
       = 

814982349632022237078488014254493365207617001769928008613745139106963

170712303831723722630394076758145179589226775506361229182413035264313

912420677429028816772170469040150494808406630446072310567843091628364

367381326434708520739200477409709449713648480151009619208767535524171

39503228595018672595604890699877 
 

Total time of    for these estimations is 774   seconds. 

U
se

r 
 

 
 

   verifies his subsecret received from Leader and sends to other users. 

 

            

252114500680700631019890837607515580297843054754568213763763094298530

803909656904541264899548194611939886693036763442996187924885356805264

582349182738556749330052150695291921177717274387558083793380675989079

763302215986555924536539726648510215993229826809798394215720557780505

69417092289195920844666144273260 

 

∏   
      

              
           

           
       = 

252114500680700631019890837607515580297843054754568213763763094298530

803909656904541264899548194611939886693036763442996187924885356805264

582349182738556749330052150695291921177717274387558083793380675989079

763302215986555924536539726648510215993229826809798394215720557780505

69417092289195920844666144273260 

 

Total time of    for these estimations is 707   seconds. 

 

(cont. on next page) 
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Table B.8. (cont.) 

U
se

r 
 

 
 

   verifies his subsecret received from Leader and sends to other users. 

 

            

987251357715362171845979414191327371686414976418337078023605614273960

902724272030221728669998772571756660548245557055462766107959647690800

462730824787738253962550272769703169204591077991304444252320477885871

200059239153217071002203865289919933126571640259223902496341134298430

41828691934686073037555254183005 

 

∏   
      

              
           

           
       = 

987251357715362171845979414191327371686414976418337078023605614273960

902724272030221728669998772571756660548245557055462766107959647690800

462730824787738253962550272769703169204591077991304444252320477885871

200059239153217071002203865289919933126571640259223902496341134298430

41828691934686073037555254183005 

 

Total time of    for these estimations is 719   seconds. 

 

U
se

r 
 

 
 

   verifies his subsecret received from Leader and sends to other users. 

 

             

501379526328985561785835449286827020025421072913056723763219532361595

190251141922267972323614152053603670270311225752714074112534276564078

381166708761061384236579400752618535240166673282946763589870962843068

800975367417704633000009691645717715620851615360138377353690581357593

42924311237487593337447184971242 

 

∏   
      

              
           

           
       = 

501379526328985561785835449286827020025421072913056723763219532361595

190251141922267972323614152053603670270311225752714074112534276564078

381166708761061384236579400752618535240166673282946763589870962843068

800975367417704633000009691645717715620851615360138377353690581357593

42924311237487593337447184971242 

 

Total time of    for these estimations is 794   seconds. 

 

 

 

In Table B.9,    encrypts his subsecret using ElGamal encryption and related 

user’s public key who will receive the encrypted message. Encrypted messages are 

1024-bit length. Total encryption time performed by    for three users who will receive 

the message is approximately 7,596 milliseconds. 
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Table B.9.   ’s Encryption. 

U
se

r 
 

 
 

  

Round-2 

Encryption for   : 

                                                  
 

           
          

 

   =34377253757476211649950124505029163912086176029324304540532623103435

789715177389705800035267030199101213048325024519403760036984760623667170

360020192927134711830125662120399704579829385328130577324389937743355189

554940943907356556476234566815556191477752740508439248148414282795897184

298793888116824744702260 

 

    =1041598942198704370250674203062488312605267706558473148184171848172

542357892973811878267043169155729952542213137587933037190438444139255040

522329000722083826446461533610940923630490796970910721807476420170768736

313170243722465178091506847456403013920759022941563943389900741610006394

14493955266620908138241323 

 

    =2426171455615316246357080996122278671184627774762886684209379222611

137407132414546700187376534267407822897996244826089578032864894141912444

000421871304447916668992154362449827887729150022043040024639817390431624

857888001171639035532711812748841572291140222348837310247095825396558649

0229716855631381517977102 

 

Total encryption time for    is 2,580 milliseconds. 

 

Encryption for   : 

                                                  
 

           
          

 

   =93104220810032701203108881730113021262180030914130426040344459035008

765401913309265751142618985772669472892269122147123900252463894230453730

912849538117745726485380813021609809389359256480597247655090512650142405

450766317814137352702119708494381250237444016282001114500038595433108440

797316186921104499924960 

 

    =9651343295531817519295973569046817331060944594149052616186889013705

857024063097868399122737301644882379259686062933188225417467952166677635

825614789985105474135418375767428961875435479011591123355434011924113868

636150422414605262046185419982048499007000086481361173392809117680482470

0278845111521935723734539 

 

    =9110861814091633200540161120098399579189755115606041223702421034287

522177858183622164882829191013316483432932288415719954605790572692116552

832549734161985542196129531035942125103256723738710710236472049325205130

636250247288202463721535002025699686830184990373322528620900430783103271

4716104169644108831185436 

 

Total encryption time for    is 2,503 milliseconds. 
 

(cont. on next page) 
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Table A.9.(cont.) 
U

se
r 
 

 
 

 
Encryption for   : 

 

                                                  
 

           
          

 

   =5276766708739130648859315530078014179314442799856145960998247427387

71658524264470178654272558519903155298709263770485104525042518668947762

82557441378818136587576472012352294753870584773611721806583110688747281

33760916616412030014727617536184463169421705733044419010757896687313328

9288641622958482163322663233 

 

    =63818981056612164489118375440026271667478030512492924656091745622

24929232170508995090275353705890204289137349971012042851702356610450514

39131364399621155035935740750633819905303625397021174549521508031959587

26714657955201815150089789830737150248230450367440016985184827896776520

627139524977512536314016447065 

 

    =10206620256281375745211031784086835374715267267025069846247696683

93821507208853250010850592803458914918654997185039345921237969223389678

98057372298989195236761586188892739000577591718921495757950385765584834

34492763216262670535216167546310590446393028650371502486196053567244328

9413161812330534467748372086003 

 

Total encryption time for    is 2,513 milliseconds. 

 

Total encryption time performed by user    for all users is 7,596 milliseconds. 

 

 

In Table B.10,    encrypts his subsecret using ElGamal encryption and related 

user’s public key who will receive the encrypted message. Encrypted messages are 

1024-bit length. Total encryption time performed by    for three users who will receive 

the message is approximately 7,434 milliseconds. 
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Table B.10.   ’s Encryption. 

U
se

r 
 

 
 

  

Encryption for   : 

                                                  
 

           
          

 

   =11387424972380118452614996106430455699781857085172282342964557954194

383184973883442708135625997631985609563516557095124273846526357419653000

283283822492540991641474733780858821714778761226111638658274998593085404

939293395396063098821416009574959457453106224025158297227000704383133932

2215104847444871389462974 

 

 

    =1035648903434882799678123529282379875917975115621246964875353254550

726967740555090806438625966487395141958757702398266607054925920716914726

482002068788144466935277455543415844713243800857804046841613236630050932

919588500862160550678212247537102139052128604189150593113941219215500519

66020622156431774280321501 

 

    =1136584471269886148550908280852464364149181548117583681226043734511

590336759026365632412626924732653870958552899578317748447240589783439257

055807469959437405541060469389634833295461052115965684828055790648636894

421315778068425272249721529124390349531985793816442736591051240953309654

84624259824835541524311643 

 

Total encryption time for    is 2,481 milliseconds. 

 

Encryption for   : 

 

                                                  
 

           
          

 

   =79985341671381217585485148607572220468881972785111710187425724254355

789613452905866275767251813575651322647853288104887711840815176156724991

676388348390374834522631406237560714282368782256937696582209450033166681

879729656915378583897317042899745659486191041609156421448514797444792415

196153213481678717419551 

 

    =3391960925430186906556649459496740695810713171085275744359531380224

583518146328399725557311792149456934948062778831369008148324373216179276

762620460574894095657793253565961746315061493440773468268099581470428599

389743671419630956884690798014495573729724927578424229635229912652217994

2967097298541717910172245 

 

    =2169265621993519581987665172046475703229916947891353958731430379015

562027720348674462473863581576983478147184699164931495435119944852377668

809316166618839377238142673770557453604972606245907308286983683475659136

900368828112690239954763511106481106797378640778587256230398011414069198

6104927148624065019186960 

 

Total encryption time for    is 2,482 milliseconds. 

(cont. on next page) 
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Table B.10. (cont.) 
U

se
r 
 

 
 

 
Encryption for   : 

 

                                                  
 

           
          

 

   =90143349875696264787635100362320063653142071661096740826555014605328

058570909929527963706845886683401323410682357914570223504189232949451178

008567851162623734826970675566383962308231720206016029894886445845382826

061475028465916842190832568208944057470285892349902814382535300692221196

351021091850353586358754 

 

    =1623794635069062154557304918742496625021172021290108831224344290560

009342146565448935482045279426694527275711159342446990814168229381058806

658967635921019390667461950080192128910898161161016609562475286406668853

520676426545067596359624997138785312930145588334917082885277630018680283

623353866354385079893596 

 

    =1057860910762094359226693435516508381647983336813366587747670029980

522401701454888355423479931317284044599334384016450006360888765235916090

282930169470037643308584960086839835021775986661656041915491310439840010

992237953870399547658089710353295114486875690634650685589601807071832675

36058455719166361722586784 

 

Total encryption time for    is 2,471 milliseconds. 

 

Total encryption time performed by user   for all users is 7,434 milliseconds. 

 

 

 

In Table B.11,    encrypts his subsecret using ElGamal encryption and related 

user’s public key who will receive the encrypted message. Encrypted messages are 

1024-bit length. Total encryption time performed by    for three users who will receive 

the message is approximately 7,933 milliseconds. 
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Table B.11.    ’s Encryption. 

U
se

r 
 

 
 

 

Encryption for   : 

 

                                                  
 

           
          

 

   =20893427244861830045984468967121438306847421125869880603932429163564

108587971661816869529336109531220547988407483221099909212936401810909899

272084889444533501403653470200016222338347191121298305811602874103416215

262125115241886973203868496229633350082903832206217733011330337829029995

499024482925860955112433 

 

    =7673482779256064105280888521827436469686651933482054247304897983731

892601054791196171916677742119002918583950590494421380870703380316429958

208522532350841980820069617681411340472388870128458829944868997312345450

294370345296222347363412796008393700535235188255944070101608566234482337

1290891848875404479156097 

 

    =1163592774294622531820013858671797173332108974121488683969634268440

288216728624260409200140629632842600838687982775304992608050406713730395

589996001734239274196329202805530888817257355408240751602564710887884236

550242638537130361640407450660972084621745922837562387674060128784867987

13247909907451586663799618 

 

Total encryption time for    is 2,591 milliseconds. 

 

Encryption for   : 

 

                                                  
 

           
          

 

   =47085482303605358024781675717053823874796291543822451891949662753282

889465768759878705463275890619857219141256686465440445497549058051319291

906366671816055478449890141207445764497802432558033045383199426545283201

577094242321800020056653577227492760651896074015370843526931586803008459

480543803712419600449833 

 

    =2559432740320050588807087854158596086400485291527375024811855181930

659778628380762132038187851647073336601079849997844623970967072738554959

153967017151119440797254891978905369336053587235561702154038664053136260

169736237369360148712209951912156651729372148158798115973443577662517287

099227721670758668093182 

 

    =6467042145834844122942170497761458881504139677536082400271620433097

788485433766024627585894764924292449115848494685305823231663769704614853

523246384822231897847992808863944501954594442147125789931248170153749248

470497704430011124635268099688429718373184824830496264038926542803896528

3223355665666312918007038 

 

Total encryption time for    is 2,662 milliseconds. 

(cont. on next page) 
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Table B.11. (cont.) 

U
se

r 
 

 
 

 

Encryption for   : 

 

                                                  
 

           
          

 

   =36593267540500309604481745313663828040301726020661199345789548737607

978683594046218983543352841607075811404551508946657463546287073429658579

539658552485536980798466287220766811557646037148159105969732694825940020

607360757938392982746030374210303072534530319857675479807083614981652046

880631461954814733009692 

 

    =1123719326377191096530682343469931915443174624004411421401706710386

994682336653745254380362979137922147215331845916608660703360733687625247

201891361955719199387340662570085875909521824949047554563929164762587983

940992469024787704667461817471408740671927662164790625273893763259473239

58179397792851659483504926 

 

    =2091212362807010624540816689469091014911934968116844309097513888096

857401364907094747161767880540663376452524985966593537017957535105511108

852811671837700504838858187290378129812635234603891337139508259322140013

355443332497219620500686268093094653313444003856977946079048391543507814

7217183619155921136683938 

 

Total encryption time for    is 2,680 milliseconds. 

 

Total encryption time performed by user    for all users is 7,933 milliseconds. 

 

 

 

In Table B.12,    encrypts his subsecret using ElGamal encryption and related 

user’s public key who will receive the encrypted message. Encrypted messages are 

1024-bit length. Total encryption time performed by    for three users who will receive 

the message is approximately 7,831 milliseconds. 
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Table B.12.   ’s Encryption. 

U
se

r 
 

 
 

 

Encryption for   : 

 

                                                  
 

           
          

 

   =44420017137459599940428727948758273921414467167651823045921314748564

843145298262630287447802565080043504637067129782292897547300586924760203

299543723481255751529560758874379255042430368001539053273396791146113144

114199544325140254441086652824915440080108622373676245763319527370794485

910647530358660109204020 

 

    =9089280169280286822278531551312242752253909937890955686872495983926

475086245025336377049167869592311210165672044077269632615320006598774597

285261914645695595120253020622515927557492505813723054803338620925410733

100895124142646260068513443721968986287940356712222917081997955577293178

8130985030518235470745584 

 

    =1021312279713805972645352539798483255460384209766919555508560972831

644135966827454704481512749241343949411095595772585727354984678497135259

544056443445749356183903238105188728826268786655230098981728948831580401

235573209839757126523789826167201779793334946828025625848942503847063529

44451810857958953415367808 

 

Total encryption time for    is 2,658 milliseconds. 

 

Encryption for   : 

 

                                                  
 

           
          

 

   =27491549917843077991560444052007500698102177566431324523172894463933

621078157350014964855675264166682613653040370603605999620972047701670779

842026788031226180003391599146540763051453597997547265074185096047733933

648614819238864524327759827843062760132115287617615253524309656956179984

516332415821868560274401 

 

    =3894316728074574066692616735825753355450550713123475782160687329685

167203572227120015535716551826205333218716567721834426259257224840995550

794342962079338131408011439077097726668821487910226944411157279923476423

611419793378360501985488356009561909049245838537039163953218034534979249

1262454589559086085646870 

 

    =1122070086722164479565279101784815659068412695344938748301268695320

518275448969160004917063511346691994651636942522055099699312683211814525

705964449655437526583428266169442663466402757778290440853113351639287470

002242381208676480826811071113078788562026313205711989778259747193606272

29729339204776287785210125 

 

Total encryption time for    is 2,594 milliseconds. 

 

(cont. on next page) 
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Table B.12. (cont.) 

U
se

r 
 

 
 

 

Encryption for   : 

 

                                                  
 

           
          

 

   =68089489097265564729216345703802383763090690862974180876355798784474

982039769870492928001068004781354124069233395151829792417182597365913010

829435666309746930369309654376606470833993641681316060329901655725044053

121641014208222585674718275893750602185966542152072458381742349625934553

529504800104340638019824 

 

    =2653715219268543912948646830083784434885772724771474657986885700620

023503064461431784574592976915355733049218566050143175296794908919938237

191086219275262805608222614986955066273359599682603154926067401600197204

350043059289624916532877693473091492026848113917022979555380884976488408

8770095844288855079276825 

 

    =7549804667946216460450479700451763319877587754708081182281139527111

650356158927371023492223604963169567072597610558043679344068920799620527

001112105444628951711791952202263566493083746078537917912126049187650575

791691716125211149682813646730081588010455955505379570047643669049614250

9848809508625608191617995 

 

Total encryption time for    is 2,579 milliseconds. 

 

Total encryption time performed by user    for all users is 7,831 milliseconds. 

 

 

 

In Table B.13 each user decrypts received encrypted message which outputs the 

sender’s subsecret. Approximate decryption time of all three subsecrets for each user is 

4,004 milliseconds. Specific computation time is available in the following Table. 
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Table B.13. Decryption of Received Subsecrets of Senders. 

 Key Establishment 

 
U

se
r 
 

 
 

Decryption for   ’s message 

               
            

 

  =725856418756471508011551369494525379929260032751408361747980029966

661316774568223852911611254106506819164726165533941498818158803772188

3477575462403135543 
 

Total decryption time is 1,348 milliseconds. 

 

Decryption for   ’s message 

               
            

 

  =607490291222222883884124266478308018226938090698148552656777420748

303103904012961035465182730621577689599921318462679408835698050021082

9533548052242126741 
 

Total decryption time is 1,367 milliseconds. 

 

Decryption for   ’s message 

               
            

 

  =802489097613302353560687016868295769718151445886074091775484649243

830788214214027830686722356235863605740286955079997289288215687507234

8862444833833773241 
 

Total decryption time is 1,367 milliseconds. 

 

Total decryption time for all received messages is 4,067 milliseconds. 

 

(cont. on next page) 
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Table B.13. (cont.) 

U
se

r 
 

 
 

Decryption for   ’s message 

 

               
            

 

  =9325956120950456012396966411050721266062076715274114314315248077218

657079779600596816435174208891372960705333746565862799667975060862904

93847778796634114 

 

Total decryption time is 1,372 milliseconds. 

 

Decryption for   ’s message 

 

               
            

 

  =607490291222222883884124266478308018226938090698148552656777420748

303103904012961035465182730621577689599921318462679408835698050021082

9533548052242126741 

 

Total decryption time is 1,357 milliseconds. 

 

Decryption for   ’s message 

 

               
            

 

  =802489097613302353560687016868295769718151445886074091775484649243

830788214214027830686722356235863605740286955079997289288215687507234

8862444833833773241 

 

Total decryption time is 1,269 milliseconds. 

 

Total decryption time for all received messages is 3,998 milliseconds. 

 

 

(cont. on next page) 
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Table B.13. (cont.) 

U
se

r 
 

 
 

Decryption for   ’s message 

 

               
            

 

  =9325956120950456012396966411050721266062076715274114314315248077218

657079779600596816435174208891372960705333746565862799667975060862904

93847778796634114 
 

Total decryption time is 1,410 milliseconds. 

 

Decryption for   ’s message 

 

               
            

 

  =725856418756471508011551369494525379929260032751408361747980029966

661316774568223852911611254106506819164726165533941498818158803772188

3477575462403135543 

 

Total decryption time is 1,303 milliseconds. 

 

Decryption for   ’s message 

 

               
            

 

  =802489097613302353560687016868295769718151445886074091775484649243

830788214214027830686722356235863605740286955079997289288215687507234

8862444833833773241 

 

Total decryption time is 1,270 milliseconds. 

 

Total decryption time for all received messages is 3,983 milliseconds. 

 

(cont. on next page) 
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Table B.13. (cont.) 

U
se

r 
 

 
 

Decryption for   ’s message 

 

               
            

 

  =9325956120950456012396966411050721266062076715274114314315248077218

657079779600596816435174208891372960705333746565862799667975060862904

93847778796634114 

 

Total decryption time is 1,312 milliseconds. 

 

Decryption for   ’s message 

 

               
            

 

  =725856418756471508011551369494525379929260032751408361747980029966

661316774568223852911611254106506819164726165533941498818158803772188

3477575462403135543 

 

Total decryption time is 1,296 milliseconds. 

 

Decryption for   ’s message 

 

               
            

 

  =607490291222222883884124266478308018226938090698148552656777420748

303103904012961035465182730621577689599921318462679408835698050021082

9533548052242126741 

 

Total decryption time is 1,362 milliseconds. 

 

Total decryption time for all received messages is 3,970 milliseconds. 

 

 

 

In Table B.14 each user verifies received subsecrets by using commitment 

vector. Approximate calculation time of each user for subsecret verification is 2,245 

milliseconds. Specific calculations of users are available in the following table. 
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Table B.14. Subsecrets Verification using Commitment Vector. 

U
se

r 
 

 
 

Key Establishment 

   verifies correctness of received subsecrets   ,    and   . 

 

Verification for   : 

            

252114500680700631019890837607515580297843054754568213763763094298530803

909656904541264899548194611939886693036763442996187924885356805264582349

182738556749330052150695291921177717274387558083793380675989079763302215

986555924536539726648510215993229826809798394215720557780505694170922891

95920844666144273260 

∏   
      

              
           

           
       = 

252114500680700631019890837607515580297843054754568213763763094298530803

909656904541264899548194611939886693036763442996187924885356805264582349

182738556749330052150695291921177717274387558083793380675989079763302215

986555924536539726648510215993229826809798394215720557780505694170922891

95920844666144273260 

 

Verification for   : 

            

987251357715362171845979414191327371686414976418337078023605614273960902

724272030221728669998772571756660548245557055462766107959647690800462730

824787738253962550272769703169204591077991304444252320477885871200059239

153217071002203865289919933126571640259223902496341134298430418286919346

86073037555254183005 

∏   
      

              
           

           
       = 

987251357715362171845979414191327371686414976418337078023605614273960902

724272030221728669998772571756660548245557055462766107959647690800462730

824787738253962550272769703169204591077991304444252320477885871200059239

153217071002203865289919933126571640259223902496341134298430418286919346

86073037555254183005 

 
Verification for   : 

            

501379526328985561785835449286827020025421072913056723763219532361595190

251141922267972323614152053603670270311225752714074112534276564078381166

708761061384236579400752618535240166673282946763589870962843068800975367

417704633000009691645717715620851615360138377353690581357593429243112374

87593337447184971242 

 

∏   
      

              
           

           
       = 

501379526328985561785835449286827020025421072913056723763219532361595190

251141922267972323614152053603670270311225752714074112534276564078381166

708761061384236579400752618535240166673282946763589870962843068800975367

417704633000009691645717715620851615360138377353690581357593429243112374

87593337447184971242 

 

Total computation time for verification of subsecrets is 2,218 milliseconds. 

 

(cont. on next page) 
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Table B.14. (cont.) 

U
se

r 
 

 
 

   verifies correctness of received subsecrets   ,    and   . 

 

Verification for   : 

            

814982349632022237078488014254493365207617001769928008613745139106963170

712303831723722630394076758145179589226775506361229182413035264313912420

677429028816772170469040150494808406630446072310567843091628364367381326

434708520739200477409709449713648480151009619208767535524171395032285950

18672595604890699877 

∏   
      

              
           

           
       = 

814982349632022237078488014254493365207617001769928008613745139106963170

712303831723722630394076758145179589226775506361229182413035264313912420

677429028816772170469040150494808406630446072310567843091628364367381326

434708520739200477409709449713648480151009619208767535524171395032285950

18672595604890699877 

 

Verification for   : 

            

987251357715362171845979414191327371686414976418337078023605614273960902

724272030221728669998772571756660548245557055462766107959647690800462730

824787738253962550272769703169204591077991304444252320477885871200059239

153217071002203865289919933126571640259223902496341134298430418286919346

86073037555254183005 

∏   
      

              
           

           
       = 

987251357715362171845979414191327371686414976418337078023605614273960902

724272030221728669998772571756660548245557055462766107959647690800462730

824787738253962550272769703169204591077991304444252320477885871200059239

153217071002203865289919933126571640259223902496341134298430418286919346

86073037555254183005 

 
Verification for   : 

            

501379526328985561785835449286827020025421072913056723763219532361595190

251141922267972323614152053603670270311225752714074112534276564078381166

708761061384236579400752618535240166673282946763589870962843068800975367

417704633000009691645717715620851615360138377353690581357593429243112374

87593337447184971242 

∏   
      

              
           

           
       = 

501379526328985561785835449286827020025421072913056723763219532361595190

251141922267972323614152053603670270311225752714074112534276564078381166

708761061384236579400752618535240166673282946763589870962843068800975367

417704633000009691645717715620851615360138377353690581357593429243112374

87593337447184971242 

Total computation time for verification of subsecrets is 2,202 milliseconds. 

(cont. on next page) 
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Table B.14. (cont.) 

U
se

r 
 

 
 

   verifies correctness of received subsecrets   ,    and   . 

 

Verification for   : 

            

814982349632022237078488014254493365207617001769928008613745139106963170

712303831723722630394076758145179589226775506361229182413035264313912420

677429028816772170469040150494808406630446072310567843091628364367381326

434708520739200477409709449713648480151009619208767535524171395032285950

18672595604890699877 

∏   
      

              
           

           
       = 

814982349632022237078488014254493365207617001769928008613745139106963170

712303831723722630394076758145179589226775506361229182413035264313912420

677429028816772170469040150494808406630446072310567843091628364367381326

434708520739200477409709449713648480151009619208767535524171395032285950

18672595604890699877 
 

Verification for   : 

            

252114500680700631019890837607515580297843054754568213763763094298530803

909656904541264899548194611939886693036763442996187924885356805264582349

182738556749330052150695291921177717274387558083793380675989079763302215

986555924536539726648510215993229826809798394215720557780505694170922891

95920844666144273260 

∏   
      

              
           

           
       = 

252114500680700631019890837607515580297843054754568213763763094298530803

909656904541264899548194611939886693036763442996187924885356805264582349

182738556749330052150695291921177717274387558083793380675989079763302215

986555924536539726648510215993229826809798394215720557780505694170922891

95920844666144273260 

Verification for   : 

            

501379526328985561785835449286827020025421072913056723763219532361595190

251141922267972323614152053603670270311225752714074112534276564078381166

708761061384236579400752618535240166673282946763589870962843068800975367

417704633000009691645717715620851615360138377353690581357593429243112374

87593337447184971242 

 

∏   
      

              
           

           
       = 

501379526328985561785835449286827020025421072913056723763219532361595190

251141922267972323614152053603670270311225752714074112534276564078381166

708761061384236579400752618535240166673282946763589870962843068800975367

417704633000009691645717715620851615360138377353690581357593429243112374

87593337447184971242 

Total computation time for verification of subsecrets is 2,248 milliseconds. 

(cont. on next page) 
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Table B.14. (cont.) 

U
se

r 
 

 
 

   verifies correctness of received subsecrets      ,   . 

 

Verification for   : 

            

814982349632022237078488014254493365207617001769928008613745139106963170

712303831723722630394076758145179589226775506361229182413035264313912420

677429028816772170469040150494808406630446072310567843091628364367381326

434708520739200477409709449713648480151009619208767535524171395032285950

18672595604890699877 

∏   
      

              
           

           
       = 

814982349632022237078488014254493365207617001769928008613745139106963170

712303831723722630394076758145179589226775506361229182413035264313912420

677429028816772170469040150494808406630446072310567843091628364367381326

434708520739200477409709449713648480151009619208767535524171395032285950

18672595604890699877 

 
Verification for   : 

            

252114500680700631019890837607515580297843054754568213763763094298530803

909656904541264899548194611939886693036763442996187924885356805264582349

182738556749330052150695291921177717274387558083793380675989079763302215

986555924536539726648510215993229826809798394215720557780505694170922891

95920844666144273260 

∏   
      

              
           

           
       = 

252114500680700631019890837607515580297843054754568213763763094298530803

909656904541264899548194611939886693036763442996187924885356805264582349

182738556749330052150695291921177717274387558083793380675989079763302215

986555924536539726648510215993229826809798394215720557780505694170922891

95920844666144273260 

 

Verification for   : 

            

987251357715362171845979414191327371686414976418337078023605614273960902

724272030221728669998772571756660548245557055462766107959647690800462730

824787738253962550272769703169204591077991304444252320477885871200059239

153217071002203865289919933126571640259223902496341134298430418286919346

86073037555254183005 

∏   
      

              
           

           
       = 

987251357715362171845979414191327371686414976418337078023605614273960902

724272030221728669998772571756660548245557055462766107959647690800462730

824787738253962550272769703169204591077991304444252320477885871200059239

153217071002203865289919933126571640259223902496341134298430418286919346

86073037555254183005 

Total computation time for verification of subsecrets is 2,311 milliseconds. 

 

 

In Table B.15 each user applies Lagrange Interpolation. When a user verifies all 

subsecrets as shown in the Table B.14, then he/she can establish the common secret key 

using Lagrange Interpolation from any     subsecrets. Approximate calculation time 
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of each user for Lagrange Interpolation is 35   seconds. Specific calculations of users 

are available in the following table. 

 

 

Table B.15. Key Establishment by Lagrange Interpolation. 

 Key Establishment 

U
se

r 
 

 
 

If verification succeeds,    use lagrange interpolating formula for any     subsecrets. 

Assume that     set includes   ,   ,   . 

          

   

       
 

   

       
   

   

       
 

   

       
   

   

       

 
   

       
 

  =838355556594409371859376473939134800750013303688371648654174765418316578

029863928010946716563772272950582199151914080658849097286834249098372357246

2953520 

Total computation time for lagrange interpolation is 40 microseconds. 

U
se

r 
 

 
 

If subsecrets verification succeeds,    use lagrange interpolating formula for any     

subsecrets. Assume that     set includes   ,   ,   . 

          

   

       
 

   

       
   

   

       
 

   

       
   

   

       

 
   

       
 

  =838355556594409371859376473939134800750013303688371648654174765418316578

029863928010946716563772272950582199151914080658849097286834249098372357246

2953520 

Total computation time for lagrange interpolation is 29 microseconds. 

 

U
se

r 
 

 
 

If subsecrets verification succeeds,    use lagrange interpolating formula for any     

subsecrets. Assume that     set includes   ,   ,   . 

          

   

       
 

   

       
   

   

       
 

   

       
   

   

       

 
   

       
 

 

  =838355556594409371859376473939134800750013303688371648654174765418316578

029863928010946716563772272950582199151914080658849097286834249098372357246

2953520 

Total computation time for lagrange interpolation is 31 microseconds. 

 

U
se

r 
 

 
 

If subsecrets verification succeeds,    use lagrange interpolating formula for any     

subsecrets. Assume that     set includes      ,   . 

          

   

       
 

   

       
   

   

       
 

   

       
   

   

       
 

   

       
 

  =838355556594409371859376473939134800750013303688371648654174765418316578

029863928010946716563772272950582199151914080658849097286834249098372357246

2953520 

 

Total computation time for lagrange interpolation is 39 microseconds. 
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Table B.16 presents the summary of the original protocol (Feldman, (1987)) for 

four users. It approximately needs 3,03 milliseconds computation time for per user and 

5,5 milliseconds computation time for the Leader. 

 

 

Table B.16. Summary of Results of the Original Protocol. 

 Leader 
-millisecond 

User    
-millisecond 

User    
-millisecond 

User    
-millisecond 

User    
-millisecond 

R
o
u

n
d

-1
 

 

Polynomial 

Generation 
0,021 -- -- -- -- 

Commitment 

Calculation 
5,483 -- -- -- -- 

Subsecret 

Calculation 
0,016 -- -- -- -- 

Total 5,520 -- -- -- -- 

R
o
u

n
d

-2
 Subsecret 

Verification-

Total 

-- 0,774 0,707 0,719 0,794 

K
ey

 E
st

a
b
li

sh
m

en
t 

 

Subsecret 

Verification 

 

-- 2,218 2,202 2,248 2,311 

Lagrange 

Interpolation 

 

-- 0,040 0,029 0,031 0,039 

Total 

 
-- 2,258 2,231 2,279 2,350 

 

 

Table B.17 presents the summary of the original protocol for four users. It 

approximately needs 19,468 milliseconds computation time for per user and 17,517 

milliseconds computation time for the Leader. 
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Table B.17. Summary of Results of the Proposed Protocol. 

 Leader 
-millisecond 

User    
-millisecond 

User    
-millisecond 

User    
-millisecond 

User    
-millisecond 

R
o
u

n
d

-1
 

Polynomial 

Generation 

0,021 -- -- -- -- 

Commitment 

Calculation 

5,483 -- -- -- -- 

Subsecret 

Calculation 

0,016 -- -- -- -- 

Signing on 

Commitment 

0.058 

SHA-512 

+ 

1,548 

ElGamal 

Signature 

-- -- -- -- 

Encryption 

of 

Subsecrets 

10,391 

ElGamal 

Encryption 

-- -- -- -- 

Total 

 

17,517 -- -- -- -- 

R
o
u

n
d

-2
 

Signature 

Verification 

-- 3,402 3,402 3,402 3,402 

Decryption 

 

-- 1,283 1,365 1,360 1,338 

Subsecret 

Verification 

-- 0,774 0,707 0,719 0,794 

Subsecret 

Encryption 

-- 7,596 7,434 7,933 7,831 

Total -- 13,055 12,908 13,414 13,365 

K
ey

 E
st

a
b
li

sh
m

en
t 

Decryption 

 

-- 4,067 3,998 3,983 3,970 

Subsecret 

Verification 

-- 2,218 2,202 2,248 2,311 

Lagrange 

Interpolation 

-- 0,040 0,029 0,031 0,039 

Total 

 

-- 6,325 6,225 6,262 6,320 

 


